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Abstract

Discotlc liquid crystals (DLC’s) have gained substantia! attention due to their possible 

application as charge conducting material. A charge carrier mobility along the columnar 

rc,71-stacks of 10*! cm2 V'V1, close to mobility values found in single crystals of organic 

compounds, have been obtained for discotic mesophases of high stacking order. 

Processability and self-alignment on surfaces need to be combined with high packing 

order of the mesopfaase to make them ideal materials for organic electronic devices such 

as organic light emitting diodes (OLEDs), organic field effect transistors (OFETs), and 

photovoltaic devices.

It has been shown that incorporation of discotic mesogens into linear polymers widens 

the temperature range of the columnar mesophase and folly suppresses crystallization 

(anisotropic glass formation). Linear main-chain polymers of discotic mesogens, 

however, do not form monodomains of macroscopic dimension and also make a 

homeotropic alignment of the columns very difficult. We chose a star-shaped structure 

for the oligomers presented here because we expect them to combine the advantages of 

linear oligomers with the formation of large monodomains as well as a homeotropic self

alignment on surfaces.

This thesis describes synthetic approaches to heteroheptamers of discotic liquid crystals, 

which should be ideal building blocks for organic photovoltaic devices. 

Hexaazatriphenylene-hexacarboxylic acid [HAT(C02H)g] and its derivatives were chosen 

as n-type semi-conducting central discotic monomer that has six p-type semi-conducting 

hexaalkoxytriphenylene discogens covalently attached to it. HAT derivatives were 

successfully synthesized and their conversions with alkyl alcohols and amines to faexa- 

esters and hexa-amides are discussed.

A complete conversion of all acid or ester groups with low molecular weight alcohols and 

amines was not achieved but transesterification of the hexa-methviester with alkyl 

alcohols catalyzed by titanium (IV) isopropoxide gave 80-90 % conversion. 

Optimization of the reaction conditions should result in a 100 % conversion.

iv
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Monofimctionalized hexaalkoxytriphenylene derivatives were chosen as p-type semi

conducting ligands and several different synthetic pathways towards these triphenylene 

derivatives are presented. Several approaches based on statistical cycllzation to the 

triphenylene or statistical cleavage of one alkoxy group have been reported In literature. 

We, however, could not reproduce the reported yields and found the Suzuki cross

coupling pathway to be the most reliable and highest yielding synthetic approach.

The. preparation of heteroheptamers containing [HAT(CC>2H)6] as central core and 

hexaalkoxytriphenylene derivatives as ligands should be straightforward based on the 

synthetic approaches that have been developed in this thesis. The final assembly of 

heteroheptamers, however was not attempted within this thesis because of insufficient

remaining time.

v
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L INTRODUCTION

1.1 Liquid Crystals

1.1.1 Definition

The term liquid crystal, or mesogen, refers to compounds or materials that exhibit 

intermediate phases between the isotropic liquid and the crystalline solid states. Liquid 

crystals (LCs) have been reported and investigated since their discovery in the late 19th 

century. 3,2,3 Historically, the discovery of liquid crystals is attributed to the work of 

Reinitzer (1838) and Lehman (1889), who both investigated the unusual double melting 

behaviour of cholesteryl benzoate. At a temperature of 145.5 °C, cholesteryl benzoate 

melts into an opaque, turbid liquid, i.e. an intermediate state of matter (mesophase), 

which clears into a transparent isotropic liquid at a much higher temperature of 178.5 °C. 

The notion of double melting refers to the melting point (transition from crystalline solid 

to mesophase) and the clearing point (transition from mesophase to isotropic liquid).4

Usually, matter is considered either fully ordered (crystalline) or fully disordered (liquid, 

gas, glass). In crystalline phases, molecules possess orientational order and three- 

dimensional positional order, while in isotropic liquid and isotropic amorphous phases 

the molecules lack (long range) order. In the various liquid crystalline phases, the 

molecules are in-between the two extremes, i.e. they possess orientational order and up to 

2-dimensional long-range positional order.5

Liquid crystals are further categorized Into thermotropic and lyotropic phases. 

Thermotropic LCs form different mesophases at different temperatures, whereas 

lyotropic LCs do so by changes in concentration of a solvent and temperature.6 

Thermotropic mesophases have been found to be exhibited by two distinct types of 

anisotropic molecular shapes, rod-shaped molecules and disc-shaped molecules.' 

Mesophases formed by rod-shaped molecules are called calamitic LCs and are 

subdivided into nematic phases (only orientational order) and smectic (layered) phases 

(orientational and one- or two-dimensional positional order). Discotic liquid crystal

1
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phases displayed by disc-shaped molecules display nematic and columnar phases (the 

later lias orientational and two dimensional positional order) .3

1.2 Classification of Mesophases8

In the beginning of this century George Friedel conducted many experiments on liquid 

crystals and it was he who first explained the orienting effect of electric fields and the 

presence of defects in liquid crystals. In 1922 he proposed a classification of liquid 

crystals based upon the different molecular orderings of each substance such as nematic, 

smectic, and cholesteric phases.4

1.2.1 Calamitic Liquid Crystals 9

Calamitic, or rod-shaped, molecules show a large difference in length and breadth, thus 

delivering the shape anisotropy required for the formation of these mesophases. Until 

1977, the discovery of discotic LCs, all known thermotropic mesogens belonged to this 

class of mesophases. Consequently, most applications such as' liquid crystal displays 

(LCDs) are based on the properties of calamitic mesophases.

A typical calamitic mesogen consists of a rigid core unit, ensuring the anisotropic 

character, together with flexible side chains, which reduce the melting temperature and 

also induce layer-formation when of sufficient length (microphase segregation). The rigid 

core is usually aromatic, but can also be alicyclic. Two examples of typical calamitic LCs 

are shown below.

R— CsHn

Fig 1.1: Examples o f calamitic liquid crystals 1) dialkylbiphenyl; 2) cyanobiphenyl5

2
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The physical properties cannot only be widely influenced by the nature of the core and of 

the side-chains but also by polar groups that are usually attached to the rigid core. Polar 

groups, especially the CN group, play an important role in the application of liquid 

crystals. In cyanobiphenyls, for example, the CN group introduces a strong longitudinal 

dipole that promotes anti-parallel dimerization and an increase in density due to 

intermolecular dipole-dipole interactions.5 The most important calamitic LC phases, 

although not main subject of this thesis, are briefly discussed in the following parts.

1.2.2 Nematic Calamitic Liquid Crystals

The nematic phase is the least ordered liquid crystal phase, with molecules only 

possessing orientational order, but no positional order. The lack of positional order 

results in a very fluid LC phase that quickly responses to external fields. This fast 

response made it the most common mesophase of today’s LCDs.

Fig 1.2: The nematic calamitic phase.4

1.2.3 Chiral Nematic or Cholesteric phases

The term cholesteric is used for historical reasons since this phase type was first observed 

in derivatives of cholesterol, a chiral natural product. Molecules are arranged in a helical 

super-structure without exhibiting long-range positional order. An N* phase is either 

displayed by a non-racemic chiral liquid crystal or by a mixture of a non-chiral nematic 

LC and a chiral dopant.

3
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1.2.4 Smectic Calamitic Liquid Crystals

Smectic phases show orientational order and also up to 2D positional order as molecules 

form layered structures. About ten different smectic mesophases have been characterized 

with Smectic-A (SmA, see Figure 1.3) and Smectic-C (SmC, see Figure 1.3) being the 

most common ones. The director n is perpendicular to the planes of the layers in a SmA 

phase and tilted with respect to the layer plane in a SmC phase. 10

SmC can, therefore, be distinguished from SmA by the tilt of the molecules with respect 

to the layer plane that causes the formation of distinctly different optical defect textures. 

Their other characteristics are rather similar. Both phases represent the least ordered and 

most fluid smectic mesophases with no in-plane long-range positional order. All other 

smectic phases show some degree of in-plane positional order. In the SmB phase, for 

example, the constituent molecules adopt a hexagonal order within the layers. The 

hexagonal nature of SmB phase generates two tilted analogues called the SmF and Sml 

where the molecules are tilted towards the side and apex of the hexagonal lattice 

respectively.11

Fig 13: Structure o f the SmA (left) and SmC (right) phases.4

4
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1.3 Discotic Liquid Crystals

1.3.1 Introduction

Although many applications have been suggested for discotic liquid crystal phases, 12’13 

such as semi-conducting materials in photovoltaic cells14 and OLEDs, 15 as well as 

electrically tuneable cholesteric mirrors/ 6 the only industrial application so fax has been 

the production of optical compensating films.17,18 These are used to increase the viewing 

angle o f modem LCDs.

The most important future competing technology for LCDs are organic light emitting 

diodes (OLED’s) because of their higher contrast for superb readability in most lighting 

conditions, thinner design for better ergonomics, and compatibility with flexible plastic 

substrates.19 Columnar discotic mesophases could become the new generation of semi

conducting materials for OLEDs because of their high and anisotropic charge carrier 

mobility along the columnar stacks, their excellent processability due to high solubility 

and good surface wetting, and their self-alignment and self-healing properties.

While LEDs convert electricity into light, photovoltaic devices (photodiodes) convert 

light into electricity. Thus, both technologies are closely related and discotic LCs 

developed for the OLED technology will also benefit the advancement of photovoltaic 

devices.20

1.3.2 Classification of Discotic Mesogens

The discovery of discotic liquid crystals generally dates back to the work of 

Chandrasekhar in 1977, although DeGennes and others had already recognized that not 

only rod-shaped but also disc-shaped molecules should form liquid crystal phases. 

During the past seventeen years an enormous amount of research has been invested in the 

synthesis of new disc-shaped LCs and the structural characterization of discotic 

mesophases.22

5
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Two basic types of discotic mesophases have been widely recognized; these are columnar 

and nematic. The least ordered (usually highest temperature) mesophase formed by disc- 

shaped molecules is the No phase. The No phase is analogous to the nematic phase 

formed by rod shaped molecules and is characterized by the presence of only 

orientational order.23

Two other nematic phases have been reported, the nematic columnar (Ncoi) and the 

nematic lateral (Nl) phase. However, the most common phases exhibited by disc shaped 

molecules are those in which molecules n,7t-stack into columns. These show orientational 

and positional order in two dimensions. Columnar phases show a rich poly- 

mesomorphism and are generally classified according to their symmetry (the orientation 

of the molecules with respect to the columnar axis) and the degree of ordering within the
23columns. The intercolumnar order (hexagonal, oblique, rectangular, etc) and the 

intracolumnar order (ordered, disordered) are variables that are indicated in suffixes. In 

addition, chiral forms of No and Col mesophases have also been published.10

6
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Fig 1.4: Cartoons o f most common thermotropic discotic mesophase.24

Many different combinations of cores and side chains have been shown to produce 

discotic liquid crystalline phases (Fig. 1.5), but phthalocyanines and triphenylenes have
i 0 0been by far the most studied disc-shaped cores.

y
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Fig 1.5 : Structures o f some well known DLC’s (a) benzene hexa-n-aika.noa.te, (b) 

hexaalkoxy triphenylene (c) hexa-peri-hexabenzocoronene and (d) phthalocyanines. 9'b

Examples of No phases are still rather scarce in comparison to the plethora of columnar 

materials. Molecules that exhibit No phase are hexa-n-alkyl and hexa-n-alkoxybenzoates 

of triphenylene and hexakis (4-octylphenylethynyl) benzene.5 Columnar mesomorphism 

is exhibited by most triphenylene-, phthalocyanine-, and tetraazaporphyrin- derivatives.

The different core sizes of the discotic molecular building blocks influence the type and 

order o f the formed columnar mesophase. Hexabenzocoronene derivatives, for example, 

show Colho phase of high intracolumnar stacking order due to their large aromatic cores 

while triphenylene derivatives usually display Colh phases with low intracolumnar 

stacking order. Increasing the size of the discotic cores also benefits the temperature 

range of the columnar mesophase. Large disc-shaped compounds, such as substituted 

phthalocyanines and hexabenzocoronens, display very viscous mesophases,24 that are 

difficult to align, and monodomain formation is difficult to obtain if possible at all. 

(Charge carrier mobility and alignment is discussed in section 1.3.6)

13.3 Characterization of Discotic Liquid Crystals

To prove the existence of previously discussed mesophases, principally three techniques 

are employed: optical polarized microscopy (OPM), differential scanning calorimetry 

(DSC), and X-ray diffraction (XRD). OPM involves the analysis o f defect textures of 

liquid crystals with plane-polarized light under crossed polarized conditions.■' Each LCs 

phase displays characteristic textures and each phase transition is accompanied by a

8
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distinct texture change. DSC measures the transition temperatures and heats involved in 

phase transitions while XRD elucidates the molecular packing of each phase.

By using these three techniques, one can easily distinguish between the different discotic 

mesophases. For example, nematic mesophases are easily identified by their 

characteristic defect textures (e.g. Schlieren texture) when viewed by polarized light 

microscopy, their low N to isotropic transition enthalpy (DSC), as well as the absence of 

sharp peaks in the X-ray diffraction pattern. Colt, phase can be identified by OPM 

experiments because of its uniaxial nature since all other columnar mesophases are 

biaxial. The variety of tilted (biaxial) columnar mesophases can only be distinguished by 

X-ray diffraction. The common Coin phase gives a simple and characteristic diffraction 

pattern that is described by the formula dhk= a/4/3(h2+k2+hk).

13.4 Synthetic Routes to Discotic Mesogens

Most of the (organic) disc shaped liquid crystals described in literature are built up from 

an aromatic core, substituted with alkyl or alkoxy tails. Hexasubstituted benzenes were 

the first discotic liquid crystals to be reported5, followed by discotic liquid crystals that 

contain triphenylene and phthalocyanine cores. However, many other core structures for 

discotic liquid crystals have been discovered that include hexaethynylbenzene, perylene, 

porphyrin, triazine, hexabenzocoronene, trisoxadiazolylbenzene, and tristyrylpyridine 

derivatives. They all have in common the ability to stack due to interaiolecular 7 1 ,7 c -  

interactions.

In the following, I will focus on the synthesis of hexaazatriphenylene (HAT) and 

triphenylene derivatives, the two systems studied in this thesis.

9
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NC/ 'CN

Fig 1.6: Examples o f electron acceptors based on (a) 1, 4, 5, 9,10, 12- 

hexaazatriphenylene; (b) Perfluorotriphmylene;(c) 11, 11, 12, 12- 

tetracyananthraoquinodimethane (TCAQ); (d) 7, 7, 8, 8-tetracyanoquinodimethane 

(TCNQ); (e) Tetracyanoethylene. 9~b

HAT is a potential n-type semiconductor with high electron affinity and examples of 

organic electron acceptor molecules are shown in Fig: 1.6. Hexasubstituted HAT 

moieties were first reported by Praefcke et a l26 who condensed the very unstable 

hexaaminobenzene with three equivalents of a-diketones. Kanakarajan27 and Czamik28

later showed that HAT derivatives can be prepared from the commercially available 

hexaoxocyciohexane octahydrate and a-diamines such as diaminomaleonitrile in 1994.

Czamik also developed the synthesis of different HAT derivatives that were substituted 

with peripheral electron withdrawing carboxylic ester, amide, and acid groups (Fig. 1.7).

a) R = H, CH3, C7Hj5, C9H i b )  R= CN? CONH2, COOCH3, COOH

Fig 1.7: HAT derivatives reported by a) Praefcke et a l; b) Czamik et al.
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In 2001, E.W. Meijer presented the synthesis and characterization of a new electron 

deficient liquid crystalline material based on the hexaazatriphenylene-hexacarboxylic 

acid triimide core that has three 3,4,5 -tridodecyioxyphenyl groups attached to its imide
29nitrogens,

Hexasubstituted triphenylenes are electron rich p-type semiconductors (Fig. 1.8 and 

Scheme 1.2) and have been widely studied as discotic mesogens. The symmetric 

derivatives are easily available by oxidative trimerization of alkylated catechol
99derivatives. Derivatives with non-symmetric substitution pattern are more difficult to 

synthesize and will be discussed in the following.

Kumar presented a synthetic procedure for the preparation of mono-, di- and 

trifunctionalized triphenylene derivatives starting from the readily available hexakis 

(pentyloxy) triphenylene by selective ether cleavages with B-bromocatecholborane. 

These triphenylene derivatives were used as precursor molecules for the preparation of 

polymerizable triphenylene networks.30

Palladium catalyzed cross coupling reactions that have been so successfully applied to the 

synthesis of calamitic liquid crystals can also be used in the synthesis of discotic

mesogens.

Fig 1.8: Examples o f  electron rich D LC’s based on (a) triphenylenes, (b) truxenes, 

oxatmxenes and thiatruxenes; and (c) five or six fold (phenylethynyl) substituted 

benzene.9'b
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Scheme 1.1:
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Scheme 1.1: Synthesis o f triphenylenes.
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1.3.5 Specific Interactions in Discotic Liquid Crystals 10

Supramolecular chemistiy-the chemistry beyond the molecular structure deals with non- 

covalent interactions. These interactions include forces like (i) electrostatic interactions 

(ion-ion, ion-dipole, and dipole-dipole), (ii) hydrogen bonding, (iii) %-% stacking, and (iv) 

van der Waals forces (dispersion and induction forces). A combination of these non-

covalent interactions is used in nature to build complex structures that can show multiple
* *11 * « . » »  levels of organization. Some examples of liquid crystals, wherein specific interactions

play a major role, are displayed in Fig. 1.9.

H
OR

p r o

OR'

{ay R, R’VAikyl

tag.

RO

RO'

RO.'

’OR
Or

*

m ® Pi, n  
(€} X - d B r  ), SON 

R̂ Ĉ Hy

ORRO

X-JCSH^CHaOOrfCUV'
td> qcĤ OOafCM̂ .

Fig 1.9: Examples o f specific interactions in discotic liquid- crystals: (a, b) hydrogen 

bonding (c) ion dipole interaction (d) charge transfer interaction (stacks o f alternating 

donor and acceptor groups). Note that in (a) the H-bonds are directed perpendicular to 

the plane o f the disk and in (b) directed in the plane o f disk.10 .

Of all these interactions interniolecular n-n interactions are the most important in 

columnar stacks of DLCs. The overlap of adjacent jc-systems within the columns 

facilitates one-dimensional charge-camer conduction along the columns.

13
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1.3.6 Discotic LCs as Charge Conducting M aterials32

Organic compounds have been discussed as potential candidates for active materials in
'S'Selectronic device for over a decade. Solution-processable conjugated organic materials 

combine the electronic properties of inorganic semi-conductors and the processability of 

polymeric materials. This makes them suitable for commercial applications in opto

electronic technologies, in which the adaptability, simplicity, and low cost of 

manufacture make them extremely attractive/2

Recently, discotic liquid crystals have been discussed as new semi-conducting materials 

in photo-conducting systems and photovoltaic devices/4 Their one-dimensional semi

conducting properties35 combined with self-organizing properties make them particularly

interesting as active electronic component. Discotic LCs also self-assemble at the

interface with the (inorganic) electrodes, which should also optimize the performance of 
<2̂ •

the devices. Due to this unique combination of properties discotic liquid crystalline 

organics have shown high performance in several opto-electronic applications.37

Typical charge carrier mobility values along the columnar stacks of discotic compounds 

are in the range of 0.3-0.001 ̂ lO-4 m2 V' 1 s'1, whereas their crystalline and (isotropic) 

liquid phases display values of about 0.6-0.3*10‘4 and 1 O'8-1 O'9 m2 V'1 s'1, respectively.38 

These values are close to I^IO"4 m2 V'! s'1 which has been found in single crystals of 

aromatic molecules and was, remarkably, of the same order of magnitude for all 

investigated organic materials. This value can therefore be considered to be the 

maximum achievable mobility in conventional organic materials.

The anisotropic charge conduction of discotic materials can -guide the charge carriers to 

the active interfaces of electronic devices. This, however, requires a perfect alignment of 

the self-organizing material which is usually obtained by utilizing interfacial forces or by
■j’l

applying external fields. Alignment techniques for calamitic liquid crystals are well 

developed and play a crucial rale in liquid crystal devices such as LCDs. Comparably 

little attention has been paid to the alignment of discotic liquid crystals. Only recently the

14
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integration of discotic liquid crystals into optical and electronic devices stimulated the 

development of new alignment techniques for discotic nematic and columnar phases.24

A homogeneous alignment (Fig. 1.10) of the columnar mesophase is required for devices 

such as organic field effect transistors (OFETs), while organic light emitting diodes 

(OLEDs) and photovoltaic cells dictate a homeotropic alignment (Fig. 1.10). A 

homeotropic alignment is most easily obtainable with the uniaxial hexagonal columnar 

mesophases (Colh) and always results in the formation of a monodomain (Fig. 1.11). 

Homogeneous alignment does not necessarily result in a macroscopic in-plane alignment 

(unidirectional) of the columns, which is essential for the formation of a monodomain.

Homogeneous alignment Homeotropic alignment

Fig 1.10: Alignment o f discotic liquid crystals.

Low molecular weight DLCs have been shown to align in simple mechanical, electric, 

and magnetic fields. The negative magnetic susceptibility makes the disc shaped cores 

align parallel to the magnetic field while the orientation of the director is confined to the 

plane perpendicular to the magnetic field. Thus, a monodomain can only be obtained if 

the sample is spun in a magnetic field to control the in-plane orientation of the director.

15

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Fig 1.11: Homeotropic alignment o f a hexagonal columnar mesophase (hexa-hexyloxy

triphenylene) in a photovoltaic cell?9

These techniques, however, are difficult to integrate into a production process and the 

homeotropic self-alignment that has been found for some fluid DLCs is much more 

attractive. In general, DLCs that gradually change from a very fluid columnar mesophase 

to a highly ordered solid-like mesophase, such as hexaalkylthiofriphenylenes and 

alkoxytriphenylene derivatives containing one group that stoically and/or electronically 

interact with neighboring molecules in the same column, self-align homeotropically in 

their fluid mesophase and remain aligned upon cooling into the solid like discotic 

columnar mesophase. The higher ordered mesophases were obtained mainly because 

crystallization occurred at much lower temperature or was fully suppressed.24 A change 

from a fluid to solid-like mesophase with tight n,it-stacks is also favorable for the charge 

transport as a better %-% overlap is obtained.

Devices such as OLEDs and photovoltaic cells require hole and electron semi-conducting 

organic materials. Most organic materials, however, are hole conductors with low 

ionization potential, such as hexaalkoxytriphenylenes, while electron conductors with 

high electron affinity are rare. Few discotic n-type cores have been described40 and 

among them is the HAT-hexacarbonitrile that features a first reduction potential of -0.01 

V, indicating the n-type character of the HAT moiety.41 HAT derivatives have been used 

in thermally stable polymers,38 liquid crystals,42 and charge transfer complexes.43

16
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1.3.7 Oligomeric Discotic Liquid Crystals

An oligomer can be a defined structure that can be treated and purified as a single 

molecule but also has polymer-like properties. Main chain polymer liquid crystals are 

formed when the mesogens are themselves part of the main chain of a polymer. The stiff 

regions along the main chain allow the polymer to orient in a maimer similar ordinary 

liquid crystals, hence producing characteristics of liquid crystals. Side chain polymer 

liquid crystals are formed when the mesogens are connected as side chains to the polymer 

by a flexible “bridge”. They have three major structural components: the backbone, the 

spacer, and the mesogen.

Linear main-chain oligomeric discotic materials stabilize the columnar LC phase (wider 

temperature range) and suppress crystallization (formation of anisotropic glasses) but do 

not form monodomains. Also, they align with their column axis parallel to the substrate. 

In 1995, Ringsdorf and coworkers observed that a liquid crystalline star-shaped oligomer 

of triphenylene molecules shows the same properties as a linear main-chain oligomer but 

also aligns homeotropically and forms monodomains.44 This unexpected behavior might 

be explained with the molecular structure of the star-shaped oligomer that matches the 

symmetry of its hexagonal columnar supramolecular structure while a linear oligomer 

does not (Fig. 1.12).

17
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Fig 1.12; Arrangements o f discs in hexagonal columnar mesophase. 44 

L4 Scope of Thesis 45

We' propose star-branched oligomers of DLCs as superior molecular building blocks 

organic semi-conducting materials in OLEDs and photovoltaic devices. They stabilize the 

columnar mesophase, so that polymerizable groups, such as acrylic acid esters, could be 

attached to the side-chains without losing the liquid crystaliinity. Also, disc shaped 

aromatic molecules that do not form columnar mesophases on their own are likely to 

display columnar liquid crystalline phases, when linked together-to an oligomer. These 

oligomers do not crystallize on cooling but form an anisotropic glass of the preceding 

mesophase structure. Crystallization needs to be suppressed because it goes along with 

grain boundary formation and structural rearrangements. The formation of anisotropic 

glasses is also beneficial to the columnar stacking order and, therefore, to the charge

18
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carrier mobility along the columnar 7t,7t-stacks. Finally, the oligomeric approach gives us 

wide flexibility in molecular design.

By synthesizing a star-shaped heteroheptamer containing an electron withdrawing 

aromatic core such as hexaazatriphenylene coupled with electron rich ligands such as 

triphenylene, a columnar mesophase containing a p-n junction is obtained. A sketch of 

the envisaged supramolecular design for a single layer photovoltaic device is shown in 

(Fig. 1.13). Here, the star-shaped heteroheptamer contains a hole conducting discotic as 

central core and six electron conducting discotics as ligands. Nanophase separation into 

hole- and electron conducting 71,71-stacks will allow the photo-generated excition to 

dissipate into two free charge carriers on two separated columns. The two charge carriers 

can now quickly move along the semi-isolated columns to the electrodes. This way 

recombination of hole and electrons should be greatly diminished.

h*v

) HO

<v>H Meta! Cathode 

h*v

hoi© conductor 
dye

electron conductor

RO

« > a 0R
OR OR
■ R = CnH2n+1;

|R CH2 CH2 (CF2)5CF3

Fig 1.13: Simplified cartoon o f  a photovoltaic device containing a star shaped hetero 

heptamer self-organized and self-aligned into nano separated columns o f the same 

discotic entity.45
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This thesis targets the synthesis of a model star-shaped heteroheptamer based on known 

discotic liquid crystals. The structure is shown in (Fig. 1.14} and requires the preparation 

of mono&nctionalized triphenylenes (as. peripheral ligands) and hexaazatriphenylene 

derivatives (as central core).

RO

ORRO

RO OR

ORROOR
RO' OR (CH2),

RO

OR
RO

RO.

OR
OR

ORRO'
RO'OR

RO.
.OR

ORRO
OR

RO’
OR

■ X = 0 & r N

Fig 1.14; Targeted hetero heptamer containing six triphenylene derivatives attached to a 

central hexaazatriphenylene moiety.
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2. RESULTS AND DISCUSSION

2.1 HAT chemistry

9§Hexazatriphenylene (HAT) derivatives are electron deficient heterocycles." HAT 

derivatives (promising central n-type core) were synthesized in fair to excellent yields 

following a procedure that was previously described by Kanakarajan.2/ The 

hexacyanohexaazatriphenylene 1 was prepared by the acid catalyzed condensation of the 

hexacarbonyl and the diamine as shown in Scheme 2.1. Hexaamide 2 was obtained from 

1 by acid catalyzed hydration of all six nitrile groups. 2, was prepared in good yields 

only when 1 was purified prior to use. Preparation of 3 was achieved by acid catalyzed 

convenon of the amides to methyl esters. The complete conversion took as long as 10 

days, which might be one reason for the moderate yield of 51 %. 4 was obtained by ester 

cleavage of 3 under mild conditions using EtsN. The use of EtsN as a mild base gives the 

hexaacid that is free of counter ions because the resulting non-complexing counter ion is 

easily removed upon acidification.

Earlier synthetic approaches of 4 were based on a direct conversion of 2 through a 

perdiazotization of the amides using NaNCh in trifluoroacetic acid and subsequent 

quenching with water. The complete protonation of all acid groups, however, was proven 

to be difficult and remaining trace amounts of Na+ interfered with the complete 

conversion of the acid groups to esters, amides, or imides.27 13C-NMR was the 

spectroscopic method of choice for the verification of structures 1-4 and Figure 2.1 and

2.2 show the spectra of compounds 3 and 4.
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Scheme 2*1:
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Fig 2 .1:13C-NMR spectram of [4, HAT (C02H) 6]
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Fig 2.2: !3C-NMR spectrum of [3, HAT (COiMe) 6]
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In order to convert the HAT derivatives into potential discotic liquid crystals or use them 

as the central building block of a heteroheptamer, all six carboxylic acid or ester groups 

need to be converted. Acid groups of 4 could be converted to esters, amides, or imides as 

shown in Scheme 2.2.

Esterification of a carboxylic acid with alcohols proceeds in the presence of an acid 

catalyst (Fischer esterification) or, in general, a dehydrating agent such as DCC. 

Alternatively, the acid could first be converted to acid chlorides or anhydrides and than 

reacted with an alcohol, or better an amine, to give the corresponding esters or amides,

respectively. Less common is the reaction of a cesium carboxylate salt with an alkyl 

halide in an Sn2  reaction.
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Esters can also be prepared from esters by transesterification with an alcohol of usually 

much higher boiling point. The transesterification can be catalyzed by acid or base 

(usually alkoxide ion) and is driven to completion when the exchanged alcohol is 

removed in vacuum. The mechanism of transesterification in the presence of a Lewis acid 

catalyst is discussed in section 2 .1 .2 .

Scheme 22%

HN-R

R-NH

COaH

R = alkyl

a) SOCL, excess primary amine

b) SOCI2, primary amine (4eq)

c) D IPC , ROH

d) Cs2C 03, R-Br
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A trisdiimide (Scheme 2.2) has been prepared before and displayed discotic LC phases.46 

The hexaamides are less likely to give LC phases because of the expected strong 

intermolecular H-bondlng, which will probably Increase their melting points to too high 

temperatures. We, therefore, focused on the preparation of hexaesters for the small 

molecule derivatives. For the formation of the heptamers both, hexaesters and 

hexaamides could be useful building blocks.

The following two parts, 2.1.1 and 2.1.2, will discuss the hexaesterification and 

hexaamldation of 4 as well as the transesterification of 3, respectively. For all attempts, 

methods were those that usually result high yielding conversions since we have to 

convert six groups per molecule. Most of these esterification methods have been 

developed for polyester formation as polymers of high molecular weights can only be 

achieved at very high turn over numbers (>99.9 %).

2.1.1 Esterification and Amidation of Hexaazatriphenylene -hexacarboxyifc acid 4

Esterification of 4 was first attempted with pentanol (dried over 4 A  mol. sieves), 1,3- 

diisopropycarbodiimide (DIPC), THF and dimethyl aminopyridine (DMAP) ,47 (Scheme 

2.3). DMAP is widely used synthetically as a nucleophilic catalyst in acylation reactions 

of amines and alcohols. DMF was added to the reaction mixture after few hours, as 4 did 

not fully dissolve in THF. IR spectra of the product mixtures confirmed the presence of 

free acid groups, resulting from incomplete conversion. Upon repeating the reaction with 

di (ethylene glycol) methyl ether as alcohol, the same results were obtained.

High conversions have been reported when a salt 4-(dimethylamino) pyridinium 4- 

toluenesulfonate (DPTS)48 was used as the catalyst for the carbodiimide method. These 

conditions resulted in a partial conversion of the acid groups but no ester formation. The

carbonyl stretching vibration in IR spectra suggests the formation of amide-like groups, 

which could be N-acylureas, a typical side product of the carbodiimide-mediated 

esterification. DPTS has been shown to fully suppress this side-reaction in the 

polycondensation of benzoic acid and phenol derivatives. We assume that the two acid
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groups in ortho position might be the main reason why the formation of N-acylureas 

seems to be favoured in our case. Another interesting observation is that the observed 

side-product became insoluble in DMF/THF and precipitated out.

The next attempted conversion of the acid groups was based on the prior conversion of 

the hexaacid to the hexaacid chloride. Acid chlorides were prepared from the 

corresponding acids by the reaction with thionyl chloride. This reaction needed DMSO as 

co-solvent and did not proceed at room temperature but at 70 °C over 3 days.

The hexaacid chloride was reacted in situ with octylamine in the presence of 

triethylamine since amines react more easily with acid chlorides than alcohols. The 

reaction was quenched after 3-4 days and resulted in an incomplete conversion of the acid 

groups according to proton NMR and IR spectra.

Since the acid chloride was reacted in situ it is unclear whether the conversion to the acid 

chloride or the amide formation was incomplete. The method, however, seems to work 

in principle and optimized reaction conditions should allow for the formation of the

hexaamide.
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Scheme 23:
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a) Pentanol, DMAP, DIPC, DMF, RT

b) Di (ethyleneglycol) methyl ether, DMAP, DIPC

c) SOCI2, 70 °C, Octylamine, EtsN
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2.1.2 Transesterification of Hexamethyl hexaazatriphenylene hexacarboxylate 3

Transesterification of esters is usually acid catalyzed, as base catalysis could cause side- 

reactions due to a-deprotonation (though not in our case). We employed titanium (IV) 

isopropoxide as a Lewis acid catalyst that has been successfully used for 

polycondensations.49 The mechanism of this transesterification is shown in Scheme 2.4.

Scheme 2.4:

o
+ Ti (OiPr)4 ^ 
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Transesterification of 3 was attempted with different alcohols under different conditions. 

Pentanol, undecanol, and bromononanol were reacted at temperatures between 120 °C 

and 150 °C under vacuum for 1 to 8 days and gave incomplete conversions according to 

’H- and 13C-NMR (Scheme 2.5 and Fig. 2.3). DMF and DMSO were added as co

solvents without changing the course of the reaction.

Conversions of 82 %, determined by integration of the ^-N M R  spectrum were achieved 

with higher boiling alcohols such as undecanol. A complete conversion apparently needs 

higher temperatures as prolonged reaction times or repeated treatment did not change the 

ratio between methyl ester and transesterified ester. We later found that complete

conversion for similar polyacids was only obtained if the residue, that is left over after the 

alcohols were evaporated in vacuum, was heated to 200 °C for several hours.49

Bromononanol also gave incomplete conversions although the bromine functionality was 

inert to the applied conditions. Difficult, however, was the removal of excess

bromononanol from the product mixture. Di(ethylene glycol)monomethylether, on the 

other hand, was not stable to the reaction conditions and resulted in the formation of a

dark insoluble solid that was not further characterized.
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1 %Fig 2,3: C-NMR of Transesterification of Hexaazatriphenylene hexamethylester
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Scheme 2,5:

c o 2c h 3

5 R *  a) CSH11 
S R =  b) CgH18Br
3  ft ® c)

a) Pentanol, 120 °C, titanium (IV) isopropoxide.

b) Bromononanol, DMF, 120 °C, titanium (IV) isopropoxide.

c) DMSO, 1-undecanol, 110 °C, titanium (IV) isopropoxide.
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2.2 Making monofunction alized hexaalkoxy triphenylenes

Hexasubstituted triphenylenes (electron rich, p-type conductivity) are the most widely 

synthesized and studied discotic mesogens, due to their pronounced photoconductivity, 

self-organization and high charge carrier mobility. We tried two methods for the 

preparation of monofunctionalized triphenylene as ligands (Scheme 2.11 and Scheme 

2.23). Both approaches follow procedures that have already been presented by others.50,51

The statistical approaches are based on the oxidative trimerization of alkylated catechols 

and require a chromatographic separation of product mixtures. The other approach is 

based on Suzuki cross couplings and is more versatile. It, however, requires the synthesis 

of several intermediates but would avoid the chromatographic separation of triphenylene 

product mixtures.

2.2.1 Approach 1: Oxidative trimerization of dialkoxy benzenes to

hexaalkoxytriphenylenes

The oxidative trimerization of electron rich catechol derivatives with FeCh and other 

inorganic oxidizing agents are old reactions but their mechanisms are still not fully 

understood. An oxophilic Lewis acid oxidizing agent such as molybdenum pentachloride 

might coordinate to the dialkoxy moiety. The subsequent electron transfer from the %- 

system to the ■ molybdenum fragment forms a radical cationic species. Subsequent 

electrophilic intermolecular attack on another electron rich arene results in the initial step 

for C-C coupling. Loss of a proton and oxidation of the resulting radical with another 

equivalent of molybdenum pentachloride is succeeded by extrusion of the second proton. 

During this rapid conversion the evolution of H Q  can be observed.52

The synthesis of monofunctionalized triphenylene by oxidative trimerization was 

attempted by three different methods: 1) The trimerization of mixtures - of 

dialkoxybenzene derivatives that already contain a functionalized side chain for 

subsequent coupling reactions to form the heptamer; 2) ■ The trimerization of dialkoxy 

benzene followed by a statistical cleavage of alkoxy groups with bromocatecholborane to 

generate a high percentage of the monophenol; 3) The trimerization of mixtures of
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dialkoxybenzene and alkoxymethoxy-benzene to form the monomethoxy-pentaalkoxy-

triphenylene. The methoxy group can be cleaved selectively to generate the phenol, 

which can then be alkylating with alkyl bromides or iodides; Scheme 2,6 summarizes the 

three different synthetic approaches.

Scheme 2.6:

A / Oi@ cleavage
_ _ ..tnmmns&tiQn

cleavage
11 R = C 3 H s 0 H
1 2 r =c h 3 1 3
10 R«CSH11 a n d  CSH11

1 4  R= m ix tu r e s  o f  CH3
a n d  C SH „

15  R= CSH11

1 6  R=H

a lk y ia tio n

17  R=C sH 12OH

18 R = C «H «O H

Method A) is only one step if we can separate the product mixture and OH does not

interfere with the oxidative trimerization. Method B) has been reported in literature but 

requires an extra step for the selective cleavage; 1 2  can be made selectively in one step 

by alkylaticn of the commercially available guiacol. Method C) requires the separation of 

several products after the ether cleavage of OC5H 11.
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2.2.L1 Preparation of dlaikoxy benzene derivatives and their oxidative trimerization

As we were interested in finding the best approach to synthesize monofunctionalized 

triphenylenes, we attempted many synthetic reactions using different reagents and 

conditions.

The substituted 1,2-dialkoxybenzene derivatives 53 needed for the synthesis of mono- 

functionalized triphenylenes via oxidative trimerization were prepared as shown in 

Scheme 2.7

Scheme 2.7:

.OH
Had ©€| StrC||H.|.|g 

.QH MeCW, 85  %

OCsHii

O C 5H 11

19 10

3-(2-pentyloxy phenoxy) propan-l-ol (11) was synthesized from catechol, 1- 

bromopentane and bromopropanoi as seen in Scheme 2.8. The yield was only 42 % 

because of the side products 1,2 -dipentyl oxybenzene and 3-[2-(3-hydroxy 

propoxy)phenoxy] propan-l-ol, which were separated by flash chromatography on silica 

gel using DCM/hexanes 3:2 as solvent mixture for 1,2-dipentyloxy-benzene, and 

DCM/EtAc 4:1 for 3-[2-(3-hydroxy propoxy) phenoxy] propan-1-ol.
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Scheme 2.8;

OH
BrCsH11, BrC3HsOH

,OCsH„

k 2c o 35 Kl, ^

OH SO °C, refl.

separation
11 (42%)

OR

19 11 R = C3H6OH 
10 R a CgH1i (32%)

Oxidative trimerization of 10 (Scheme 2.9) has been achieved with different oxidizing 

agents such as FeCls, M0 CI5 and VOCI3 , o f which M0 CI5 was reported to give the highest 

yields o f 92 % and purest products,50 We did not obtain yields above 22 % despite 

several test reactions at slightly different conditions (Table 1) and the highest yields of 

40 % were obtained with FeCls. Main side products of all these reactions are phenols that 

were generated by HC1 catalyzed ether cleavage. Optimum results were obtained for 

FeCla when the reaction was ran at room temperature for 1.5 h and the generated HC1 

was removed continuously by purging the reaction with N2 .
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Scheme 2.9:

OC.H

10

2.1 e g  MoClg, CH, « 9 

RT, 30  min, 22  %

2.5 eg  FeCi3> CH2Ci. 

RT, 1.5 h, 4 0  %

15

Oxidative mixed trimerization of 10 and 11 to the monofknctionalized triphenylene 

shown in Scheme 2.10 was conducted with M0 CI5. The reaction is completed in 30 min 

at room temperature and yielded the product in 7 % after tedious chromatographic

separations. The use of FeCl3 for M0 CI5 did not significantly improve the final yields and 

this approach was dismissed altogether.

Scheme 2.10:

2 eq 10
41

1.5eq  11

M°Cls, CH2Cl2 ; 

RT, 30  min,7 %

11

0(CH2)30H

13
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Oxidative mixed trimerization of 10 and 12 (Scheme 2.11) to 14 has been achieved by 

using FeCls. The reaction is completed in 2 h at about 40 °C and yielded the product 

triphenylenes in 40 % yield. The workup of the reaction mixture is straightforward but 

only gives a crude product. The product contained small amounts of derivatives that had

  — 4ost-alkylchains --(not methyl) and- were.-0-bserved-.-as- purple-.solids-(prohably:...due..to   _ _

oxidation of the generated phenolic intermediate).

Purging the solution with argon in order to remove excess of HC1 gas could reduce the 

amount of cleavage products. Trapping of the generated HC1 by K2CO3 resulted in the 

formation of dialkoxy benzoic acids (29 % yield) and only about 7 % triphenylene. It 

should be mentioned here that a catalytic amount of strong acid is required for the 

oxidative trimerization of dialkoxy benzenes.

Selective cleavage of the methoxyether in compound 14 (Scheme 2.11) using LiPPh254 

was accomplished successfully with 70 % yield. Unsuccessful was the separation of 16 

from the side product 15. Thus, 16 was converted to 20 using NaH and acetic anhydride 

in THF at room temperature. The chromatographic separation of 15 was now

straightforward and the pure 20 was alkylated with bromononanol to give 18 in 46 % 

yield.
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Scheme 2.11:

.OH .OCH,

2.5 ©€| 2 .5  ©c| §€^^^3

8 0  °C» refi.

OH

85  % 85  %

"OH

1 »S 0€| BrĈ gĤ i 1.S 0€| IĈOCIg 

@0 °C , refi.

.© c 5h „

"OCsH11 

2 eq 10  + 1 eq 12

.OCH,

"OCgH11

40  %
(Total Yield)

OCH

12 eq  FeCI3, DCM

40  °C» 2  h

C5HhO

CgH^O

OC5H11

OCgH^

y ^ o c , H „

o c 5h „

1 4 (1 0  %) 15 ( 30 %)
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Scheme 2.11 cont’d

15

16
14

&c€9H19OH
70 ®C, r®IU, DfBF, Cs£COs 

4 6%

o f 15 (21 %)

16 20
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Table 1: Results for M ods trimerization reactions of 10 using different conditions

REACTIONS
TIME & 
TEMP

Eq NMR YIELD

T# 1 RT/30 min 1.5 Okay 22%

T# 2 RT/30 min 1 . Okay 20%

T# 3 RT/30 min 1 +
K2C 03

Not Okay 
(Dialkoxy 
benzene derivative 
peaks)

29 % substituted
dialkoxy benzene 
derivatives and 
7 % triphenylene

T# 4 35° C/1,5 h 1 Okay 14%

T# 5 35° C/1 day 2 Not Okay
(Phenolic peak)

16 % pure 
triphenylene

T# 6 35° C/4.5 h 1.5 Not Okay 
(Phenolic peak)

7 % pure
triphenylene

T# 7 35° C/30 
min

1.5 Not Okay
(Phenolic peak)

10 % pure
triphenylene

Scheme 2.12:

OCsHu OH

CgH^O.

CsHiiO

■OCgH11
1 .2  eq

o>
CH2C12

C5H1fO,

CsH^O

■OCgĤ
o c sm„

15

oesn„

16(35% )

OCgH^

4 15 (80%)

OCgH,,
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Method C (page: 39) was the last approach we tested (Scheme 2.12) and followed a 

literature procedure 55 3,6,7,10,11 -pentakis-pentyloxy-triphenylen-2-ol (16), the intended 

product, was obtained in 35 % yield, and 60 % of 15 was recovered. An increase in 

reaction time and temperature (from RT to 45°C) did not change the ratio of 16:15 

significantly. We, unfortunately, did not succeed in separating 16 from 15 by flash 

chromatography on silica gel ( A I 2 O 3  would have been a better choice) and, therefore, 

used the mixture for the following alkylation with bromohexanol to yield 17 in 46 % 

(before purification) as shown in Scheme 2.13.

Scheme 2.13:

OH

OCs H

1 5

18
17

Chromatographic separation of 17 and 15 on a pre-packed silica gel column only yielded 

15 as pure product but no 17 was recovered. It is possible that most of 17 was oxidized 

overtime as phenols of alkoxy triphenylenes are known to be readily oxidized by air. 

Discouraged by the low initial yield of 17 and a difficult separation we decided not to 

repeat and optimize this approach as method B) gave better results.
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We also attempted to employ the methyl ether cleavage by LiPhjP for the selective MeO 

cleavage of dialkoxy bromo benzene derivatives 21 and 24 as shown in Scheme 2.14. To 

our surprise neither of the two derivatives reacted under the employed conditions and the 

starting materials were fully recovered. An increase of the amount of LiPPh2 (from 1.5 eq 

to 3 eq) also did not result in any methyl cleavage.

Scheme 2.14:

LiPPh.

2.2.1.2 Mixed oxidative trimerization with TIPS instead of methyl as phenolic

protecting group

Although the methyl ether approach above worked, it is tedious and we tried TIPS as an 

alternative to the methyl protecting group. The TIPS protected phenol could be 

deprotected and alkylated in one step by using CsF in DMF. This would also circumvent 

stability problems caused by the easily oxidized phenols of triphenylenes. 2- 

Triisopropylsiloxy-phenol (25) was selectively formed from catechol as seen in Scheme 

2.15 due to the bulky nature of the TIPS group.56
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Scheme 2=15:

.©UPS
1.2  eq  TIPSCI, DCM

The alkylation of 25 with bromopentane in ethanol at 80 °C surprisingly resulted in a 

partial cleavage of the TIPS group but alkylation in DMF at RT with CS2CO3 as base 

gave 26 in 98 % yield. No TIPS cleavage was observed by NMR spectra.

Scheme 2.16:

The optimized FeCl3 method was employed for the oxidative trimerization of 10 and 26 

to yield triisopropyl-(3,6,7,10,11 -pentakis-pentyloxy-triphenylen-2-yloxy)-silane but

resulted in 16 as seen in Scheme 2.17.
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Scheme 2.17:

OH

OCsH11 

1 6  (4.1 %)

According to the 'H-NMR spectra the TIPS group was completely cleaved off during the 

reaction. It is known that TIPS can be cleaved (from a phenol) by acids. So, it is not 

surprising but we wanted to test how much is cleaved and whether this effects the yield. 

If the phenol was generated early in the trimerization a low yield is expected, as phenolic 

groups are known to Interfere with the oxidative cyclization. The resultant product 

mixture included 15 and 16 in a ratio of 3:1 with an overall yield of 18 %. Due to the 

limited amounts of material available, separation of 15 was not attempted.

2.2.2 Approach 2: Preparation of a mono-functionallzeci triphenylenes via Suzuki 

cross coupling reactions

Approach 1 requires the chromatographic separation of product mixtures, which is 

tedious when gram quantities are required. A selective method that can be easily scaled 

up was based on the Pd (0) catalyzed cross coupling of benzene derivatives to 

terphenyls.51 Another advantage of this method is that we can also couple arenes 

containing electron withdrawing groups, which can not be used for the oxidative 

coupling, and it can also tolerate many more functional groups.
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2.2.2,1 Synthesis of aryl halides and boronic esters

Starting materials for the Suzuki cross coupling are aryl halides and aryl boronic 

acids/esters and their synthesis is described below (Scheme 2.18). Compound 27 was 

synthesized via demethylation of 23 by boron tribromide with a yield of 98 % .57 27 was 

successfully alkylated to 28 with pentyl bromide, and subsequently converted in 62 % 

yield to the boronic acid 29. The boronic acid was finally converted to the boronic ester 

30.58 During the conversion to 29 we observed the side product Id in a ratio of 2:1 that 

could be removed by extraction with hexanes. However, we later completely eliminated 

the formation of 10 by using distilled triisopropyl borate.

Scheme 2.18:

OMe
BBr3|DCM

-78 °C, 98  % 
OMe Br

OH
BrC5H11| §t2CP3
80  °C, refi., 90  %

•OB Br

OCgH.,1

OCsH11

23 27 28

BuLi, THF, -78 °C

62 %
o

y r y

1,3 Propanediol

RT, 1 6 h , 68 %
'OCkH.

29
30

Compounds 21 and 31 (Scheme 2.19) were prepared from dibromination of

12 and 10 respectively; at 0 °C for 24 h in more than 90 % yields.59
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Scheme 2.19:

12

■OC.H,,

Br,

OCH,
DCM, 0  C, 2 4  h

OC5Hh

OCH,

21 (92 %)

OCsHu

B r,

DCM, 0®C, 24 h

,OCsH1i

B r'' ^  ''OCgH11 

31 (9 3  %)

10

Compound 32 was prepared by simple alkylation using appropriate alkyl bromides as 

seen in Scheme 2.20. The problems with the attempted synthesis have been attributed 

with the side products produced during the reaction time, which resulted in low yield of 

35 %. The side products encountered during the reaction are 4-bromo-l, 2-dipentyloxy- 

benzene (28) and 4-bromo-2-pentyloxyphenol (33). The mixture can be separated by 

column chromatography, which resulted in a 35 % yield of 32.
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Scheme 2,20:

^OH  ̂ BrCgH11,
1 .2  eq  BrC0H1sOH

H2C 03, 8 0  °C, refi. 
"OH Br'

.OCsH„
ch ro m a to g ra p h ic  

se p a r a tio n 32  ( 35%)

2 7 32  R= C9H18OH
2® R* CgH^

3 3  R= H

The next stage o f the synthesis Involved the protection of the hydroxyl group In 32 using 

dihydropyran 60 to yield 34 in 94 % (Scheme 2.21). The hydroxyl group in compound 32 

was protected as it interferes the formation of boronic acids (it would react with BuLi). 

34 was successfully converted to 35 In a yield of 85 % (crude product) and subsequently 

to 36 in an overall yield of only 28 %. The THP protecting group, however, appeared to 

be stable to all applied conditions.

Scheme 2.21:

32

'B '
IJ®

.OCsH„
TsOH, NaHCOs, DCM

dihydropyran, 8 “C - 2® UC
"OC#H1gOH

34 (94 %)

■0C5H11

'OC,H18OTHP

BuLi, THF *78 C

V  B - O

) _ o  y .

,OC5H11

1,3-propanediol

16 h, RT

"o c 9h 18o t h p

,OCsM„

"OCgH„OTHP

36 (28 %) 35  (85 %)
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2 2 2 2  Synthesis of ort/w-terphenyl and triphenylene derivatives

Two different approaches to the terphenyl derivatives were tested; a) a stepwise cross 

coupling via biphenyl as shown in Scheme 2.22 and b) a one-pot dual Suzuki reaction as 

shown in Scheme 2.23.

Approach a) started with the synthesis of the biphenyl 37 via the cross coupling of 31 and 

29 using tetrakis-triphenylphosphine palladium (0) as catalyst in only 21 % yield. The 

yield was only 2 1  % because of the side product 1,2-dipentyloxybenzene, which was 

separated by flash chromatography on silica gel. 36 was subsequently cross-coupled with 

37 using Pd (0) to give terphenyl 38 in 36 % yield. The yield was low because of the side 

product 3,4,3 ’,45 -tetrakis-pentyloxy-biphenyl which might have formed during hydrolysis 

and was separated by flash chromatography on silica gel. 38 did not crystallize probably 

due to the racemic THP group and the non-planar orf/io-terphenyl core and, therefore, 

was difficult to purify.
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Scheme 2.22:

Br
1,1 eq 29

37 (21 %)

THPOCnHLj.O
1 eq  37

1.1 eq 36

38 ( 3 6  %)

a) Pd(0), T ol, Ethanol, Ma2C 03 

8 5  °C5 refi., 2 4  h

Approach b) as seen in scheme 2.23, is a one-pot dual Suzuki reaction to yield terphenyl, 

39 from compounds 21 and 30 using Pd(PPh3)4 catalyst at 85 °C for 24 fa. 39 was 

synthesized successfully in a yield of 55 %. We again observed 3,4,3’,4’-tetrakis- 

pentyloxy-biphenyl as side product (32 %), which was separated by chromatography on 

silica gel. Trimerization of 39 with VOF3 at room temperature yielded 16 in 52 %. The 

trimerization of 39 was previously attempted with FeCls, which resulted in small amounts 

of derivatives that had lost alkylchains and were observed as purple solids.

Through this Suzuki cross coupling approach we could successfully synthesize 

monoftmctionalized triphenylene and also avoid the side product IS, which we 

encountered in the oxidative trimerization approach. (Scheme 2.23 next page)
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Scheme 2.23:

1eq 21

■t-

2.2eq 30

OCH,

H,CO

Pd|0)s ethanol, Tol, Ma2C®:

24 h

OC«H,

39 f 55 %)

•OC5H11

1 6 (5 2 % ) 6 c gH „

LiPPi»2) THF 
70 ®Cj refi.

70 °C, refi. CgH^O
;H,1'

oc*H
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3. CONCLUSIONS AND OUT LOOK

We were successful in synthesizing the n-type conducting discogenic (not discotic yet) 

hexaazatriphenylene-hexacarboxylic acid, 4 and its methyl ester, 3. Both 

hexaazatriphenylenes 3 and 4 could function as central building blocks for the 

preparation of the targeted hetero-heptamer and, consequently, different methods for the 

attachment of six side-groups were investigated.

Our efforts focused on the hexaesterification and hexaamidation of 3 and 4, as we wanted 

electron-withdrawing groups to be attached to the hex aazatriphenylene ring. A complete 

conversion of all six carboxylic acid groups per molecule in good yields is required since 

mixtures of penta-, hexa-, and heptamers would be very difficult to separate. Thus, 

esterification and amidation methods that have been successfully used for the preparation 

of polyesters and polyamides by polycondensation reactions were expected to be most 

promising.

Of all the esterification methods that have been tested, hexa-esterification by titanium 

(IV) isopropoxide catalyzed transesterification of the methyl ester 3 gave the best results. 

Test reactions with aliphatic alcohols resulted in incomplete transesterification of up to

85 %. These reactions were all run at temperatures between 110 °C and 150 °C, which 

are not sufficient according to a published investigation, we found later.49 Final reaction 

temperatures of up to 250 °C were reported to be required for a complete conversion. 

Nick Fox, who continues this project, will carry out these reactions. He will not only use 

simple aliphatic alcohols but also the monohydroxy hexaalkoxytriphenylene which is also 

stable to temperatures above 250 °C but does not evaporate or sublime to a considerable 

degree.

Amidation of 4 was attempted via the hexaacid chloride intermediate but again gave only 

incomplete conversion. The incomplete amidation might either be the result of an 

incomplete formation of the acid chloride or an incomplete reaction with the primary 

aliphatic amine. An optimization of the reaction conditions, however, should allow for a 

successful hexaamidation. The formation of a hetero-heptamer also requires the
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preparation of an 9-(3,6,7,10.11 -pentakis-pentyloxy-triphenylen-2-yloxy)-nonan-l -amine

ligand, in analogy to the alcohol (18).

The synthesis of mono-functionalized triphenylenes as ligand discotics for the hetero- 

heptamers was based on chemistry that has been described in literature but caused more 

problems than expected. Two principally different approaches have been investigated in 

this thesis.

Approach 1 was based on the statistical formation of mono-functionalized 

hexaalkoxytriphenylenes. In all these cases, the triphenylene core was assembled via an 

oxidative trimerization of 1,2-dialkoxybencenes, which appeared to be the problematic 

step. The acidic reaction conditions resulted in a partial cleavage of pentyloxy ether 

groups and the generated phenols were then oxidized to pinkish quinone type structures. 

Although the amounts of these si de-products are relatively small (< 10 %) they 

complicated the already difficult chromatographic separation of the statistical product 

mixture. Consequently, the overall yields for all pathways based on approach 1 were low 

and the purification was time consuming.

Approach 2 was based on the preparation of mono-functionalized or/ho-terphenyls by 

Suzuki cross-coupling. On paper, this approach appears to be more tedious than 

approach 1 as several more synthetic steps are involved in the preparation of the ortho- 

terphenyl. All steps to the terphenyl, however, gave good to excellent yields of easily 

purified products and the final oxidative ring closure of the terphenyl to the triphenylene 

was achieved with VOF3 . VCttVBFs etherate, in contrast to FeCls, did not cause any 

ether cleavage and an off-white crude product was obtained.

In summary, successful routes to two starting materials for hetero-heptamers have been 

developed in this thesis. Nick Fox, who continues the work on hetero-heptamers, 

presently studies the final attachment of six p-type semi-conducting monohydroxy 

hexaalkoxy triphenylenes to the n-type semi-conducting hexaazatriphenylene 3 by

transesterification.
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4  EXPERIMENTAL SECTION

4.1 General methods

Reagents used in this thesis were purchased from Aldrich Chemical Company. Chemicals 

were used without further purification unless noted otherwise. Solvents were dried over 

magnesium sulphate prior to use and THF was freshly distilled from sodium. Preparative 

thin layer chromatography was performed using Silica gel GF* 1000 micron plates. 

Analytical thin layer chromatography was performed using 60 F254 aluminum sheets from 

VWR. Silica gel 60 (Merck, 200 to 240 mesh) was used for flash chromatography.

Infrared spectra were run on a Bruker Vector 22. Liquid samples were performed as neat 

films on potassium bromide plates, and solid samples were run as potassium bromide 

pellets. NMR spectra were recorded on a Bruker Avance 500 Spectrometer at 500 MHz 

for ^-N M R  and 75 MHz for 13C-NMR in chloroform if not stated otherwise. Chemical 

shifts are given in ppm relative to TMS and the multiplicities are described using the 

following notations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd 

(doublet of doublets), dt (doublet of triplets). The J  coupling values are given in Hz. 

Fractional distillations were performed using a Buchi GKR-51 Kugelrohr set-up. All 

reactions were performed under nitrogen or argon If not stated otherwise.

4.2 Synthesis of faexaazatripfaenylene derivatives 

Hexaazatriphenylene hexacarbonitrile [1, HAT-(CN) <s]

CN
.CM

D iam in om aleon itr ile NC

AcOH , refi., 2  h, 81 % NC N

CN
CN

Glacial AcOH (1.2 L), hexaoxocyclohexane octahydrate (10.0 g, 32 mmol), and 

diaminomaleonitrile (26.0 g, 240 mmol) was added to a 2 L round bottom flask and
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heated to reflux for 2 h. The resulting black mixture was filtered hot, washing with hot 

AcOH (3*200 m l) to give a black solid. The solid was suspended into 30 % HNO3 (150 

ml,) in a 250 mL round bottom flask and was heated to 100 C for 3 h. The resulting 

brown suspension was cooled, poured into ice H2O (100 mL) and filtered to give crude 

HAT(CN)s as a dark brown solid. Purification was done using a 1 L round bottom flask 

equipped with a magnetic stirring bar was added MeCN (500 mL). Soxhlet apparatus 

with a 43*123 cm thimble size was attached to this flask. The crude HAT(CN)s was 

placed in a cellulose thimble and the system was heated to high reflux for 72 h. The 

receiving flask was allowed to cool and the solvent was removed in vacuo to yield 1 as 

yellow orange solid. (10.2 g, 81 %).

13C NMR [(CD3)2SO): 8  = 141.6 (external Cat), 135.4 (internal Cm), 114.2 (CM). All 

spectroscopic data agree with the values reported in literature.27

Hexaazatriphenylene hexacarboxamide [2, HAT-fCONHi)^]

CN

N

NC

C on e. H2S 0 4 H ,flO C

%

CONH

N

N

Compound 1 (10.2 g, 26 mmol) and concentrated H2SO4 (300 mL) were added to a 1 L 

round bottom flask equipped with a magnetic stirring bar. The mixture was left to stir for 

72 h. The solid slowly dissolved to give a red orange solution. The solution was then 

added drop wise into stirring ice water (3 L), adding extra ice as it melted. The yellow 

suspension was filtered, washed with water (3*300 mL) and acetone (3*300 mL), and 

dried overnight in vacuo to yield 2  as yellow solid ( 1 0  g5 81 %).
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53C NMR [(CD3)2SO]: 8 = 166.2 (CONH2), 148.3 (external CAr), 140.5 

(internal Cat)- All spectroscopic data agree with the values reported in 

literature. 27

Hexamethyi Hexaazatriphenylene hexacarboxylate (3, HAT-(C02Me) 6]

c o n h 2
•CONHg

c o 2c h 3 
1 eo2ct%

h 2n o c MeOH, H2S0 4 H3C0 2C N.

h 2n o c ref!., 1 0  d , 51 % h 3C 0 2C N'

■ con»2 i2CH3
c o n h 2

To a 1 L round-bottom flask equipped with a magnetic stirring bar were added 2 (10 g, 

20.3 mmol), anhydrous MeOH (500 mL), and concentrated H2SO4 (24 mL, 20 eq) and 

heated at reflux for 10-15 d. The resulting gray-yellow suspension was cooled, filtered, 

washed with MeOH (3*100 mL), and dried in vacuo giving a gray solid. The crude

product was dissolved into freshly distilled MeCN (1.3 L) and filtered through Celite (60 

g) using a fine frit (10-20 p) 140 mL funnel; the plug was then washed with additional 

MeCN (300 mL) to ensure complete elution of the hexaester. The resulting yellow

powder after removing the solvent in vacuo was recrystallized from MeCN/MeOH.The 

small crystals were filtered and washed with MeOH to yield 3 as tan solid (7.6 g, 51 %).

13C NMR [(CD3)2SO]: 8  -  167.2 (C02), 148.8 (external CAr), 143.8 (internal CAr), 56.4

CH3) cm'1; !H NMR [(CD3)2SO]: 8 = 4.28 (s, OMe). All spectroscopic data agree with 

the values reported in literature.

(OMe); IR (KBr): vWJ3X = 2951 (CH3, s), 1729 (O O ), 1564, 1442 (CO-O), 1298, 1031 CO-
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Compound 3 (6.5 g, 11.16 mmol) was placed in a 1 L round bottom flask equipped with a 

magnetic stirring bar. To the solid were added distilled H2O (300 mL) and EtsN (30 mL). 

The mixture was left to stir for 60 h until complete dissolution occurred. The yellow 

solution was filtered to remove any undissolved particles; the filtrate was then acidified 

by drop wise addition of concentrated HC1 (ca.25 mL) until initial precipitation. After 

stirring for 30 min, an additional 50 mL of conc. HC1 was added and the suspension was 

filtered and dried in vacuo to yield 4 as beige-yellow solid (5.2 g, 93 %).

13C NMR [(CD3)2SO]: 8 =165.9 (CO2H), 146.8 (external Cat), 141.9 (internal Cat); IR 

(KBr): vmax = 3200-2400 (OH), 1740-1600 (broad, C=0), 1212 (CO-O), 1107 cm"1. All 

spectroscopic data agree with the values reported in literature.27
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Attempted transesterification of Hexamethyl Hexaazatriphenylene hexacarboxylate

[3, HAT-(C02M e)6]

DMSO, Tit(IV)!sopropoxhle

1 -an d ecan o S , 1 2 0  °C

To a 250 mL round bottom flask equipped with a magnetic stirring bar was placed 3 (100 

mg, 0.171 mmol), 1-undecanol (8  eq, 1.368 mmol, 235 mg) and Titanium (IV) 

isopropoxide (50 mol %, 24.3 mg), DMSO (10 mL) and was attached a drying tube. The 

suspension was then left to stir for 4 days at 120 °C. After 4 days cooled the reaction 

mixture, added 1M HC1 (50 mL) and extracted with diethyl ether. The ether layer was 

washed with aqueous sodium bicarbonate solution and dried over magnesium sulphate.

The resultant brown oil was recrystallized from methanol. Crystals were not observed
1 1even after 5-6 days. H-NMR and C- NMR spectra indicated the presence of partial 

conversion.

13C NMR [(CD3)2SO]: 8  -  167.2 (C02), 148.8 (external CAr), 143.8 (internal Cat), 63.0 

(OCH2), 56.4 (OMe, starting material), 40.3 (CH2), 29.6 (CH2), 28.4, 22.6, 14.0 (CH3).
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Attempted amidification of Hexaazatriphenylene hexacarboxylic acid [4, HAT-

( c o 2h ) 6i

SOCS,. 70 °C

Oetylamine, Et3M

R s  HSC ^

To a 250 mL round bottom flask equipped with a magnetic stirring bar was placed 4 (100 

mg, 0.200 mmol), thionyl chloride (12 eq, 2.4 mmol, 286 mg) and DMSO (10 mL) and 

attached a drying tube. The suspension was then left to stir for 3 days at 70 C. After 3 

days removed the excess of thionyl chloride and DMSO using vacuum and added Et2N 

(lOeq, 202 mg) and octylamine (9 eq, 1.8 mmol, 232 mg) at 0 C under argon and stirred 

for three days at RT. After 3 days ethyl acetate (50 mL) was added to the reaction 

mixture and extracted with 1M HC1 and then with H2O. The ether layer was washed with 

aqueous sodium bicarbonate solution and dried over magnesium sulphate. The resultant 

brown oil was recrystallized from methanol to obtain brown solid. ^-N M R  and 13C- 

NMR spectra indicated the partial conversion.

IR (KBR): Vmax = 2960-2856 (CH2 and CH3), 1740 aid  1631 (broad, mixtures of amide, 

acid and imide) cm'1.
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4.3 Approach 1: Synthesis of monofunctionalized hexaalkoxytriphenylenes

4.3.1 Starting materials (dialkoxy benzenes)

1 , 2 -dIpentyloxy-beuzene (1 0 )

OH
2LS ©if 2L1S @c§

O H  SO °C, ref!., 8 5  % OCsH,

To a 500 mL round bottom flask was added catechol (13.2 g, 120 mmol), 1- 

bromopentane (2.5 eq, 42.2 g, 279 mmol), potassium carbonate (2.5 eq, 41 g, 296 mmol) 

and acetonitrile (400 mL). The reaction mixture was refluxed at 80 C. After 3 days the 

reaction mixture was filtered and the resulting brown solution was evaporated in vacuum 

to remove the solvent. The resulting brown oily residue was purified by flash 

chromatography on silica gel using toluene/hexane mixtures 1 : 1  as solvent to yield 1 0  as
o

light yellow oil. This was further purified by fractional distillation at 225 C to yield 10 as

colorless oil (12.5 g, 85 %).

TLC (silica; toluene/hexanes 1:1) Rp 0.5; [H-NMR (300 MHz, CDCI3, 5): 6.9 (4H, m, 

Ar), 3.9 (4H, t, J= 6.0 Hz), 1.8 (4H, m), 1.4 (8 H, m), 0.9 (6 H, t, J= 6.0 Hz). All 

spectroscopic data agree with the values reported in literature.

3-(2-Pentyloxy-phenoxy)-propan-l-ol (11)

B rC s H 11, BrC3HcOH

K2CO3, 8€i,
OH 8 0  ° C  4 2  %

.OCsH„

'® c 3 h 8 @u
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To a 250 mL round bottom flask added was catechol (3 g, 27.2 mmol), 1-bromopentane 

(1.2 eq, 32.6 mmol, 4.5 g), bromopropanol (1.2 eq, 32.6 mmol, 4.5 g), potassium 

carbonate (3 eq, 81.6 mmol, 11.2 g), KI (20 mg) and 2-butanone (150 mL). The reaction 

mixture was refluxed at 80 °C. After 3 days filtered the reaction mixture and the resulting 

yellow solution was evaporated in vacuum to remove the solvent. The resulting yellow 

oily residue was purified by flash chromatography on silica gel using DCM as solvent to 

yield 11 as light yellow oil (2.6 g, 42 %). The side products were separated during the 

purification on flash chromatography using silica gel with DCM/hexanes 3:2 solvent 

mixture for 1,2-di-pentyloxy-benzene and DCM/EtAc 4:1 for 3-[2-(3-hydroxy-propoxy)- 

phenoxy]-propan-1 -ol.

TLC (silica; toluene) Rf: 0.4; ^-N M R  (300 MHz, CDC13, 5): 6.9 (4H, m, Ar), 4.0 (4H, t, 

OCH2, J= .6.0 Hz), 3.9 (3H, t, J= 3.0 Hz), 1.8 (4H, m), 1.5 (4H, m), 0.9 (3H, t, CH3, J= 

6.0 Hz).

l-Methoxy-2-peutyloxy-benzene (12)

OCH3

O C 5H 11

To a 250 mL round bottom flask was added 2-methoxyphenol (5 g, 40.2 mmol), 1- 

bromopentane (1.2 eq, 48.24 mmol, 7.2 g), potassium carbonate (1.2 eq, 48.2 mmol, 6.6 

g) and ethanol (150 mL). The reaction mixture was refluxed at 80 C. After 3 days 

filtered the reaction mixture and the resulting brown solution was evaporated in vacuum 

to remove the solvent. The resulting brown oily residue was purified by flash 

chromatography on silica gel using toluene as solvent to yield 12 as light yellow oil.
o

Further purification by fractional distillation at 225 C yielded 12 as colorless oil. (6.7 g,

85.5 %).
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TLC (silica; toluene) Rf: 0.7; *H NMR (300 MHz, CDC13, 8 ): 6.9 (4H, m, Ar), 4.0 (2H, t, 

J= 6.0 Hz), 3.8 (3H, s) 1.8 (2H, m), 1.4 (4H, m), 0.9 (3H, t, J= 6.0 Hz). All spectroscopic 

data agree with the values reported in literature.53

2-Triisopropylsiloxy-phenol (25)

1 .2  e q  T lP S C l, D CM , 0  ®C

To a 250 mL round bottom flask was added catechol (5 g, 45.4 mmol), TlPSCl (1.2 eq, 

54.48 mmol, 10.4 g), triethylamine (2 eq, 90.8 mmol, 12.5 mL), and DCM (50 mL) and

stirred at 0 C. After one day the reaction mixture was filtered and the resulting orange 

solution was evaporated in vacuum to remove the solvent. The resulting orange oily 

residue was purified by flash chromatography on silica gel using DCM as solvent to yield 

25 as light orange oil (9.3 g, 77 %).

TLC (silica; toluene) Rf: 0.5; *H NMR: § (300MHz; CDQ3) 6.9 - 6.7 (4H, m, Ar), 5.6 

(1H, s, OH), 1.6 (3H, heptad, CH, J= 9.0 Hz), 1.1 (18H, d, CH3, J= 6.0 Hz).

Triisopropyl- (2-peutyloxy-phenoxy)-silane (26)

To a 250 mL round bottom flask was added 25 (9.3 g, 34.9 mmol), 1-bromopentane (1.5 

eq, 52.3 rftmol, 7.9 g), cesium carbonate (1.5 eq, 52.3 mmol, 18.4 g) and DMF (80 mL)
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and the mixture was left to stir at room temperature. After 3 days the reaction mixture 

was dissolved in hexanes and extracted with water to remove DMF. The reaction mixture 

was filtered and the resulting yellow solution was evaporated in vacuum to remove the 

solvent. The resulting yellow oily residue was purified by flash chromatography on silica 

gel using toluene/hexane 1:2 as solvent to yield 26 as colorless oil (9.1 g, 98 %).

TLC (silica; toluene) Rf: 0.6; !H NMR: 8  (300MHz; CDC13) 6.9- 6.7 (4H, m, Ar), 3.9 

(2H, t, OCH2, J= 3.0 Hz), 1.8 (2H, m), 1.3 (3H, m, CH), 1.6 (4H, m), 1.1 (18H, d, CH3, 

J -  6.0 Hz), 0.9 (3H, septad, J= 6.0 Hz).

4.3.2 Oxidative trlmerlzatlons

2 ,3,6 ,7, 1 0 ,11  ■-h exakls-pentySoxy-triphenylene (15)

2 .1  e q  MoCI5, C H 2Cl2

R T, 3 0  m in , 2 2  %

2 .5  e q  f e C I 3, C H 2C8:

RT, 1.5 h , 4 0  %

The compound, 10 (800 mg, 3.19 mmol), and dry dichloromethane (20 mL) were added 

to a 250 mL 3-neck flask and stirred under argon at RT for about 30 min. Then 2.1 eq 

M0 CI5 (1.5 g) was added while purging argon. After 30 min, the reaction mixture was 

added to cold MeOH (dried over MgS04). Greenish yellow precipitation was observed. 

The precipitate was filtered and the obtained crude solid was purified by flash 

chromatography on silica gel using EtAc; the obtained crude solid was recrystallized 

from methanol to yield 15 as white crystals (0.508 g, 22 %). Using the same procedure
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repeated the reaction with 2.5 eq ferric chloride for about 1.5 fa at room temperature 

resulted in 40 % yield.

TLC (silica; toluene) Rf; 0.5; !H NMR (300 MHz, CDC13s 8 ): 7.8 (6 H, s, Ar), 4.2 (12H, t, 

OCH2, J= 6.0 Hz), 1.9 (12H, m), 1.5 (24H, m), 0.9 (18H, t, CH3 J= 6.0 Hz).

3-(3,6,7,10,ll-Pentakis-pentyloxy-triphenylen-2-yIoxy)-propan-l-ol (13)

,o c 5h 11

o c 5h
RT, 30 min, 7 %

10 (796 mg, 3.17 mmol), 11 (1.5 eq, 602 mg, 2.52 mmol) and dry dichloromethane (30 

mL) were added to a 250 mL three-neck flask. Then 12 eq M0 CI5 (1303.2 mg, 4.76 

mmol) was added under argon and stirred at RT for 30 min. After 30 min, the reaction 

mixture was added to cold MeOH (dried over MgSCL), diluted with H20  (20 mL) and 

extracted with DCM (80 mL) using separatory funnel. The organic layer was filtered and 

the obtained crude solid was recrystallized from hexanes to yield 13 as white crystals 

(0.160 g, 7 %).

TLC (silica; toluene) Rf: 0.4; ]H-NMR (300 MHz, CDC13, 8 ): 7.8 (6 H, s, Ar), 4.4 (12H, t, 

OCH2, J= 6.0 Hz), 4.2 (3H, t, CH2OH, J= 6.0 Hz) 1.9 (12H, m), 1.5 (20H, m), 0.9 (15H, 

t, CH3, J= 6.0 Hz).
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2dVlethoxy-3,6,7,1041-pentalds-pentyloxy-tripheiiyleiie (1 4 )

C 5 H 1 1 O

C 5 H 1 1 O

O C 5 H 1 1

OCgH,,

4 0  %

OCH,

a OCH,

.OCgH^

O C 5 H 1 1

OCgH,,

oc5h„

12 eq  FeC!3, DCM 

4 0  °C , 2 h

C5Hi i O

C 5 H 1 1 0

O C 5 H 1 1

OCsH ^

OCsH„
o c s mn

The compounds, 10 (3 g, 15.4 mmol), 12 (2 eq, 7.7 g, 30.8 mmol) and dry 

dichloromethane (60 mL) were added to a 250 mL 3-neck flask and stirred under argon at 

40°C. Then 12 eq ferric chloride (184.8 mmol, 29.9 g) was added. The reaction was run 

through continuous purging of nitrogen and trapping the liberated HC1 using wash bottles 

for 1.5 h. After 1.5 h, the reaction mixture was added to cold MeOH (dried over MgSCL). 

Greenish yellow precipitation was observed. The precipitate was filtered and the obtained 

crude solid was purified by flash chromatography on silica gel using toluene; the 

obtained crude solid was recrystallized from methanol to yield 14 as white crystals (1.7g, 

40 %). The side product 2,3,6,7,10,11 -hexakis-pentyloxy-triphenylene (15) in a ratio of 

3 :1  was observed during the reaction.
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TLC (silica; toluene) Rf: 0.6; 5H NMR (300 MHz, CDC13, 8): 7.7 (6H, s, Ar), 4.2 (10H, t, 

OCH2) J= 6.0 Hz), 4.1 (3H, s, OCH3) 1.9 (10H, m), 1.5 (20H, m), 0.9 (15H, t, CH3, J=

6.0 Hz).

Attempted Triisopropyl- (3,6,7,10,11 -pentakis-pentyloxy-triphenylen-2-yloxy)-silane

OH

+

eq -

12  eq  FeCI3 PCM^ 

4 0  °C j1 .5  h ,1 8  %
+ 1 5

5H 11

The compounds, 10 (2 eq, 13.6 mmol, 3.4 g), 26 (2.3 g, 6.8 mmol) and dry 

dichloromethane (50 mL) were added to a 250 xnL 3-neck flask and stirred under argon at 

40 °C. Then 12eq ferric chloride (81.6 mmol, 13.8 g) was added. The reaction was run 

through continuous purging of nitrogen and trapping the liberated HC1 using wash bottles 

for 1.5 h. After 1.5 h, the reaction mixture was added to cold MeOH (dried over MgSCh). 

Greenish yellow precipitation was observed. The precipitate was filtered and the obtained 

crude solid was purified by flash chromatography on silica gel using toluene to yield 

Triisopropyl-(3,6,7,10,11 -pentakis-pentyloxy-triphenylen-2-yloxy)-silane. According to 

the ^-N M R  spectra the TIPS group was completely cleaved off during the reaction. The 

resultant product mixture included 16 and 15 in a ratio of 3:1 In an overall yield of 18 % 

(1 .0  g).

Note: ]H NMR spectral information for compound 16 was discussed on page 67.
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4,3.3 Reactions with trfphenylene derivatives

3 ,6 , 7, 10, ll-Pentakis-pentyloxy-triphenylen-2-ol (16)

OHOCH.

L iP h » P , T H F
+  1 5

65 °C» refl.,70 %
■5̂ 11

Lithium diphenylphosphine (0.1 M in THF) (1.5 eq, 1.26 mmol, 12.6 mL) was added to 

14 (0.582 g, 0.84 mmol) in dry THF and refluxed at 65 C for 2-3 days. After 3 days 

diethyl ether and water were added to the reaction mixture, which was extracted with 

water and then with 0.1M HC1. After evaporation of the ether in vacuo, the resulting 

brown oil was purified by flash chromatography on silica gel using toluene to yield 16 as 

light yellow oil (0.8 g, 70 %).

Note: Has the side product 2, 3, 6, 7, 10, 11 -Hexakis-pentyloxy-triphenylene (15) in 2:1 

(16:15) ratio from the previous reaction.

TLC (silica; toluene) Rf: 0.4 1, 0.5, 0.55 ; *H NMR (300 MHz, CDC13, 8): 7.9 -  7.7 (6H, 

m, Ar), 5.9 (1H, b, OH) 4.3 (10H, t, OCH2, J= 6.0 Hz), 1.9 (10H, m), 1.5 (20H, m), 0.9 

(15H, t, CH3, /= 6 .0 H z).
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3,6,7,10,11-Pentakis-pentyloxy-triphenyIene-2-carboxylic acid methyl ester (20)

O C O C H gOH

N sH , RT, THF

+  1 5 + 1 5

6 6 %

THF (25 mL) was added to 16 (0.278 g, 0.412 mmol), and followed by added acetic 

anhydride (2 eq, 0.824 mmol, 0.084 g). While purging with nitrogen, NaH (2 eq, 0.824 

mmol, 19.7 mg) was added and stirring was continued at room temperature. After 24 h 

tot-butanol was added to the reaction mixture and then the mixture was poured on to ice. 

The suspension was extracted with dichloromethane and washed with water. The solvent 

was evaporated under vacuum and the resulting yellow oily residue was purified by a pre

packed silica gel column using toluene/hexanes mixtures 3:1 and 2:1 as solvent for side 

product 2, 3, 6 , 7, 10, 11 -hexakis-pentyloxy-triphenylene, 15 and toluene to yield 20 as 

light yellow solid (0.445 g, 6 6  %).

TLC (silica; toluene) Rf: 0.4; !H NMR (300 MHz, CDC13, 8 ): 7.9 -  7.7 (6 H, m, Ar), 4.2 

(10H, t, OCH2, 3= 6.0 Hz), 2.3 (3H, s), 1.9 (10H, m), 1.5 (20H, m), 1.0 (15H, t, CH3, 3=

6.0 Hz).

6-(3, 6 , 7, 10, ll-Pentakis-penty]oxy-triphenylen-2-yloxy)-hexa-l, 3, 5-triyn-l (17)

OH
.OCkH.

2 m  BrC6H12QM, 
Iso p ro p an o l

1 5
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To compound, 16 (0.262 g, 0.388 mmol) in 15 mL dry isopropanol was added 2eq 

bromohexanol (140 mg, 0.776 mmol) and 2eq potassium carbonate (106 mg, 0.776 

mmol). The mixture was refluxed at 60 °C. After three days the reaction mixture was 

filtered and the resulting brown solution was evaporated under vacuum to remove the 

solvent. Chromatographic separation of 15 and 17 in a pre-packed silica gel column only 

yielded 15 as pure product but no 17 was recovered (133 mg, 46 %, before purification).

Note: *H  NMR spectral information for compound 15 was discussed on page 64.

9 -(3 ,6 ,7 , 1 0,1 l-Pentakis-pentyloxy-trIphenyleii-2 -yloxy)-iionaii-l-ol (18)

OCOCH-

+ 1 5

c 5h .

C h ro m a to g a rp h ic  Brc 9H18OH Cs H1 tO

o f 1 s  70  °C , ra il., 1 0

4 ® %

OC9H18OH 
OCgH,,

OCgH^

To a solution of 20 (0.445 g, 0.620 mmol) in 10 mL DMF were added a few drops of

MeOH, 1.5 eq 9-bromononanol (207 mg, 0.930 mmol) and 1.5 eq cesium carbonate (328 

mg, 0.930 mmol) and the mixture was refluxed at 70 C. After three days the reaction

mixture was filtered and the resulting brown solution was evaporated under vacuum to 

remove the solvent. Further purification was done by flash chromatography on silica gel 

using toluene and the obtained crude solid was recrystallized from methanol to yield 18 

(233 mg, 46 %).

TLC (silica; toluene) Rf. 0.4; !H NMR (300 MHz, CDCfi, 8 ): 7.9 -  7.8 (6 H, m, Ar), 4.2 

(12H, t, OCH2, J= 6.0 Hz), 3.8 (3H, t, CH2OH, J= 6.0 Hz), 1.9 (12H, m), 1.5 (32H, m), 

0.9 (15H, t, CH3, J= 6.0 Hz).
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4,4 Approach 2: Synthesis of monofunctionalized triphenylenes via Suzuki cross

coupling

4.4.1 Starting materials (dialkoxy benzene bromides and boronic esters)

Synthesis of lithium diphenylphosphine

Chlorodiphenylphosphine (14.4 mL, 17.70 g) was added drop wise to 2.4 g (0.346 atom) 

lithium wire in 80 mL dry THF and the mixture was stirred and cooled as necessary 

during the initial exothermic period. After 2 h of vigorous stirring at 25 °C the reaction 

was complete. The deep red solution obtained can be stored several days under argon 

without significant deterioration. The excess lithium metal is allowed to remain in the 

flask and the aliquots of the solution are removed by syringe as needed.

4-Bromo-benzene-l, 2-diol (27)

To a 500 mL round bottom flask was added 4-bromo-l, 2-dimethoxybenzene (20 g, 92.1
o

mmol) and dry DCM (60 mL) which was stirred at -78 C (dry ice + acetone). To this 

mixture was added boron tribromide (16 mL, 94 mmol) with the help of a syringe. After

2  days the solvent and rest of the boron tribromide were removed using a vacuum pump;

3 mL HCI + 250 mL H2O were added at 0 C (ice bath) and the mixture was stirred for 30 

min and later at RT until clear solution obtained. The reaction mixture was extracted with 

diethyl ether and the organic phase was filtered through MgSCL; the reddish solution was 

evaporated in vacuum to remove the solvent. The resulting brown oily residue was 

purified by flash chromatography on silica gel using ethyl acetate/hexanes mixture 2 :1  as 

solvent to yield 27 as colorless oil (20 g, 98 %).

lE  NMR (300 MHz, CDCI3, 8 ): 7.0 - 6.7 (3H, m, Ar), 5.0 (2H, b, OH). This data is 

spectroscopically identical to the literature report.57
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4-Bromo-l, 2-dI-pentyIoxy-benzene (28)

OH
B rCgM ^ K2C©3

OH
8 0  °C , ref!., 9 0  %

Br Br

To a 500 mL round bottom flask added 4-bromo-benzene-1, 2-diol, (20 g5 105 mmol), 1- 

bromopentane (2.5 eq, 264 mmol, 39.9 g), potassium carbonate (2.5 eq, 264 mmol, 36.4
o

g) and DMF (150 mL).- The mixture was refluxed at 70 C. After 3 days the reaction

mixture was filtered and the brown solution was evaporated under vacuum to remove the 

solvent. The resulting brown oily residue was purified by flash chromatography on 

aluminum oxide using hexanes as solvent to yield 28 as colorless oil (31 g, 90 %).

TLC (silica; toluene/hexanes 1:1) Rf. 0.34 small; 1H NMR (300 MHz, CDCI3, 5): 7.0 - 

6.7 (3H, m, Ar), 3.9 (4H, t, OCH2, J= 6.0 Hz), 1.8 (4H, m), 1.4 (8 H, m), 0.97 (6H, t, CH3, 

J= 6.0 Hz).

4-Boronic acid-1,2-bis-pentyloxy-benzene (29)

4-Bromo-1,2-dipentyioxybenzene (10 g, 30.3 mmol) was added to a three-neck flask and 

dried under vacuum overnight. Distilled THF (40 mL) was added to it and stirred. BuLi 

(19.3 mL, 31 mmol) was added drop wise to a stirred solution of the benzene derivative 

in THF under argon at -78 C. Once the addition was completed, the reaction was stirred 

for further 2.5 h under these conditions. The distilled triisopropyl borate (1.5 eq, 45.4 

mmol. 8.5 g, 10.4 mL) solution was added drop wise over approximately 15 min and the 

reaction was subsequently allowed to warm to room temp overnight. 80 mL of (3M HC1)

OCsH^
BuLi, THF, -7 8  °C

Br CHO)2b
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was added to the reaction mixture, with cooling in an ice bath and stirring for 2 h. The 

mixture was extracted with ether thrice, washed with water and filtered the ethereal layer 

through MgSOy The solvent was removed under vacuum and the obtained pink solid was 

recrystallized from hexanes to yield 29 as white crystals (5.6 g, 62.8 %).

Q O
Note: triisopropyl borate was distilled at 180 C (temp in the thermometer was 145 C)

TLC (silica; EtAc) Rf: 0.6; lE  NMR (300 MHz, CDC13s 8): 7.8 -  7.0 (3H, m, Ar), 4.5 

(2H, broad, OH), 4.0 (4H, t, OCH2, J= 3.0 Hz), 1.8 (4H, m), 1.4 (8 H, m), 0.9 (6 H, t, J=

3.0 Hz). All spectroscopic data agree with the values reported in literature.58

2-(3,4-Bis-pentyloxy-phenyl)-[l, 3,2] dioxabormane (30)

1 ,3  P rop an ed io l

(HO)2B

To a 250 mL round bottom flask was added 29 (8.033 g, 27.3 mmol), 1,3 propanediol (2 

eq, 4.1g, 54.6 mmol), and hexanes (60 mL). The mixture was stirred at room temperature

for 16 h.'The alcohol phase was separated using separatory fume! and the remaining 

hexanes solution was dried over magnesium sulphate before evaporating under vacuum 

to remove the solvent. The resulting pale yellow oily residue was purified by fractional 

distillation at 210°C to yield 30 as colorless oil. (6.5 g, 6 8  %)

TLC (silica; toluene) Rf 0.7; !H NMR (300 MHz, C D C I 3 ,  8 ) :  7.3 -  6 . 8  (3H, m, Ar), 4.1 

(4H, t, OCH2, 6.0 Hz), 4.0 (4H, m, OCH2), 2.0 (2H, m), 1.8 (4H, m), 1.4 (8H, m), 0.9 

(6 H, t, CH3, J= 6.0 Hz).
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9-(54bromo-2-peiityloxy-pheiioxy)-iioiiaii-l-ol (32)

Hi8°H

8 0  °C, well,,  35 %
'OH Br'

.OCsH^

o c 9h 18o h

To a 250 mL round bottom flask was added 4-bromobenzene 1,2-diol (4 g, 21.16 mmol),

1 -bromopentane (1.2 eq, 25.3 mmol. 3.8 g), 9- bromononanol (1.3 eq, 27.5 mmol, 6.1 g), 

potassium carbonate (2.5 eq, 52.9 mmol, 7.3 g) and ethanol (150 mL) and refluxed at 80 

°C. After 3 days filtered the reaction mixture and the resulting brown solution was 

evaporated in vacuum to remove the solvent. The resulting brown oily residue was 

purified by flash chromatography on silica gel using toluene as solvent to yield 32 as 

light yellow oil (2.8 g, 35 %). The side products were separated during the purification on 

flash chromatography using silica gel and toluene/hexanes 3:2 solvent mixture for 4- 

bromo-1, 2 -di-pentyloxy-benzene, DCM/hexanes 1:1 solvent mixture for 4-bromo-2- 

pentyloxy-phenol and DCM for 4-bromo-benzene-1, 2-diol.

TLC (silica; toluene/hexanes 1:1) Rf: 0.3; !H NMR (300 MHz, CDCI3 , 8 ): 6.9 -  6.7 (3H, 

m, Ar), 3.9 (4H, t, OCH2, J= 6.0 Hz), 3.6 (3H, t, CH2OH, J= 6.0 Hz), 1.8 (4H, m), 1.3 

(16H, m), 0.9 (3H, t, CH3, J= 6.0 Hz).

2-{9-(5-Broino-2-peHtyloxy-phenoxy)-uonyloxy]-tetrahydro-pyraii (34)

TsOH, NaH C03, DCM

dihydropyran, 0 °C - 2 0  °CS 9 4  % 

'OC9H18OH ’ Br'

,OCgH11

vOC9H18OTHP

To a stirred solution of 9-(5-bromo-2-pentyIoxy-phenoxy)-nonan-l-ol, 3 2  ( 2 . 8  g, 6 . 9 7  

m m o l )  in D C M ,  dihydropyran ( 1 . 2  eq, 8 . 3 7  mmol, 7 0 4  mg) was added drop wise at 0-
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0
5°C. After the solution became clear, TsOH was added. The solution was stirred at 20 C 

for 2 h, and then it was quenched with NaHCOs and few drops of water. After stirring for 

5 min at 20 °C the solvent was removed under vacuum. The resulting yellow oily residue 

was purified by flash chromatography on silica gel using DCM/DEE 1:1 solvent mixture 

to yield 34 (3.6 g, 94 %).

TLC (silica; DCM/DEE 1:1) Rf: 0.6; *H NMR (300 MHz, CDC13, 8 ): 7.0 -  6.7 (3H, m, 

Ar), 4.5 (1H, t, CH, J= 6.0 Hz), 3.9 (6 H, m, OCH2), 3.7 (2H, m) 3.4 (2H, m, CH2), 1.8 

(6 H, m), 1.3 (18H, m), 0.9 (3H, t, J= 6.0 Hz).

2-{4-Pentyloxy-3-[9-(tetrahydro-pyran-2-yloxy)-nonyloxyl-plieiiyl-l,plieiiylboroiiic 

acid (35)

fHO)2B

. B-O

The compound, 34 (3.6 g, 7.42 mmol) was added to a three-neck flask and dried under 

vacuum overnight. Distilled THF (20 mL) was added to it and stirred. BuLi (1.2 eq, 5.56 

mL, 8.89 mmol) was added drop wise to a stirred solution of the benzene derivative in 

THF under argon at -78 °C. Once the addition was completed, the reaction was stirred for 

further 2.5 h under these conditions. The distilled triisopropyl borate (1.5 eq, 11.2 mmol, 

2.09 g, 2.45 mL) solution was added drop wise over approximately 15 min and the 

reaction was subsequently allowed to warm to room temp overnight. 50 mL of (3M HC1) 

was added to the reaction mixture, with cooling in an ice bath and stirring for 2 h. The 

mixture was extracted with ether thrice, washed with water and filtered the ethereal layer 

through MgSOy The solvent was removed under vacuum to yield 35 as pink solid (2.9 g,
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85 %).The obtained solid was recrystallized from hexanes. Crystals were not observed 

even after 3-4 days.

’H NMR (300 MHz, CDC!3, 5): 6.9 (1H, d, J= 3.0 Hz), 6 .8  (1H, s), 6.7 (1H, d, J= 6.0 

Hz), 5.3 (2H, b, OH),4.5 (1H, t, CH, J= 6.0 Hz), 3.9 (6 H, m, OCH2), 3.7 (2H, m) 3.4 (2H, 

m, CH2), 1.8 (6 H, m), 1.3 (18H, m), 0.9 (3H, t, CH3, J -  6.0 Hz).

2-{4-PentyloxyO-[9-(tetrahydro-pyran-2-yloxy)-nonyloxy]-pheiiylHl,3,2]

dloxaborinane (36)

1,3-propanedio l

1 6  h ,  R T , 28 %
"OC9H18OTHP

To a 250 mL round bottom flask was added 35 (2.97 g, 6.59 mmol), 1,3 propanediol (2 

eq, 1 g, 13.1 mmol), and hexanes (50 mL). The mixture was stirred at room temp for 16 

h. The alcohol phase was separated using separatory funnel and the remaining hexanes 

solution was dried over magnesium sulphate before evaporating under vacuum to remove 

the solvent. The resulting orange oily residue was purified by flash chromatography on a 

pre-packed silica gel column using DEE/hexanes 1:2 as solvent to yield 36 as light 

yellow oil. (0.94 g, 28 %)

TLC (silica; toluene) Rf 0.5; ]H NMR (300 MHz, CDC13, 8 ): 6.9 -  6.7 (3H, m, Ax), 4.5 

(1H, t, CH, 6.0 Hz), 4.0 (4H, m, OCH2), 3.9 (6H, m), 3.7 (2H, m) 3.4 (2H, m, CHZ),

2.0 (2H, t, J=  6.0 Hz), 1.8 (6H, m), 1.3 (18H, m), 0.9 (3H, t, CH3, J= 6.0 Hz).
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1 ,2-Dibromo-4-methoxy-5-peiity!oxy-benzene (21)

■o c SH1l Br2 DCM

OCH, 0  °C5 2 4  h, 9 2  % Br

o c 5h 11

1 -Methoxy-2-pentyloxy-benzene (41 g, 213 mmol) was dissolved in DCM  and stirred at 

0°C (ice bath + NaCl salt). To this was added Br2 (2.1 eq, 447 mmol, 71.4 g, 23 mL) 

through a dropping funnel, purging with nitrogen and trapping HBr using wash bottles. 

The reaction system was left to warm up to room temp, gradually, to complete the 

reaction. The reaction was conducted for about 24 h. The reaction mixture was washed 

subsequently with 10 % aqueous Na2COs many times and then with water. The solution 

then was evaporated under vacuum to remove the solvent and the obtained dark yellow 

solid was recrystallized from methanol to yield 21 as pale yellow crystals (73 g, 92 %).

5H NMR (300 MHz, CDC13, 8 ): 6.9 (2H, s, Ar), 3.9 (2H, t, OCH2, J=  6.0 Hz), 3.8 (3H, 

s,OCH3), 1.8 (2H, m), 1.4 (4H, m), 0.9 (3H, t, J= 6.0 Hz).
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A tte m p te d  methoxy cleavage of (21) and (23) to 4,5-dibromo-2-pentyloxy-pJieiJol

(22) and S-bromo-l-met'hoxy-phemol (24)

B r
iPPh

refl

'OCH.B r

21

Br

'OHBr

OCH
IPPh2 
 -----
i °C , refl.

Br Br OH

2 3 2 4

Lithium diphenylphosphine (0.1 M in THF) (1.5 eq, 14.4 mmol, 28 mL) was added to

21/23 (5 g, 14.2 mmol) in dry THF and refluxed at 65 C for 2-3 days. After 3 days DCM 

and water were added to the reaction mixture at 0 C, which was extracted with water and 

then with 0.1M HC1. After evaporation of the solvent in vacuum, the resulting brown oil 

was purified by flash chromatography on silica gel using toluene to yield 22/24. JH-NMR 

spectra confirmed the presence of starting material.
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4.4.2 Synthesis of biphenyls and terphenyls

1-Bromo- 3,43M ’-tetrakis-pentyIoxy-biphenyI (37)

Br
Br.

Fd(0)5 To19 S thanoi, Ma2©@3 

8 5  refl., 2 4  h, 21 %
Br'

Into a 250 mL two neck round bottom flask was added 31 (7.7 g, 19 mmol), toluene (10 

mL), 2M Na2C0 3  (5 mL) and 95 % ethanol (5 mL). The flask was attached to a reflux 

condenser and an argon balloon on the top of reflux condenser and the contents degassed 

under argon (pump and freeze method). The catalyst tetrakis (triphenylphosphine) 

palladium (0), (0.51 mmol, and 0.5 g) was then added under argon. T he solution o f  the 

boronic acid, 29 (1 eq, 5.6 g) was added to the bromo derivative and the  mixture refluxed 

for 24 h. 0.5mL of 30 % H2O2 was added to the stirred solution at room  temp. After 30 

mint, 20 mL of toluene was added. The separated brown toluene phase was filtered, 

washed with saturated aqueous NaCl and water before drying over MgS0 4  and 

evaporation. The resulting light yellow oil was purified by flash chromatography on silica 

gel using toluene/hexanes mixtures 1:4 as solvent to yield 37 as light yellow oil (2.3 g, 21

%).

*H NMR (300 MHz, CDC13, 8 ): 6.95 -  6.85 (5H, m, Ar), 4.0 (8 H, m, O C H 2), 1.8 (8 H, m),

1.4 (16H, m), 0.9 (12H, m, CH3).
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Attempted 2-19-(3,4,5’3 ’%4” -PeiitakIs-pent>1oxy-[l,l,,25, l ” ]terplieiiyl-4’-yloxy)- 

nonyloxyj-tetrahydro-pyran (38)

t h p o c 9h 18

1 e q  37  pd(0), Tol, E thanol, Na2C 0 3
+

1 .1  eq  3 6  8 5  0Cj refLj 2 4  hj 36 o/o

/  \

Into a 250 mL two neck round bottom flask was added 37 (l.lg , 1,97 mmol), toluene (5 

mL), 2M NaaCOa (2 mL) and 95 % ethanol (2 mL). The-flask was attached to a reflux 

condenser and an argon balloon on the top of reflux condenser and the contents degassed 

under argon (pump and freeze method). The catalyst tetrakis (tdphenylphosphine) 

palladium (0), (0.027 eq, 0.045 g) was then added under argon. T he solution o f  the 

boronic ester, 36 (l.leq, 1.2 g, 216 mmol) was added to the bromo derivative and the 

mixture refluxed for 24 h. 0.5mL o f 30 % H2O2 was added to the stirred solution at room 

temp. After 30 min, 20 mL of toluene was added. The separated brown toluene phase was 

filtered, washed with saturated aqueous NaCl and water before drying over MgSC>4 and 

evaporation. The resulting yellowish oil was purified by flash chromatography on silica 

gel using toluene as solvent to yield 38 as light yellow oil (0.635, 36 % ). The side product 

biphenyl was separated during flash chromatography on silica gel using toluene/hexanes 

1:4 as solvent mixtures. According to 'H-NMR spectral analysis, the  THP group was 

cleaved off.

!H NMR (300 MHz, CDC13, 5): 7.1-6.7 (8 H, m, Ar), 4.2 (12H, t, OCH2, J= 6.0 Hz), 3.8 

(3H, t, CH2OH, J= 6.0 Hz), 1.9 (12H, m), 1.5 (32H, m), 0.9 (15H, t, C H 3, J= 6.0 Hz).
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55-M ethoxy-3A ^35,,4” -pentakis-penty!oxy-[l,l’,25, l ,?J terphenyl (39)

,0 €SH11
Pd(0), ethanol, Tol, Na2CO:

OC5H11 85 °€s reft. 24 h, 55 %

.OCi

'OCi

Into a 250 mL two neck round bottom flask was added 1, 2-dibromo-4-methoxy-5~ 

pentyloxy-benzene, 21 (200 mg, 0.568 mmol), toluene (10 mL), 2M N a 2C0 3  (5 mL) and 

95 % ethanol (5 mL). The flask was attached to a reflux condenser and an argon balloon 

on the top of reflux condenser and the contents degassed under argon (pump and freeze 

method). The catalyst tetrakis (triphenylphosphine) palladium (0), (3 m ol %, and 50 mg) 

was then added under argon. The solution of the boronic ester, 30 (2.2 eq, 1.24 mmol, 

437 mg) was added to the bromo derivative and the mixture refluxed for 24 h. 0.5mL of 

30 % H2O2 was added to the stirred solution at room temp. After 30 min, 20 mL of 

toluene was added. The separated brown toluene phase was filtered, washed with 

saturated aqueous NaCl and water before drying over MgSCL and evaporation. The 

resulting light yellow oil was purified by flash chromatography on silica gel using 

toluene/hexanes mixtures 1:4 as solvent to yield 39 and side product biphenyl as light 

yellow oil (133 mg, 35 %, before purification).,.

TLC (silica; toluene) Rf: 0.55;

1,2-dibromo-4-methoxy-5-pentyloxy-benzene, 21 (500 mg, 1.4202 mmol) was added to a 

mixture of ethylene glycol-1, 2-dimethyl ether and water. Argon was bubbled through the 

suspension for 15 min before catalyst Pd(PPli3)4 (3 mol %) was added. The boronic ester, 

30 (2.2 eq, 2.982 mmol, 1.044 g) was added carefully under a stream of argon and 

stirring was continued for 10 min. Finally barium hydroxide. H20  (2.1 eq, 2.9 mmol, 549
o

mg) was added. The mixture was heated to 80 C, reflux and stirred under argon until 

TLC (toluene) indicated the completion of the reaction. After two days cool water was 

added to the reaction mixture and extracted with DCM; the organic phase was separated,
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dried over magnesium sulphate and evaporated. The resulting yellow oil was purified by 

silica plate using toluene. The eluant was collected in 24 sample tubes.

According to TLC the fractions 1 to 26 showed three spots at Rf values 0.25, 0.4 and 0.5 

(mixture of product + side product biphenyl) and fractions 27 and 28 showed only one 

spot at Rf value of 0.25. Fractions 27 and 28 were added and the solvent was evaporated, 

resulting in yellow oil. Factions 1 to 26 were added; the solvent was removed observing 

dark yellow oil. Recrystallization from methanol yielded 39 as white crystals. (530 mg, 

55%)

TLC (silica; toluene) Rf: 0.55; 'H  NMR (300 MHz, CDC13, 5): 6.9 (2 H , s, Ar), 6.7 (4H, 

m, Ar), 6 . 6  (2H, m, Ar), 4.1 (2H, t, OCH2, /=  6.0 Hz), 4.0 (4H, d, OCH2, J= 6.0 Hz), 3.9 

(3H, s, OCH3), 3.7 (4H, t, J= 6.0 Hz) 1.9 (10H, m), 1.5 (20H, m), 0.9 (15H, t, CH3, J=  6.0 

Hz).

4.43 Oxidative ring closure

2-Methoxy-3,6,7,10?11-pentakfs-pentyloxy-tripjfjenyieije (14)

OCH

:5H11

RT, 3 0  m in, 52  %

To a stirred solution of terphenyl, 39 (0.133 mg, 0.1926 mmol) and 0.27 mL BF3 etherate 

in 60 mL anhydrous DCM was added (VOF3) (2.2 eq, 0.423 mmol, 52 mg) under Na.This 

mixture was stirred at RT for 30 min, and then poured into 200 m L  10 % citric acid 

solution. The organic layer was separated and the aqueous layer w as extracted with
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DCM. The combined organic fractions were washed with water, dried over magnesium, 

sulphate and the solvent was removed. The obtained yellow oil was recrystallized using 

EtAc/MeOH to yield 14 as white crystals (69 mg, 52 %).

TLC (silica; toluene) Rf: 0.3; ?H NMR (300 MHz, CDC13, 8): 7.7 (6H, s, Ar), 4.2 (10H, t, 

OCH2, J= 6.0 Hz), 4.1 (3H, s, OCH3) 1.9 (10H, m), 1.5 (20H, m), 0.9 (15H, t, CH3, J=

6.0 Hz).
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