
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2007

Memory-constrained pathfinding algorithms for partially-known Memory-constrained pathfinding algorithms for partially-known

environments environments

Denton Cockburn
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Cockburn, Denton, "Memory-constrained pathfinding algorithms for partially-known environments" (2007).
Electronic Theses and Dissertations. 4672.
https://scholar.uwindsor.ca/etd/4672

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72772692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4672?utm_source=scholar.uwindsor.ca%2Fetd%2F4672&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Memory-Constrained Pathfinding Algorithms for Partially-Known Environments

by

Denton Cockbum

A Thesis
Submitted to the Faculty o f Graduate Studies

through The School o f Computer Science
in Partial Fulfillment o f the Requirements for

the Degree o f Master o f Science at the
University o f Windsor

Windsor, Ontario, Canada

2007

© Denton Cockbum 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-34975-5
Our file Notre reference
ISBN: 978-0-494-34975-5

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Pathfmding is the search for a goal state given a start state, within either static Or dynamic

environments. Many pathfmding algorithms exist, including established algorithms such as A*, SMA:*,

and D*. These algorithms all provide optimal solution paths, using all available memory.

Consequently, Algorithms such as A* and D* are known to be inefficient in terms o f memory space

usage. SMA* and similar algorithms provide a means by which optimal solution paths can be found

while being memory efficient. SMA* and such algorithms are restricted to static environments, in

which state traversal costs never change. This is a severe limitation, as one of the primary fields for

search algorithms are games, many of which involve dynamic environments. Presented in this paper is

a dynamic variant o f the established D* Lite algorithm, that is able to provide an optimal solution path,

if given sufficient memory, while using as little memory as possible.

It is also the case that in some areas, an optimal solution is not needed. This may be the case for

robotics. Many algorithms already exist in this area, such as Anytime algorithms for time-limited

searches. Real-Time algorithms for when the agent needs to move while planning its path. Also

presented is an algorithm for real-time planning when an agent does not have a priori knowledge o f the

environment, and also limited memory capacity. This algorithm sacrifices optimality, but in turn is

highly memory efficient, even in comparison to other algorithms designed for memory efficiency.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

I would like to dedicate this work to my two sets of parents. I am fortunate to have two great

families that love me so much. My dad and stepmother, thank you so much for all that you have put

into me and my education. I couldn't be who I am today without you. My mother and my stepfather,

thank you for helping me be the man I am today. When I get stressed with the winter months and the

school burnout, I always have a tropical home to return to. I'd like to thank you all for all that you have

done for me, I love you.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOW LEDGEMENTS

I would like to thank first o f all my advisor Dr. Kobti. Your guidance has helped me through

times when I doubted myself. You have also been an inspiration in showing me that I can continue my

education to even higher heights. I'd also like to thank Dr. Goodwin. > Your class is what started me

along this research area. Thank you for making your class fun to be in and learn from. Also thank you

for the advice and patience you have given and shown. I'd also like to thank Dr. Ngom. Even though I

wasn't a student o f yours, you spent a lot o f your time advising me. I thank you for suggesting I

continue with this research area. Finally, I'd like to thank the ladies in the computer science office.

You made handling school bureaucracy a breeze.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents
ABSTRACT... 3
DEDICATION.. 4
ACKNOWLEDGEMENTS ...5
Chapter 1: Introduction.. ...;............. 1

1.1 Background... 1
1.2 Motivation.. 1
1.3 Thesis Contribution... 3
1.4 Thesis Organization... 3

Chapter 2: Review of Literature... 5
2.1 A*...5
2.2 SMA*... 7
2.3 LPA*... ,...7
2.4 Focused D*... 9
2.5 D* Lite.. !...9
2.6 Anytime Repairing A*.. 10
2.7 Anytime D*...11
2.8 Adaptive A*..12
2.9 Fringe Saving A*... 13
2.10 Delayed D*... 14

Chapter 3: Range-Limited A*.. 17
3.1 Introduction...17
3.2 Initial comparisons...19
3.3 Admissible Heuristics.. 21
3.4 Blockades..22
3.5 Dynamic Environments.. 30
3.6 Completeness... 31
3.7 Final RLA* Algorithm..31
3.8 Conclusion.. 33

Chapter 4: Memory-Bounded D* Lite... 35
4.1 Introduction.. 35
4.2 Detailed Review o f D* Lite and SMA* ... 35

4.2.1 D* Lite overview... 35
4.2.2 D* Lite Notation.. 37
4.2.3 D* Lite Algorithm.. 38

4.3 SMA*.. 41
4.3.1 SMA* overview.. 41
4.3.2 SMA* algorithm:... 43

4.4 Memory-Bounded D* Lite... 44
4.5 Theorems.. 51
4.6 Testing Environment:... 51
4.7 Test Results.. 52

4.7.1 Nodes Stored..52
4.3.2 Nodes Expanded................. 53

Chapter 5: Conclusions and Future Work.. 55

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Conclusions.. 55
5.2 Future work............................ 56

REFERENCES...:................ 57
VITA AUCTORIS.. 63

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction

L I Background

Pathfinding is the search for a solution path from a given starting location to one or more goal

locations. In the context o f this document, pathfinding occurs in both static and dynamic environments.

In static environments, the cost of traversing each state never changes from its initial value. In

dynamic environments, state traversal costs can increase or decrease, as well as states can become

blocked or unblocked between time units. There are several algorithms for pathfmding in static

environments. There are also algorithms for pathfinding in dynamic environments. Some o f these

algorithms involve many domain-specific constraints. Some are required to handle a limited amount of

time to perform the search. Some have to handle maps with imperfect information. Also, there are

cases where the algorithm has to perform incrementally to handle real-time traversal, or even simply

because the environment changes enough to warrant it. These algorithms progressively improve upon

other approaches. What is lacking is the existence o f a real-time, dynamic pathfinding algorithm that

focuses on minimizing the amount o f memory used.

1.2 Motivation

Pathfmding is a very important field within artificial intelligence. Pathfinding algorithms such

as D* (Stentz, 1995) are being used by NASA for the Mars Rover (Stentz, 1995). Some o f the most

popular computer games involve the use o f some pathfinding for non-player characters. Many popular

video games make use o f pathfinding algorithms. Outside of the field o f gaming, pathfinding is used

for areas such as route planning, for example in making a telephone call. Car navigation systems make

use o f pathfinding algorithms to plot potential paths for drivers that minimize travel time or distance.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pathfinding algorithms such as Best-First Search (Pearl, 1984) have given way to more

heuristically driven algorithms such as A* (Hart et al, 1968). While A* is optimal and complete, it has

its limitations, being memory intensive as well as only working in static environments. Algorithms

such as SMA* (Russell and Norvig, 1994) were created to deal with the memory issues o f A*, while

maintaining completeness and optimality. These algorithms still do not address the dynamic

environment issue, for which algorithms such as LPA* (Koenig et al, 2004a) we're created. LPA*

dynamically updates the search path to handle the changing environment, while the agent is navigating,

thus at all times providing an optimal path based on the heuristic and the cost o f traversing the path.

A new class o f problems involved real-time pathfinding. In these problems, the algorithm

would actually be applied to an agent traversing within the environment. Thus incremental versions o f

search algorithms were necessary, as replanning the perfect path at all times would be highly

computationally intensive in dynamic environments that change frequently. D* is one such algorithm.

Some algorithms were limited based on how much time was available to perform the search, thus

resulting in anytime algorithms that try to find a path quickly, refining it according to the amount of

time allotted to perform the search. One such algorithm is Anytime Repairing A* (Likhachev et al,

2003).

As robotics become a regular part o f the lives o f citizens of industrialized nations, pathfmding

plays a higher role. Robots that vacuum rooms for example, need to apply some form of pathfinding

algorithm, even if simplistic. Children's toys are continuously being made more advanced and

computerized. Computerized companion toys for children are cheaper as component prices are

reduced. Cell phones are becoming more powerful and feature rich. Most cell phones support the

playing o f computer games. Even though memory is relatively abundant in desktop and laptop usages,

some cell phones are still restricted by the amount o f memory available for gaming. This means that

there still exist a place for memory efficient dynamic pathfmding algorithms. An algorithm is said to

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be memory efficient when it uses significantly less memory in comparison to other established

algorithms. The goal o f this thesis is the creation o f two dynamic, incremental pathfinding algorithms

that will use significantly less memory than established algorithms such as D*, D* Lite (Koenig and

Likhachev, 2002a) and A*.

1.3 Thesis Contribution

For my thesis I intend to explore the creation o f a range-limited variant o f A* that uses

significantly less memory. I will explore the development o f this algorithm, addressing problems that

the algorithm would have to overcome. The performance o f the algorithm, which I call RLA* (Range-

Limited A*), will be observed in static as well as dynamic environments. I will perform experiments to

demonstrate the behaviour o f the algorithm, while highlighting its shortcomings. RLA* will be

compared to other algorithms including A*, SMA*, and D* Lite and D*. In the end, I intend to have

an algorithm that is efficient in terms o f memory usage, with only a reasonable sacrifice to the quality

o f the path found.

I also intend to develop a second algorithm. It will be called Memory-bounded D* Lite (MD*

Lite). The algorithm will be able to find the same paths as D* Lite, if given enough memory allocation.

The aim o f MD* Lite is to be for D* Lite what SMA* is to A*. Like. SMA*, MD* Lite suffers from

the inability to pre-determine the amount o f memory it will need to be able to find the optimal path, or

any sufficient path. MD* Lite is compared to RLA*, D* and D* Lite in dynamic testing environments,

with the goal of observing how much memory it uses in comparison to these algorithms. We will also

test to see how many more nodes MD* Lite needs to expand in comparison to D* Lite to maintain the

memory restrictions in its given environment.

1.4 Thesis Organization

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I present a survey of some o f the existing literature in this area in chapter 2. In chapter 3, I

present the RLA* algorithm, a suboptimal memory efficient search algorithm. In chapter 4 , 1 present

memory-bounded D* Lite, a variation of the D* Lite algorithm that is aimed at memory constrained

environments. Experiments for both these algorithms are presented in the same chapters as the

algorithms. Finally in chapter 5 are the conclusions and plans for future work.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Review of Literature

2.1 A*

The A* algorithm (Hart et al., 1968) defines for each node a value f(n) = g(n) + h(n). g(n) is the

minimal cost of reaching the current state n from the start state. The function h(n) is the estimated cost

to reach a goal state from the current location n. A* requires that its heuristic is admissible, meaning

that given any state n, h(n) <= h*(n), where h*(n) is the true cost from n to the goal. This requirement

of admissibility is what discerns A* from the ’A’ algorithm (Hart et al., 1968), from which A* is

derived. A heuristic is said to be admissible if never overestimates the cost to a goal state. A heuristic is

said to be perfect when h(n) = h*(n) for all n, and is said to be null when h(n) = 0 for all n. A* is

complete when there are only finitely many nodes, and admissible due to its requirement on the

heuristic function. So given a finite search space and an admissible heuristic, A* will always find the

optimal path because every potentially optimal path will be checked until the goal is reached.

Even though A* will always find the optimal path, the definition o f that optimal path will

depend upon the heuristic used. If a different heuristic is used, it is possible that a different path will be

chosen as optimal. The number of nodes expanded in an A* search depends on the heuristic used. If 0

<= hi(n) <= fb(n) <= h*(n) for all n, then h.2 is said to be more informed than hi. A* using h2 will

expand possibly fewer and no more nodes than A* using hi. The closer h(n) is to h*(n), the fewer nodes

that need to be expanded by A*. c(n, n') refers to the cost to traverse from state n to n'. When provided

with a monotone heuristic, A* does not require a CLOSED list. Monotone heuristics are heuristics

whereby given any successor n of m, then h(m) - h(n) <= c(m, n), where c(m,n) is the cost to traverse

from m to n. The A* algorithm is defined as such, with the use of a CLOSED list:

1.Put the start node S on the nodes list, called OPEN

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.If OPEN is empty, exit with failure

3. Remove from OPEN and place on CLOSED a node n for which'f(n) is

minimal.

4.If n is a goal node, exit (trace back from n to S)

5.Expand n, generating all its successors and attach pointers back to

n. For each successor n' of n

a) If n' is not already on OPEN or CLOSED estimate h(n'),

g(n1)=g(n)+c(n,n1), f(n')=g(n')+h(n1), and place on OPEN.

b) If n 1 is already on OPEN or CLOSED, then check if g(n') is lower

for the new version of n 1. If so then:

i. Redirect pointers backward from n' along path yielding

lower g(n')

ii. Put n' on OPEN

6.Goto 2

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 SMA*

Simplified Memory-Bounded A* (SMA*) (Russell and Norvig, 1994) is aimed at addressing

the memory problems of A*, while restricting the amount o f memory used. SMA* allows for setting a

restriction on the amount o f nodes that are allowed in memory at any one point. In SMA*, the initial

node is added, all its successors are then added, with the cost o f the initial node being that o f its lowest

cost successor. This process is then repeated for each child until the maximum memory limit is

reached. At this point if the new node being investigated has a lower cost than a node currently in

memory, then the node in memory is dropped, with its parent taking note o f its cost in case it needs to

be re-explored later, and the new node is added. If the node to be added is not o f lower cost than an

existing node, then its parent takes note, possibly changing the lowest cost o f forgotten children. SMA*

always expands the lowest cost deepest-node, re-expanding forgotten nodes if they turn out to have the

currently lowest cost of the nodes in memory.

Given enough memory, SMA* will find an optimal path, and will be complete. The calculation

o f what is enough memory cannot be predetermined, as the depth of a possible solution is unknown.

SMA* is also a static algorithm, and thus unable to handle dynamic environments with changing edge

costs or accessibility.

2.3 LP A*

LPA* (Koenig and Likhachev, 2002) is a replanning method that is an incremental version of

A*. The name is an analogy to “life-long learning”. Life-long learning may also be referred to as

continuous planning. It repeatedly finds the shortest path between the agent's current location and the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

goal state. It does this while taking in consideration changing edge costs, obstacles within the

environment, and nodes being added or removed. The initial search of LPA* is the same as that o f A*,

breaking ties in favour o f nodes with smaller g-values if they have the same f-values. Subsequent

searches are faster due to LPA* reusing parts of the previous search tree which are identical to the

current one.

There are a lot o f search environments which are not static. Environmental edge costs change,

and obstacles can also play a part, blocking access to nodes. As these changes occur, static path-

planning algorithms such as A* are not able to adapt. LPA* aims to maintain an optimal path as new

information is perceived. LPA* also aims to find these shortest paths more quickly than A* and

DynamicSWSF-FP (Ramalingam and Reps, 1996). It is a modification o f DynamicsWSF-FP that

searches from the start vertex to the goal vertex, stopping when it has found a shortest path, at which

point it becomes an incremental version of breadth-first search. LPA* applies to pathfinding problems

on known finite graphs where edge costs increase or decrease. Unlike A*, LPA* does not maintain a

CLOSED list as it uses consistency checks to avoid vertex re-expansion.

LPA* is tested using a simplified route planning scenario. Testing is done on an 8 -connected

grid world with cells whose traversability changes over time. All nodes are either traversable with an

edge cost of 1, or not traversable at all. The algorithm always determines the shortest path between two

given nodes, knowing both the topology of the grid and the block states of nodes. Euclidean distance is

the heuristic used to determine the distance between two vertices. LPA* was compared to Breadth-first

search, A*, and DynamicSWSF-FP. The authors conclude that LPA* takes more time than A* per

vertex expansion. They also claim that LPA* is more efficient than A* in some situations in terms of

both runtime and vertex expansions, especially if the changes are slight and are close to the goal.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Focused D*

Focused D* (D*) (Stentz, 1995) plans optimal traverses in real-time by using newly discovered

information to refine paths. Focused D* is an extension o f D* that focuses the repairs to significantly

reduce the total time to plan an initial path, as well as subsequent planning operations. For dynamic

search algorithms such as D* and LPA*, a path is considered optimal if it is the shortest path, assuming

that all knowledge about edge costs and nodes states are correct (and will remain so). Focused D* uses

the same heuristics as A* to propagate cost increases and Focus cost reductions. The algorithm uses a

biasing function to compensate for agent movement between replanning operations. Focused D*

places a range-restriction on D*. Whereas D* accounts for all changes in the search space, Focused D*

assumes the agent can only detect local changes. According to the authors' tests, Focused D* is shown

to be more efficient in terms of runtime than normal D*, while maintaining optimality (according to its

knowledge). Focused D* and D* have become interchangeable, in a manner similar to the A algorithm

and A*.

2.5 D* Lite

D* Lite is a is a sensor-based replanning variant o f D*. The algorithm is targeted towards

environments which are not completely known. In D* Lite, the agent always plans the shortest path

from its current location to the goal, assuming that any unknown terrain is traversable. Terrain is

assumed to be unknown if the sensors of the agent have not confirmed its traversability. Even though

the algorithm is designed for incompletely known terrain, it still has to know the location of nodes

within the environment, even though not knowing their traversability. The algorithm terminates

eventually because either it follows the planned path to the goal, or the agent discovers the true costs

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and traversability o f the nodes, which can happen only once per edge. It will terminate in the latter

case when it can determine that no path exists.

The algorithm replans its path when it detects that the current path is not traversable. While

algorithmically different than D*, D* Lite presents the same paths as D*. Unlike A*, D* Lite does not

demand an admissible heuristic. D* Lite is also based upon LPA*, extending it to where the goal of the

search changes between replanning stages. It also switches the search direction used in LPA*,

searching instead from the goal state to the current state o f the agent. According to the authors'

experiments, D* Lite appears to be even more efficient than Focused D* in some cases.

2.6 Anytime Repairing A *

Anytime Repairing A* (Likhachev et al, 2003) is an anytime algorithm based upon A*.

Sometimes a planning problem is complex, and there is a limited amount of time available for the

computation of paths. In these cases, an agent must be willing to settle for a suboptimal solution.

Anytime algorithms initially produce highly suboptimal solutions quickly, and refine these as time

allows (Dean & Boddy 1988, Zilberstein & Russell 1995; Zhou & Hansen 2002, Likhachev et al

2003). A*-based anytime algorithms usually inflate the heuristic used by A*, which often provides

significant speed-ups (Bonet and Geffner, 2001). To achieve this speedup, these algorithms need to

sacrifice optimality. A property o f A* is that if a consistent heuristic is multiplied by a factor £, then

the generated solution is guaranteed to be within £ times o f the optimal solution (Pearl, 1984).

One of these A*-based anytime algorithms is that produced by Zhou and Hansen (Zhou &

Hansen 2002). This algorithm would quickly produce a bounded solution and refine it over time. The

problem with their algorithm is that it maintains no control over suboptimality bounds while the path is

improved. Anytime Repairing A* (ARA*) performs a succession of A* searches, reducing the bounds

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used in each successive search. Each search reuses information from previous searches. The authors

were able to show that this algorithm is more efficient than other similar algorithms such as Zhou and

Hansen's.

Initially, ARA* performs an A* search with an inflation factor o f 8 0 , expanding each node at

most once. On subsequent searches, ARA* only considers states whose costs at the previous search are

now invalidated by the new value o f 8 . If a state becomes inconsistent because the value of a neighbour

has changed, then the state is placed on a list, INCONS. This list contains all the inconsistent states

which have been already expanded. On conclusion of the current search, the items in INCONS are

placed on the fresh priority queue, which is based on the new value o f 8 and is used for the new

search. Only a small amount o f computation is required between searches, as a) since only the

inconsistent states are reconsidered, most o f the previous search data is reused, and b) each state is

expanded at most once per iteration.

2.7 Anytime D*

Anytime D* (Likhachev et al, 2005) is aimed at environments that require both complex

planning, and are dynamic. Anytime D* (AD*) is an attempt to combine ideas from both ARA* and

D*. It performs searching using progressively decreasing inflation factors similar to ARA*. It handles

environment changes in the same manner as D* Lite, placing affected states on the OPEN queue with

priority equal to the minimum of its previous value and its new key. When edge costs changes

substantially, it may be too expensive to repair the current solution to maintain 8 bounded

suboptimality. In that case, AD* increases 8 to produce a less optimal solution quickly. The

determination of what is is substantial change is dependent upon the application. Edge cost increases

can cause states to become underconsistent, requiring them to be placed back on the OPEN queue.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uninflated key values must be used to ensure that changes caused by underconsistent states are

propagated. This leads to under- and over- consistent states needing different methods to calculate their

keys.

AD* is able to support the dynamic traversal o f the environment while handling the changes

dynamically. AD* has an advantage over both ARA* and D* Lite in that it only processes those states

that were inconsistent either at the beginning o f the current search, or during the search. There exist

cases where it may be better to replan from scratch as opposed to fixing the current search. This may

happen if the environment changes were significant and the last complete search was a time ago.

Another problem with AD* is that every time £ changes, the OPEN queue needs to be reordered due

to the new recomputed key values. This operation can be computationally expensive.

2.8 Adaptive A*

Incremental versions o f A* are able to guarantee the quality of subsequent searches. For this

reason, many new incremental search algorithms are based upon A*. LPA*, D*, and D* Lite are some

well-known cases of this type o f algorithm. These algorithms suffer from a problem in that it is

difficult to prove them correct, and also that there are cases where they are slower than standard A*.

This paper aims to address this problem by creating a principle whereby algorithms update the

heuristics over time to make them more informed, thus making future searches more Focused. This

principle is incorporated into A* to create Adaptive A* (Koenig and Likhachev, 2006). Adaptive A*

(AA*) is shown to expand no more nodes than standard A*, and thus cannot be slower than A*. This

claim does not take into effect some small setup and other actions that AA* need to operate. The

principle behind AA* is based on properties of A*, whereby given the following:

1. Let gd[s] be the cost o f a minimal path from s to the goal state

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. f* = gd[start], and is the cost o f the minimal path produced by A*

3. For any state s expanded by A*, h[s] is the consistent heuristic of said state

4. g[s] and f[s] denote the g-value and f-value respectively

5. Therefore, f* < g[s] + gd[s] and f* - g[s] < gd[s].

This means that f* - g[s] is an admissible estimate o f the goal distance o f s. Thus it can be used

as a new heuristic for state s. This heuristic is shown to be no smaller than h[s], and thus dominates it.

The result o f this is that any subsequent A* search using this heuristic is guaranteed to expand no more

nodes than the same search using h[s].

Adaptive A* is aimed at environments where the goal location does not change, while edge

costs may increase dynamically. It uses A* to search, while providing more Focused heuristics for

subsequent searches. As AA* expands fewer nodes on each subsequent search, and thus becomes faster

over time. There are two versions o f AA*. Eager AA* does not update the heuristics o f states that are

still in the A* OPEN list at the completion of the search since their new heuristic cannot be larger than

their old one. The disadvantage o f updating these states after the search is that some o f them may have

no effect on future searches. The second version o f AA*, Lazy AA*, remembers the g-values of

expanded nodes as well as the cost of the path returned by A*. This information is then reused to adjust

the heuristic o f these nodes if they are to be expanded in subsequent searches. Experimentally, AA* is

shown to be about 10% faster than A*, even though those results are implementation-dependent.

2.9 Fringe Saving A *

Fringe-Saving A* (Sun and Koenig, 2007) is an incremental version of A*. The algorithm

repeatedly finds shortest paths in dynamic environments where edge costs increase or decrease. The

initial search of Fringe-Saving A* (FSA*) is the same as that o f A*. The algorithm then reuses a part of

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the search in the subsequent search. FSA* restores the OPEN list of A* at the point where it would

deviate from the current search (when a changed edge cost is perceived). FSA* then proceeds to

continue the A* search from this point.

The state o f an A* search is determined by the contents o f the OPEN and CLOSED lists and the

g-values and parent pointers of their nodes. FSA* keeps track o f when nodes are expanded within the

A* search using a function Expandedld(s), which is the order in which s was expanded. Thus,

Expandedld(start) = 1 and Expandedld(n) for an unexpanded state n is infinity. If a given state s'

changes between searches, then FSA* restores all states s, with Expandedld(s) < Expandedld(s'). FSA*

does not need to replan if the goal cell is reusable. This is because the shortest path from the previous

search is also a shortest path for the current search. If the start cell is not reusable and blocked, then

there does not exist a path and the algorithm can stop. If the start cell is not reusable and unblocked,

then the algorithm performs a new complete A* search.

FSA* places cells that are unblocked and reusable on the OPEN list if they border one or more

reusable cells. The algorithm identifies the anchor cell by following parent pointers of reusable cells

from the goal to the start cell until a non-reusable cell is reached. This non-reusable cell is the anchor

cell. FSA* then identifies fringe cells, which are the reusable cells from the previous search. FSA*

stops when it is about to leave the anchor cell for the second time in the same direction. The g-values

and parents pointers are then restored for reusable cells, and corrected for the cells on the OPEN list, if

necessary. A* is then restarted from this position, and proceeds as usual. According to the authors

experiments, FSA* is faster than LPA* and A* in some cases.

2.10 Delayed D*

Delayed D* (Ferguson and Stentz, 2005) is a variant of D* that requires about half the

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computation time. Delayed D* (DD*) incrementally repairs previous paths, focusing these repairs

towards the agent's current position. As initial paths planned by variants o f A* are not likely to remain

accurate in dynamic environments, incremental planning algorithms are necessary. Focused D* and

D* Lite are the most widely used o f these algorithms. This is due to their efficient use o f heuristics and

incremental updates. D* has been experimentally shown to be between 0 and 50% more efficient than

replanning from scratch when path environment information changes.

DD* focuses on solving the exact same problems as D* and D* Lite. The goal o f DD* is to

solve these problems more efficiently. DD* aims to do this by being even more restrictive in terms of

which nodes are expanded than D* Lite. It is possible that in D* Lite, many more states may be

expanded than is necessary. The logic is that, even if an inconsistent state has a lower priority than the

start state, which would normally cause it to be expanded by D* Lite, its expansion may not affect the

optimality of the current solution. DD* aims to determine whether an inconsistent state is of

consequence to the validity o f the current solution without propagating the inconsistency.

When a state becomes underconsistent due to cost increases, they are guaranteed not to have an

effect on the previous solution if they are not on the solution path. This cannot be guaranteed for states

made overconsistent due to cost decreases. DD* thus processes underconsistent states much more

selectively than overconsistent states. As in D* Lite, when cost changes occur, the rhs-values o f all

affected states are updated and overconsistent states processed immediately. Rhs-values are dependent

upon the distance from the starting location of its predecessors. The value of rhs(s) is 0 if s is the

starting location, otherwise it is mins eP red(s) (g(s) + c(s , s)). The processing o f underconsistent

states is ignored. After all the overconsistent state changes are propagated, the environment is then

checked for underconsistent states. These states are then added to the priority queue and their updated

values propagated through the state space. This new solution path then needs to be repeatedly checked

for underconsistent states until only consistent states are returned.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The advantages over D* Lite are twofold. Because DD* delays processing of underconsistent

states, some o f these states may never need to be processed. Also, due to the delay of the processing, it

is possible to perform in one propagation changes that would take multiple propagations in D* Lite.

According to the experiments o f the authors, DD* performs much better than D* Lite. DD*. expands

expands less than half the nodes that D* Lite does, as well as taking half the time computationally.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Range-Limited A*

3.1 Introduction

Range-Limited A* (RLA*) is a variant of the A* algorithm. RLA* is an investigation of

performing pathfmding searches in grid environments while using as little memory as possible. The

investigation ranges from using no memory at all, to using less memory than memory Focused

algorithms like SMA*. The investigations cover its performance within static environments, with

uniform and non-uniform edge costs. The final intent is to compare RLA* to other established

pathfinding algorithms such as A* and SMA*.

Initially, the goal o f RLA* was to explore the possibility of non-player characters (NPC) within

games being able to find the goal state without complete knowledge of the environment. The range

factor attempts to restrict A* within a sight range, as is the case with agents using local sensors. The

alloted range can be dependent upon the character and its context. In the context o f grid environments

without obstacles, RLA* can be described as such: Starting from the initial state, the agent looks

around for the best location observable. This best location takes into account the cost to get there, as

well as the estimated cost to the goal. The agent then navigates to this chosen location, and continues

the process, eventually reaching the goal. In this environment with no obstacles, the agent would

always arrive at the goal location, even though not necessarily in optimal time. Like A*, RLA* is able

to perform without a CLOSED list, but this is not the general case, wherein the given heuristic may not

be monotone. Below is the algorithmic description o f this initial version o f RLA*:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIND-PATH

1. Put the current node S on the nodes list, called OPEN.

2. If OPEN is empty

1. If BEST is None, exit with failure

2. exit, tracing back pointers from BEST to S as \P, setting

expected values

3. Remove from OPEN and place on CLOSED a node n for which f(n) is

minimum.

4. If n is out of range

1. set q = parent of n

2. if f(q) < f(BEST) or BEST is none

1. BEST = q

3. Goto 2

5. If n is a goal node, exit (trace back pointers from n to S as P,

setting expected values)

6. Expand n, generating all its successors and attach to them

pointers back to n. For each successor n' of n.

1. If n 1 is not already on OPEN or CLOSED estimate h(n'),

g(n')=g(n)+c(n,n')

2. If n 1 is already on OPEN or CLOSED, then check if g(n') is

lower for the new version of n', if so then:

1. Redirect pointers backward from n' along path yielding

lower g(n')

2. Put n' on OPEN.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Goto 2

NEXT-STEP - current path is specified as P

1. If current state is goal state exit

2. Set n to next node in P

3. current state = n

3.2 Initial comparisons

It can be noticed that the initial RLA* algorithm is very similar to the A* algorithm, in fact this

algorithm uses A* to locate the best location, but within the allowed range of sight. It is trivial to show

that RLA* is complete given a static grid environment. This is the sort o f environment in which A*

and SMA* are designed for, so I compare RLA* to these algorithms. To compare, 1000 test

environments are created, each consisting o f a 100x100 grid. The starting and ending nodes are

randomly chosen and are the same for each o f the algorithms. Even though it is possible to run A*

without the use of a CLOSED list, we test it using one. Node-traversal costs in the environment are all

1. Comparisons are made regarding the path cost from the start to the goal, as well as the maximum

amount o f memory used at any time during the search. The calculation o f the amount o f memory used

is the sum o f the amount o f items stored on the OPEN and CLOSED lists for each algorithm. The range

of sight alloted for an RLA* agent is 3 units, with distance being determined by euclidean distance.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2

•1

0.8

0.6

0 .48

0 .4

0.20.2

0

0 A*
03 SMA*
□ RLA*

Figure 1: Memory Comparison in
static, uniform , non-blocked
environment

In the experiments, RLA* is able to find the same-cost paths as A* and SMA* using

significantly less memory as shown in figure 1. RLA* used only 48% of the amount of memory used

by SMA* and 20% of that used by A*. SMA* is always able to find the same path as A* when allowed

the same or more nodes than are in the A* path. In the experiments, the reason that RLA* is able to

find the exact same path is more a reflection of the testing environment than o f the algorithm. The costs

o f the nodes in the environment do not vary significantly enough for there to be a path that is

significantly better than the ones found by RLA*. It is possible for there to exist a significantly faster

path after an initial rough patch beyond the horizon of the agent's range of sight, in which case the

agent will take a path that is globally suboptimal. This case can be ignored as the RLA* agent is not

able to detect these nodes.

While A* is globally optimal, RLA* is necessarily not so, because it cannot perceive things

beyond its range o f sight. Different incremental algorithms use different criteria to determine

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimality, including optimality based on the agent’s perception, as opposed to global optimality.

Within its range of sight, RLA* is optimal, it will always find the most efficient path, to its. ending

location. This decision making process being limited by the current knowledge o f the agent.

3.3 Admissible Heuristics

A* requires that the heuristic used is admissible. The algorithm will still be complete if the

heuristic is not admissible, but it will not be optimal. A* with a null heuristic is equivalent to best-first

search. This means that A* will still work if given a heuristic that has minimal effect on the f-value of

nodes. Take for example an environment where edge costs average 25 units, while the heuristic is 1 for

each edge. Unlike A*, RLA* will not work if the heuristic is insignificant in comparison to the true

cost, h*(n). When a very weak heuristic is used for RLA*, for example a null heuristic, it becomes the

case that the algorithm is driven primarily by edge costs. This, in addition to RLA* range restriction,

further reduces the completeness o f the algorithm.

This problem was demonstrated by running 100 tests with a null heuristic on a 100x100 grid

with uniform costs o f 1 and no blockades. The starting and ending locations were selected at random.

Any path found by the algorithm should be within 200 units. The purpose of the experiment is to

observe how many of the tests fail, with failure being when the path of RLA* has surpassed 200 nodes.

After running the tests, RLA* was able to find the goal within the constraints only 52% of the time,

with some o f those being because they were close enough that the algorithm 'lucked out' in finding the

goal. To demonstrate that it was not simply a result o f the fact that it was a null heuristic used, the tests

were reran, this time with a minimal heuristic. The edge-costs were non-uniform, ranging from 1 to 100

for this experiment, and the heuristic was 1 for each edge between the location and the goal. The results

were even more dire in this case, showing only 8% of cases succeeding.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Whereas A* is driven by f-values, a solution for RLA* is to be driven by heuristic, with lower

edge-costs being the tie-breaking factor. The algorithm will still be unable to work reliably in cases

where a null-heuristic is used, but would work in other cases. Unlike A*, which needs an admissible

heuristic, RLA* then would not. As long as monotonicity is maintained, the algorithm would still be

able to navigate its way towards the goal state. To test this, the previous experiment was re-ran, but this

time, the algorithm was driven using the new criteria. With the change, the algorithm was able to find

the goal state in 100% of cases. The only effective difference is that RLA* now chooses the node at the

edge o f its horizon based on heuristic first and then f-value.

3.4 Blockades

Up to this point the grid environment being tested consisted of nodes that were all unblocked.

A grid with blocked nodes is similar to a grid without such nodes. Simply remove the edges between

unblocked nodes and blocked nodes, after which at least one graph component will remain with all

nodes being unblocked. The component containing the start state is the primary component and the

only one that would matter. If the goal node is not within this component then there exists no solution

to the problem. For the sake of testing, the assumption will be that a solution does exist, this being

verified by A* finding a path. The problem that arises within grids with blocked nodes is that there may

exist only a few edges connecting components. In such cases it may be necessary for the algorithm to

backtrack to properly navigate to the goal. As RLA* is currently, it is possible for the algorithm to

become stuck in an infinite loop.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2a: RLA* becoming stuck

Figure 2b. RLA* becoming stuck

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Above is one such such scenario in which the algorithm is unable to proceed. S and G are the

start and goal states respectively. States visited by the agent are marked with an x, and L indicates the

current position o f the agent. The agent is assumed to have a range of sight o f 3 nodes measured by

euclidean distance. From its current location, the agent can observe that the obvious nodes leading

towards the goal are dead ends. By the algorithm, the best location for the agent to proceed to is that

shown in Figure 2b. The problem is that because the agent does not currently possess any memory,

when the algorithm is ran from the state in Figure 2b, the algorithm will return to the state shown in

Figure 2a. This process would continue, with each state returning the other as the best path to take.

The solution is the implementation o f a backtracking method. Other pathfinding algorithms

such as Hill-Climbing and Greedy best-first search also need backtracking methods. One such

backtracking method is Tabu List (Glover, 1989). Tabu lists maintain a set of states that should not be

revisited, usually for a specified period o f time. Placing a restriction, or tenure, on the amount of time a

node is allowed to remain within the Tabu list would lessen the effect maintaining such a list would

have on memory. This possibility was explored, but a simple flaw was found that prevented such a

method from working. In Figure 3 a, we can see the agent navigating in a normal RLA* fashion, upon

reaching the location illustrated, the agent can see that its path is blocked. Using the tenure method,

these nodes would be placed on the Tabu list and the agent would return to the start state, exploring in

the other direction as illustrated in Figure 3b. At the new location the agent detects no forward

movement, placing the current path on the Tabu list and returning to start again. The potential problem

is that depending on the tenure, the items that were placed on the Tabu list in Figure 3b, may have been

released based on the expiration of their tenure. This would cause the agent to alternately retry both

these failed paths perpetually.

2 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G

Figure 3a. Tabu in itia l search

Figure 3b. Tabu after backtracking

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3c. Tabu search, o ther direction

The approach chosen is dubbed Landmark Tabu. This approach works by placing beginning

search locations on a landmark list. When horizon nodes are found in FIND-PATH, we check if it is

already on the landmark list. A horizon node is a node at the edge of the range of sight for the RLA*

agent. A horizon node is also required to have accessible child nodes according to the local search.

We maintain a list o f these horizon nodes, while still searching for the best horizon node that is not on

the landmark list. If a best non-landmark node is found, then it is the new destination for the agent.

If there doesn't exist a node that is not a landmark, then all nodes within the horizon list are

placed on the tabu list. This indicates that all paths following the starting location lead nowhere. Nodes

placed on the tabu list are not allowed to be ending nodes for future searches. Introduced to FIND-

PATH are the TABU, HORIZON and LANDMARKS lists. Below is the modified FIND-PATH

procedure with changes in bold.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIND-PATH

1. Put the current node S on the nodes list, called OPEN.

2. If not the first search

1. BEST = previous search start location

3. If OPEN is empty

1. If BEST is none, exit with failure

2. If BEST is in LANDMARKS

1. add all from HORIZON to TABU

2. add S to TABU

3. remove S from LANDMARKS

3. add BEST to LANDMARKS

4. exit, tracing back pointers from BEST to S as P,

expected values

4. Remove from OPEN and place on CLOSED a node n for which

minimum.

5. If n is out of range

1. set q = parent of n

2. if q is in TABU

1. Goto 3

3. Put q in HORIZON if it's not in LANDMARKS

4. if BEST is none

1. BEST = q

5. else if BEST is in LANDMARKS

1. If q is not in LANDMARKS or f(q) < f(BEST)

27

setting

f(n) is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. BEST = q

6. else if f(q) < f(BEST)

1. BEST = q

7 . Goto 3

6. If n is a goal node, exit (trace back pointers from n to S as P,

setting expected values)

7. Expand n, generating all its successors and attach to them

pointers back to n. For each successor n 1 of n.

1. If n' is not already on OPEN or CLOSED estimate h(n'),

g (n 1) =g (n)+c (n, n')

2. If n 1 is already on OPEN or CLOSED, then check if g(n') is

lower for the new version of n', if so then:

1. Redirect pointers backward from n' along path yielding

lower g(n1)

2. Put n' on OPEN.

8 . Goto 3

To test the performance o f RLA* with the use o f a Tabu List, we ran it on a 20x20 grid. The

environment for our tests is static, with all blockades being generated before the start o f the experiment.

The starting and ending nodes are not allowed to be blocked, as this would mean that there exists no

path. A total of 500 tests were ran, with 100 of them with 5%, 10%, 15%, 20%, and 25% of nodes

blocked. The goal of the experiment is to observe the performance of RLA* in comparison to the the

established A* and SMA* algorithms. To get a proper reflection o f the path cost comparison, all nodes

will have a uniform traversal cost o f 1. We'll also ensure that the minimum path returned by A* is 20

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes, as this will make the results more significant.

As memory is one o f RLA* primary focuses, the maximum amount o f nodes stored will also be

measured. In the case o f A*, this will be the maximum amount o f nodes on. the open list. The length

of the path returned by A* will be used as the memory allowance for SMA*, guaranteeing the

minimum. The memory used by RLA* will be measured as the maximum of nodes on its open list plus

the size o f the TABU and LANDMARKS list for any iteration of its search. The performance o f A*

will determine if a particular experiment is valid. If A* is unable to find a path through the generated

grid, then the test is invalid and discarded.

In the experiments, RLA* was able to find the path to the goal in all cases. There was a pattern

whereby the length of the RLA* path got longer as the number o f blocked nodes increased. This can

be attributed to the fact that RLA* would meet more dead-ends that it is unable to predict. This is due

to the blockade being beyond the horizon o f the agent. RLA* used significantly less memory than both

A* and SMA*. The amount of memory in relation to A* also increased as the amount o f blocked

nodes increased. There was no apparent relation between RLA* memory use and SMA* memory use

as blocked node count increased. It was simply coincidental that no paths were greater than 39 nodes

in the experiments.

Table 1: RLA* with Landmark Tabu over multiple obstacle percentages

block % p a th m em - A* m em - S
5% 1.02 0.09 0.5

10% 1.04 0.1 0.5
15% 1.06 0.11 0.49
20% 1.32 0.13 0.55
25% 1.36 0.13 0.54

length range: 20-39

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Dynamic En vironments

In dynamic environments, edge-traversal costs may change, as well as the blockage state o f a

vertex. Since RLA* is restricted within its range of sight, it only has to handle such local changes.

Three ways in which edge-traversal cost changes can be handled are:

1. Ignore the cost change and proceed to the end-point as planned

2. Maintain the optimal path to the end-point, similar to D*

3. Replan, create a new path to the new best end-point visible

The problem with the first approach is that it does not work for when the next node becomes

blocked. It also does not take into account the magnitude of the cost change. It may make sense to

completely replan if a change is significant enough. The second approach works, but the overhead

required to maintain the optimal path may be more expensive than simply replanning, especially in

environments that do not contain many nodes within the agents range of sight. The third approach's

drawback is that it also doesn't take into account the magnitude o f the cost change. It will replan if a

small change is made, resulting in many replanning episodes in an environment where many small, yet

insignificant, changes occur.

The solution chosen is a combination of the first and third approaches. We institute the idea of

a change threshold. Thus, if an edge-cost changes significantly, a new path will be planned from the

current location. The definition of a significant change is equivalent to the threshold, which is context

dependent. In an environment where the range o f the agent is large, The second approach may be more

sensible, in the same way that D* is shown to be better in large environments than full-replanning

algorithms. (Stentz, 1995)

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Completeness

One of the properties o f the Tabu list is that any node on it, must have been unblocked when

added. Thus, no nodes that are placed on the Tabu list will need to be removed. If a path did not

previously exist from the Tabu node, then the agent would be unable to detect that a new path now

exists from such a node. This is due to the fact that the agent never initiates a search from a Tabu

location. Therefore, while it is possible that a previously dead-end path is now the path to the goal

state. It is not possible for our agent to perceive this, and as far as the agent knows, there is still no path

from such a location. As a result of this, the agent will report that a path does not exist to the goal,

which may be incorrect due to changes unknown to the agent. The only required change to RLA* is in

NEXT-STEP, where we check if the next node has changed significantly since we searched, in which

case we search again from the current location. Below is the final RLA*. algorithm. A comparison

between RLA*, my own MD* Lite, and the well-established D* and D* Lite is performed later in the

section on MD* Lite.

3.7 Final RLA * Algorithm

FIND-PATH

1. Put the current node S on the nodes list, called OPEN.

2. If not the first search

1. BEST = previous search start location

3. If OPEN is empty

1. If BEST is none, exit with failure

2. If BEST is in LANDMARKS

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. add all from HORIZON to TABU

2. add S to TABU

3. remove S from LANDMARKS

3. add BEST to LANDMARKS

4. exit, tracing back pointers from BEST to S as P, setting

expected values

4. Remove from OPEN and place on CLOSED a node n for which f (n) is

minimum.

5. If n is out of range

1. set q = parent of n

2. if q is in TABU

1. Goto 3

3. Put q in HORIZON if it's not in LANDMARK

4. if BEST is none

1. BEST = q

5. else if BEST is in LANDMARKS

1. If q is not in LANDMARKS or f(q) < f(BEST)

1. BEST = q

6. else if f(q) < f(BEST)

1. BEST = q

7 . Goto 3

6. If n is a goal node, exit (trace back pointers from n to S as

P, setting expected values)

7. Expand n, generating all its successors and attach to them

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pointers back to n. For each successor n 1 of n.

1. If n' is not already on OPEN or CLOSED estimate h(n'),

g(n')=g(n)+c (n, n ')

2. If n' is already on OPEN or CLOSED, then check if g(n') is

lower for the new version of n', if so then:

1. Redirect pointers backward from n' along path yielding

lower g(n1)

2. Put n' on OPEN.

8. Goto 3

NEXT-STEP - current path is specified as P

1. If current state is goal state exit

2. Set n to next node in P

3. if n's expected cost has significantly changed or n has become

blocked

1. call FIND-PATH

2. Set n to next node in P

4. current state = n

3.8 Conclusion

The originally presented version of RLA* (version 1) was unable to work accurately with null

or weak heuristics. The new version is also unable to perform in these situations due to the lack of

direction from the heuristic function. As the agent is not able to remember previous search locations,

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the lack o f a significant heuristic is detrimental. On the other hand, RLA* does not require an

admissible heuristic. A heuristic that overestimates the cost to the goal location is valid in RLA*, and

even preferred, as this gives the agent an even more useful guide toward the goal.

In its final form within static environments, RLA* is very similar to Depth-First Search. If only

the landmark nodes are considered, then RLA* is similar to Depth-First Search with the addition o f a

heuristic-influenced cost function. Nodes already on the Landmark list are considered visited. Thus, in

static environments, RLA* is similar to heuristic driven Depth-First Search (DFS), With DFS nodes

generated by an A* range-based local search. As node state is not changed within RLA*, the Tabu list

is simply an extension o f the Landmark list, but for nodes that have been determined to have no

possible path to the goal. RLA* therefore has a time complexity o f 0(|V | + |E|) between starting search

locations. The local search complexity is dependent upon the heuristic used, which can be exponential

in the worse case, but is polynomial in terms o f path length when the deviation between h(n) and h*(n)

does not grow faster than log(h*(n)). This cannot be expanded to include the general case due to the

backtracking that the algorithm needs to do.

Given a sufficiently informed heuristic, RLA* is complete in static environments. It is able to

use significantly less memory than both A* and SMA*, while suffering reasonable increases in path

length. The algorithm is appropriate for environments in which storing the entire search in memory is

not feasible. It is also appropriate for cases in which state transitions are not able to be determined

initially, or only when the agent is close enough to the state. The major difference between RLA* and

other informed search algorithms such as D* and LPA* lie in RLA*'s lack of knowledge about the state

of the map. D* for instance, deals with incomplete information, but still having the knowledge of the

map, even if not accurate information regarding costs and blockage status.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Memory-Bounded D* Lite

4.1 Introduction

Proposed is a variant of D* Lite with memory bounded features akin to SMA*. D* Lite is

based upon Focused D*, which in turn is a dynamic A* variant. Being based upon A*, D* Lite suffers

from similar high memory usage as A*, as all nodes which have been discovered but not yet expanded

need to remain in the algorithms' OPEN list. D* Lite repairs the solution path as changes are detected,

but oftentimes without any bounds on the amount o f items placed on the update queue, creating a

situation in which it is possible that most nodes within the map are placed on the queue, in the worse

case. Memory-Bounded D* Lite (MD* Lite) aims to provide the same advantages o f D* Lite, while

applying memory usage constraints.

4.2 Detailed Review ofD * Lite and SMA *

4.2.1 D* Lite overview

D* Lite is algorithmically different, while being at least as efficient as Focused D* . D* Lite

also determines the same paths as Focused D*, which is one o f the most popular dynamic variants of

A*. The D* Lite algorithm is for agents operating in environments that are incompletely known, while

the agent is navigating. On every iteration, the agent plans the shortest path to the goal, with the

assumption that unknown nodes are traversable. It is thus necessary that the agent knows the layout of

the map, even if not the actual accessibility status of nodes. When new information is discovered

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

regarding the accuracy o f the map, the agent refines the solution if necessary. The cause of the

discovery is irrelevant, as the changes could be globally created, or created by the effects o f the agent

or other agents in the environment. The discovery of these changes are also irrelevant, ranging from

sensors of the agent, to global sensors reporting all changes. The agent continues until the goal is

found, or all paths are determined to be untraversable.

D* Lite must terminate in all cases, because the agent either follows the path to the goal, or the

increased knowledge regarding edge-costs results in knowing that no path exists. The agent replans the

shortest path from the current location to the goal when the current path is untraversable. D* Lite is a

hybrid algorithm taking aspects from both Lifelong-Planning A* (LPA*) and Focused D*. D* Lite

inherits all the properties of both LPA* and Focused D*.

LPA* is an incremental version of A* designed to work in dynamic environments. Unlike A*,

LPA* can work with inadmissible heuristics. LPA* is usually used in.fully known dynamic terrain.

The initial search o f LPA* is identical to that o f A*, while subsequent searches reuse information from

previous searches. LPA* would replan completely when costs changed, which was inefficient

behaviour as most edges are unlikely to change between replanning episodes. While this is so, LPA*

uses heuristics to Focus its replanning, only updating nodes with costs that can possibly affect the

shortest path. The algorithm uses a priority queue that only contains locally inconsistent vertices, which

are nodes whose costs have changed. These inconsistent vertices may affect the LPA* algorithm to the

effect o f it needing to recompute its path. LPA* continually expands vertices until the goal node is

consistent and the next node to expand doesn't have a lower cost than the goal node (as determined by

LPA*). If the cost attributed to the goal node is infinite, then there exists no path to the goal. LPA*

traces back through nodes to identify the path from the start location to the goal. This is the same

method used by A* in the absence o f a CLOSED list.

Focused D* is an incremental and heuristically driven derivative o f A*. The algorithm is fully

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal, always finding the shortest paths, while taking into effect changes within the environment.

Focused D* is much faster than LPA*, as it modifies previous searches locally. Focused D* is used in

real-world applications such as Nomad robots (Koenig et al., 2001).

D* Lite deals with the real-time traversal o f dynamic environments. The algorithm makes no

assumptions about whether nodes are increasing or decreasing. It is also irrelevant to the algorithm

where these nodes are changing, whether close to the current location or otherwise. It is also irrelevant

whether the change is real, as in the cost has actually changed, or the change is simply perceived to be

so, such as might be the case if another agent is occupying a node that can only hold one agent. If a

node is untraversable, the edge cost is set to infinity. The result o f such an approach is that D* Lite is

able to plan with the existence o f other agents also navigating the environment.

D* Lite switches the search direction of LPA*. The goal node becomes the start node and vice

versa. All g-values o f nodes now become estimates o f the distance of the goal. The direction o f all

edges within the environment are reversed. The shortest path from the start location to the goal location

can be decided by continually minimizing the cost function C(s,s') and the goal-estimate distance g(s')

for the current location s and any successor node s'. Another change that D* Lite makes to LPA* is to

dynamically move the agent while updating the keys o f vertices in the priority queue. This is necessary

because heuristics change as the agent moves, and also because the heuristics were calculated based on

the previous location o f the agent.

4.2.2 D* Lite Notation

The D* Lite algorithm is listed below. Most of the notation for D* Lite is taken from the LPA*

algorithm. S represents the set o f vertices within the graph. Succ(s) is a subset o f S, representing the

successor vertices of a vertex s, which is also within S. Pred(s) is similar to Succ(s), being the set of

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predecessors of s. The start vertex is sstart and the goal vertex is sgoal. The priority queue needed to

maintain the vertices that need updating is U. The estimated distance from the goal to a node s is g(s),

while h(s,s') is the heuristic estimate o f the distance from s to s’. The heuristic function needs to be

non-negative and forward-backward consistent. , That means that h(s, s') < h(s, s') + h(s', s") for all

vertices s, s', and s" e S. The heuristic used must also be admissible at all times. Thus h(s, s') <

c*(s,s')

for all vertices s, s' e S, where c*(s,s') is the minimum cost o f moving from s to s'. D* Lite uses a right-

hand-side value, rhs(s), which is based on the g-values o f s' predecessors. The value o f rhs(s) is 0 if s =

sstart, otherwise it is mins eP red(s) (g(s) + c(s , s)). D* Lite maintains a key modifier km, which is

added to the first component of items when their keys are computed.

4.2.3 D* Lite Algorithm

procedure CalcKey(s)

{01'"} return [min(g(s), rhs(s)) + h (sstart , s) + km ; min(g(s),

rhs(s))];

procedure Initialize()

{ 0 2 " ' } U = 0 ;

{ 0 3 "'} km = 0;

{ 0 4 " ' } for all s G S rhs(s) = g(s) = °°;

{05"'} rhs(sgoal) = 0;

{ 0 6 " ' } U.Insert(sgoal , [h(sstart , sgoal); 0]);

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure UpdateVertex(u)

{'07"' } if (g(u) not = rhs (u) AND u G U) U.Update (u, CalcKey(u));

{08"'} else if (g(u) not = rhs (u) AND u not G U) U. Insert (u

CalcKey(u));

{09"'} else if (g(u) = rhs(u) AND u G U) U .Remove(u);

procedure ComputeShortestPath()

{10"'} while (U.TopKey()<CalcKey(sstart

g (sstart))

OR rhs(sstart)

{ 11 " '

{ 1 2 " '

{13"'

{14"'

{15"'

{16"'

{17"'

{18"'

{19"'

{ 2 0 " '

{ 2 1 " '

{ 2 2 " '

{23"'

{24"'

{25"'

u = U .Top();

kold = U.TopKey();

knew = CalcKey(u));

if(kold <knew)

U.Update(u, knew);

else if (g(u) > rhs(u))

g (u) = rhs (u) ;

U .Remove(u);

for all s G Pred(u)

rhs(s) = min(rhs(s), c(s, u) + g(u));

UpdateVertex(s);

else

gold = g(u);

g (u) = 00 ;

for all s G Pred(u) U {u}

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{ 2 6 " ' } if (rhs(s) = c(s, u) + gold)

{27"'} if (s .not = sgoal) rhs (s) = mins. esucc(s) (c(s,

s ') + g (s 1)) ;

{ 2 8 " ' } UpdateVertex(s);

procedure Ma±n()

{ 2 9 " ' } slast = sstart ;

{30"'} Initialize();

{31"'} ComputeShortestPath();

{32"'} while (sstart not = sgoal)

{33"' } /* if (rhs (sstart) = °°) then there is no known path */

{34"'} sstart = arg mins €Succ(sstart) (c (sstart , s') + g(s'));

{35"'} Move to sstart ;

{36"'} Scan graph for changed edge costs;

{37"'} if any edge costs changed

{38"'} km = km + h(slast , sstart);

{39"'} slast = sstart ;

{40"'} for all directed edges (u, v) with changed edge costs

{41"'} cold = c(u, v);

{42"'} Update the edge cost c(u, v);

{43'" } if (cold > c(u, v))

{44'"} rhs (u) = min(rhs(u), c (u, v) + g (v)) ;

{45"'} else if (rhs(u) = cold + g(v))

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{46"'} if (u not = sgoal) rhs(u) = mins 6Succ(u) (c(u,

s ') + g (s 1)) ;

{47"'} UpdateVertex(u);

{48"'} ComputeShortestPath();

The Initialize function sets the initial g- and rhs-values o f all vertices to infinity. The goal

vertex is inserted into the priority queue because it is initially inconsistent. Nodes in the priority queue

are then expanded until the start node is expanded. The agent then makes a transition of only one vertex

along the shortest path. The new vertex location is reflected in the updating of sstart, as this vertex is

the start o f the subsequent search. When an edge cost changes, the rhs-values and keys o f potentially

affected vertices are updated in the UpdateVertex function. Vertices that become locally consistent or

inconsistent due to this are either removed from the queue or placed on it respectively. The keys o f all

affected items within the priority queue are updated, and the shortest path is recalculated. The

recalculation may be rather quick, as the changed vertices may not have affected, or only slightly have

affected, the shortest path.

4.3 SMA*

4.3.1 SMA * overview

The other foundation to the proposed algorithm, henceforth called Memory-bounded D* Lite, or

simply MD* Lite, is the SMA* algorithm. SMA* (Simplified Memory-Bounded A*), is aimed at

addressing the performance of A* in memory constrained settings. Like A*, SMA* is also designed

for static environments that are completely known. The algorithm uses as much memory as it needs

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and is made available to it. SMA* manages to avoid expanding previously expanded states as long as

memory allows. It is complete when there is enough memory to store the shallowest solution path. It

is also optimal if enough memory is available to store the shallowest optimal solution. If there is not

enough memory to store the optimal solution, then the best solution that, can be attained with the

available memory is returned instead. This means it is not possible to determine whether the solution

given by SMA* is in fact the optimal solution without other information.

SMA* assigns a depth to expanded nodes. The first expanded node (the starting location) is

assigned a depth o f 1. The successor vertices of the root are assigned a depth o f 2, and their successors

3, and so on. If a node has a depth that is equal to the maximum amount o f nodes allowed in the queue

and it is not the goal, then it is ignored. This is due to the fact that it cannot be a member of path to the

goal that can fit within memory. By necessity, the maximum allowed amount of items must be greater

than or equal to 1, else the algorithm automatically fails.

SMA* makes use o f the concept of forgotten nodes. The algorithm has to handle when a

successor to a node needs to be expanded when no memory is available in queue. To do this, it

determines the worst item in the queue. The worst item is the node n for which f(n), the estimated cost

to the goal, is maximum. If that item is worse than the node that is to be added, then it is removed, and

the new item is added. If the new item is worse, then it is considered the worst item that is to be

forgotten. The element to be forgotten has a parent, which is the node that is its predecessor. The

parent node maintains a value that is the minimum f-value o f its forgotten children. This forgotten

value is updated to take into account the worst child node, which may affect the value of the forgotten

cost. The forgotten cost is a way for the algorithm to keep track of the best forgotten paths. If a

forgotten path has a lower f-value than the next non-forgotten node to be expanded, then it is expanded

instead.

SMA* performs well on problems with very accurate heuristics and also problems with many

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

highly-connected nodes. It does have problems in very complicated environments where not enough

memory is allowed, wherein the algorithm has to often switch back and forth between solution paths.

This in turn leads to many nodes being forgotten, and then having to be re-expanded. If such a node

has many children, then they all have to be expanded and processed again. There is no accurate

general-case method to determine what the minimum amount o f memory is needed to obtain an optimal

solution given just the start and goal location.

4.3.2 SMA* algorithm:

1. Put the start node S on the nodes list, called OPEN

2. If OPEN is empty, return failure

3. Set n as deepest node in OPEN where f(n) is minimum

4. If n is goal, return success (trace back from n to S)

5. For each successor n' of n

a. if n 1 is not goal, and n' is at maximum depth, f(n') = infinity.

b. else f(n') = max(f(n), g(n') + h(n'))

c. If all of n' have been evaluated, set f (n) = lowest cost of

child node, do same for ancestors if necessary, remove n from

OPEN.

d. If memory is full

i. Remove shallowest node s where f(s) is maximum from OPEN

ii.Remove s from n's successor list

iii.. Place n back in OPEN if necessary

iv.Insert n 1 in OPEN

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Goto 3

4.4 M emory-Bounded D* Lite

Memory-Bounded D* Lite (MD* Lite) will effectively merge the principles behind the SMA*

and D* Lite algorithms to create an algorithm that operates in dynamic environments where agents

have restricted memory. Below is the optimized version o f D* Lite, with the changes required for

MD* Lite highlighted.

procedure CalcKey(s)

{01"'} return [min(g(s), rhs(s)) + h(sstart , s) + km ; min(g(s),

rhs (s))] ;

procedure Initialize()

{02"'} U = 0;

{03'" } km = 0;

{04"'} for all s E S rhs(s) = g(s) = °°;

{05"'} rhs(sgoal) = 0;

{06"'} U.Insert(sgoal , [h(sstart , sgoal); 0]);

procedure UpdateVertex(u) — Using D as the priority queue for things

not stored (forgotten nodes)

{07'"} if (g(u) not = rhs(u) AND u E U) U.Update(u, CalcKey(u));

1. if key of u has increased

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. call UpdateVertex(s) for all s in succ(u)

{08"'} else if (g(u) not = rhs(u) AND u not G U)

1. If depth of u is less than max nodes allowed

1. if max allowed nodes reached

1. worst = item s in U where f(s) is max

2. if Key (s) > Key(u)

1. remove s from U

2. insert u in U

3. AddWorstToDelayed(s)

3. else

1. AddWorstToDelayed(u)

2 . else U.Insert(u, CalcKey(u));

{09"'} else if (g(u) = rhs(u) AND u G U) U .Remove(u);

Procedure AddWorstToDelayed - takes node, n

1. If no more room available in delayed queue

1. clean up delayed queue, removing parents whose children

already updated

2. If still no room, return failure

3. else goto 2

2. if parent of n is in U, do nothing

3. else if parent of n is in delayed queue

1. update value of parent to be min(Key(parent) in delayed,

Key (n))

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. else if there1s room in delayed queue

1. add parent of n to delayed queue with Key(parent) = Key(n)

5. else

1. AddWorstToDelayed(U.pop())

2. add parent of n to delayed queue with Key(parent) = Key(n)

Procedure EnsureConsistent()

1. While D.TopKeyO < U.TopKeyO or memory available and items

on D

1. for x in Succ(D.pop())

1. UpdateVertex(x)

2 . return True

procedure ComputeShortestPath()

{10"'} while (EnsureConsistent() AND U .TopKey()<CalcKey (sstart) OR

rhs(sstart) > g(sstart))

{ 11" ' u = U .Top();

{ 1 2 " ' kold = U.TopKeyO;

{13"' knew = CalcKey(u));

{14"' if(kold < knew)

{15'" U.Update(u, knew);

{16'" else if (g(u) > rhs(u))

{17'" g(u) = rhs(u);

{18'" U .Remove(u);

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{19'"} for all s € Pred(u)

{20"'} rhs(s) = min(rhs(s), c(s, u) + g(u));

{21"'} UpdateVertex(s);

{22'"} else

{23'" } gold = g (u) ; '

{24'" } g (u) = °°;

{25"'} for all s € Pred(u) U {u}

{26'"} if (rhs(s) = c(s, u) + gold)

{27"'} if (s not = sgoal) rhs(s) = mins 6 Succ(s) (c(s,

s ’) + g(s’))

{28'"} UpdateVertex(s);

procedure Main()

{29'"} slast = sstart ;

{30"'} Initialize();

{31'"} ComputeShortestPath();

{32'"} while (sstart not = sgoal)

{33"'} /* if (rhs(sstart) = °°) then there is no known path */ -

{34"'} sstart = arg mins. esucc(sstai:t) (c (sstart , s') + g(s'));

{35'"} Move to sstart ;

{36"'} Scan graph for changed edge costs;

{37'"} if any edge costs changed

{38'" } km = km + h(slast , sstart);

{39'"} slast = sstart ;

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{40"'} for all directed edges (u, v) with changed edge costs

{41'"} cold = c(u, v) ;

{42"'} Update the edge cost c(u, v);

{43'"} if (cold > c(u, v))

{44'"} rhs (u) = min(rhs(u), c(u, v) + g(v));

{45'"} else if (rhs(u) = cold + g(v))

{46'"} if (u not = sgoal) rhs(u) = mins gsucctui (c(u,

s ’) + g(s 1)

{47"'} UpdateVertex(u)/

{48'"} ComputeShortestPath();

Memory-Bounded D* Lite (MD* Lite) works by using 2 priority queues. Firstly, it is not that

simple to determine what a memory unit is that needs to be constrained. D* Lite for instance maintains

the rhs- and g-values o f each node, yet these are not generally considered memory units. In MD* Lite,

the second priority queue contains keys similar to the normal priority queue, and because those are

considered memory units, these ones should necessarily be considered the same.

The amount o f nodes in the regular priority queue, U, and the new priority queue count towards

the total amount o f memory units allowed. When nodes are to be added to the the priority queue, if it

happens that there is no more available space, then this affects the second memory queue, D. If the

node to be added, n, has a higher key than the worst node in U, then the key of the parent of n is

updated within D. The worst node is defined is the node w for which key(w) > key(p) for all p in

queue. The parent p o f a node s is the member o f Pred(s) for which g(p) + c(p, s) is minimum. Thus

the parent of a node is its predecessor in the shortest path from the starting state to that node. The key

o f the parent in D is the minimum key of its successors. There is an exception to the definition o f a

4 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parent node. If it happens that there are already predecessors of s already in D, then the one in that list

with the minimum cost (including traversal cost to s) is the parent. This is to prevent adding a new

node to D if an existing node can serve the same purpose of accounting for the forgotten node.

If n has a lower key than the worst item in U, then that worst item is removed from U. The

parent o f that item is updated within D, and n is added to U. Because D* Lite allows for global

sensors, it is possible that enough nodes change within the environment, it can easily overload the

allowed memory. If these changed vertices are sufficiently disconnected, which is to say they do not

share enough common ancestors, it is possible that not all parents can fit on D, and thus memory is

exhausted. This is not a big problem if enough memory is allowed, and the amount of detected

changed nodes is limited in some way, as is usually the case.

The consistency of U and D must always be maintained. This is to say that the following

relationship must hold at all times, key(worst(U)) < key(best(D)). All nodes maintained in D must

have a key that is worst than all nodes in U. Thus when nodes are expanded in U, it is guaranteed that

there are no forgotten nodes (which are accounted for in D) which should have been expanded first.

This is guaranteed in ComputeShortestPath, in which we check the status o f the two priority queues. If

it happens that this relationship is violated, or there are nodes in D and none in U, then the best node in

D is processed. The processing o f a node in D is simply removing the vertex from D, then updating

each o f its successors, adding to U if they are inconsistent and are good enough to be added. If a node

is not good enough to be placed on U, it will return to being accounted for in D.

The processing of nodes in D cannot add already consistent nodes to U. The reason for this is

that a successor s that did not need updating, will have g(s) = rhs(s) and thus will not have already been

in U. As a result of this, UpdateVertex will simply ignore it. A vertex s' that was previously

inconsistent, will be updated normally, and as g(s) not = rhs(s), will either be added to U, or its parent

updated, again in this case, in D. It is sometimes necessary to repeatedly remove the worst nodes from

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U to create enough memory space to add nodes to D. If memory is exhausted and thus a node needs to

be added to D, but its parent is not already present, then another memory space needs to be created.

Again, the worst node is dropped from U to create room to update its parent in D.

In the case that the parent o f a node to be added to the delay queue is already in U, then we can

safely ignore it. This is due to the fact that when ComputeShortestPath processes a node, the children

of this node are updated. Thus a node that is forgotten, will be updated when its parent is processed. In

the case that a change is detected in the parent before it is processed, the key of the forgotten child may

change. We thus update any successors o f said parent node, in which case they may end up with a

different parent.

It is possible for there to be orphaned parents in D. If a parent node has changed, then it may no

longer satisfy the relationship of being the predecessor on the lowest cost route to the child. Thus, if

the child also changes, yet is still not good enough to be added to U, then a different node in D may be

selected to be updated as its parent. These orphaned parents are accounted for when D and U are

checked for consistency. Thus if an orphaned parent node is to be processed, then this child, which is

no longer its child, will simply be accounted for under its new parent, and the old parent will be

removed if it has no other forgotten children. This orphaning of parents does allow memory in D to be

exhausted by information that is no longer valid, and we thus account for that by verifying the parent-

child relationships o f all nodes in D when we have exhausted all space. This is tedious, but as the

situation should rarely happen if enough memory is allocated, or there is some restriction on the

amount o f changed nodes detected, it should be a rare occurrence. It therefore would have a rarely

significant effect on the performance of the algorithm.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. 5 Theorems

MD* Lite does not meet any o f the theorems related to D* Lite. Due to the fact that nodes may

be added and removed repeatedly from the priority queue, it is impossible to guarantee how many

times a node is to be expanded. Regardless of this, several theorems related to MD* Lite hold.

1. Theorem 1: MD* Lite produces the same path as D* Lite when all changes can be accounted for

in memory .

Proof: Because the top node of the priority queue is still expanded by ComputeShortestPath, the

same order o f node processing occurs. There are no changes that affect the values o f the nodes

expanded.

4.6 Testing Environment:

For the purposes of these experiments, A four-connected graph was used. Traversal costs

between nodes are node-based as opposed to edge-based. The result of this is that Vx,y neighbours of

z, C(x,z) = C(y,z), where C is the cost-function for edge-traversal. All edges within the environment

can be blocked/unblocked with the exception o f the goal and start nodes (as the search would be

immediately failed). The costs o f traversing nodes increase and decrease randomly, with the use o f a

global agent completely responsible for such acts. -

In the paper on D* Lite, that algorithm is compared to many established algorithms such as

Focused D*, Backward/Forward A*, and Breadth-first search. In this document we will compare MD*

Lite to RLA*, Focused D* and D* Lite. Since SMA* is based on static environments, it is not possible

to compare it here. We compare the maximum number of nodes stored on the priority queue(s)

simultaneously. This tells us how much space the algorithm needs to operate. We ignore space

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

considerations for the program itself in terms of implementation, as this would be dependent upon such

an implementation and cannot be easily generalized. We also compare the amount o f nodes expanded.

This is one way to measure the amount o f work each algorithm is doing. Initially all nodes within the

environment are given a random traversal cost between 1 and 2. The tests involve two levels of

dynamism. Firstly, the cost to traverse to a node has a 5% chance o f increasing or decreasing by up to

30% on each iteration, both numbers assigned at random. Secondly, each node can become blocked or

unblocked on each iteration. The tests were ran with different blockage percentages, ranging in the

natural numbers between 1% and 10% inclusive, but it was allowed that each node would only be

blocked for at most 1 iteration.

The grid to be used will be 100x100. The starting and ending locations are randomly chosen,

with a requirement that the minimum distance between is 50 nodes. The system the tests are ran on is

irrelevant as they are not machine dependent. To reduce the amount of changed nodes detected by the

agent, the on-board sensors are to be limited to a range of 3 nodes measured by euclidean distance, thus

enabling it to detect changes in a total o f 29 nodes including its current location. It is not possible to

accurately predict the amount o f memory that MD* Lite will need before searching. For the purposes

of testing, an A* search is ran on the initial state, with the result of that, plus 25 to handle changed

nodes, is the allowed maximum for MD* Lite. This is just an arbitrary allowance, as MD* Lite will

use less than the alloted amount of memory if possible. This is o f course not guaranteed to be enough,

in which case we simply ignore that grid, and perform another test. A total o f 200 tests were ran, with

20 for each blockage percentage.

4.7 Test Results

4.7.1 Nodes Stored

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The comparisons presented are average, and all relative to D*. Memory stored is based on the

maximum amount of nodes maintained simultaneously. MD* Lite stored 27% less nodes than D*. D*

Lite stored roughly the same as D*, storing 4% more nodes. RLA* was surprisingly able to find the

optimal path 100% of the time, while only needing to store an average of 19% the amount o f nodes

maintained by D*. It should be noted that the heuristic used was not monotonic, due to the possible

cost decreases. This does not seem to have been a factor in the performance of RLA*, but the

algorithm would have been able to store even less nodes simultaneously, due to not needing a

CLOSED list, if it was.

4.3.2 Nodes Expanded

RLA* was able to expand less total nodes than the other algorithms on average. It expanded

50% of the nodes expanded by D*, 33% of that expanded by MD* Lite, and 45% of that expanded by

D* Lite. MD* Lite as expected, expanded more nodes than D* Lite and D*, expanding 50% more than

D*. D* Lite ended up expanding 10% more nodes than D*.

All the algorithms remained consistent in performance across the different blockade ranges. No

noticeable patterns appeared with increases in the amount o f obstacles on the map.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2: Performance over multiple blockage percentages relative to D*

According to block percentages

NS - MD*L NS - D*L NS - RLA* E - RLA* E - MD* L E - D* L
1 0.72 0.91 0.19 0.47 1.41 1.05
2 0.74 1.08 0.2 0.46 1.4 1.04
3 0.71 0.89 0.18 0.48 1.54 1.11
4 0.73 1.18 0.18 0.5 1.41 1.11
5 0.75 1.06 0.19 0.54 1.28 1.05
6 0.71 0.91 0.2 0.47 1.6 1.09
7 0.71 1.07 0.17 0.48 1.62 1.13
8 0.78 1.16 0.2 0.54 1.71 1.19
9 0.76 1.05 0.19 0.54 1.34 1.07
10 0.71 1.13 0.18 0.48 1.69 1.17

Average: 0.73 1.04 0.19 0.5 1.5 1.1
Std dev: 0.19 0.4 0.05 0.24 0.68 0.24

NS - Nodes stored* E - Nodes expanded*
* All relative to D*

5 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Conclusions and Future Work

5.1 Conclusions

The result regarding the memory comparison of RLA* and MD* Lite is misleading though,

seeing that MD* Lite was not optimized for such an environment. As the environment was small,

perhaps adding 25 nodes to the length of the A* path was too much. MD* Lite will use as much

memory as it needs and has access to, resulting in the misleadingly high memory usage. This does

point out an advantage that RLA* has over MD* Lite though. The. only way to restrict how much

memory MD* Lite uses is to set the amount of nodes it is allowed to store. The problem is that there is

no a priori way to determine this accurately within dynamic environments. RLA* on the other hand,

has no way to limit its memory usage, other than restricting its range o f sight. This still falls short

though, as the size o f the Tabu list cannot be constrained.

MD* Lite is always able to use the same or less memory than D* Lite, while producing the

same path, but will also expand at least as many nodes as D* Lite. Similar to the relationship between

A* and SMA*, there are cases where using MD* Lite is intractable in terms o f node expansions, as

switching between too many different path solutions with insufficient memory can result in too many

nodes being forgotten and needing to be expanded again. One of the negatives regarding RLA* is it is

likely to search for a longer period in environments where a goal is unreachable, and will remain so.

RLA* will search the all accessible pathways before finally realizing that the goal is unreachable.

While Focused D* and its variants are extremely popular in dynamic search environments, they

are not aimed at being constrained by memory. MD* Lite produces the same path as D* Lite, while

being able to work for agents with restricted memory. RLA* works very well in environments in

which a strong heuristic can be provided. It also does well in which a goal is reachable, but doesn't

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

perform very well in environments in which it is not. Thus, smaller environments, in which it will not

be too costly to fully explore, or environments with a high likelihood of a path existing, are appropriate

for RLA*. MD* Lite and RLA* have been shown to be well suited for robots, or other agent

implementations, where memory availability is a concern.

5.2 Future work

One o f the variants o f D* is Delayed D*. Delayed D* processes all overconsistent elements,

propagating their changes. After the overconsistent elements are processed, underconsistent states are

checked for and processed. This process is repeated until all states are consistent. Delayed D* is

claimed to expand less than 50% of the nodes expanded by D* Lite. This also means that Delayed D*

will expand less than 50% of the nodes expanded by MD* Lite. It is possible to incorporate the

changes required by Delayed D* into the MD* Lite algorithm, resulting in the algorithm expanding

significantly less nodes. The amount o f nodes stored by the algorithm is likely to decrease, as items are

placed on the queue in waves as opposed to all at once. Therefore it is my intention to create a delayed

variant o f MD* Lite.

In terms of RLA*, the next step is the implementation of the algorithm in practical situations. I

intend to implement the algorithm on robotic navigation systems. The performance of the algorithm in

these situations should provide further direction with regards to its capabilities.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

1. Baginski, B. (1996) The Z3 -Method for Fast Path Planning in Dynamic Environments.

In Proceedings of the IASTED Conference on Applications of Control and Robotics

2. Barbehenn, M. and Hutchinson, S. (1995) Efficient search and hierarchical motion planning by

dynamically maintaining single-source shortest path trees. IEEE Transactions on Robotics and

Automation, 11(2) pg. 198—214

3. Barto, A., Bradtke, S. and Singh, S. (1995) Learning to Act Using Real-Time Dynamic

Programming.

Artificial Intelligence vol. 72, pg. 81-138

4 . Boddy, M. and Dean, T. (1989) Solving time-dependent planning problems.

In Proceedings o f the International Joint Conference on Artificial Intelligence, pg. 979-984

5. Bonet, B. and Geffner, H. (2001a) Heuristic search planner 2.0.

Artificial Intelligence Magazine 22(3) pg. 77-80

6. Bonet, B. and Geffner, H. (2001b) Planning as heuristic search. Artificial Intelligence - Special

Issue on Heuristic Search 129(1) pg. 5-33

7. Bulitko, V. (2003) Lookahead pathologies and meta-level control in real-time heuristic search.

In Proceedings of the Euromicro Conference on Real-Time Systems, pg. 13-16

8. Carsten, J., Ferguson, D. and Stentz, A. (2006) 3D Field D*: Improved Path Planning and

Replanning in Three Dimensions.

Submitted to IROS

9. Cockbum, D., Kobti, Z., and Goodwin, S. (2006) Range-Limited A*

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Future Play Conference, London, Ontario.

10. Dean, T. and Boddy, M. (1988) An analysis of time-dependent planning.

In Proceedings o f the National Conference on Artificial Intelligence (AAAI)

11. Dechter, R. and Pearl, J. (1985) Generalized best-first search strategies and the optimality of

A*.

Journal of ACM 32, 3, pg. 505-536

12. Dijkstra, E. (1959) A note on two problems in connexion with graphs.

Numer. Math. 1, pg. 269-271

13. Edelkamp, S. (1998) Updating shortest paths.

In Proceedings o f the European Conference on Artificial Intelligence, pg. 655-659

14. Edelkamp, S. and Schrodl, S. (2000) Localizing A*.

In Proceedings o f the 17th National Conference on Artificial Intelligence (AAAI-2000), pg.

885-890.

15. Ersson, T. and Hu, X. (2001) Path planning and navigation of mobile robots in unknown

environments.

In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS)

16. Ferguson, D. and Stentz, A. (2004a) Planning with imperfect information.

In proceedings of Intelligent Robots and Systems International Conference, Sendai, Japan

17. Ferguson, D. and Stentz, A. (2004b) Delayed D*: The Proofs

Carnegie Mellon Robotics Institute, Tech. Rep. CMU-RI-TR-04-51, September

18. Ferguson, D. and Stentz, A. (2005a) The Delayed D* Algorithm for Efficient Path Replanning.

In Proceedings of the 2005 IEEE International Conference on Robotics and Automation,

Barcelona, Spain

1 9 .Ferguson, D. and Stentz, A. (2005a) Field D*: An Interpolation-based Path Planner and

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Replanner.

In Proceedings o f the International Symposium on Robotics Research (ISRR)

2 0 . Ferguson, D. and Stentz, A. (2006) Multi-resolution Field D*.

In Proceedings o f the International Conference on Intelligent Autonomous Systems (IAS)

21. Fiorini, P. and Shiller, Z. (1996) Time optimal trajectory planning in dynamic environments.

In Proceedings o f the IEEE International Conference on Robotics and Automation (ICRA)

2 2 . Fujimura, K. (1991) Motion Planning in Dynamic Environments.

Springer-Verlag, Tokyo

23. Gelperin, D. (1977) On the optimality of A*.

Artificial Intelligence ,8(1) pg. 69-76

24. Glover, F. (1989) Tabu Search — Part I,

ORSA Journal on Computing 1: 3 pg. 190-206.

25. Hansen, E. and Zilberstein, S. (1996) Anytime heuristic search: Preliminary report.

In AAAI Fall Symposium on Flexible Computation in Intelligent Systems: Results, Issues, and

Opportunities, pg. 55-59 Cambridge, MA.

26. Hansen, E., Zilberstein, S. and Danilchenko, V. (1997) Anytime heuristic search: First results.

Tech. rep. 97-50, University o f Massachusetts at Amherst, Department of Computer Science.

2 7 . Hart, P., Nilsson, N. and Raphael, B. (1968) A formal basis for the heuristic determination of

minimum cost paths.

IEEE Transactions on Systems Science and Cybernetics, 2:100-107

28. Hoffmann, J., and Nebel, B. (2001) The FF planning system: Fast plan generation through

heuristic search.

Journal of Artificial Intelligence Research 14 pg. 253-302.

29. Kaelbling, L., Littman, M. and Cassandra, A. (1998) Planning and acting in partially observable

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stochastic domains.

Artificial Intelligence

30. Koenig, S. (2001) Agent-centered search.

Artificial Intelligence Magazine, 22(4) pg. 109-131

31. Koenig, S., Tovey, C., and Halliburton, W. (2001) Greedy mapping of terrain

In Proceedings of the International Conference on Robotics and Automation pg. 3594-3599.

32. Koenig, S. and Likhachev, M (2002a) D* Lite.

In Proceedings of the National Conference on Artificial Intelligence, pg. 476-483

33. Koenig, S. and Likhachev, M. (2002b) Incremental A*

Advances in Neural Information Processing Systems. MIT Press

3 4 .Koenig, S. and Likhachev, M. (2002c) Improved fast replanning for robot navigation in

unknown terrain.

In Proceedings of the IEEE International Conference on Robotics and Automation

35. Koenig, S., Tovey, C. and Smirnov, Y. (2003). Performance bounds for planning in unknown

terrain.

Artificial Intelligence, 147 pg. 253-279

36. Koenig, S., Likhachev, M., and Furcy, D., (2004a) Lifelong planning A*.

Artificial Intelligence Journal, 155(1-2) pg. 93-146

37. Koenig, S., Likhachev, M., Liu, Y., and Furcy, D. (2004b) Incremental heuristic search in

artificial intelligence.

Artificial Intelligence Magazine, 25(2) pg. 99—112

38. Koenig, S. and Likhachev, M. (2005) Fast replanning for navigation in unknown terrain.

Transaction on Robotics, 21 (3):354—363

39. Koenig, S. (2004) A comparison of Fast Search Methods for Real-Time Situated Agents.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Proceedings o f the International Joint Conference on Autonomous Agents and Multi-agent

Systems (AAMAS), pg. 864-871.

40. Koenig, S. and Likhachev, M. (2006) A new principle for incremental heuristic search:

Theoretical results.

In Proceedings o f the International Conference on Autonomous Planning and Scheduling, pg.

402^105

4 1 . Korf, R. (1990) Real-Time Heuristic Search

Artificial Intelligence, Vol. 42, No. 23, pg. 189-211

42. Korf. R. (1993) Linear-space best-first search.

Artificial Intelligence , 62 pg. 41-78

43. LaValle, S. (1998) Rapidly-exploring Random Trees: A new tool for path planning.

Technical report, Computer Science Dept., Iowa state University, October

44. Leven, P. and Hutchinson, S. (2002) Real-time motion planning in changing environments.

In Proceedings o f the International Symposium on Robotics Research (ISRR)

45. Likhachev, M., Gordon, G. and Thrun, S. (2004) ARA*: Anytime A* with provable bounds on

sub-optimality.

In Advances in Neural Information Processing Systems. MIT Press

46. Likhachev, D. et al. (2005) Anytime Dynamic A*: An Anytime, Replanning Algorithm.

In Proceedings o f the International Conference on Automated Planning and Scheduling.

4 7 .Pearl, J. (1984) Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley

48.Podsedkowski, L., Nowakowski, J., Idzikowski, M. and Vizvary, I. (2001) A new solution for

path planning in partially known or unknown environments for nonholonomic mobile robots

Robotics and Autonomous Systems, vol. 34, pg. 145-152

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49. Ramalingam, G. and Reps, T. (1996), An incremental algorithm for a generalization o f the

shortest-path problem.

Journal of Algorithms 21, pg. 267A305

50. Ratner, D. and Pohl, I. (1986) Joint and LPA*: Combination o f approximation and search.

In Proceedings of the 5th National Conference on Artificial Intelligence (AAAI-86),

pg. 173-177.

51. Russell, S. (1992) Efficient memory-bounded search methods.

In Proceedings o f the Tenth European Conference on Artificial Intelligence,

ECAI-92, Vienna, Austria

5 2 . Russell, S. and Norvig, P. (1994) Artificial Intelligence: A Modem Approach.

Prentice-Hall

53. Stentz, A. (1993) Optimal and efficient path planning for unknown and dynamic environments.

Carnegie Mellon Robotics Institute Technical Report CMU-RI-TR-93-20

54. Stentz, A. (1994) Optimal and efficient path planning for partially-known environments.

Proceedings o f the IEEE International Conference on Robotics and Automation

55. Stentz, A. (1995) The Focused D* algorithm for real-time replanning

Proceedings o f the International Joint Conference on Artificial Intelligence-95, Montreal,

Quebec

56.Yoshizumi, T., Miura, T., & Ishida, T. (2000). A* with partial expansion for large branching

factor problems.

In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-2000), pg.

923-929.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Name: Denton Cockbum
Date O f Birth: August 10, 1982
Place O f Birth: St. Andrew, Jamaica
Degrees:

Bachelor O f Computer Science
Bachelor O f Science, Software Engineering

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Memory-constrained pathfinding algorithms for partially-known environments
	Recommended Citation

	tmp.1619812114.pdf.fhG4j

