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Abstract

In this dissertation, discrete-time multiobjective filtering and control is studied to complete the 

theory on these subjects. A discrete-time filter is developed for systems subject to both white noise 

and bounded-power disturbance signals. Sufficient and necessary conditions for the robust optimal 

filter are presented and the resulting filter gain is characterized by a set of two coupled Riccati 

equations.

Furthermore, control design methods for discrete-time systems subject to both white noise and 

bounded-power disturbance signals are developed in the framework of two multiobjective 'H.2 /'Hoo 

designs. For these two methods, namely: ‘M ixed Control’, and ‘Hoc Gaussian Control' ,

after some standard assumptions on the system and defining performance indexes, sufficient and 

necessary conditions are obtained for existence of output-feedback controllers which are character

ized by coupled Riccati equations. Numerical examples are presented to validate the designs. As an 

application, control of electric power-assisted steering system is considered and the multiobjective 

control designs are developed and compared with regular Ft2 and T i^  controllers.
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Chapter 1

Introduction

1.1 Multiobjective H 2 / H 0 0 Control

In any engineering problem, the goal is often to attain some desired performance, defined by the 

problem statement. This performance can be in the form of a target behavior of the addressed 

system, maintaining a vital characteristic of the system such as stability, or the ability to perform 

effectively in the presence of unknown changes to the environment. However, as any experienced 

engineer knows, the price for achieving one type of performance is often sacrificing other aspects 

of system behavior.

One of the most logical measures to evaluate the quality of a system design and compare it with 

other possible solutions, is to asses if it can satisfy multiple objectives at the same time, hence the 

designation: ‘m ultiobjective'. Since it is almost impossible to have a single solution to an engi

neering challenge without any downsides, a good practitioner can instead attempt to accomplish as 

many objectives as possible with limited number of drawbacks. For some examples o f multiobjec

tive control designs see [16, 50, 47, 48, 20, 42, 45],

Multivariable control analysis and design tools have enjoyed a rapid progress during the past 

decades. Two o f the major contributions to this field are the so-called Linear Quadratic Gaussian 

(LQG) or 7-12* and T~(-oc control theories. These two fields of study, although related in nature,

l
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1. IN T R O D U C T IO N

address two different concerns in the design process.

The primary differences between the Ho control design theory [31,44, 18] and Hoc control the

ory [18, 56, 22, 4, 60] are rooted in their treatments of exogenous disturbances. In LQG approach, 

for a linear plant given by its state-space description, it is assumed that the disturbance and m ea

surement noise are Gaussian stochastic processes with known power spectral densities. The design 

specifications are then converted into a quadratic performance criterion consisting of state variables 

and control input signals. The goal of the designer is then to minimize this performance criterion 

by using a suitable state or measurement feedback controller and at the same time guaranteeing the 

closed-loop stability. However, in many practical problems, the covariance of the disturbance signal 

is not known and furthermore, the robustness is not guaranteed when dealing with model inaccuracy 

and changes in system parameters [2 1 ].

On the other hand, Hoc theory is based on a deterministic disturbance model consisting of 

bounded-power signals, and it tries to minimize the worst-case disturbance attenuation. This method 

is applied successfully wherever a robust design is required. Nevertheless, the transient response of 

the system with H 00 controller is not usually desirable and also it may be too conservative for the 

systems with well-known disturbance power spectral densities.

The question o f designing a stabilizing, mixed H 2 / H 0 0  controller that is able to address both 

types of disturbances and also produce a robust controller with a good transient response is then 

natural to consider, since it is obviously an example of a ‘multiobjective design’’ as presented before. 

It is therefore no surprise that this problem has attracted a great deal of attention from the researchers 

in the past decade. There has been a large number of works reported in the literature that address 

this question in continuous-time domain. Some examples are given here for various approaches to 

this problem (for more examples of other multiobjective control methods see [51]).

The Linear Matrix Inequalities (LMI) method is applied to mixed H 2 / H 0 0  problem in a wide 

variety of ways leading to a convex optimization. For some examples of this methodology see 

[29, 25,46, 32]. The authors in [6 ] utilize a transfer function approach using Youla parameterization 

[55]. A unifying formulation and solution to the general LM I-based design, which also includes the 

multiobjective control is developed in [36].

Some of the methods mentioned above formulate the mixed H 2 / H 0 0  problem in the general

2
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1. IN T R O D U C T IO N

form of minimizing an TL2 performance criterion which is subject to a prespecified TL^ constraint 

with the closed-loop system stable. For this problem, in [5, 28] an auxiliary problem is proposed 

with an upper bound on the performance index and is solved through three Riccati equa

tions.

In [19, 61] a system with both white noise and bounded-power disturbance signal is considered 

and the problem involves minimizing a mixed norm of the system.

The authors in [35] introduced a method based on the Nash game theory, where each o f the H 2  

and oo criteria are represented independently as the two pay-off functions in a two-player, nonzero 

sum game. The resulting Nash equilibrium consists of a controller, characterized by cross-coupled 

Riccati equations, which satisfies both LQG and 7foo performance indexes. The main attraction 

of this approach is that it has a very clear 'H-i/'H-x. interpretation and is solvable through some 

standard numerical algorithm. A state-feedback controller is solved in [35] and a more general 

output-feedback solution is given in [13]. M ore recently, the results in [35] have been generalized 

to the stochastic system with state-dependant noise [8 ], and state, input and disturbance-dependant 

noise [59].

1.2 Discrete-Time Multiobjective Filter

As a natural continuation to the methodology applied in this work, a discrete-time multiobjective 

filter is developed.

One of the most important problems in signals and systems analysis is the signal estimation 

for the dynamic systems [1, 41]. The optimal H 2  filter (also known as Kalman filter) [2], which 

is based on the stochastic noise model with known power spectral densities is a popular signal 

estimator. However, this technique may be very sensitive to changes in system parameters or other 

disturbances with unknown spectral densities. For such cases, a better choice is to use an Hoc filter, 

which is developed specifically to address model uncertainty [24, 39], and different techniques 

have been well developed and applied for different systems (see for example [27, 33, 54] and the 

references therein). Although 00 filter usually provides much better robustness than H 2  filter, it 

may not be possible to use it for systems affected by stochastic noise. Clearly, a mixed 2 /^ 0 0  

filter design scheme that can combine the strengths o f these two estimation methods in a systematic

3
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1. IN T R O D U C T IO N

way is highly desirable.

Several methods have been proposed to carry out the robust optimal filter design and a few ex

amples are given here for different approaches to this problem. In [43] and [30], the mixed W2/W 0C 

filters are obtained using convex programming characterization. For systems with norm-bounded 

parameter uncertainties, the problem is solved in [52] and [53] by using Riccati-like equations, 

where the transfer function from the noise inputs to error state outputs meets an Tfoo-norm upper 

bound constraint. For discrete-time polytopic systems, [40] obtains the mixed H 2 / H 0 0  filters by 

solving a set of linear matrix inequalities (LMIs), while [26] uses the parameter-dependent stability 

idea and finds a filter that depends on the parameters, which are assumed to reside in a polytope and 

be measurable online. A time domain game theoretic approach is proposed in [49] which improves 

the n 2 performance of the central Hoo filter while satisfying the required Hoo performance.

In [14], utilizing the game approach, a new formulation called ‘H a0 Gaussian filter’ is proposed, 

and it is shown that the robust optimal filter can be obtained by solving a set of cross-coupled 

Riccati equations. The result is a Kalman-type filter for uncertain plants and is characterized by the 

choice o f the disturbance attenuation level 7 . One advantage of this approach is that optimal state 

estimation is achieved at the presence of the worst case model uncertainty. Therefore, it clearly 

reflects the trade-off between the inherently conflicting H 2 and Hoo performances.

Motivated by the approach in [14], in this dissertation, the Nash game methodology is adopted 

to derive a mixed H 2/H oo  filter in discrete time. The design is based on a constrained optimization 

problem and is characterized by two cross-coupled Riccati equations. As it can be seen, obtaining 

the discrete-time counterpart of the continuous procedure is not so straightforward. An optimal 

filter gain is characterized by an equation consisting of the plant parameters and the solutions to the 

Riccati equations.

1.3 Discrete-Time Multiobjective Control

Most of the signals considered in control systems, such as tracking error or actuator output, are 

continuous in nature. Also, many performance specifications, such as bandwidth, rise time, etc, are 

formulated in continuous-time. However, because of the many benefits o f the digital technology and 

the ever-decreasing cost, in many applications, controllers and sometimes sensors are realized using

4
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1. IN T R O D U C T IO N

digital technology. Such a system, having both continuous and discrete signals is called a sampled 

data system.

A widely used approach to design a digital controller for the sampled data system is to first 

construct the controller in continuous time domain, where the performance specifications are most 

natural, and then discretize it in order to be implemented by a digital controller. It is expected, at 

least in theory, that the analog performance is recovered exactly as T  —» 0, where T  is the sampling 

period. Nevertheless, this method has several practical and theoretical problems. First, during the 

process of discretization, many desired characteristics of the continuous system, including some of 

the system norms, are not transferred to discrete time and even the stability is not guaranteed [23, 9], 

Furthermore, smaller sampling period requires faster and more expensive hardware. Moreover, the 

sampling rate is usually limited or fixed by other implementation issues unrelated to the control 

scheme, which puts more restrictions on the original continuous-time design to be able to produce 

the desired performance without any distortions. Therefore, it is always advantageous to be able 

to design a controller directly in discrete-time domain. For these reasons and more, the field of 

discrete-time control design and analysis has become a significant and ever-growing part of the 

control systems theory.

Considering the vast amount of work that has been done on mixed H.2 /TL0 0  control in continuous 

time, only a few references seem to exist that deal with discrete-time domain. The work in [5] has 

been extended to discrete time in [28], where an LQG output feedback is designed, with a constraint 

on Tioo disturbance attenuation. In [38], the discrete-time counterpart of [19] is carried out and also 

a special case solution for the mixed W2/W 00 Nash equilibrium is suggested. The authors o f [59] 

extend their work to discrete-time systems with state and disturbance dependent noise in [58]. In 

[15] the W2/W 00 control is considered for discrete-time, Markovian jum p linear systems. Using the 

game theory approach, a state-feedback controller is derived in [12] which considers a system with 

a bounded power disturbance signal.

In this dissertation, the Nash game methodology is adopted to derive mixed 'Hi/'Hoc controllers 

in discrete time. We assume the observer-based structure for the controller and therefore, the m ea

surement noise (characterized by the white noise signal) is considered along with a bounded-power 

disturbance that can be a representative o f the system model uncertainty. As can be seen from this

5
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1. IN T R O D U C T IO N

work, extending the continuous-time design procedure to discrete-time is not so straightforward, 

making the problem worthy to be considered on its own.

Two different frameworks are considered which are called “Mixed W2/W 00 Control” and “Woo 

Gaussian Control”. Output feedback controllers have been derived which are characterized by three 

cross-coupled Riccati equations. The plant is assumed to be as general as possible and only some 

standard assumptions are made on the system. Some numerical examples are included to dem on

strate performance indexes and to illustrate the solvability of the proposed procedure.

1.4 Dissertation Overview

This dissertation is organized as follows: after the introduction and background information pro

vided in this chapter, some preliminary definitions and results are collected in chapter 2 ; in chapter 

3 a multi objective filter problem is presented and solved; the mixed W2/W 00 control is introduced in 

chapter 4; chapter 5 covers the Woe Gaussian control design method; the application of the proposed 

solutions is studied on an electric power-assisted steering system in chapter 6 ; chapter 7 summarizes 

the conclusions, final remarks and a few suggestions for the future research on this path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Chapter 2

Preliminary Results

2.1 Signals and Systems

Consider a linear, time-invariant, discrete-time control system described by:

x (k  +  1) =  A x (k )  + B u ( k ) ,  x(0) =  0 ,

y{k)  =  C x ( k ) +  D u (k ) ,  

where x  is the system states vector, u  is the control input, y  is the output measurement, and the 

index k  represents the value o f a signal at the time instance k T ,  where T  is the sampling period. 

From this point on, we will drop the time index k, and adopt the notation Sx := x ( k  +  1). The 

system presented above can then be written as:

Sx  =  A x  + B u , x(0) =  0 ,

y = C x  +  D u .

The following packed notation is used to define the system transfer function:

(2 . 1)

A B

C D
=  C ( z l  — A) ~  B  +  D (2 .2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 . P R E L IM IN A R Y  R E SU L T S

2.1 .1  N o rm s  o f  s ig n a ls  a n d  sy s tem s

Definition 1 (B ounded pow er signal) Consider the given discrete-time real vector stochastic sig

nal u(k):

u{k)  = [ui(k) u 2{k ) ••• u m {k))T  e Vfc €  Z,

where u, (k) ,  i =  1, ... .  rn, are real discrete random processes. We define the mean and autocorre

lation matrices, respectively, as:

E { u }  :=  [E{Ul (k)}  E { u 2{k)}  ••• E { u m (k)}}T ,

l  N - 1

R u u { n ) =  lim  — Y ]  E { u { k  + n ) u T {k)} .
N ^O C  1\  *—'

k = 0

The pow er spectral density o f u ( k ) ,  is:

- OO

k = —oo

A stationary stochastic vector signal is said to have bounded pow er if:

•  both R uu and S Uu exist;

•  E i \ \  u ( k ) Hi) < °°-

Definition 2 (P -n o rm ) Let V  be the set o f  all signals with bounded power, we define the seminorm:

II “  \ \ v =  J i m  T C  ^ { 1 1  I I 2 }  • ( 2 3 )N —>00 iv  ‘ '  
fc=0

Note that whenever the unsubscripted norm || • || is used, it refers to the standard euclidian norm 

on vectors.

Definition 3 (M utually  u n co rre la ted  signals) Two stochastic vector signals u  \ and u 2 are said to 

be mutually uncorrelated if:

(£'{'Ui} =  0 or E { u2} = Q) a n d  E { u i { k \ ) u ^ { k 2)} =  0, ^ k \ , k 2 E J j .

8
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2. P R E L IM IN A R Y  R E S U L T S

U

Figure 2.1: A general system with input and output signals

Definition 4 (Tioo an d  712 no rm s o f system s) Consider a given discrete-time system G(z )  in Fig

ure 2.1, with state space realization (A , B , C, D ), and denote w  and z as the input and output 

signals to the system, respectively. The 712 and  Hoo norms o f  this system are defined as:

|| G  H2— J  tra ce \G (e~ ie)*G (e~ ie)\dQ ^  , || G  | |oo— m a x < T [ G !( e _ •76,)] ,

where a  is the maximum singular value o f G( z ) .

Note that if  w  is a bounded power signal, it can be shown that || G  | | o o =  supu, (see [9,60]). 

Moreover, if w = wy is a white noise signal, it can be shown that || G  ||2= || 2 |jp- Therefore, it is 

easy to validate that:

II G  110 0 < 7 0 < 7 2 || w  ||p -  || 2  ||p , Vw y ^ O .

2.1.2 Expected value lemmas

L em m a 2.1 Consider a dynamic system described by:

Sx — A x  +  Bqwq +  B 2 U, x(0) =  0

2 =  C \x  +  D n u , 

y  = C 2 X + D 2 0 W0  ,

(2.4)

(2.5)

(2 .6)

where wq is a white noise signal and the controller, u, is given by K { z ) =  C k (z I  — A x )  1 B x  

with its associated state variable x. Then we have:

E{ x ( k )wQ  (()} =  <
(en-Bo +  e \ 2 B x D 2 o), i f k > l  +  1 

0 , i f k  < 1  +  1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 . P R E L IM IN A R Y  R E SU L T S

where

A =
A B 2C k j^k—l—l _ e n  e i2

B k C 2 A k C2i e22

Proof: The closed-loop system consisting of the plant (2.4)-(2.6) and the controller K ( z )  =  

C k (zI  — A k ) ~ 1B k  can be written as:

Sx  — A x  +  B qwq ,

where x  is the state vector of the augmented system, x  = [xT x T ]T , and Bo =  [Bq ( B h' D 2o)T ]T - 

The solution to this difference equation is:

k - l
x{k )  =  A kx{  0) + ^ 2 A k- ^ 1B 0w 0(j)

3 = 0
k - l

= Y , A k- j - 1B Qwo(j ) ,  A: =  1 ,2 ,3 ,- -  -
3 =0

and

k - l
E { x ( k ) w o ( l ) }  = E[ w0( l )xT (k) w 0( l )xT (k)]T = E ^ ^  Ak j 1 B 0w 0(j )w% (/)}

j= o
k—1

= ' £ i A k- i - 1B 0E  [w0( j )w^( l ) ]
3 = 0

k - l  
= Y , A k- i - lBoS(l-j)

3=0

A k- l- xB 0, i i k > l  + \

0 , if  k  < I +  1

or

E { x ( k ) w 0 (I)} =
( e n S o  +  e l2B K D<2o), if  k > I +  1 

0 , if k  < I +  1

10
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L em m a 2.2 Consider a dynamic system described by:

Sx = A x  +  Bqwq  +  B \w  +  B 2u, x(0) =  0 

2 =  C \x  + D 1 2 U , 

y  = C 2x  +  £>20^0  ,

(2.7)

(2 .8) 

(2.9)

where wo is a white noise signal, w  is a stochastic signal and wq and w  are mutually uncorrelated. 

I f  the controller, u, is given by K ( z )  =  C k {z I  — A k ) ~ 1B k  with its associated state variable x. 

Then we have:

{e\xBo +  e 12.BK.D20), i f k > l  + l
E { x ( k ) w 0 (I)} =

0 , i f k  < 1  + 1

where

A  =
A B 2C k e n  e i2

B k C 2 A k C21 e22

Proof: The closed-loop system is:

Sx =  Ax +  BqWq +  B \w  ,

where x  =  [xT x T }T , Bq = [Bq (B K D 2 o)T]T , and B \  =  [ B f  0]T . 

Therefore,

k - l
x(k) =  A kx(  0) +  ] T  A k- J - l {B0w0{j) +  B lW{j)\

3 = 0

k - l
=  £  A ^ - ^ B q w o U )  + B \ w{ j ) \ ,  k =  1 ,2 ,3 , 

3 =0
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and since wq and w  are mutually uncorrelated, we can write

k- 1
E{ x ( k ) w%( l ) }  = E[wo( l ) xr (k ) w 0( l )xT (k)]T = E ^  Y  A k~J~ 1 [B0w 0(j )  +  B i w ( j ) ]  Wq ( I )}

j =o
fc-l k - l

=  £  A ^ B qE  ['woU) w0r (/)] +  Y  A k~ i ~ l B \ E  [ w { j ) w l (/)]
j =0 j - 0
k - l

= Y A k- J - l B 0 5(1- j )
3 = 0

=

A k- l~ l B o , if fc >  Z +  1 

0, if A: <  I +  1

or

E { x ( k ) w l  (0 }  =
(e n -B o  +  ei2-B /c-D 2o)) i f  k  >  I +  1 

0 , if & <  I +  1

2.2 Discrete-Time LQG Control

In this section the discrete-time H 2 control problem is presented along with the solution to the 

state-feedback controller, which is used in the derivations of this work.

Consider the general configuration of a plant G,  connected to the controller C,  depicted in 

Figure 2.2. In this setup, the plant measurement output y  is fed to the controller, which in turn 

provides the control signal u  to be applied to the plant. The exogenous signal is represented by w  

and the performance signal 2 is used for design purpose and is the signal to be controlled.

The plant G  can be described by the set of difference equation:

5x = A x  + B \w  +  B 2 U 

z  = C \x  +  D \\w  + D 1 2 U (2.10)

y  = C 2x  + D 2 1 W +  D 2 2 U

12
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Z

Figure 2.2: Plant and controller general configuration

It can be argued that (see [44]), one can set D n  and £>22 to zero without any loss of generality. 

Therefore, the above equation can be rewritten as:

5x = A x  +  B \w  +  B 2 U 

z = C \x  + D 1 2 U (2.11)

y  = C 2 X +  £>21^

The controller is then designed to have the general form:

S xc =  A cx c +  B cy
(2 .12)

u =  C cx c + D cy ,

where x c is the state vector of the controller.

The closed-loop system in Figure 2.2 consisting of G  and G  constructs a lower linear fractional 

transformation (LFT) and is represented by Ti ( G,  C).  Furthermore, assuming Tzw to be the transfer 

function matrix from w  to z,  we have:

Tzw — B t(G, C ) .

Definition 5 ( H 2 op tim al contro l problem ) Consider a system G as given by (2.11). The Ti-i op

timal control is defined as the problem o f  finding, i f  it exists, an admissible controller C, which 

minimizes the performance index J  = || Ti ( G,  C ) H2 over all the admissible controllers.

13
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The following theorem presents the solution to the state-feedback controller design problem:

T heorem  2.1 Consider an TLo optimal control problem as defined by Definition 5 fo r  a system G  

as in (2.11). Assume that the entire state is available fo r  feedback, i.e. assume that C 2 = I  and  

D ‘2 i =  0. Let the class o f  controllers be taken as in (2.12) with y =  x. Then, there exists a unique 

proper dynamic state feedback TL2  optimal controller i f  and only i f  the follow ing conditions hold:

1. (A , B f)  is stabilizable,

2. M  := D'[2D u  is nonsingular,

3. the matrix
A - X I  B 2 

Cl  D 12
has fu ll  column rank, VA G 0B  .

Moreover, in this case, the unique 7 i2 optimal controller fo r  plant (2.11) is given by:

u  = - ( B 2 P B 2 +  M ) ~ 1( B j P A  +  D j 2Ci )  x , (2.13)

where P  is the unique, positive semi-definite solution of:

P  = A t P A  -  ( C f D u  +  A T P B 2) ( M  +  B % P B 2 ) ~ \ D l 2Cl + B ^ P A )  +  C f C j , (2.14)

and D \ 2 ^ 1 2  +  B 2 P B 2 >  0.

Proof: A complete proof of this theorem can be found in many reference books (see for

example [44]). ■

2.3 Discrete-Time Hoo Control

Consider again the system in the general form of Figure 2.2. The plant G  is described by (2.10). 

Let 7  >  0 be a prescribed level of disturbance attenuation, the so-called suboptimal H 00 control 

problem is defined as follows:

14
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Definition 6  (Suboptim al Hoo contro l problem ) Given a 7  >  0, fin d  an admissible controller, i f  

it exists, such that || Tzw | |o o <  7 -

The solution to the aforementioned problem is constructed on a fundamental concept known as 

the bounded real lemma, introduced in the next section.

2.3.1 Bounded Real Lemma

The discrete-time form of the bounded real lemma, as one of the most important building blocks 

of the Hoc control theory as well as the work presented in this dissertation, is introduced in the 

following theorem.

T heorem  2.2 Let P (z )  be a p x m  real rational transfer function matrix o f  a proper linear discrete

time system with state-space realization (A , B , C, D ), i.e.,

P {z )  = C ( z l  — A ) ~ l B  +  D  .

The follow ing statements are equivalent:

(a) A  is a stable matrix and  || P  | |o o <  7 .

(b) There exists a stabilizing solution P  = P T  >  0 to the Riccati equation:

P  =  A t P A  +  7 ~ 2 {A t P B  +  C t D ) [I -  7 ~ 2 (D t D  + B t P B )] ~ \ b t p a  + D t C ) +  C T C ,

(2.15)

such that I  — 7 ~ 2 (D t D  +  B T P B )  >  0.

Proof: See [17] for a comprehensive version of the proof of this lemma. ■

2.3.2 Hoo State-Feedback Control
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The direct design of a discrete-time H 00 controller is much more complicated than its continuous

time counterpart. For this reason, in most of the literature, an easier way is suggested which is 

converting to a continuous-time problem via bilinear transformation. The reason that this works is 

that the bilinear transformation preserves TL^  norms (where it does not preserves TL2  norms, for 

instance).

However, the discrete-time problem has been addressed and solved directly by different ap

proaches. The following lemma provides the solution to the state-feedback control design problem. 

This result is used in the derivations of this work.

Lemma 2.3 For the dynamic system:

Sx — A x  + B \w  +  B 2 U 

z  = C \x  +  D \\w  + D 1 2 U

where (A , B 2 ) is stabilizable and D j2D \ 2  >  0, an state-feedback controller u  = K x  that achieves 

the Ji-yo performance, i.e:

1. the closed-loop matrix A c = A  +  B 2K  is stable,

2. the closed-loop transfer function matrix, T zw,fro m  w  to z  satisfies || Tzw | |o o <  7 ,

where 7  >  0  is a prescribed level o f  disturbance attenuation, can be written as:

K  =  - S { B t P00B  +  R ) ~ l {B T P 00A  +  D t C i )

where

S = [ 0  I], B ^ [ y ~ 1 B 1 B 2],

D  =  [7 - 1D 11 012], R  = D t D - [ I  0]t [7 0]

and  Pqo is the positive semi-definite solution to the equation:
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P x  = A t P ocA  -  (A t P00B  +  C f D ) ( B T POQB  +  R ) - \ B t P ocA  +  D T C l ) +  C f C x 

Note that the above controller has the property:

I  — 'Y~2B f  PocBi >  0  (2.16)

Furthermore, the closed-loop matrix A  — B ( B T P ^ B  + R )~ l {B T P \A  +  D T C \) is stable.

Proof: A proof o f this lemma, derived from the discrete-time bounded real lemma can be

found in [17]. ■

L em m a 2.4 For the dynamic system:

(2.17)
8 x  =  A x  +  B \w  +  B 2 U , :r(0) =  0

z  =  C \x  +  D 1 2 U

Define the cost function:

N - 1

Ji (u,w,wo) = 7 2 II W Wv -  II 2  \%= l i m  —  E b 2 II w II2 -  II 2  II2 }
N —►oo iV k= 0

I f  the state-feedback controller is given by:

u„ =  - S { B T P l B  + R ) ~ \ B t P 1A  + D T C f)x  = - K xx  

where S ,B ,D  and R  are defined similar to Lemma 2.3, with D \\  =  0, and P \ is the solution to:

P i =  A T P l A  -  (A t P iB  + C ? D ) ( B t P iB  + R )~ 1 (B t P iA  +  D t C i)  +  C j C x (2.18) 

the worst-case signal w*, fo r  which J i(u * , w*. 0 ) <  J i(u * , w, 0 ), is:

w ,* =  y ^ B f P i i l  -  7 “ 2B i B { P i ) ” 1 A x  = K 2x  (2.19)

where A  = A  — B 2 K 1 .

17
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Proof: After substituting the controller =  —K | x  into system (2.17), we have:

Sx = A x  +  B \w
(2 .20)

z  =  C \x

where

A  — A  — B 2 K i , C i = C i -  D u K i

To find the worst disturbance signal u>*, we apply the discrete-time bounded real lem m a to 

system (2.20), for which we require || Tzw ||oo< 7 - Therefore, P i, is the solution to:

ATPiA - P i  + y ~ 2 A t P i B i ( I  -  Y ^ B f P i B i ^ B j P i A  +  C \C x  =  0  (2 .2 1 )

Now, completing the squares, using (2.21) and introducing the new variable V  =  x T P ix ,  we 

have:

S V - V =  (5x )t P i (6x ) -  x T P ix

=  (Ax  +  B iw )t  P i (Ax  +  B\w)  — xT Pix  

=  xT (ATP iA  -  Pi )x  +  2wTB j P i A x  +  w TB j P i B i w  

=  - j ~ 2 x t A t P i B i ( I  -  'y-2B f P i B i ) - 1B j P i A x  -  xTC j C i x  +  2wTB f  P xAx  

+  w TB f P i B i w

=  —7 _2  || ( I  -  -f~ 2 B jP iB i ) ~ % B f  P iA x  ||2 + 2 w T B { P i A x  + w T B f  P iB iw  

— 7  2 w T w +  7  2 w Tw — x T C f C i x  

Noting that w T B f  P xB xw  — 7 2 w T w  =  —7 2 w T ( I  — y ~ 2B J P xB i ) w ,  we proceed: 

SV - V  =  -  || 7 _1( /  -  ^ 2B j P i B i ) ~ ^ B j P i A x  ||2 -  || 7 (J -  7 “ 25 f  P i B i ^ w  ||2 

+  2wTB j P i A x  +  7 2 || w  ||2 -  || ^ ||2

=  -  II l ( I  ~  Y~2B j P i B i ) ^ w  -  7 _ 1 ( 7  -  'y-2B f P i B i ) - ^ B ' [ P i A x  ||2

1 2  11 112 11 112+  7 Z || w || -  || z ||

18
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Then the cost function will be:

J i(u * ,w ,  0 ) =  lim  -1  E b 2 II w II2 -  II * II2 }N^oo i \  ' 
k = 0

1 N " 1
=  lim  — E { 8 V  — V +  || 7 ( 7  — 7  2 B J P \B \ ) ? w

]\T — k n r, A /  '  ^tv —>00 TV
k = 0

-  7 " 1 ( /  -  7 - 2B f P 1B 1) - 5 B f p 1Aa: ||2}

TV—1

=  lim - ^ P { | | 7 ( / - 7 ' ' 2i ? f JP iJB i ) ^
TV^oo A ' '

k= 0

-  7 ~ l ( I  -  ^ B l P i B ^ B f P . A x  ||2}

For J i ( u „  u)*, 0) <  J i(u * , w , 0) to hold for all values of we have:

u)* =  7 ~2( /  — 7 ~ 2B i  P \B \ ) ~ l B j P \ A x  =  (2.22)

or equivalently:

u)„ = 7“2P f P i ( /  -  7 - 2P 1P f P i ) “ 1i x  =  iT2x

2.4 Constrained Optimization

The constrained optimization problem presented in this section plays an important role in the main 

derivations of this work and is solved here in detail.

Given A  e  R n x n , B  e  R n x r, C  e  R pxri, D  e  R pxr and R  =  D D T >  0, define the index 

function:

J ( L )  =  trace(Q P Q T ) (2.23)

where Q  is any constant weighting matrix, A  +  L C  is Hurwitz, and P  =  P T > 0  satisfies:

19
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P = ( A  + L C ) P (A  +  L C f  + {B  + L D ) (B  + L D )T  (2.24)

The constrained optimization problem is stated as follows:

P roblem : Find (L*, P*) where A  +  T*C  is Hurwitz, such that J ( L )  is minimized at D*, i.e.

m in J { L )  =  m in trace((2P (3T ) 

where (L,  P ) and (L*, P*) are all subject to constraint (2.24).

T heorem  2.3 For the constrained optimization problem stated above, suppose (C , .4) is detectable. 

I f  there is a solution P* for

P* =  A P * A t  -  (B D t  +  A P * C t ) (R  +  C P *C T ) - l { D B T +  C P *A t ) +  B B t  (2.25)

where R + C P * C T  >  0, i.e., A —(A P *C T + B D T )(R + C P * C T )~ l C  is stable, then J ( L )  achieves 

the minimum value at L * =  —{A P *C T + B D T )(R  +  C P * C T )-1 .

Conversely, let (C, A ) be detectable. I f  there are L \ and P\ > 0, where A  + L \C  is Hurwitz 

and P i solves

P i = (A  + L \C )P \{ A  +  h C f  + (B  + L i D ) ( B  + h  D )T 

such that J ( L )  is minimized at L \, then there is a P* >  0 solving

P * = A P * A t  -  (B D t  +  A P * C T ){R  +  C P *C T )~ l {D B T  +  C P * A t ) + B B t

where R  +  C l f C 7  > 0.

Moreover, the optimal L* can be fo u n d  as L* =  — (A P *C T + B D T ){R + C P * C T )~ l i fA + L ^ C  

is Hurwitz.

20
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Proof: (Sufficiency) For any L  for which A  +  L C  is Hurwitz, there is a P  > 0 solving

P = ( A  + L C ) P ( A  +  L C f  +  ( B  + L D ) ( B  + L D )T

On the other hand, since P* is a stabilizing solution, so A  + L+C  is Hurwitz, for L* =

— (A P*C T +  B D t ) ( R  +  C P *C T )~ l . Using (2 .25), (2.24) can be rewritten as

P  = A P A t  +  A P C t L t  +  L C P A t  +  L C P C t L t  +  P* -  A P * A t  -  L (R  +  C P *C T ) L l  

-  L C P * A t  +  L * (P  +  C P *C T ) L l  -  L * (R  +  C P *C T )L T -  A P * C TL T +  L R L T 

If we define A P  =  P  — P*, then the above expression can be simplified into

A P = ( A  + L C ) A P ( A  +  L C ) t  + ( L -  L * )(P  +  C P *C T )(L  -  L f ) T

From this Lyapunov equation, it is obvious that A P  >  0 and also A P  =  0 if and only if 

L  =  L*. Hence

J ( L ) -  J ( U )  =  trace (Q A P Q T ) >  0

or in other words, J ( L )  achieves the minimum value at L*, which concludes the proof for the 

sufficiency condition.

Before presenting the proof of the necessity condition, we need to set up some introductory 

definitions and results.

Definition 7 Define the set S l  C Mn xp as

S l  =  { L :  R nxp , A  + L C  is Hurwitz}

a n d S p  C W xn as

S P = { P  : P  G Mn x n , P  = P T and

(A  + L C ) P ( A  +  L C ) t  +  (B  + L D ) ( B  +  L D )T -  P  =  0, fo r  some L  £  S L }

By inspecting these definitions, it can be concluded that P  >  0 if P  <E S p .

21
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L em m a 2.5 For any L  G S l , there is one and only one P  €  S p  solving

(.A  +  L C ) P ( A  +  L C )r  +  ( B  + L D ) ( B  +  L D )T = P  

Proof: For any L  €  S l , there is a P  > 0 solving

{A  +  L C ) P ( A  +  L C f  + ( B  + L D ) { B  + L D )T - P  =  0

which leads to a P  £  S p . Now assume a P i e  S p  also solves the above equation, or

(A  +  L C ) P i ( A  +  L C ) t  +  (B  +  L D ) ( B  +  L D )T -  P 1 =  0

Now define A P  =  P  — P \ and combine the above two equation to get

(A  +  L C ) A P ( A  + L C )t  =  0 

This results in A P  =  0 or P  =  P i.

□

Consider the sequences { P j , i =  1 ,2 ,3 , • • • } in R nx" and { L i , i =  2 ,3 , • • • } in R nxp, where 

L j+ i =  —(A P iC T +  B D t ) { R  +  C P iC T )~ l . The limits of these sequences are defined as follows:

Definition 8  P* and  L* are said to be the limits o f  {Pi}  and {Li},  respectively, i f  fo r  any x  G R",

x TP*x =  lim x T P iX , L* =  - ( A P *C t  +  B D T ) ( R  +  C P * C T ) _1
Z—► OO

where R  +  C P *C T > 0.

I f  these limits exist, denote

P* =  lim P i,  L* =  lim L j+ i =  — lim (A P iC T +  B D T ) ( R  +  C P iC T ) ~ 1
2—+OC i—►OO Ẑ OO

where R  + C P {C T > 0 fo r  i =  1, 2, • • •.
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Proposition  1 A sequence {P,} converges to some P* i f  and only i f  the convergence is entry-wise, 

that is, i f  p lkj  and p t j * are entries to Pi and F \, respectively, then

Pkj* lim P k j , k, j  1, 2, • • • , 71
t —>oc J

Proof: First, if  the convergence is entry-wise, or:

Pkj* =  lim pjL , k, j  =  1,2, • • • , n
I —* OO J

then for any x  G M” , we have

lim x T PiX =  lim p P x kXj =  lim p^^Xf-Xj =  V ' 'p kj*xkXj =  x T P*x  
i—>oo i—*00 i —*oo

k,j k,j k,j

Then, from the definition of P *,

P* =  lim Pj
i—»oo

Conversely, if  {Pi} converges to a P*, or

x T P*x  =  lim x T PiX , Vx €  Mn
i —> oo

then

Y^Pjq*XjXq =  lim J 2 p ljqX3XQ =  -lim
'  I — » o o  1 —+OC J
hQ j,q m

By inspecting the above equation, bearing in mind that x  is arbitrary, we can conclude:

Pjg* =  lim P j , j ,  q =  1, 2, • • • , n
i — ►oo

In other words, the convergence of {Pj} to P* is entry-wise. □

The following procedures provides us with special sequences { P ,} and { L t \  that are particularly 

important to our proof:

23
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Procedures:

1. Choose an L \  from S l ,

2. Solve for P j, f =  1 ,2 , • • •:

(A + LiC)Pi(A  +  LiC)T + {B + LiD){B  +  L %D)T -  Pj =  0,

3. Set L i+i =  ~ { A P iC T + B D t ) { R  +  C P iC T ) ~ \  where R  +  C P iC T  >  0 for i =  1 ,2 , ■ • •.

Proposition  2 The sequences {Pj} and {Li},  generated by Procedures 1-3, always have limits P* 

and  L*, respectively.

Proof: To prove that {Pj} has a limit P* for i =  1, 2, • • •, consider:

Pi = (A + LiC)Pi{A +  L i C f  +  (B + L lD)(B + LiD)T

and

Pi+1 =  (-A +  Li-\-iC)Pi-\-i{A +  Li+\C)T +  (B +  L i+\D){B +  Lj+iP ) T

where L t+I is calculated by Procedure 3.

Define A P j =  P j+ i — Pj and A L j =  Li+ l — Li. Combining the above two equations, we get:

A P  =  (A + L i+1C ) A P (A  +  L i+lC)T -  A L (R  +  CPiCT) A L T 

Since R  +  CPiCT >  0, the above equation gives that A P  <  0, which means that:

( ) < • • • <  P 3 < P 2 <  P i => ( ) < • • ■ <  x T Pi+\x  < x T P{X <••■ < x T P^x < x T P\x  , Vx E Rn 

Then, by definition, limj_*oo x TPiX exists and

lim x T PiX — lim  pL-XfcX,- =  lim p l . x ^ X j  — pkj*XkXj  =  x T P*x 
i—>oo i—>cx> i^oc ^ '

k,j k,j

w herep ^ *  = p}-.  This means that {Pj} has a limit P* and, obviously, so does {Lj} with:
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L* =  lim Li+i = -  Mm {APiCT+ B D T )(R+CPiCT) - 1 = - (A P * C T+ B D T){R+CP*CT )~l
i—> OO

□

L em m a 2.6 For the sequences {Pi} and {Li},  generated by Procedures 1-3, i f  P* and  L* are the 

limits o f  these sequences, then P* also solves

P* = (A  + L *C )P *(A  +  L * C f  + ( B  +  L * P ) (P  +  L * D f  (2.26)

where L* =  ~ {A P * C T + B D T ) ( R  +  C P * C T ) ~ l .

Furthermore, A  — (A P * C T  +  B D T ) ( R  +  C P *C T )~ 1C  is stable and  P* also solves the Riccati 

equation:

P* -  A P * A t  -  (B D t  +  A P *C t ){R  + C P *C t ) ~ \ D B t  +  C P * A t ) +  B B t  

where R  +  C P *C T > 0.

Proof: Let plk] and p tj*  be entries of Pi and P*, respectively. Also let l lm q  and l m q* be entries 

of Li and P*, respectively. By Proposition 1, we have the entry-wise convergence:

p/cj* =  lim  p L  , k, j  =  1 , 2 , • • • , n
I — ►OO J

and accordingly, for any m =  1 , • • • , n  and q — 1, • • • , p,

lm q * =  lim Z* (pL , k, j  =  1 , 2, • • • , n )  =  l l ( lim  pL  , k , j  =  1 , 2, • • • , n)
I — ►OO *  J  I —  ̂OO J

since llmq is a continuous function of p£. •, k, j  =  1 , 2 , • • • , n.

Now define

F{Pi, Li) = {A + LiC)Pi(A  +  L xC ) t  + {B + LiD)(B  +  LiD)T -  P{

where, clearly P(P j, Lj) =  0, Vi =  1 ,2 , •••. Let , k,  j  = 1, 2, • • ■ , n be the entries of 

F(Pi, Li), which will be continuous functions of all p ^  and l lmq. Therefore

25
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fkj* lim  f'kjiPkj ’ ^mq) ^  j  1) 2 , •** ,71
z—*-oo

Which means that P (P * , P*) =  0 or

P* =  (A +  P *C )P*(A  +  P * C )T +  ( P  +  P*Z?)(P +  P * P ) ^

where P* =  - ( A P * C T + B D T ) { R  +  C P * ^ ) ' 1.

By the standard properties of Lyapunov equations, it is evident that A  + L ^ C  = A  — (AP+CT +  

B D t ) ( R  + C P *C T )~ l is stable.

Now, substitute P* in (2.26), to get, after some manipulation:

P* =  A P * A t  +  A P * C t L ?  + L *C P *A T + L*{C P *C T  +  R ) L l  + B B t  +  B D T L l  + L * D B t  

= A P * A t  +  L*{C P *A t  +  D B t ) + b b t

or

P* =  AP*AT -  (B D t  +  A P *C t ){R  + C P *C t ) - \ D B t  +  C P * A t ) +  b b t

□

At this point, we are ready to complete the proof o f the Theorem 2.3.

Proof o f  Theorem 2.3, con t’d: (Necessity) If there are L \  €  S l  and P i €  S p  such that

P i =  (A  + L i C ) P i ( A  +  L \C ) r  + {B  + L yD ) ( B  +  PiP>)T

and J (P )  achieves the minimum value at L \ ,  take P i  as the initial value and generate the sequences 

{Pi}  and {Pj} using the Procedures 1-3, then by Proposition 2, the following claims can be made:

1. 0 <  • • • <  P j+ i <  Pj <  • • • <  P 2 <  P i,

2. {Pj} and {Pj} have limit points P* and P*, respectively, where P* <  Pi-
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 . P R E L IM IN A R Y  R E S U L T S

Furthermore, by Lemma 2.6, P* and L* =  —(A P *C T + B D T ) ( R  + C P *C T ) 1 solve

P* =  (A  + L *C )P *(A  + L * C )t  + {B  + U D ) ( B  + L * D )T 

K A  + L *C  = A -  (A P *C T  +  B D t ) { R  +  C P *C T )~ l is stable, then

J(F * ) =  trace(Q P*Q T) <  trace(Q P iQ T) =  J { L \ )

On the other hand, it was first assumed that

J (L i)  < J(L*)

which leads to J (L * ) =  J ( L \ )  or, in other words, J ( L )  achieves the minimum value at L t  =

~ {A P * C t  +  B D t ){R + C P , C T ) ~ l .
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Chapter 3

Discrete-Time Multiobjective Filter

This chapter provides the problem formulation and solution to a discrete-time multiobjective filter 

design. An illustrative example is also included to show the solvability and performance of the 

proposed filter.

3.1 Problem Formulation

Consider the filter design problem in Figure 3.1. For the plant G, described by:

5x =  A x  +  B qWo +  B \w  , x(0) =  0 ,

Zq C qX ,
(3.1)

z — C \ x , 

y  = C 2x  +  D 20wo ,

where tu is a bounded power signal and wo is a white noise signal. The following standard assump

tions are made:

(A l) (C2, A)  is detectable;

28
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(A2) R 0  := D 2 0 D 2 0  >  0 ;

(A3)
A  -  XI  B 0

C 2  D 2 0

has full row rank, VA €

where <9D :=  { z  : \z\ =  1} describes the points on the unit circle in the complex plane.

W
Zo GG o "  Zn

h
( y

Figure 3.1: Multiobjective filter structure 

The goal is to find a filter in the form:

F  : y  —
z

Zo

where z  and zq are estimates of z  and zo, respectively. 

The filter is to be designed as:

(3.2)

Sx = A x  +  L (C 2x  — y ) , 

z q  =  C qx ,

£ =  C \ x ,

where L  is the filter gain to be calculated. Define the following variables:

and the cost functions as:

e ~  z  — z,  eo :=  z q  — z q, ex :=  x  — x .

J i (F, w , w 0) =  7 2 II w \\l> -  || e Ĥb ,

J 2{ F , w , w 0) = || eQ |2
\ \ v

(3.3)

(3.4)

(3.5)

(3.6)

29
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The discrete-time multi-objective filter design problem is stated as follows:

Find an admissible filter P* in the form (3.3) and a worst disturbance signal w* such that 

they achieves:

Ji(F*,w*,w0) < Ji(F*,w,wo) ,

J2(F*,w*,w0) < J2{F, -w*,w0) .

Combining the equations of the plant and the filter and implementing ex x — x, derive:

=  (A  +  LC2)ex +  (Bo +  L D 2o)wo +  B \ w , 

eo =  Coex , (3.7)

e = Ciex .

3.2 Discrete-Time Multiobjective Filter Design

The discrete-time multiobjective filter design problem is presented in the following theorem.

T heorem  3.1 Let the plant G be described by the equation set (3.1), where w  and wo are assumed  

to be uncorrelated, and the cost functions J \ and J 2 are defined as (3.5) and (3.6), respectively. I f  

there are stabilizing solutions P\ >  0 and P 2 > 0 to:

P i =  A T P l A  + 1 ' 2 A t P 1 B 1( I  -  i ^ P f P i P i j - ^ P i i  +  C f C u  (3.8)

P 2 = A f P2 A tf  -  (BoD lo + A FP 2 C j ) ( R 0  +  C 2 P 2 C ^ ) - \ D w B l  +  C 2 P 2 A tf ) + B 0B % , (3.9) 

where ( I  — 7 - 2B^[Pi-B i) >  0, Ro +  C 2 P 2 C 2 >  0 and:

A  = A  + L*C 2 , Ax = I - ' f ~ 2 B l B j P 1 ,

A f  =  ( /  +  7 “ 2S i P f P i A - 1)A  +  7 - 2P i P f P i A r 1L*C2 .

30
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Then by choosing L* that satisfies:

U  = - { A p P ^ C l  +  B 0 D%0)(Ro +  C 2 P 2 C T2 ) ~ l , (3.10)

the filter  F*:

5x = (A  +  L*C 2)x  -  L*y  , 

zo Cqx , 

z  — C \ x ,

and the worst disturbance signal:

w * =  'y~2 B f P i A j l A e x ,

achieve:

w*,wo)  <  J i ( F * , w , w 0),

J 2 (F*, w *, w o) < J 2 (F, w*,wo)  .

Conversely, i f  there exists a filter F t , with a worst disturbance signal vfi, such that fo r  the system  

without white noise, we have:

0 <  J\(F * , w'x, 0) <  J i ( F* , w ,  0 ) ,  \/w  /  w* ,

and a worst disturbance signal w* at the presence o f white noise, such that:

J i (F* , w*, wo)  < J i ( F * , w , w  0) ,

J 2 (F*,w*,wo)  < J 2 ( F , w * , w 0),

then, there exist stabilizing solutions P i > 0 and P 2 >  0 to:

Pi = A T P iA  +  y - 2 A T P 1 B 1( I  -  y - 2 B j P i B i ) - l B f P i A  +  C f C u  

p 2 = a f p 2 a tf  -  (B()Dj () + a f p 2 c 2 ){Ro + c 2 p 2 c J ) - \ d 2 0 b Z  +  C 2 P 2 A tf ) + B 0 B% ,

where ( /  — y ~ 2 B -[P \B \)  >  0 and Rq +  C 2 P2 C <2 > 0.

31
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Moreover, the optimal value o f  the filter gain L* satisfies:

L* =  ~ ( A FP2C j  +  B 0 D l 0 ) { R 0  +  C 2 P 2 C j y 1 .

Proof: (Sufficiency) If we choose the filter gain L*, that satisfies:

U  =  ~ { A f P 2 C 2 +  B 0 D^ 0 ) ( R 0  +  C 2 P2 C l ) ~ l , 

completing the squares, using (3.8), we have:

J i {F*, w , wq) = 7 2 || w  ||p  -  || e |||>

i V - l

= 7 2 \ \ w - w *  ||p  -  lim  — tra c e ((5 0 +  L * D 2 0 )t P iA E { x w q  })
iV—>00 iv  — *

0

= 7 2 || w -  w* ||p  ,

where

w * =  7 _ 25 f F i A f 1J4ex ,

which is bounded since A  +  L*C 2 +  Z?i w* is stable.

Next it is shown that J \  achieves the minimum value at the given L*. Let L  \ be any filter 

gain such that both A  +  L \C  and A  +  L iC 2  +  B \w *  are stable. Substituting the above w* in the 

plant-filter equations (3.7), we get:

8 ex = {A  +  L \C 2 +  7  2B \ B i  P \ A 1 l ( A  +  L \ C 2 ))ex +  (Bo  +  L \ D 2o)wq  

= A L ex +  B l w 0 , 

eo =Coex .

The first difference equation above can be solved as:

fc-i
e x (k )  =  ' ^ A kL ~ J ~ i B L w 0 ( j ) ,

3 = 0

and

32
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1 Af” 1
J 2 ( F , w * , w 0 ) =  || e0 f v =  lim  — ^  E { e £ c £ C 0 ex }

N — k x > i v  ^  
k=0

Ar—1 ,  f c - l f c - 1

=  7V1™00^  E  E E wo(i )T^ ( ^ L ) fc" i" 1Cor C 7 o 4 " j " 1^ ^ o ( j ) }
/c=0  ̂ i—O j=o ^

i E E E  trace {C0 A k- ^ B L5(i -  j ) B TL ( A TL )k^ ~ l C^]
k=0 i=0 j = 0 
JV - l  fe-1

=  J im n H  Y . lm c< CoA t l~ i B L B TL (A TL )M C^]
I \ — ► OG I V  A~ *  £—~ gk=0 2—0

=trac e (C o Y C ^)

where

Y  = ' £ AiLB LB l ( A TL ) \
i= 0

which is the solution of the Lyapunov equation A l Y  A [  — Y  +  B ^ B [  =  0. Then, by Theorem  2.3, 

the solution to this constrained optimization problem, L* is to satisfy:

L* =  - { A FP2C l  +  B 0 D%0)(R o  +  C 2 P2 C l ) ~ l , 

where P 2 is the solution to (3.9).

(Necessity) First, for the system without white noise (wq =  0), suppose there exists a filter F* 

and a signal u/* such that they achieve:

0 <  J i ( F * , w ' , 0 )  <  J i ( F * , w , 0 ) ,  V w ^ w ^ .

In other words, for the linear operator R e>w, defined as:

Se'x =  Aex +  B \w  , 

e =  Cie^.,

it holds that || R e/W ||oo< 7 - Then, by the bounded real lemma [17], there exists a P i >  0, solving 

(3.8) and the worst disturbance signal is

33
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w'm = 'y-2B f P 1A i lAe'x .

Next, including the white noise signal into the system, it can be seen that:

1 N ~ l
J i(F * ,w '„ w 0) = 7 2 II ™ ~  w* ||p  -  lim  — V  trace[(B 0 +  L * D 20)t  P i A E { xwq }]

N —>OC iV * 
k = 0

2  ii / m2
—7  II w - i o *  | | f ,

which means that the worst disturbance signal at the presence of the white noise is

= 'y~2B j P i A ^ 1Aex .

Now, substituting the w* into the equation set (3.7), we get:

Sex — (A +  7 2B i B j P \ A l 1 A)ex +  (-Bo +  L i D 2 q)wo 

= A Lex + B l w0 

eo =  Coex

Similar to the proof o f sufficiency, we can write:

J 2 { F , w* , w 0) = || e0 | |p =  tra c e (C o rC ^ )

where

OO
Y  = Y ^ A l B LB TL {ATLy

i=0

and by Theorem 2.3, B* is to satisfy:

L* =  - ( A FP2C j  +  B 0Dj0)(R0 + C2P2C l ) ~ l , 

and P2 is the solution to (3.9).

34
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3.3 Illustrative Example

Consider the following dynamic system:

1 - 0.1 0.05 0.1 - 0 .1 2
Sx =

0.12 0.95
x  +

0.1  0.01
WQ +

0.03
w ,

z  =

V =

0.6 0.4 x ,

0.5 -0 .6 5 x  + 1.2 1.6 wq ■

The goal is to design a filter in the form:

Sx  =  A x  +  L ( C 2 X — y ) ,  

z  =  C \ x ,

which leads to the error performance dynamics for the closed-loop system as:

$ex =  {A  +  L C 2 )e-x +  (Bo  +  L D 2 o)wo +  B \w  , 

e =  C \e x .

First, considering only the H oo performance, assume the filter gain L  =  

there exists a solution P i >  0  to:

Fixing 7  =  1.5,

P i =  (A + L C 2)t  P i(A + L C 2 )+ 7 ~ 2 (A + L C 2)t  P i B x i l - y ^ B f  P i B ^ B f  P 1 (A + L C 2 )+ C '[C 1 .

This filter achieves || Tew ||=  0.9663 <  1.5, where Tew represents the transfer function from 

w  to e, and therefore satisfying the Poe requirement. In this case, the worst disturbance signal is 

characterized by w * =  0 .4 4 4 P f  P \ lS \  1 (A  + L C 2 )ex = K wex . However, when the noise signal wq 

is added, the optimal performance of the system in the worst case is then calculated by:

J 2 =  trace(C iC i P 2) =  35.463,

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. D IS C R E T E -T IM E  M U L T IO B JE C T IV E  FILTER

where P 2 is the solution to the discrete-time Lyapunov equation:

P 2 =  (A  + L C 2 +  B \ K w)P2(A + L C 2 +  B \ K w)t  +  (B 0 +  L D 2 q){Bq +  L D 2 o)t  .

It is clear that the performance of this filter in presence of noise is not desirable. On the other 

hand, a Kalman filter can be calculated that satisfies the H 2 optimal performance requirement. This 

filter can be found by solving the Riccati equation:

p 2  =  a p 2 a t  -  ( B q d I 3 +  a p 2 c J ) ( r 0  +  c 2 p 2 c J ) - \ d 20b t  +  C 2 P 2 A t ) +  B 0 B % ,

leading to a filter gain:

L* =  ~ { A P 2C l  + B 0 D j 0 ) (R 0  +  C 2 P 2 C l ) ~ l

-0 .0 6 2 2  

-0 .0 2 4 8

The optimal performance of the system with this filter then becomes:

J 2 =  trace (C 'lC /P o ) =  0 .0 4 7 2 ,

which in fact is much lower than 35.463 obtained when only the Hoc performance was considered.

Now, designing a multi-objective filter using Theorem 3.1 and fixing 7  =  2.5, results to solu

tions to Riccati equations (3.8) and (3.9) as:

0.066 -0 .0 0 4
>  0 , P2  =  >  0 ,

0.012 2.684 J -0 .0 0 4  0.086

and a filter gain:

-0.0647

- 0.0210
(3.11)

that satisfies (3.10).

For the closed-loop system consisting this filter, the cost functions are:

J i =  1.8927, J2 = 0.0788.

36
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Note that although the index J 2 is worse than the Kalman filter, but is still much improved 

compared to the system with only an filter. On the other hand, as can be seen in Figure 3.2, 

the error performance of the closed-loop system is much better in the presence o f the white noise 

signal ui(i when the multi-objective filter is used, compared to the filter that only satisfies the H 00 

performance.

o
UJ

-10

-15
Time (sec)

Figure 3.2: Error behavior at the presence of white noise signal wo for the closed -loop system with 

filter L oo (dashed) and with the multi-objective filter (solid).

Figure 3.3 shows the singular value diagram for the transfer function T ew of the system with 

filter gain (3.11) which, as expected, meets the disturbance attenuation of 7  =  2.5.
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CD

-10

-15

-20

-25

-30
(a (rad/s)

Figure 3.3: Singular value diagram for T ew for the system with multi-objective filter.
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Chapter 4

Discrete-Time Mixed 'Hz/'Hoc Control

4.1 Problem Formulation

Consider the discrete-time linear control system G  in Figure 4.1 described by:

5x = A x  +  B qwq +  B \ w  +  B ^ u , x(0) =  0

z0 = Cox + D 02U ,
(4.1)

Z — C\X + D\2U  , 

y  =  C2x  +  D 2ow0 ,

where w  is a bounded power signal and wq is a white noise signal. The following standard assump

tions are made:

(A l) (A, B 2 ) is stabilizable and (C 2 , A )  is detectable;

(A2) R 0 2  :=  Dq2 Dq2 >  0, R 12 ■= D j 2 D \ 2  > 0 and R 2 0  := D 2qD 2 0  > 0 ;

(A3)
A  — X I  B 0  

C 2 D 2 0

has full row rank, VA 6

39
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w

(A4)

(A5)

A - X I B 2

Co D 0 2

A - X I b 2

Ci D u

Figure 4.1: Mixed control setup

has full column rank, VA e

has full column rank, VA €

The cost functions are defined as:

N —l

J i ( u ,  W ,  wo) =  7 2 II w f v  -  II z \%=  lim  ^  E {7 2 || w  ||2 -  || z ||2} , (4.2)
TV—► oo iV — 'k= 0 

iV -1

J 2 ( u , w ,w 0) =11 zo \\v=  lim  — V ]  £ { || z0 ||2} •
N —too iV — '

fc=0

(4.3)

The discrete-time multiobjective control design problem is stated as follows:

Find an admissible output feedback control u* and a worst disturbance signal w* such that 

they achieve:

Ji(u* ,u ;* ,u ;o ) <  J i (u * ,w ,  w o ) ,

J 2 (u*,w*,wo) < J 2 (u,W*,Wo).

Note that the control law u  is supposed to have the observer-based form:

5x = A x  +  B 2 U — L y , x (0 ) =  0 ,

u = F x .

40
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4.2 Mixed 7l'o/7Y x Control - State Feedback

First, we will present a state feedback problem for the system without white noise (wo — 0). The 

problem statement and the results are given in the following theorem.

T heorem  4.1 Given the system equations in (4.1) and wq =  0, suppose there exist solutions P\ >  0 

and P‘2 >  0  solving:

P i =  A l P xA 2  +  'y~2 A T p 1 B 1( I  -  7 - 2B f P 1B 1) - 1B f P 1A 2 +  (Co +  D 0 2 F2)T (C 0  +  D 0 2 F2) ,

(4.4)

P 2 = A \ P 2A  i -  [ A \ P 2 B 2 +  Cq Dq2  ) (P 02 +  B l P 2 B 2 y \ B l P 2 A Y +  dJ]2 C 0) + C l  Co , (4.5) 

where I  — y ~ 2 B j P \ B \  >  0, Rq 2  + B%P2 B 2 >  0 and

A \  =  A  +  P i P i , ^ 2  =  A  +  B 2 F 2  , A i =  /  — 7  2 B i B J  P \ , 

F 1 = 1 ~ 2 B ? P 1 A i 1 A 2 ,

F 2 =  - ( P 02 +  B l P ^ B ^ i B l P ^  +  T - ^ J P a P j P f P i A r U  +  A z A ) , 

t/jen f/ie strategies:

u * =  P 22; , 

re* =  F i x ,

will result in:

1. A  +  P i  P i +  P 2P 2 is stable;

2 . I f { A \ .  Co) is detectable then

•  || T ZoW |joo<  7  vv/ien u =  u*;

•  J 2 (u*, re*, 0) <  J 2 {u ,w*,0).

Conversely, i f  (A, B 2) is stabilizable and the state feedback strategies u* =  F>x and  10* =  F \x  

exist such that:

1. A 2 is stable and (A \ ,  Co) is detectable;

41
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2. || TZqW ||oo< 7  when u  =  u *;

3. J 2 {uif. w*, 0) <  J 2 {u, w*, 0);

then equations (4.4) and (4.5) have solutions F\ >  0 and P2 >  0, respectively.

Proof: (Sufficiency) Since the Riccatti equations (4.4) and (4.5) have solutions P i and P2,

then both A 2 and A  + B \ F \  + B 2 F 2 are stable. Setting u = u* = F 2x  gives:

Sx — A 2x +  B \ w  ,

Zo =  (Co +  D o 2 F2)x  ,

for which, (4.4) and the bounded real lemma result in || T ZqW ||oo< 7 - After completing the squares 

using (4.4), it is found:

w* = y ~ 2{I  — 7 - 2P jr P i B \ ) ~ 1 B j P \ A 2x  ,

or equivalently

w* =  y ~ 2 B j  P \ A f l A 2x  =  F ix  .

Setting w  = w* = F i x  gives:

Sx = A \ x  +  B 2u  , 

z 0  — CqX +  Dq2u .

Note that:
^  N - 1 ^  N - 1

min J 2 (u, w*, 0) =  min || zq ||l>= min lim — }  P{ || zq ||2} =  lim — }  F{m in  j| z0 ||2}, 
u u  u  N -^ o c  I \  z '  N —*oc N  u

k=0 k=0
is a standard optimal control problem where, with P2  solving (4.5), u* is found as:

u* =  — ( B 2 P 2 B 2 +  R 0 2 ) 1 (B 2  P 2 A \  +  Dq2 Co)x = F 2x  .

Further simplification of F 2, after substituting the expression for F \,  can be conducted as

F 2  =  - ( B j P 2 B 2 +  R Q2 ) - l ( B j P 2 A  + ^ 2 B ^ P 2 B i B j P i A f 1A

+  y ~ 2 B 2  P 2 B i B j P i A / / 1 B 2 F 2 +  D 2 0 Co)

=  - ( B j P 2 B 2 +  R 0 2  +  y - 2 B j P 2 B i B l P i A f 1 B 2 ) - 1 ( B j P 2 A

+  1 - 2 B l P 2 B l B j P i A f lA  +  D j 0 C 0)

=  - ( P 02 +  B 2  P 2 A f l B 2 )~ l ( B 2  P2A  +  y - 2 B ^ P 2 B i B j P i A f l A  +  D%0 C 0) ,
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which will result in J 2 (u*, w*, 0 ) < J2 (u, w*, 0 ) as required.

(Necessity) Implementing u* =  into the system equations gives:

Sx =  A 2 X +  B \ w , 

zo =  (Co +  Dq2F2)x  ,

where, by the theorem assumption, is stable and || T ZqW ||oo< 7 - Then, by bounded real lemma, 

there exists a solution P\ >  0 to (4.4) such that A + B 2 F2 +  B\F\  is stable. The worst disturbance 

signal can similarly be found as:

w;* =  7 ~ 2 B j  P iA ^ -1 A 2X = F i x .

Next, implement the above «;* = F\x  into the system equations to get:

Sx =  A \ x  +  B 2U ,

Zo =  CqX +  D 0 2U .

Then, for this system,

1 T V - 1

min J 2(tt, u;*,0) =  lim — > £Tm in II z0 II2},
u N ^oc  iV ' U

k=0

is a standard optimal control problem and u* can be found as:

u*  =  — ( B 2 P 2 B 2  +  R q 2 ) ~ 1 { B 2  P 2 A 1  +  D q 2C o ) x  =  F 2 X  , 

which can be modified into:

F2 =  - ( R 02 +  B^P2A ^ B 2 ) - \ B j P 2 A +  1 - 2B^P2B i B j P i A ^ 1A +  DI 2 C0 ) , 

where P2 solves (4.5).

■

C orollary  1 I f  we assume

F>q2 [C0 D 02] =  [ 0 /] ,
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then the strategies in the above theorem will reduce to:

F x = y ~ 2 B j P x( I  -  1 ~ 2 B 1 B f P l +  B 2 B l P 2) - l A  , 

p 2 =  - B j P 2( I  - 1 ~ 2 b 1 b J p 1 +  B 2 B l P 2) ~ l a ,

which are the equivalents to the results fo u n d  in [ 1 2 ].

Proof: The proof is trivial, using the results already .developed in Theorem 4.1. ■

4.3 Mixed Control - Output Feedback

The output-feedback control is given in the following theorem for discrete-time multiobjective con

trol.

T heorem  4.2 For the system given by (4.1), where w and wq are assumed to be uncorrelated, 

optimal strategies «* and w* exist such that:

J x(u * ,w * ,w Q) <  J x(u*, w, w 0) ,

J 2 (u* ,w *,w o) < J 2 ( u ,w * ,w  0) ,

i f  the cross-coupled Riccati equations:

P i =  A l P i A 2 + 1 ~ 2 A l P l B l {I  -  ^ 2 B J p xB x)~ 1 b J p xA 2 +  (Co +  D 0 2 F 2 )t (C 0  +  D 0 2 F 2) ,

(4.6)

P 2 =  A f  P 2 A X -  { A l P 2 B 2 +  Cq D 0 2 )(R q 2 +  B l P 2 B 2 ) ~ \ B l P 2 A x +  D&Cq)  +  C ^ C 0 , (4.7) 

P 3 =  A XPZA \  -  ( A 1 P3 C 2  +  B 0 D j 0 ) ( R 2 0  +  C 2 P 3 C Z r ^ & P s A f  +  D 2 oB £ ) +  B 0 B % , (4.8) 

have stabilizing solutions P x > 0, P 2 >  0 and  P 3 >  0, where:

I  —  7  2B j P xB x >  0 , P 0 2  +  B 2 P2 B 2 >  0 , R 2 0 +  C 2 P sC 2 >  0 ,

A X = A  + B XF X, A 2  =  A  + B 2 F 2 , F l = y ~ 2 B '[ P xA f 1(A  + B 2 F*),

F 2 =  - ( P 02 +  B%P 2 A f 1 B 2 ) - 1 (B '£P2A  + y ~ 2 B%P2 B XB X P xA f l A  + D&Cq) .
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I f  these solutions exist, we have w* — F \ x  and u* is in observer-based form:

Sx — (A  +  B i F \  +  B 2 F 2)x  +  L*{C2x  -  y) 

u *  =  F 2x  ,

and

L* =  - ( A i P 3C 2t  +  B 0 D ^ 0 )(C 2 P3C j  +  i?20) —1 •

Conversely, i f  the state-feedback control problem is solvable, i.e., P\ >  0 and P 2 >  0 exist and  

solve (4.6) and (4.7) and there exist an optimal controller u* in the form:

Sx = (A  + B i F \  +  B 2F 2)x  +  L * ( C 2x  -  y ) , 

ti* =  F2x  ,

where F 2 =  - ( R q 2  +  B j P 2 A f xB 2 )~ 1 ( B j P 2A  +  y ~ 2 B 2 P 2 B \ B j P iA -̂1 A  +  D%2 C0) and a w * 

that achieve:

then, a Ps > 0  exists that solves (4.8).

Moreover, L * =  - ( A 1 P 3 C J  +  B o D 2 0 ) (C 2 P 3 C 2  +  R 2 o)~1, i f A  +  B \ F i  +  L*C 2 is stable.

Proof: (Sufficiency) Suppose Pi >  0, P2  > 0 and P 3 >  0 exist and solve (4.6), (4.7) and 

(4.8), respectively. If u  is any stabilizing control law, we can get:

J l ( u * , W * , W Q) <  J \ ( u * , W , W q) , 

J 2 ( u * , u ; * ,u ; o )  <  J 2 ( u , w * , w q ) ,

N - 1

k= 0
N - 1

lim  — Y  P { 7 2 II w  ||2 —x T C f C i x  — 2 x T C j D \ 2u  — u t R i 2 u \  .
TV—>oo N  k̂= 0
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Using the first Riccati equation, derive:

1 iV-l
=  lim — e \ ^ 2  || w  -  w* \\2 - 2 x t ( B 2 P \ B 2 + C \ D i 2){u -  u*) -  u T R i 2 U + u I R - u u *N-+oc Jy A—' L

w — w*
k= 0

+  trace(A T P \ B qE { x t w $ }) + tra ce ( / J q  Pi A E { x w f i })

1 N - l

=  lim — ^  e V ^ 2  || w  — w* | |2 — 2x t {B 2  P \ B 2 +  C \ D \ 2)(u  — u *) -  u T R \ 2u  +  v ^ R u u ^
k= 0

where w* = F \ x  and fi* =  F2x  (the optimal strategies for the state-feedback case). Note that 

Lemma 2.1 is used to draw this conclusion. From this expression for J \ ,  it is clear that for any u, 

including u = u* = F 2 x,  we have:

Ji(u*,w*,wo) <  J i(«*,w ,w o) •

Next we minimize J 2. Substitute w* into the system equation to get:

dx = A \ x  +  B qw 0  +  B 2 u * ,

zo = Cox  +  Do2 u* ,

y  = C 2x  +  D 2 0 w 0  •

For this system,

u N ^ o o  1 y
k= 0

is a standard LQG control problem and the controller can be found in the form:

min 'in. mm in
U

S '  P lm in  II II

Sx = A \ x  +  B 2u * +  L * ( C 2x  -  y ) 

m* =  F 2x  ,

where:

F 2 =  - { R o 2  +  B l P 2 / A - l B 2 ) - l { B l P 2A  + 1 - 2 B ^ P 2 B i B j P i ^ l A  + D l 2 Co) 

U  =  - { A i P ^ C l  +  B 0 D j 0 )(C 2 P3C j  +  R 2  o ) - 1 ,

achieve:

j 2{u*, W*, Wo) <  J2{u, IX*, Wo) ■
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(Necessity) Suppose that the state-feedback control problem is solvable, in other words, there 

exist stabilizing solutions to (4.6) and (4.7) and assume the controller to be in the form:

Sx = (A  +  B i F \  +  B 2 F 2 +  L*C 2)x  -  L*y  ,

'u* =  F 2 x  ,

where F i = y ~ 2 B j P \  /±~[l A 2 and

Let u* and in* achieve:

J l (u * , W *, W 0) <  J i ( u * , w , w o ) ,

J2{u*,Wif,Wo) <  J2(u, W*,W0) .

From the proof of the sufficiency, u y  = F \ x .  Implementing ri* and w* into the system equations 

gives:

where tt* =  F*x. Note that Lemma 2.1 is used to derive this conclusion. Define ex — x  — x ,  then:

F2 = -{Ro2 + B l P 2 ^ lB 2) - \ B ^ P 2A + 1- 2B ^ P 2B lB j P l^ lA  + Dl2Co).

Sx — A \ x  +  Bqwo +  B 2 u *, 

zo = Cqx  +  D 0 2 U* , 

y  = C 2x  +  D 2qw0 ,

where we can construct:

^ n -  1 ^ N —l

J 2 {u*, w*, Wo) — lim  — EU\ Zn II2) =  lim  — ^  E { x T Cq C q x + 2 x t Cq D Q2 U * + u JR 0 2 U*} ■
k= 0

Using the second Riccati equation, we proceed as:

J 2('u*,u;*,u;o) =  lim  - j - E { ( u *  -  u*)T R 02(u* -  u*)}  + trace(AT P 2B oE { x t wo })
N —>00 I \  ^k= 0

+  trace(Bq P 2A E { x w (\ })

N - l
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where:

5ex = 5x -  5x = (A i  +  L ifC 2 )ex +  (-Bo +  £*£>2 0 )^0  =  A L fex + B L fwo , 

which can be solved as:
k- 1

ex(k) = ' Y ^ A k£ m3 ~ l B Lirw 0(j ) . 
j = 0

Therefore:

x JV—1

J 2 (u * ,w * ,w 0) =  lim — V ]  £ '{ e j£ ;T f?02-£*ex}
JV—► OO iV

fc=0

JV^cx
^ 0 ( i)T5 L ( ^ L ) fe“ i“ 1^ T^ o 2 ^ o 2£ * 4 ; i " 1^ ^ o ( j )

°° /c=0  ̂ i—0 j =0
jY _ l 1 k —\

=  J im tt  E  E E trace^ 4 i_ 1B i . ^ - ^ L ( 4 ) H - 1«N —>oo N k=0 i=0 _/=0
jV -1  fc-1

N^oo N=  J im  i E E  t r a c e [ A , 2 £ ^ t 1-1 O C  )* “J ' '  F j  Djr2]YV—>00 iV  ̂ —
k=0  2—0

=  trace[£>02-F*E£*TDjri\ ,

where:

y  = J 2 ^ l * b l . b U A l J ,
i= 0

which is the solution of the Lyapunov equation A l * Y A [ ^  — Y  +  =  0. Then, by Theorem

2.3, the solution to this constrained optimization problem, £* is:

£* =  - ( A iP a C #  +  B 0D ^ ) { C 2P3C ^  +  ^ o ) ” 1 ,

and P 3 is the solution to (4.8).

This concludes the proof. ■

4.4 Numerical Example
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In this section we present an example which is solved by the algorithms developed in this chapter. 

This example was studied for Hoc control design in [ 17], and is a second-order, discrete time system 

given by:

! 2 0.5 1 0.5 1
5x

4 0.2
x  +

1 0
wo +

0.3
w  +

0 .8

zo

z =

y  =

0.5 0.6 x  +  0 .8 i t ,

1 0 0
x  +

0 1 1

1 0 x  + 1.2 1.6 w  o .

For the above system, assume 7  =  2.5. A standard Hoo control design will result to cost 

functions:

J i  =  2.4637, J 2 =  3468.2.

On the other hand, an LQG controller can easily be calculated and the cost functions of the 

system will become:

J i  =  93.1317, J 2 =  3.714.

Now, we apply the mixed 742/?4oc output-feedback controller proposed in Theorem 4.2. Solv

ing the Riccati equations (4.6)-(4.8), with 7  =  2.5, we have:

-6 6 7 .0 7 258.67 0 -6 .3 5 3 32.699 -3 6 .0 3
Pi  = ,P i  = ,P s  =

258.67 -1 2 1 .4 4 -6 .3 5 3 -2 .6 4 1 9 -3 6 .0 3 290.81

The resulting gains for the mixed 7f2/?foo control strategy are then calculated as:

w* = F xx  =  4.5616 -3 .3 5 7 7  x ,

u * =  F*x  

and the optimal state estimator gain is:

U  =

-0 .6 2 5  -0 .7 5

-1 .7 7 6 8

-5 .6 0 8 6
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The cost function as defined in (5.2) and (5.3) will then be:

Ji =  53.586 , J 2 =  23.705 .

Note that although J) has increased from the system with only an H 00 control, it has improved 

considerably from the case where only an LQG controller is applied. The same observation can 

be made for the J 2 performance index of the system with a multiobjective control compared to the 

cases where only one of the methods is applied.
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Chapter 5

Discrete-Time Hoc Gaussian Control

5.1 Problem Formulation

Consider a linear system in Figure 5.1 given by:

5x = A x  + BqWq +  B \ w  +  B 2 U , a:(0) =  0

z = C \x  +  D 1 2 U , (5.1)

y  =  C 2x  +  £>20^0  ,

where w  is a bounded power signal and wq is a white noise signal. The following assumptions are 

made for this system:

(A l) (A , B 2 ) is stabilizable and (C 2 ■ A )  is detectable; 

(A2) Rq := D 2 0 D 2 Q >  0 and R \  :=  D j 2 ^ 1 2  >  0 ;

(A3)

(A4)

A - X I Bo

c 2 D 2o

A - X I b 2

Ci B>12

has full row rank, VA € c©  ;

has full column rank, VA e  OB .

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. D IS C R E T E -T IM E  Hoc G A U S S IA N  C O N T R O L

Z
e

w
m

Figure 5.1: Woo Gaussian control setup 

The controller is to have the observer-based form:

5x = A x  +  B 2u  — L y , x (0 ) =  0 , 

u  =  F x .

Let e =  x  — x,  define the cost functions as:

N - \

J i ( u , w , w 0) =  7 2 II W  ||p  -  II 2  | |p =  lim  — Y  E i y
Jv —*00 iV —

2 11 M 2 "  w  \\
k= 0  

N - 1

J 2 ( u , w ,w 0) =11 e \\2V =  lim  — ] T  ^(11 e II2}-
N —>oo iV *—'

z | | 2} , (5.2)

(5.3)
k= 0

The discrete-time Woo Gaussian design problem is stated as follows:

Find an admissible observer-based control law u *  and a worst disturbance signal w*, such 

that they achieve:

Ji(u* ,tn* ,u ;o ) <  J i (u * ,w ,  w 0) ,

J 2 (u*,w*,wo) < J 2 (u ,w * ,w 0) .

5.2 Hoo Gaussian Control Design

The following theorem presents the results for the general form of output feedback, discrete-time 

Woo Gaussian control.
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T heorem  5.1 Let the dynamical system be described by equation set (5.1), where w  and wq are 

assumed to be uncorrelated. I f  there are stabilizing solutions T\ > 0, P 2 >  0 and P?, >  0 solving 

the Riccati equations:

P i =  A t P 1A  -  (A T P \ B  +  C '[ D ) ( B t P 1B  +  R ) ~ 1 ( B TP l A  +  D T C i)  +  C f C i , (5.4)

P 2 =  A T P 2 A  + ^ 2 A T P 2 B i { I - ^ 2 B f P 2 B i ) - 1 B '[P 2A  + K f R i K i ,  (5.5) 

P 3 =  A M P 3 A TM -  (B 0 D %0  +  A u P z C l ) (Ro +  C 2 P 3 C J ) - 1 (D 2 0 B% +  C 2 P 3 A TM ) + B q B I  , (5.6) 

where I  — 7 - 2 B f  P \ B i  > 0, I  — y ~ 2 B [  P2 B \  >  0, Ro +  C 2 P 3 C 2 > 0, and:

B = [ y ~ l B l P 2], D  = {0 D u ], R  = D T D  -  [I 0]T [/ 0 ], S  =  [0 7],

A ! = / - 7 - 2P 1P 1t P 1 , A  2  =  I  - 1 ~ 2 B 1 B j P 2 , A  =  A  +  B i K 2  +  L *C 2 ,

A m  =  ( I  + 7 ~ 2 B i B { P 2 A f l )A  + B ^ z  +  7 ~ 2 B i B l P 2 A f l L*C 2  ,

K i  = - S ( B t P i B  +  R ) ~ \ B t P i A  +  D t C i ) ,

K 2 =  5 ~ 2 B i  P i& . \ l {A + B 2 K \ ) ,

K 3 =  y ~ 2 B f P 2 A f 1 A ,

i.e., i f  A  — B ( B T P \ B  +  R ) ~ l {B T P\ A  + D T C i)  and A  are both stable, then there exists an optimal 

controller u* and a worst disturbance signal w*, such that:

J l ( u * , W * ,W 0) <  J l (u* ,W ,W o)  , J 2(u * ,w * ,w o )  <  J 2(u ,W*,W0).

I f  the solutions exist, then

w* =  7 “ 2P f  [ P i A f \ A  +  B 2 K i ) x  + P 2 A 2 1i e ]  =  K 2x  + K 3 e , 

and an optimal controller is given by:

Sx =  [A + 'y~2 B i B { P i A f l (A  +  B 2 K i )  +  P 2P* +  L*C 2)x -  L * y ,

=  F * x , x(0 ) =  0,

where F* =  K \ and  F* satisfies:

L* = - ( A M P3 C% +  B q D 2 0 ) ( R 0  +  C 2 P3C j  r 1 . (5.7)
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Conversely, let P \ be a stabilizing solution to (5.4) and suppose there exists a and a controller

u * (hence an L*):

Sx  =  [A +  7  2 B i B f P \ A l ^(.A +  B 2 K i )  +  B 2 F* +  L*C 2\x  — L * y , 

u* = F * x ,  F* =  - S ( B T P l B  + R ) ~ \ B T P i A  +  D T C l ) ,

achieving 0 <  J i(u * ,rc* ,0 ) <  J i (u * ,w ,0 ) .  Then there exists a w* achieving J \(u * ,w * ,w o )  < 

J i (u * ,w ,w o ) .  I f  furthermore, this w* also achieves J 2 {u±. u;*, wq) < J 2 (u, w*, wq), then there 

exist P2  > 0 and P 3 >  0 solving (5.5) and (5.6), respectively.

Moreover, i f  A  +  B \ K 2  is stable, then L* satisfies:

L* = - ( A M P3C Z  + B 0 D j 0 ) ( R 0  +  C 2 P3 C l ) ~ l .

Proof: (Sufficiency) Suppose that there are P\ >  (J, P2 >  0 and P 3  >  0 solving (5.4), (5.5) and

(5.6), respectively. Let u  be any control law. Define r  w  — K 2x  and v  :=  D l2(u  +  K \ x ) .  Then 

the system equations can be written as:

Sx =  (A  +  B \ K 2)x  +  Bqwq + B \ r  +  B 2 u , 

v = D i 2(u  +  K \ x ) , 

y  =  C 2x  +  D 2 qWq , 

and the performance index J \  (u. w, w f)  becomes:

J \ ( u , w , wq) =  7 2 || w  ||p  — || 2 | |p =  7 2 || r  ||p  — || v  |||> — J im  — ^  |~trace(B ^ P \ A E { xwq })]
”̂ °° k = 0

=  7 2 II r  \\l -  || u f v  .

Note that the first Riccati equation and Lemma 2.2 are used to derive this equation.

If we use L* and build the state estimator as:

Sx  =  (A  +  B \ K 2)x  +  B 2u +  L *(C 2x  — y ) ,  x(0) =  0

a logical choice for the controller is u* =  —S ( B t  P \ B  +  R ) ~ l ( B T Pi A  + D T C \ ) x ,  since the state 

information is not available.
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Take e = x  — x  and modify the system equations into:

5e =  A e  +  ( B 0  +  L * D 2o)w0  +  B \ r , 

v = D i 2 K \ e .

By using Lemma 2.2 and the second Riccati equation, the index J \  (u, w, wo) becomes:

wo) = 7 2 II r -  ^ ~ 2  B j  P2 A 2 l A e  |||> 

N - 1
-  lim  — V '  \trace(BQ P i A  E {x w q  }) +  trace ((B 0 +  L ifD 2 o)T P 2  A  E { x w q  }) 

N —►OO iV L
k = 0

= 7 2 II T -  ^ ~ 2 B j P 2 A 2 1A e  || | ,  .

And it follows that:

r* = 1 - 2 B \ P 2 A 2 l A e ,

or

w* =  r* +  =  l ~ 2B j +  B 2K i )x  +  P 2 A 2 1 A e \ .

Then we have J i(u * , iu*, tno) <  J i (u* ,w , wq).

Next, consider the index J 2 (u, w, wo). Let L \  be any estimator gain such that A + B \ K 2  +  L i C 2  

is stable. Substitute w ' =  K 2x  +  P2 A 2 1 (A  +  B \ K 2 +  L \ C 2)e into the system to get:

Se = + B l w 0 ,

where:

A l  — A  +  L 1C 2 +  B \ K 2  +  7  2 B \ B i  P 2 A 2 l { A - \ - L i C 2) , B l  =  Bq +  L \ D 2q ■

The above difference equation, when solved, results to:

k —1 
e = ' 5 2 A k~J~ 1B Lw o { j ) , 

j = 0

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. D IS C R E T E -T IM E  Hoc G A U S S IA N  C O N T R O L

and

N - 1

N —>00 AT 

TV—1 ,  f c - l f c - 1

N^oo IV

J2(u ,v i ,w 0) = || e \\2r = J i m ^  ^  P {|| e ||2}
fc=0

f Z o l v ^  A  ^ ^ w o{i)T B l { A l ) k- l- l A kL- ^ l B Lw 0 { j ) \
i ,— n  \  n  /»— n  J/c=0 j =0

=  v  E  E E  l r m iA i - ‘- ' B i H i - ^ b k a d ^ - ' ]
k=0 2=0 j —0 
N - 1 fe-1

=  jv  S  S  t r a c e [ ^ _ i_ 15 LB ^ ( ^ ) fc_i_1] =  t ra c e (E ) ,
^°° fc=0 i=0

where:

Y  = Y , ^ L B L B l ( A TL y ,
i=0

which is the solution of the Lyapunov equation A i Y A j ^  — Y  +  P l P J  =  0. By Theorem 2.3 and 

using the third Riccati equation, it can be seen that J 2 (u, w*, «,’o) achieves the minimum value at 

L*, where L* =  — (A .v fP iC j +  P 0D 20X-P0 +  C ^ P a C j) - 1 - Therefore, u* is the desired optimal 

control.

Proof: (Necessity) Let a P i >  0 solve (5.4) and suppose there exists a controller ?/*:

=  [̂ 4 +  j ^ 2B i B f P i A f  l (A  +  B 2 K 1 ) +  P 2P* +  L * P 2]^ -  L * y ,  

u..* =  P * i  , P* =  —S{Bt P\B + R ) ~ \ B T P l A  +  P TC i ) ,

and a ?/;( achieving 0 <  J\ (u*. »•(,. 0) <  J i(u * , w, 0). In other words, the system without white 

noise:

Sx =  A x  +  B \ w  +  B 2 u , ®(0) =  0

Z =  C \ X  +  D \ 2 U ,

y  =  C 2 x , 

achieves the Poo performance. Define:

e := x  — x  , r  :=  w — K 2x  , u* :=  P i 2(u* +  K \ x ) .
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The system can be converted into:

8 e = A e  +  B i t  , e(0) =  0

u* =  D i 2 K \ e , 

and the cost function J \  will become:

J i(u * , w, 0) =  7 2 || w  -  w * ||p  -  || L>i2 (u* -  it*) \\v=  7 2 II r \\v _  II v * \\v >

where re* =  K 2x  and u* =  A'i.x. Therefore, by the bounded real lemma, there exists a £2  solving

(5.5) and accordingly, w * (or r ' ) is:

^  =  7 ~ 2 B j [P iA J-1^  +  B 2 K x)x  +  P 2 A ^ A e ] ,

r i  = 1 ~ 2 B j P 2 A ^ A e .

Next, for the system with white noise:

5x  =  A x  +  B qwq +  i? iw  +  B 2u , x(0) =  0

z  =  C ix  +  D 12U ? 

y =  C 2x +  £>20^0  , 

under the same changes o f variables, we have:

5e — A e  +  (Bo +  L * D 2 q)wq +  B \ r  , e(0) =  0

v* = D i 2 K \ e ,

and, similar to the proof for the sufficiency, the performance index J \  (u* ,w , wo) becomes:

i  N ~ '
J i ( u * ,w ,w 0) =  7 2 II w -  ||p  -  II D 1 2 (u* -  u*) Up -  lim  — [trace (.Bjf P i >1E { x w q  })]

N —► OO iV ^
k=0

=  7 2 | | r - 7 - 2JB f P 2A 2- 1i e  U2,

i V - l

-  J im  — ^  ^trace(BQ P i A E { x w q } )  +  trace((Po  +  L * D 2 0 )t P 2 A E { x w q  })
”̂ °° fc=o

= 7 2 || r - 7 - 2P f P 2A 2 1i e  \\2V .

Therefore, if we choose:

w* =  r* +  K 2x  = j ~ 2 B f  [P1 A J 1 (A  + B 2 K i ) x  +  P 2A 2 1 A e ] , 

r* =  7 ~ 2P f  P 2 A ^ 1 A e ,
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then the condition J i(u * , «;*, wo) < J i (u * ,w ,  w o) is satisfied.

If this «;*, along with u * achieves J 2 (u*, w*, wq) <  J 2 (u, ic*, wo), substitute w* into the system 

equations to get:

5e =  A L te + B u w 0  ,

where:

4̂l ,  =  A  +  L*C2 +  B1K2 +  7 2B \B ^ ^2^2 (̂̂ 4 +  Zv*C2) , )3l» =  i?o +  Z)*-D2o ■

S °  fc 1

e =  ^ 2 A L~J~ l B L ,w o(j) ,
3= 0

and J 2(u*, u;*, «;o) =  trac e (y ) is the minimum value, where:

OO
y  =  ' £ a L b l . b I ( a Z J  > 0 ,

i= 0

satisfies A l , Y  A ^  — Y  +  B l * B ^  =  0. Hence, by Theorem 2.3, there is a P 3 >  0 solving (5.6) 

and X* is to satisfy:

L* = ~ ( A M P3C j  +  B o D ^ R o  + C 2 P 3 C Z ) - 1. 

which concludes the proof.

■

5.2.1 Special Case

If the problem formulation is altered slightly, an explicit expression for the state estim ator gain L* 

can be found as stated in the following theorem.

T heorem  5.2 For the linear, discrete-time system given by the equation set (5.1), where w  and  

wq are assumed to be mutually uncorrelated, consider the performance index functions J \  and  J 2 

defined by (5.2) and (5.3), respectively. I f  there are stabilizing solutions P \  >  0, P 2  >  0  and P 3  >  0 

solving the Riccati equations:

Pi = A T Pi A  -  (A t P i B  +  C f D ) ( B T P i B  + R ) ~ \ B T Pi A  +  D T C X) + C f C u  (5.8)
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P 2 =  A T (P 2 + 7 - 2 P 2 B 1 B j P 2 A ^ ) A  + K f R l K 1 , (5.9)

P3  = A 2 P 3 A t2 -  ( A 2 P3C j  + B 0 D j 0 ) ( R 0  +  C 2 P3 C ^ ) ~ l (C 2 P3A l  + D 2 0 B l )  + B 0 B% , (5.10)

where I  — y ~ 2 B j P \ B \  >  0, I  — y ~ 2B j  P 2 B \  >  0 , Rq + C 2 P3C J  > 0 and A 2 =  A  + B \ K 2. i.e., 

i f  A  — B ( B T P \ B  + R ) ~ 1 ( B T P \ A  +  D t  C \)  and A  +  B \ K 2 +  L *C 2  are both stable, then there 

exists an optimal controller u*, a worst disturbance signal w* and a disturbance signal w*, such 

that

J l(u* ,W *,W 0) < J l(u * ,W ,W 0) ,

J 2 (u*,W*,Wo) <  J 2 (u,W*,Wo) .

I f  the solutions exist, then:

w * =  K 2x  , w * =  K 2x  +  K 3e , 

where K 3  =  7 ~ 2B f  P 2 A f 1A  and an optimal controller is given by:

Sx = (A  + B 2 F*)x -  L*y , 

u* =  F ^x  , x (0 ) =  0 ,

where F* = K \  and:

L* =  —(A 2 P3 C 2 +  B 0 D l 0)(Ro + C 2 P 3 C l ) ~ l .

Conversely, let P\ be a stabilizing solution to (5.8), and suppose there exists a w\ and a con

troller u * (hence an L*J in the form:

Sx = (A  +  B 2 F f ) x  — L * y ,

■u* =  F * x ,

F* =  - S ( B t P 1B  + R ) ~ 1 ( B t P i A  + D t C 1) ,  

satisfying 0 <  J \  (u*. w \ . 0) <  .J\ (u+, w,  0). Then there exists a w* achieving J \(n* .  w*, w,’o) <  

J i(u * , w, wo). If, furthermore, there exists a w* that achieves J 2 (u*,w*,wo) < J 2 (u, w*,wo), then 

there exist P 2 >  0 and P3  > 0 solving (5.9) and (5.10), respectively.

Moreover, i f  A 2  is stable, then:

L* = ~ ( A 2 P 3C j  +  B 0 D j 0 ) ( R 0  +  C 2 P 3 C l ) - \
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Proof: The proof can be carried out easily similar to the proof of Theorem 5.1, keeping in 

mind that when studying index function J 2, the disturbance signal w* =  K 2 X is to be considered.

5.3 Numerical Example

In this section, we develop a controller as presented by Theorem 5.1 for the same system studied in 

the example of the previous chapter, which is repeated here:

u ,
0  2 0.5 1 0.5 1

Sx =
4 0.2

x  +
1 0

Wo +
0.3

w +
0 .8

Zo 0.5 0.6 x  +  0 .8u .
J

1 0 0
z = x  + u

0 1 1

y = 1 0 X  + 1.2 1.6 w 0 •

The desired controller gain is derived by solving the Riccati equation (5.4), resulting to:

39.97 -1 5 .7 6 3

-1 5 .7 6 3  7.2577
Pi =

u* = F*x =  2.1238 -2 .7 4 0 6  x ,

and the worst disturbance signal can be characterized as:

w* = K 2x  + K -ze=  -0 .3 2 5 8  0.2023 x +  3.9178 -4 .7 4 8 7  e . 

The Riccati equations (5.5) and (5.6) can then be solves as:

-1 9 5 9 .1 581.25 0.1896 0.5609
P 2 = , =

581.25 -2 5 3 .7 4 0.5609 4.6507

A state estim ator satisfying (5.7) is then calculated to be:

-0 .5 6 9 7
L$; —

-0.3603
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For the resulting closed-loop system, the cost functions as defined by (5.2) and (5.3) are com 

puted as:

J i  =  7 .7597, J 2 =  6.5146.

It can be observed that the performance index functions show a trade-off for the system with the 

Tioo Gaussian controller compared to cases where only Hoc or H 2  controller is applied.
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Chapter 6

Advanced Control of Electric Power-Assisted 

Steering (EPS) System

In this chapter, the electric power assisted steering (EPS) system is considered as an application 

example for the control design schemes proposed in previous chapters.

6.1 Introduction

The essential function o f an EPS system is to provide assisting steering torque to the driver using an 

electric motor which is electronically controlled. This method is more flexible than the conventional 

hydraulic power assisted steering (HPS) and offers numerous advantages. For instance, better fuel 

economy, reduced development time as well as system weight and volume, and a much improved 

functionality [7]. Therefore, it is not surprising that EPS is already starting to be used in high- 

volume, lead-vehicle applications.

The main components of an EPS are shown in the schematic diagram o f Figure 6.1. They 

include a hand wheel (HW), an intermediate shaft (I-Shaft), an electric m otor (actuator), a torque 

sensor, a reduction gear, rack/pinion structure, and an electronic control unit (ECU) where control 

and diagnostic algorithms are implemented in software.
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Sensor SignalsSteering Wheel

ECU
|  Sensor Power

Optical Tofque 
Sensor

Motor
Position
MeasurementMotor Drive

Motor

Rack

Figure 6.1: Schematic diagram of an electric power assisted system

The applied torque by driver is estimated by a torque sensor, which in turn communicates with 

the ECU. The control module is then drives the electric m otor to provide the required assisting 

steering torque. This torque is then upgraded through the gearing mechanism and the tires are 

turned by the rack/pinion structure.

Different issues in EPS have been studied in the literature (see for example [3, 57, 34, 10] and 

references therein). Generally, there are two key requirements to be addressed in an EPS control 

system:

1. Sufficient torque has to be generated by the motor to perform the steering,

2. The driver’s feeling during steering has to be smooth and comfortable.

6.2 Control-Oriented Dynamic Model for the EPS System

A generic, control-oriented dynamic model for the EPS system, as proposed in [11, 10], is given 

in Figure 6.2. In constructing this model, it is assumed that all mechanical connections are rigid, 

and also an armature-controlled DC motor [37] is used in the EPS system. The descriptions of the 

blocks are given in Table 6.1, where:

Tfy: steering torque command from the driver;

Tr : road reaction torque on the rack and pinion;
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6 rp: rack/pinion angle (proportional to the tire angle);

9S: shaft angle;

Jhw i Bhw '■ inertia and damping constants of the hand wheel and I-shaft;

Tts : torque sensor output with K ts and f?istorsion bar stiffness and damping constants; 

0 ts : torsion deformation of the torque sensor;

6 m : m otor shaft angle;

Jm , B rn: inertia and damping ratios of the motor;

L a , R a: inductance and resistance of the motor armature winding; 

ia: armature current;

K e , K t : counterbalance electromotive force and torque constants of the motor;

Tm \ electromagnetic drive torque on the m otor shaft;

,Jrp , B rp\ inertia and damping constants of the rack and pinion structure.

It can be seen from the block diagram that this model involves a regulating operation as: V  =  

C \ (Vr — R f i a), and Vr is the reference signal in voltage generated by the torque sensor and through 

a mechanical/electric conversion ratio K .

Td +

+

-  -^ |«]—♦<)—* G7(s)

Ts, +
Tr
+ Tn-

1/S

Figure 6.2: Block diagram of an EPS system

It is assumed that the road reaction torque on the rack and pinion structure consists of two parts

as:

Tr — Tsr +  Trr
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Block D escription Expression

Hand wheel and I-Shaft _ 1
1 J h w S 2+ B h w s

Torque sensor =  B t s S  +  K t s

M otor dynamics f ' 1 _
( J m  s 4 ‘B m  ) ( L  a S“h R a  ~\~ R  f ) +  A  e K  t

Current feedback resistor II

Equivalent rack and pinion dynamics
' ( J r v + n 2 J m ) s + { B r v + n 2B m )

Torque controller for the motor C l

Reduction gear n  =
“ r p

Torque/voltage conversion G s  =  T ^ b -'- 'm *  i L->m

Speed/torque conversion Gg = n (J m s +

Table 6 .1: Blocks of the EPS system model

where T sr and Trr represent the tire reaction torque from a smooth and rough road surfaces respec

tively. It is also assumed that Tsr is in low frequency range while Trr is in high frequency range 

[10].

6.3 Advanced Control Design

In this chapter, a model-based approach is employed and motivated by the works in [11, 10], a two- 

controller method is adopted. In this technique, the control action is considered in two parts: motion 

control and m otor control. The function o f the motor controller is to regulate the dynamics o f the 

electric m otor to produce the assisting torque with desired transients. The motion controller, on the 

other hand, provides an acceptable system performance and determines the driver’s feeling during 

the steering. The motivation to apply an H 00 or H-i controller as the motion controller is mainly the 

presence o f the road disturbance, noisy measurements and the system model uncertainty.

The main purpose of the control design process is to first guarantee that most of torque required 

to turn the tires comes from the motor. From the EPS system model, it can be seen that the torque 

sensor output, which is in fact the difference between the driver input command and the rack/pinion 

position, acts as a reference value which determines the amount of torque that the motor has to
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provide. Following this view, the motor component loop can be seen as an input command follower 

and the m otor controller C \ can be designed to facilitate this following performance. On the other 

hand, since the road reaction torque depends on the road condition and it is very likely to contain 

undesired components, the torque sensor output alone cannot be a good reflection of the uncertain

ties in the system and furthermore, there might be noise in the measurements o f the torque sensor 

mechanism itself. Therefore, the reference command sent to the motor needs to be regulated as well 

and the m otor controller C \ is not a good candidate to perform this task since it is inside the motor 

loop and cannot be too sensitive to the system uncertainties and disturbances.

To address these issues in the EPS system control problem, a new regulating control C 2 (s) is 

added to the system. Figure 6.3 shows this new controller which is to be designed as a discrete-time 

controller C 2 {z) via the algorithms developed in previous chapters and then included in the EPS 

system through a proper sampler and a zero-order holder (ZOH). To formulate this problem as a 

mixed H 2 / H 0C control design, as introduced in Chapter 4, the signals w, wq, z  and zq are chosen as 

shown in Figure 6.3. The weighting functions W  and Wo are chosen by trial and error to facilitate 

the performance requirements. W  is a low pass Butterworth filter chosen to be sensitive to signals 

up to 1 0 0 H z  frequency, which includes the m ajor low frequency part of the road reaction torque, 

and Wo is chosen to make the design problem regular:

W  = -------------- 35 x 10---------------- W0 =  0 01
s3 +  200s2 +  2 x 104s +  106 ’ 0 '

M(s)

G4(s)

ZOH K,.n

Figure 6.3: Block diagram of an EPS system with additional control C 2  

In [10], full-order and reduced-order Hoc and H i  controllers are developed and simulated with
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desirable performance results. However, only the disturbance signal w  is considered in [10], repre

senting the road reaction torque from a rough road. For this work, the measurement noise wq is also 

considered as a white noise signal added to the torque sensor output. The system is then converted 

to the standard setup shown in Figure 6.4, where G (s)  =  C g {s I  — A c ) ' 1 B G + D G is found to be 

described by:

-200 - 2 0 0 0 0 - l e 6 0 0 0 0.6208

1 0 0 0 0 0 0

0 1 0 0 0 0 0

a g  = 0 0 0 -0 .6 0 6 -2 4 2 4 .2 80 0 1

0 0 0 1 0 0 0

0 0 0 0 0 0 0.6208

0 0 0 0 2424.2 - 8 0 -9 .0 0 1 7

T
0 0 0  ' ’ 0 0 0

0 0 0 0 0 0

0 0 0 0 3.5e7 0 0  0 0.01

- 1 0 0 , c G = 0 0 0 D o 0  0 0

0 0 0 0 0 2424.2 1 0 0

0 0 0 0 0 - 8 0

1 10000 1 _ 0 0 0

The block M (s )  in Figure 6.3 can be considered as a torque signal (generated by C 2 ) follower. 

Therefore, the whole controller would be found as C (s) = M (s )C 2 , with M (s )  being known after 

C \ is designed. Clearly, C 2 can then be obtained by j-r

In order to implement the algorithms presented in previous chapters, this plant is converted to 

discrete time domain using the standard zero-order hold method, where G (z) = C ( s I  — A ) ~ 1 B + D  

is obtained by:

A  = eA° T , B = ( Kf \ A° xd \ ) B G , C  = CG , D  = D g ,
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W oZ 0

Z G(s)

C (s)

Figure 6.4: Standard setup for multiobjective control design 

where T  is the sampling period. Selecting T  =  0.1, we obtain:

—5.34e- 3 -0 .3 2 22.16 -7 .9 7 e ~ 4 0.06 —1.96e-3 1.76e-5

—2 .2 2 e~ 5 —9.77e~ 3 -0 .7 6 -2 .6 2 e -5 —8.13e~4 2 .6 8 e - 5 — 1.63e-6

7.6e- 7
1C

O
r-H 5.43e-3 6.28e~7 —2.58e-5 8.51e-7 2.92e-7

0 0 0 0.252 45.34 -1 .4 9 1.52e-4

0 0 0 —1.7e2 0.24 0.025 0.0017

0 0 0 5.2e- 2 3.6e-2 0.99 0.04

0 0 0 7.43e~ 3 -4 5 .4 1.49 0.416

2.45e~ 5 -0 .0 1 6

1

1c
q

r-H1

—3.35e“ 7 2.92e-3 2.92e-7

—1.06e-8 3.46e-4 3.46e-8

B  = 0.019 17.1 1.71e~3

—3.13e-4 0.759 7.59e-5

1.49e-5 23.11 2.3e~ 3

-0 .0 1 9 647.3 0.0647

At this point, for the EPS system represented by the block diagram of Figure 6.3, discrete-time 

controller C ^ z )  =  Cc( z l  — A c)~ l B c + D c is designed.

First, a mixed H z/H o c  controller is calculated as developed in Chapter 4. Recall that the prob
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lem is formulated as:

Sx = A x  + Bqwq +  B \w  +  B 2 1 1 , x(0) =  0

^0 =  C q X  +  D 0 2 U ,

z  =  C \x  + D 1 2 U , 

y  = C 2x  + D 2 0 W0  , 

and the cost functions defined as:

N —l

J i (u ,  w, w 0) =  7 2 |] w lip -  II ^ | |p =  lim  — E { 7 2 || w  | |2 -  || 2 ||2} ,
A —>00 iV

k~Q  

X N ~ '
J 2 (u ,w ,w 0 ) = || z 0  \ fa=  lim  — V  ^ { ||  z 0  ||2}.

TV—>00 iV z— '  fc= 0

Assuming 7  =  3.5 and T  =  0.1, the resulted controller that can achieve:

W 0) < w, wo)

J 2 ( u * , W * , w0) < J 2 { u ,  W *, w0)

is given by:

-0 .1 5 3 -3 2 .2 2 7342 1.059e6 5.686e7 4.563e8

—7.183e-4 -0 .5 7 4 6 -1 5 2 .2 -9 3 9 1 —3.103e5 —2.258e6

3.525e-6 1.351e~3 0.01416 -7 0 .0 8 -2 6 7 3 —2.015e4

A d  —
3.156e-8 2.205e-5 6.623e-3 0.7494 -9 .9 3 1 -7 5 .5 1

1.183e-10 l.O le - 7 4.182e~5 9.38e-3 0.9749 -0 .1 9 1 3

2.999e-13 2.944e-10 1.511e“ 7 4.881e-5 9.951e~3 0.9996

5.857e-16 6.438e-13 3.922e-10 1.648e-7 4.992e~5 9.999e- 3

9.382e-19 1.137e-15 8.005e-13 4.141e-10 1 .6 6 6 e~ 7 5e - 5
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Br =

A c 2 =

2.704e8 8.743e6

— 1.328e6 —4.291e4

— 1.188e4 -3 8 4 .1

-4 4 .5 6 -1 .4 4

-0 .1 1 2 9 —3.651e“ 3

—2.205e-4 —7.13e-6

1 — 1.142e~8

0.01 1

A c — [Ad 4̂c2] )

-7 .183e-4  3 .5 2 5 e-6 3.156e~8 1.18e - 10 3e“ 13 5 .857e“ 16 9 .3 8 e"19 1.28e~21

Cc = 334.6 7.804e4 6.85e6 1.222e8 1.762e9 1.801e10 6.821e10 2.286e

D r =  9.844e -4

Next, an Tioo Gaussian controller is found by the method presented in Chapter 5. The problem 

is formulated as:

5x = A x  +  BqWq +  B \w  +  B 2 U , x(0) =  0

2 =  C \x  +  D u u  , 

y  =  C 2 X +  D 20wo ,

with cost functions:

JV - l

J i (u ,  w, w0) =  7 2 II W  III -  II z | | | =  lim — ^  E { j 2  || w  ||2 -  || z ||2} ,
k=0 

N - 1
1 y ,

J 2 {u ,w ,w o )  =11 e | | | =  lim  — V  E {\\ e ||2}
N —>oo iv  ^

k- 0
where e = x  — x.
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The controller C 2 (z) — Cc( z l  — A c)  B c + D c that can achieve

u>*, wo) < J i(u * ,w ,w o ) ,  

J2(u*, W*, Wo) <  J 2 ( u , W*, W0) ,

can be characterized as:

^4ci —

-0 .0 3 8 2 -5 2 .2 7 -1 5 6 1 —2.75e4 —2 .2 2 e5 —6.63e5

1.45e- 5 -0 .0 1 6 1 7 -4 8 .5 1 -1 3 5 3 —2 .12e4 — 1.17e5

2 .8 e -6 4.277e-3 0.7101 -8 .3 7 9 -1 3 5 .3 -7 5 4 .8

1.812e~8 3.04e“ 5 8.984e-3 0.9702 -0 .4 8 6 3 -2 .7 2 8

6.55c- 11 1.18e-7 4.74e - 5 9.924e-3 0.9988 —6.984e“

1 .6 8 e -13 3.21e-10 1.62e-7 4.985e-5 9 .9 9 8 e-3 1

3.352e-16 6.788e-13 4.08e“ 10 1 .6 6 e - 7 5e- 5 0.01

5.51e-19 1.175e-15 8 .2 2 e -13 4.16e-10 1.67e-7 5e-5

A c2  =

—3.23e5 

—6.214e4 

-4 0 2 .6  

-1 .4 5 6  

—3.728e-3  

—7.45e-6  

1

0.01

— 1.03e4 

-1 9 9 6  

-1 2 .9 3  

—4.677e"2 

1.198e~4 

—2.39e~ 7 

—3.93e-10  

1

A c — [Aci A-c2 \ i

B c = 1.45e- 5  2 .8e~ 6 1.81e“ 8 6 .5 6 e -u  1.68e~ 13 3.35e“ 16 5 .51e~19 7.71e

Cc = 333.4 2.95e4 l . l e 6 1.86e7 2.47e8 2.17e9 7.38e9 2.47e8

D r =  9 .841e"4
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6.4 Simulation Results

The controllers designed in the previous section is based on a simplified dynamic model of the EPS 

system. In order to validate the results, a high-fidelity simulation platform is developed using the 

model and C a r S im ™ , a software package capable of simulating vehicle dynamics. The use of 

the CarSim serves two purpose: to generate the road reaction torque of a smooth road (Tsr); and 

to provide a benchmark rack/pinion angle for comparison with the controlled EPS system model. 

From this comparison, we can justify the desirable action of the power assisted steering system if it 

is able to deliver most o f the steering torque to the motor, no matter what road condition is and also 

in the presence of the measurement noise. The simulation setup is illustrated in Figure 6.5.

G,(s) C2(z) C,(s)ZOH

G4(s)

Benchmark 
Rack/pinion angle

Tsr +CarSim

Figure 6.5: Simulation setup for the controlled EPS system

Models for the blocks of the EPS system are assumed as follows:

G l W =  0.04s* +  0 .0 3 , ' « » )  =  0.03s +  65 , G ?M  =  3 18 / + 2 8  5 . -  =  20 ,

0.00395s +  0.035 1
~  (0.00395s +  0.035)(0.0015s +  0.37) +  0.25 ’ “  40 ’

In all of the simulations, it is assumed that the driver turns the steering wheel to the left with 1 

Newton-meter torque for 5 seconds and then releases the wheel, as seen in Figure 6 .6 .

First, the motor controller C \ is chosen to be, after trial and error, a P I  controller C i(s )  — 

K p  +  with K p  =  20400, K j  =  700. The tracking response of the closed-loop motor loop with 

this C \ to a unit step input is shown in Figure 6.7 and Figure 6 .8  illustrates the road reaction torque 

and the torque sensor output without applying any motion controller (C i  =  I) .  It can be seen that, 

although the motor control C \ is capable of following the input command and also smoothing the
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Driver applied torque to the steering wheel

0 5 10 15 20 25 30 35 40 45 50
Time (sec)

Figure 6 .6 : Driver’s turning torque applied to the steering wheel

effect of the rough road, the transient response is slow and furthermore, there exists an overshoot in 

the steering torque which may be harmful to the mechanical parts.

450 

400 

350 

300 

|  250

I  200
150

100

50

0

EPS gear output through PI motor controller

0 2 4 6
Time (sec)

Figure 6.7: M otor response with PI controller
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I
I

I
I

Figure 6 .8 : Road reaction torque and the torque sensor output without C 2 (z)

Next we consider the system with only a disturbance signal from a rough road surface (u?o =  0). 

For this case, as mentioned before, Hoc and Ft 2 controllers are developed in [10] and the simulation 

results of these controllers are given in Figures 6.9 and 6.10. It can be seen that, both o f these 

schemes can suppress the effect o f the rough road surface on how the driver feels. However, as 

can be expected, the transient response of the Hoc controller takes longer, comparing with the Ft 2 

design.

Road reaction torque with H2 motion controller

I *  
I  1

.1 -------------------------------------------------------------------------------------------------------------------------------------------------------------
0  2  4  6  8  1 0  12  1 4  1 6  1 8  2 0Time (sec)

Torque sensor output with motion controller

I
I

Time (sec)

Figure 6.9: Road reaction torque and the torque sensor output with wq =  0 and Ft2 controller

Road reaction torque without C2 motion controller
15

10

5

0
0 6 8 1 0 12 14 16 18 202 4 Time (sec)

Torque sensor output without C2 motion controller
0.8
0.6
0 . 4

0.2
0

'0 142 4 6 8 10 12 16 18 20
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Road reaction torque with Hk motion controller
6

5'
4

3

2

1

0
-1

16 18 200 8 10 12 142 4 6

output with motion controllerTorque
1

0 .8

0 .6

0 . 4

0.21

°|
18 208 10 12 14 160 2 4 6

I
I

Figure 6.10: Road reaction torque and the torque sensor output with wq — 0 and TLX  controller

If it is assumed that both disturbance signals w  and wq are present, i.e. the rough road surface 

and the measurement noise are considered, as can be seen from Figures 6.11 and 6.12, neither an 

Hoc nor an H 2  controller can handle the added disturbance individually.

Road reaction torque with H2 controller and measurement noise

I
I

0  2  4  6  8  1 0  12  1 4  1 6  1 8  2 0Time (sec)

-1
0  2  4  6  8  1 0  12  14  1 6  1 8  2 0Time (sec)

Figure 6.11: Road reaction torque and the torque sensor output with wq present and H 2 controller

Now, the mixed H 2 / H 0 0  controller derived in the previous section is applied for the motion 

control C 2 . The simulation results for this system is shown in Figure 6.13. It can be seen that 

this controller is capable of overcoming both disturbances and provide a good output. To verify

with FL controller and measurement noise
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Road reaction torque with controller and measurement noise
6

5

4

3

2

1

0|
• 1

208 10 12 14 16 180 2 4 6 Time (sec)
Torque sensor output with controller and measurement noise

.5

1

0 .5

0

-0 .5
8 10 12 14 16 18 200 2 4 6

Figure 6.12: Road reaction torque and the torque sensor output with wo present and Hoc controller

the performance further, the rack/pinion angle is compared with the benchmark angle generated by 

CarSim in Figure 6.14. It is shown that C 2 is now successful in providing a steering dynamics on a 

rough road and with a measurement noise close to that of a smooth road with perfect measurement.

Finally, if  the Hoo Gaussian controller calculated before is applied for C 2 , a good system dy

namics performance is achieved as well. Figure 6.15 shows the road reaction torque and the torque 

sensor output, and Figure 6.16 is a comparison of the rack/pinion angle with the CarSim benchmark 

with a system with this controller.

It can be concluded that although the H 2 and Hoo controllers are capable of providing a good 

performance when only a single disturbance from the rough road surface is considered, they are not 

able to handle an extra disturbance introduced to the system. This example illustrates the advantage 

of utilizing a multiobjective controller very clearly.
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Road reaction torque with multiobjective controller

Time (sec)
Torque sensor output with multiobjective controller

1 .5

1

0 .5

0

-0 .5 0 2 4 6 10 12 1 4 16 168 2010 12

Figure 6.13: Road reaction torque and the torque sensor output with wo present and mixed 7^ 2 / H c 

controller

CarSim benchmark angle output with real time simulation
1m 11 jgft r&p angle
.~T~.riahl.iqp?n9ll>

1 .2

1

0.8

0.6

0 . 4

0.2

0
4 6 10 12 14 16 180 2 8 20Time (sec)

EPS rack & pinion output angle output with multiobjective motion controller
1.2

1

0.8

0.6

0 . 4

0.2

0
6 16 180 2 4 8 10 12 14 20

Figure 6.14: Benchmark comparison for mixed T i'i/’H-x controller
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R o a d  r ea c tio n  to rq u e  w ith G a u s s ia n  contro ller

6

5

4

3

c t  2

1

0|
•10 10 12 14 202 4 6 e 16 18

T im e  ( s e c )

T o r q u e  s e n s o r  ou tp u t w ith G a u s s ia n  contro ller

1

0.8

0.6

0 .4

0 .2

0
•0 .2

140 4 6 8 10 12 16 18 202
T im e  ( s e c )

Figure 6.15: Road reaction torque and the torque sensor output with wo present and H 00 Gaussian 

controller

C a rS im  b e n c h m a r k  a n g le  o u tp u t with rea l t im e  sim u la tion
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Figure 6.16: Benchmark comparison for Hoo Gaussian controller
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Chapter 7

Conclusions

Engineers are required to deal with problems of real world, whether they are overcoming a natural 

limitation of human beings and opening new horizons by way of creating new devices, or improv

ing an already existing technical development in some way. M athematics is one of the tools that 

is at the disposal o f an engineer, which perhaps is more evident than any other field, in control 

engineering. Nevertheless, scientists today still have a long way to go to even get close to making 

an accurate impression o f the real world by mathematical models. Then again, it is possible for 

engineers to develop models of the real world problems that are ‘close enough’ for what is required 

o f them to achieve. On this path, however, there is always room for improvement, and the closer a 

mathematical model is to real life, the more desirable results will be possible from an engineering 

mechanism. This is the main idea behind the problem defined in this work and the approach adopted 

in attempting to solve it.

In this dissertation, direct design methods for a multiobjective filter as well as two mixed 

/Woo control strategies in discrete-time domain were developed to complete the theory on these 

problems. In all of these derivations, it was observed that carrying out the discrete-time design is not 

as routine as expected. A robust optimal signal estimator in discrete-time domain was introduced. 

This method provides a filter that can be capable of achieving robust performance against system 

model uncertainties, as well as optimal performance against white noise. The mixed 7 i 2 /'H oc filter
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can be obtained by solving a set of coupled Riccati equations.

Furthermore, both necessary and sufficient conditions for existence of two output-feedback, 

mixed H 2 / H 0 0  control laws were given in the form o f Riccati equations which are solvable through 

some standard algorithms. These methods provide solutions to achieve a trade-off between H 2  

and Hoo performances and can address the plants affected by both white noise and bounded power 

disturbance signals, which in turn have the potential to be applied to more realistic engineering ap

plications utilizing digital controllers. In addition to numerical examples provided for each design 

method, the electric power-assisted steering system was studied as an application for this m ultiob

jective control scheme. These examples demonstrated system performances having the trade-off 

property as expected, and the ability to handle two different types of disturbances, namely a white 

gaussian noise and the bounded power disturbance.

7.1 Future Work

In the problem formulations considered in this dissertation, only some standard assumptions have 

been made on the system and the goal was to find the most general solutions possible. However, 

more considerations can now be added to the plant and the problem statement. For instance, time 

delay can be introduced to the system, which raises the question of what type o f time delay the 

existing designs can handle and if they need to be modified depending on the nature of the delay. 

Also, new disturbances that can be dependent on the system states or output measurem ent can be 

considered, making the assumptions more realistic for dealing with some engineering problems.

Because of the discrete-time nature of the method adopted in this work, it can be a much better 

foundation for applying the idea of mixed H 2 / H 0 0  control in Networked Control Systems (NCS), 

which is one o f the fastest growing areas in Control Engineering and extensive time and interest is 

devoted to it by both industry and academic researchers.

Although the problem of mixed H 2 / H 0 0  control has been addressed from many aspects in the 

literature, a comprehensive study seems to be needed to combine different solutions into a more 

unified approach. Also, the question of comparing these different solutions in terms of performance 

parameters such as transient response, stability margins, robustness and so on can be conducted to 

be used as a selection criteria when applying to a specific problem requirements.
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