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Abstract

In this dissertation, discrete-time multiobjective filtering and control is studied to complete the
theory on these subjects. A discrete-time filter is developed for systems subject to both white noise
and bounded-power disturbance signals. Sufficient and necessary conditions for the robust optimal
filter are presented and the resulting filter gain is characterized by a set of two coupled Riccati
equations.

Furthermore, control design methods for discrete-time systems subject to both white noise and
bounded-power disturbance signals are developed in the framework of two multiobjective Ho /H oo
designs. For these two methods, namely: ‘Mixed Ho/Hoo Control’, and ‘“Hy, Gaussian Control’,
after some standard assumptions on the system and defining performance indexes, sufficient and
necessary conditions are obtained for existence of output-feedback controllers which are character-
ized by coupled Riccati equations. Numerical examples are presented to validate the designs. As an
application, control of electric power-assisted steering system is considered and the multiobjective

control designs are developed and compared with regular Ho and H controllers.
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Chapter 1

Introduction

1.1 Multiobjective H,/H., Control

In any engineering problem, the goal is often to attain some desired performance, defined by the
problem statement. This performance can be in the form of a target behavior of the addressed
system, maintaining a vital characteristic of the system such as stability, or the ability to perform
effectively in the presence of unknown changes to the environment. However, as any experienced
engineer knows, the price for achieving one type of performance is often sacrificing other aspects
of system behavior.

One of the most logical measures to evaluate the quality of a system design and compare it with
other possible solutions, is to asses if it can satisfy multiple objectives at the same time, hence the
designation: ‘multiobjective’. Since it is almost impossible to have a single solution to an engi-
neering challenge without any downsides, a good practitioner can instead attempt to accomplish as
many objectives as possible with limited number of drawbacks. For some examples of multiobjec-
tive control designs see [16, 50, 47, 48, 20, 42, 45].

Multivariable control analysis and design tools have enjoyed a rapid progress during the past
decades. Two of the major contributions to this field are the so-called Linear Quadratic Gaussian

(LQG) or Hy, and H control theories. These two fields of study, although related in nature,
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1. INTRODUCTION

address two different concems in the design process.

The primary differences between the Hz control design theory [31, 44, 18] and H control the-
ory [18, 56, 22, 4, 60] are rooted in their treatments of exogenous disturbances. In LQG approach,
for a linear plant given by its state-space description, it is assumed that the disturbance and mea-
surement noise are Gaussian stochastic processes with known power spectral densities. The design
specifications are then converted into a quadratic performance criterion consisting of state variables
and control input signals. The goal of the designer is then to minimize this performance criterion
by using a suitable state or measurement feedback controller and at the same time guaranteeing the
closed-loop stability. However, in many practical problems, the covariance of the disturbance signal
is not known and furthermore, the robustness is not guaranteed when dealing with model inaccuracy
and changes in system parameters [21].

On the other hand, H, theory is based on a deterministic disturbance model consisting of
bounded-power signals, and it tries to minimize the worst-case disturbance attenuation. This method
is applied successfully wherever a robust design is required. Nevertheless, the transient response of
the system with H, controller is not usually desirable and also it may be too conservative for the
systems with well-known disturbance power spectral densities.

The question of designing a stabilizing, mixed Ha/Ho controller that is able to address both
types of disturbances and also produce a robust controller with a good transient response is then
natural to consider, since it is obviously an example of a ‘multiobjective design’ as presented before.
It is therefore no surprise that this problem has attracted a great deal of attention from the researchers
in the past decade. There has been a large number of works reported in the literature that address
this question in continuous-time domain. Some examples are given here for various approaches to
this problem (for more examples of other multiobjective control methods see [51]).

The Linear Matrix Inequalities (LMI) method is applied to mixed Hy/H, problem in a wide
variety of ways leading to a convex optimization. For some examples of this methodology see
[29, 25, 46, 32]. The authors in [6] utilize a transfer function approach using Youla parameterization
[55]. A unifying formulation and solution to the general LMI-based design, which also includes the
multiobjective control is developed in [36].

Some of the methods mentioned above formulate the mixed Ha/H, problem in the general
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1. INTRODUCTION

form of minimizing an H, performance criterion which is subject to a prespecified Hoo, constraint
with the closed-loop system stable. For this problem, in [5, 28] an auxiliary problem is proposed
with an upper bound on the Hs/H performance index and is solved through three Riccati equa-
tions.

In [19, 61] a system with both white noise and bounded-power disturbance signal is considered
and the problem involves minimizing a mixed Ha/H o, norm of the system.

The authors in [35] introduced a method based on the Nash game theory, where each of the Ho
and H criteria are represented independently as the two pay-off functions in a two-player, nonzero
sum game. The resulting Nash equilibrium consists of a controller, characterized by cross-coupled
Riccati equations, which satisfies both LQG and H ., performance indexes. The main attraction
of this approach is that it has a very clear Ha/H interpretation and is solvable through some
standard numerical algorithm. A state-feedback controller is solved in [35] and a more general
output-feedback solution is given in [13]. More recently, the results in [35] have been generalized
to the stochastic system with state-dependant noise [8], and state, input and disturbance-dependant

noise [59].

1.2 Discrete-Time Multiobjective Filter

As a natural continuation to the methodology applied in this work, a discrete-time multiobjective
filter is developed.

One of the most important problems in signals and systems analysis is the signal estimation
for the dynamic systems [1, 41]. The optimal H filter (also known as Kalman filter) [2], which
is based on the stochastic noise model with known power spectral densities is a popular signal
estimator. However, this technique may be very sensitive to changes in system parameters or other
disturbances with unknown spectral densities. For such cases, a better choice is to use an H filter,
which is developed specifically to address model uncertainty [24, 39], and different techniques
have been well developed and applied for different systems (see for example [27, 33, 54] and the
references therein). Although H, filter usually provides much better robustness than H filter, it
may not be possible to use it for systems affected by stochastic noise. Clearly, a mixed Ha/Ho

filter design scheme that can combine the strengths of these two estimation methods in a systematic
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1. INTRODUCTION

way is highly desirable.

Several methods have been proposed to carry out the robust optimal filter design and a few ex-
amples are given here for different approaches to this problem. In [43] and [30], the mixed Ho/H
filters are obtained using convex programming characterization. For systems with norm-bounded
parameter uncertainties, the problem is solved in [52] and [53] by using Riccati-like equations,
where the transfer function from the noise inputs to error state outputs meets an H,-norm upper
bound constraint. For discrete-time polytopic systems, [40] obtains the mixed Ho/H filters by
solving a set of linear matrix inequalities (LMIs), while [26] uses the parameter-dependent stability
idea and finds a filter that depends on the parameters, which are assumed to reside in a polytope and
be measurable online. A time domain game theoretic approach is proposed in [49] which improves
the Ho performance of the central H, filter while satisfying the required H o, performance.

In [14], utilizing the game approach, a new formulation called “H ., Gaussian filter’ is proposed,
and it is shown that the robust optimal filter can be obtained by solving a set of cross-coupled
Riccati equations. The result is a Kalman-type filter for uncertain plants and is characterized by the
choice of the disturbance attenuation level v. One advantage of this approach is that optimal state
estimation is achieved at the presence of the worst case model uncertainty. Therefore, it clearly
reflects the trade-off between the inherently conflicting H9 and H performances.

Motivated by the approach in [14], in this dissertation, the Nash game methodology is adopted
to derive a mixed Ha/H filter in discrete time. The design is based on a constrained optimization
problem and is characterized by two cross-coupled Riccati equations. As it can be seen, obtaining
the discrete-time counterpart of the continuous procedure is not so straightforward. An optimal
filter gain is characterized by an equation consisting of the plant parameters and the solutions to the

Riccati equations.

1.3 Discrete-Time Multiobjective Control

Most of the signals considered in control systems, such as tracking error or actuator output, are
continuous in nature. Also, many performance specifications, such as bandwidth, rise time, etc, are
formulated in continuous-time. However, because of the many benefits of the digital technology and

the ever-decreasing cost, in many applications, controllers and sometimes sensors are realized using
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1. INTRODUCTION

digital technology. Such a system, having both continuous and discrete signals is called a sampled
data system.

A widely used approach to design a digital controller for the sampled data system is to first
construct the controller in continuous time domain, where the performance specifications are most
natural, and then discretize it in order to be implemented by a digital controller. It is expected, at
least in theory, that the analog performance is recovered exactly as 7' — 0, where T’ is the sampling
period. Nevertheless, this method has several practical and theoretical problems. First, during the
process of discretization, many desired characteristics of the continuous system, including some of
the system norms, are not transferred to discrete time and even the stability is not guaranteed [23, 9].
Furthermore, smaller sampling period requires faster and more expensive hardware. Moreover, the
sampling rate is usually limited or fixed by other implementation issues unrelated to the control
scheme, which puts more restrictions on the original continuous-time design to be able to produce
the desired performance without any distortions. Therefore, it is always advantageous to be able
to design a controller directly in discrete-time domain. For these reasons and more, the field of
discrete-time control design and analysis has become a significant and ever-growing part of the
control systems theory.

Considering the vast amount of work that has been done on mixed Ha/H  control in continuous
time, only a few references seem to exist that deal with discrete-time domain. The work in [5] has
been extended to discrete time in [28], where an LQG output feedback is designed, with a constraint
on H,, disturbance attenuation. In [38], the discrete-time counterpart of [19] is carried out and also
a special case solution for the mixed Ha/H o Nash equilibrium is suggested. The authors of [59]
extend their work to discrete-time systems with state and disturbance dependent noise in [58]. In
[15] the Hy/H control is considered for discrete-time, Markovian jump linear systems. Using the
game theory approach, a state-feedback controller is derived in [12] which considers a system with
a bounded power disturbance signal.

In this dissertation, the Nash game methodology is adopted to derive mixed Hy/H oo controllers
in discrete time. We assume the observer-based structure for the controller and therefore, the mea-
surement noise (characterized by the white noise signal) is considered along with a bounded-power

disturbance that can be a representative of the system model uncertainty. As can be seen from this
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1. INTRODUCTION

work, extending the continuous-time design procedure to discrete-time is not so straightforward,
making the problem worthy to be considered on its own.

Two different frameworks are considered which are called “Mixed Hz/Hoo Control” and “Ho
Gaussian Control”. Output feedback controllers have been derived which are characterized by three
cross-coupled Riccati equations. The plant is assumed to be as general as possible and only some
standard assumptions are made on the system. Some numerical examples are included to demon-

strate performance indexes and to illustrate the solvability of the proposed procedure.

1.4 Dissertation Overview

This dissertation is organized as follows: after the introduction and background information pro-
vided in this chapter, some preliminary definitions and results are collected in chapter 2; in chapter
3 a multiobjective filter problem is presented and solved; the mixed Ha/H o control is introduced in
chapter 4; chapter 5 covers the H ., Gaussian control design method; the application of the proposed
solutions is studied on an electric power-assisted steering system in chapter 6; chapter 7 summarizes

the conclusions, final remarks and a few suggestions for the future research on this path.
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Chapter 2

Preliminary Results

2.1 Signals and Systems

Consider a linear, time-invariant, discrete-time control system described by:

z(k +1) = Az(k) + Bu(k), z(0)=0,
y(k) = Cx(k) + Du(k),
where z is the system states vector, u is the control input, y is the output measurement, and the
index k represents the value of a signal at the time instance k7', where T is the sampling period.
From this point on, we will drop the time index k, and adopt the notation 6z := x(k + 1). The

system presented above can then be written as:

dr = Ax + Bu, xz(0)=0,

2.1
y=Cx+ Du,
The following packed notation is used to define the system transfer function:
A 1
=C(zI-A)"B+D 2.2)
C D
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2. PRELIMINARY RESULTS

2.1.1 Norms of signals and systems

Definition 1 (Bounded power signal) Consider the given discrete-time real vector stochastic sig-
nal u(k):

u(k) = [ur(k) ug(k) - umk)]T €R™ VkeZ,
where u;(k), i = 1, ..., m, are real discrete random processes. We define the mean and autocorre-

lation matrices, respectively, as:

E{u} == [E{wi(k)} E{us(k)} -+ E{um(k)}]",
N-1
Ruu(n) _ngnooﬁ Z E{u(k +n)u" (k)} .

The power spectral density of u(k), is:

R :
= — Z Ruyu(k)e 34k
fis
k=—00
A stationary stochastic vector signal is said to have bounded power if:
e both Ry, and Sy, exist;
. N-1

o limn—som Lk—o E{l u(k) |3} < cc.

Definition 2 (P-norm) Let P be the set of all signals with bounded power, we define the seminorm:

N-1

lu|p=lim —ZE{HU ) 17} (2.3)

Note that whenever the unsubscripted norm || - || is used, it refers to the standard euclidian norm

on vectors.

Definition 3 (Mutually uncorrelated signals) Two stochastic vector signals w1 and us are said to

be mutually uncorrelated if:

(BE{u1} =0 or E{us}=0) and E{ui(ki)uj(ke)} =0, Vki,k2€Z.
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2. PRELIMINARY RESULTS

Z u
— G l————

Figure 2.1: A general system with input and output signals

Definition 4 (H., and H5 norms of systems) Consider a given discrete-time system G(z) in Fig-
ure 2.1, with state space realization (A, B, C, D), and denote w and z as the input and output

signals to the system, respectively. The Ha and Hoo norms of this system are defined as:

2w
16 = {5= [ tracelGle )Gl db}, 1| G = masco[G(e )]

where T is the maximum singular value of G(z).

Note that if w is a bounded power signal, it can be shown that || G' ||co= sup,, 1= | 7; (see [9, 60]).
Moreover, if w = wy is a white noise signal, it can be shown that || G ||2=|| z ||p. Therefore, it is

easy to validate that:

1G o<y <= 0<P wlp—ll2 15, Yw#0.

2.1.2 Expected value lemmas

Lemma 2.1 Consider a dynamic system described by:

dx = Az + Bowy + Bou, z(0)=0 2.4)
z = Chix + Disu, 2.5)
y = Coz + Dyowo , (2.6)

where wy is a white noise signal and the controller, u, is given by K(z) = Cy (2] — Ag) !Bk

with its associated state variable . Then we have:

T’ (e11Bo+ €12Bx D), ifk>1+1
E{z(k)wy (1)} =

0, ifk<l+1
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2. PRELIMINARY RESULTS

where

A ByCk Ak—l—l _ €11 €12

s
Il

BgCy Ag e €

Proof: The closed-loop system consisting of the plant (2.4)-(2.6) and the controller K (z) =

Ck (21 — Ag) ™! Bk can be written as:
6& = Az + Bowo,

where Z is the state vector of the augmented system, & = [z7  ZT|T,and By = [BY (BgDao)T]T.
The solution to this difference equation is:

k—1
(k) = A*£(0) + Y A*771 Bowo(y)
j=0

T
L

A1 Bywo(5), k=1,2,3,---

.
Il
=)

and

x
—

B{a(k)uf (0} = Elwo)a" (k) wo)z” (B)]T = B 3 4497 Bywo(j)uf ()}

<.
Il
[==]

Ed
-

= AFZIT1ByE [wo(f)wi (1)]

>
ol
=]

Ak_j_ll%é(l -7

.
Il
=)

AE1B if e > 1+ 1
0, ifk<l+1

or

(enB() + e]_QBKDQO), iftk>1+1
E{z(k)wg (1)} =

0, ifk<l+1

10
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2. PRELIMINARY RESULTS

Lemma 2.2 Consider a dynamic system described by:

0x = Az 4+ Bowo + Byw + Bou, xz(0)=0 2.7
z=Ciz + Dysu, (2.8)
y = Coz + Doguy , (2.9)

where wy is a white noise signal, w is a stochastic signal and wqy and w are mutually uncorrelated.
If the controller; u, is given by K (z) = Ck(zI — Ag) !Bk with its associated state variable T.

Then we have:

(e11Bg + e12Bg Dag), ifk>1+1
E{z(k)w (1)} =
0, ifk<l+1

where
R A ByCk Jk-l-1 _ €11 €2

Bg(Cy Ag €21 €22
Proof: The closed-loop system is:
6% = Az + Bowo + Blw,

where & = [z7  zT|7, By = [BY (BxD2)T)T,and B; = [BI 0].

Therefore,

k—1
(k) = A¥£(0) + > A7 Bowo(5) + Biw(j)]
j=0
k—1 A ' .
=3 AT Bow(j) + Biw(j)], k=123,
=0
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2. PRELIMINARY RESULTS

and since wp and w are mutually uncorrelated, we can write

k—1
E{&(k)wg (1)} = Elwo(Dz" (k) wo()Z" (k)" = E{ > AR Bowo(5) + Biw(h)]w <l)}
j=0

k—1 k—1

=Y AT BE [wo(ied (O] + Y AT BIE [w(i)ug ()]
7=0 Jj=0
k—1 . _ R

= AR=I71Bos(1 — §)
j=0

AR ik > 1+ 1

0, ifk<l+1

or

(e11Bo + e12Bxg Dag), ifk>1+1
E{z(kyw{ (1)} =

0, ifk <l+1

2.2 Discrete-Time LQG Control

In this section the discrete-time H9 control problem is presented along with the solution to the
state-feedback controller, which is used in the derivations of this work.

Consider the general configuration of a plant (G, connected to the controller C, depicted in
Figure 2.2. In this setup, the plant measurement output y is fed to the controller, which in turn
provides the control signal u to be applied to the plant. The exogenous signal is represented by w
and the performance signal z is used for design purpose and is the signal to be controlled.

The plant G can be described by the set of difference equation:

dx =Ax + Biw + Bou
z=Ci1z + Diyw+ Dyou (2.10)

y =Caz + Dojw + Dagu

12
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G

J 3

o C

Figure 2.2: Plant and controller general configuration

It can be argued that (see [44]), one can set D;; and Dy to zero without any loss of generality.

Therefore, the above equation can be rewritten as:

6z =Ax + Biw + Bou
z =Chix + Dyou 2.11)
y =Cozx + Dayw

The controller is then designed to have the general form:

0z, = Acze + By
(2.12)
u = Cexe + Dey,

where . is the state vector of the controller.
The closed-loop system in Figure 2.2 consisting of G and C' constructs a lower linear fractional
transformation (LFT) and is represented by F;(G, C). Furthermore, assuming 7., to be the transfer

function matrix from w to z, we have:

Tow = -7:l(Ga C) .

Definition 5 (, optimal control problem) Consider a system G as given by (2.11). The Hs op-
timal control is defined as the problem of finding, if it exists, an admissible controller C, which

minimizes the performance index J =|| Fi(G, C) ||} over all the admissible controllers.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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The following theorem presents the solution to the state-feedback controller design problem:

Theorem 2.1 Consider an Ha optimal control problem as defined by Definition 5 for a system G
as in (2.11). Assume that the entire state is available for feedback, i.e. assume that Co = I and
D91 = 0. Let the class of controllers be taken as in (2.12) with y = x. Then, there exists a unique

proper dynamic state feedback Ho optimal controller if and only if the following conditions hold:

1. (A, By) is stabilizable,
2. M := DngQ is nonsingular,

A—)X B
3. the matrix has full column rank, VA € 0D .
Ch D1

Moreover, in this case, the unique Hs optimal controller for plant (2.11) is given by:

uw=—(BaPBy+ M)~ Y(B¥PA+ DLC)) z, (2.13)

where P is the unique, positive semi-definite solution of:

P=ATPA—(CTDyy+ ATPBy)(M + B¥ PBy) ™Y (D12C, + BY PA) + CTCy, (214
and D1,Dy5 + BYPB? > 0.

Proof: A complete proof of this theorem can be found in many reference books (see for

example [44]). [ |

2.3 Discrete-Time H,, Control

Consider again the system in the general form of Figure 2.2. The plant G is described by (2.10).
Let v > 0 be a prescribed level of disturbance attenuation, the so-called suboptimal H ., control

problem is defined as follows:
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Definition 6 (Suboptimal H , control problem) Given a v > 0, find an admissible controller, if

it exists, such that || Ty ||oo< 7-

The solution to the aforementioned problem is constructed on a fundamental concept known as

the bounded real lemma, introduced in the next section.

2.3.1 Bounded Real Lemma

The discrete-time form of the bounded real lemma, as one of the most important building blocks

of the H, control theory as well as the work presented in this dissertation, is introduced in the

following theorem.

Theorem 2.2 Let P(z) be a px m real rational transfer function matrix of a proper linear discrete-

time system with state-space realization (A, B, C, D), i.e.,
P(z)=C(zI - A 'B+D.
The following statements are equivalent:
(a) Aisa stable matrix and || P ||oo< 7.
(b) There exists a stabilizing solution P = PT > 0 to the Riccati equation:

P=ATPA+~y3(ATPB+CTD)[I-v 2(DTD+B"PB)| (BTPA+DTC)+CTC,

(2.15)
such that I — v~2(DTD + BTPB) > 0.
Proof: See [17] for a comprehensive version of the proof of this lemma. |
23.2 'H., State-Feedback Control
15
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The direct design of a discrete-time H, controller is much more complicated than its continuous-
time counterpart. For this reason, in most of the literature, an easier way is suggested which is
converting to a continuous-time problem via bilinear transformation. The reason that this works is
that the bilinear transformation preserves H,, norms (where it does not preserves Hy norms, for
instance).

However, the discrete-time problem has been addressed and solved directly by different ap-
proaches. The following lemma provides the solution to the state-feedback control design problem.

This result is used in the derivations of this work.

Lemma 2.3 For the dynamic system:

dx = Az + Biw+ Bou

z = Ciz+ Dijjw+ Diou

where (A, Bo) is stabilizable and D1T2D12 > 0, an state-feedback controller u = Kx that achieves

the Hoo performance, i.e:
1. the closed-loop matrix A, = A+ BsK is stable,
2. the closed-loop transfer function matrix, Ty, from w to z satisfies || Toy ||co< 7,

where v > 0 is a prescribed level of disturbance attenuation, can be written as:

K =-S(B"P.B+ R)"YBTP, A+ DTCy)

where

S=[0 1], B=["'B; By,

D=[y"'Dy Dy, R=DT'D-[I 0TI 0]

and Py, is the positive semi-definite solution to the equation:

16
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Py = ATP A — (ATP B+ CID)BTPwB + R (BTP A+ DYC)) + Ty

Note that the above controller has the property:

I—~"2BTP B >0 (2.16)

Furthermore, the closed-loop matrix A — B(BT PouB + R)~Y(BT Py A + DT CY) is stable.

Proof: A proof of this lemma, derived from the discrete-time bounded real lemma can be

found in {17]. a
Lemma 2.4 For the dynamic system:
0x = Az + Byw + Bou, z(0)=0
2.17)
Z = Cl.T + Dlgu
Define the cost function:
| N-1
2 2 2 . 2 2 2
= - — lim — _
Ji(uw,w,wo) =" [ wlp — [ 2 lIp= lim = ;} E{y" lwl® =12
If the state-feedback controller is given by:
i, = -S(BTP,B+ RN (BTPLA+ D7C))z = —Kz
where S,B,D and R are defined similar to Lemma 2.3, with D11 = 0, and P is the solution to:
P =ATPA- (ATPB+CTD)BTPB+ R YBTPA+DTC))+CTCy (218)
the worst-case signal W, for which J1 (G, W, 0) < J1 (s, w, 0), is:
W, =~ 2B P/(I -~ 2B \BYP,)) 'Az = Koz (2.19)
where A = A — BoK].
17
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Proof: After substituting the controller 4. = — Kz into system (2.17), we have:

br = Ax + Byw
(2.20)

z=Cx

where

A=A-BK,, Ci=C)—Dpk;
To find the worst disturbance signal w,, we apply the discrete-time bounded real lemma to

system (2.20), for which we require || 7%, ||co< 7. Therefore, P}, is the solution to:

ATPA— P +~72ATPB(I1 -y ?BfPB) 'BfPA+CIC =0 (2.21)

Now, completing the squares, using (2.21) and introducing the new variable V = 27 Py, we

have:

8V -V = (62)T P (62) — 2T P2
= (Ax + Blw)TPl (flx + Byw) — 2T Pz
= xT(/iTPlfi — Pz + 2wTBlTP1/iac + wTBiFPlBlw
= " 22TATPB,(I — v ?BI'PB,) !B P Az — T CT Crz + 207 B P Ax
+wT BT P Biw
=2 || (I =~ 2BTP,B)) 2 BT P Az || +2w” BT P, Az + wT BT P, Byw
— yszw + 'VQwTw - xTC'{élz

Noting that w? BT P Byw — v?*wTw = —~v2wT (I — v~2BY P, B;)w, we proceed:

8V =V =~ 71—~ 2BTPB) 2Bl Pz | - || v(I - v BY P B)) 7w ||?

+ 2w Bl Pl Az + % || w |2 = || 2 |
1 ~
= — | v =7 2BI PiB\)2w — v (I — v 2B P.B1) "2 B] Py A ||?

+ w = = |
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Then the cost function will be:

N-—1
) .1 ,
Tl w,0) = lim < 3" B{? w|?— | 2 |}
k=0
1 = ,
= lim — > E{6V-V+|~I-~+2BIPB))iw
Nooo N
k=0
1 ~
— 7Y I—~*B{ P\B)) 2B P Az ||’}
1 N-1 L
= m 2 Bl - v BT PBy)

1 -~ P
—y I —~v7?BI PB,) 2B P Az ||*}

For Ji (s, w4, 0) < J1 (i, w,0) to hold for all values of w, we have:

By =721 = 2B] PBy) ' Bl PlAz = Koz (222)

or equivalently:

@, =y 2BYP(I -4 2B B P\) ' Az = Koz

2.4 Constrained Optimization

The constrained optimization problem presented in this section plays an important role in the main

derivations of this work and is solved here in detail.
Given A € R**", B € R*™*", C € RP*", D € RP*" and R = DDT > 0, define the index

function:

J(L) = trace(QPQT) (2.23)

where @ is any constant weighting matrix, A + LC is Hurwitz, and P = PT > 0 satisfies:

19
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P=(A+LC)P(A+ LC)T + (B + LD)(B+ LD)” (2.24)

The constrained optimization problem is stated as follows:

Problem: Find (L., P,) where A + L,C is Hurwitz, such that J(L) is minimized at L,, i.e.

min J(L) = min trace(QPQT)

where (L, P) and (L., P, ) are all subject to constraint (2.24).

Theorem 2.3 For the constrained optimization problem stated above, suppose (C, A) is detectable.

If there is a solution Py for

P, = AP, AT — (BDT + AP.CT)(R + CP.CT)"Y(DBT + CP.A") + BBT (2.25)

where R+CP,CT > 0,i.e., A—(AP.CT+BDT)(R+CP.CT)~'C is stable, then J(L) achieves
the minimum value at L, = —(AP,CT + BDT)(R+ CP,CT)~ L.

Conversely, let (C, A) be detectable. If there are L1 and Py > 0, where A+ L1C is Hurwitz

and P solves

P, =(A+ LiC)Pi(A+ L,C)T + (B+ LiD)(B+ LyD)*
such that J(L) is minimized at L1, then there is a P, > 0 solving
P, = AP,AT — (BDT + AP.CT)(R+ cP,CTy"Y(DBT + CP,AT) + BBT

where R+ CP.CT > 0.
Moreover, the optimal L, can be found as L, = —(AP,CT+BDT)(R+CP.CT") 1 if A+ L,C

is Hurwitz.

20
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