University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

1995

Synthesis of multilevel pass transistor logic
networks.

Arunita. Jaekel
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation
Jaekel, Arunita., "Synthesis of multilevel pass transistor logic networks." (1995). Electronic Theses and Dissertations. Paper 3699.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please

contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F3699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/3699?utm_source=scholar.uwindsor.ca%2Fetd%2F3699&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Nati Lib
Bl ™

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Otiawa, Onlano
K 1A ON4 KIA N

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellmglon
Oitawa (Ontand)

Youww i W et n e

ATELL UL LY

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a l'aide d’un
ruban usé ou si Puniversité nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Synthesis of Multilevel Pass Transistor Logic Networks

by

Arunita Jaekel

A Dissertation
Submitted to the Faculty of Graduate Studics through the
Department of Electrical Engineering in Partial Fulfilment
of the Requirements for the Degree of
Doctor of Philosophy at the

University of Windsor

Windsor, Ontario

May, 1995

National Libra
l*l of CéemadaI bt

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa. Ontano
K14 ONA KA ONA

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa {Ontana)

L’auteur a accordé une licence
irréevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Nila thése ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10938-0

g+l

Canada

runita Jaekel 1995
© All Rights Reserved

ABSTRACT

Traditional design of logic circuits involves implementing a tunction in terms of standard
logic gates. However, this type of design does not fully exploit the unigue switching
properties of MOSFETs, which can lead to more efficient realizations.

Over the past decade there has been considerable interest in Pass Transistor Logic (I"T1.)
circuits. PTL circuits implement a logic function as a network of NMOS transistors. They
show enhanced performance over conventional logic in terms of both speed and area
optimization as well as reduced power dissipation, particularly for certain classes of
circuits.

Existing synthesis techniques for PTL are limited to two-level synthesis, similar to that
used for conventional logic. In conventional logic multilevel logic implementations have
been shown to provide significant improvements over two-level representations. So it is of
considerable interest to develop formal multilevel design methodologies for PTL in order
to exploit potential efficiencies in that circuit family. Such formal design methodologies are
also necessary to avoid incorrect implementations which can result from ad hoc design of
PTL networks.

This thesis deals with the development of methodologies for the systematic design of multi-
level PTL networks. In this thesis, we have investigated two approaches to multi-leve! logic
synthesis techniques for PTL networks based on the concepts of (i) factorization and (ii)
decision diagrams. Both approaches have shown significant savings over known synthesis

techniques for PTL networks.

To my husband, Martin

ACKNOWLEDGEMENTS

[would like to acknowledge the guidance and support provided by my supervisors Dr. S,
Bandyopadhyay and Dr. G.A. Jullien. 1 am gratetul for the time and effort they have
contributed in guiding me through this work. This thesis could not have been completed
without their patient and active supervision. | would also like to thank my commitiee
members Dr. M. Ahmadi, Dr. W.C. Miller and Dr. N. Wigley for their comments and
suggestions regarding the thesis. Special thanks must go to Ms. Barbara Szydlowska and
Mr. Sandeep Kamat for their invaluable help in implementing the various algorithms in this
thesis and to John De Ryckerc and Todd Bealor for their help with Cadence and
FrameMaker. | would like to express my sincere thanks o our system administritors Mr.
Walid Mnaymneh and Mr. Stephen Karamatos for all their help throughout the course ol
this work and the members of the Graduate Lab for a friendly and enlightening working

atmosphere.

[would also like to thank my parents, Tushar and Manju Sarkar, and my sister Mitun for
their constant support and words of encouragement. Finally, I must thank my husband
Martin, for all his help and support. Without his patience and understanding, 1 could not

have finished this thesis.

University of Windsor

TABLE OF CONTENTS

Chapter | INFOAUCTION i s b 1

1.1
1.2

4

1.3
l.4

Solution ORline ... 2

THESTS OFRANIZATON i e et e s e enae e sanens 3

Chapter 2 Review of PTL and Multilevel Logic Design i d

4

272

IMECIUCHION i e e R e s e s e B
Pass THINSISION LOBIC DESIEN oo s s es s sse s snassbsnsnssssassasenssns 6
220 Whatis a PTL Network oo .. ST, e SR TR
222 PTL synthesis TEChNIGUES: v essssssssss s 7
223 Heuristic for Finding Minimal COver ., L0
Multilevel Logic Synthesis......... U et e e s an e e eana b ana e renereeres H
231 What is Multilevel Logic Synthesis ... w11
2.3.2 Basic Concepts of FactoNZalion . snessesssessestsssssssinas 12
233 Factorization Algorithm recrrrrnnereressissrsresnrassarssrssrasssnssases |4
Binary Decision DIIEFAMS c. st sssssessessossssns e 16
241 Whatis a BDD i VOO YU |

2.4.2 lmponant Definitions and Properties of OBDDs..
2.4.3 How t0 Construct @ BDD ... rrecs s sersesssnerssvasnesssnsssns

CONTIUSIONS 1eeiaeiiiesirissnrasiiasssessaisssssasianastiassssasssssssssrosssnsssnsrsnsesssassnsassesntastossnssessesnsesnnsssases 21

Chapter 3 Factorization for Pass Transistor LOZIC. ... 22

31
3.2

K]

Intraductionccomvvnerens rrbevererareetesarranar Sirerresstsssresitsashesstare s ntntnt st st nna st sat s e st s an s anannn 22
Why [Factorization Algorithm Must be Madified tor PTL.......cocovu.e. N errrsrnenans 23
3.2.1 Restrictions on Ordering of Input Variablesvivmeinesisnnsnssnsnsonns 25
3.2.2 Need tor a More Realistic COStEStMALOr ... ciicninrics s iessassesssresinsssrsnssssssaseses 26
323 Two-level Minimal Sum-of-Products Covers Do Not

Lead to Significant Savingscveeeninreccconiencinnne reanarnans srsassensas rresreerasas voresnnnes 28

3.2.4 Restrictions Due to the Bidirectional Nature of MOS Circuits vovevvvrerecrsrerenres 28
Qutline of Qur Algorithm.......o.... revvereeenenns

F3L S0MC DefIMIONS virerrcresmsrvsressresressressrrssrersrmsssssississsassaessassasssrsressesaraserssssansonson 30
33,2 UL HOUISHC . ceeeeeccereireeseeseereeseessnessesssnrssessnnevasssssssssasssssnssnssnsenssn msssmasmasnesnsansanane 31
3.3.3 Justification of the HEuriSte .o vemvrismmereesersrerssessane reentereeres trvrssarsrrsreasteansrnns 33

334 Complexity of the Heuristic
Example of Multilevel PTL Network DESIZn cecemsesinenssissrmssssreiresssssssssssarmsssersmsiernss 30
Conclusionseeeenes reete s s e Hers bbb b rent et bbreserene SR rrvnserrerenes 38

Chapter 4 PTL Synthesis and 123-Decision DIagrams.........ccoveeeernrnenennsenssnseesasssessens 40

4.1
4.2

IEOUUCTION e s e s s rnian e e ressars rassseesasesssnmsnsanssnssamsasnassass sensass prrseseeese weesesaneer 30

123-Decision Diagrams: A Graph Model for PTLa v ivciieermemresserecssss T 40
42,1 Can We Use Decision Diagrams for PTL Networks.......ccvcveenee. prgsnnens vesrrerenss 40
4.2.2 Our Layoul SIrafeg¥ . mmmsmiemmisnmmessrsrsenssenrses U weersrarnensaceresssnsaress 43
4.2.3 123-Decision Diagram Model

vi

Uiiversiiy of Windwan

4.3 Usetal Properties and Definitions 5or 123D oo 43
4o TR LSUSITUCTUTC ottt ettt e e et e nee e ee et es st eee st sesn e At
4.3 The Trans fOrMUEON FUICS oo ee e ee e et ee e et ee et s e, Wl
430 Generating ChIldren of 2 NOUS ey 35
3.2 Combining TWo Pathis [t oo 38
433 Combining Two Paths 1o, SRS |
453-0 0 Converting Nonterminal Nodes 1o Terminal Noues e 57
55 Merging oF SUBEEAPRS.. e e er et eaere s RH
456 Lavout Factors ANCCHng Trmnslormations. ..o, e e 59
4.5.6.1 Layout Considerations for Trmsormuition B3 . |
4.5.6.2 Layou: Considerations for Transtormations -1 2 and 1.3 ...
4.6 SYNINESIS PROCCUUIC 1ot et s st e
4.6.1 Synthesis procedure i mishie N e
4.6.2 Complexity of the AlZorihii e
46.3 “Flipping™ of Nodes in the 123-DD
4.7 Interesting propertics of 123-DID L
47.1 Sncak Paths in MOS Circuits.o.n.
4.7.1.1 Sncak Paths in 123-DDs
47.2 Performance Guarantee w.rl. OBDIDs.,
4.8 Example of PTL Synthesis with 123-12D. i, U
4.9 Conclusions ... AN e eE S A eh A R et SRR LR R e b e s et ere e e eathaeraren 74
Chapter 5 Experimental Results................. r e e ae s e 75
5.1 INFOAUCTION s e sirenene G e e bR e e et e e enenben 75
5.2 BOOICAN NEIWOTKS 11ttt ser s e s serasss e basssassssesess s s sestes st et se s e e senetesene 76
5.3 Factorization Approach....... OV IOUTOUTUOUOTOOPRUIORURE ||
330 Area chum.mcnts tnr chhm.:rl\ (.m.uns rese e e s nerenreas S0
5.3.2 Effect of Function Size on Area Ruluulmn............................‘........................... §2
533 Time Requirements for Factorization AIRorithnn ... e, e B3
5.4 Decision Diagram APPFOGCh vt e 84
5.4.1 Arca Requirements for Benchmark Circuits.,.. verresssarrrnrer s anesasreesrressaneens B9
5.42 Timing Requirements for Synthesis Using I2‘¥ I)I) bt
5.5 Simulation Results.....oceinnene. HherreTenL e e R eabe Rt SRS R A Re sy et e e e v et b ren ¥y
5.6 Conclusions ..o eeeeeeeceserreesensinenencs e be e TR R R Re SRR e e n et vr s e ner |
Chapter 6 Conclusions and Future Workcocceeeeeveveveneececncnnne. reerterteee st as 92
6.1 CONCIUSIONS 11t ers sttt bt e rre s sosas st as bt sstesossmse st es e 92
6.2 Future Work......coceeee. PP UOSURURIOt Ceerre s 93
Referencesocevvveeecrennennne. rrereteerateLee b b e et eeae e e e eae st e e bt e eheanneraraeas rresresssersenersnennenen 3D
Glossary ...ooceeeverncnee. U Ceeb st s n e ean 102
APDPENAIX A covvvirrisinriincetireerreeeenneeeseee et nae s Ferreeert bbb e s n e rr e e s enaseranaan 104

vii

Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2
Figure 4.3
Figurce 4.4
Figure 4.5
Figurc 4.6
Figure 4.7
Figurc 4.8
Figurc 4.9
Figure 4.10
Figurc 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 5.1
Figure 5.2

Univeraty of Windsar

LIST OF FIGURES

2 PI'E Network for the function O = X2(X1) + X1(1) + X2X (XD, ... 6
: OBDDs representing the function F = o + be + de. v, 17
2 A Multilevel PTL NCIWOTK ot eeseeneeesbanees 24
T RESIICONS 0N INPULOTUCTING eiciiii e s 26
: Examples illustrating area reduction and factorization.... s 27
: Invalid PTL network leading to @ short CircUit s, 29

: Two-level and multi-level PTL networks representing the function F. .38

: Two PTL networks based on (a) BDDs and (b) 123-DDs. veveeevveeenreen, 42
: Two PTL networks with different transistor placements......oeecneennn. 42
DExample of 123-DD....crcceni e 45
» Nustration of Example 4.1, cciesssssssssessnasns 48
 HIustration of Property 4.3 ... vminimnniiissniiesneesissssesassessens 50
2 HIUStration of Property 4.4.......voiviiinminiiinssnnsessssesssssorens 51
: Initial and Modified 123-DDs Corresponding to PL1 and PL2............... 54
: Example of Transformation 4.1 ... nccinierrceeesereeee e 55
: Example of Transformation 4.2vevvvrennncninennnnenisnsesssssssesssesenes 56
: Example of Transformation 4.3iiicnceisssssnsscssesnns 57
: Example of Transformation 4.4 c.......eeeeeecrecereerennnecssnsssssssessersessesssssens 58
 Example of Transformation 4.5oiemeensinrrnccinriercmeeenesseneereneenns 59
: Example of "Flipping” nodes in the 123-DDcccviereveenmrresssiesarsnnnnes 66
: Example of Sneak Path ..ot 67
: Example of Synthesis Procedure. .viinvcnoneiiecnninnnne. SR R 72
: Initial Boolean network for cm162a. .. viiiisicnsiiniinssniissnsnniesnnns 77
: A decomposed Boolean network for the function cmi62a........ccoevveerenene 79

viii

Figure 5.3
Figure 5.4

Figure 5.5

Lnv ey ol Windwy

: Schematic of MSE of mod7 Multiplier c e, AR
¢ Schematic of the Single Phase Latch e, 9
 Simulation Results for mod7 multiphier. e, O

Unnversity of Windsor

LIST OF TABLES

Table 2.1, “Tole OF MINIETINGS i s o9
Table 2.2. Prime Implicant Table. ., v e neaeas 9
Table 4.1 : Signal String of o Node from its Children ..., 48
Table 5.1 : Detailed Arca Comparison for Circuit em162a .ovvvveinene. vrvennenrenen 80
Table 5.2 . Arca Compar sons lor Benchmark Circuits oo, reeereereearan s 80
Table 5.3 : Eftect of Functton Size on Arca Improvement ... 83
Table 5.4 :Time Reguired For SYnthesis oo 84
Table 5.5 : Arca Comparisons for Benchmark Circuils .o 84
Table 5.6 : Effect of Nonlocal Connections 0n ATl w.eoneiiinnsciennsnisesssses s 80
Table 5.7 : Timing Requirements of 2-level and 123-DD Synthesis ..o 88

Chapterl

Introduction

1.1 Introduction

The main considerations tor developing high performance VLLSI
circuits involve reducing the power consumption, arca and delay of
the circuit as much as possible. MOSFETS are ideal candidites for
VLSI circuit realization due to their high packing density, good
noise immunity and low power dissipation. Both NMOS :und
CMOS technologies have been widely used in VLSI design.
Traditional design of logic circuits involves implementing a
function in terms of standard logic gates. However, this type of
design does not fully exploit the unique switching properties of
MOSFETs. Implementing a function as a switching network (where
the switching elements are MOS transistors) can lead to more

efficient realizations.

Over the past decade there has been considerable interest in Puss
Transistor Logic (PTL) circuits. PTL circuits implement a logic
function as a network of MOS transistors, where input signals may
be applied to the source/drain of the transistors as well as to the
gates. They show enhanced performance over conventional logic in
terms of both speed and arca optimization as well as reduced power

dissipation, particularly for certain classes of circuits such as

[nisoduction

{nireduction |

University of Windsor

multiplexers, arithmetic circuits and bus drivers [WHI83]. Severul puapers [MIT92],
[PASKY], [PASYIB], [WHI92], [SUZY3]. [YAN9O] have reported on the performance of
PTL. but without providing general design methodologies. An extensive literature survey
shows that the published synthesis techniques for PTL are limited to two-level synthesis,

[PEDSS], [RADES] similar to that used for conventional logic.

1.2 Motivation

With the ongoing advances in technology, it is becoming possible to fit an increasing
number of active devices on a single VLSI chip. However, even with such increases, there
is always i demand for more devices and more functionality on a single chip. Thus there is
always a need to find more efficient realizations of circuits for any logic family. Multilevel
logic implementations [BRA90], [BRAB2], [BRA84], [CARS1], [MALS9], [HSU92]
have been shown Lo provide significant improvements over two-level representations for
conventional logic. There are a number of papers showing multilevel implementations of
specilic PTL circuits. However, they do not provide any general synthesis procedure for
automatically designing such circuits. So it is of considerable interest to develop formai
multilevel design methodologies for PTL in order to exploit potential efficiencies in that
circuit family. Such formal design methodologies are also necessary to avoid incorrect

implementations which can result from ad hoc design of PTL networks.

1.3 Solution Outline

This thesis proposes two new design techniques for synthesizing multilevel PTL
networks. The first creates a series-parallel PTL network using the concept of algebraic
factorization. The second method produces, in general, a nonseries-parallel circuit based
on decision diagrams. Both of these techniques result in significant improvements over

conventional PTL design methodologies.

An accepted crilerion for multilevel logic design is to minimize the area occupied by a

circuit, while satisfying the timing constraints placed on the longest path [RUDg9].

Tintnduction Motivation

(28]

Linversity o Waondwor

Therefore we do not allow arbitrarily large PTL networks, in order to minimize the
quadratic delay dependence on the number of series-connected transistors, A large
Boolean function is first broken into a number of smalier functions and cach is then
implemented as a multilevel PTL network. Individual PTL networks may be cascaded, but
buffering is required between two stages, i order 10 restore signal levels and reduee

delays.

Other important design issucs which must be considered in PTL implementations are
[PASI1]:

(i) possible creation of dircct supply-to-ground paths resulting in short circuits and
high power dissipation.

(ii) existence of sneak-paths created due to the bidirectional nature of MOSFETS.

Our multilevel synthesis techniques ensure an error free design where the above sitwtions

can never OCCur,

1.4 Thesis Organization

Chapter 2 discusses the relevant background material required for the remainder of the
thesis. It gives a a brief overview of PTL circuits and the existing synthesis procedures for
PTL design. It also describes multilevel logic synthesis techniques for conventional AND/

OR logic as well as circuit implementations based on binary decision diagrams (BDDs).

Chapter 3 investigates the issues involved in designing series-parailel, multilevel PT1.
networks using algebraic factorization techniques. We first examine why cxisting
techniques cannot be applied directly to PTL circuits and then propose a modified

factorization algorithm for synthesis of PTL circuits,

Chapter 4 describes a methodology for implementing nonseries-parallel PTL nctworks

based on the concept of decision diagrams. We introduce a graph model, the 123-Decision

Introduction “Thesis Organization 3

Lniversity of Windsor

Diagram (similar 10 a BDD), 10 represent o PTL network. The synthesis procedure
consists of applying various transtormations to manipulate the graph model and optimize

the network.

Chapter 5 discusses the experimental results for our multilevel synthesis techniques. We
compare our results with those obtained from existing two-level PTL design techniques

for a number of benchmark circuits. We also show simulation results for our design.

Chapter 6 discusses the conelusions of this thesis and directions for future work.

Intrxluction Thesis Organization 4

Chapter2

Review of PTL
and Multilevel
Logic Design

2.1 Introduction

In this chapter we review some of the relevant topies and
background material required for the remainder of this thesis. In the
first section we will describe some of the important issues involved
in Pass Transistor Logic (PTL) design. We will analyze some of the
existing techniques for synthesis of PTL circuits and discuss some
of the limitations associated with these approaches. Next, we will
look at some of the widely used techniques for multilevel logic
synthesis, such as factorization and decomposition. These
techniques can be used to transform a two-level implementation of
a given circuit into a multi-level realization, usually resulting in
significant savings. In later chapters, we will discuss how such
techniques can be adapted for PTL Design. Finally, we will outline
the binary decision diagram (BDD) approach to logic synthesis and
take a brief look at some of the interesting propertics of binary

decision diagrams.

Review of PTL and Multilevel Logic Design Introduction 5

University of Windsor

2.2 Pass Transistor Logic Design:

2.2.1 Whatis a PTL Network

A PTL network is an interconnection of o set of transistors to achieve a particular
switching function. Compared to conventional logic, networks of pass transistors can
lead to significant improvements in speed and arca optimization as well as substantially
reduce power dissipation [WHI83| particularly for functions of up to cight variables.
They can also naturally implement disabled or high impedance states, making them ideal
for bus drivers and multiplexer realizations [WHI83]. Pass transistor circuits also lead to
significant improvements over conventional logic design when implementing iterative
logic arrays. Such circuits show enhanced performance when implementing arithmetic

functions such as adders, comparators etc [SUZ93], [YAN90].

A NMOS pass transistor network, shown in Figure 2.1, consists of an interconnection of
NMOS transistors. Instcad of simply passing a value of 0 of I, these networks are capable
of passing any value from the set [0, 1, X, X;, Z] where X; is any input variable and Z is
the high impedance state. The signals which drive the gates of the transistors in the
network are called conrrol signals and the signals which are passed through the transistors
are called pass signals. The associated variables are called control variables and pass

variahles respectively.

" o T e B

Figure 2.1 : PTL Network for the function O = X5(X;) + X;(1) + X%, (Xo)-

Review of PTL and Multitevel Logic Design Pass Transistor Logic Design: 6

Ui ety of Windsn

Each row. in the network, defines o product term Py, which when enabled, allows the

signul Y; to reach the output, Py is enabled if all the tamsistors in the i™ row are enabled
Le. all the control signals associated with that row are at logic level 1. I there s a
transistor with input X; (X)) at its gate. then X; (X;) is a literal in the produet term b.. The
output of one pass transistor feeds the input of the next one in a given row. The final
output, O, is a wired OR of the outputs from cach enabled row. I two or more rows are
cnabled simultancously, the passed variables must all be at the same logic level, This
ensures that there are no Vyp-to-ground conflicts. The output of i pass transistor network

can thus be described by the cquation

O =P (Y)+Py(Yy)+ ..+ P, (Y,) wherc P; (Y;) means if P is enabled then Y, is
passed to the output [PAS91],

Conventional PTL networks may have speed degradation and other problems for larger
functions. For example, with too many transistors in series, the speed ol a puss-transistor
network may become less than that of a circuit designed using conventional logic gates.
Another disadvantage of a NMOS pass-transistor network is that it has poor low-to-high
transition characteristics. The differential pass transistor logic (DPTL) technigues
suggested in [PAS85] and [PAS93] and use of restoring buifers at regular intervals
[ALA91] as well as other techniques [CHA92] have been proposed lor such problems.

2.2.2 PTL synthesis Techniques:

Even though a number of applications of pass-transistor logic networks are available
[GHO94)], [KAN94], [MIT92], [PAS89], [PAS91b], [PAS9Ic], [SAL93], |SUZ93],
[YAN90], there are only a few gencralized synthesis techniques for pass-transistor logic
design [PED88], [RADS85]). Radhakrishnan ct al. [RADS85] introduced a two-level
minimization technique, for pass-transistor logic, similar to two-level minimization of
Boolean functions using Karmnaugh maps and a tabular method which is a modification of

the Quine-McCluskey approach [QUI55]. Pedron [PED88) described a synthesis

Review of PTL and Multilevel Logic Design Pass Transistor Logic Design: 7

University of Wind-or

procedure for implementing a Boolean function as a disjunctive net, PTL can also be

used for synthesizing sequential circuits [WHI92].

In a traditional K-map only the states which have an output of logic 1(0) are taken. The
Karnaugh map mecthod for PTL is similar io the conventional method except that a
variable must be passed for every state for which an output has been defined. More than
one variable may be passed through the network as long as it does not result in a Vpp-to-
ground conflict, Finally, il there are don’t care states, it must be ensured that it is not taken

as {) in one group and 1 in another.

In the madified Quine-McCluskey method, both 1s and Os arc considered when the prime
implicants arc formed, as opposed to only 1s (or 0s) in the traditional approach. Each
implicant in the table is represented by three fields[Rad85]. The first two, the base field
and the difference field are similar to the corresponding fields in the traditional approach.
The third, pass field, represents the pass variable that is to be passed by the implicant. It

may be 0, 1, X; or X;. Two implicants can combine if

(a) The base fields differ in only one binary bit
(b) The difference fields agree and

(c) The pass fields are both constant or are identical.

The actual synthesis procedure is carried out in a manner identical to the Quine-
McCluskey method, where new implicants are formed by combining old ones until no
more implicants may be combined. The remaining uncombined entries are the prime pass
implicants of the function from which a suitable cover must be chosen. As in the case with

K-maps, care should be taken to ensure that don’t care terms are not included in the final

cover as both 1 and 0.

For cxample, consider the function f(a,b,c) = m(2,3,5,6,7). The iniiial eight pass

implicants of this function are shown below in ascending order of their index.

Review of I"TL amd Multitevel Logic Design Pass Transistor Logic Design: B

Universaty of Wik

Table 2.1, Table of Minterms

Truth

Table Output Base(Difference)Pass

X2 X1 Xo f List 1 List 2

0O 0 0] 0(”0 u(l‘z)xl’
X, 002.HX,’
O(:ho

0 0 I 0 L)X, 201, 4)1%
(X, "

0O 1 0 | 2(H1
21

1 00 0 4(|)xn*
423X,

O 1 1 1 3N

10 1 ! sy’

1 1 0 | 6(1)!

1 1 1 1

Combining 000 with 00! gives 00_ with pass variable 0, This is represented in terms of
the three fields base(difference)pass as 0(1)0. Similarly, combining 000 with 010 gives
0(2)X,. Proceeding with this process, generates the prime pass implicants (marked by *)
as shown in Table 2.1. [RADS85] gives a more detailed explanation of this process. The
prime implicant table is shown in Table 2.2. and is used to pick a suitable cover. A suitable
cover for f is {0(1,2)X,, 2(1,4)I, 4(1)Xy} which results in [= fz(Xl) + X, (1) +
XX, (Xo)-

Table 2.2. Prime Implicant Table

Prime
Implicants | Mo | My | M | My | My | Mg | Mg | M,
0(1,2)X, * * * * |
02,4)X, * * * * |

Review of PTL and Multilevel Logic Design "ass Transistor Logic Design: 9

University of Windsor

Prime
Implicants My M, M, M, M, M; Mg M,
2(1.4)1 * * ¥ *
1(4)X4 ¥ *
4(1)X,, * *
5(2)1 ® *

Another interesting method for analyzing and synthesizing a wide range of CMOS pass
transistor circuits is given in [PED88]. The synthesis procedure, Pass Variable Optimal
Synthesizer (PAVOS), implements & Boolean function as disjunctive net i.c. a circuit
where the primary branches have no transistors in common. Similar to [RADSS], it also
generates the pass prime implicants (i.c. prime tmplicants with associated pass variables),
ol the given function and then tries to extract a minimal cover. It does not take into

account all types of don't care states, but only a subset called don't happen states.

2.2.3 Heuristic for Finding Minimal Cover

There are a number of well-known methods for selecting a minimum cover from the set of
all prime implicants. In this section we will describe one such approach, which we also
use in our algorithms. This is a heuristic for solving the sct covering problem and is taken
from [HOR78]. Even though this heuristic does not guarantee an optimal solution, we

have used it for its simplicity.

We are given a family S of m sets S;, | < i < m. We denote by |Al the size of set A. Cur

problem is to find a subset T = {T,, T, ..., T}, } of S such that

«forcachi, | € i<k, T;=S,forsomer, 1 < r<m
.UTinusr

+|'T 1 is as small as possible

Review of PTL and Multilevel Logic Design Pass Transistor Logic Design: 10

Lunvesity o1 Wundwy

The heuristic selects set T Ta .. T oo T When selecting Tp. a set

e = TluT:u...uT

A s avatlable, The heuristic for selecting Ty is given below,

—

AN e = S, no turther selection is needed

R

- M there is any set §; containing an element which no other set contains, select 8
and replace ® by Qu S;
3. Otherwise, select a set $; that contains the largest number of elements not alveiudy

in ® and replace ® by ©u S,

For 2-level PTL synthesis problem, the i prime pass implicant represents o set ol

minterms and defines set S;.

2.3 Multilevel Logic Synthesis

2.3.1 What is Multilevel Logic Synthesis

The decomposition of Boolean functions and synthesis of logic networks for realizing
these functions have been of interest for several decades. [ELLGS] introduced a
combinational logic synthesis procedure with upto threc logic levels. The method
proposed by Ashenhurst {ASH59] for decomposing logic functions using decomposition
charts has been used extensively for obtaining multistage realizations of Boolean
functions [SHE70]. Other carlier approaches to multilevel logic design include those
based on transforms [LEC70], [MENG9], variational approach [HAC67] and universal
logic modules (ULMs) [YAU70]. Synthesis of multi-output combinational logic circuits
using a hierarchy of ‘*goals’ is discussed in [SCH68] and automated design ol logic

networks using factoring techniques are described in [DIEGY)].

Review of ©TL and Multilevel Logic Dusign Muliileve! Logic Synthesis I

Uiy ersity of Windsor

Over the last ten years or so, there has been a great increase in rescarch interest in this area
ol multitevel logic synthesis. Compared to traditional two-level minimization techniques,
multi-level logic minimization offers much more flexibility in the design process. This
means that there is a potential for obtaining more area efficient logic circuits than before
[BRAY0]. The process ol factorization takes a two-level sum-of-products (sop)
representation of @ tunction and generates a factored form which is essentially a multi-
level AND-OR representation of the function. The greater degrees of freedom in multi-
level design, however, also make the problem of finding an optimum realization much
more difficult 1o solve. Multilevel minimization techniques, therefore, tend to rely on
heuristics that try o minimize the number of literals, Literal count is the primary cost
function in most ol these algorithms. There are a number of well established algorithms
for carrying out factorization of Booleun expressions and forming multi-level AND-OR
networks [BRAB7], [BRABE], [MCM84]. These techniques have been used successfully
for synthesizing VLSI systems [RUD89]. Such multi-level, factorized representations can
also be readily implemented as a series-paratlel network of switches. In terms of VLSI, a

switch may be realized by a MOS transistor.

2.3.2 Basic Concepts of Factorization

In this section we will introduce some basic definitions related to factorization of Boolean
cxpressions taken from [BRA82], [BRA8B4]. We will also discuss some algorithms for
decomposing a given two-level function into a series-paraliel (AND-OR) network. We
will include in this section the terms and concepts which we will use in this thesis. In our

discussions we have used +(*)to denote the operation OR (AND).

Definition 2.1 : A factored form is a representation of a logic function that is either a
single literal or a sum or product of factored forms. According to this definition, a sum-of-

products representation is just a special case of a factored form.

Review of PTL and Multilevel Logic Design Muliifevel Logic Synthesis 12

Lasvessaly of Windwat

Definition 2.2: A logic function g iy a Boeolean divisor of fif f= ¢*h + r.where tand r
are logic functions and g8 iy not cqual 10 O, Similarly, g ix a Boolean factor of fif

SJ=eth. Thus a divisor is a factor of a subsct of f

Definition 2.3: The product f¥g of two Boolean functions, fand g.is called an algebraic
product if f and g are orthogonal (ie. they have disjoing sers of support): Otherwise, f* g is

a Boolean product.

Definition2.4: An operation £ is called division, if given nwo functions fand p, it generates

g and r (fip) = <qu> such that f=p*q + r.

If p*q is an algebraic product the operation /7 is called algebraic division; Otherwise it is
called Boolean division. In the above definition. p, q and r are called the divisor, quotient

and remainder respectively.

For example, the tunction F1 = abg + acg + adf +ael + afg + bd + be + ed + ce, after

algebraic division, reduces o FI = (af + b + ¢)*(d + ¢) + ag*(F+ b + ¢).

For AND/OR recalizations, the literal count obluined by counting the number of
occurrences of literals in a function F has been used successfully to estintate the cost of the
circuit [WANS89]. For instance, the original SOP representation of Fi has a literal count of
23 while the muitilevel factored form has only [l literals. Following standard

conventions, from now on, we will omit the AND operation * when it is obvious.

Using the notion of division for faclorization requires two main tasks. The first is 1o find
‘good’ candidate divisors and the second is to actually carry out the division. The concept
of kernels becomes important in the context of choosing divisors since they allow cfficient
identification of common subexpressions. Thus kernels turn out to be very good candidate

divisors. The following definition of a kernel is tuken from [WAN&Y].

Review of PTL and Muiltilevel Logie Design Multilevel Logic Syinhess 14

University of Windsor
Definition 2.5: A kernel of an expression [is defined by the following two rules:
1. A kernel k of an expression fis the quotient of fand a cube ¢; k = fle.

2. A kernel k is cube-free (k cannot be written as dg, where d is a non-trivial cube and g is

«n expression,

A cube is a conjunction of literals, c.g. ab, bdf. The cube ¢, in the above definition, is the

co-kernel associmed with the kernel &,

As an example, we consider the following function represented in sum-of-products form :
I = abdf + bedf + abh + beh + fg + dgh. Then, F/a = bdf + bh is the quotient of F and
the cube a. But, it is not & kerned since it can be written as b(df + h) and hence is not cube-
free. However, F/ab = df + h is a kernel of F since it is the quotient of F and the cube ab
and is cube-free. Using the kernel (df + h) as a candidate divisor and performing an
algebraie division, FAdAF + h) generates the quotient q = ab + be = b(a + ¢) and the
remainder r = fg + gdh = g(f + dh). This leads to the final multilevel representation of F as

F=bh(a + c)df + h) + g(f + dh).

It is immediately cvident that the multilevel form offers much more savings with literal

count of only ten: whereas, the SOP form requires nincteen literals.

2.3.3 Factorization Algorithm

The generie factoring algorithm proposed by Brayton [BRA87b]is given below.

Review of 1771 and Multilevel Logic Design Multilevel Logic Synthesis 14

L sty ol Windaey

gfactor(F):

feYFl=Dretwrn F

K = choose_divisor(F)

(Q.R) = divide(F. K)

return (gfactor(K) * gfactor(Q) + gfactor(R) }

This is a top-down, recursive algorithm based on the heuristic of reducing literals at cach
stage. The first step checks if the expression I can be factored. 11 not, the original function
is returned as the answer. Otherwise, a candidate divisor K is chosen from among the
possible oncs i.e. from the set of kemnels of F. In the third step the actual division
algorithm is carried out in order to generate the quotient Q and the remainder R, Thus the
original expression is broken down as FF = KQ + R. In the fourth and final step cach
component {i.c. K, Q and R) is factorized by calling gtactor recursively with cach
component as an argument. Variations of this algorithm include guick fuctor and
best_factor. Different investigators have looked at a number of ways to choose the divisor

[CAR91], [MALSB9], [HSU92].

[t is important to note that this class of algorithms represents a pragmatic way of reducing
literal count since we choosc @ multilevel realization rather than two-level realization only
when the literal count is reduced. This is a recursive algorithm and the decision to replace
a two-level sum-of-products expression by a multilevel expression (when we see the
potential for savings in terms of literal count) may be conveniently viewed as a greedy

heuristic,

Review of PTL and Mulilevel Logic Design Mullilevel Logic Synthesis 15

Unnersity of Windsor

2.4 Binary Decision Diagrams

2.4.1 What is a BDD

Binary Decision Programs (BDP's) [KUZ77], [LEES9] depict Boolean functions using
multilevel two way branchings. BDP's consist of a sequence of a statemients of the form
{label}:{variable}, {labell}, {label2} [CHA93]. If the variable being tested has the value
true then the program branches to {labell}, clse it branches to {label2}. There are two
special halt instructions labelled by Z and L. If the program halts at Z, it outputs 0, clse it
outputs |. Binary Decision Diagrams (BDD's) [AKE78] arc labelled, directed graphs

representing BDP's, For every instruction I in the BDP there exists a node N in the BDD.
If {label1} ({label2) of [is [} (1,), then there exists an edge from N to the node for the
instruction 1y(Is) labelled by 1(0). The two nodes corresponding to the two halt

instructions Z and I arc the leaf nodes and are labelled by O and I, respectively. We

consider only acyclic BDD's. The following definitions are from [CHA93].

Definition 2.6: Given a BDD B, path p in B and a variable X;, X; is said to occur k times

in p if and only if there are k nodes in p labelled by X;.

Definition 2.7: A variable that occurs more than once along a path is a Repeated

Variable.

Definition 2.8: A Free BDD B is a BDD which contains no Repeated Variable. A BDD

that is not free is said 1o be « Repeated BDD.

Given a BDD B, we define a binary relation <g on the set of input variables as follows:
forall i # j, X; <g X; if and only if there exists a path p in B such that X; occurs before X,

inp.

Review of ITTL amd Multilevel Logie Design Binary Decision Diagrams 16

University of Windwm

Definition 2.9: A BDD B is an Ordered BDD if and only {f B is a free BDD and < PRERERT

partial order.

Figure 2.2 : OBDDs representing the function I = a + be + de.

Ordered BDD's (OBDD's) are being used for synthesizing and analyzing Combinational
as well as Sequential Circuits [ABA86], [ASH91], [BER89], [BURY0O], |[CHARY],
[MAT89]. One of the most important factors determining the size of un ordered binary
decision diagram (OBDD) representing a particular Boolean function is the ordering of
the input variables[FRI90]. For example, Figures 2.2 (&) and (b} show two OBDD's for
the function F = a + bc + de, variable orderings X |=a; X5=b; X3=c; X4=d; X5=¢ and X =b;

Xo=d; X3=c; X =e; Xs=a respectively. Obviously, the first is a much better choice.

2.4.2 Important Definitions and Properties of OBDDs

According to [BRY86] an OBDD is represented as follows.

Review of PTL and Muhitevel Logic Design Binary Decision Diagrams 17

University of Windsor

« [t is a rooted, directed graph containing two types of vertices

+ A nonterminal vertex, denoted by a circle, has an indexed argument X, | < < n,
associated with it

« The index of 2 nonterminal vertex must be greater than that of its parent

« A nonterminal vertex has exactly two children connected to it through two distinet

cdges labelled O and |

« A terminal vertex, denoted by a square, has a value 0 or

Definition 2.10: The child of a node N, at the i™ level, is any node at level j(j > i) which is

connected to N through a single edge labelled 0 or 1,

Definition 2.11: An edge with label 0(1) from a node with label X; is said to be activated if

X;iis O(1). A path in an OBDD is activated if all edges in the path are activated.

A subgraph rooted at vertex v, with index i, can be considered to denote a specific Boolean
function £, of variables X;, X;, X;,. This function (f,) can be represented in terms of a
bitmap. We will associate the bitmap representation of f, with the node v. The bitmap

associated with a terminal node having value 0(1) is 0(1).

Property 2.1: The function associated with a nonterminal node in an OBDD can abways

be determined from the label of the node and the functions associated with its children.

Property 2.2 : For a given input combination, there is always exactly one uctivated path

Jrom the root node to a terminal node in an OBDD.,

Definition 2,12: Given nwo bitmaps Bl and B2 of length m, the operation Bl # B2= B
creates a new bitmap B of length 2m by concatenating B2 1o the end of Bl. For example,

let Bl =0/10,B2 = 110! thenB = Bl « B2 =01101101.

Review of PTL and Multilevel Logic Design Binary Deciston Dingrams 18

Universaty of Wandsot

2.4.3 How to Construct a BDD

In [BRYS6] Bryant describes a procedure for obtaining a reduced OBDD from an
arbitrary OBDD representing the same function. This is a bottom-up procedure starting
from the terminal nodes up to the root. A reduced OBDD, for a1 given Boolean expression
{which may be represented by a a bitmap), can also be readily constructed in a1 top-down
manner. In this section. we will give a briel outline of how this can be done. Since our

algorithm for synthesizing 123-DDs is top-down, this will help in comparisons Later on.

Transformation 2.1: Expanding a nonterminal node N with a label X; and an associated
bitmap B of length 2m, generates wo children Ni(N3) of N. N(N>) has label X;, . has an
associated bitmap BI(B2) of length m, and is connected to N through an edge labelled

O(1), such that Bl e B2= B,

Transformation 2.2; If the nwo children of a node (N) have identical bitmaps associated

with them, then the two children may be merged to form a single node and the node N can
be deleted.

Transformation 2.3: If two (or more) nodes at the current level have identical bitmaps,
then the subgraphs below them can be merged. This is done by expanding only one of the

nodes and connecting the others to it.

Transformation 2.4: If the bitmap associated with a node N consists of all s (all 1's) then

convert N to a terminal node with value 0(1).

The algorithm for constructing « reduced OBDD for a completely specified function F(X,,

X2, «r » Xp), is given below. F is defined in the form of a bit map of size 2™. The procedure

starts with a single node representing the entire function at level 1. The ordering of the

inputs is X; < X;if i < j. The bitmap is such that X,(X) represents the MSB(LSB).

Review of PTL and Multilevel Logic Design Binary Decision Diagrams 19

University of Windsor

I. Current level = 1

2. While current_level € ndo
i Expand cach nonterminal node at the current level using Transformation 2.1.
b. Current level = Current level + |
c. Apply transformation 2.2 and delete appropriate nodes at the previous level.
d. Apply transformation 2.4 to appropriate nodes at the current level.

c. Apply Transtormation 2.3 to remaining nodes at the current level

For a completely specified function, any function can be reduced to a unique canonical
representation using OBDDs [BRY86}. The above algorithm can be extended to include
incompletely specified lunctions as well. However, there is no guarantee of 4 minimal
canonical form in this case. Here, we will briefly state some basic properties and
definitions regarding incompletely specified functions which will be used in the following

chapters.

Definition 2.13: An incompletely specified function of m bits, can be represented by a
bitmap of length 2™ such that for each bit by, 1 <i < 2" b, e {0,1,d}, where d

represents d don't care state.

Definition 2.14: Tivo m-variable functions F1 and F2, with bitmaps bl and b2, are
equivalent (F1=F2) if, for all i, I < i < 2" cither (i) bl; = b2; or (ii) bl; = d and
b2, e {0, 1} or(iii)b2;=dand bl e {0,1} .

Definition 2.15: Two equivalent m-variable functions F1 and F2, with bitmaps bl and b2,
can be combined to form a new function F3, with bitmap b3. The new bitmap b3 is

determined as follows.

Review of PTL and Multitevel Logic Design Binary Decision Dingrams 20

Utiveraty of Wiyl

Foralli,l <i <2™ IFbl;=d THENb3; = b2 : ELSE b3; = bl Henceforth we will

denote this operation as (b1, h2) = b3,

2.5 Conclusions

In this chapter we have reviewed the current state of PTL design techniques. Formal
methodologies for PTL networks are generally limited to two-level implementations. In
the remainder of the thesis we will develop a number of multi-leve! PTL synthesis

techniques which show considerable improvement over existing techniques,

Review of PTL and Multilevel Logic Design Conclusions 21

Chapter3

Factorization for
Pass Transistor
Logic

3.1 Introduction

This chapter discusses a technique of using multilevel logic
synthesis to design pass transistor logic (PTL) based on algebraic
factorization [BRA84]. We show that techniques already applied to
conventional AND-OR type networks are not useful for
factorization of PTL networks. Qur synthesis technique is a greedy
heuristic which we show is capable of synthesizing PTL arrays with
an average of 14.02% savings over conventional two-level design

techniques,

Although algebraic factorization techniques have been discussed in
the literature for conventional logic synthesis, such existing
techniques cannot be directly applied to PTL for the following
reasons:
(i) If we do not allow repeating of input variables, then all fac-
tors must maintain valid input ordering.
(i1} Literal count is not an accurate indicator of the cost of
implementing a PTL circuit.
(iii) Conventional factorization techniques start from a mini-
mized sum-of-products (SOP) representation of a function; this

does not lead to significant improvements in case of PTL.

Factorization for Pass Transistor Logic Introwluction 2

Ui ety ot Windser

In addition, as mentioned in [PAS91], wd hoe design of PTL actworks can lead to short
circuits (see section 3.2.4). Since we use the set of all prime pass implicants as the starting

point for our design, we can easily avoid this problem.

In the algorithm presented in this chapter, we take account of the above factors by starting
with the set of all prime pass implicants [RADSS] and integrating the steps of selecting o
cover and {actorizing a function. From many examples that we have tried, using MCNC
benchmark circuits, our algorithm achieves considerabic improvement over PTL circuits

obtained from conventional two-level design methods,

3.2 Why Factorization Algorithm Must be Modified
for PTL

An cxample of a multilevel PTL nctwork is shown in Figure 3.1. In a 2-level PTL
network, the basic building block is a column of transistors. In a multilevel PTL network,

the basic building block is

ea 2-level PTL network or

«an array of transistors, A, where the signal 10 the bottom transistor in each column is

generated by another multilevet PTL network, B

For example, in Figure 3.1, the array of transistors A is demarcated by dotted line DL,
and the PTL network B is demarcated by dotted line DLy. The signal to the bottom

transistor in each column in A is generated by B.

Factorization for Pass Transistor Logic Why Factorization Algnrithm Musi be Modified for 1771, 23

Univemity al Windsor

i
'

r _[jl.. _____ aPr = —-"—-"—- - - = = —_——— = = = A
| M m -]

X, X, X,

| == X4 I X4 Xy

| = It

I I _ | |
X | 3 X3

| = Xa llx X3

| = I —I

b e e = — — - J1

Figure 3.1 : A Multilevel PTL Network

Our task is to identity possible multilevel building blocks so that the number of columns

of transistors needed to realize any arbitrary function is as small as possible.

The problem of synthesizing multilevel PTL may be tackled in a variety of ways. In this

chapter, we have used the following simplifying assumptions :

Assumption (i) for a given column of transistors, the same input is never used more
than once as a control variable. However, an input may be used as a control variable in
onc or more columns and/or as a pass variable in one or more of the remaining col-

umns.

Assumption (i) the ordering of input variables does not change as we go from one col-

umn to another.

Assumption (iii) the multilevel PTL network B is a 2-level network with only 2 col-

umns.

Factorization for Pass Transistor Logic Why Factorization Algorithm Must be Modificd for PTL 24

L ety of Winddsoe

Assumption (i) allows us 1o use algebraic tecbniques and ensures that the number of rows
in our approach is identical to that in 2-level synthesis. Assumption (i) ensures a simple
scheme for applying the inputs to the gates of transistors in ditferent columns, Assumption
(iit) 18 included since it Keeps our problem tractable and, because our experiments

indicated that the overwhelming majority of PTL divisions involve bicubic divisors.

3.2.1 Restrictions on Ordering of Input Variables

When we have an algebraic fuctorization, f = g*d + r, the expression corresponding to
q(d} has to be realized by network A(B) or by B(A), We adopt the convention that the
array of transistors A realizes g and the 2-level PTL network B realizes the divisor d. For
instance, in Figure 3.1, q is realized by the network shown by dotted line DL, d by dotted
line DLg, r by dotted linc DL¢. it is important to note that when we have an algebraic
factorization f = q*d + r, none of the inputs appcaring in q(d) can appear in between two
inputs appearing in d(q). Lect L, and L denote the set of literals appearing in the cubes of
q and d respectively. The ordering of variables in the PTL network corresponding to f

should be such that all literals in L have a position below that ol all literals in L.

In general, after getting the factored form f= q*d + r, the remainder r has to be factorized
in a similar manner so that, when the process is over, we obtain f = g *d| + q*d; + ... +
q,*dg + rg where rg cannot be factorized any further, It is important that the restrictions in

ordering of variables do not lead to a conflict.

Example 3.1

The function f = ac(0) +aef(0) + bcd(0) + bdef(0) + abg(h) + ade(h) + beg(h) + cde(h) +
R (where R represents the remaining prime pass implicants) may be fuctorized as £ = (a +
bd)*[c(0) +ef(0)] + (bg +de)*[a(h) + c(h)] + R. If we implement this luctorization using

PTL, we do not satisfy our assumptions (i) and (ii) duc to the following reasons:

Factorization for Pass Transistor LogicWhy Factorization Algorithm Must be Moditied Tor TL. 25

University of Windsor

» (a + bdy*|c() + eff0}] implics that inputs a, b and d occur above ¢, e and f.

«{(bg +de)*|ath) + c(h)} implies that the position of inputs b, d, g and e must be above

aand c.

Thus the input signal a must occur both above and below the signal e, These two

conditions are contradictory. This is shown in Figure 3.2.

e— a—

Figure 3.2 : Restrictions on input ordering

3.2.2 Need for a More Realistic Cost Estimator

The cost function used to measure the savings obtained by factorization must be modified
to reflect the implementation strategy. In conventional factorization, the literal count is
taken as a reasonable measure of the area occupied by the circuit [WAN89]. However for

PTL networks, arca, measured by the product of number of rows and number of columns,

Factarization lor Pass Fransistor LogicWhy Factorization Algorithm Must be Modilied for FTL 26

Unnveraly of Wiidan

is of critical concern. In our approach. the number of rows is determined by the number of
mput variables and thercfore does not change when we factorize. Thus the cost is
determined by the number of columns needed o implement a given function. A
fuctorization which does not reduce the number of columns leads 1o zero savings, even il
the Titeral count is reduced. One consequence is that a factorization which vields a single
cube as a quotient is useless so far as reducing the number of columns is concerned. This
has serious repercussions for PTL factorization heuristics since kernels are usually
considered good candidate divisors. The rationale Tor this is simple for AND-OR
networks; we are guaranteed that the co-kernel [BRAR7D] will be in the quotient, and even

i the quotient contains nothing more, we are assured ol savings in terms of literal count.

F Fi
a-a- a-
cH ¢
1 1 (a)
F F:

|
4C -G .
a- a- a-
b c-IC —— b
b
:

cH cH

1 1 1
(b}

1 1

Figure 3.3 : Examples illustrating area reduction and factorization,

Factorization for Pass Trnsistor Logic Why Factorization Algorithin Must be Modified for 111, 27

University of Windsor

For example, the function F1 = ab(1) + ac(1) may be fuctorized as F1 = a*[b(1) + ¢(1)).
This reduces the Titeral count from four to three. However the number ot columns necded
1o implement it is still two (Figure 3.3(a)). The function 2 = ab(1) + ac(1) + bd(1) +
¢diY), on the other hand can be factorized as 2 = (a + d) #¥[b{1) + ¢(1)]. In this cuse. the
literal count and the number of columins required to implement the function are both
reduced (Figure 3.3(b)). Our algorithm sclects only those tactored forms which reduce

both [Heral count and nember of columns.

3.2.3 Two-level Minimal Sum-of-Products Covers Do Not Lead to
Significant Savings

It we consider two-level covers as obtained by [RADSS] as our starting point and apply
heuristics analogous o guick-factor and best-fucior [WANS9] to this two-level cover,
taking into account the restrictions mentioned above, the savings in terms of reduction in

the number of columns turn out to be insignificant. Our analysis indicates that

(i} Many divisions using kerncls as divisors give single cube quotients. As discussed
in 3.2.2, such divisions are uscless.
(ii) After picking up a few fuctorizations, the ordering restrictions discussed in 3.2.1

above disallowed further factorization.

Our expericnce is that an adaptation of best-factor gives improvements of the order of O -

5% cven for relatively large functions (8 -12 inputs)

3.2.4 Restrictions Due to the Bidirectional Nature of MOS Circuits

Another point, which must be considered, is that, unless a PTL network is designed

carefully, there is a possibility that short circuits might occur.

Example 3.2

We consider the function F, implemented as shown below (Figure 3.4). The condition b

=1 and ¢ = 1, creates a short circuit.

Faetoriztion for Pass Transistor Logic Why Factorization Algorithm Must be Madilied lor PTL 28

Uit sl ob Winndsg

In our algovithm this type of short circuit can never oceur, sinee we only use pringe pass
implicants {or tactorization. For completely specitied functions, we can never have two
prime pass implicants (Py. P2) which simultancously allow both 0 and 1 10 be transmined
to the output (provided the prime pass implicants are constructed correctly). Theretore, @

kernel formed from Pyand P, can never ereate o short cireuit.

c—1C

b—||:I

Figure 3.4 : Invalid PTL network leading to a short circuit

For incompletely specified functions, there may be two prime pass implicants (P, Py)
which cover the same don’t carc minterm, and one (say P;) considers it to be O while the
other (P,) considers it to be 1. If both Pjand P, are selected as part of the final cover, then
there will be a short circuit. In our factorization algorithm, whenever a prime pass
implicant P;, covering a don’t care minterm and treating it as a 0(1), is selected all other
prime pass implicants treating that minterm as 1(0) arec immediately removed from the list

of prime pass implicants, and thus eliminated from further consideration. So, even for

Factorization lor Pass Transistor Logic Why Factorization Algorithm Musi be Modified for T 20

University of Windsor

incompletely specified functions, our algorithm guarantees that there will be no short

circuits,

3.3 Outline of Our Algorithm

3.3.1 Some Definitions

Definition 3.1: Given the prime pasy implicants of any function F, a fuctored form FF is a

pair (g, d) where 4 is a sum of cubes and d is the sum of two pass implicants such that

« the set of literals appearing in q is disjoint from the set of literals uppearing in d and

«all the pass implicants obtained by the product g*d are prime pass implicants of F

Il the pair (g, d) for a {uctored form FF contains my cubes and ms, cubes respectively, then
the number of colunins to realize the factored form FF using PTL is the larger of m| and

ma,

We have modified the sct covering heuristic described in section 2.2.3 by including a
greedy method for sclecting, if possible, factored forms satisfying the restrictions
mentioned carlicr. The selection of each factored form imposes additional restrictions on
ordering of input variables when selecting subsequent factored forms, so that the sequence

of picking factored forms is important in determining which factored forms satisfy the

restrictions on ordering of inputs as discussed in section 3.2.1.

In the description of our algorithm given below, we assume we have already selected
factored forms FFy, FFy, ... , FFy., and we are now selecting the pair (g, d) for the next

tuctored form FFp.

Factorization for Pass Transistor Logic Qutline of Our Algorithm 30

Uinneesiny ol Wadsin

Definition 3.2: The factored form FF,will be called ordering compatible factored form if
the ordering restrictions imposed by FE; FEFy. . FF, p are compatible with restrictions

implicd by the factorization g¥d for FF, ax outlined in 3.2.1.

Definition 3.3: During the process of sclecting prime pass implicants using the hewristic
given above, if a prime pass implicant P covers m minterms which are not in © | then the

3 3 T r p JEE
score of prime pass implicant P; is m.

Definition 3.4: If a factored form FF; covers m minterms which are not in @, then the
score of factored form FF; is min where wis the number of columns of transistors necded

to realize FF; using PTL,

3.3.2 Our Heuristic

In this section we give an outline of our heuristic for factorizing a Boolean function ¥ In
step 1, we generate the set of all prime pass implicants for a function using the procedure
described in section 2.2.2. Next we initialize the set of covered minterms before starting
the actual factorization process. Step 3 describes the process of factorizing the Boolean
function and selecting a suitable cover for it. The details of this heuristic are described in

Appendix A.

Fuctorization for Pass Transistor Logic Chulling ol Our Algorithin 4

University of Windsor

. Generate prime pass implicants.
Use the modified Quine-McCluskey method outlined by Radhakrishnan et al. in

{RADSS], 1o gencrate all the prime pass implicants of the function

2.5et & =}

Initialize the set of minterms of F covered so fur, @, to an empty set.

3. While (& =\ U)S,) repeat the following steps

\JS, is the set of «ll minterms of F. Step 3 should be repeated until all minterms

in\J3S, are also covered by ©
a. Select the next prime pass implicant P;.
Use the set covering heuristic given in section 2.2.3 to select the next prime
implicant Py, to be included in the cover © . Pis the prime pass implicant cov-
ering the maximum number of minterms not already covered by © .

b. Try to select a suitable factored form FF;

o Tryto find a prime pass implicant P;, which has at least one literal in

common with P;

Generate a bi-cubic kernel, k, from P;and P;

Divide F by k 10 generate a factored form FF

Check if FFy;is ordering compatible with the existing fuctored forms

Check if score of FFyj > the score of P;
¢. Select next term to be included in final cover.

If step 3b is successful,

+ select FFU

» update © with all the minterms covered by the pass implicants of FF, if
Otherwise,

« sclect P;

Factarization for Pass Transistor Logic Cutline of Our Algorithm n

Ui enity of Winds

[n step 3b, we use the function find_factored_form to fry to obtain a factored form FE;,

which

sincludes P,

«is compatible with all the ordering restrictions imposed by previously selected fae-

tored forms FFy, FFa. ..., FF; |

« has a better score than P,

To check whether a factorization g*d violates restriction 3.2.1, we use lunction
check_ordering which has two parameters and returns true (false) il factorization g*d
satisfies (violates) restriction 3.2.1. The two parameters of this function are described

below :

«Parameter | is an N X N array of characters where N is the number of inputs. The

entry in the (i, j)'h cell of the array is "> if there is a restriction, due to previously

selected factored forms, that input i must have a position below input j

« Parameter 2 is also an N X N array of characters. The entry in the (i, j)"‘ cell of the
array is ">' if input i appears in divisor d and input j appears in quotient g. This param-

eter represents the new restrictions due to the current factorization g*d

check_ordering(array |, array2) ensures that wherever there is a ">' entry in array?2, there is
no contradictory entry in array I. In other words, if cell (i.j} in array2 is '>', cell (j,i) in
array | must not be '>' since this indicates a contradiction. Details of this function are given

in the appendix.

3.3.3 Justification of the Heuristic

In section 2.2.3 we described a heuristic for selecting a two-level cover for a Booleun
function. According to this heuristic, the next prime implicant selected should be the one

that covers the maximum number of minterms which arc not covered by the prime

Factorization for $ass Transistor Logic Outline of Qur Algorithn 13

University of Windsor

implicants selected so far. Each prime implicant in the cover can be realized as 4 single
column in & PTL network, In our algorithm, we use a similar criterion for selecting the

next term in the cover, which may be cither a single prime implicant P; or a factored form.
The prime implicant P; is the same one which would be chosen if we were selecting a SOP
cover. A factored form is chosen in place of P; only if the following conditions arc

swtisfied.

»One of the prime implicants included in the factored form is P;
« It satisfies the ordering restrictions in 3.2.1

« The score of the Factored Form is greater than that of P,

This process is repeated until all the minterms are covered.

This heuristic intuitively makes sense due to the following reasons :

+P; is known 1o be a "good" candidate so far as the number of uncovered minterms are

concerned.

« We arc looking at cvery possible prime pass implicant when determining a suitable
factored form including P;. We recall (section 3.2.3) that restrictions of PTL networks
led to very little improvements when applied to sum-of-products cover. Our approach
increases the chances of getting a factored form satisfying restriction 3.2.1 since we
are looking at many potential factored forms. Our experiments with functions of up to
10 variables indicate that it is computationally feasible to look at all possibie prime

pass implicants for PTL networks of practical size.

» Our policy of using the score to evaluate a factored form ensures that the number of

minterms covered by each column to realize the factored form is better than that of P;.

Factorization for Pass Transistor Logic OGudine of Qur Algerithm 4

Uiversity ol Winday

3.3.4 Complexity of the Heuristic

In this section, we will estimate the worst case complexity of the factorization algorithm,
by determining the complexity of each step after generating the set of all prime pass
implicants. Let the total number of prime pass implicants for a function of n inputs be N.
Each prime implicant is represented by two bit maps, one o denote the titerals present in
it, the second to denote which literals are complemented. We assume that each bitmap is

small enough to fit into one word.,

The complexity of step 3a, which selects the prime implicant P; covering the maximum

number of uncovered minterms is O(N).

Step 3b has several components. Finding prime pass implicant P; involves looking at all
the prime pass implicants and has complexity O(N). Determining the kernel, k, for the
pair of prime pass implicants P; and P; involves a fixed number of bit manipulations so
that its complexity is O(/). Dividing a single pass implicant by another pass implicant is
of complexity O(/). Dividing a sum of N prime pass implicants, F, by a single pass
implicant p involves dividing cach prime pass implicant in F by p and its complexity is
O(N). Therefore, dividing F by the two cubes of the kerncl has complexity O(N). The final
result is obtained by the taking the intersection of the two intermediate quotients. Each
quotient may have at most (N-1) terms and cach term in one quotient has to be compared

with all the terms in the other quotient. So, the worst case complexity of the intersection is

O(N?). The total complexity for performing the division is O(/) + O(N) + O(N?) = O(N?),

The ordering information for the previously selected factored forms is kept in an nXn

array with n? elements. In order to check if the current factored form FF is ordering
compatible, we take each pair of inputs, one cach from the quotient and divisor and insert
the ordering relation between them into a new array. The clements of the first array is then

compared with the new one and updated if there is no conflict. Performing this operation

once for the entire array has complexity O(n®). In order 1o tuke the closure of the

Factorization for Pass Transistor Logic Outling ol Gur Algorithm 15

Liniversity ol Windsar

relationships, this may have o be done at most 2 times. Therefore the complexity of

checking ordering compatibility is o).

Determining the score of a tactored form, FF, involves taking the union of the minterms
covered by cach prime implicant in FF and dividing the total number of minterms covered
by the number of rows required to implement FE. 11 the number of new minterms covered
by cach prime implicant is Of(m), then complexity of performing the union is om?).

o ~ . . “ . 2
I'herefore, the complexity of checking the score is Ofm<).

So, the worst case complexity of step 3b is O(N + Nn¥ + Nom),

In step 3c, after selecting the next term in the cover, all prime implicants must be updated
by removing the minterms covered by the sclected term. If the number of clements
covered by both a prime implicant and a selected term is Ofm), updating a single prime

implicant is O(m?). Forall N prime implicants, the complexity of step 3c is O(Nn?).

Now, step 3 may be repeated at most N times. So, the process of factorization, given the
sct of all prime pass implicants has complexity O(N*+ N°.n* + N2.m?). We note that both
N and m in the above expression are O(27). Also, step | has complexity Of2"). Therefore,

the worst case complexity for the entire algorithm is 0(2%").

3.4 Example of Multilevel PTL Network Design

We consider the function F = £(2-5, 8, 9, 14, 15, 18, 20, 21, 23-25, 27, 30). The list of all

prime pass implicants are given below:

Py = x4%a(X3)y Py = x3Xa(Xg), Py = Xa3Xp(xg), P3 = X4X3(x3) Py = xsx3%,(x4), P5 =
XsX4% | (X3), Pg = XsX3Xa(Xg)s P7 = X3%3X)(X4), Py = XsX4%a(X3), Py = X4xX(x3), Pp =

XsXgXa(X2), Ppp = x4x3%)(%2), Pya = XsXg% | (X3), P)3 = %5X3X) (Xg)y P4 = X5X4%2(X3), Py5 =

Factorization for Pass Transistor Logic Example of Multilevel PTL Network Design 16

Unversity of Windso

;5.'3\‘3(._\'4). P|(., = i;x:;,(;;.). P|7 = ;_‘,\3§|(;4). pl.\‘ = K'q;_‘_}(;:‘. P|n) T{.;_{Kl(;_)). P:n bl

I

§5X4§3(§2). Pll = N4§3§|(;3). P:: = N3NgNalxa), P_w__\ = ‘-\-.lt_‘\;ﬂ‘—\?:). l‘_w__‘

\5N.|\j_‘\;| Y Pag

= NGNN L Pag = NsXganahh Paz o= NaNNaxatn) Pag = agvaten(ag), Pag =

§4X3.\'2X1(35). P_m = .\'5§4;3N2(.-\'*|). P3| = §4§3x3.\'1(§5).

Initially. the prime pass implicants, Py, Py, Py and Py each cover cight minterms. All other
prime pass implicants cover less than eight minterms. So, we select the first one, Py =
X4X(X3). Next we find Py = X;X5(x3) and form co-kernel/kermel = Xof[x 4(X3) + Xy0x)] I
we divide the sum of all the pass prime implicants by the kernel [xy(X3) + 7\7,,(&3)1. we pel
quotient, X5 + Xs5x;. The PI's involved are: Py, Pz, Ps and Py; and the resulting factored
form is FF| = (X3 + XX)¥[x4(X3) + X4(x3)]. The score of this factored torm is 10, since the
total number of minterms covered by it is 20 and the number of columns required to
implement it is 2. We select the Factored form sinee its score is greater than that of Py(=8),
Next we select Pg, sinee it covers a maximum number of new minterms (4). Proceeding in
2 fashion identical to above, we find a second factored form FFy = (x5X3 + X2X))¥[x3(x)
+ X3(x4)], involving prime pass implicants Py, P7. Pys and P|7. We verify that the ordering
restriction imposed by FF; (x; and x5 must be above x3) is compatible with that imposed
by FF} (X, x5 and x5 must be above x,). Therefore there is no conflict and we accept FF,.

After this step there are no more uncovered minterms, so the process terminates. Figure
3.5(a) shows the two-level implementation of the function F. Figure 3.5(b) shows a

multilevel implementation of F corresponding to the factorized form F = (x5 +

X5%1)¥[X4(X3) + X4(X3)] + (X5%2 + X2%|)¥[X3(x4) + X3(X4)] obtained in this example.

Factorization for Pass Transistor Logic Example of Multilevel PFL Netwaork Design Ry}

University of Windsor

I
$><
L><
NE
I

_l:x
|'~’><I
I
kx
2°
K

Figure 3.5 : Two-level and multi-level PTL networks representing the function F.

3.5 Conclusions

tn this chapter we have outlined a new technique for synthesizing PTL networks. This is
based on algebraic factorization. Factorization for PTL is significantly different from
factorization for conventional logic networks and requires a totally different approach.

Experiments with berichmark circuits (section 5.3) reveal that for many circuits, this

Factorigation for Pass Transistor Logic Conclusions 38

Unversity ol Wasdwy
technique gives signiticantly better results. Heuristios for identifying factored forms is

quite crucial in this approach. It is quite possible that more informed heuristics would give

cven better results and we suggest this as a possible arca for further investigations.

Factorizulion for Pass Transistor Logic Canclusions

30

Chapter4

PTL Synthesis
and 123-Decision
Diagrams

4.1 Introduction

In this chapter we discuss multilevel logic synthesis for PTL
networks using a decision diagram approach. We have developed a
model for PTL networks which we call the 123 Decision Diagram
(123-DD) Model. This is derived {rom the Binary Decision
Diagram (BDD) model proposed for representing Boolean
functions [BRY86]. We have developed a number of
transformations to manipulate a 123-DD. Our synthesis technique
repeatedly uses these transformations to obtain a model of a PTL
nctwork. One interesting aspect of our approach is that the
synthesis technique is always guided by layout considerations
(including interconnection cost) and the 123-DD model of a PTL

network may be directly mapped into silicon.

4.2 123-Decision Diagrams: A Graph
Model for PTL

4.2.1 Can We Use Decision Diagrams for PTL
Networks

[t is possible to use ordered binary decision diagrams to directly

model a PTL network. This is done by observing that

PTL Synthesis and 123-Decision Diagrams Introduction 40

Luneisity of Wi

Euch edge starting from a node represents o teansistor

The fabel associated with a node represents an input variable

An edge with label T(0) corresponds 1o i transistor with the input viriable (comple-

ment of the input variable) applicd to s gate

Each node represents a net in the cireuit

The leal nodes represent pass signals

However, networks realized directly from OBDI's in this manner may be inetticient due

to the following reasons:

» OBDDs allow only Os and 1s to be used as pass signals, Arbiteary inputs or their

complements cannot be used as pass signals
« OBDD’s do not take into account relative placement of transistors at cach level
« OBDD’s do not consider the cost of interconnection between transistors

+ It may be possible to get a more efficient realization i we relax the restriction of

having cxactly two edges (transistors) Irom cach node
&

We now establish the above observations with some examples. Figure 4.1(a) shows a PTI.
network using only 0's and 1's as pass variables. Figure 4.1(b) shown a more efficient
realization of the same function, using additional pass variables. Figure 4.2 shows that it is
important to take into account relative placement of transistors at cach level and the cost
of interconnection between transistors. 4.2(a) shows interconnections in a PTL. network
where transistors with complemented inputs are arbitrarily placed 1o the left of the ones
with true inputs. 4.2(b) shows the same connections without any cross-over of

interconnecting wires.

PTL Synthesis and 123-Decision Diagrams) 23-Decision Disgrins: A Graph Madel for 1771, 4l

University of Windsor

'—-b!-'-(K)()()l(ll ot ’—" F=O000101THITIONT L

?“q b3l !

%, | . |

;{ Xi X4 >2| X
N] |

Xafl X)S‘
| l]
X, X, X, 1

() b

Figure 4.1 : Two PTL networks based on (a) BDDs and (b) 123-DDs.

() (b)

Figure 4.2 : Two PTL networks with different transistor placements

I'TL. Synthesis and 123-Decision Diagrams | 23.Decision Dingrams: A Graph Model for PTL

Univensity of Windsn

4.2.2 Our Layout Strategy

In order to construct an actual PTL network, based on decision diagrams, we need to have
a layout strategy which allows dircet, easy mapping from the model to silicon. We

consider a double-metal layout strategy with the following simple rules:

(1) Transistors in series are connected vertically using the tivst metal layer.

(i1) Input signals arc carried to the gates of transistors using horizontal lines through
the second metal layer,

(iii) Horizontal connections between adjacent columns of transistors are also done
using the first metal layer. This type of connection is called a local merge.

(iv) Horizontal connections between non-adjacent columns are done with the second

metal layer. These are called nonlocal merges.

We will sce later that major savings in the arca of a PTL network results from shaving of
subnetworks. We therefore try to maximize the number of such sharings. Local merges
involving adjacent columns of transistors are always feasible and our heuristic always
looks for local merges. It is relatively more difficult to connect two non-adjacent columns
of transistors. We obviously cannot use the first metal layer and the second metal layer has
to be used with care since it is already used to carry the input signals. Each row of
transistors has two horizontal lines to carry an input signal and its complement. The space
between the horizontal lines in successive rows of transistors determine the extent to
which nonlocal merges are possible. We have verified tha, for a specific technology(1.2
micron double metal technology) and an existing design of a transistor, it is possible to
have one horizontal line for nonlocal merges. This scenario may change as we move from
one technology to another. For example, availability of another metal fayer may allow
more horizontal lines for nonlocal connections. In general, for our synthesis approach, we
allow a fixed number of horizontal lines for nonlocal merges, the number being

determined by the layout strategy we use.

PTL Synthesis and 123-Decision Diagrams123-Decision Diagrams: A Graph Mode| for 1771, A%

Umiversity of Windsor

4.2.3 123-Decision Diagram Model

Our model, 123-Decision Diagram (123-DD), overcomes the limitations associated with
directly using the OBDD maodel for synthesis of PTL networks, As the name suggests,
123-DDs relax the restriction of hinary decision diagrams of having exactly two cdges
associated with cach node. In 123-DDs cach node may have one, two or three edges

associted with it as needed.
The main characteristies of 123-Decision Diagrams are given below:

» The terminal nodes are shown as labelled squares. The label on each square node
denotes a pass signal, which may be 0, 1, any of the input variables or their comple-
ments

+ A nonterminal node is shown as a labelled circle. It represents a net in the circuit, A

node at the i'™ level has label X;, denoting the i input variable
« Each node in the 123-DD has & unique number as its Node_id

» If two nonterminal nodes are connected by a dashed line, the dashed line represents

the fact that the two nets are connected to form a single net

» Each nonterminal node has 1, 2 or 3 outgoing edges. Each edge has a label of 0, | or
2

» Each cdge with a label O(1) from a node with label X corresponds to a transistor

with its gate connected to X; (X;)

» An edge with a label 2, indicates a metal link

« The relative position of the edges from a node is important and there may be restric-
tions on the ways these positions can be changed with respect to each other. This
positional information is represented in terms of a list of the nodes at the current

level. This is discussed in more detail in section 4.4,

PT1. Synthesis and 123-Decision Diagrams | 23-Decision Diagrams: A Graph Model for PTL 44

Utvensuy of Windsae

The 123-Decision Diagram allows sharing of subgraphs similar to BDD's. However, such
sharing of subgraphs is done only after an analysis to see i it is feasible, taking into
account the specific VLSE technology used wnd the strategy o implement the PTL.

networks.

We would like to emphasize that the 123-DD madel does not share the canonic
representation property of BDD's. Its primary use is 1o represent PUL networks and its
nin advantage is that it can be direetly mapped into silicon. An example of & 123-DD

corresponding to the partially synthesized PTL network ot Figure 4.2(b) is shown below.

Figure 4.3 : Example of 123-DD

4.3 Useful Properties and Definitions for 123-DDs

Definition 4.1: An edge ¢ labelled 0(1) from a node with label X; is said 1o be activated if

the input X; = 0(1). An edge with label 2 is always activated.

PTL Synihesis and 123-Decision Dingrams Uscful Propertics and Delinitions for 123Dy 15

Unnversity of Windsor

Definition 4.2: A path p between two nodes in a 123-DD is said 10 be activated, for a given

input combination, if and only if all edges in the path are activated,

As menticned in chapter 2 (section 2.4.2), cach node in o BDD represents a Boolean
function which can be specitied in terms of a bitmap. Similarly, a node in a 123-DD also
denotes a Boolean function. However, a bitmap is not adequate for representing a function

associated with a node ina 123-DD. We define a more generalized term below.
Definition 4.3 A signal string S of length m is a string of symbols S;, 0 < i < m-1,

5, {0.1.dZ, Xj, ﬂXJ.} . where Z denotes the high impedance state, and X; can be any

input variable and d represents a don't care.

The high impedance state (Z) occurs if there is no path activated from the node to any pass

signal for a given input combination. Henceforth we will use S € {0,,d,Z,X 7 —X j}

to represent the ith symbol in the signal string S . The signal string associated with a node

at the k™ level is of length 200K+1),

Definition 4.4: The child of a node N at the ™ fevel is any node at level i+1, which is

connected to N through a single edee labelled 0, 1 or 2

Definition 4.5: Given two signal strings SI and S2 of length m, the operation
combine_signal(S1, 82) combines S1 and S2 wad creates a new signal string §3 of length

m. This operation will be denoted using infix notatior. as $,®S,. The operation is given

below,

I"TL Symhesis il 123-Decision Dingrams Useful Propenties and Detinitions for 123-DDs 46

Univ ety o Windaas

Forall,0<i<m-1, 1IFSI; =7 THEN S3, =82,

ELSE IF 82, = Z THEN $3; = S1,

ELSE IF S1; = $2; THEN $3, = $2,

1

Definition 4.6: Given a parent node Ny, cdge label ¢p> from Ny 1o N, one of its child
nodes, and the signal strings S of length mi associated with the child, the operation
table_map(S. ez, Ny) deterntines the contribution of Ny 1o the signal string of Ny The

operation iy given below.

Let node Ny have label X; and let the signai strings Sy ... Sy Sy oo Soinep 40 808 o Sy,

be associated with the parent and the child node. The relationship between Sy ... S, Sy, -
Sam-1 and 895| «.. Spy.p I given in Table 4.1. Given a signal string s .. 5, and label of
the cdge joining parent node and child node, this table determines what signal string will

be associated with the parent node due to this child node.

If a parent nodec has more than one child, repeated applications of operations
combine_signal and tabie_map allow us to determine the signal string S associated with
any node N given the signal strings of its children. Henceforth we will call this operation

generate_signal _string.

PTL Symhesis and 123-Decision Diagrams Uselul Properties and Delinitions for 123Dy a4l

Umiversity of Windsor

Table 4.1: Signal String of a Node from its Children

Index of parent
=i S; and S;,) in signal string S of parent
Label of Edge
to Child 0 1 2
j™ symbol in
signal string of
child (SJ) Sj S(j+m) S.l SG"'m) S_] S(j+m)
X ands;2 X, | S Z Z S 5 5
5= X, - - - - 0 1
5; = X, - - - - 1 0
Example 4.1:

Let N be anode, at the i level, in a 123-DD with three children Ng» Ny and N,, connected
to N through edges labelied 0, T and 2 respectively. Let S Sy, S and S, be the signal
strings associated with N, Ng, N; and N», such that §, = 0011ZZZZ, S| = 1001ZZZZ and
Sy = ZZZ7ZX;X;01. Then, according to Table 4.1, S = 0011000110011101.

S=0011000110011101

$y=0011227Z S,=100172ZZ

Figure 4.4 : [llustration of Example 4.1.

I'TL Synthesis and | 23-Decision Diagrams Useful Properiies and Definitions for 123-DDs a8

University of Windwo

Property 4.1 : Each symbol s; such that s, # Z in the signal string o a child connected 1o

its parent through an edge labelled O(1 or 2) occurs in the corresponding position in the

first{second or both) halt of the signal string of the parent. Thus the position of 8 in the

signal string of the parent can be determined rom the label of the edge connecting the

parent and child node. Property 4.1 follows from Table 4.1,

Property 4.2 : Given a signal string s associated with a node at the current level, the
position of s in the signal string o " an ancestor of the node can be determined trom the
scquence of edge labels connecting the two nodes. Property 4.2 is obtained by

extrapolating property 4.1.

Property 4.3 : Letpl =[N -c¢y - Ngj €4y -Nyp - -y - N land p2 = [N - ¢z - Nya 22
-Nj2 - ... - €2 - Nia] be two paths from a node N to two nodes Ny and Ny, at the current
level, Let S, s and s; be the signal strings associated with nodes N. Ny and Ny 5. The two
paths pl and p2 can be replaced by a third path p3 = [N - ¢p3 - Nz -¢)3 -Nyy- - ¢z -

Ni1] (as shown in Figure 4.5) without changing S, if the lollowing conditions are sutisticd:

« The label of edge eq;(epy) is O(1)

« Foralli, 1 i<k label of ¢;; = label of ¢;,

o (5,8,)=s

« cachnode Ny Njj, ... Ny inpl and Ny, Nya , ..., Nys in p2 has only one parent
+ signal string of Ny 3 =

+ label of ey =2

» foralli, 1 <i<klabel of ¢;3 = label of ¢y

I'TL Synthesis and | 23-Decision Diagrams Uselul Properties and Detinitions for 123-01)s 44

Fmiversity of Windsor

Figure 4.5 : Illustration of Property 4.3

According to property 4.2, the signal strings s; and s, , associated with Ny,; and Ny, will
oceur in the same position in the signal strings asseciated with N, and Ng,. Therefore,

property 4.3 follows by using properties 4.1 and Table 4.1.

Property4.4 : Letpl =[N -¢q) - Ngy ~e) -Nj) - ... -ep) - Ny Jand p2 = [N - egn - Nga €2
-N|3 - ... - €42 - Nia] be two paths from a node N, at the j level, to two nodes Ny and Ni»
at the current level. Let S, sy and s, be the signal strings associated with nodes N, Ny; and
Ni3. The two paths pl and p2 can be replaced by a third path p3 = [N - eg3 - Ng3 -¢3 -N|3
-« = €3 - Ni3) (as shown in Figure 4.6) without changing S, if the following conditions

are satisfied:

+ The label of edge ey (ega) is O(1)

» Foralli, 1 <i<k label of g;; = label of e;5

PTL Syntlesis and 1 23-Decision Dingrams Useful Properties and Definitions for 123-DDs 50

Lusseisis of Windwn

= sy consists ol all O%s(all 's) and s> consists ol all sall 0°s)

cach node Ny Nypje o Ny inpland Nga, Ny Npa in p2 has only one parent

label of g3 = 2and for i<k labelof ey = label of ¢}
= signal string of Ny 3 = 8. consists of all Nj's(X;'s)
According o property 4.2, the signal string s and 55 . associated with Ny and Ny 5 will

occur in the same position in the signal strings associated with Ny and N, Therefore,

property 4.4 {ollows by using properties 4.1 and Table 4.1,

Figure 4.6 : Illustration of Property 4.4.

4.4 The List Structure

As mentioned earlier, we use the 123-DD to represent a function as realized by a PTL

network. Therefore, in addition to the connectivity information, it must also keep track of

PTL Synthesis and 123-Decision Diagrams The List Structure 51

L'niversity of Windsor

the positional information of the transistors in the actual circuit realization. This is done in
terms of a pesition {ist. The position listis a list structure which contains the Node_ids of
all the nodes at the current level. Each node in the 123-DD nas o unique Node_id. The
Naode_id of the root node is always 1, For any other node, we generate the Node_id as

follows.

Definition 4.7: A node N connected o its parent through an edge labelled ¢ has a Node _id

= dn+e, where nis the Node id of the parent.

There are two types of lists in our position list. Type I lists consist of a number of elements

within square brackets, for example, L) = [¢|, ¢35, ¢,). Type I1 lists consist of a number

of clements within braces, for example, Ly = { ¢, ¢4, ..., €4 }. An clement of a list can be:

(i) a Node_id of a node at the current level or

(i1} a list of Type 1 or I1.

(iii) a Node_id of a dunmiy node! at the current level.

If certain nodes are removed from the current level as a result of a transformation on the
123-DD (sections 4.5.2 and 4.5.3) the corresponding Node_ids must also be removed
from the position list. The current ordering of the elements in a Type I list is important.
There are only two possible orderings for the elements in a Type I list. They must occur
cither in the specified order or in the reverse order. For a Type II list, however, the current
ordering is not important. The elements in the list can be reorganized in any order. If a list
contains sublists, we consider the entire sublist to be a single element for the purpose of
reordering. The clements of the sublist can be reordered again according to the type of the

sublist,

I. A dummy node is one which is not currently in the 123-DD, but may be inserted subsequently as a result
of transformations deseribed Tater,

I'TL Synthesis and 1 23-Decision Diagrams The List Structur 52

s ety ot Windsan

As an example, we consider a 123-DD expanded up 1o the Tourth level (Figure L.7¢a).
Each node, in Figure 4.7(a). has a unigue Node_id, which is shown within cach node,
Then all possible orderings of the nodes at the current level are given by the position list
PL; = {{{27. 28, 2903 {300 31 3253 {33, 3450 353 3 {36, 37, 38,3 {39, 40, 410

{42“. 43d' 44d}}‘ {{45,.1. 46d' 47t|}' {43“. 49(!. 5()d}. {Sltl' 52\1. S“tl}}}' We note it

nodes with a subseript ol d (e.g., 29, 32, 33) do not actually oceur in the 123-DD. Some of

the valid orderings for PL; are :

(l) [27. 28, 29‘|. 30. 31 . 32d' 33(!' 34d, 35(|. 36. 37. 3&[. 39, 40, -'-”d. 4?.‘[. 43,.|. 44t|. 45(|. *l(\ll.
474, 48, 49,4, 50, 514, 524. 53]

(ii) [28, 27. 29, 30, 31, 32, 334, 34y, 354. 39, 40, 41, 36, 37, 38, 42, 43, 4. 45, 46,
474, 484, 49,, 50, 514. 524, 534]

(ii)[30, 31, 32y, 33, 34,. 354, 28, 29, 27. 37, 36, 38, 39, 40, 41, 42, 43 ;. 44, 45, 46,
47y, 48y, 49, 504, 51y, 524, 53y 1

To show some featwres of this representation, let us impose the restriction that nodes 27
and 37 must always be adjacent to cach other (Figure 4.7(b)), so that the transistor
corresponding to the edge connecting nodes 9 and 27 is adjucent to the transistor

connecting nodes 12 and 37. It may be verified that if the position list is chunged 10 PL, =

{[{430, 31, 32}, {334, 34y, 35,3 3,428, 29,} 27, 37, {36, 3843, {(39, 40, 41}, {42

r
434, 4443 3], {{45q, 464, 474}, {484, 49y, 504}, {51y, 524, 5343} Hhe above restriction is
always satisfied. We will see later how this is actually achieved. We sce that PL, only

allows option (iii) from the above, but does not allow options (i) and (ii) since nodes 27

and 37 are not adjacent in those cases.

PTL Synthesis and 123-Decision Diagrams The List Structure 53

Liniversity of Windsor

Figure 4.7 : Initial and Modified 123-DDs Corresponding to PL; and PL,.

4.5 The Transformation rules

There are five different transformation rules, which are used to manipulate the 123-

Decision Diagram. These are given below:

Transtormation 4.1 : Generating children of a nonterminal node.

Transformation 4.2 : Replacing two distinct paths to two nonterminal nodes by a sin-
gle common path.

Transformation 4.3 : Replacing two distinct paths 1o two nonterminal nodes by a sin-
gle common path to a terminal node,

Transformation 4.4 : Converting nonterminal nodes to terminal nodes.

Transformation 4.5 : Merging subgraphs.

Some of these are very similar to the corresponding rules for OBDDs. As in OBDDs, for a

completely specified function, a set of argument values X, X, ...X,, describes a path in

PTL Synthesis and 123-Decision Diageams The Transformation rules 54

Ui etsity ot Wingds

the 123-DD starting from the root 1o a terminad verten. In this section, we will deseribe our

transtformation rules.

4.5.1 Generating Children of a Node

The first transtormation rule is used to expand the 123-DD to the neat level, This rale is
almost wdentical to that used in BDD's (Transformition 2.1} except that signal strings are

used in 123-DD in place of bitmaps in BDDs,

Transformation 4.1: From a nonterminal node N at the i™ level with an associated signal
string S of length 2m. generate two children of N Np(N|) at the (i+1 MW level. with signal
strings Sy(S)) of length m, connected to N through edges labelled O(1) such that

Sy ® S;= §. Ancxample is shown in Figure 4.8

S=01101011

S5=01101011

Sy=0110 S,=1011

Figure 4.8 : Example of Transformation 4.1
4.5.2 Combining Two Paths I

Transformation 4.2 : If there are two paths pl = [N - ¢y; - Ny -ep) =Ny - o -egy - Ny |

and p2 = [N - ey - Nz -€12 -Nj2 - ... - €3 - Nyo] from a node N 1o two nodes Ny and Ny,

at the current level, with signal strings s; and 5, such that they satisfy conditions (i)- (iv)

PTL Synthesis and 123-Decision Diagrams The Transformation rules 55

Liniversity of Windsor

of property 4.3, then replace paths pl and p2 by path p3 = [N - ¢y3 - N3 -e13-Nj3 - - €3
- Nyal where label of edge ega = 2 and for all i, 1 €1 <k label of ¢;3 = fubel of ¢; and
signal string of Nyyis {3, 3,) = 5. An example of Transformation 4.2 is shown in

Figure 4.9,

S=11100110 S=l 1100110

S“-l I |() S(]-l IZ?

Figure 4.9 : Example of Transformation 4.2

4.5.3 Combining Two Paths II

Transformation 4.3 : If there are two paths pl =[N - eg; - Ng; -€j; -Njj - ... - €y - Nyl

and p2 = N - ¢gp - Ngp -€12 -Nj2 - .. - ey - Nyo] from a node N, with label X;, at the j*
level, to two nodes Ny and Ni.5 at the current level, with signal strings s, and s,, such that
they satisfy conditions (i) - (iv) of property 4.4, then replace paths pi and p2 by path p3 =
[N - ez - Ng3 -€13 -Nj3 - ... - €3 - Nis] where label of edge eg3 =2 and forall i, | <igk
label of ¢;3 = label of ¢;; and Ny 5 is a terminal node with pass signal Xj(fj). An example

of Transformation 4.3 is shown below in Figure 4.10.

PYL Synihesis and 123-Decision Diagrams The Transformation rules 56

Vs ersits of Wiikdsor

S=100001 11

S=10000111

Sp=10X0 Sp=1177,

Figure 4.10 : Example of Transi ‘mation 4.3

4.5.4 Converting Nonterminal Nodes to Terminal Nodes

Each branch in a PTL network must have a pass signal associated with it. When the pass
signal has been determined for a particular node, then that node becomes a terminal node.
Terminal nodes are never expanded to generate children wt the next level. Transformation
4.4 is used to convert a nonterminal node to a terminal node and determing its pass signal.

Terminal nodes can also be created as a result of Transformation 4.3 (as discussed earlier).

Transformation 4.4

(i) If the signal string associated with a node N consists of all 0's (all 1°s) then convert
N to a terminal node with pass signal 0 (1).

(ii) If anode N, with label X, has a signal string S of length 2m such that the first m
symbols of S consist of all 0’s (all 1’s) and the last m symbols consist of all 1's (all

0's), then convert N to a terminal node with pass signal X; (X;)

PTL Synthesis and 123-Decision Dingrams The Transformation rules 57

University of Windsor

S=0KI0TOT 10110

Sy=0000101]

S =00110110

Sp=0000101

S=0000101 10010

Sy=0011011

Sy =0110

Figure 4.11 : Example of Transformation 4.4

4.5.5 Merging ¢f Subgraphs

If two or more nodes have identical signal strings it means that the two nodes denote the

same function. Instead of duplicating the subnetwork required to implement this function,

the output from a single subnetwork may be connected to each node.

Transformation 4.5: 1If two or more nodes at the current level have equivalent signal

strings associated with them, then merge the subgraphs below these nodes.

Transformation 4.5, for 123-Decision Diagrams is analogous to Transformation 2.3 for

OBDDs and the justification for it is the same as in OBDDs [BRY86]. An example of

Transformation 4.5 is given below.

1L Syathesis and 123-Decision Diagrams

The Translomsstion rules

38

U'ines ersits of Windsen

S=0110101 1101 LMK N=0THHH TTONT000

Sp=01101011

Spo=0110

Figure 4.12 : Exampie of Transformation 4.5

4.5.6 Layout Factors Affecting Transformations

When carrying out the various transformations, certain layout considerations should be
taken into account. As noted carlier, the 123-Decision Diagram, in addition to
representing the Boolean function being implemented, also carries information on the
relative placement of the transisters used to implement the function. We use this
information to determine if certain transformations should not be carried cven if the
conditions for applying the transformation are satisfied. We always carry out
Transformations 4.1 and 4.4 whenever the appropriate conditions, as mentioned in
sections 4.5.1 and 4.5.4 are met. The other transformations are curricd out only when

relevant VLSI considerations are satisfied.

4,5.6.1 Layout Considerations for Transformation 4.5

In the synthesis of OBDDs, an arbitrary number of subgraph merges (Transformation 2.3)

are allowed at each level. Similarly, we should be able to apply our corresponding rule

I'TL Symhesis and 123-Decision Diagrams The Transformation rules 50

Univensity of Windsor

(Transtormation 4.5) on an arbitrary number of nodes as long as they have equivalent
signal strings. However, since the 123-DD represents an actual layout, we have to keep
track of the placement of transistors and the interconnections between them. The

positional information is stored the form of a position list (scction 4.4),

It two nodes, with cquivalent signal strings, can be brought next to each other in the
position list, then we can always merge the corresponding subgraphs (local merge). A
tocal merge is done using the first metal layer (as mentioned in section 4.2.2) and has no
associated cost in our model. Therefore, a local merge is always advantageous and is

carried out as fong as the two nodes may be merged by application of Transformation 4.5.

However, it two nodes Ny and N, having equivalent signal strings cannot be brought next
to each other in the position list, then we have to consider a nonlocal merge (section
4.2.2). A nonlocal merge is done using the second metal layer. The number of horizontal
fines for nonlocal merges is limited and we have to determine the feasibility of a

hoiizontal line from N to N, before carrying it out.

4.5.6.2 Layout Considerations for Transformations 4.2 and 4.3

As discussed carlier, both Transformation 4.2 and 4.3 reduce the number of nodes at the
current level, but may increase the number of nodes at one or more of the previous levels.
Onc of the tactors determining the cost of a particu!~r implementation of a PTL network is
the arca required for implementation. This in turn depends on ihe width of the network. In
our implementation, the width of a PTL network is directly related to the maximum
number of nodes (N;,,,,) at any given level of the corresponding 123-DD. Therefore, one
goal of our synthesis algorithm is to reduce N, as much as possible. Another
consideration is that, in certain cases, there may be no way to place the additional
transistors in the new path obtained by applying Transformation 4.2 or 4.3, according to

our layout strategy (section 4.2.2). Therefore, before actually applying Transformations

4.2 or 4.3, we check if

L Synthesis and 123-Decision Dingrams The Trinsformation rles 60

L ety of Wl

(1) N is increased as o result of this transformation and
(1) The new node, which witl be crested at the current level as a result of the transtor-

mation, occurs as a dunnmy node in the position list,

The transformiation is carricd out only if both of the above conditions are satistied. The
first condition ensures that the width of the PTL network does not increase as a result of
the transformation. The second condition ensures that there is an efficient way of placing

the transistors in the new path, which is consistent with our layout strategay.

)
Lt

4.6 Synthesis Procedure

4.6.1 Synthesis procedure in a nutshell

Our procedure for generating a 123 DD for a given Boolean function F of n variables is

given below. Here the function F is defined in the form of a bit map of size 2" . This is a
top-down recurstve, heuristic which proceeds level by level. Euch level corresponds to
one input variable (in truc or complemented form). The inputs are arranged in order from

the most significant (top level) to the least significant (bottom level).

The first step is to determine a suitable variable ordering. Afier this, the procedure starts
with a single node, at level I, which corresponds to the most significant variable X,. The
signal string associated with the initial node at level 1, specifies the entire function that has
to be implemented. At this point, the current level is 1. The 123-DD is expanded level by

level and transformations are carried out on the model based on the signal strings

associated with the nodes at the current level.

PTL Synthesis and 123-Decision Diagrams Synthesis Frocedure 6l

University of Windsor

1. Pick an optimum ordering of input variables

2. Redefine the bitmap
If the original variable ordering has been changed, modify the initial bitmap 1o reflect
this change.
3. Current level = 1
Initialize the current level 1o 1. Step 4 must be repeated for cach level in the 123-DD.
4. REPEAT
a. Generate children.
Use Transformation 4.1, to generate nvo children from cach nonterminal node at
the current level,
b. Current level = Current level + 1.
The nexi level, consisting of nodes generated in 4a, becomes new current level.
¢. Reduce the number of paths in the 123-DD.

s For cach pair of nodes (N, No) at the current level, check if the two paths from
the common ancestor to Ny and Ny can be combined into a single path by
applying Transformation 4.2. or Transformation 4.3

s Apply these transformations only if all relevant layout constraints (section
4.5.6.2) uare satisfied

d. Convert nonterminal nodes to terminal nodes.
Check each nonterminal node at the current level and convert to a tcrminal node

if it satisfies the conditions of Transformation 4.4.

e. Merge subgraphs
For each pair of nonterminal nodes (N;, N,) at the current level check if

Transformation 4.5 is applicable; if so
» connect Ny, Ny by local merge if possible
o else connect Ny, N5 using nonlocal merge if feasible

UNTIL there are no nonterminal nodes at the current level.

IT'L Symihesis and 1 23-Decision Dingrams Synthesis Procedure

Uiy ety of Witdsor

At each level, the various transformations may be applied to the nodes o manipulate the
graph. The main objective of such trmsformations is to try 10 reduce the “width® ot the
graph, which is defined as the maximum number of nodes in one level. This is the primary
cost factor in the synthesis procedure. When no more transformations can be applied to
any of the nodes at the current level, the nodes are expanded 1o generate the next level,
which becomes the new current level. This process continues for cach level until pass

signals for every node in the current level have been determined.

4.6.2 Complexity of the Algorithm

In this section we will determine the complexity of synthesizing the 123-Decision
Diagram for an n-input function, given a specific variable ordering, This is done by
considering the complexity of each transformation applied at a particular level. Suppose,
we are currently considering the i jevel. The maximum number of nodes at this level is

N=2'. Transformation 4.1, which generates the children of a node, involves simple bit
manipulations and has complexity O(/). Applying this to all the nodes gives us a

complexity O(N}.

Transformations 4.2, 4.3, and 4.5 involve comparing cach pair ol nodes at the current
level. Since there are N such nodes, the number of such comparisons is N(N-1)/2. For
each pair of nodes, we must check and update certain conditions at cach level upto the
common ancestor. The common ancestor may be at most i levels above the current level.
So Transformations 4.2, 4.3 and 4.5 have complexity O(Nz.r‘ J. Transtormation 4.4 involves

checking the bitmap of a node and has complexity O(/). Therefore, for all N nodes, the

complexity of O(N).

Therefore the complexity for applying all the transformations at the it level is O(N) +
O(Nz.i) + O(N) = O(Nz.i) = 0(22f.i). Since there are n levels in the [23-DD, the total

complexity is Ofn.2").

PTL Synthesis and 123-Decision Dingrams Synthesis Procedure 0l

U'niversity of Windser

4.6.3 “Flipping” of Nodes in the 123-DD

In the 123-DD we keep track of the relative positions of the nodes, as well as the
interconnection between them. The positional information is maintained in the form ot a
position list (section 4.4). Any change in the relative position of the nodes in the 123-DD
implics a corresponding modification of the position list. An outline of the procedure

implementing this is given below.

The function try_to_make_adjacent(PL; N, N») takes two nodes Njand N at the current
leved, the initial position list PL; and returns the modified position list PLy after Ny and
N> are brought as close together as possible. Initially, before any subgraph merge has
tuken place, cach node in the 123-DD is free to be the left, middle or right child of its
parent. When Transtormation 4.5 is applicd to two nodes (N|. N), these two nodes must

be brought as close to cach other as possible and subsequent merges should not move
them farther apart. Thus, cach subgraph merge imposes some additional restrictions on the
atlowed positions of a node, and these restrictions must be taken into account for
subsequent merges. The position list is modified after each application of Transformation

4.5 1o reflect these changes.

17YL Synthesis and 1 23-Decision Diagrams Synthesis Procedure 64

Uininvensiy of Windsat

ry_to_make_adjacentPLy Ny Nps)

Find the common ancestor N of Ny and N> ¢

Find the path pl = [N - ¢op - Nyp-ep) <Ny - ooy - Nyl from N 1o Ny
Find the path p2 = [N - ey - Ngy ~¢12 -Npa - - eps - Niof from N 1o Ny
Make Ny; and Nys adjacent if possible;

IF Ny is to the lefi(right) of Ny THEN

FORi= 11tk DO
{

Move Niyp as much to the right(left) as possible;
Move Ny as much to the lefi(right) as possible;
/
Update the position list to reflect this change:
IF all nodes between Niy and Ny in updated position list, are dummy nodes THEN
Remove all dimmy nodes between Nyjand Ny in the updated position list:

RETURN the updated position list;

Example 4.2:

Suppose we want to merge the subgraphs below nodes 27 and 37 in Figure 4.13(a). The
position list for this structure is PL, = {{{27, 28, 29}, {30, 31, 3290 {334, 344, 3541 1,
{{36, 37, 38}, {39, 40, 41}, {42, 43, 4.} }, {{45y, 46, 47,3, {484, 49,4, 5043, {51,

524, 53433 1

step 1: We find the common ancestor of nodes 27and 37, which is node 1.

PFL Synthesis and 123-Decision Diagrams Synthesis Procedure 05

University of Windsor

step 22 We tind pl = {1-¢yy - 3-¢4-9-c¢q - 27
We ind p2 = [1-¢cpga-4-¢ja- 12 - 099 - 37].
step 30 Nodes 3 and 4 are adjacent in the 123-DD.
step 4(a): We make 9 the right child of 3 by switching the positions of nodes 9 and 10.
We make 27 the right child of' 9 by switching the positions of nodes 27 and 28,
step 4(b): Keep node 12 as the left child of node 4.

We make 37 the left child of 12 by switching the positions of nodes 36 and 37.

Now nodes 27 and 37 are adjacent in the 123-DD (Figure 4.13(b)). and we modity PL; to
reflect the fact that nodes 27 and 37 must always be adjacent to cach other, The moditied
position list is given by PL, = {[{{30, 31, 323}, {33, 34, 3543 {28, 29,} 27. 37. {36,
383 {439, 40, 413}, {42, 43, 443 3], {{45,, 46,. 47}, {48y, 494, 504}, {51, 524
5343

Figure 4.13 : Example of “Flipping” nodes in the 123-DD

I"FL. Synthesis and 123 Decision Dingrams Synthesis Procedune 66

L sty ol Wity

4.7 Interesting properties of 123-DD

4.7.1 Sneak Paths in MOS Circuits

Due to the bidirectional nature of MOS transistors, spurious paths from the output 1o the
terminal nodes may be ercated through the circuit due to merging of subgraphs [JU1.94).
Such spurious paths are called sneak paths, The existence ol sneak pathy in s design can

lead to incorrect circuit implementations as shown below.

Figure 4.14 : Example of Sncak Path

Figure 4.14 shows a partial 123-DD for a five variable function. In this diagram, nodes 3
and 37, having identical signal strings, are merged. Now, we consider an input condition
X1=15Xy=0,X3=1; X4=1,X5=0; Under these conditions the activated path, from
the root to the current level, should be 1->4->12->37->112 and the correct pass signal

transmitted 1o the output should be 0. However, the merge has also activated a second

PTL Synthesis and 123-Decision Diagrams Interesting properties of 123-00) Y]

Ulniversity of Windsor

incorrect path 1->4->12->37->31->10->32->97 for the same sct of inputs. Following this

path results inoa puss signal 1 being transmitted for the simme input.

Detecting the existence of such sneak paths is an inefficient and time consuming process,
Therefore, it is desirable to have a design process which guarantees thut spurious paths

will never be created.

4.7.1.1 Sneak Paths in 123-DDs

In this section we will show that synthesis procedure in section 4.6 can never lead to sncak

paths in 123-Decision Diagrams,

Progerty 4.5: There is always at most one activated path from any node in the 123-DD to

the current level,

Prool: We will now show that Property 4.5 is always satisfied by a 123-DD created using
the synthesis procedure outlined in this chapter. The proof procceds in two parts. In the
first part we show that a 123-DD synthesized without applying Transformations 4.2 and
4.3 always satisfies Property 4.5. In the second part we show that, a 123-DD which
satisfies Property 4.5, continues to do so cven afler applying Transformation 4.2 o1

Transformation 4.3.

Part 1: Edges with label 2 are created only as a result of Transformations 4.2 or 4.3.
Therefore, the 123-DD created without applying these transformations will only have
edges with label 0 or 1. Consider a node with label X; in such a 123-DD. For any input
combination, at most one edge from this node can be activated, connecting it to its child at
the next level. By similar reasoning, there is at most one active path from the child to the
following level and so on until the current level is reached. So there can never be more

than one activated path from any node in the 123-DD to the current level.,

I"T'L Synthesis and 1 23-Decision Dingrams Interesting properties of 123-DD 68

Ly cesaly ot Windan

Part 2: Applying Transformation 4.2 or L3, results i elimination of two paths pl = [N -
eop - Nop ey =Ny - eo-egg - Ny band p2 = [N - ey - Nyy -o -Nja - - e - Ny trom
anode N to the current level and creation of a new path pd = [N - ey - Mgy ¢y -Ny- o
ca - Nyl (see section 4.5.2). Sinee the sequence of edge labels form Ny Nys Ny o the
current level ure identical. path p3 is activated under exactly the same conditions as cither
path pl or p2. Since, the 123-DD initially swtisticd Property L5, there was no other
activated path from N to the current level for the conditions under which pl(or p2) was
activated. Thus it when p3 is activated. it will be the only activated path trom N to the
current level. So. the 123-DD will continue 1o satisty Property 4.5 after Application of

Transformation 4.2 or 4.3,

Property 4.6: The synthesis procedure in section 4.6 guarantees that the tinal design will

be free from sneak paths.
Proof: sneuk paths are created when

(i} for a given input combination, there are two (or more) activated paths from a node
in the 123-DD to two (or more) distinet nades at the current level and

(ii) these nodes have different signal strings associated with them

So, if the 123-DD always satisfies the following Property 4.5, it ensures that the final

implementation will be free of sncak paths.

4.7.2 Performance Guarantee w.r.t. OBDDs

In order 1o compare the results of synthesizing Boolean functions using [23-Decision
Diagrams and Binary Decision Diagrams, we nced to make some simplifying
assumptions. When synthesizing OBDDs, Transformation 2.3 is always applicd when two
(or more) nodes at the current level have identical bitmaps. We do not consider whether
they may be made adjacent, or any other layout factors before merging. For 123-DDs, on

the other hand, merging of subgraphs takes place only after it is found to be feasible, In

PTL Synthesis and 123-Decision Diagrams Interesting properties of 123-DD v

University of Wawdsor

order to make a fair comparison between OBDDs and 123-DDs, we will relax our
synthesis procedure so that in 123-DIDD synthesis procedure. we ignore the “teasibility™ of

a merge. Our assumptions are given below.,

(i) When implementing a Boolean function. both the OBDD and the 123-DD use the
same variable ordering.

(i1) We are dealing with completely specitied functions.

(iii) A design is “better” than another. it its width is less than the other. The width is
defined as the maximum number of nodes at any level.

{iv) Ata given level, two nodes are merged as long as they have identical bitmaps(sig-

nal strings).

We ulso note that;

i Transformations 2.1 and 4.1 are equivalent

b. Transformations 2.3 and 4.5 arc equivalent

¢. Transformation 2.2 is a special case of Transformation 4.2 where the common
ancestor is exactly one level above the current level.

d. Transformation 2.4 is equivalent to part (i) of Transformation 4.4

Theretore OBDDs can be considered to be a special case of 123-DDs. In this section we
will consider each transformation which is used only for 123-DDs and not for OBDDs
(4.2, 4.3 and 4.4 part ii) and show that these transformations never increase the width of

the 123-DD over the corresponding OBDD.

Part 1: Transformation 4.2

We know that Transformation 4.2 reduces the number of nodes at the current level and is
applied only if' it does not increase the current maximum width of the 123-DD (section
4.5.6.2). Transformation 4.5 can still be applied on the new node at the current level if

other node(s) with the same signal string exist. So, Transformation 4.2 does not affect the

FIL Synthesis s 123-Decision Diagrams Interesting properties of 123.DD 70

Eivesany of Winidsa

number of nodes at subsequent levels. Therelore application of Transtornation L2 never

increases the maximum width of the tinal 123-DD.
Part 2: Transformation 4.3

This is almost identical to Transtormation 4.2 except that the new node s the current level
is a terminal node. As in Part [, this manstormation does not increase the current
maximum width and reduces the number of nodes at the current level, Also sinee the new
node is a terminal node it is never expanded at subsequent levels and thus can never
increase the number of nodes at subsequent levels. Therefore application of

Transformation 4.3 never increases the maximum widih of the final 123-DD.

Part 3: Transformation 4.4

Transformation 4.4 simply converts a nonterminal node into a terminal node. So. it does
not affect the number of nodes at previous levels or at the current level. Again, since a
terminal node is not expanded at subsequent levels, Translormation 4.4 can never increase
the number of nodes at lower levels cither. Therefore application of Transformation 4.4

never increases the maximum width of the final 123-DD.

4.8 Example of PTL Synthesis with 123-DD

In this section, we will take a simple example and synthesize a 123-DD for a specific
function following the steps given in scction 4.6.1. We consider a five variable Boolean
function F = 0000 1001 0000 0011 1111 1001 1111 1000 specified as a bitmap ol 32 bits.
This bitmap is obtained after reordering the input variables in step 1. Figure 4.15 shows

the 123-DD at various stages in the synthesis procedure.

Figure 4.15(a) shows the root node with the entire function F as the signal string

associated with it. Figure 4.15(b) shows the 123-DD alter application of Transformation

PTL Symibesis and 123-Decision Dingrams Example of I, Synthess wah 12310 71

University of Windsor

4.1 1o the root node to generate its children, nodes 3 and 4. Figure 4.15(c¢) shows the 123-

DD expanded upto the fourth level after applying Transformation 4.1 to each node in
levels 2 and 3. The List Struct re corresponding to it is PL; = {{{27. 28. 2943 {30, 31,
3290 €334, 344, 3533 1 {{36, 37, 38,3 {39, 40, 41}, {42, 43, 44}). {{45,. 464, 474,

{484, 494, 504} {514, 524 53(1}}}.

F=(HIOTHOTO00DDO1] 1 TTHIO00TTTTI00N E=OOGO100 100000011 111110001 1111001

t

() Q0010010000001] LETETOBOTLLTT00]

Figure 4.15 : Example of Synthesis Procedure.

We note that at this point nodes 27 and 30 have identical signal strings, as do nodes 36 and
39. We now check and find that the conditions for applying Transformation 4.2 are
satisfied in both cases. So, Transformation 4.2 is applied to both sets of nodes and the two
new nodes 33 and 42 are added to the current level. The state of the 123-DD at this point is

shown in Figure 4.15(d).

PTL. Symhesis and 123-Decision Dingrams Example of PTL Synthesis with 123-DD 72

Ui emity of Wil

1l

Figure 4.15: Uxample of Synthesis Procedure.

ITL Synthesis and 123-Decision Diagrams Example of ITL Synthesis with 123-DD 13

Universaty of Windsor

We now see that Transformation 4.3 cun be applied 10 nodes 33 and 42 and
Transformation 4.4 can be applicd 1o node 31 to convert it into a terminal node. Figure

4.14(c) shows the 123-DD after applying these transformations.

Finally, we note that nodes 28 and 40 have identical signals strings and we can apply
Transfornition 4.5, However, since they are not adjacent to cach other, we make them

adjacent, by switching the positions of nodes 9 and 10 and nodes 12 and 13, before
applying Transformation 4.5. The updated position list now becomes PL5 = [{ {31, 32,).

{34, 3543). 29, 28, 40, 41, {{37, 384}, {434, 44,3}, {{45,, 46, 47,4}, {48, 49,. 504},

de

{51,52,. 53,33

Finaily, we apply Transfoimation 4.1 to the nonterminal nodes at level 4 and generate the
nodes at the fifth level. All these nodes can be converted to terminal nodes using
Transformation 4.4, So, the synthesis procedure ends at this point, The final 123-DD for

the entire function is shown in Figurc 4.15(1).

4.9 Conclusions

In this chapter we have discussed a new model for representing PTL networks. This model
is based on the concept of decision diagrams. We have also described some transformation
rules for manipulating our model and synthesizing actual PTL networks. The results of
our synthesis algorithm compared 1o existing synthesis techniques are given in the next

chapter.

I Synthesis and 123 Decision Dingrams Conclusions 74

ChapterS

Experimental
Results

5.1 Introduction

In this chapter we discuss the resulis of our experiments in
synthesizing PTL networks using the methodologics outlined in
chapters 3 and 4. We have tested both technigues on benchnuark
circuits and have performed simulations on the synihesized circuits.
In section 5.3 and 5.4, we have presented the results for the

factorization approach and the decision diagram based approach.

Our synthesis procedure is for single output functions. In order 1o
test these heuristics on benchmark circuits, we need 10 obtain a
network of single output functions corresponding to each of the
benchmark circuits. We have used the Boolean Network [BRARE]
approach when testing ous synthesis procedure on benchmark
circuits. A Boolean network consists of a set of interconnected
nodes, cach representing a smaller single output function The areu
complexity of the network is the sum over all nodes ef the area
complexity of cach node. The concept of Boolean networks is

explained in detail in section 5.2,

In our approach we address this problem of synthesizing multi-

level pass transistor logic networks using our heuristics, for cach of

Experimenta! Results

Introcduction "

University of Windser

the individual single output functions in & Boolean network. To determine the efficiency of
our approach, we have compared our results to those obtained by implementing cach node

as i two-level PTL netwaork, using standard synthesis techniques [RADSS).

We have used the arca of the array of transistors 1o estimute the cost of a circuit. This arca
for a single output circuit ts estimated by the product N * 1 where N is the number of
columns of transistors and 1 is the number of inputs 1o the circuit. The cost of a mulii-
output circuit is determined by computing the sum of the arcas of all the single output

funciions in the Boolean Network corresponding to the multi-output circuil.

5.2 Boolean Networks

A Boolean network is & technology independent multi-level logic structure which can be
used to represent multi-output Boolean functions. A large multi-output function is
decomposed into a4 number of smaller functions, which uare then interconnected to realize
the original function. We have used a multi-level logic optimization system, MIS
[BRAR7]. to synihesize the Boolean neiwork. The foliowing example illustrates how

Boolcan networks are used to represent logic functions.
Example 5.1

We consider the function cm162a from the MCNC benchmarks. This function has 14
primary inputs {a, b. ¢, d. ¢, f, g, h, i, j, k, I, m, n} and five primary outputs {o, p, q, 1, 5},

defined below.

cdejn + acejn + cdei + dei + aei + edi + aci +ad + f

2]

p = cdejn+beejn + cdeik + ik + bik + dek + bek + edk + btk + bd + f

q = cdeikl + cegjn+ cdejn + Gkl + dki+ Bil + dil + 281+ T3l + del + Tdl + AT + f

LEvperimental Resuls Boolean Networks 76

Ui e of Windsn

ro= cdeiklm + celijn + cdejn+ Tim + dim + Tkor + dkm + Rim +
dim+ehm+ehm v dh + [+ dem + Cdm
s = ¢jn

The initial Booleun network (Figure 5.1 consists of five distinet nodes, cach

implementing one primary output.

AR

{acdetijn} {bedefijkn} {cdefgijkln} {cdelfhijklmn} {cjn}

Figure 5.1 : Initial Boolean network for cim162a.

We note that q and r are functions of 10 and 11 inputs respectively. To enhance
performance, we might want to decompose a large functions into a number of smaller
function. We use the MIS program to extract common sub-cxpressions and create
intermediate nodes. The primary outputs are then re-expressed in terms the intermediate
inputs as well as some of the primary inputs. For cxample, we could create intermediate

functions y, ap and hyy and redefine the primary outputs in terms of these, as shown below.

y = dfh, +dfni +dfj

Experimental Results Boalean Netwarks T

University of Windsor

!

dfh, +dfn+ dfy

H
=
o+
-~

hy = ¢+

) = f‘_"’h“ -+ (7”1“ + i;’h” + (_”Ihn + _Y’(-ln + (-J(_l“

P = 1kshy + bikliy + kvhy + bkh, + ik5 + bik + va, + ba,,

g = iKI9hg + GBIkl + [3hy + glh, + ki3 + iy + Bki + Ril + Ya, + 74,

ro= iklmghy + hikimby + m3hy + hmhg + lmy + kmy +
imy + him + hkm + him + ya, + ha,,

S = Cjn

The Boolean network corresponding to this decomposition is shown in Figure 5.2. To
illustrate our approach, we consider the synthesis of one node using our heuristics. In the

above network, the node N, realizes the output o where

o = ivhy+aihy + ivhy +aih, + ya, + aa,

If we realize this function using a 2-level PTL network [RADS85] we get

o = a,¥hy (1) + anFhy G) +agih, (i) +aayh, (i) +ya, (1) +ya, (&) +ay(0)

Experinentat Resulis Boolean Networks 78

L ersiny ol W

This requires seven columns (prime pass implicants) to nnplement and the area needed for

this network is 7 X 5 = 35, The multilevel represeniation for the same Tunction is:

[¢]

= @y (1) ~agy(a) +ay(0) + fhy () + hg 0] Q@ + Fay) - This requires only S

columns to implement and the arca needed i 5 X 5 = 25,

0 p q r s

N
) {ejn}
{d,f,jn}
ho {d.f,j.n}
{e.d,c}

Figure 5.2 : A decompssed Boolean network for the function cm162a.

Experimental Results Ioalean Networks

"

Unisersity of Windsor

Each node in the Boolean network is implemented in & similar way, as a PTL network. The

results for the individual nodes are shown in Table 5.1,

Table 5.1: Detailed Area Comparison for Circuit em162a

Node Number of Columns in Area for
Number of 2-level Multi-level 2-level Multi-level
Inputs Form Form Form Form
N, 5 7 5 35 25
N, 6 9 5 54 30
N; 7 1 5 77 35
N, 8 13 5 104 40
Ng 3 3 3 9 9
Ng 5 5 3 25 15
N, 5 5 3 25 15
Ny 3 3 3 9 9
TOTAL 14 46 32 308 178

5.3 Factorization Approach

5.3.1 Area Requirements for Benchmark Circuits

Table 5.2 shows the cost comparison for a number of MCNC benchmark circuits

synthesized using the factorization approach and the traditional two-level minimization

techniques.

.

Table 5.2: Area Comparisons for Benchmark Circuits

Cost for
Name | Number | Number)
of of of 2-level Factorized Percentage
| Circuit | Inputs Outputs Implementation | Circuit Improvement
count 8 "4 808 648 19.8
alu2 10 6 1902 1686 11.35
'l':\-l\t_‘-rilllk‘l‘llill Rvsult; Factorization Approach 80

Uiinveesity of Winday

Cost for

Name | Number | Number

of of of 2-level Factorized Pereentage
Circuit | Inputs | Outputs | Implementation Circuit Improvement
C17 5 2 36 28 2222
comp 32 3 224 1796 19.96
decod 5 15 400 400 0

major- 5 1 40 35 12.5

ity

my_ad 33 17 1773 1255 29.21

der

parity 16] 1248 1068 1442

pcle t9 9 550 398 27.63
unerg 36 12 384 384 0
z4ml 7 4 422 262 17.91

sct 19 15 682 596 14.43
cu 14 11 381 378 0.78

pmi 16 I3 410 410 0
cmb 16 4 245 238 2,85
C1355 4] 32 1824 1336 25.90
C1908 33 25 2093 1895 9.40
CS§315 178 123 6219 5836 6.15
apex?7 49 37 1779 1396 21.52

X3 135 99 4909 4555 721
x4 94 71 8969 6478 2777 |
dsip 228 197 532 397 25.37
mm30a 33 30 5113 4295 16

mm4a 7 4 707 531 33.14
mm9a 12 9 1405 F175 16.37
multl6 17 1 488 488 ()

a

sbe 40 56 814 666 1818 |
C2670 233 140 2877 2454 14.7

b9 41 21 1014 850 16.17
cc 2] 20 348 334 4,02
cht 47 36 508 508 0
cmiSla| 12 2 46 46 0
" Ftotion Ao ’

Ennversiy of Windsar

Cost for
Name j Number | Number
of of of 2-level Factorized Percentage
Circuit | Inputs | Qutputs | Implementation Circuit Improvement
emlS82a [{ 160 160 0
cm 14 5 338 228 32.54
162:
cml63a 16 5 225 225 0
cmi2a 5 3 122 97 20.49
cmgsa 11 3 856 598 30.14
exampl 8S 66 1673 1377 17.69
e
IS 8 8 477 402 15.72
Jal 26 19 901 704 21.86
il 25 16 187 187 0
pclers 27 17 562 400 28.82
terml 34 10 3414 2709 20.65

5.3.2 Effect of Function Size on Area Reduction

As mentioned in chapter 3, a tuctored form must satisfy a number of specific conditions in
order to be included in the final cover. If the number of prime pass implicants for a
function is small, it is difficult to find good factored forms from the set. As the number of
prime pass implicants increascs, there are more choices available and it is more likely that
a good lactored form can be found. To demonstrate this, we have taken the individual
single output functions from il the benchmarks and ordered them in terms of the number
ol input variables. Table 5.3 shows the average improvement for a function of n inputs,
where n varies from 2 1o 10. As expected, for relatively small functions (2-3 inputs), the
savings obtained by the multilevel representation are negligible, since suitable factored
forms usually could not be found. But, as the number of inputs increases, the savings

become more significant.

Experimental Results Factorization Approdch 82

Fiveran of Windawu

Table 5.3: Eftect of Function Size on Area Improvement

Total Number of Columns in
Total number | Number 2-level Factorized Percentage
of Functions | ofInputs | implementation | Implementation | Improvement
R 2 143 1143 0o
465 3 1391 1370 Los
34 4 1384 1273 g0
326 5 1909 1667 1208
202 6 1351 03 18.36
101 7 873 704 19,36
44 8 798 637 20018
66 Y 874 719 17.73
39 10 1088 7706 28.68

5.3.3 Time Requirements for Factorization Algorithm

Our factorization algorithm is fairly complex. We have discussed in section 3 why it was
necessary o start with a set of all prime pass implicants and form quotients with selected
bi-cubic divisors. It we compare this approuach to the standard factorization algorithms,
where only a minimum cover is used for all trial divisions, our approach may seem to be
computationally infeasible. We now show that the time aceded 1o factorize using our
heuristic is comparable to the time needed for a 2-level synthesis, The key observation is
that selecting a good two-level cover is itself known 10 be a NP-complete problem. We
find that although factorization takes slightly longer for larger functions, the time
requirements for both processes are comparable. Tuble 5.4 shows the timing requirements
for gencrating a two-level cover and a faclorized expression for functions of § to 10

inputs.

Experimental Resulis Factorizatiun Appreaeh Hi

Uvetsay of Wandaw

Table 5.4: Time Required for Synthesis

Number of Average Time (s) Required to Generate
Inputs All PIs 2-level Cover Factorized Form
5 (05 (1043 0.05
6 0.050 071 0085
7 0.16 0.21 0.25
8 0.86 i.01 R
9 7.69 4,28 5.88
10 41.44 5793 85.09

5.4 Deciston Diagram Approach

5.4.1 Area Requirements for Benchmark Circuits

In this section we compare the results of two-level PTL synthesis techniques with those

obtained from the decision diagram based approach (chapter 4). When synthesizing this

type of circuits, the number of nonlocal connections at each level has some effect on the

number of columns. For the layout strategy we have used (section 4,2.2) we can have one

nonlocal connection at no cost. With this layout stralegy, we now carry out our arei

experiments in a manner similar that used in Table 5.2.

Table 5.5 gives the results of our synthesis algorithm assuming at most one nonlocal line

per level.

Table 5.5: Area Comparisons for Benchmark Circuits

Cost for
Name | Number | Number 123-DD
of of of 2-level Based Percentage
Circuit | Inputs Outputs | Implementation Circuit Improvement
count g 2 -~ 88 | 512 36.63
alu2 10 6 1902 1356 28.70
C17 5 2 36 28 22,22
Experimental Results Decision Diagram Approach - i l;ld

LUnisersity of Winds

i

Cost for
Name | Number | Number 123-DD
of of of 2-level Based Percentage
Circuit | Inputs Outputs | Implementation Circuit Improvement
comp 32 3 2244 504 77.54
decod 5 15 400 400 0
major- 5 I 40) 25 37.5
iy
my _ad 33 17 1773 580 67.28
der
parity 16] 1248 72 94.23
pele 19 9 550 384 30.18
unerg 36 12 384 384 0
74ml 7 4 422 16 72.51
scl 19 15 682 444 34.89
cu 14 i 381 374 1.83
pml 16 13 410 302 26.34
cmb 6 4 245 211 13.87
C1355 41 32 1824 928 49.12
C1908 33 25 2093 1625 22.36
C5315 178 123 6219 5404 13.10
apex? 49 37 1779 1071 39.79
x3 135 99 4909 3866 21.24
x4 94 71 8969 2775 69.06
dsip 228 197 532 305 42.67
mm30a 33 30 5113 2947 42.36
mmd4i 7 4 707 356 49.64
mm9%i 12 9 1405 793 43.55
mult16 17 I 488 488 ¢
a
sbc 40 56 814 407 50
C2670 233 140 2877 2114 26.42
b9 41 21 1014 583 42.5
cc 21 20 348 297 14.65
cht 47 36 508 508 0
cmlSia 12 2 46 46 0
eml52a 11 1 160 160 0

Experimental Results

Decision Diagram Approach

RS

University ot Wandsin

Cost for
Name | Number | Number 123-DD
of of of 2-level Based Percentage
Circuit | Inputs Outputs | Implementation Circuit Improvement
cm 14 5 REN 180 46,71
1624
cml63a 16 5 225 175 AR
cm82a N 3 122 62 4918 i
cm8Sa T 3 856 181 7885
exampl 85 66 1673 1049 7.3
c2
fS1m 8 8 477 274 4255
lal 26 19 90 | 413 RERTA
il 25 16 187 183 214
pcler8 27 17 562 351 37.54
terml 34 10 3414 2000 IN.78

Since the number of allowable nonlocal connections may vary with technology s well as
the layout stratcgy, we have also conducted several different experimental runs, cach
allowing a different number of nonlocal connections between levels. The results ot all

these runs are summarized below, in Table 5.6.

Table 5.6: Effect of Nonlocal Connections on Area

Percentage improvement of 123-DD over 2-level implementation
with (n) nonlocal connections allowed per level
Name of

Circuit n=0 n=1 n=2 n=3 n=5
count 15.84 36.63 42.57 43.56 43.560
alu2 17.24 28.70 32.91 35.85 40,37
Cl17 22,22 22.22 22.22 22.22 22.22
comp 75.93 77.54 77.54 77.54 77.54

decod 0 0 0 0 0
majority 37.5 37.5 37.5 375 37.5
my_adder 65.25 67.28 68.30 68.30 68.30
parity 84.29 94.23 94.23 94.23 94.23
pcle 28.9 30.18 30.18 30.18 30.18

Experimental Resulls Decision Diagram Approuch Hh

University of Windsar

Percentage improvement of 123-DD over 2-level implementation
with (n) nonlocal connections allowed per level
Name of
Circuit n=140 n=1 n=2 n=3 n=35
unerg 0 0 0 0 0
z4ml 72.51 72.51 72.51 72.51 72.51
set [1.43 34.89 34.89 34.89 34.89
cu 1.83 1.83 1.83 1.83 1.83
pmil 12.68 26.34 26.34 26.34 26.34
cmb 13.87 13.87 13.87 13.87 13.87
C1355 33.33 49.12 49,12 49.12 49.12
C1908 11.42 22.36 22.36 22.36 22.36
C5315 10.58 13.10 13.26 13.26 13.26
apex? 31.25 39.79 39.79 39.79 39.79
x3 11.49 21.24 21.24 21.24 21.24
x4 51.02 69.06 69.13 69.13 69.13
dsip 33.27 42.67 42.67 42.67 42.67
mm3Qa 0.68 42.36 42.36 42.36 42.36
mm4a 32.10 49.64 49.64 49.64 49.64
mim9a 1.0 43,55 43.55 43.55 43.55
multl6a 0 0 0 0 0
sbe 34.4 50 50 50 50 |
C2670 26.42 26.42 26.42 26.42 26.42
b9 29.1 42.5 44.28 44.28 44.28
cc 10.92 14.65 14.65 14.65 14.65
cht 0 0 0 0 0
[cmiSla 0 0 0 0 0
cml52a 0 0 0 0 0
cm 1624 39.05 46.74 48.81 48.81 48.81
cml63a 11.55 22,22 22.22 22.22 22.22
cm82a 49.18 49.18 49.18 49.18 49.18
cm8Sa 62.5 78.85 78.85 78.85 78.85
cxample2 33.05 373 373 37.3 37.3
f51m 33.33 42.55 45.91 45.91 45.91
lal 42.28 54.16 54.16 54.16 54.16
il 2.14 2.14 2.14 2.14 2.14

Experimental Resulis Decision Diagram Approach 87

Linversaty o Windan

Percentage improvement of 123-DD over 2-level implementation
with (n) nonlocal connections allowed per level
Name of :
Circuit n=0 n=1 n=2 n=J3 n=23
peiers 3345 37.54 37.54 37.54 I7.54
L terml 3113 878 387N NS 878

As we can see from Table 5.6, even PTL networks with only local connections show
considerable improvement over two level implementations. Allowing one nonlocal
connection per level significantly reduces the area of the PTL network, in MUY COses,
over that obtained with only local connections. As we further increase the number of
nonlocal lines per level, the improvements obtained in most cases are not very significant.
Only two of the benchmark circuits, alu2 and count, show any significant improvement as

the number of nonlocal lines is increased from 1 1o 5.

5.4.2 Timing Requirements for Synthesis Using 123-DD

In the two-level synthesis of PTL networks, there are two main steps involved. The first is
to gencrate the set of all prime pass implicants for a Boolean function, and the second is to
choose a suitable cover from this set [RADSS]. Both of these are fairly complex, time-
consuming tasks. Synthesis of PTL networks with 123-DDs, takes less time and gives
better results. Table 5.7, shows a comparison of the average time required to synthesize

PTL circuits using both methods.

Table 5.7: Timing Requirements of 2-level and 123-DD Synthesis

Number of Average Time (s) Required to Generate
Inputs 2.]evel Network 123-DD based Network

> 0.093 0.035
6 0.121 0.05
7 0.37 0.]

8 1.87 0.2l

9 11.97 0.28
10 99.37 287

Experimental Results Decision Diagram Approach HE

Unnversity of Windsor

5.5 Simulation Results

Figure 5.3 shows the schematic for the MSB of a4 mod7 multiplier. Latches are placed at
cach ouwput stage for pipelining purposes. We have used a true single phase
clocking('I'SPC) scheme [YUAST] [YUAS9]. The schematic of the true single phase latch

is shown in Figure 5.4

Output
LATCH[

—
X~
XZ— :
_}Zr [X1—|

T

0 X4

Xa X

Figure 5.3 : Schematic of MSB of mod7 Multiplier

Experimental Results Simulation Results 89

Unpversany of Windum

+\"nn
<L

-
b2l o
-

IN—@

C b Y

Y GND

our

Figure 5.4 : Schematic of the Single Phase Latch

The PTL network implementing the mod7 multiplier was synthesized using the algorithm
outlined in section 4.6. Simulations run on the circuit, with an output load of FOOIT show
that it performs satisfactorily at clock speeds of 140MHz. This is comparable 1o the
performance of NMOS logic blocks for dynamic pipelined systems, synthesized using
conventional logic [SID94]. [SID94] shows that NMOS blecks implemented in 1.2
technology, with a maximum of six transistors in series, can run at speeds of up to
142MHz. Logic blocks with a maximum of 10 transistors in series were found to perform

satisfactorily at speeds of 100MHz.

Experimental Results Simulation Results)

Limversaty of Windsor

Transient Response
x16 0 2(sch tic)
21 x2(schematic
50, £ PR R memn
B P P P A
B.OF L 4 |;.t' I R W RS ST A A .
107 3(schematic)
5.0,..0 0 *plschematic) L L
R A S A T S S S S T
A S S S S N A S S S A S
@@P T AT VR AT UE VRN MU PO AU VO N ia
x10 0 5 (schematic)
2+ x5(schematic
A ' A gty —
i ‘l | '- : = f
:- : } \ : :I :
77 S TN TR PO WO N S W 1 N SR E ab 11
x10 2 . ,
6.p *: phi(schematic)
R N A R S B T e B S S B A U B s
R R A
N S T S S S A A S A A A A S S N S T I
e N7/ 1S i RS el el Wk A el ek M Y oot 0 VA el T T Sl et
x5 @ .
g ' Out(schematic)
Lot LR S P et Lt
AW w
e P kel M N R TR M TN WA WO TR W e, ANV SN R P o1 x']@_g
.00 50.8 180,

Figure 5.5 : Simulation Results for mod7 multiplier.

5.6 Conclusions

In this chapter we have reported on the results of synthesis experiments for multilevel PTL

networks. Both the factorization and decision diagram based approaches resulted in

significant improvements over two-level design techniques.

Experimental Results Conclusions

21

Chapter6

Conclusions and
Future Work

This thesis deals with the development of methodologies for the
systematic design of multi-level PTL networks. Bxisting PTIL.
design technigques such as those discussed in [RADSS] and
[PEDS88] arc limited to two-level PTL networks. In conventional
logic design, it is well known that multi-level synthesis technigues
provide considerable savings over two-level design. [t is reasonable
to expect that similar savings can be obtained by applying multi-
level logic synthesis techniques to PTL design. In this thesis, we
have investigated two such multi-level logic synthesis techniqgues
for PTL networks. Both approaches have shown significant savings

over known synthesis technigues for PTL networks.

6.1 Conclusions

The first approach we have looked at is based on the concept of
algebraic factorization. In this upproach we have adapted
conventional factorization lechniques to synthesize PTL networks.
Several modifications were required for this in order to satisfy
restrictions for PTL circuits. In conventional factorization,
selecting a good two-level cover is followed by faclorizing the
selected cover. We found that this approach does not work in our

case due to a number of restrictions in PTL circuits. In our

Conclusions and Fulure Work

Conclusions 92

University of Windwer

approach, we have integrated these two steps {sclecting @ good two-level cover and
lactorizing the selected cover) and we have obtained average improvements of 15% - 20%
over two-level PTL designs for practical sized circuits (upto 10 variables). The tine

required 10 obtain the factorized circuits was comparable to that for two-level circuits.

The second approach in this thesis is based on the concept of decision diagrams, We
introduced o new model, the 123-Decision Diagram, for representing PTL. This model is
an extension ol the binary decision diagram and includes a second data structure to keep

track of transistor placements. This approach is interesting for two reasons,

« Qur synthesis technigue gives dramatic improvements (over 80%) for a number of

benchmark circutts and an average of 30% improvements in the remaining cases.

» Qur model may be mapped directly into a VLSI layout. We keep track of transistor
placements during the process of network synthesis itself and our synthesis deci-

sions are guided by layout considerations (e.g., technology used).

In our investigations, we looked at these two models independently of one another. Both
ol these models offer significant improvements over existing techniques. If we compare
these two models, it is obvious that the decision diagram approach is superior in terms of
number of columns needed, time to synthesize a network, and ability to handle don't

cures.

6.2 Future Work

In chapter 3, we have discussed a heuristic for factorizing Boolean expressions for PTL
implementation. Additional heuristics may be developed for this purpose. Heuristics for

Boolean factorization would be of particular interest.

The most interesting aspect of this investigation is the fact that we use a model (the 123-
DD) which allows us to develop layout driven logic synthesis techniques leading to very

compact layouts for some benchmark circuits and good improvements in others. The

Cuonclusions and Future Work Future Work 93

Linvensaty ot Windsa

computation tinw needed for our synthesis heeristies is considerably less than the time for
conventional synthesis. We feel that more investigation on reducing the delay and power
in multilevel PTL logic networks is likely o be truitful. Some possible approaches are

given below

Since the practical limit of these multilevel wehniques will be determined by the
maximum number of transistors that may lie in a series path, @ more practical amd uselol
cost measure taking into account the area of butters and amplitiers may be used. This

would help in developing CAD tools that integrite these algorithms into the design .

Our data structures make it casy for us to keep track of transistors and their placements,
salculating parameters such as the number of transistors in series may be done on the (y,
and transistor sizing may be done during this step. Future heuristics should include these

aspects

To increase speed, a single function can be further decomposed into a number ot smaller
functions. The Boolean Network analyzer may be invoked by the synthesis program do

this.

A major portion of the time required in our 123-DD approach used to find the best

ordering. Investigation of better heuristics o find an optimum variable ordering is

desirable.

Conclusions and Fulure Work Future Work 94

[ABAKO]

IALGY0]

[AKETS]

IALAYI]

[ASHO1]

[BER$9)

[BRAB2]

IBRAR4]

ety of Windsor

References

M5, Abadir and HK. Reghabatic “Functional test generation for
o &
digitalcircuits described using binary decision diagram," [EEE Trans,

Comput., vol. C-35, no. 4, pp. 375-379, Apr. 1986.

M. Afghant and C.A. Svensson, “A unified single pahse clocking scheme
for VLSI systems™, fEEE J. Solid-State Circuits, SC-25, pages 255-233.
Feb. 1990,

S.B. Akers, "Binary decision diagrams," 1EEE Trans. Comput., vol. C-27,

no. 0, p. 509-516, June 1978.

W, Al-Assadi et al. “Pass-transistor logic design,” International J.

Electronies, 70:739-749, 1991,

P. Ashar, S, Devadas, and K. Keutzer, "Testability properties of multi-level
logic networks derived from binary decision diagrams.” Proc. Santa Cruz

Conf. Advanced Res. VLSI, Mar. 1991, pp. 35-54.

C.l.. Berman, "Ordered binary decision diagrams and circuit structures,"
Proc. IEEE Int. Conf. Comput. Design: VLSI in Comput., 1989, pp. 392-
395,

R.K. Brayton and C. McMullen, “The decomposition and factorization of
Boolean functions,” Proceedings of the International Symposium on

Circuits and Systems, 1982.

R.K. Brayton, “Factoring Logic Functions,” IBM Journal of Res. and
Development., pages 187-198, 1984,

05

[BRAST]

[BRASTb]

[BRASY]

[BRAYO]

|BRY86]

(BUR90]

[CAR91}

[CHAS89]

{CHA92)

L ey of Wondan

R.K. Bravton et al. "MIS: A multiple logic optimization system,” 1EEE

Trans. on Compuiter-Aided Design, 6:1002-1081, 187,

R.K. Bravton. "Algorithims of multilevel logic svnthesis sl optinuzation,”™
Desivn Svstems for VIS Cirenits - Logic Svathesis and - Silicon

Compilation. Martinus-Nijhotl Publishers, 1987,

R.K. Brayton ¢t al. “Multilevel logic minimization using implicit don’y

cures." TEEE Trans. on Computer-Aided Design, 7:723-70, 19SS,

R.K. Brayton et al. "Multilevel logic synthesis,”™ Proceedings of the HEEE,

78:264-300, 1990.

R.E. Bryant, "Graph-bused algorithms Tor Boolean [unction manipulation,”

IEEE Trans. Comput..vol. C-35. pp. 677-691, 1986,

J.R. Burch, E.M. Clarke, K.L.. McMillan, and .1, Dill, "Sequential circuit
verification using symbolic model checking." Proc. 27th HEEEIACM

Design Automat. Conf., pp. 46-51. 1990,

G. Caruso, "Near optimal factorization of Boolean functions,” HI5EE Trans.

on Computer-Aided Design, 10:1072-1078, 1991,

S. Chakravarty, "A testable multiplexer realization of CMOS combination

circuits," Proc. 1989 IEEE Int. Test Conf., pp. 509-518.

A.P. Chandrasckharan et al. “Low power CMOS dignal design,” TEEE J.
Solid State Circuits, SC-27, puges 473-83, 1992,

Ut

[CHA93]

[DIEGY)|

[ELL6S]

[FRI90]

[GHOY4]

[GOPY1]

[HAC67]

[HOR78]

Univensity af Windsor

S. Chakravarty "A characterization of binury decision diagrams." IEEE

Trans. Comput.. vol. 42, no. 2, pp. 129-136, Feb. 1993,

D.L. Dictmeyer and Y-H Su, "Logic antomation of tan-in limited NAND

networks™ IEEE Trans. Compui., vol. C-18, no. 1, lan. 1969,

D.T. Ellis. "A synthesis of combinational logic with NAND or NOR
clenents™ IEEE Trans. Electron. Comput., vol. EC-14, p. 701-705, Oct.
1965.

S.J. Friedman and K.J. Supowit, "Finding the optimal variable ordering for
binary decision diagrams" [EEE Trans. on Computers, vol.39, No.5, pp

710-713, May 1990,

D. Ghosh et al. "TWTXBB: A low latency high throughput multiplier
architecture using a new 4 to 2 compressor,” Proc. 7th Int. Conf. on VLSI

Design, pages 77-82, Jan. 1994.

S.K. Gopalkrishnan and G.K. Maki, “State assignment selection tests for
pass transistor asynchronous sequential circuits,” Proc. 25th Asilomar

Conference on Signals, Systems and Computers, pages 516-520.,

G.D. Hachtel and R.A. Rohrer, “Techniques for the optimal design and
synthesis of switching circuits™ Proc. JEEE, vol. 55, p. 1864-1867, Nov.
1967.

S. Horowitz and S. Sahani, Fundamentals of Computer Algorithms.

Computer Sciencs Press Inc. 1978,

97

[HSU92]

[JUL94]

[KAN94]

[KUZ77)

[LEC70]

{LEES59]

[MALZR9]

[MAT89]

Unnversiny of Winds

W.J. Hsu and W Shen, “Coalgebraic division for multi-level togic
synthesis.”™ Procecdings Design Awtomation Conference, pages J38-442,

Jun 1992,

G.A. Jullien et al. "Dynamic computational blocks for bit-level systolie
arrays.” IEEE J. of Solid-State Circuits, vol, 29, no. 1. pages 14-21, Jan.

1994,

Y. Kanic et al. "4-2 compressor with complementary pass-transistor logic,”
IEICE Transactions on Electronics, vol. ET7-C, lss. 4, pages 647-649, Apr.
1994.

O.P. Kuznetsov, "Program realization of logical functions and automata
Part 1: Analysis and synthesis of binary processes," Awtomata and Remote

Contr., vol. 38, pp. 1077-1087, 1977.

R.J. Lechner, "Atransform approach to logic design™ IEEE Trans. Conmput.,

vol. C-19, no. 7, Jul. 1970.

C. Lee, “Representation of switching circuits by binary decision

programs," Bell Syst. Tech. J., vol. 38, pp. 985-999, July 1959.

A.A. Mulik et al. “Logic minimization for factored forms,” Proceedings

Int. Conf. on Computer Design, 1989,

Y. Matsunaga and M. Fujita, "Multilevel logic optimization using binary
decision diagrams," Proc. IEEE Int. Conf. Comput.-Aided Design, 1989,
pp. 556-559.

KL

Universits of Windsor

{MCME4] C. McMullen et al. “Synthesis and optimization of multistage logic,”

Proceedings Int. Conf. on Computer Design, 1984,

[MENGY] K.S. Menger, ™ A transform for logic networks™ IEEE Trans. Comput., vol.
C-18, na. 3, Mar. 1969.

[IMIT92] M. Mittal and C.A.T. Salama, "DPTL 4-b carry look ahead adder,” IEEE J.
of Solid-State Circuits, pages 1644-1647, Nov. 1992,

{INAISG) R. Nair and D. Brand, “Construction of optimal DCVS trecs,” Tech. Report
RCH&63, IBM T.), Watson Rescarch Centre, N.Y. 1986.

[PASE5] J.H. Pasternak et al. “CMOS differential pass transistor logic design,”
IEEE J. of Solid-State Circuits, 22:216-222, 1985.

[PASEY] J.H. Pasternak et al. “Differential pass-transistor logic partial-product
generator for iterative multipliers,” Proceedings of ECCTD, Brighton,

U.K., 1989

[PAS91] J.H. Pasternak, High-Speed Differential Pass-Transistor Logic. PhD thesis,
University of Toronto, 1991.

[PAS91b] J.H. Pasternak et al. “Differential pass-transistor logic for GaAs E/D
MESFET technologies,” Proceedings Symp. on VLSI Circuits, 1991.

[PASY]1c] JH. Pasternak and C.A.T. Salama, “Design of submicrometer CMOS
differential pass-transistor logic circuits,” IEEE J. of Solid-State Circuits,
vol. 26, Iss. 9, pages 1249-58. Sept. 1991.

[PAS93]

[PEDSS]

{QUISS]

[RADSS]

[(RUD89]

[SAL93]

[SCH68]

(SHE70]

[SID94)

Unsversiny of Windaet

JH. Pasternak and C.AT. Salama, “Ditferential pass-transistor Togie,”

IEEE Circuits and Devices Magazine, vol:9, pages 2328, July 1993,

C. Pedron et al. "Analysis and Synthesis ot Combinational pass transistor

circwits,” IEEE Trans. on Compuier-Aided Design, 7:775-785, 1988,

W.V. Quine. "A way to simplily truth tunctions,” The American

Mathematical Monthiy, vol.62, pages 627-631, Nov. 1955,

D. Radhakrishnan ¢t al. “Formal design procedures tor pass transistor

circuits,” IEEE J. of Solid-State Circnits, 25:531-536, 1985.

R.L. Rudell, Logic Synthesis for VLSI Design. PhD thesis, University of
California, Berkeley, 1989.

O. Saloman and H. Klar, “Sclf-timed fully pipelined multipliers,” [#1P
Transactions A {Computer Science and Technology], vol. A-28, pages 45-
55, 1993.

PR. Schneider and D.L. Dietmeyer, “An algorithm for synthesis of
multiple-output combinational logic™ IEEE Trans. Comput., vol. C-19, no,
3, Mar. 1970,

Y-S Shen and A.C. McKellar, “An algorithm for the disjunctive
decomposition of switching functions™ IEEE Trans. Comput., vol. C-27,

no. 6, p. 509-516, June 1978.

S.K. Siddiq, Medule Generators from Topological Descriptions and Graph

Theoretic Approach. Masters thesis, University of Windsor, 1989,

104}

[SUZ93)

[WANgY]

[WIHI83]

[WHI92]

[YANSO]

[YAU70]

[YUAR7]

[YUAR9Y]

Uninversity of Windsor

M. Suzuki et al. “"A 1.5ns 32-b CMOS ALU in double puss-transistor
logic,” Proceedings 15SCC93, 1993,

A. Wang Algorithms for Multi-Level Logic Optimization. PhD thesis,

University of California, Berkeley, 1989.

S. Whittaker. “Pass-transistor networks optimize NMOS logic.”

FElectronics, pages 144-148, Sept. 1983,

S. Whittaker and G.K. Muki, “Self-synchronized asynchronous sequential
pass ransistor circuits,” IEEE Trans. on Computers, C-41, pages 1344-

1348, Oct. 1992.

K. Yano et al. A 3.8ns CMOS 16X16-b multiplicr using complementary
pass-transistor logic,” IEEE J. Solid-State Circuits, 25:388-395, 1990,

S.S. Yau and C.K. Tang, “Universal logic modules and their applications”
{EEL Trans. Comput., vol. C-19, no. 2, Feb. 1970.

J. Yuan et al. “A true single-phase-clock dynamic CMOS circuit
technique,™ IEEE J. Solid-State Circuits, 22:899-901, 1987.

I. Yuan and C. Svensson, “High-speed CMOS circuit technique,” /EEE J.
Solid-State Circuits, vol.24, No. |, pages 62-70, Jan 1989.

10

Vs eesany b Windsen

Glossary

BDD: Binary Decision Diagram - a directed acvelie representing a Boolein

funciion,

Best-factor: A modification of Brayton’s generie fuctoring algorithm which chooses the

best divisor (in terms of literal count) for factorization at cach step.

Boolean network:A technology independent multileved logic structure, used (o represent

multi-output Booican functions.

Control signal:The signals applied to the gates of the transistors in a PTL network. The

associated vartables are called control variables.

Factorization:Process of decomposing a two-level {unction into a multilevel AND/OR

form.

Kernel: A cube-free subexpression of a function which can be used as a divisor for
factorization.

OBDD: Ordered BDD - a BDD where the ordering of the inputs in the various

paths are the same.

PTL

.

Pass Transistor Logic

PTL network:A network of transistors realizing a Boolean function, where inputs may be

applied to the Gate or Source/Drain of the transistors.

102

University of Windsor

Pass implicanGA single cube with an associated pass signal which covers a group of

minterms.

Pass signal: The signals that are passed through the PTL network 1o the output. The

associated variables are called pass variables.

Prime Pass implicant: A pass implicant which is not covered by any other single pass

implicant,

Signal string: A modilicd bitmap representing the function associated with a node in a
123-DD.

Sncak path: Spurious paths introduced in a MOS circuit due to the bidirectional nature

of MOS transistors.

123-DD: A moadification of the binary decision diagram used to represent PTL

networks.

103

Appendix A

Algorithms Used in Multilevel Synthesis

In this appendix we will give the details of some of the important algorithms outlined in
chapters 3 and 4.
A.1 Algorithms for Factorization
find_factored_form
Given a prime pass implicant P;, this function tries to find a factored Torm FE, which
contains P;, is ordering compatible with the previously selected factored forms FFE|,
FF,, ..., FFJ-_I and has a score greater than that of Py. find_factored_form also takes
as inputs the score of P;, an array of prime pass implicants and @, a sct of minterms

already covered.

104

University of Windsor

find_factored_form(P;. score_of_P;, array_of_previous_lactored forms, array_of_
prime_pass_implicants, €)
[. Select, from array_ofl_prime_pass_implicants, all prime pass implicants Py such
that
a. Py covers at least one element not in- P
b. P; and Py have at least one common literal
2. REPEAT
. Using algebraic division, compute qy; where F = q; * dy; + Ry;. Here Fis the
sum of all prime pass implicants and qy; is @ sum of cubes (q;=c¢) + a3 + ... +¢})
of literals that do not appear in dy;.
b. Discard [rom qy; all cubes ¢; such that ¢; * dy; does not cover any minterms
notin @, Let ¢'y; be the sum of remaining cubes,
c. If the ordering requirements of (q'y;, di;) do not conflict with those imposed by
FF), FF,, FFj.; compute the score for the ordering compatible factored form
(@i » dyi)
UNTIL (all prime pass implicants Py, selected in step I have been considered) OR
(scorc of current factored form (g'y;, di;) > score_of_P;)

3. IF (score of current factored form > score_of_P;) RETURN (q'};. di;)

ELSE RETURN "failed"

105

	University of Windsor
	Scholarship at UWindsor
	1995

	Synthesis of multilevel pass transistor logic networks.
	Arunita. Jaekel
	Recommended Citation

	tmp.1363975211.pdf.xcLHI

