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Abstract

Data in the form of counts and proportions arise in many fields such as public health,
toxicology, epidemiology, sociology, psychology, engineering, agriculture and so on. One
frequently encountered problem in these data is that simple models such as the Poisson
and the binomial models fail to explain the variation that exists in these data. Often, data
exhibit extra-dispersion (over or under dispersion). Another complication in data in the form
of counts and proportions is that data are sometimes too sparse. That is, smaller values have
greater tendency to occur. In the Poisson case counts that occur are generally small and in
the binomial case the binomial denominators are often small. So, we need valid procedures
to detect departures from the simple models.

Traditionally, goodness of fit of generalized linear models is assessed by using the Pearson
x? statistic or the likelihood ratio x?2 statistic. These goodness of fit tests do not perform well
for sparse data. In this thesis we develop goodness of fit tests of the generalized linear model
with non-canonical links for data that are extensive but sparse. We derive approximations
to the first three moments of the deviance statistic. A supplementary estimating equation
is proposed from which the modified deviance statistic is obtained. Applications of the
modified deviance statistic to binomial and Poisson data are shown. A simulation study is
conducted to compare the behavior, in terms of size and power, of the modified deviance
statistic and the modified Pearson statistic developed earlier by Farrington (1996). Three
sets of data with different degreees of sparseness and different link functions are analyzed.
The simulation results and examples indicate that both the modified Pearson statistic and
the modified deviance statistic perform well in terms of holding nominal levels. However, the
modified deviance statistic shows much better power properties for the range of parameters
investigated under the alternative hypothesis. Theses results also answer a question posed

by Farrington (1996) and extend results of McCullagh (1986) for Poisson log-linear models.



In some instances a score or a C(a) statistic performs well. In this thesis we also develop
a score test statistic to assess goodness of fit of the generalized linear model for data that are
extensive but sparse. The performance of this statistic is then compared with the modified
Pearson statistic. Results of simulation show that both the modified score test statistic
developed in our paper and the modified Pearson statistic developed by Farrington (1996)
maintain nominal levels. However the modified score test has some edge over the modified
Pearson statistic in terms of power.

In practice, sometimes, discrete data contain excess zeros that can not be explained by
a simple model. In this thesis we develop score tests for testing zero-inflation in generalized
linear models. These score tests are then applied to binomial models and Poisson models
and their performances are evaluated. A limited simulation study shows that the score tests
reasonably maintain the nominal levels. The power of the tests for detecting zero-inflation
increases very slowly for Poisson mean p or binomial parameter p. For large values of z and
p power increases very fast and approaches 1.0 even for moderate zero-inflation.

A discrete generalized linear model (Poisson or binomial) may fail to fit a set of data
having a lot of zeros either because of zero-inflation only, because of over-dispersion only,
or because there is zero-inflation as well as over-dispersion in the data. In this thesis we
obtain score tests (i) for zero-inflation in presence of over-dispersion, (ii) for over-dispersion
in presence of zero-inflation, and (iii) simultaneously for testing for zero-inflation and over-
dispersion. For Poisson and binomial data these score tests are compared with those obtained
from the zero-inflated negative binomial model and the zero-inflated beta-binomial model.
Some simulations are performed for Poisson data to study type I error properties of the tests.
In general the score tests developed here hold nominal levels reasonably well. The data sets

are analyzed to illustrate model section procedure by the score tests.



Acknowledgements

I wish to express my deep appreciation to my supervisor Dr. S. R. Paul for his guiding
me into this statistics field. During the past several years of study, Dr. Paul gave me con-
tinuous guidance and encouragement, intellectual stimulation and financial support. More
importantly, his spirit for academic research will stimulate me in my future career. In addi-
tion, I would like to express my thanks to professors Dr. K. Y. Fung, Dr. M. Hlynka, Dr.
C. S. Wong and Dr. D. S. Tracy for their offering me encouragement and help during the
study. I am also very grateful to Dr. C. B. Dean of Simon Fraser University and Dr. J. J. H.
Ciborowski of Department of Biological Science for their helpful suggestions and comments.

I would like to thank the Department of Mathematics and Statistics for providing finan-
cial support in terms of graduate teaching assistantships, Natural Sciences and Engineering
Research Council of Canada for Postgraduate Scholarship (B) and Student Support Branch,
Ministry of Education and Training of Ontario for Ontario Graduate Scholarship in Science
and Technology throughout my graduate studies.

Finally, I would like to express my deep thanks to my wife Qiong, son Yilun for their love
and support during my studies and to my parents for their guidance and support throughout

my life.



Contents

Introduction

Some preliminaries and review of current literature

2.1 The C(a) test and thescoretest . . . . .. ... ... ... .. . .....
2.2 'Tensor notation and cumulants . . . .. ... ... ...
2.2.1 Notational conventions and cumulants . . . .. .. ... ... . ...
2.2.2 Edgeworthseries . . ... .... ... ... .. ... .. .......

2.3 Modified Pearson statistic in generalized linear

models . . . . . .,

Goodness of fit of generalized linear models to sparse data

3.1 Introduction . . .. .. .. . ... ...,
3.2 Estimating equations and goodnessof fit . . . . . ... ... ... ... ...
3.3 Moments . . . . .. ...,
3.4 Application to binomial and Poissondata. . . . . .. ... ... ... ....

341 Binomialdata . . . . ... ... . ..., ... .. ... ... .

342 Poissondata. . .. . ... ... ...
3.5 Simulation . . . .. .. ...,

iv

O O O hx e

11



3.6

Examples . . . .. . . ... .. 30
3.6.1 Incidence of Hepatitis AinBulgaria . . . . ... .. ....._.... 30
3.6.2 Mosquito transmission of Yellow Fever . . . . . .. ... .. .. ... 30
3.6.3 Multiple tumour recurrence data for patients with bladder cancer . . 32

Score test for goodness of fit of generalized linear models to sparse data 33

4.1 Introduction . . . . . ... ... 33
4.2 The standardized modified Pearson statistic . . . .. ... ... ... .. _. 34
4.3 The score test for assessing goodness of fit of the generlaized linear model . . 35
4.4 Applications to binomial and Poissondata . . . ... ... ... ..... .. 37
44.1 Binomialdata . . ... ... ... ... ..., ... ........ 37
44.2 Poissondata........ ... ... ... ... ... ... ... 37
4.5 Simulation . . . .. .. ... 38
46 Examples . . . . . ... 41
Score tests for zero-inflation in generalized linear models 43
5.1 Imtroduction . . ... .. ... ... ... ... 43
5.2 The zero-inflated generalized linear model
and score tests for zero-inflation . . . . . . . ... ... ... 44
5.2.1 The zero-inflated generalized linear model . . ... ... ... ... 44
5.2.2 Score test for zero-inflation in the generalized linear model . . . . . . 45
5.2.3 Score tests for zero-inflation in Poissondata . . . . ... ... ... . 47
5.2.4 Score tests for zero-inflation in binomialdata . .. ... ... . ... 47
5.3 Simulation . . . . . ..o L 48
54 Anexampleandadiscussion. . . .. ... ... ... ... . ... ...... 52
6 Generalized linear model, zero-inflation and over-dispersion 55



6.1 Introduction . . . . . ... . . ... . ... ... ... 55
6.2 The zero-inflated over-dispersed generalized linear model . . . . . . . . . .. 56
6.3 Model selection in the zero-inflated over-dispersed generalized linear model . 58
8.4 Scoretest for Poissondata . . . . . ... . ... ... L L. .. 61
6.4.1 Testing for over-dispersion . . . . . .. ... ... ... ... 62
6.4.2 Testing for zero-inflation . . . . . . .. .. ..o 0000 65
6.4.3 Testing for over-dispersion and zero-inflation . . . . . . . . . .. ... 67
6.5 Score test for binomialdata . . .. ... ... ... ... ... ..., 68
6.5.1 Testing for over-dispersion . . . . . . .. .. ... ... .. 69
6.5.2 Testing for zero-inflation . . . . . . .. ... ... oL L. 70
6.5.3 Testing for over-dispersion and zero-inflation . . . . . . . .. .. ... 72
6.6 Simulations . . .. ... .. . ... ... 73
6.7 Twoexamples . . . . . . . . . . . . . . . e e e e e e 79
Discussion and future research topics 85
Datasets . . . . . . . . . . . . 91
Proofs of Theorems 96
A1l Proofof Theorem 3.3.1 . . . . . .. ... ... ... . ... .. ... ..... 96
A2 Proofof Theorem 3.3.2 . . . . . . . . . . . . ... . ... ... 98
A3 Theexpected value of T . . . . . . . . . o i i 99
A.4 Proofs of Theorem 6.3.1- Theorem 6.3.3 . . . . .. ... ... ........ 100
A4l Thetestfort=0. .. ... .. . . .. ... 102
A42 Thetestsfory=0 . . ... .. . . @ . . e, . 103
Ad43 Testfor (7,7)=0. .. .. . . . . i i e e 104
Bibliography . . . . . . . . . . . .. e 106
Vita Auctoris . . . . . . . . .. e e 111



List of Tables

3.1

3.2

3.3

3.4

3.5

4.1

4.2

Empirical sizes of statistics X?2, D, D{,X,2 and D* for nominal levels o =

.01, .05, .10, m = 5,10 and n = 10, 20, 50, 100, 200 based on 10,000 replications. 25

Empirical power of statistics X2, D, D}, X? and D* for dispersion parameter
¥ = 0.05, nominal levels a = .01,.05,.10,m = 5,10 and n = 10, 20, 50 based
on 10,000 replications. . . . . ... . ... ... ... ... ... ...
Empirical power of statistics X2, D, D}, X2 and D* for dispersion parameter
¥ = 0.10, nominal levels a = .01, .05,.10,m = 5,10 and n = 10, 20, 50 based
on 10,000 replications. . . . . . . . ... ... L
Empirical power of statistics X2, D, D}, X? and D* for dispersion parameter
¥ = 0.15, nominal levels a = .01,.05,.10,m = 5,10 and n = 10, 20, 50 based
on 10,000 replications. . . . . . . . . .. ...
Empirical power of statistics X2, D, D, X2 and D* for dispersion parameter
% = 0.20, nominal levels a = .01, .05,.10,m = 5,10 and n = 10, 20, 50 based

on 10,000 replications. . . . . . . . . ... ... ... ..

Empirical sizes of statistics Z1, Z; and Z; for nominal levels a = .05, .10,
m = 5,10 and n = 10, 20, 50, 100 based on 10,000 replications. . ... ... .
Empirical powers of statistics Z;,Z; and Z3 for ¢ = 0.10, nominal levels

a = .03,.10,m = 5,10 and n = 10, 20, 50, 100 based on 10,000 replications.

40



9.1

5.2

6.1

6.2

6.3

6.4

6.5
6.6

6.7
6.8

Power (%) of score test statistic S? of equation (2.2) with no covariates when
data are simulated from Poisson (u) : & = 0.05; based on 10,000 replications.
Power (%) of score test statistic S? of equation (2.3) with no covariates when
data are simulated from binomial (10,p) : @ = .05; based on 10,000 replica-

175 Lo 1=

Empirical levels of score test statistic Z; for testing over-dispersion with no
covariates when data are simulated from zero-inflated Poisson P(u) based on
10,000 replications. . . . . . . . . . . . . .. ... e
Empirical levels of score test statistic Z,; for testing zero-inflation with no
covariates when data are simulated from negative binomial N B(u,c) based
on 10,000 replications. . . . . . . . .. ... ... ... .. ...
Empirical levels of score test statistic Z, for testing zero-inflation with no co-
variates when data are simulated from Lognormal mixture Poisson LM P(u, c)
based on 10,000 replications. . . . . . . . .. ... ... ... ... ......
Empirical levels of score test statistic Zs for testing both the zero-inflation
and over-dispersion with no covariates when data are simulated from Poisson
(1) based on 10,000 replications. . . . . . . . ... ... .. ... .....
Results of model fitting of the DMFT indexdata . .. ... .........
Results of the goodness of fit tests(score tests) for the DMFT index data,
P: Poisson, NB: negative binomial, ZIP: zero-inflated Poisson, ZINB: zero-
inflated negative binomial . . . . . ... ... ... . ... ... ...
Results of model fitting for the PVC countsdata . . . ... .. .. ... ..
Results of the goodness of fit tests(score tests) for the PVC counts data, B:
binomial, BB: beta-binomial, ZIB: zero-inflated binomial, ZIBB: zero-inflated

beta-binomial . . . . . . . . . .. e

30

75



D.1
D.2

D.3
D.4

D.5

Hepatitis AinBulgaria . . . . . ... . ... . ... ... .. ......... 91
Pools of progeny Aedes aegypti (Santo Domingo Strain) assayed for yellow
fever virus . . . . . L L e e e e e e e e 92
Multiple tumour recurrence data for patients with bladder cancer . . . . . . 93
The PVC counts for twelve patients one minute after administrating a drug
with antiarrhythmic properties. . . . . . . . . . ... ... .. ........ 94
The counts of the decayed, missing and filled teeth index at the beginning of
thestudy . . . . . . . .. L 95



Chapter 1

Introduction

Generalized linear models are extensively used to analyze data in the form of counts and pro-
portions. These data arise in public health, toxicology, epidemiology, sociology, psychology;,
engineering and agriculture. Data that arise in practice often exhibit extra-dispersion (over
or under dispersion). Also, sometimes data contain too many zeros. Simple models such as
the binomial and the Poisson models fail to explain these kinds of variations in the data.
Another complication in data in the form of counts and proportions is that data are too
sparse. That is, smaller values have greater tendency to occur. In the Poisson case counts
that occur are generally small and in the binomial case the binomial denominators are often
small. In this thesis we study procedures for testing goodness of fit of the generalized linear
model.

Traditionally, goodness of fit of generalized linear models is assessed by using the Pearson
x? statistic or the likelihood ratio x? statistic. These goodness of fit tests do not perform
well for sparse data. Koehler and Larntz (1980) and Koehler (1986) make modifications
of the Pearson and the likelihood ratio statistics by using moments of their unconditional
distributions. McCullagh (1985) gives approximations to the first three moments of the un-
conditional and the conditional distributions of Pearson x?-statistic for canonical exponential
family regression models. Farrington (1996) extends the results of McCullagh (1985) and

obtains approximations to the first three moments of the conditional and the unconditional

1



Chapter 1. Introduction 2

distributions of this statistic for non-canonical generalized linear models. He develops a
modified Pearson statistic by using a supplementary unbiased estimating equation. He also
shows that the modified Pearson statistic is asymptotically independent of the regression
parameter estimates in generalized linear models. Farrington (1996) conducts a goodness of
fit test of generalized linear models to sparse data by using a standardized modified Pearson
statistic using the approximations to the conditional mean and conditional variance of the
modified Pearson statistic. In this thesis we develop procedures for testing goodness of fit of
generalized linear models with non-canonical links to sparse data against over-dispersion.

Johnson, Kotz and Kemp (1992), Lambert (1992) and Broek (1995) discuss situations
in which there are many extra zeros in the count data. Broek (1995) develops a score
test statistic for testing zero-inflation in a Poisson distribution. In this thesis we develop
procedures for testing for zero-inflation in generalized linear models. A discrete generalized
linear model (Poisson or binomial) may fail to fit a set of data having a lot of zeros either
because of zero-inflation only, because of over-dispersion only, or because there is zero-
inflation as well as over-dispersion in the data. In this thesis, we also develop procedures for
testing (i) for zero-inflation in the presence of over-dispersion, (ii) for over-dispersion in the
presence of zero-inflation, and (iii) simultaneously for zero-inflation and over-dispersion.

In the sequel, this thesis will proceed as follows. In Chapter 2, we provide some prelimi-
naries as background. Theory for C(a) tests and score tests are given. Tensor notation and
cumulants of unconditional and conditional distributions of test statistics are stated. Results
concerning the modified Pearson statistic derived by Farrington (1996) are also reviewed.

In Chapter 3, we propose a supplementary estimating equation to derive a modified de-
viance statistic. We then obtain approximations to the first three moments of the conditional
and the unconditional distributions of the modified deviance statistic. The results obtained
are applied to binomial and Poisson data. A performance study is conducted to compare the

modified Pearson statistic derived by Farrington and the modified deviance statistic obtained
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in this chapter.

The issues of goodness of fit in generalized linear models are further discussed in Chap-
ter 4. Although the performance of the modified deviance statistic is better than that of
the modified Pearson statistic, we obtain a score test statistic to assess goodness of fit in
generalized linear models. This statistic has a very simple form and is closely related to the
modified Pearson statistic given by Farrington (1996). Some simulations are conducted.

In Chapter 5 the emphasis is focused on the issues of zero-inflation that may occur in
discrete data. We first present a zero-inflated generalized linear model. We then develop
score test statistics to test for zero-inflation in generealized linear models. Score tests for
testing for zero-inflation in binomial data and Poisson data are obtained as special cases. A
small simulation is conducted and an example is given.

In Chapter 6 we consider a zero-inflated over-dispersed generalized linear model. Using
this model we obtain score tests (i) for zero-inflation in the presence of over-dispersion, (ii) for
over-dispersion in the presence of zero-inflation, and (iii) simultaneously for zero-inflation and
over-dispersion. For Poisson and binomial data these score test statistics are compared with
those from the zero-inflated negative binomial model and the zero-inflated beta-binomial
model. Properties of the test statistics are further investigated using simulations. Two
examples are given for illustrative purposes.

In the last chapter, the findings of the thesis are summarized and some ideas for fu-
ture research regarding goodness of fit tests in generalized linear model are developed and

discussed.



Chapter 2

Some preliminaries and review of
current literature

2.1 The C(a) test and the score test

Let y = (y1, ..., y) be the observations from a vector of random variables Y = "1, Ys,....Y,)
with distribution function f(y;6,#) where § = (6, ...,6,)’ are parameters of interest and
¢ = (¢1, ..., )" are nuisance parameters. Let L(#, ¢;y) be the likelihood function of the
data y and [ be the log-likelihood function of the data. The partial derivatives evaluated at
8 = 0o = (610, ..., 0p0)" are

s o ay
- 80 =609 — 6011 ceey aap 8=8g,

and

_a, o ay
7_a¢9=90— a¢le-'-1a¢s 6=40, -

Cramer (1946) has shown that under the null hypothesis and mild regularity conditions,

(g—é, %) follows multivariate a normal distribution asymptotically with mean vector 0 and

variance covariance matrix I~1(6, ¢), where

Iog Iy ]

16, 6) = [ o e
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is the Fisher information with elements

8%l
IGO =F (mlo:ao) 3

82l
Iy =F (30_&5’[0:0") ,

and

9%l
[90 = E (mlo:&;) -

Define S = & — p&

5% 56 where B is the partial regression coefficient matrix obtained by

regressing 9 on 2. From Bartlett (1953), B = Ip4I;} and the dispersion matrix of S is
Igg.¢ = [gg — Ig¢lg¢lf¢a
Thus S is multivariate normal with mean vector 0 and variance-covariance matrix Igo.4,

ie.

S ~ MN(0, Ipg.s).

Hence, following Neyman (1959), S'I5 S ~ x?,,. But the above expression depends on
06-3 @)

the nuisance parameters ¢ = (¢, ..., ¢s)’, which makes the statistic unsuitable to use for
testing the null hypothesis. Moran (1970) suggests that we replace the unknown nuisance
parameter ¢ by its \/n-consistent estimator(n=number of observations used in estimating the
parameters), obtained from the data. Let ¢ = (431, ey J)s)’ be some y/n-consistent estimator

of the parameter ¢ = (¢4, ..., ¢s)’. Hence following Neyman (1959),

X2C(a) = 5’[‘5;_1455'
is asymptotically distributed as x? distribution with p degrees of freedom. Note that if we
replace the nuisance parameter ¢ by its maximum likelihood estimate (MLE) &, then the
score function S reduces to 1. The C(a) statistic then reduces to 1’ I],;}q,zﬁ which is referred

to as a score test (Rao, 1947). The score test is asymptotically equivalent to the likelihood
ratio test (Moran, 1970; Cox and Hinkley, 1974).
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The score test (Rao, 1947) is a special case of the more general C(a) test (Neyman, 1959)
in which the nuisance parameters are replaced by maximum likelihood estimates which are
v/n-consistent estimates. The score test is particularly appealing as we have only to study
the distribution of the test statistic under the null hypothesis. Potential drawbacks to the
use of the likelihood ratio and Wald tests include the fact that both require estimates of
the parameters under alternative hypotheses and often they do not maintain nominal level.
Advantages of the score or the C(a) class of tests are: (i) it often maintains, at least
approximately, a preassigned level of significance (Bartoo and Puri, 1967), (ii) it requires
estimates of the parameters only under the null hypothesis, and (iii) it often produces a
statistic which is simple to calculate. These tests are robust in the sense that their optimality
remains true whatever the form of the distribution assumed for the data under the alternative
hypothesis - a property called robustness of optimality by Neyman and Scott (1966). For

more discussion on the choice of C(a) tests see Breslow (1990).

2.2 Tensor notation and cumulants

McCullagh (1987) points out that with appropriate choice of notation many multivariate
statistical calculations can be made simpler and more transparent than the corresponding
univariate calculation. This simplicity can be achieved through systematic use of index

notation and special arrays called tensors.

2.2.1 Notational conventions and cumulants

Let X be a p-dimensional random variable with components X1, ..., X?, and let a;,a;; and

a;k be a vector, matrix and array respectively. We introduce convenient index notation,

a; X% a:; X' X7, and ag; X X7 X*
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and so on. These notations mean the implied summation over any index repeated once as a

superscript and once as a subscript. That is,

X' = Y aX, (linear combination)
2; X' X7 = Y a; XX (= X'AX) (quadratic form)
2
and
e X' XTXE = Y aipp XTXIXE. (cubic form)
t,7,k

Note that the range of summation is not stated explicitly but is implied by the positions of
the superscripts and subscripts. Further, let Y be a vector random variable with components

Y1, ...,Y?, each of which is linear in X. We may write
Y™ = al X,

where r = 1, ..., ¢ is known as a free index. Similarly, we may write
Y™ = aijin .

Now, we discuss the notations of moments and cumulants of X. We define the moments

of X about the origin

K = E(XY),

h?ij

E(XiX7),

k7% = E(X'XIXF)

and so on. We assume that the above moments are finite.

Consider the infinite series

Mx(§) = 1+ &K + &&RYT /21 + &€;&k7TF /31 +

GEEERTH /A + ..
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which we assume to be convergent for all |£] sufficiently small.

The sum may be written as

Mx(§) = E{exp(&X*)}

and the moments are just the partial derivatives of Mx (&) evaluated at £ = 0.

The cumulants are most easily defined via their generating function,

Kx(§) = log Mx(§),

which has an expression

Kx(§) = &K' +&&KM /2! + &€&k /3! +
L& &k IR /4 + .
This expression implicitly defines all the cumulants, here denoted by &, k%7, k*/* and so on,
in terms of the corresponding moments.

Now, we consider the relations between moments and cumulants. Writing Mx(§) =

exp{Kx(£)} and expanding it, we have

1+ &k + &&i(RM /2! + £PRT/21)
+ L6k TF /3 + EE;6.6 KPR /A 4 ..
+ L&k RIF /21 + EEE 6 KR 16 + KPR /8) + ..
+ &EEGRRIEY /3 + E£,6 6K KT KR 4 +
EEGERRIREE /4 + ..
By comparing the corresponding terms of £, we obtain the following expressions for moments

in terms of cumulants

k9 = KM 4+ KK,

nzgk — K,I’J’k-*-(I‘E"E"‘k+KJI€1’k+I€kI€"J)+K'K,JEk
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= K" 4+ &IF[3] 4+ KRR,
KIH = ROkl L gt Bhlg] 4 ot ok [8] + K'ri kb + Kikd Fit.
Similarly, the reverse formula giving cumulants in terms of moments can be obtained by

expanding log Mx(§) and combining the corresponding terms

kY = kY — kI,
KOE = gk teT*(3) 4 26tk KkE,
KPR = R et T® Y] — R3] + 26T KF 6] — 6kT KL

2.2.2 Edgeworth series

First we discuss the concept of Hermite tensors (McCullagh, 1984, 1987). The components of
the Hermite tensors h.(x, A), hrs(z, A), hrst(z, A), ... are polynomials in  whose degree is the
same as the order of the tensor. Ordinary Hermite tensors, h.(z, §), h.s(z, §), ... are obtained
by successive partial differentiation of the standard p-variate normal density
#(z,6) = (2m)1P exp(~52"2°6.4).
Let
Dy = {d.}, D> = {d.d,},ds = {d,d,d.}, ...,
Hy(z,6) = {he(z, 8)}, Ha(,8) = {hy(z, 8)}, ..
where the differential operator d. = §/9z" is a covariant tensor. Using the above notations,
we have that D;¢é(z,6) = (—1)' H;(z, §)¢(z). The first four ordinary Hermite tensors are
he(z,8) = brsz° = ., hes(z,8) = zlx!, — 6,,
Brst(z,8) = T,2.%; — T762(3], hrou(T, 8) = )T, T\T), — 026, [6] + 6,560u[3].
Generalized Hermite tensors, formed by differentiation of ¢(z, \), are obtained by replac-

ing 6,5 with A, in ¢(z, §). Thus,

he(z,X) = Apsz® = 2L, hps(z, ) = 222! — Mg = Arpdu(TPT? — KBY)
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and so on, where k™ is the inverse of A,,.
Next the application of Hermite tensors to Edgeworth series is given. Let X be a random
variable with zero mean and cumulants k™%, k™5 /\/n, k™55% /n, ..., where n is a sample size.

The Edgeworth expansion with two correction terms may be written as

&z, N1 + K™h.a(z,A)/(6vn)
{3754 hy g (3, A) + K599,y (2, )}/ (T20)] + O(n=2),

Now we consider the conditional cumulants. Suppose that X1y, X(3) is a partition of X
into components of dimensions p — g and ¢ respectively. For convenience, let the indices
7,5,,... range from 1 to p while 4,j,k,... range only over the components of X@- To
compute the conditional cumulants of X(,) a linear transformation to uncorrelated variables

Y is introduced. That is, Y™ = X" — 57 X7,Y; = X;. From McCullagh (1984), the cumulants

of Y are
K1 = 0,k]° = k" — B[B3K", Ky =0,
K,I ,S, L — h:r,s,t __ ﬂ{&i,s,t [3] + ﬂ{,@;ni‘j’tp] ,Bsﬂt i.J.k
h:zlrs - _ I@rnt,j], [2] + ,3' s i,k ,JJ' = b _ ﬂ;ni'j'k,
h:rl‘,s,t,u = K™ tu ﬁrnz 18t u[4] + ﬁrﬂs i,7.¢t, u[6] ﬁrﬁs t 1,J,k u ﬂ{ﬁ;ﬂi,@?ni'j’k'l,
Hi,r,s,t — z \T,S,t Br £,7,8, t[3] + ﬁr,@s i.5,k, t[ ] _ ﬁ;ﬂzﬁfﬂi’j’k'l,
LR XA — BLRSI%3(Q) 4 BrBsiIkL ghikir ik _ Br ik,

Therefore, to the third order of approximation, the first four conditional cumulants of
X(l) given X(2) are
E(X"X@) = £"hi+ k77 hi/(2vR) + {5765 (hy o — hijhiim)

+ 2ni’i‘j'kh,-jk}/(12n),

cov(X?, X7| X, @) KY® + k7% hi/v/n + {67 hij
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+ 267" M (R — hahiee)
+ 3”1.,{’]-":;’,:’[ (hijt — hijhi) }/(12n),
Cum(Xr’ Xs, XtIX(z)) = Ki's't/\/ﬁ + {2n11‘,3,t,ihi

+ KT R (hige — hahse) 8]}/ (2n)
and
cum(X", X°, X!, X" X)) = &""*/n+ k7"'ki™ (hi; — hsh;)[3]/n.

Further if X is the standardized sum of n independent random variables, the cumulants

1

can be written as 0, k*#, n=Y2ga, B, v, n"1x*#7% and so on. Suppose for simplicity that the

components X1y and X, are uncorrelated so that ™ = 0. Then the asymptotic expansion
of conditional cumulants of Xy, given X(2) have the following form up to terms of order
O(n™1).
E(XTIX(g)) = K+ n'1/2rcr""fh,-j/2 + n—l{Er’i’jfﬁk’l’mhi]‘,klm/(3!2!)
+ KRR /31),
COV(XT’ X3|X(2)) = K™+ n—1/2nr,s,ihi + 'n_l{ﬂr's’i’jhij/2!
+ Er’s'iﬁj’k‘lhi,jkl/m + h)r'i’jh:s’k'lhij,k[/(2!2!) },

cum(X’, X, Xt[X(g)) — n—1/2nr,s,t + n-! {Er,s,t,ih’i + nr,s,int,j,k [3]hz,]k/2'}
and

Cum(XT, Xs1 ‘){t7 XuIX(2)) — n—l{nr,s,t,u + Iir’s’iﬂt'u’j[3]hi,j}-

2.3 Modified Pearson statistic in generalized linear
models

Let Y;,7 = 1,...,n, denote independent random variables from an exponential family distri-

bution with mean p; and variance V;. Also assume a generalized linear regression model with
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the inverse link function
hHp) =n = X8, (2.3.1)

where X is an n x p model matrix and 8 is a vector of p regression parameters. Maximum
likelihood estimates of the regression parameters i, ..., O, are obtained as solutions of the p

quasi-likelihood estimating equations g,.(B) =0,r =1,...,p, where

n

i — iaﬂi
H(B) =S LKk 2.3.2
9-(B) gl AT (2.3.2)

By embedding the model in a wider family with variance ¢V;, goodness of fit is tested by
assessing departure from the value ¢ = 1. As we point out in the Introduction, in order to
derive the approximations to the first three moments of the unconditional and conditional
distributions of the Pearson statistic for non-canonical exponential family regresion models,

Farrington (1996) proposed a supplementary unbiased estimation function

9.(8,¢) = Zn: a;(y: — pi) + z": {‘(ﬂl—;{@i - ¢} , (2.3.3)
i=1 i=1 i

where ¢ = p+1 and the q; are functions of u; depending on 3 but not on ¢, defining a family
of first-order correction terms to the Pearson statistic. Then the dispersion parameter is
estimated by using the equation gq(B, #) = 0. From the above equation, the modified
Pearson statistic can be obtained as follows:
X2 =n¢ =znjai(yi — i) +znj£y——”—£
i=1 i=1 ‘/1
Note that the choice a; = 0 yields the usual Pearson statistic X 2.

Farrington (1996) derived approximations to the first three moments of the unconditional
and the conditional distribution of the modified Pearson statistic. Furthermore, by choosing
a; = —V//V;, the modified Pearson statistic depends only weakly on 8, given 3. Also this
choice of a; minimizes the unconditional variance of the modified Pearson statistic and also

greatly simplifies the expressions of the moments of X?2.
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Theorem 2.3.1 Let hl = —"(&l Jh! = -dﬂ}& V!= ﬂ—l V'’ = ﬁ;’—;g‘-*l, W = diag(h?/V7),Q
= (Qij) = X(XTWX)'XT. Also let ki, m = 3,4, 5,6, be the m-order central cumulants of
y; (see Section 2.2). Further, let a = (a;),d = (d;) = (a;+V!/ Vi),V = diag(V;), H = diag(h!)
and v =V 'HQHd — a. Then,
1 = Vl, h” AN
E(XE) = n —p+-2- Z (a,- + V) Jh h Q,JQJ]

zJ—l
7

_lz{ L A2+ (a, “;) hi-’} Qi +0(n™),

=1

var(X?) = n(P4—P3+2)+ZV<a‘ ‘{j)

=1

! V_’
- Z (a, “;) (aj + T/L) h:»h;-Qij +O0(1)
i J

i,j=1

and
k3(X2) = n(ps + 12p4 + 10p3 + 8)

(32 ﬁ—sz 2 “’+185‘_,m ;‘+Zmn3,)+0(1)

=1 i=1 =1 t i=1

where ps = n7' Y ke /VE,p3 = n7 LS K2, /V3 and ps = n7''Y kei/V3. In particular, when
a; = =V [Vi,vi = K3/ V2 s0

(/4
E(Xf) = n—p——zv—ha-{-O(n'l)
2o Vi

var(X?) = n(ps—p3 +2)+0(1)
and
k3(XZ) = n(Ps — 3pas + 3p34 + 12ps — 805 — p3 +8) + O(1),
where p3s = n"'Y kaiksi/ VA, P2y = n1 S k3k4i/VE and pi =n1 Y k4, /VE.

Theorem 2.3.2 By using the same notations as in Theorem 2.3.1, the first three conditional

moments are

R 1 ‘“/n ‘“/1 " Vi,
BOCHE) = n-p-53-{Fie+ (acr ) (2hr - Fir) @

13 ) ]
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1 & v 1/(.., V- \Naso .
+ = (ai + 7) = (2h;.' - .—Jh?) hih;Q:Q55 + O(n~?),

2= i/ V;

) R.R.Qi; + O(nV?)

SSS

var(X2|3) = n(p4—p3+2)+zv(a,+

i=1

n VI
—_ (&1 + ?1') a,
ij= Vi

r3(XZB) = n(ps + 12p4 + 1053 +8)

(3 > Vs ns' Z 7255 4 18 Z % ':;’ +3 q‘r;f”kg,i) +O0(n?),

=1 i i=1 z =1 i i=1

I

s<

and

where a circumflez above the variates denotes evaluation at 8 = 3. In particular, when

a; = =V//V; the approzimate conditional moments of X2 are
R VII
E(X?B) = n—p-— -Z—ha
25V

var(X2|8) = n(ps— P2 +2),

k3(X2|B) = n(Pe — 3pss + 3p%, + 123 — 82 — p3 + 8).

Farrington (1996) points out that for generalized linear models both the Pearson statistic
X? and the modified Pearson statistic X? are asymptotically independent of 3. In addition,
given the maximum likelihood estimate £, X? depends only weakly on 8. This supports the
use of the conditional distribution of X2 given 3 for assessing the goodness of fit even when

the link function is not canonical. The approximate standardized quantity
Z = {X? — E(X2|6)}/ var(XZ|B)"/2

may be used to calculate upper tail probabilities P(Z > z|3), either directly by reference
to the standard normal distribution, or, as suggested by McCullagh (1986), by using the

Edgeworth approximation

P(Z 2 z) = 1 —®(2) + (2* — 1)p36(2) /6
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where p3 is the approximate standardized conditional third moment.
The simulation results and examples in Farrington (1996) show that the standardized

modified Pearson statistic performs very well in terms of empirical level.



Chapter 3

Goodness of fit of generalized linear
models to sparse data

3.1 Introduction

Traditionally, goodness of fit in contingency tables is tested using either the Pearson chi-
square statistic or the likelihood ratio chi-square statistic. Asymptotic properties of these
statistics are studied based on the assumption that the expected cell frequencies become
large. Recent interest, however, has been to obtain modifications of these statistics for sparse
contingency tables using higher-order moment approximations (see, for example, Koehler and
Larntz (1980) and Koehler (1986)). These authors derive modifications using moments of
the unconditional distribution of the Pearson chi-square statistic and the likelihood ratio
statistic.

McCullagh (1986) argues that it is the conditional distribution of the statistic and not
its marginal distribution that is relevant for assessing goodness of fit. He obtains conditional
distributions of the Pearson chi-square statistic and the likelihood ratio chi-square statistic
for discrete data for the case where the data are extensive but sparse. McCullagh (1985)
obtains approximations to the first three moments of the unconditional and the conditional
distributions of the Pearson chi-square statistic for canonical exponential family regression

models. Farrington (1996) extends the results of McCullagh (1985) to models with non-

16
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canonical links using an estimating-equations approach following Moore (1986).

The motivation of this chapter comes from a question by Farrington (1996, p360) as to
whether similar methods could be applied to the deviance statistic to extend the results of
McCullagh (1986). McCullagh and Nelder (1989, p36) also indicate that further work on the
asymptotic distribution of the deviance statistic remains to be done. We derive approxima-
tions to the first three moments of the unconditional and the conditional distributions of the
deviance statistic for assessing goodness of fit of generalized linear models with non-canonical
links. As in McCullagh (1986) and Farrington (1996) we consider the asymptotic limit in
which the data are extensive but sparse, and also as in Farrington (1996) we consider a
supplementary estimating equation for the dispersion parameter. The results derived in this
chapter are extensions of the results derived by McCullagh (1986) for assessing goodness of
fit of the deviance statistic for discrete data. Applications of the method for assessing good-
ness of fit of the binomial and the Poisson models to sparse data are shown. A small-scale
simulation study of the performance of the modified Pearson statistic of Farrington (1996)
and the modified deviance statistic developed in this chapter is reported. Three sets of data

with different degrees of sparseness and using different link functions are also analyzed.

3.2 Estimating equations and goodness of fit

As in Section 2.3, let Y;,7 = 1,...,n, denote independent random variables from an expo-
nential family distribution with mean p; and variance V;. Consider a generalized linear

regression model with the inverse link function
R~ p) =n = X8, (3:2.1)

where X is an n x p model matrix and 3 is a vector of p regression parameters. Maximum

likelihood estimates of the regression parameters gy, ..., B, are obtained as solutions of the p
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quasi-likelihood estimating equations gr(B) =0,r =1, ...,p, where

] ‘la T
9:(8) = Zy T

The usual deviance statistic is D = Y%, d; = 2, di(ys, jis), where d;(y;, pi) = 2%y —
t)/Vi(t)dt. Proceeding now by analogy with Farrington (1996), we define a family of modified
deviance statistics
D* =3 "(y: — aw)a: + 3 /&P,
i=1 i=1
in which fc( = K1)(M1) estimates E(d;) = 'ﬁ)(lh) and a; = a;(j1;) where {a;(-) : i =1,...,n}
is a set of functions to be specified. The modified deviance D* may alternatively be expressed

in terms of the solution of a supplementary estimating equation gq(ﬁ, (,5) = 0, where

0B, d) = S (s — u,)ai(u,)+z:{d'(y"‘"‘) ¢} (3.2.2)

=1 = URP ()

and ¢ = p+1. In (3.2.2), ¢ represents a notional dispersion parameter E{d;(y:, u:)}/% (1:)
whose value is 1 under the model; and D* = n@. Note that the notional dispersion parameter
¢ can be written as ¢ = 1 + ¢ where c is a known constant. Therefore ¢ = 1 is equivalent
toy = 0.

With the particular choice a;(u;) = 0 for all 4, D* reduces to 3", d;/#{"), which we denote
by D;. Replacement of ] ) by 1 in the definition of D7 would yield the usual deviance statistic
D.

3.3 Moments

Unconditional and conditional moments of the modified deviance statistic D* are given
in Theorems 3.3.1 and 3.3.2. The proofs which follow similar steps as Farrington (1996)
and which use the conditional moments formulae of McCullagh (1984, 1987) are given in
Appendix A.
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Theorem 3.3.1 Let hj = L W = diag(h?/V}), Q = (Qy) = X(XTWX)IXT, v; =
o Vit hiQuhiag, 65 = E(di—r{")?, k) = E(di—£{)%, k§) = E{(di—k) (yi—p)}, 68 =
E{(d: =~ — m)?}, 65} = E{(di — x")?(y: — 1)} and 6§ = E(y; — ). Then,

n

. 1
BE(DY) = nBé=n=-3 - (,)h’ZQu+Z (1 — a:)h{ Qs + O(n™Y),

i=1 Vil 1—1

R n o o
var(D*) = nvar(@) =3 {a,?v,» —ayiV; + 225 (13) (a; —¥i) + —— } +O0(1),

i=1 (k ('))2
and
k3(D") = n’k3(9)
* 3 (%) 2k () né'l) ":(;)
= Z (ai —71') Ko3 +3(a‘l '71) (,) +3(a1 ) 2 + (s +O(1)
=1 ( ) ( Ky )
D pr
Theorem 3.3.2 Let1=(1,...,1),ky = (;}ﬁ'ﬁ-, —*LH-)T n{l = diag(3°7_, —G{——h Q") Ki2 =

( )h12

dlag(—%‘);';) Kl = dlag(-%’r*) K21 = dxag(—‘a)—’;-v-), by = diag(SB), 3, = ding(BAL), s
= diag(“842), (a — 7)™ = diag{(a: — %)™}. Then,
E(D*|8) = nEIB) = E(D")
—%1TxT{n~12 + (@ — )R, — RLASIX(XTWX) ™1 + O(n3),
var(D*|B) = n®var(l8)
= var(D*) — AL, X(XTWX) 1 XTk,, + O(n" %),
Ra(D16) = n’r3(4|B)
= A3(D") = BRI, X(XTWX) I XT {Ra1 + Rla(@ — 4)? + 2R1,(@ — V)11
+3nuX(XTWX) XT {1 + R23(a — 'y)}X(XTWX)‘lXTnu

—1TR§R1 AL AL L+ O(n72).
For a; =0, we have that

E(Di|B) = nE(3I8)
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= E(D} - ‘lTXT("w RHRS)X(XTWX) ™1 +0(n~%),
n? var(|4)
= var(D}) — AL X(XTWX) "' XT &y 4+ O(n™%),

I

var(D;|5)

r3(Di18) = n®ks(d18)
= &a(D}) = 3R X(XTWX) ' XTkyul
+3RT X (XTWX) ' X TR, X (XTW X)X iy
—1TA%R1 AL AL L+ O(n72).

Remark: Note that in D*, if we replace a; by 0 and E(d;) by 1, we obtain D. Then,
following the derivation of Theorem 3.3.2 we obtain

EDIB) = & — %ITXTf)X(XTWX)"l +O(n-),

var(D|B) = &) — RLX(XTWX) ' X"k + O(n™3),
k3(DIB) = &Y —3RT, X(XTWX)1XTknul
+3RT X (XTWX) ' X TR X (XTWX) " X Ty,
—1T AR} AL ALL +O(n72),

where T = diag{k{3h22/ V2 — (; kR Qy:/ Vi) GR2 VY b1y = (R WA, .., DR V)T,
Fo1 = diag(n“’h'./V) K12 = diag(n"’h@/v,?), kly = diag(L; kD 1Qs/ V), k) = =2, 60,

=37, /12 , and h: =Y. fc

For the log-linear model, W = diag(V;) = V, Q@ = X(XTVX)"1X7, 5y, = (2, ..., &P)T,

o1 = diag(r3}), k12 = diag(x(3), T = diag{r3 (5, s Qs:)s} and #; = diag(T; £ Qye).
The expressions for the conditional variance and the conditional third moment of D obtained
above agree with those given by McCullagh (1986). However, for the conditional mean of
D we find an error in McCullagh (1986) in that X = diag{k,(_"z) - (Z; nu)QJ,)no)} instead of
= diag(nﬁ,) - ni‘l’ h:((,'g / n((,g) given by McCullagh (1986). Dr. McCullagh, through personal

communication, has acknowledged this.
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We now need to choose values for a;. This, possibly, could be done in a number of ways.
We, however, choose a; = —«{?/ (Vis!! )) by minimizing var(D*). This can be seen by writing
var(D*) as

var(D*) = o {I - X*(X*TX*)'X*T}a — o'T{I — X*(X*TX*)"1X*T}a! (3.3.1)
n (1)

oy O

+

where a; = Vi%(ai + 3’}%“7), al = 57':3(;‘:7 and X* = diag(h:-V;—%)X . The first term of the right
hand side in equation (3.3.1) is the residual sum of squares from the regression of a on X*.
The choice a; = —&{? /(Vik{?) makes this 0. This choice of a; coincides with the choice of a;
used in the modified Pearson statistic obtained by Farrington (1996). Also, with this choice

of a;, we obtain

E(grg;) = 0, (3.3.2)

for r =1, ..., p, which we show in what follows. It can be seen that

[/ n . i n
Blgrg) = E (oY 2) Isn g — )+ 3 (,)—¢>
| \i=1 ‘/1 aﬂt

=1 j=1 K

_ ol =) O yi“ﬂial‘idi_qs"gl)
= FE Z{a‘l ‘/1 8,3,+ ‘/, aﬁi Klgi)

(& (yi — ﬂi)2 O (y: — pi)d; Op; ”
= K a; +
; { Vi 9 Vn(') 0pB;

n i) (2)
—Kii OW; K11 Oug;
= ~+ = Q.
2 (V,-KP 38: T Vil aﬂ.»)

=1

i=1

This shows that asymptotically, g.,7 = 1,...,p and g, are orthogonal (Cox and Reid, 1987)
and hence 8 and ¢ are asymptotically uncorrelated. Results of an empirical study, not
reported here, confirm this. For a; = 0, E(g,g,) # 0 for r = 1, ..., p. However, using a similar
expansion of g, as Farrington (1996) and Firth (1987), it can be shown that for a; = 0, D}

depends weakly on 3, given B.
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3.4 Application to binomial and Poisson data
3.4.1 Binomial data

Let Y;,7 = 1, ...,n, denote independent random variables from a binomial distribution with

parameters m; and ;,
m; = exp(Xi8)/{1 + exp(X:8)},

where X;8 = Xuf1 + ... + XipBp, X1, .-, Xp are p explanatory variables, i, ..., 3, are p
regression parameters. Then, u; = mym;, V; = mym(1 — m;), Op: /06, = mymi(1 — m;) X and

hence the estimating equations to obtain 51, ey ﬂ;, are

0(B) =3 W= 1) Xer =0 (r=1,...p).

i=1
To calculate D*, E(D*|3), var(D*|3) and k3(D*|3) we need expected values of a number of
quantities such as £{", kﬂ) etc (see Theorems 3.3.1 and 3.3.2). Closed form expressions for
these quantities do not exist. Approximations using a Taylor expansion of d; do not work
well. So, we need to calculate them directly. However, direct calculations of these expected

values do not pose any computational difficulty. For example,

d = di(y:) = _/: g'(%::(—t—')i)dt

= 2[y;log(yi/u:) + (m; — y;) log{(m; — y:)/(m: — i) }]-
Then

K = E(di)zidi(j)pﬁ
=0

w = E{di(yi —p)} = g(j — i)di(7)pij,

=0

where p;; = C;"p,’(l — p;)™ 9. Similarly, ng), rcg), ng‘z) and fcg'l) can be calculated.
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3.4.2 Poisson data

For Poisson data Y;,i =1, ..., n,

ki = exp(X:B),

gr(;B) = Z(yi - ﬂi)XiT =0, r=1,..p,
i=1
di(y:) = 2{y;log(yi/m:) — (yi — ws)}-
For large p, approximate expressions for the moments nﬁi), ng), fc:(,i) , nﬁ), nﬁg’ and né'l) given by
McCullagh (1986) can be used. For small i these approximations will not work well. Again,

these moments can easily be obtained by direct summation.

3.5 Simulation

A limited simulation study was conducted to compare the empirical sizes of the modified
Pearson statistic X? (see Farrington, 1996) and the modified deviance statistic D* derived in
the present chapter. In the simulation study we also included the Pearson statistic X? and
the deviance statistics D and Dj. Simulations have been conducted for the binomial model
with p = 2 and a single continuous covariate chosen to induce very strong regression effects
under both logistic and complementary log-log link functions, for sample sizes varying from
n = 10 to n = 200 and binomial denominators m = 5 and 10. The results for the logistic
and the complementary log-log link functions are very similar. In Table 3.1 we present the
results for only the logistic model. The empirical sizes for X2, D, X2, D} and D* can be

calculated by referring the standardized quantities, such as
Z = {D" ~ E(D"|B)}/{var(D"|8)}*

to the standard normal distribution or by using the procedure based on the Edgeworth
approximation suggested by McCullagh (1986). We, however, used the former procedure.

The statistics X2, D, Dj all, in general, underestimate the levels, whereas both X2 and D*
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produce empirical levels close to the nominal, although they show some inflated levels for
small a and small n.

The simulations were extended to compare power of the statistics X2, D, X2, D} and D*.
For power comparison we simulated data from the beta-binomial distribution with mean mn
and variance mm (1 — w){1 + (m — 1)1} where = = exp(X3)/{1 + exp(XB)} and ¥ is the
over-dispersion parameter. Note that for binomial case ¢ = 1 + (m — 1)1. Simulations were
conducted for m = 5, 10, the sample size n = 10, 20,50 and the over-dispersion parameter
1¥=0.05, 0.10, 0.15, 0.20 for a =0.01, 0.05, 0.10. The behavior of all the statistics in terms
of power is similar for all values of a. The power results are presented in Table 3.2-Table
3.5. The results show that D is more powerful than X2. The statistics X2 and D* are more
powerful than the other three statistics. This is not surprising as the other three statistics are
conservative, whereas the corrected Pearson and the corrected deviance statistics maintain
correct levels. However, the modified deviance statistic D* was found to be uniformly most

powerful for the values of 7 considered in our study.
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Table 3.1: Empirical sizes of statistics X2, D, D}, X? and D* for nominal levels o =
.01, .05, .10, m = 5,10 and n = 10, 20, 50, 100, 200 based on 10,000 replications.

nominal binomial sample Pearson Deviance Deviance modified modified
level parameter size statistic  statistic  statistic Pearson deviance
a m n X? D D; statistic X2 statistic D,

10 0.0106 0.0123 0.0119 0.0184 0.0238

20 0.0074 0.0105 0.0104 0.0126 0.0171

) 50 0.0050 0.0101 0.0103 0.0109 0.0137
100 0.0049 0.0105 0.0109 0.0119 0.0114

200 0.0046 0.0100 0.0103 0.0114 0.0117

0.01 10 0.0149 0.0131 0.0133 0.0174 0.0247
20 0.0100 0.0117 0.0123 0.0127 0.0191
10 50 0.0076  0.0098 0.0101 0.0107 0.0143

100 0.007v3 0.0106 0.0104 0.0105 0.0124
200 0.0072 0.0097 0.0106 0.0108 0.0110

10 0.0290 0.0319 0.0314 0.0453 0.0639

20 0.0281 0.0389 0.0390 0.0457 0.0561

5] 50 0.0268 0.0448  0.0447 0.0488 0.0484
100 0.0319 0.0514 0.0514 0.0527 0.0534

200 0.0303 0.0488 0.0484 0.0493 0.0527

0.05 10 0.0372 0.0331 0.0329 0.0437 0.0614
20 0.0281 0.0339 0.0338 0.0402 0.0503
10 50 0.0381 0.0445 0.0445 0.0493 0.0532

100 0.0409 0.0508 0.0510 0.0520 0.0547
200 0.0390 0.0472 0.0476 0.0486 0.0484

10 0.0549 0.0631 0.0610 0.0883 0.1057

20 0.0583 0.0793 0.0786 0.0912 0.0946

) 50 0.0632 0.0932 0.0921 0.0944 0.0929
100 0.0692 0.1007 0.1007 0.1003 0.0988

200 0.0641 0.0990 0.0990 0.0998 0.1005

0.10 10 0.0653 0.0536 0.0533 0.0806 0.0951
20 0.0683 0.0686 0.0681 0.0827 0.0859
10 50 0.0787 0.0908 0.0909 0.0965 0.0961

100 0.0863 0.1005 0.1005 0.1033 0.1027
200 0.0815 0.0993 0.1001 0.0974 0.0996
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Table 3.2: Empirical power of statistics X2, D, Di, X2 and D* for dispersion parameter
¥ = 0.05, nominal levels a = .01,.05,.10,m = 5,10 and n = 10,20, 50 based on 10,000

replications.

nominal binomial sample Pearson Deviance Deviance modified modified

level parameter size statistic statistic  statistic Pearson deviance
a m n X2 D D3 statistic X? statistic D,

10 0.0373 0.0385 0.0382 0.0555 0.0717

5 20 0.0427 0.0528 0.0520 0.0619 0.0789

50 0.0669 0.0953 0.0949 0.1038 0.1220

0.01 10 0.1131 0.1010 0.1014 0.1302 0.1560

10 20 0.1671 0.1711 0.1711 0.1924 0.2284

50 0.3599 0.3811 0.3813 0.3991 0.4333

10 0.0831 0.0916 0.0912 0.1136 0.1505

5 20 0.1013 0.1194 0.1196 0.1353 0.1726

50 0.1653 0.2064  0.2048 0.2174 0.2555

0.05 10 0.1994 0.1843 0.1855 0.2207 0.2668
10 20 0.2907 0.2959  0.2968 0.3152 0.3706

50 0.5399 0.5545 0.5538 0.5708 0.6067

10 0.1280 0.1382 0.1362 0.1679 0.2126

5% 20 0.1545 0.1818 0.1785 0.2017 0.2452

50 0.2430 0.2933  0.2897 0.3050 0.3479

0.10 10 0.2604 0.2438  0.2440 0.2825 0.3381
10 20 0.3781 0.3795 0.3796 0.4048 0.4600

50 0.6314 0.6463 0.6469 0.6604 0.6950
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Table 3.3: Empirical power of statistics X2, D, D}, X2 and D* for dispersion parameter
¥ = 0.10, nominal levels a = .01,.05,.10,m = 5,10 and n = 10, 20, 50 based on 10,000

replications.

nominal binomial sample Pearson Deviance Deviance modified modified

level parameter size statistic statistic  statistic Pearson deviance
a m n X2 D D3 statistic X2 statistic D.

10 0.0824 0.0918 0.0894 0.1161 0.1438

5 20 0.1288 0.1581 0.1577 0.1764 0.2098

o0 0.2839 0.3498 0.3469 0.3671 0.4026

0.01 10 0.2924 0.2710 0.2715 0.3177 0.3534

10 20 0.4933 0.4972 0.4981 0.5291 0.5657

50 0.8543 0.8690 0.8677 0.8770 0.8947

10 0.1603 0.1735 0.1675 0.1986 0.2502

5 20 0.2475 0.2783 0.2773 0.3016 0.3563

50 0.4722 0.5322 0.5296 0.5514 0.5921

0.05 10 0.4071 0.3944 0.3921 0.4347 0.4931
10 20 0.6372 0.6448 0.6435 0.6617 0.7123

50 0.9337 0.9408 0.9401 0.9437 0.9530

10 0.2163 0.2314 0.2253 0.2645 0.3349

) 20 0.3266 0.3629 0.3592 0.3867 0.4501

50 0.5806 0.6310 0.6296 0.6484 0.6905

0.10 10 0.4841 0.4687 0.4670 0.5067 0.5696
10 20 0.7098 0.7150 0.7152 0.7301 0.7752

50 0.9583 0.9617 0.9614 0.9651 0.9720
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Table 3.4: Empirical power of statistics X2, D, D}, X2 and D* for dispersion parameter
) = 0.15, nominal levels a = .01, .05,.10,m = 5,10 and n = 10,20,50 based on 10,000
replications.

nominal  binomial sample Pearson Deviance Deviance modified modified

level parameter size statistic  statistic = suatistic Pearson deviance
a m n b & D D; statistic X2  statistic D,

10 0.1527 0.1661 0.1598 0.2050 0.2454

) 20 0.2561 0.3018 0.2989 0.3269 0.3770

50 0.5879 0.6585 0.6556 0.6766 0.7122

0.01 10 0.4825 04700 0.4678 0.5125 0.5545

10 20 0.7576 0.7706 0.7698 0.7846 0.8170

50 0.9825 09861 0.9863 0.9858 0.9893
10 0.2704 0.2852 0.2771 0.3295 0.3909

5 20 0.4159 0.4626 0.4586 0.4866 0.5529

50 0.7607 0.8078  0.8060 0.8135 0.8455

0.05 10 0.6104 0.5964 0.5952 0.6328 0.6868
10 20 0.8535 0.8594 0.8580 0.8700 0.8928

50 0.9942 09948 0.9947 0.9958 0.9967
10 0.3403 0.3658  0.3547 0.3985 0.4778

3 20 0.5120 0.5569 0.5533 0.5758 0.6456

50 0.8347 0.8662 (.8652 0.8712 0.8948

0.10 10 0.6740 0.6655 0.6641 0.6944 0.7520
10 20 0.8924 0.8958 0.8947 0.9044 0.9263

50 0.9972  0.9977  0.9976 0.9976 0.9983
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Table 3.5: Empirical power of statistics X2, D, D}, X? and D* for dispersion parameter
¥ = 0.20, nominal levels a = .01,.05,.10,m = 5,10 and n = 10,20, 50 based on 10,000
replications.

nominal binomial sample Pearson Deviance Deviance modified modified

level parameter size statistic statistic  statistic Pearson deviance
a m n b & D D3 statistic X? statistic D.

10 0.2343 0.2521 0.2435 0.2919 0.3428

5) 20 0.4284 0.4881 0.4814 0.5131 0.5666

50 0.8226 0.8668 0.8642 0.8771 0.8978

0.01 10 0.6216 0.6143 0.6118 0.6512 0.6921

10 20 0.8929 0.9014 0.9002 0.9079 0.9268

50 0.9988 0.9989  0.9989 0.9988 0.9991
10 0.3632 0.3874 0.3763 0.4290 0.4984

) 20 0.5993 0.6435 0.6388 0.6651 0.7197

30 0.9205 0.9447 0.9431 0.9480 0.9594

0.05 10 0.7271  0.7283  0.7222 0.7505 0.7956
10 20 0.9443 0.9474 0.9475 0.9506 0.9632

50 0.9998 0.9996 0.9996 0.9998 0.9997

10 0.4418 0.4706 0.4555 0.5055 0.5841

) 20 0.6862 0.7230 0.7167 0.7371 0.7953

50 0.9535 0.9665 0.9659 0.9671 0.9749

0.10 10 0.7791  0.7797  0.7749 0.7992  0.8438
10 20 0.9605 0.9648 0.9638 0.9670 0.9779

30 0.9999 0.9997 0.9998 1.0000 0.9999
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3.6 Examples
3.6.1 Incidence of Hepatitis A in Bulgaria

Farrington (1996) presents an analysis of data on incidence of hepatitis A in Bulgaria by age
(see Table D.1), given by Keiding (1991). The data are sparse with 19 out of 83 annual age
groups contributing non-zero denominators of 5 or less. Using the numbers of seronegatives as
response variables with binomial errors and the log link log m, = —\a we obtain X2 = 94.59
on 82 degrees of freedom and X2 = 107.58 with conditional expected value 82.10, conditional
variance 133.47 and the conditional standardized third moment 0.6305. These are almost
identical to those obtained by Farrington (1996). Further, we obtain D = 97.28 on 82 degrees
of freedom and D* = 104.53 with conditional expected value 81.46, conditional variance 95.30
and the conditional standardized third moment —0.1675. The p-values of X2 and D on 82
degrees of freedom based on a x? distribution are 0.1614 and 0.1194. The p-values of X?
and D* based on standardized normal distribution are 0.0274 and 0.0175. The p-values of
X2 and D~ based on the Edgeworth approximation are 0.0559 and 0.0114. Whereas both
X? and D show that the fit of the model is good, the tests based on X? and Dt indicate
evidence against the model. Also, note that the p-values of D* based on the standardized
normal approximation and based on the Edgeworth approximation are close, where as the
p-value of X2 based on the Edgeworth approximation is almost twice the p-value based on

the standardized normal approximation.

3.6.2 Mosquito transmission of Yellow Fever

Farrington (1996) analyzes data on transovarial transmission of yellow fever virus in mosquito
populations. The data, originally given by Walter et.al. (1980)(see Table D.2), refer to an
adult population of Aedes aegypti which was infected with yellow fever produced a progeny
population which was hatched and reared to adults, separated by sex and grouped in pools
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of variable size for virus assay. The data consist of 63 triplets (s;, m;, r;) cross-classified by
two binary covariates, virus strain and larval development interval. For each triplet, s; is
the pool size, m; is the number of pools of this size which were assayed and r; is the number
of pools found to be positive. The quantity of interest is the probability of transmission
in individual mosquitos. For each observation let A; denote this transmission probability
and 7; the probability that a pool is positive. Under suitable independence assumptions,
m; =1 —(1—A;)* so that given covariates z; and a linear model log{—log(1 —\;)} = 273 we
have log{—log(1 — m;)} = log s; + zT 3. The model is fitted by regarding the r; as binomial
with denominator m;, using the complementary log-log link function with offsets log s;. In

this case
hi = m;(1 — m;) log(1 — ;).

In this instance the data display extreme sparseness, with m; > 1 for only nine of the 63
observations. The main effects model with both binary covariates gives X2 = 78.83, D =
72.70 on 60 degrees of freedom, X? = 64.70 with conditional expectation 61.3, conditional
variance 13.4 and the conditional standardized third moment 0.8588, and D* = 65.89 with
conditional expectation 61.23, conditional variance 13.58 and the conditional standardized
third moment —0.3416. The p-values for X2 and D on 60 degrees of freedom are 0.052 and
0.126 and those for X2 and D* based on standardized normal distribution are 0.298 and
0.206 respectively. The p-values of X2 and D* based on the Edgeworth approximation are
0.303 and 0.193. The p-values for D* and X? are much larger than those of D and X2.
Both statistics D* and X? show similar evidence of fit of the model to the data. In this
example the p-values of D* based on the standardized normal approximation and based on

the Edgeworth approximation are almost identical.
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3.6.3 Multiple tumour recurrence data for patients with bladder
cancer
Andrews and Herzberg (1985) provide multiple tumour recurrence data for patients with
bladder cancer obtained in a randomized clinical trial. Briefly, data (see Table D.3) are
obtained for each of three groups of patients and the data consist, among others, of the
number of recurrences r; experienced by each of 118 patients, the number of tumours ¢;
present initially at the time of randomization in the trial and the diameter of the largest
of those d;. For more detailed description of the data see Andrews and Herzberg (1985).
By regarding the number of recurrences r; as Poisson with log-link function for the mean
number of recurrences we fitted a quadratic model relating r; to t; and d; to data for each
group separately and to the combined data of all the three groups. Results of all data sets
showed highly significant mis-fit of the model, indicating presence of strong over-dispersion.
For illustrative purpose only we give results for data of group 3. The data in this example
also show extreme sparseness. We obtained X? = 60.29, D = 57.60 on 32 degrees of freedom,
X2 = 57.02 with conditional expectation 32.0 and conditional variance 64.0 and D* = 54.13
with conditional expectation 24.80 and conditional variance 76.01. The p-values for X2 and
D based on a x? distribution with 32 degrees of freedom are 0.0018 and 0.0036 and those for
X2 and D* based on standardized normal distribution are 0.00176 and 0.000768 respectively.
Strong evidence of departure from the generalized linear model is shown by all the statistics.
However, this evidence is much stronger when we use the result based on the statistic D*.
Note that one common feature of these three examples is that the p-value for D* is always
smaller than that of X2, indicating that the former may be more powerful than the latter.

This is in line with the conclusion from simulations in Section 3.5.
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Score test for goodness of fit of
generalized linear models to sparse
data

4.1 Introduction

As we mention in Chapter 3, for the discrete data that are extensive but sparse McCullagh
(1985) obtains a goodness of fit test statistic using approximations to the first three moments
of the conditional distribution of the Pearson chi-square statistic for canonical exponential
family regression models. Farrington (1996) extends the results of McCullagh (1985) to
obtain the first three moments of the conditional distribution of a modified Pearson chi-square
statistic for models with non-canonical links. The goodness of fit test is conducted using the
fact that the distribution of the standardized Pearson chi-square statistic is asymptotically
standard normal.

Farrington (1996) develops a modified Pearson statistic using an estimating-equations
approach following Moore (1986). In this chapter we derive a score test using the estimating
functions used by Farrington (1996). We show that the score test statistic can be derived
in only a few steps compared to the modified Pearson chi-square statistic. A modified score
test is also obtained. Both the score test and the modified score test are closely related to

the test based on the modified Pearson statistic developed by Farrington (1996).

33
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Applications of the test for assessing goodness of fit of binomial and the Poisson models
to sparse data are shown. For Poisson log-linear models the modified score test statistic is
identical to the standardized modified Pearson statistic. For binomial data we conduct a
small-scale simulation study to compare the performance of the score tests with the stan-
dardized modified Pearson statistic of Farrington (1996). Two sets of data with different

degrees of sparseness and using different link functions are also analyzed.

4.2 The standardized modified Pearson statistic

We use the same notations as in Section 2.3. Note that by taking a; = —V! /V;, asymptoti-

cally, the first two conditional moments of X? to the order n=3/2 are

~ 1.2 ‘7.”-
E(X? = n—p-—— —h?Z,
var(X2|8) = n(ps — P2 +2),

Now, note that
Ky = E(y; —p)® = V)V,

mai = By — )t = 3(B(y: — we)?)? = 3V2 + VAV + V2Vi - 32 = V2V + V2V,

So,
n(ps —p5+2) = nn”t i(nu/vf — Kk2/V3 +2)
= UV VEV)/VE - (VVIVE +2 = 3V +2),
=1 =1
and thus,

var(X2|8) = S-(V" +2).

i=1
The standardized quantity

X:—(n-p-}vr, 02
Cm 0+ 22

has an approximate N(0,1) distribution.

Z, =
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4.3 The score test for assessing goodness of fit of the
generlaized linear model

Paul and Islam (1995) develop a score test for testing homogeneity of binomial proportions
with over/under dispersion based on the quasi likelihood score functions. Paul and Banerjee
(1998) develop score tests for interaction and main effects, in unbalanced two-way layout of
counts involving two fixed factors, when data are extra dispersed, also, based on the quasi
likelihood score function. We follow similar steps here.

The quasi likelihood score functions in our case are g,(3),r = 1,...,p given in equation
(2.3.2) and ¢,(8, ¢) given in equation ( 2.3.3). Now, define

T = g4(B, b)lg=1, Es = (E(—Z%)ls=1), Eps = (E(9-9ql4=1)) and E4 = E[(ggls=1)?]-

L

Note that T and Ey are scalars, Eg, is a column vector of dimension p and Ej is a matrix

of dimensions p x p. The score test statistic, then, is

Zy = T/\/var(T),

where, var(T) = (Ey — EgsE5'E},). The quantities T, Ep, Egy and E, are T, Ej, Egs
and E; respectively evaluated at the maximum quasi likelihood estimate 3 under the null
hypothesis. By the Central Limit Theorem the distribution of the score statistic Z,, then,
Is asymptotically standard normal.

Now, let E* be the (r, s)th term of the matrix Eg and Ej, be the rth term of the vector

Egs. Then,

e v/ (yi - #i)2
T = B =3 {—prtw -+ LB 1,
q ¢=1 ; ‘/t ‘/t
86,"'*=' ~ &= V; 8B, 98,
5o = FE(9r-99)ls=1 =0,

- E i M 4 ‘/il ‘/i, !
Be = Bfadot] = 3 (28l 4 (o — ofiw - 1)

s = E(- = (X'WX)ys,

i=1
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_ z": (E(yiV:2 m)t V2 1) - zn:(2+V,-”).

i=1 Vi i=1
Thus,
var(T) = B, — Egp Eg'Eg, =Y _(2+ V)
i=1
Therefore, the score test statistic Z5 is
X n o\ 12
Zy, = T/ (Z(Q + Vi")) ,
i=1
where T =¥, {——%_I-(yi — ;) + E‘%ﬁ - 1}.
Now, following McCullagh and Nelder (1989) and Dean and Lawless (1989), we obtain
E(T) = —p, as n — oo and g — oco. The proof is given in the Appendix. So, a modified

score test is
2o = (T +p)/[S (V7 + D2
i=1
It is interesting to note that T = X2 — n. Thus,
Z, = (X2~ m) /[ (V" + 2]/
i=1
and
2 = X2 = (n = )/[ 0% + 21"
We can see that the standardized modified Pearson statistic Z;, the score test statistic
Z, and the modified score test statistic Z3 are closely related. The statistic Z3 makes a

correction over the statistic Z, for the number of regression parameters estimated. The

statistic Z; is related to Z3 as
(A, Kh2)

(S (7 +2) 7
Note that the formulae for the statistics Z and Z3 do not depend on the link function,

Z1=Zg,+

whereas the formula for Z; may depend on the link function as shown in next section.



Chapter 4. Score Tests of Goodness of Fit 37

4.4 Applications to binomial and Poisson data

4.4.1 Binomial data

Let Y;,7 = 1, ..., n, denote independent random variables from a binomial distribution with

parameters m; and m;, where m; depends on the link function h;. Now, u; = mm;, V; =

mym; (1 — m;), V] = (1 — 2m;) and V}” = —2/m;. Then the statistic Z; can be written as
(yi—m@ts )2 it (yi —msty) —ya (1) h2
Z ?:1 { * - m;w; (1-7;) + s B m}
1 = ’

(3T, 2(my — 1) /m;)1/2
where h; = m;m;(1 — m;) = V; for logistic link and h; = —m;(1 — ;) log(1 — ;) for comple-
mentary log-log link.

The statistics Z> and Z3 can be written as

mi#ti (1—7;)

(=2, 2(m; — 1) /m;) 12

n { (yi —mii )2+ (yi —miits) —yi (1—7;) }
=1
Zo =

and

(yi —m @)+ (yi —maifts) —y: (1—#)
Z - ?:l mt;(1—7;) + %}

(0, 2(m; — 1) /m;)1/2

It ie obvious that Z3 > Z;.

4.4.2 Poisson data

For Poisson data, V; = u;, V/ =1 and V}” = 0. This makes the statistic Z, link independent
and equal to Z3. Thus,

I & f(yi—@m)?—y p
Z, = Z3= —— L
1 3 ,—zntzzl{ 7 +n

and

N
I

‘l—\/yi{(yi—ﬁi)z’-yi}-

n =1 Hi
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Dean (1992) gives an adjusted statistic:

p__L 5 {(yi — f)? —yi+iliiﬂi}
‘ \V4 2n i=l ﬂ'i

where hy; = hy;(3) and hi;(B) is the ith diagonal element of the matrix H = WY2X(XTW X)1

XTW?, with W = diag(p1,, .-, tn). Note that if there is no covariate, p=1h; =1/n
and thus Z3 and P are identical. Also note that H is idempotent matrix and tr(H) = p. If

kit =1,...,n are close, h; ~ p/n. Therefore Z; is close to P..

4.5 Simulation

A limited simulation study is conducted to compare the empirical size and power of the
statistics Z1, Z; and Z3. Following Farrington (1996) simulations are conducted for binomial
model with p = 2 and a single continuous covariate chosen to induce very strong regression
effects under both logistic and complementary log-log-link functions, for sample sizes varying
from n = 10 to n = 100 and binomial denominators m = 5 and m = 10. The empirical size
and power for all statistics are calculated by referring to the asymptotic standard normal
distribution.

Results of the simulation on empirical size for nominal level a = .05, .10 are presented in
Table 4.1 for both the logistic and complementary log-log-link functions. Results in Table
4.1 show that all the three statistics hold nominal level well in the situations investigated.

An empirical power study is conducted for nominal level a = 0.05,0.10, over-dispersion
parameter ¢ = 0.05, 0.10 and for both the logistic and complementary log-log-link functions.
In Table 4.2 we present results only for a = 0.05 and the logistic function. Results for other
situations investigated are similar. Results in Table 4.2 show that the modified score test

has some edge over the modified Pearson statistic in terms of power.
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Table 4.1: Empirical sizes of statistics Z,, Z, and Z; for nominal levels a = .05, .10,
m = 5,10 and n = 10, 20, 50, 100 based on 10,000 replications.

nominal binomial sample modified score test modified
level parameter size Pearson statistic score test
a m n statistic Z; Z3 statistic Z3
a) Logistic Link
10 0.0466 0.0560 0.0522
20 0.0475 0.0549 0.0508

5) 50 0.0499 0.0512 0.0502

100 0.0486 0.0505 0.0483

0.05 10 0.0435 0.0553 0.0474
20 0.0481 0.0541 0.0498

10 50 0.0531 0.0551 0.0531

100 0.0523 0.0542 0.0529

10 0.0902 0.1336 0.0909
20 0.0964 0.1142 0.0978

5 50 0.0994 0.1090 0.0992

100 0.0993 0.1013 0.1000

0.10 10 0.0815 0.1351 0.0836
20 0.0950 0.1173 0.0958

10 50 0.1031 0.1082 0.1028

100 0.1008 0.1052 0.1015

b) Complementary Log-log Link
10 0.0505 0.0631 0.0556
20 0.0504 0.0585 0.0520

5 30 0.0516 0.0535 0.0534

100 0.0515 0.0518 0.0517

0.05 10 0.0469 0.0565 0.0506
20 0.0475 0.0544 0.0478

10 90 0.0489 0.0515 0.0492

100 0.0513 0.0526 0.0516

10 0.0940 0.1473 0.0972
20 0.1012 0.1187 0.1027

d 50 0.1057 0.1118 0.1047

100 0.1032 0.1061 0.1038

0.10 10 0.0803 0.1378 0.0807
20 0.0967 0.1184 0.0966

10 50 0.0983 0.1085 0.0984

100 0.1005 0.1043 0.1008
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Table 4.2: Empirical powers of statistics Z;,Z, and Z3 for ¢ = 0.10, nominal levels a =
.05,.10,m = 5,10 and n = 10, 20, 50, 100 based on 10,000 replications.

nominal  binomial sample modified  score test modified
level parameter size Pearson statistic score test
a m n statistic Z; Za statistic Z3
a) Logistic Link
10 0.1986 0.1441 0.2179
20 0.3016 0.2375 0.3202

) 510 0.5533 0.4970 0.5669

100 0.8067 0.7774 0.8135

0.05 10 0.4347 0.3459 0.4476
20 0.6683 0.5924 0.6762

10 50 0.9448 0.9273 0.9455

100 0.9991 0.9983 0.9991

10 0.2645 0.2076 0.2887
20 0.3867 0.3133 0.4050

5 50 0.6539 0.5961 0.6682

100 0.8705 0.8455 0.8760

0.10 10 0.5067 0.4093 0.5182
20 0.7371 0.6689 0.7447

10 50 0.9638 0.9520 0.9650

100 0.9997 0.9994 0.9997

b) Complementary Log-log Link
10 0.2120 0.1454 0.2331
20 0.3030 0.2344 0.3223

5 50 0.5579 0.5011 0.5717

100 0.8085 0.7808 0.8151

0.05 10 0.4466 0.3534 0.4556
20 0.6814 0.6091 0.6894

10 50 0.9469 0.9310 0.9492

100 0.9983 0.9975 0.9985

10 0.2904 0.2161 0.3017
20 0.3897 0.3138 0.4099

) 50 0.6535 0.5998 0.6675

100 0.8685 0.8454 0.8742

0.10 10 0.5146 0.4216 0.5267
20 0.7484 0.6819 0.7553

10 50 0.9662 0.9549 0.9675

100 0.9992 0.9989 0.9992
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4.6 Examples

We also consider the data in the first two examples of Chapter 3.

Example 1. This data set originally given by Keiding (1991) and later analyzed by
Farrington (1996) is on incidence of hepatitis A in Bulgaria by age. The data are sparse
with 19 out of 83 annual age groups contributing non-zero denominators of 5 or less. By
using the numbers of seronegatives as response variables with binomial errors and the log
link logm, = —Aa we obtain Z; = 2.205, Z; = 2.127 and Z3 = 2.2142 with p-values 0.0275,
0.0334 and 0.0268 respectively.

Example 2. This second data set originally from Walter et. al.(1980) and analyzed by
Farrington (1996) is on transovarial transmission of yellow fever virus in mosquito popula-
tions. An adult population of Aedes aegypti infected with yellow fever produced a progeny
population which was hatched and reared to adults, separated by sex and grouped in pools
of variable size for virus assay. The data consist of 63 triples (s;, m;, ;) crossed-classified by
two binary covariates, virus strain and larval development interval. For each triple s; is the
pool size, m; is the number of pools of this size which were assayed and r; is the number
of pools found to be positive. The quantity of interest is the probability of transmission
in individual mosquitos. For each observation, let A; denote this transmission probability
and m; the probability that a pool is positive. Under suitable independence assumptions,
7; = 1 —(1—A;)* so that given covariates z; and a linear model log{—log(1—A)} = zI3 we
have log{—log(1 — m;)} = log s; + zT 3. The model is fitted by regarding the r; as binomial
with denominator m;, using the complementary log-log-link function with offsets logs;. In
this example the data display extreme sparseness, with m; > 1 for only 9 of 63 observations.
For these data we obtain Z; = 1.041, Z; = 0.464 and Z3 = 1.283 with p-values 0.298, 0.643
and 0.199 respectively.

One common feature of these two examples is that the p-values for Z3 is always smaller
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than that of Z;. Since both statistics hold nominal level well the above result indicates that

the modified score test statistic Z3 may be more powerful than the standardized modified

Pearson statistic Z;.



Chapter 5

Score tests for zero-inflation in
generalized linear models

5.1 Introduction

When analyzing discrete data under a Poisson or binomial assumption, sometimes many
more zeros are observed than expected. These data are then analyzed as a mixture model
(Farewell and Sprott 1988; Lambert 1992; Broek 1995; Mullahy 1997). One of the mixing
populations being a population in which only zeros are observed, while the other population is
the one in which counts from a discrete distribution are observed. For further interpretation
of such a mixing distribution see Farewell and Sprott (1988) and Lambert (1992).

Broek (1995) obtains a score test for zero inflation in a Poisson distribution. In the
present chapter we obtain score tests for zero inflation in generalized linear models. We
then obtain score tests for zero inflation in the Poisson model and in the binomial model as
special cases. The score test for zero inflation in a Poisson model obtained in this chapter is
identical to that obtained by Broek (1995).

In Section 5.2 we develop the score tests for zero-inflation in the generalized linear model.
The score test statistics for zero-inflation in the Poisson model and the score test statistics
for zero-inflation in the binomial model obtained as special cases of the score tests for zero-

inflation in the generalized linear model are also given in this section. Results of a small

43
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simulation study are reported in Section 5.3. Section 5.4 follows with an illustrative example

and a brief discussion.

9.2 The zero-inflated generalized linear model
and score tests for zero-inflation

5.2.1 The zero-inflated generalized linear model

Consider the natural exponential family distribution with probability density function

f(y:0) = exp{a(f)y — g(6) +c(y)},

where y represents the response variable and @ is an unknown parameter on which the dis-
tribution of y depends. This family includes both the Poisson distribution and the binomial
distribution. Note that zero-inflation can occur only in the discrete data. So, here we deal
with only the discrete exponential family. Then, the zero-inflated exponential family is,

P(Y =0) =w+ (1 —w)f(0;9),
PY=y)=(1-w)f(y;0) (y>0).

Note that it is possible to take w less than zero, provided that

f(0;8)
“=T1-7(0,9)

with equality for left truncation. Further, (i) if w > 0, P(Y = 0) > f(0;6) implying that

(5.2.1)

there exist too many zeros (zero inflation) and (ii) if w < 0, P(Y = 0) < f(0;0) implying that
there exist too few zeros (zero deflation). For this zero-inflated or zero-deflated exponential

family, the mean and variance of Y are
E(Y)=(1~w)u(®) = (1 -w)(d(9) ')
and
var(Y) = (1 —w)o?(8) +w(l —w)u?(6)

= (1 -w)(@(8)7*{g"(6) - a"(6)(a'(6))7*¢'(6) + w(g'(6))%}.



Chapter 5. Score Tests for Zero-inflation 45

For w = 0, we obtain the mean and variance of the natural exponential family distribution

E(Y)=u(8) = (d'(8))""¢'(0)
and

var(Y) = o*(8) = (a'(6))"*{g"(6) — a"(6)('(8)) *¢'(9)}.

5.2.2 Score test for zero-inflation in the generalized linear model

Let Y;,7 = 1,...,n, be a sample of independent observations from (5.2.1) with 8; a function
of a p x 1 vector of covariates X; and a vector of regression parameters 3; that is, 8; =
0:(Xi;8),i =1, ...,n. From (5.2.1), the likelihood can be written as
L(w,0:y) = [[{(w + A = w) £(0;0:)) Iyy.—0} + (1 — ) f (3 6) Iy 503 }-
i=1
Thus, the log likelihood is
lw,0;y) = > _{log(w + (1 — w) f(0;6:)) I 1y,=0} + log((1 — w) f (¥:; 6)) [ y,>03 }-
i=1
Now, for convenience, let v = . Note v = 0 & w = 0. Then, the log-likelihood, in terms

of the parameters v and 6; is

{7, 6;y) = D L7, 0:59)

=1

= Y {—log(l +7) + Ijy.=0} log(y + f(0;8)) + Iy, >0y log f(u:; 0)}
i=1

— S {—log(1 +7) + Ityim0} log(y + exp(~g(8:) + (0)))

i=1

+1y>01(a(6:)y: — 9(8:) + c(w:))}-

The score test statistic for testing the hypothesis ¥ = C is based on

1 I{y,—O}
I‘Y—-O Z{_ 1+~ I{y,-=0}7 + £(0;6;) Ho=o = Z(f(o 6;)

i=1 i=1
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Partition I(8,~) as follows
Igs  Ipy }
I(B, = / ?
o) =| P
where Igg, I, and I, are p X p,p x 1 and 1 x 1 matrices, respectively. Note that

ol; £(0;6:)(—g})
30, Tv=oy 705y T lwor{ets —aib,

Ok _ o SO0 (F0:69)(~g)* [0 6 (—gi),
062 W= T70:6) (v + F(0:60)F T A+ £(0;6,)
+lgy o {aly — g},

Pk _ o, —f(0:0)(-g)
86,0 =0 ¥ £(0;6,))2
% — __]'_+[ __;_
&y ~  1++  w=%TF0;6)
and
oL _ 1 1
0 (1+m2 G 0,6:))F

Let U be an n X p matrix with ir-element %, 1 be an n x 1 unit vector, h; = h;(0;) = log a}(6;)

and W; and W, be diagonal matrices with 7th diagonal elements

8211' ” " "
Wi = E{—ggt=o=9{/f(0;6:) + (—a; Ey: + /(1 - f(0;6:))

g; — hig;

and
52, ,
Wy = E{—m}lvw = —g;.
Then,

Iss = UTWLU,

Is, = UTWL1
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and

£0,0) &
§E{‘82}"‘° 2( L+ Go.o)7 ,;(f(ﬂl)) D-

Thus, the asymptotic variance of ¥ is
V = L,—I3 Il = Ly, —1"W,U(UTWLU) 'UTW,1.
The score test statistic for testing that v = 0 is thus
S =0/V1?
where U = \P(él, ...,0:1), V= V(01, ...,0:1) and 6; is the maximum likelihood estimate of 0;
when v = 0. The statistic S?, asymptotically, as n — oo, has a x?(1) distribution.
5.2.3 Score tests for zero-inflation in Poisson data

For the Poisson distributed data we have 8 = log u, a(8) = 0, g(6) = €°, h() = 0. Then, the
score test statistic reduces to
zz;l(ﬂs;?i — 1)

T (R - D) - U7 diag(n)U)UTR

S1

where fi; = % = e%(Xu8) and J is the maximum likelihood estimate of the parameter 3. For
9: = Xi[3 the statistic S; is the same as the score test statistic given in equation (3) of Broek

(1995). All other special cases in Broek (1995) also follow from S;.

5.2.4 Score tests for zero-inflation in binomial data

For the binomial distribution: 8 = log(p/(1 — p)),a(8) = 8, 9(8) = mlog(1 + %), h(6) = O.
Then,

f(0;6;) = exp(—m;log(l + €%)) = (1 — p;)™,

Si) = (et
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L _ —
Wy = — higl = m mip;(1 —p;) =V},
0.
m;e™
Wo = —gi= T 1 et TP = —Hi

Igg = UTWLU =UT diag(Vi)U,
Ig, = Uy

and

I’Y‘Y = Z((l_ )m; 1)'

i=l

Thus, the score test statistic for testing zero-inflation in binomial data is

Jyi=0y

where p; = efi /(1 4 €%) = e#XB) /(1 + e#:XeB)) i = (fy, ..., in)T and B is the maximum
likelihood estimate of the parameter 3. Similarly, if there exists no covariate, then p; = p
and thus the score test statistic for testing whether the binomial distribution fits the number

of zeros well is

Igy — Iy.=
5)? — 1 — mey’
\/Zz_l( (1_5)"1{ - 1 - nu?(tf—)—ﬁ) z=1((1—P)""' 1 1—'13)

where p =Y y;/ 3. m;. Further, for m = m;,

Ty — NPo
\/nﬁo(l — Po) — Poz;',',—'f%

where po = (1 —p)™, 7 = L y:/n and p = 7/m.

So =

5.3 Simulation

A limited simulation study is conducted to examine the empirical size and power of the

score test statistics for testing zero-inflation. Two sets of simulations are conducted. One
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for testing zero-inflation in Poisson(yu), for values of u is given in Table 5.1 and the other
for testing zero inflation in binomial(10, p), for values of p is given in Table 5.2. Covariates
are not considered in either study. Samples of size n = 20, 50, 100 are taken from either the
zero-inflated Poisson(x) distribution or from the zero-inflated binomial(10, p) distribution
for the inflation parameter w = 0 (for size), 0.05, 0.1, 0.2, 0.3, 0.4. Each experiment for size
or power is based on 10,000 replications.

The results in Table 5.1 and Table 5.2 indicate that the score tests hold the nominal
level reasonably well, although in some instances these show some conservative behavior.
The power of the tests for detecting zero-inflation increases very slowly for low x4 and p. In
particular, for small n(n = 20) and very small p ( p = 0.01) the binomial score test shows
no power for detecting zero-inflation. For larger values of u ( for example 4 = 2) and p (for

example p = 0.2) power increases very fast and approaches 1.0 for w = 0.4.
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Table 5.1: Power (%) of score test statistic S? of equation (2.2) with no covariates when
data are simulated from Poisson (u) : & = 0.05; based on 10,000 replications.

w
n I 0 .05 .10 .20 .30 40
20 451 392 427 508 653 8.70
30 05 456 4.63 5.53 8.11 12.18 18.05
100 510 524 656 10.49 1854 27.66
20 4.83 5.33 5.68 9.09 14.23 20.25
30 10 491 523 747 1683 30.25 4427
100 .17 6.26 11.74 31.41 57.06 76.66
20 466 5.68 810 16.24 28.04 41.07
50 1.5 509 7.18 1398 36.01 61.84 80.61
100 488 9.52 2436 65.26 91.33 98.27
20 408 736 1280 30.52 50.10 67.00

50 2.0 491 1042 2566 64.03 88.96 97.49
100 4.74 16.59 45.08 90.88 99.49 100.0
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Table 5.2: Power (%) of score test statistic S? of equation (2.3) with no covariates when
data are simulated from binomial (10, p) : a = .05; based on 10,000 replications.

w
n p O 05 10 .20 .30 .40
20 304 415 392 403 401 351
50 01 435 480 491 558 610 6.33
100 459 512 560 6.49 837 963
20 434 500 523 599 671 7.10
50 .02 332 367 440 554 690 864
100 3.71 439 517 695 895 11.77
20 387 382 428 539 752 1027
50 05 498 540 6.15 822 11.97 16.39
100 517 538 6.76 10.65 19.12 28.10
20 482 547 586 8.89 1457 21.63
50 .10 528 539 821 1836 33.29 49.32
100 513 643 12.16 32.84 57.29 77.52
20 391 7.70 1540 35.82 56.75 73.38

50 .20 5.02 12.87 31.38 72.46 93.32 98.86
100 4.79 19.84 54.13 95.02 99.87 100.0




Chapter 5. Score Tests for Zero-inflation 52

5.4 An example and a discussion

Broek (1995) analyzes a set of data consisting of counts involving a large number of zeros.
In this paper we analyze a set of data given originally by Berry (1987) as counts and later
analyzed by Farewell and Sprott (1988) as proportions. As an illustrative example for the use
of the score test for zero-inflation in binomial data we also treat these data as proportions.
The data pertain to twelve patients who experience frequent premature ventricular contrac-
tions (PVCs) and are administered a drug with antiarrhythmic properties. One-minute EKG
recordings are taken before and after drug administration. The PVCs are counted on both
recordings. The data are presented in Table D.4. Note that the observations occur as paired
data (z;,3:), which are the predrug and postdrug count, respectively, for the ith patient.
Assume that z; is a Poisson variate with mean \; and that for patients who are not cured
y; is independently Poisson with mean 8);. In order to eliminate the “incidental” nuisance
parameters J\;, one for each uncured subject, Farewell and Sprott (1988) use the conditional

distribution of y; given m; = x; + y;, which is
m; . .
Prydm; = z; +4;) = ( ” ) pP(l—p)™ ¥, y:=0,1,...,m,,

where p = BX;/(A;i + BA:) = B/(1 + ). Letting w be the probability of cure, which implies
directly that y; = 0, Farewell and Sprott (1988) use the distribution of y;, conditional on m;

as
Pr(y;=0/m;) =w+ (1 —-w)(1 —p)™
and

m; . My
Prigdm) = (=) () P - P g =
This is the zero-inflated binomial model. Based on this model we obtain the value of the
score test statistic S, = 30.513 indicating very strongly against the fit of the binomial model

to the data.
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The failure of the binomial model to fit the data well may also be due to some other
reason such as the presence of over-dispersion in the data. So, we next test for the presence

of over-dispersion. For this we use a score test

i {p( —p)] [(y: — mp)® + p(y: — map) — 3:(1 - P)1}
{232, mi(m; — 1)}1/2

given in Dean (1992, p.455). The statistic Sg has asymptotically a standard normal distri-

Sg =

bution. The value of Sg for the data in Table D.4 is 15.378 indicating very strongly against
the binomial model.

The above analyses do not indicate which of the zero-inflated binomial model and the
over-dispersed binomial model will fit the data better. To check this we fitted the binomial
model, the zero-inflated binomial model as given above and the beta-binomial model, which
is an over-dispersed binomial model, with probability parameter 7 and dispersion parameter

¢ having probability function

m; ) Yo (m+ 1) [Tg¥ ' (1 — 7 + 1)
Yi 5 (1 +r¢) '

Let [y, {; and [> be the maximized log-likelihood under the binomial, the zero-inflated bino-

Pr(y:im;) = (

mial and the beta-binomial model respectively. Then for the data in Table D.4 we obtain the
maximum likelihood estimates of the parameters and the maximized log-likelihoods for the
three models as: p = 0.125,lp = —40.69034; 5 = 0.38614,& = 0.57549, [, — —18.87348; # =
0.12496, ¢ = 0.53169 and I, = —19.17807. The log-likelihood under the zero-inflated bino-
mial model is by far the largest, indicating that the zero-inflated binomial model is the best
for these data.

Note that we have dealt with goodness of fit tests of a generalized linear model (Poisson
or binomial) against zero-inflation. In practice, discrete data pertaining to a zero-inflated
generalized linear model may also be over-dispersed. The tests developed here are then

not appropriate to test for zero-inflation. Further extensive research is necessary to find
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appropriate procedures to (i)test for zero-inflation in presence of over-dispersion, (ii) test
for over-dispersion in presence of zero-inflation, and (iii) test for both over-dispersion and
zero-inflation. The third test is necessary when zero-inflation confounds with over-dispersion

and vice-versa. We will deal with these issues in Chapter 6.



Chapter 6

Generalized linear model,
zero-inflation and over-dispersion

6.1 Introduction

Broek (1995) obtains a score test tc test whether the number of zeros is too large for a
Poisson distribution to fit the data well. In Chapter 5 we generalize this to test goodness of
fit of generalized linear (Poisson or binomial) models. However, as we point out in Chapter
5, a generalized linear model (Poisson or binomial) may fail to fit a set of data having a
large number of zeros purely because of presence of zero-inflation in the data or because
there is zero-inflation as well as over-dispersion in the data. This chapter is concerned with
analyzing such data. For this we consider a zero-inflated over-dispersed generalized linear
model. The zero-inflated over-dispersed generalized linear model is a mixture model. One
of the mixing populations is a population in which only zeros are observed, while the other
population is the one in which counts from an over-dispersed generalized linear model are
observed.

The over-dispersed generalized linear model considered here is of the form considered by
Cox (1983) and Dean (1992). We then obtain score tests (i) for zero-inflation in presence of
over-dispersion, (ii) for over-dispersion in presence of zero-inflation, and (iii) simultaneously

for testing for zero-inflation and over-dispersion. For Poisson and binomial data these score

55
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tests are compared with those obtained from the zero-inflated negative binomial model and
the zero-inflated beta-binomial model. Some simulations are performed for Poisson data to
study level properties of the tests and two data sets are analyzed.

In Section 6.2 the zero-inflated over-dispersed generalized linear model is introduced.
Score tests for selecting a model from the class of zero-inflated over-dispersed generalized
linear models are developed in Section 6.3. Results for Poisson data based on the zero-
inflated over-dispersed generalized linear model with log-link and the zero-inflated negative
binomial model are obtained and compared in Section 6.4 and results for binomial data
based on the zero-inflated over-dispersed generalized linear model with logit link and the
zero-inflated beta-binomial model are obtained and compared in Section 6.5. Results of
some simulation experiments are presented in Section 6.6 and two illustrative examples to

choose an appropriate model are presented in Section 6.7.

6.2 The zero-inflated over-dispersed generalized linear
model

Consider the natural exponential family distribution with probability density function

f(y; 0) = exp{a(8)y — g(6) + c(v)} (6.2.1)

where y represents the response variable and 6 is an unknown parameter on which the
distribution of y depends. This family includes both the Poisson and binomial distribution.

Departure from the generalized linear model (Poisson or binomial) may be because of
having a lot of zeros in the data or because the data are extra-dispersed or because of the
presence of zero-inflation as well as over-dispersion in the data.

The exponential family distribution with zero-inflation has probability density

filwio) = { L2l v e (6:22)
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where w is the zero-inflation(deflation) parameter which can take negative values provided

£(0;0)
Y2 T 70:0)

with equality for left truncation. Note that a zero-inflated model will have w > 0 and a
zero-deflated model will have w < 0 (see Section 5.2).
Now, suppose that for given 6*, y has the exponential family model with probability

density function
f(y:07) = exp{a(6”)y — g(8") + c(y)}

where 6* is continuous independent random variate with
E0*) = 0(z; 8), var(9*) =7b(0) >0, o, =E(6* —0),

where 3 is the p x 1 vector of regression parameters and 7 is the over-dispersed parameter.
Then following Cox (1983), Chesher (1984) and Dean (1992) the probability function of the

over-dispersed exponential family model is:

00,7 = 1) {1+ 3 % D.(i0)) (6.2

=2 '°

where
PG . .
D.(y.0) = { ey [0 ovma | {7300}
Further, for small 7, we assume that o, = o(7) for r > 3 and
«
fy:8,7) = fw:0){1+ 35 Dx(y,0)}
T
= f@0){1+ Zb6)Da(y.6)}.

‘The zero-inflated over-dispersed exponential family model then can be written as

w+ (1 —w)fe(0;6,7) ify=0

Pwona=ta_wpEen  iy>o. (6:2.4)

Obviously, the above model is a generalization of models (6.2.1), (6.2.2) and (6.2.3).
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6.3 Model selection in the zero-inflated over-dispersed
generalized linear model

For discrete data in the form of counts or proportions one of the following discrete general-
ized linear models may fit the data: (i) a generalized linear (a Poisson or a binomial) model;
(ii) a zero-inflated generalized linear model; (iii) a over-dispersed generalized linear model;
(iv) zero-inflated over-dispersed generalized linear model. Using the over-dispersed exponen-
tial family model (6.2.3) Dean (1992) develops score tests to detect over-dispersion in the
generalized linear model. She then obtains score tests to detect over-dispersion in Poisson
and binomial data separately as special cases of the results she obtains for the generalized
linear model. Broek (1995) obtains a score test to test whether the number of zeros is too
large for a Poisson distribution to fit the data well. Using the zero-inflated generalized linear
model (6.2.2) score tests to detect zero-inflation in generalized linear model are derived and
score tests for zero-inflation in Poisson and binomial data separately as special cases of the
results are obtained in Chapter 5. For the Poisson data the results obtained in Chapter 5
are identical to those obtained by Broek (1995).

In this section, we derive the score test statistics for selection of a model in the zero-
inflated over-dispersed generalized linear model. Specifically we derive (i) score tests for
over-dispersion in presence of zero-inflation, (ii) score tests for zero-inflation in presence of
over-dispersion,and (iii) score tests simultaneously for zero-inflation and over-dispersion.

Let Y;, 7 = 1, ..., n, be a sample of independent observations from (6.2.4) with 6; a function
of p x 1 vector of covariates X; and a vector of regression parameters 3; that is, §; =
0:(X;; 8),t =1, ...,n. From (6.2.4) the likelihood function is

Lw,T,60;y) = ﬁ{(w + (1 = w)f2(0; 8, ") y=0y + (1 — w)fo(¥i; 0, 7) (y,501 }-

=1
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Writing v = w/(1 — w) the log likelihood I = I(y, T, 0;y) can be written as

1(7) T, 0; y) = Z: li(77 T, 01.; y‘l)

i=1

= i{—log(l +7) + Igy=0y log(y + £2(0;6, 7)) + Iy >0 log fa(vi; 6, 7))}
z—l

= Z{— log(L +7) + Ify.=0} log(y + f£(0; :){1 + Z —D-(0;6:)})

+ gy >0y (a(0:)y: — g(6:) + c(y:) + log{1 + rZ_; —TTTD,(y,»; 6:)H}-
Now, define the parameter vector § = (3',~, 7)’. Partition § = (81, 65)’. Suppose we want to
test Hg : 62 = 0 against Hy4 : 6; > 0. The dimension of the parameter vector §, will depend
on the null hypothesis to be tested. For example, for testing Hp : 7 = 0,6, = (8',7),62 =T
and the dimension of 6, is 1. Similarly, for testing Hy : (r,v) = (0,0), 6, = 8,62 = (1,7) and
the dimension of é, is 2. Further, define the likelihood score S = aaTl|52=0 and the expected
mixed second partial derivative matrices, I;; = E(— 66 as' ls;=0), 12 = E(— a& a&’ |s,=0) and
Iy = E(— aa aa' ls,=0)- Then, under some conditions for the application of the central limit
theorem to score components and the regularity conditions of maximum likelihood estimates,
the score test statistic for testing Hy : 63 =0 is
T = 8 (Iop — I},053 ha) S,

which, asymptotically, has a chi-square distribution with d degrees of freedom , where d is
dimension of 85, § = S(é1), I11 = I1(61), 12 = L12(81), T2 = I»2(41) and &, is the maximum
likelihood estimate of é; under the null hypothesis.

We now give the score test statistics for the three null hypotheses Hy: 7 =0, Hy : v =0
and Hy : (7,) = (0,0) in Theorem 6.3.1, Theorem 6.3.2 and Theorem 6.3.3 respectively. The
derivations are given in Appendix A. In what follows, the dependence on 6; of the functions
w(6:), 0%(6:), a(8;),b(0;), g(6;) and D,(8;) will be suppressed for simplicity of notation. For
convenience, we replace the f5(0;6;),a(6;), g(6:),b(6;) and Do(y;;0;) with fy,a,g,b and Dy,

respectively, in the following derivation.
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Theorem 6.3.1 Let 1 be an nx 1 unit vector, U an nxp matriz with ir-element 2% aﬁ,_, LWy

and W3 diagonal matrices with ith elements W], = ¢" —a"Ey; — (7—44%9'2 - g”, Wi =
—Wf)"—(mg’ and W3; = [34 sz(TH-E%Z’I—W+ 3(0D2) 1] |y.=0 — 5 E[(bD,)"] respectively. Fur-

2
ther, let S, = 7 [~ 1wz 4 LpDy], I7, = RLE(bD,)? — 20 (LbD,)? 0], IT, =

16D fo

n Wﬁ%fo—)ly‘_o and I, = ¥, TEE) lyi=0- Then the score test statistic for over-

dispersion in the over-dispersed zero-inflated generalized linear model is
57,
with V. = Vo(6,, ... ,0n:%), which has an asymptotic x* distribution with one degree of free-
dom, where
Ve = L, —1TWaUUTWLU) IUTW;1 —
(L — ATW3UYUTWLU) Y (UTWL1))3(L,, — 1TWLU(UTWLU) T TUTW,1) 7L,
and 9, ;i =1, 2, ...,n are the mazimum likelihood estimates of v,0;,i = 1,2, ..., n respectively
under the null hypothesis Hg : T = 0.

Theorem 6.3.2 Let 1 be an n x 1 unit vector, U an n x p matriz with ir-element 2 36
Wi, Wy and W diagonal matrices with ith elements W, = ¢" — a"Ey; — E{—;log(l +
2, 220N}, Wit = —E{555; log(1 + £, 422=)}, Wi = —g' + { - log(1 + 52, 2x)} |, o
respectwely Further, let S, = S0, (5850 ;";) 1),I7, = T, E{— 25 log(1+ X2, 2=Le)} T
=37, Zlog(l + S, 2%l0),—0 and I 3. (1/f2(0;6;,7) —1). Then the score test

statistic for zero-inflation in the over- z’spersed zero-inflated generalized linear model is
= S3/V,
with V., = V,(B}, ...,0;1;1“”), which has an asymptotic x? distribution with one degree of free-
dom, where
V, = L,—1TW3UUTWU)TUTW;1 —
(Iry — ATWRU)(UTWLU) Y (UTWL1))% (I, — 1TWRU(UTWLU) ' UTW,1) 7Y,
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and T, éi,i = 1,2, ...,n are the mazimum likelthood estimates of T,0;,i = 1,2, ..., n respectively

under the null hypothesis Hy : v = 0.

Theorem 6.3.3 Let 1 be an n x 1 unit vector, U an n x p matriz with ir-element 25- 56
Wy, Wy and W3 diagonal matrices with ith elements Wy; = g — o Ey;, Woi = —g', Wa; =
Lb,[gi{ ()2 — hY'} — 2g7H, + g"] respectively. Further, let S, = o, (F5% —1),5, =
n L Lbi(a) (e — ) — () 3(gY —alye)} Ly = Sy (1/£(0;60) — 1), Ly = Sy $0:((91)2 —
] amd I, = So2 (362 (0i{5hiAY — B(RE)® — 2"} + 2(hig) — of)? + g (6(hi)? — 4L} — 4RI'R +
g7"]}. Then the score test statistic for zero-inflation and over-dispersion in the over-dispersed

zero-inflated generalized linear model is

T = V225 + V1182 — 2V1251 5,
Voo Viy — V2 ’

which has an asymptotic x> distribution with two degrees of freedom, where Vi, = I, —
1TWoU(UTWLU) L UTW,1, Vg = L, — 1TWRU(UTWLU)WUTWs1, Vo = I — 1TWRU(UT

U)"'UTW;1, 8, = 51(6), S = $2(6), Vir = Vir(9), Vao = Vaa () and Vi2 = Vi2(d), 0 is
the mazimum likelihood estimate of the vector of parameters 8 = (04, ...,0,) under the null

hypothesis Hy : (v,7) = 0.

6.4 Score test for Poisson data

For zero-inflated over-dispersed Poisson data, we obtain two sets of score tests. One of
these sets is based on the results given in Theorems 6.3.1 - 6.3.3 using the over-dispersed
zero-inflated generalized linear model with 8 = log u = X3, where X is a n x p matrix of
covariates and 3 is a p x 1 vector of regression parameters, a(d) = 6, g(9) = €’ and h(8) =

The other set is based on the zero-inflated negative binomial model. Let Y follow a negative

binomial distribution with mean m and dispersion parameter ¢, denoted by Y ~ N B(m, c).
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Then, the probability function of Y is

_ gy Lte) (ew (1 \°
PY =y)= y'T(c1) (1+C[J) (1+Cll')

fory =0,1,...,0 < & < 00,0 < ¢ < 0o. Here E(Y) = p and var(Y) = u + cu®. Then the

—1

zero-inflated negative binomial model has the following probability function

PY =0) = w+(1—w)(1_:cﬂ)°-1,
~1
P =3) = (- At (T ey >0

6.4.1 Testing for over-dispersion

Here the null hypothesis to be tested is Hp : 7 = 0. Using the results in Theorem 6.3.1, the

score test statistic for testing for over-dispersion is

R oy WE—a e
2= (Ch 5 (3 — )® "*ﬂi) — onast)?
Vr b

where [i; = exp(3;-; Xij,éj) and Bj and ¥ are the maximum likelihood estimates of 3; and
« under the null hypothesis and V, = Vi (@2, 7) with
V, = I, —1TW; X(XTW7 X)) 1 XTw;1 — (15— 1TWI X (XTWTX) 1 XTW]1)?

[T, = 1TWE X (XTWT X) P XTW3 L),

et — 1
I =
1Y Z (1 +7)2(1 +7eu.)
= pZ — p;
IT — z
v = LT A+ )
o= 3 2pf +p (- w)?
” S 40 +7) QA +7)A+vex)
W = Bi YU
. 1+  (1+7)A+ves)’
Wy = Hi

T NA e
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and

- Li 1 yui(p? — )

Wi = 21 +7) 21 +7)( +qem)

The maximum likelihood estimates Bj and 4 are obtained by solving the estimating

equations:
n -1 1
2 (i) -
o \l+7 v+em

- YHi _ -
; (I{y;:o}m + (yi — ﬂi)) Xi=0, forj=12,..,p. (6.3.1)

Using the zero-inflated negative binomial model the null hypothesis to be tested is Hp :
¢ = 0. The corresponding score test statistic is
2
. 325
{ 5y — 8:)? — ) — [{yi=o}ﬁ'ﬁ%ﬁ-—)]}
V.
where ; = exp(3F_; X;;B;) and B,— and ¥ are the maximum likelihood estimates of 3; and

2:

7 in the zero-inflated Poisson model and V, = V,(j,5) with

Ve = L.—1TWaX(XTWi.X) ' XTW;1 —

(e — 1TW3 X (XTW1 X)X TWL1)3 (1, — 1T WX (XTW X)) LXTW,1) L,
e et —1

b = L OTa e

=1

n

2

H;
Ic = y
i Z:2(1 +7)(1 + vyes)

=1

n 2 4
Lo =Y { pi My _ } ’
i=1 2(1 + 7) 4(1 +7)(7e“‘ + 1)
. 2
Wli = a - b7 N ’
1+ (1+v)(ye* +1)
—Hi
(1 +7)(ve* +1)

Wy =

and

piy
2(1 +v)(ye# +1)°

W3i
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Note that the estimating equations in the zero-inflated negative binomial model are same
as those in the zero-inflated over-dispersed Poisson model. So the maximum likelihood
estimates Bj and ¥ used in the statistic Z, are the same as those used in Z;.

We now show that for testing over-dispersion the score test statistic (Z;) is identical to
the score test statistic (Z;) provided that the model contains a constant, that is, X;; = 1 for
1=1,..,n.

From the estimating equation for j = 1 in (6.3.1) we have 37, ji; = Z?=1{—I{yi=o}#e&;-,;

+ y:}. Using this in the nominator of Z,, we have

~1 ~ 32 - ’AY(I:"? = ﬂi)l{yi=o} _ o1 . N2 ﬂ?;); I{y,-=0}
; 2((3/1. £:) £:) 2(7 + e—H) = ; 2((?/; i) Yi) 205 + o) )

Thus, the quantity in the nominator of Z; is identical to that in Z,. Further we note
that WT = W1, W] = Wo,W] = Wa + Wi, 17, = L, I7, = Le + 5 Wy and I7, =
I+ :,1: > Wi + 3 Ws;. Therefore,
Ve = IL —1"WIX(XTWrX)'XTW]1 —
(I = "Wy X (XTWT X) ' XTWI )2, — 1TWI X(XTWT X)) XTwye) !
= L.+ ;:Z Wi + Y Ws —1T(W3 + %WI)X(XTWIX)‘IXT(Wa + %Wl)l -
(L + %2 Wai — 1T(W5 + %Wl)X(XTWIX)‘IXTW21)2
/Iy — TWo X (XTW X)) XTW,1)
= L.+ i—ZWH+ZW3f
“1TWaX(XTW . X)L XTWs1 — -;-ITW1X(XTW1X)‘1XTW31 -
-;-ITW3X(XTW1X)’1XTW11 - ilTWQ((XTWIX)“XT Wil
(Iye + %Z Wo; — :

2
— VW X(XTW, X) ' XTW,1)2/ (1, — 1TWo X (XTWLX) L XTW,1)

1"TWAi X (XTW, . X) ' XTW,1

= L.+ % Y Wu+ Y Wi — 1TWa X (XTW X)L XTWsl
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5 S Wa— s S Wa— 1 S Wi
(e + % > Wa - % Y Wy —1TWaX(XTW X)) XTW,1)2
/(L — 1TWoX(XTW1 X)L XTWa1)
= L.—-1TWaX(XTW X)) ' XTWs1 —
(I — VTW3 X (XTW X)L XTWR1)% (L, — 1TW X (XTW1 X)L XTW,1)
= V..
Thus, the score test statistic Z; derived using the specific over-dispersion model, namely,

the negative binomial model, is the same as the score test statistic (Z;) derived using the

general over-dispersed Poisson model.

6.4.2 Testing for zero-inflation

In this subsection, for ease of computation, we assume o, = o(t), for r = 3,...,00 and
f2(y;0,7) = f(y; 0)(1+5b(6) D2(y; 8)). Then, by using Theorem 6.3.2, the score test statistic

for testing the hypothesis Hp : ¥ = 0 in the zero-inflated over-dispersed Poisson model is

n I{ v=o}6‘z" ~
Za = k& ol — — 1)%/V,,
’ (;1+%T((yi—m)2—ui) y'/Vy

where [i; = exp(X;-; X:;B;) and B; and # are the maximum likelihood estimates of B; and

T under the null hypothesis and V., = V,(i, ¥) with

V, = I —1TWUUTWU)'UTW31 —
(I7, - "W UUTWU) WU W3 1) (L. — 1TWZU(UTWU) ' UTWy 1),

. = -Z(2u, + i),
1—1
1—71' = -Z(l‘l"l _#1.

1.-—1

By = Yrra—
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1
Wi = = 57(2u — ),
11,
Wy = Eﬂi - ETﬂi
and
1 2
Wi = —ui+ ET(Q#Z- — 1i)

The maximum likelihood estimates 3 and 7 are obtained by solving the estimating equations:

i( 27{(v = a)® — ) =0

S\ 1+ 37[(y: — )2 — pad]

= 3720y — pa) (—ps) — #i))
i — i) + 2 Xi; = O0forj=1,2,..p.
z; <(y #)+ +3m((y — ) — ) )7 P

Further, using the zero-inflated negative binomial model, we obtain the score test statistic
for testing the hypothesis Hy : v = 0 as:

= (it L=y (1 + &) —1)2

Z.
! Z

where [1; = exp(¥;-, Xijﬁj) and Bj and ¢ are the maximum likelihood estimates of 3; and c

under the negative binomial model and V, = V4 (i, €) with

V, = L, —-1TWUUTWLU)"'UTW,1 —
(Lie — 1TW3U(UTWLU) T TUTWL1) (. — 1TWRU(UTWLU)LUTW,1) 7L,

n

L, = Z[(l + Clli)c-l -1],

i=1
n

- 4 A S
I‘YC - ;[62 lOg(l-{—C‘u,) C(1+Cﬂi)]’
n (1Pl
I. = N
2{,2 A+ 0=-1)02 (1+cm)?
2 2 I
s loell +em) — G oy T dir et
Hi
Wy = —H
! (1 + )

ng =0
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and

i
Wi = ———m—
’ (1 + cus)

where Y; ~ NB(u;,c) for i = 1,2, ...,n. Note that the maximum likelihood estimates 3 and

¢ are obtained by the following estimating equations:
noYi l —1 n Yilbi 1 L )
—_—] - — — < log(l + cyy) + ———= | =0,
i=21§<1+(l‘1)0) iz=:1<l+cﬂi c? g( ) c(1 + cps)

N .
— Xy = 0forj=1,2,..,p.
igi (1+%)

Theoretically, the two test statistics are not same because the exact expressions of I, I,
Iy, Wi, Wa; and Wy; in the zero-inflated generalized linear model can not be obtained. Note
that the statistic Z4 has a simple form and we show by simulations in Section 6.6 it holds
level even when the over-dispersion model is not negative binomial. So, we recommend its

use in practice for testing for zero-inflation in the presence of over-dispersion.

6.4.3 Testing for over-dispersion and zero-inflation

Using the results in Theorem 6.3.3 the score test statistic for testing the hypothesis Hj :

(v,7)=01is:
Iy = . - . .
7. _ (CEERE — 1 — 3y — )? + 34in)? 4 B — i) — )
> (et —1 —fi; — 147 2y i’ ’
where /; is the maximum likelihood estimate of the parameter u; under the null hypothesis
(v,7) =0.

Further, using the zero-inflated negative binomial model, the score test statistic for testing
the hypothesis Hyp : (v,¢) =0 is:

_ (SCER -1 - = )+ 4w | (S = ) — )’
(Tes —1— fi; — 1% 2% i ’

Zs



Chapter 6. Zero-inflation and Over-dispersion 68

where (i; is the maximum likelihood estimate of the parameter y; under the null hypothesis
(v.¢c) =0.

Under the null hypothesis of either (v,7) = 0 or (v, c) = 0 we have the same estimating
equations for the u;’s. Using these estimating equations we can see that 3~ fi; = ¥ y;. Thus
the two statistics Z5 and Zg are identical.

Also from the above, it is easily seen that the test statistic includes two terms: the
second term is the test statistic to test over-dispersion (see Dean (1992)) and the first term
is related to a statistic to test zero-inflation. There seems to be some compound effect

between zero-inflation and over-dispersion.

6.5 Score test for binomial data

For zero-inflated over-dispersed binomial data, we also obtain two sets of score tests. One
of these sets is based on the results given in Theorems 6.3.1 - 6.3.3 using the over-dispersed
zero-inflated generalized linear model with 6 = 7, a(#) = log{n/(1 — «)}, g(8) = —mlog(1l —
8),6(6) = 6(1 — 0) and h(#) = —logh — log(1 — 6). The other set is based on the zero-
inflated beta-binomial model. Note that Y follows a beta-binomial distribution with mean 7
and dispersion parameter 8, denoted by Y ~ BB(m, r, ) if Y has the following probability

function

v m [ +r0) [Ty (1 — 7 +78)
P =)= ( y ) 10 7 70) !

fory=20,1,..,m,0 <7 <1and 0 > maz[-n/(m —1),—(1 —7)/(m — 1)] (Prentice, 1986).

The mean and variance of Y are m7m and mn(1 — 7)[1 + (m — 1)¢], where ¢ = 6/(1 + 6).
Then, the zero-inflated beta-binomial model follows the following probability function

PY=0) = w+(l-w) m_,;_g (*1' :—0r0)1r)’

m—y—1
PY=y) = (1 —w)( . ) ,_0(1r+r0")1£'{,(;0:r21)—7r+r0) fory=1,..,m
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6.5.1 Testing for over-dispersion

Here the null hypothesis to be tested is Hy : 7 = 0. Using the results in Theorem 6.3.1 the

score test statistic for testing for over-dispersion is:

=L | 2(5+(1—#)™)(1—F:) 27:(1—7:)
oy ?

V.
where #; = exp(} Xiij) /(1 + exp(32 X,-,-ﬁ})) and Bj and 4 are the maximum likelihood

{ n ["[{y,-=0}'7’-"i"‘i(’"i—1) + ((?li“miﬁ'i)2+(yi—mi7?i)7‘ii-yi(1—‘fr€))] }2
Zr =

estimates of 8; and v under the null hypothesis and V; = V,(#,%) with
Vi = Vi(my) = I, — PWUUTWIO) 0T W31 —
(7, —1TW;UUTWTU) T UTWE)* (I, — 1"WU(UTWU) ' UTWi 1),
B = S e
2 (1 —m)™tmymi(ms — 1
5= S (S

t=1

T = zn: (mi(mi —1) mimi—1)> yri(l —m)™? )
” i\ 2(1+7) 4 A+ + A —m)™) )’

W — m; @ = m)™2m?
PUoml-m)(1+) A+ + @ —m)m)’

Wr o= — myy(l — m)™ !
2T 4+ + A —m)™)

and
Wg; _ mi(mi — 1) 7r,-m,-(1 - Wi)mi—2’)’

2 I+ + @A —m)™)
The maximum likelihood estimates 3,- and 4 are obtained by solving the estimating equations:
n -1 1
+ =0,
;(14-7 7+(1—1r.-)'"f)

= ym;T; :
I, - + (yi —mym) | X;;, =0, forj=1,2,..p.
; ( {y:=0} (v + (1 — m)™) (v i l)) ] J Y4

Using the zero-inflated beta-binomial model the null hypothesis to be tested is Hy : § = 0.

The corresponding score test statistic is

—Igy,. —gyyfimi(m;—1) - - ~ ~
S iy T eyl — maf)? + iy — ma) — (1 — )]

Z —
8 Vo(#,4)

b
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where # = (my,...,m,) and #;,i = 1,...,n, and ¥ are the maximum likelihood estimates of
parameters 7;,7 = 1, ...,n, and v under the null hypothesis § = 0.
Va(m,v) = If— V'WSUUTWIU)'UTWEL
— (I8 —1"WUWUTWIU) \UTWEL)2/

(L2, —1TWUWUTWIU)tUTWE),
n 1—(1—m)™

’l .
bn == ; A +72(v + (1 —m)m™)
P n (1 —m)™ I mi(m; — 1)
Y G0+ +Q=-m)m) 2
=3 (mi(mi —1) _mimi—1)* y(1—m)™ 7 )
T G\ 21+9) 4 A+ + A —m)m) )’
Wg . m; _ mt27(1 - Wi)mi—z
PUom-m)(1+) A+ + (A —m)m)
9 —mn'(l - Wi)m—l
W2i

I+ + (1 —m)m™)
and

mi(m; — 1)Timy(1 — )™ —2

Wa = 20 +7v)(v+ (1 —m)™)

The estimating equations for zero-inflated beta-binomial model are identical to those for
zero-inflated generalized linear model. Note that L, I, I W[, WS, and W, are equal

to I?

9 g, 155, Wi, W5, and WY, respectively. So for testing over-dispersion the score test

statistic Z7 is identical to the score test statistic Zg.

6.5.2 Testing for zero-inflation

Similar to Section 6.4.2, we assume that a, = o(7), for r = 3, ..., 00. By using Theorem 6.3.2,
the test statistic for testing the hypothesis Hy : ¥ = 0 in the zero-inflated over-dispersed
binomial model is

{E;;l [I{yi=0}(1 — ;) "mi(1 4 Dmlmi Uy —1 1] }2

2(1—7;)
V(.7 |

Zo =
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where #; = exp(¥ X;;8;)/(1 + exp(E. X;03;)) and B; and # are the maximum likelihood

estimate of §; and T under the null hypothesis and V,, = V,(#,#) with

Vs

I

YT

-
I
~y
Wai

and

3i

Vi(p,7) = I, — 1TWUWUTWYU) ' UTW31 —

(17, - "WU(UTWU) UTW3 12(L,, — WU (UTWR0) 0T Wy1) ™,
n mi(mi - 1)
Z o2

mim;(m; — 1 rramg(m; — 1),

izz; 2(1—7&) 2(1—7?,:) ) ’
L ( (1 - 1r,-)‘"“' )

Z THimi(ma—1) 1 !
=\ T

m; rm,-(m,- - 1)
7(,'(1 - 7(,') - ﬂ’i(l - 7!’,') !
(1 — 2m;)m;(m; — 1)

27&'(1 - ﬂ’i)

)

(1+

M Tm;(m; — 1)
l—m; 2(1 - 71’{)2

The maximum likelihood estimates 3; and 7 are obtained by solving the estimating equations:

sy (W — mam)? + mi(ys — ) — (1 — )]

>

i=1

Lt oy (s — mums)? + miys — ) — (1 — )]

?

2

i=1

n (T(l — ma)(yi — mum;) + S (3 — mums)? +ma(y — m) — y:(1 — Tfi)]) 3

1+ ooy [ — mami)? + miys — m) — 3:(1 — )]

+> (¥ —mim) Xy =0for j =1,2,..p.

i=l

Next, the test statistics for testing the hypothesis Hg : ¥ = 0 in the zero-inflated beta-

binomial model is

Z1o

o [ - )

I (1+rb—) -

b

V,(#,6)
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where #; = exp(T X;;6;)/(1 + exp(T X:;3;)) and B3; and  are the maximum likelihood
estimate of §; and 6 under the null hypothesis and V, = V,(#, §) with

Vi = V(= 0)
= I —1"TW3UUTWYU)'UTW31 —

(T — AW UUT WY WYy — YTWIUUTW0) 0w ),
VR it (1 + 1) )
Ly z (l'[:.n.:o 1416 —m) 1

n m;—1 r

Lo = ,;;(1+r9  T+r0”
&[S —2P(Y; > 1) 1__7.2P(Y<m1—r) .
120 = Z[Z (m: + 1) + Z 1+716 —m) Z (1+T‘0)

i=1 L r=0 r=0

il p(Y; > r) wl P(Y; <mi—1)
Wi = (j‘;() (m; +6)2 Z (1+r8— 1r)2)’
_ rP(Y;>r) & LrP(Y; <m; —7)
Wz = (rz_% (7 +16)2 Z% (1476 — ;)2
and
m;—1 _1
Wa = Z;) (1+7r0 —m;)’

where Y; ~ BB(m;, m;,8) for i = 1,2, ...,n. The maximum likelihood estimating equations

for 6 and 3; are

n yi—l r m;—y;—1 r m;—1 r
Z Zwi+r9+ z 1+r0—1r,-_r_z_:11+r0 =0

i=1 r=1 r=I1

n fy—1 1 m;—y;i—1 -1
Z (Z m; + 10 * rg) m

i=1 \ r=0

Also, two test statistics Zg and Z;¢ are not equal.

) ‘/Ti(l - TF,')X,;J' = 0 for ] = 1, 2, ey D

6.5.3 Testing for over-dispersion and zero-inflation

Now,the score test statistic for testing the hypothesis Hp : (v,7) =0 is
VTTS2 + ffssfe - 2VST5T

le =
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where

S(M) = Uyl —m) ™™ —1),

Ny (y: — mim:)® + mays — mams) — (L — )
T(p) = ; 2m;(1 — ;) ’

Vs(e) = D((1—m)™ 1),

Ver(e) = 3 pmalms ~ 1) — 1TW3U(UTWAU)UTWAL,
=1
n ﬂ',-mi(m,- — 1)
1% =
sz(p) ; 2(1 —m)
with Wy; = i Wy = —=, § = S(#), T = T(#), Vss = Vss(#), Vor = Vrr(#) and

Ver = Vor (%), where 7 is the maximum likelihood estimate of the parameter © = (74, ..., T,)
under the null hypothesis (y,7) = 0.
By using the zero-inflated beta-binomial model, the score test statistic obtained for test-

ing the hypothesis Hp : (7,0) = 0 is the same as the statistic Z;;.

6.6 Simulations

In this section we conduct some simulations to study the performance, in terms of empirical
levels, of score test statistics Z;, Z, and Zs for Poisson data. Each simulation experiment
was based on 10,000 replications.

For testing for over-dispersion in the presence of zero-inflation, data are simulated from
a zero-inflated Poisson distribution with zero-inflation parameter w=0.001, 0.01 and 0.10,
Poisson mean p= 0.5, 1.0, 1.5, 2.0 and 2.5, and sample size n= 20, 50, 100, 200 and 300.
However, we only present the simulation results for 4 = 1.0 and p = 2.0 in Table 6.1 as
conclusions for other values of y are similar. The results show that when n is small, the
empirical levels of the statistic Z, show some liberal behavior and for large sample sizes it

maintains the nominal level well. We also note that the performance of the test statistic Z;
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is the same for all values of the zero-inflated parameter.

For testing for zero-inflation in the presence of over-dispersion, data are simulated from
a over-dispersed Poisson distribution with over-dispersed parameter c= 0.01, 0.05, 0.10 and
0.50, Poisson mean p = 0.5, 1.0, 1.5, 2.0 and 2.5, and sample size n =10, 20, 50 and 100
for test statistics Z4. Data are first simulated by negative binomial distributions by using
the above parameters. Also, the simulation results are given only for z = 1.0 and p = 2.0
in Table 6.2. From the results in Table 6.2, except for ¢ = 0.01, when sample size is small
the test statistic Z4 is a little conservative. For large n and other values of ¢, Z; maintain
the nominal levels well. Similarly, the performance of Z; does not depend on the value
of over-dispersed parameter. Then, data are simulated from a lognormal mixture Poisson
distribution by using the same parameters. The results presented in Table 6.3 are similar to
those in Table 6.2 except in some case. For example, for ¢ = 0.50 and n = 100 the test shows
conservative behavior. This fact shows that except for very highly over-dispersed data the
statistic Z4 may be reasonably robust. That is, the test may be applicable when data come
from some other over-dispersed generalized linear models.

For simultaneously testing for zero-inflation and over-dispersion, data are simulated from
a Poisson distribution with Poisson mean p= 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 and sample
size n= 10, 20, 50 and 100. The results are presented in the Table 6.4. The results show
that the score test statistic Z5 for testing zero-inflation and over-dispersion maintains the

nominal level.
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Table 6.1: Empirical levels of score test statistic Z, for testing over-dispersion with no covari-
ates when data are simulated from zero-inflated Poisson P(u) based on 10,000 replications.

Poisson 1 « n w=0001 w=0010 w=0.100
20 0.0411 0.0179 0.0211
50 0.0135 0.0174 0.0144
0.01 100 0.0120 0.0117 0.0114
200 0.0108 0.0118 0.0118
300 0.0118 0.0109 0.0108

20 0.0530 0.0293 0.0319

50 0.0335 0.0372 0.0328

1.0 0.05 100 0.0391 0.0378 0.0400
200 0.0439 0.0429 0.0437

300  0.0485 0.0470 0.0449

20 0.0676 0.0444 0.0440

50 0.0691 0.0697 0.0637

0.10 100 0.0794 0.0814 0.0792
200  0.0898 0.0878 0.0869

300 0.0974 0.0939 0.0913

20 0.0172 0.0437 0.0252

50 0.0198 0.0187 0.0142

0.01 100 0.0100 0.0102 0.0103
200  0.0088 0.0100 0.0101

300  0.0093 0.0103 0.0108

20 0.0359 0.0606 0.0445

50 0.0485 0.0479 0.0420

2.0 0.05 100 0.0416 0.0446 0.0437
200  0.0456 0.0465 0.0458

300 0.0485 0.0497 0.0509

20 0.0696 0.0909 0.0758

50 0.0909 0.0895 0.0859

0.10 100  0.0885 0.0920 0.0906
200  0.0959 0.0975 0.0955

300 0.0970 0.0970 0.1010
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Table 6.2: Empirical levels of score test statistic Z, for testing zero-inflation with no covari-
ates when data are simulated from negative binomial NB(y, c) based on 10,000 replications.

Mean 4 « n ¢c=001 ¢c=005 ¢c=0.10 ¢=0.50
1.0 001 10 0.0019 0.0303 0.0291 0.0083
20 0.0099 0.0207 0.0188 0.0067

50 0.0134 0.0095 0.0091 0.0086

100 0.0129 0.0250 0.0092 0.0090

005 10 0.0144 0.0759 0.0632 0.0345

20 0.0450 0.0720 0.0607 0.0398

50  0.0455 0.0391 0.0444 0.0433

100 0.0469 0.0608  0.0448 0.0489

0.10 10 0.0505 0.1048 0.0925 0.0786

20 0.0863 0.1172  0.1073 0.0804

50 0.0924 0.0812 0.0856 0.0902

100 0.0933 0.1032  0.0927 0.0910

2.0 0.01 10 0.0128 0.0082 0.0078 0.0081
20 0.0103 0.0097 0.0078 0.0075

50 0.0281 0.0083 0.0089 0.0094

100 0.1223 0.0096 0.0076 0.0111

0.05 10 0.0466 0.0338 0.0378 0.0399

20 0.0437 0.0487 0.0480 0.0442

50  0.0725 0.0462 0.0476 0.0466

100 0.1973 0.0469 0.0474 0.0487

0.10 10 0.0869 0.0764 0.0787 0.0879

20 0.0966 0.0970 0.0951 0.0921

50 0.1214 0.0960 0.0978 0.0957

100 0.2519 0.0936 0.0928 0.0995
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Table 6.3: Empirical levels of score test statistic Z, for testing zero-inflation with no covari-
ates when data are simulated from Lognormal mixture Poisson LM P(u, c) based on 10,000

replications.

Mean 4 « n ¢=001 ¢=005 ¢c=0.10 c=0.50
1.0 001 10 0.0015 0.0188 0.0240 0.0181
20 0.0076 0.0213 0.0182 0.0100

20 0.0113 0.0119 0.0108 0.0117

100 0.0115 0.0487 0.0110 0.0200

0.05 10 0.0137 0.0623 0.0568 0.0400

20 0.0434 0.0659 0.0639 0.0445

50 0.0417 0.0454 0.0474 0.0496

100 0.0491 0.0864 0.0487 0.0661

0.10 10 0.0513 0.1058 0.0886 0.0717

20 0.082 0.1184 0.1081 0.0865

50 0.0855  0.0908 0.0934 0.0999

100 0.0963 0.1339 0.0973 0.1195

2.0 0.01 10 0.0141 0.0075 0.0071 0.0083
20 0.0111  0.0092 0.0084 0.0136

50 0.0266 0.0097 0.0095 0.0209

100 0.1191  0.0092 0.0094 0.0281

0.05 10 0.0469 0.0335 0.0352 0.0411

20 0.0516 0.0475 0.0463 0.0549

50 0.0687  0.0456 0.0506 0.0717

100 0.1902 0.0479 0.0521 0.0903

0.10 10 0.0869 0.0769 0.0797 0.0921

20 0.0995 0.1002 0.0976 0.1077

50 0.1170  0.0970 0.1011 0.1276

100 0.2451  0.0983 0.1017  0.1537




Chapter 6. Zero-inflation and Over-dispersion

78

Table 6.4: Empirical levels of score test statistic Zs for testing both the zero-inflation and
over-dispersion with no covariates when data are simulated from Poisson (1) based on 10,000

replications.

n

Poisson mean 4 o =001 a=0.05 a=0.10

10
20
20
100
200

10
20
50
100
200

10
20
50
100
200

10
20
50
100
200

10
20
50
100
200

10
20
50
100
200

10

20

50

100
200

0.5
0.5
0.5
0.5
0.5

1.0
1.0
1.0
1.0
1.0

1.5
1.5
1.5
1.5
1.5

2.0
2.0
2.0
2.0
2.0

2.5
2.5
2.5
2.5
2.5

3.0
3.0
3.0
3.0
3.0

3.5
3.5
3.5
3.5
3.5

0.0057
0.0130
0.0202
0.0194
0.0193

0.0108
0.0145
0.0167
0.0150
0.0128

0.0124
0.0130
0.0151
0.0152
0.0124

0.0123
0.0131
0.0148
0.0111
0.0098

0.0123
0.0121
0.0126
0.0123
0.0117

0.0142
0.0139
0.0123
0.0113
0.0100

0.0177
0.0163
0.0148
0.0122
0.0102

0.0289
0.0373
0.0469
0.0503
0.0515

0.0329
0.0401
0.0487
0.0508
0.0503

0.0349
0.0419
0.0484
0.0523
0.0475

0.0312
0.0399
0.0476
0.0487
0.0469

0.0334
0.0376
0.0469
0.0464
0.0478

0.0364
0.0387
0.0437
0.0464
0.0479

0.0413
0.0443
0.0469
0.0461
0.0470

0.0504
0.0640
0.0796
0.0856
0.0916

0.0667
0.0705
0.0895
0.0936
0.0946

0.0647
0.0752
0.0930
0.0966
0.0958

0.0559
0.0746
0.0924
0.0963
0.0972

0.0562
0.0680
0.0930
0.0957
0.0961

0.0590
0.0719
0.0899
0.0956
0.0930

0.0679
0.0734
0.0857
0.0941
0.0936
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6.7 Two examples

Now we consider an application of the zero-inflated over-dispersed model to the Poisson and
the binomial data.

Example 1: The data set are from a prospective study of dental status of school-children
from Bohning, Dietz and Schlattmann (1999). The children were all 7 years of age at the
beginning of the study. Dental status was measured by the decayed, missing and filled teeth
(DMFT) index. Only the eight deciduous molars were considered, which implies that the
smallest possible value of the DMFT index is 0 and the largest is 8. The prospective study
was for a period of two years. The DMFT index was calculated at the beginning and at the
end of the study. The DMFT index data at the beginning of the study are given in Table D.5.
We now fit the Poisson model, over-dispersed Poisson model (negative binomial model), zero-
inflated Poisson model and zero-inflated negative binomial model to the data. The results of
the model fitting are given in Table 6.5. The maximized log-likelihood values indicate that
the zero-inflated over-dispersed Poisson model, namely, the zero-inflated negative binomial
model fits the data far better than other models.

We now use the score tests to select an appropriate model for the data. The values of the
score test statistic for the goodness of a model (such as the Poisson model) against another
model (such as the negative binomial model) are given in Table 6.6. The tests overwhelmingly
rejects the fit of all other models in favor of the zero-inflated negative binomial model.

Example 2: We reconsider the data given in Table D.4. This data set refers to PVC counts
for twelve patients one minute after administering a drug with anti arrhythmic properties
(Berry, 1987). The results of the model fitting are given in Table 6.7 and the values of
the score test statistic are given in Table 6.8. The maximized log-likelihood values indicate
that the zero-inflated beta-binomial model fits the data slightly better than the zero-inflated

binomial model and fits the data far better than other models. The values of the score test
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statistics and their corresponding p-values indicate that either the zero-inflated binomial
or the beta-binomial model adequately fits the data. However, the value of the score test
statistic for testing the fit of the zero-inflated binomial model against the zero-inflated beta-
binomial model is smaller than that for testing the fit of the beta-binomial model against the
zero-inflated beta-binomial model. Therefore, the zero-inflated binomial model is the model

of choice for the data.
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Table 6.5: Results of model fitting of the DMFT index data

Model Estimates of parameters log-likelihood
7 c w

Poisson 3.3237 -1998.884

zero-inflated Poisson 4.1731 0.2035 -1761.197

negative binomial 3.3237 0.5000 -1833.862

zero-inflated over-dispersed Poisson 4.1378 0.0530 0.1967 -1756.803
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Table 6.6: Results of the goodness of fit tests(score tests) for the DMFT index data, P:
Poisson, NB: negative binomial, ZIP: zero-inflated Poisson, ZINB: zero-inflated negative
binomial

Test Score statistic p-value
P vs NB 394.4432 0.0000
P vs ZIP 847.1954 0.0000
ZIP vs ZINB 7.8656 0.0053
NB vs ZINB 120.3656  0.0000

P vs ZINB 890.1677 0.0000
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Table 6.7: Results of model fitting for the PVC counts data

Model Estimates of parameters  log-likelihood
p/m ¢ w

Binomial 0.12500 -40.6903

zero-inflated Binomial 0.38614 0.57549 -18.87347

Beta-binomial 0.12496 0.53169 -19.17807

zero- inflated Beta-binomial 0.33563 0.09169 0.55799 -18.02478
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Table 6.8: Results of the goodness of fit tests(score tests) for the PVC counts data, B:
binomial, BB: beta-binomial, ZIB: zero-inflated binomial, ZIBB: zero-inflated beta-binomial

Test Score statistic p-value
B vs BB 236.4964 0.0000
B vs ZIB 931.0414 0.0000
Z1B vs ZIBB 1.288335 0.2564
BB vs ZIBB 176.3775 0.0000
B vs ZIBB 990.3721 0.0000




Chapter 7

Discussion and future research topics

In this chapter we summarize conclusions of this thesis and discuss some further research
topics.

It is well known that it is very important to assess goodness of fit of the given model
because the data often exhibit variations greater than what is predicted by a simple model.
Usually, the Pearson chi-square statistic or the likelihood ratio chi-square is used to test
the goodness of fit of the generalized linear model when the expected cell frequencies are
large. As we pointed out in Chapter 3, these two test statistics do not perform well for the
case in which the data are extensive but sparse. Therefore some authors consider using the
modifications of these two test statistics. In Chapter 3 and Chapter 4 we derived two modified
test statistics: the modified deviance test statistic and the modified score test statistic.
Comparing with Farrington (1996) and McCullagh (1986), the proposed modifications to the
deviance statistic and Pearson statistic are simple to implement and have definite advantages
for assessing the goodness of fit of generalized linear models when the data are sparse. The
optimality properties of the modified statistics allow them to be used with both canonical
and non-canonical models and, as confirmed in the beta-binomial simulations, enhance their
powers to detect departures from the null distributions and maintain the nominal levels. The
simulations reported in this thesis confirm the accuracy of the approximation for moderate

sample sizes. Inevitably, however, the normal approximations to the tail probabilities may
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sometimes fail in small samples. Now we try to compare our proposed two test statistics,
namely, the modified deviance statistic and the modified score statistic. We note that the
modified score test statistic has a simple form and it needs parameter estimates only under
the null hypothesis. Also it is a little more powerful than Modified Pearson statistic of
Farrington (1996). But from simulation results in Table 3.3 and Table 4.2, we find that
the modified deviance statistic is much more powerful than the modified score statistic. In
fact simulations indicate that the modified deviance statistic is most powerful among all of
our test statistics. Although, simulations show that the modified deviance statistic is most
powerful, a theoretical proof of this result is not available. It would be interesting to see if
a theoretical proof could be obtained. Another question is whether we can obtain a more
powerful test statistic than the modified deviance statistic. Note that only approximations
to the first two moments of conditional distributions of the Pearson chi-square statistic and
the deviance statistic are used in order to get the standardized modified Pearson chi-square
statistic and the standardized modified deviance statisiic. Also, we only use the Edgeworth

expansion with one correction term to get the tail probabilities:
P(Z > 2) =1 — ®(2) + (22 — 1)ps6(2) /6, (7.1)

where ®(z) and ¢(z) are standard normal distribution function and density function, p3 is
the approximate standardized conditional third moment. Naturally, we would like to ask if
we can use the Edgeworth expansion with more correction terms to get the tail probabilities
or p-values. That is, can we use the improved Edgeworth approximation of the modified
Pearson statistic or the modified deviance statistic as a goodness-of-fit test statistic? The
problem then is to obtain the p-values by using the formula similar to (7.1) or following

Edgeworth expansion with more correction terms

d(z, N[l + K"theg(z,N)/(6v/n)
+ {36™5 % hgu(z, A) + K7 R, (2, M)}/ (720)] + O(n~3/2). (7.2)
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The difficulty lies in obtaining a formula for the approximate conditional fourth cumulant of
the modified Pearson statistic or the modified deviance statistic. Following the McCullagh
(1984, 1987) approximations to the fourth unconditional cumulants k4(D*) and k4(X?2) are

obtained using the following unconditional cumulants

K] = 0,k° = K" — BIBIEY k7T =0,
KI’s't = ot — BTk zst[ | + ﬁrﬁs l,],t[3] ﬁth i5.k
Ki,r,s — Ki,r,s . ‘B;Ki,j,s[ ] +,3T,33 i,7,k w, — h:i,j,r -ﬁ;ni'j'k,
nq,s,t.u = st ;. zstu[4] +ﬁrﬁs i.t, 6] — ﬁrﬂSﬁt idku +ﬁ{ﬁ;ﬂiﬂrni,j,k,l’
ﬁi'r's't — z TSt IBT 1,7,8, t[3] + ﬁr ,J,k,t [3] _ ﬂ;ﬂzﬁfﬁi'j’k'l,
h.‘zi,j,r.s = hdms ,Br i.7.k, 3[2] + I@r ﬂs i,7.k,0 ni,j,k,r — Ki,j,k,r _ ﬂlrh',i'j'k'l.

It is, however, not clear how to construct an appropriate formula for x4(D*) and x4(X?2).
Once the formula for k4(D*) or k4(X?) is obtained, we can obtain approximate conditional

fourth cumulants using the following formulae

cum(X", X*, X*, X¥| X)) = &"*"/n+ k7" k4" (hyj — hih;)[3]/n
or

cum(X", X°, X, X¥|X(5)) = n7'{k" 4 gm0 bI[3]R, ).

Naturally, these look quite involved.

Next we discuss the issues of over-dispersion and zero-inflation. The data often exhibit
these variation. The most common test method for testing over-dispersion is the score test
method (See Dean 1992, Dean and Lawless 1989). As we pointed out before, the score
test has many advantages. Therefore by using the score test method, we obtained the
score test statistics for testing for zero-inflation in generalized linear models, testing for

over-dispersion in the presence of zero-inflation, testing for zero-inflation in the presence
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of over-dispersion and, simultaneously testing for zero-inflation and over-dispersion in the
generalized linear models. Also, we directly obtained the score test statistics for the specific
models such as the negative binomial model and the beta-binomial model. In general, the
test statistics obtained in this thesis maintain nominal levels and can be used to test for zero-
inflation and/or over-dispersion in generalized linear models. Also we use the zero-inflated
Poisson model, zero-inflated binomial model and zero-inflated over-dispersed Poisson and
binomial models (zero-inflated negative binomial and zero-inflated beta-binomial models) to
fit to some real life data. From the results of our examples, if there are too many zeros in
the observed values the zero-inflated Poisson model obviously is better than over-dispersed
Poisson (negative binomial) model and, the zero-inflated binomial model is better than the
over-dispersed binomial (beta-binomial) model( see examples in Chapter 5 and Chapter 6).
Further, the zero-inflated over-dispersed generalized linear model is better than the zero-
inflated generalized linear model and over-dispersed generalized linear model(See examples
in Chapter 6).

We note that in the over-dispersed generalized linear model the approximation to the
likelihood function is used to obtain the score test statistics (see Cox 1983, Dean 1992). In
Dean (1992), the approximation to the likelihood function is as follows:

«
r

A0, = £6:0) {1+ 5 2D, s0) |
r=2 " °
where
5™ . .
D.(y,0) = {Wf(y;a )|0-=o} {fy; O}

Note that the over-dispersed generalized linear models are constructed by extending the

natural exponential family with probability density function

f(Y;0) = exp{a(f)Y — g(8) +c(Y)}
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and replacing the parameter 6 by the continuous random variable #* with finite mean and

variance

E(0*) =60(x;6), var(6") =7b(8) >0
and also assuming that

E{6*—0)"} = ar; a.=o(1), r > 3.

Theoretically, we can obtain only the first two terms in the Taylor expansion of likelihood
function because we dc not know the expression of a, for 7 > 3. When testing for over-
dispersion in the zero-inflated over-dispersed generalized linear model, an approximation to
the likelihood function using only the first two terms is enough since the over-dispersion
parameter is set to be zero. But when testing the zero-inflation in the over-dispersed gener-
alized linear model the other terms in the Taylor expansion have effect on the score functions.
Therefore, when we apply the approximation to likelihood function to obtain the score test
statistic, we can not obtain the exact expression. Naturally, we ask if some good approxi-
mation to the likelihood function can be obtained.

In Chapter 4, we obtain a modified score test statistic for assessing goodness of fit. Also
from the simulation results in Chapter 6, score test statistics do not maintain the nominal
level well for small sample sizes. Therefore we should consider the modifications to score
test statistics obtained in Chapter 6 for small sample sizes.

Another interesting question is how to get the power approximations to the goodness-
of-fit tests. Drost et al.(1989) discuss the asymptotic power properties of the multinomial
tests of fit. The asymptotic error bounds for the distributions of the goodness-of-fit tests are
obtained by using the class of multinomial goodness-of-fit statistics introduced by Cressie
and Read (1984). It would be of interest to investigate if similar approximations to the

power of the goodness-of-fit test statistics in the present thesis can be obtained. We also are
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interested in assessing the goodness of fit of the generalized linear model with incomplete

data or covariate measurement errors.



Data sets

Table D.1 : Hepatitis A in Bulgaria

Age Hepatitis A virus Total Age Hepatitis A virus Total
positive positive

1 3 16 44 5 5
2 3 15 45 7 7
3 3 16 46 9 9
4 4 13 47 9 9
5 7 12 48 22 22
6 4 15 49 6 7
7 3 12 50 10 10
8 4 11 51 6 6
9 7 10 52 13 14
10 8 15 53 8 8
11 2 7 54 7 7
12 3 7 55 13 13
13 2 11 56 11 11
14 0 1 a7 8 8
15 5 16 58 8 8
16 13 41 59 9 10
17 1 2 60 13 16
18 3 6 61 5 5
19 15 32 62 5 6
20 22 37 63 5 5
21 15 24 64 5 5
22 7 10 65 10 10
23 8 10 66 8 8
24 7 11 67 4 4
25 12 15 68 5 5
26 5 10 69 4 5
27 10 13 70 8 8
28 15 19 71 0 0
29 9 12 72 9 9
30 9 9 73 1 1
31 9 14 74 4 4
32 8 10 75 7 7
33 9 11 76 6 6
34 8 9 77 2 2
35 9 14 78 3 3
36 13 14 79 2 2
37 6 7 80 4 4
38 15 16 81 1 1
39 11 13 82 1 1
40 6 8 83 2 2
41 8 8 84 0 0
42 13 14 85 0 0
43 7 10 86 1 1
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Table D.2 : Pools of progeny Aedes aegypti (Santo Domingo Strain) assayed for yellow fever
virus

Pools (m, n,, z,) by larval development interval

Virus strain A Virus strain H

larval development interval, 6-10 days
(5, 1,0) (100,22,1) (41, 1,0) (109, 1,0)
(7,10 (105, 1,0) (61, 1,0) (126, 1,0)
(47, 1,0) (106, 1,0) (68, 1,0) (133, 1,1)
(48, 1,0) (123, 1,0) ( 70, 1,0) (150, 1,1)
(51, 1,0) (132, 1,0) (74, 1,0) (151, 1,0)
( 65, 1,0) (133, 1,0) ( 80, 1,0) (160, 1,0)
( 76, 1,0) (159, 1,0) (90, 1,0) (170, 1,1)
( 83, 1,0) (250, 1,0) (91,1,1) (172, 1,0)
(287, 1,0) (92, 1,0 (182, 1,1)
(94,1,1) (187, 1,0)
(105,24,1) (194, 1,0)
(100, 1,0) (200,14,2)
(106, 1,1) (203, 1,0)
(226, 1,1)

Larval development interval, 11-15 days
( 80, 3,1) (116, 1,0) (59, 1,1) (115, 7,7)
(100,12,3) (123, 1,0) ( 82, 1,0) (155, 2,2)
(103, 1,0) (150, 1,1) (120, 1,0) (178, 1,0)
(111, 2,1) (152, 1,0) (136, 1,0) (200, 4,2)
(115, 1,0) (148, 1,0) (203, 1,0)




Data sets

Table D.3 : Multiple tumour recurrence data for patients with bladder cancer

Patient No. of Initial Patient No. of Initial
number recurrences Number Size number recurrences Number Size
1 0 1 3 20 2 8 3
2 0 1 1 21 0 1 1
3 1 8 1 22 4 1 1
4 0 1 2 23 7 6 1
9 0 1 1 24 4 3 1
6 0 1 1 25 0 3 2
7 1 2 6 26 0 1 1
8 5 5 3 27 2 1 1
9 0 5 1 28 0 1 1
10 1 1 3 29 5 6 1
11 1 5 1 30 0 1 2
12 2 1 1 31 1 1 4
13 0 1 1 32 0 1 4
14 0 1 3 33 0 3 3
15 0 1 5 34 0 1 1
16 0 1 1 35 3 4 1
17 3 1 1 36 0 3 4
18 1 1 1 37 1 2 1
19 1 2 1 38 0 1 3
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Table D.4 : The PVC counts for twelve patients one minute after administrating a drug with

antiarrhythmic properties

Patient
number Predrug(z;) Postdrug(y;) Total(m;)

PVCs per minute

o= > © 00U WD

6
9
17

22
7
5
5

14
9
7
9

51

OLoCoCocOoORNOO W

11
11
17
22
9
6
53
14
9
7
22
51
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Table D.5 : The counts of the decayed, missing and filled teeth index at the beginning of
the study

DMFT Frequency percent

0 172 21.6
1 73 9.2
2 96 12.0
3 80 10.0
4 95 11.9
3 83 104
6 85 10.7
7 65 8.2
8 48 6.0
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Proofs of Theorems

A.1 Proof of Theorem 3.3.1

For convenience and to save space we use the notation of Farrington (1996). Let 6 denote
the true parameter value (0, ..., 8p, 1)T and g = (g4, ..., 9p:9¢)T- Then, by Taylor expansion

of g-,7 =1, ...,p,q, about 8 and following steps similar to Farrington (1996) we obtain
r 1 -1 1, 1 —1,1
E¢ = 1+ ;{A21A11 E(—EC + ;EnAu g )
1 1
—E(—'§(12 + ;EglAﬁlgl)} + O(n‘2), (A.l)

var(@) = n2E(An AL An AL — 280 A5 9 + ¢%6°) + O(n~2),

- _ _ _ 1
r3(9) = —n’E{(AnA9")® — (AaAG 9"’ + Au AT (6% — (62)°) + 0(5)-

The terms Ay, Ag, ct, 2, Eyy, Eg, 9" are defined in Farrington (1996). The term g2 is 9q

defined in Section 2. Define the a} as a! = %f{“—l Now, using tensor notation and omitting

summation, we have

o Y Ow .o O
AndAf = —Caip ﬁr( nbrs) = aibra o (A.2)

E(c) = E(ey, ...y p),
E(c,) = E(ZTv.z)
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E(EuAGgY) =

and

E(?) =

E(EnAL'g') =

B{-n"tgTA™ 0. A7 (=n"2g)}

n—lE{gs(_nbss’)'Urs’t’(-nbt’t)gt} = nE(bss' btt'vrs't’gsgt)
Vi h" ) Ou:0udp; 1 1 9p0u;

bss’ btt' (2

Vi 2’ 08,808,098y V; 58,00,
VI ,,/l . alh
T/—(z 1 )h Quaﬁry
;E{ers (—nbss’ )gs }
_ Yi — i Ops O V: R}
B | (S e 5 -2}
b (V’ h; hi O Op: Oy Oy
s V V h,2 aﬂr aﬂs aﬂs’
n ‘/il B h_ll 2 aﬂ:
vV TR Qg

1 - _
E(ZlTUqZI) = ;E(Q’{Aul”;Aulgl)
n—lE{gr(—nb"l)'Uqus/(—nbsls)gs}

) K
- {2(01' Vir (,)) + ath,g } haQn

1
;E{e21,r(‘nbrs )gs}

2 ou; 2
—b.sE{(a} — —=) (4 — p:) =—==gs =—a:-——.-h§2 i
{( ‘/iﬁgl))(y ﬂt)aﬂrg } ( Viﬂ?)) Q

Then, using (A.2)-(A.6) in (A.1), after simplification, we obtain

Ps

E$ =

1-—

1

Tl‘/-‘fil

7 1 n 1
——mhi Qi + 5 (1 — @i Qi + O().

Similarly it can be shown that

var(4)

Ha(J’)

1) 2 s ) 1
= { VvV, — 0«1'7: i + 2:%;’7(0,’ - ’Yi) =+ (—K?;—); + O(;f)
K <) o)
=L {(az —7:)3K8) + 3(a; — %)2# + 3(a; — 7,-)(:@ + (7:’?} +0(k). (A.9)

The results in Theorem 3.3.1 follow from equations (A.7)-(A.9).
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A.2 Proof of Theorem 3.3.2

Using the conditional cumulant formulae in McCullagh (1987, p159), we have

BIB) = E(B)+Ahy + (75 — i '} -1

var(§|B) = var(¢) —fnR" + (R — fRT [21+nsﬁtn"‘)7+0( n7%),

ra(BlB) = (R — AR (3] + 0, MRET® — AR ) —= \/—+0(n"5)
where

Be(Z, M) = Arg(2° — A°) = Aro(VRB — VRER),

s,t)—l
3

ne = K°(K

k™ = cov(Br, Bs),
£ = \/n cum(, ¢, Br),

hes(z, A) = hrhg — Ars,
P cov(q;, Br),

Kot = ﬁCM(Br, Bsnét)a
K4 = /meum(d, B;, B;),

44 = /ncum(é, 6, ) = vnka ().

From Farrington (1996), we have that for r =1, ..., p,

1 _1
—=gr + Op(n77)

he(z,A) = T

and
1 ~1
hrs(z, A) == Egrgg + 61-5 + Op(n 2).

Further, after detailed calculations, we have

. 1 &Y ou;
K - n r‘-'(") aIBt th + O( )
_ 1 K'g? 811'1
Br = (l)V 8,3 0( )y

Ou; Op; Oy noa
T8t bss' b,e
K ﬁbﬂl te aﬂ,’./ aﬂ", aﬂt' . + O(

%),

aﬂr’ aﬂs’

(@) (t) . .
d,r,s _%{ 512 +(a; — ‘) } Ou; Ou; b"lb“r+0(n“%).
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Then, using (A.11)-(A.16) in (A.10), and by simplification, we obtain
E(¢|B) = E(¢) — 'Q}EITXT{'%& + (@ — 7)RS; — RLARGIX(XTWX) 'L + O(n?),
(A.17)
Following similar calculations it can be shown that
var(¢lf) = var(¢) — "311X(XTWX)-1XT'€11 +0(n"3), (A.18)
and

k3(PlB) = Ra(@) — InTRL X (XTWX) L XT {Rar + Ris(@ — )% + 2R} (@ — )11
+3n 3R X (XTWX) X T {R12 + (@ — 3)RZIX(XTWX) 1 X TRy,

n~31TR3,RL &L &L L + O(n™?). (A.19)

The results in Theorem 3.3.2 follow from (A.17)-(A.19;.

A.3 The expected value of 7'

Using the Taylor expansion (McCullagh and Nelder 1983, Appendix C), we have,

ag')(ﬁ B) + 0,(1).

0:(8) ~ 9. (8) = 2 26~ B)+0,(1) = B
Now, gr(B) =0 and

= —(XTWX)rs.

ag,-) - "1 alflz al—tl

B(zg) =~ 235 35,

Thus,
(B —8) = (XTWX) (X diag(hi/V:)(y — 1) + Op(n™").
Further, since

G—p) = g—;;(a —B) +0,(1),
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we have
Bl wirx(XTWX) I XTW (L25) + 0,0 = B (424) +0,0)
vy i Vvi/2 P V12 P
and

y—4a y—p
—m—:(I—H) Vi +Op(1)

Note that (y — p)/VY2 ~ N(O,I) as 4 — oo and as n — oo V — V in probability. Thus,

for sufficiently large n, and as u — oo,
(v — i) # s T y—p
B(S W) ~ plEhra-mizh)
= tr(I — H) = tr(I) — tr( W2 X(XTWX) 1 XTW/?)

= n—tr(XTWX) Y XTWX))=n—tr(l,) =n —p.

and
v S (95— 1)
B(S-Fo-m) ~ £ (£ -t - w0 %z2) —o
=1 i i=1j=1 ; i
Thus,
~ n Yy — )2 VI
E(T) = E(Z(J——“—)-) —E(E—(y, )) -n
=1 VL i=1 ‘/i

= (n—p)—n=-p
A.4 Proofs of Theorem 6.3.1- Theorem 6.3.3

Partition I(f3,7,v) as

Igp Ipr Ipy
1(18, T, 7) = I'rﬁ I, Ir—y
I’rﬁ Ivf I'w

where Igg, Iy, Igy, 14,1, and I, are p x p,1 x 1,1 x p,1 x 1,1 x 1 and 1 x p matrices

respectively and have the different meanings for different models. To obtain the elements of
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the matrix I(8, 7,~), we first give the first and second partial derivatives of log likelihood

function l;(v, 7, 6;; ;) with respect to <, 7, ; as follows.

o _ -1, 1
oy 1+~ (=0} v+ f ’
% o_ fo (Z § Iy T2 2
37‘ {yt—o},y +f 1 +_Z {v:>0} 1 + m a D ?
al; fo w(Zf’:z acDr)

— I _ _Jv _ 14 + i ™
99; W= [ I Trye, al:

6 oo a:D:
r=2

+ I{yi>0}[a,yi - gl] + I{y‘>0} 1 Q.LD.E’
r—2
o 1,
v: (42 G2 +f 2’
2
6211' 00; (Zr_2 fO
—_— e I —_— i I _
80? {y‘l_‘o}(,\ +f) [fO( g)+f 1+E;~;2a D + {y1—0}7+f0
(_gl a0; (2222 & D )2 _gll + 5.9?(27'=2 r! ‘(3%;(200 g D ))2
L+ 32, ",! 1+z:°° ﬂcr% (1+ 2, e=pe)?
" ” (z _( (Zr= ))2
ol o1+ oo FZE )+ o
P _ o —ff(F(E, =) 2+I fo (i
or? b= e T fE \1+ Z,=2 D =0y s, T + 2,_2 arDc
(&(C2, 2=2x))? (e, =
o EZZ B e B
82[5 = -7 fO af(z:r—2
818 {vi=0} (v +fo)2 1+ 5% _r_:,
a2li _ fO 00; (Zr=2
oy — =GR e ( I+ 1T x E,L?n ’
9 fo P9 (21‘—2 2 (v
L4 = I 5 3r r= 2
9007 =0 [ g+ 1+ 1+
I fo ao.af(zr_z -2 2332 2D )ag, (72, %7
w0 T | e, T+, g=’3=)2

T 02 + 00; (ZOO S D 31-(21'—-2
ol IS 1+ 350, el
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i, 36, o (T2 4 —2 (TR, el )33 (2,
>0h 17 ¢ T2, el 1+ Esiz arDc)2

A.4.1 The test for m =

Now,let U be an n x p matrix with ir-element a—ﬂ:, 1 an n x 1 unit vector and let W[, WJ

and W3 be diagonal matrices with ith elements W7, W3; and W3;. From the above partial

derivatives of log-likelihood, we have that

Wi =BGt =~ B e~ T
Wi = Bl- 6?022 Hr=o = (7+fof)0(1+~/)g'
Wi = E“ﬁg?”ﬁ° [ﬂw%mh£a+ﬂ)
+ 36D 0 - FE(GDY].
Further,
I = S0E6D) - T Gy,
o= 2 s 1/);(§0+ Foy =

. 30D2 fo
L= 2 (v+ fo) (1 +7) lvi=o-

Hence, we have

Il; ’}’I{yt—O} 4+ b Ds.

S7(6:7) = Grlemo = ~ L =2

Now,
UTwyU UTWI1 UTWJ]1
I‘r(éa T, 7) = 1TW2TU I:;"( I;'r
1TwiU I7, I7,
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The asymptotic variance of S, = 32 (16D, — Y=o}y — 5~ §7(f;,4) is then

T+fo
UTWIU UTWI1 \ 7' UTwn
T _ T T 1 2 3
Ve=1II_ - (1'WJU, I,.,)< 1TWU I, ) ( IT, ;

where §; and % are the maximum likelihood estimates of 8; and v when 7 = 0.
Similarly, by the simplification, we obtain the expression of asymptotic variance of S;.

Then a standardized test statistic for testing that + = 0 is thus
S/ V-
with V, = Vo(6, ..., 0; ¥)- Under mild regularity conditions, this score test statistic, asymp-

totically, as n — oo, has a x%(1) distribution.

A.4.2 The tests for v =0

Similarly let W7, W3 and W7 be diagonal matrices with ith diagonal elements W, W5 and

W2, Then,
8%l; o —a” D
Wflﬁ = E{ 802 }I"I—O Ey‘l E{602 ~ r! ’
0 rDr
. o, )
Wy, = E{—W}lwo =—g + {6 log(1 + Z
T r=2

Further,

I = ZE{— 1og(1+z

Z log(1+g - a TR
Iy, = >@1/fo-1).

~
3 <2
l

Also, we have

1

[{y-=0}
= (S22,

fm(0)

ol;
S57(0:,7) = z=lv=0 = (———
Oy
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Note that
UTWPU UTW71 UTW31
I"I(;B’ 7, 7) = 1TW‘:’.YU IZT I‘;’Y‘y
"W U I I,

So, the asymptotic variance of S, = Z,_l(&’-}:ﬂ —1) =", S7(4;, ) is then

UTWU UTW31 )‘1 ( UTW31 )

v, = o, —arwgo, i) (ot U 4

where éi and 7 are the maximum likelihood estimates of 6; and 7 when v = 0.
Now, by the simplification, we obtain the asymptotic variance of S,. Therefore a stan-

dardized test statistic for testing that v = 0 is thus
0 <5
S2/V,
with V =V (91, .-y 0n; 7). Under mild regularity conditions, this score test statistic, asymp-

totically, as n — oo, has a x2(1) distribution.

A.4.3 Test for (v,7) =0

Now, we give the score test statistic for testing both zero-inflation and over-dispersion in
the generalized linear model. Similarly, let W}, W, and W3 be diagonal matrices with ith

diagonal elements Wy;, Wa; and W3;. Then,

8%l; "
Wi = E{- 62}'(7‘r)—0 g —a; By;,
0°l; ,
Wa = E{- 56.07 =77 Hem=0 = -4,
02l; d(bD
Wi = E{-W}[(w):o —sE (( 2))

1 14 7]
= hilgi{(h)* — A} —2g; h;. + g

Further,

ZE{_BQI(‘IT)—O Z(l/f(0 6;) — 1),

i=1 =1
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L. = iE{—&l
0 P 6"}’87' (7.7)=0
n 1 1
= Zgoz[(g )? — gl
=1
L, = ZE{—3T2}|<7—)—0

1

~,
1

'._A

— [gl{5h'h” 3(hl _ hm} +2(h,g, II 2
+g.:l{6(h:-) —-Lh,”} 4hlllhl+glll

Now, we note that the score functions have the following forms:

ol; 1 1 Iy}
5:(6) = 3 lam=0 = (75 + Iwmoy ——F)rmmo = (=L — 1),
(6:) I('7 )=0 ( 175 {y.-0}7+f0)|(7,) 0= ( f )
al - I/4 n
Ti(6;) = 67|(“’ r)=0 §bi(a§) {(yi — ps)? — (@) 2(g! — aly:)}
So,
UTW U UTW,ol UTWi1
IB,v,7)=| 1WoU I, L.
WU I, I,

and thus, the asymptotic covariance matrix of (X7, Si(6:), ¥~ , T:(6;)) = (S, T) is then

(L, I, 1TWaY \ o reer ot yerg T
T = ( o ) _ ( 1wy | OTWD)THUTWel UTWa1)

_ | Iy = 1UTWRUUTWIU)TUTW,L Ly — 1TWRU (UTWLU) TUT W1
-\ Ly —1TWUUTWU)TIUTWLL I — 1TWSU (UTWLU) - UT WL

_ [ Vss Vsr
Vrs Vrr
and a standardized test statistic for testing that (v, 7) = 0 is thus

VTTS2 + VssT2 - 2V5TST
VirrVss — Vr

where S = S(6),T = S(§), Vss = Vss(8), Ver = Vir(6) and Vsp = Vsr(6). @ is the max-

X? = (8,143, T)T =

imum likelihood estimate of vector of parameters 8§ = (4, ...,6,) under the null hypothesis
Hy : (7, 7) = 0. The asymptotic distribution of this test statistic is the x2-distribution with

two degrees of freedom. The large value of X? provides evidence against the hypothesis.
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