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ABSTRACT 

 

A Plug-in Hybrid Electric Vehicle (PHEV) is a vehicle powered by a combination of an 

internal combustion engine and an electric motor with a battery pack. The battery pack 

can be charged by plugging the vehicle to the electric grid and from using excess engine 

power. The research activity performed in this thesis focused on the development of an 

innovative optimization approach of PHEV Power Split Device (PSD) gear ratio with the 

aim to minimize the vehicle operation costs.   

 

Three research activity lines have been followed:  

 Activity 1: The PHEV control strategy optimization by using the Dynamic 

Programming (DP) and the development of PHEV rule-based control strategy 

based on the DP results. 

 Activity 2: The PHEV rule-based control strategy parameter optimization by 

using the Non-dominated Sorting Genetic Algorithm (NSGA-II). 

 Activity 3: The comprehensive analysis of the single mode PHEV architecture to 

offer the innovative approach to optimize the PHEV PSD gear ratio. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The automobile has been making great contribution to our civilization since it was 

invented over a century ago. It has become the necessary choice of transportation in our 

daily life. In most countries, the automotive industry also has become one of the most 

important segments. However, automobiles also are bringing the serious energy and 

environmental problems to our communities due to the large amount of green-house gas 

emissions accompany with the huge energy consumption. In the five major fuel 

consuming sectors contributing to CO2 emission from fossil fuel combustion, 33% is 

from the transportation sector in 2009 [1].  

 

Because of the recognition of the influence of automotive to the environment, most of the 

countries enacted the stringent emission standards.  The European Union introduced the 

emission Directive 2005/55/EC and its implementing Directive 2005/78/EC as amended 

by 2006/51/EC, 2008/74/EC and 2011/582/EC and applies to all trucks, lorries and buses 

sold in the EU market. This Directive lays down limit values for emissions of gaseous 

and particulate pollutants and for the opacity of exhaust fumes from diesel, natural gas 

and liquefied petroleum gas (LPG) engines, known as Euro IV, Euro V and Euro VI. 

Table 1.1 is the Euro VI – 2011/582/EC which is the latest EU directive engine emission 

enacted by European Union. The application date of Euro VI is December 31, 2012. 
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The US emission standards were set by the Environmental Protection Agency (EPA), 

which was formed in 1970 to develop and enforce regulations to protect the environment.  

These standards focus on limiting the production of harmful tailpipe pollutants. Table 1.2 

lists the heavy duty highway compression-ignition engines & urban buses exhaust 

emission standards. The standards adopted after 2007 are more stringent levels on 

NMHC, NOx, and PM compared with those between 2004 and 2006.  

 

At the same time, because of decreasing global crude oil supplies, the price of crude oil, 

according to the US Energy Information Administration (EIA) (2011) [2], is over 500% 

higher than ten years ago (Figure 1.1) and is likely to continue to surge in the future 

 

Table 1.1. Euro VI – 2011/582/EC Engine Emission Standard 

 

Note:  1) Admissible level of NO2 may be defined later 

2) Measurement procedure to be introduced by Dec. 31, 2012 

3) Particle number limit shall be introduced by Dec. 31, 2012 

C.I. - Compression Ignition; P.I. - Positive Ignition 

WHTC - World Heavy Duty Transient Cycle 

WHSC - World Heavy Duty Steady State Cycle 

 

CO HC NMHC H4 NOx 
1)

 NH3 PM Mass PM Number 
2)

 

mg/kWh ppm mg/kWh #/kWh 

WHSC (C.I.) 1500 130   400 10 10 8×10
11

 

WHTC (C.I.) 4000 160   460 10 10 6×10
11

 

WHTC (P.I.) 4000  160 500 460 10 10 
3) 



 

3 

Table 1.2. Heavy Duty Highway Compression-Ignition Engines & Urban Buses - 

Exhaust Emission Standards 

Year 

HC NMHC NMHC+NOx NOx PM CO Idle CO Smoke Useful Life Warranty Period 

(g/bhp-hr) 
(% exhaust 

gas flow) 
(%) 

(hrs/yrs/mile

s) 
(yrs/miles) 

2004-

2006 
 - 

2.4 (or 2.5 with 

a limit of 0.5 on 

NMHC) 

- 0.05 15.5 0.5 20/15/50 

LHDDE: 

-/10/110,000  

MHDDE: 

-/10/185,000   

HHDDE: 

22,000/10/ 

435,000 

LHDDE: 

5/50,000                               

All other HDDE:                                         

5/100,000 2007+ - 0.14 

2.4 (or 2.5 with 

a limit of 0.5 on 

NMHC) 

0.2 0.01 15.5 0.5 20/15/50 

 

Note: HHDDE - Heavy Heavy-Duty Diesel Engines  

   MHDDE - Medium Heavy-Duty Diesel Engines 

LHDDE - Light Heavy-Duty Diesel Engines 

 

because of shrinking oil supplies. Although Corporate Average Fuel Economy (CAFE) 

was enacted by the US Congress in 1975 and sets fuel economy standards for cars and 

light trucks (trucks, vans, and sport utility vehicles) sold in the US. The discussion of 

reduction of fuel consumption is significant in the past fifteen years regarding shrinking 

oil supplies and increasing oil demands. Future legislation is focused on reducing fuel 

consumption and greenhouse gas emissions starting in 2013 based on EPA program 

announcement. The program will include a range of targets which are specific to the 

diverse vehicle types and purposes. Vehicles are divided into three major categories: 

combination tractors (semi-trucks), heavy-duty pickup trucks and vans, and vocational 

vehicles (like transit buses and refuse trucks). Within each of those categories, even more 

specific targets are laid out based on the design and purpose of the vehicle. This flexible 
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structure allows serious but achievable fuel efficiency improvement goals charted for 

each year and for each vehicle category and type. By the 2018 model year, the program is 

expected to achieve significant savings relative to current levels, across vehicle types. 

Certain combination tractors – commonly known as big-rigs or semi-trucks – will be 

required to achieve up to approximately 20 percent reduction in fuel consumption and 

greenhouse gas emissions by model year 2018, saving up to 4 gallons of fuel for every 

100 miles traveled. For heavy-duty pickup trucks and vans, separate standards are 

required for gasoline-powered and diesel trucks. These vehicles will be required to 

achieve up to approximately 15 percent reduction in fuel consumption and greenhouse 

gas emissions by model year 2018. Under the finalized standards a typical gasoline or 

diesel powered heavy-duty pickup truck or van could save one gallon of fuel for every 

100 miles traveled. Vocational vehicles – including delivery trucks, buses, and garbage 

trucks – will be required to reduce fuel consumption and greenhouse gas emissions by 

approximately 10 percent by model year 2018. These trucks could save an average of one 

gallon of fuel for every 100 miles traveled. 

 

So the studies on fuel-saving and emission-reduction have been popular in recent years. 

Most of the auto makers are looking the solutions from the Hybrid Electric Vehicles 

(HEV), Plug-in Hybrid Electric Vehicles (PHEV), or Electric Vehicles (EV). 
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Figure 1.1. World crude oil price have increased over 400% since 1998 (EIA, 2011) 

 

 

Shortly after the US Congress adopted the 1990 Clean Air Act (CAA) Amendments, 

California state passed the “Low Emission Vehicle/Clean Fuel” program. California’s 

emission limitation plan [3] was created by California Air Resources Board (CARB) and 

sets a more stringent emission standard for CO, NOx, and formaldehyde. All the vehicles 

sold in California by a manufacturer in a given year must meet an overall "fleet average" 

emission requirement. The fleet average emissions requirement took effect in 1994 and 

declines each year until 2003. Fleet averaging allows automobile manufacturers 

flexibility to determine the volume and class of vehicle to manufacture and sell. The only 

mandatory vehicle requirement for fleet averaging is a sales quota for Zero Emission 

Vehicles (ZEVs). Two percent of all vehicles certified for sale in California must be 
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ZEVs in 1998, increasing to five percent in 2001 and to ten percent in 2003. Although the 

auto makers invested a large amount of the money to develop the ZEVs, the public did 

not show the enthusiasm to the pure battery powered vehicles. Honda announced to stop 

the manufacture the EV-plus after 2 years launch, and GMC also did not make the EV1 

after 2000 because of the low market demands. 

 

Because of the major barriers to the immediate introduction of the electric vehicle: 

insufficient battery capacity, lack of needed infrastructure, unresolved problems about the 

safety, consumer resistance, and significantly higher purchase prices than conventional 

automobiles, CARB revised the mandatory vehicle requirement for ZEVs and allowed 

60% of the ZEVs can be replaced by the Ultra Low Emission Vehicles (ULEVs). Toyota 

successfully introduced its HEV car Prius on the Japanese, European, and US markets 

and proved that HEV is the new generation of the energy-saving vehicles and easy to be 

accepted by the customers. HEV sales in US is growing steadily (Figure 1.2) [4]. From 

1999, the first HEV sold in US, to 2010, almost 2 millions HEV on US roads. Although 

there are still many unsolved challenges on the technologies and markets, the HEV, 

particularly PHEV seems to be the most promising short-term solutions to reduce the fuel 

consumption and emissions. 

 

PHEVs with oversized batteries that can also be recharged using electric power from the 

grid, have recently become a hot topic in the automotive industrial because of the 

undoubted advantages in terms of emissions and fuel consumption deriving from the 

possibility to be driven for a relatively extended driving range using only electricity.  
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Figure 1.2. US HEV sales 

 

General Motor (GM) introduced the first PHEV “Chevrolet Volt” in US market in 2011 

although GM called it “Extended-range Electric Vehicle”.  However, PHEVs present 

some additional challenges for control and optimization, due to the necessity of 

accounting for the cost, energy depletion and pollution due to the use of electrical energy 

in place of the fuel. 

 

1.2 HEV Technologies Introduction  

Per SAE J1711, the definition of an HEV is “A road vehicle that can draw propulsion 

energy from both of the following sources of stored energy: 1) a consumable fuel and 2) a 

rechargeable energy storage system (RESS) that is recharged by an electric motor-

generator system, an off-vehicle electric energy source, or both.” The consumable fuel 
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that is covered in this study is limited to the gasoline. RESS that is covered in this study 

is the battery. 

 

Comparing with the conventional vehicles, HEVs or PHEVs not only reduce the green-

house gas emissions, but also have less fuel cost (Table 1.3) [5]. HEVs were categorized 

into serial and parallel HEV on the conventional concept. As the HEV development 

getting more and more attentions, various designs and technologies emerge and were 

applied to the production vehicles. The categorization and evaluation of HEV have been 

an important project to be studied to direct the HEV development and research [6-9]. 

Considering the HEV powertrain functions, architectures, and vehicle packages, the 

design of the HEV powertrain has a high level of degree of freedom. These designs can 

be categorized by their degrees of hybridization or their powertrain configurations.    

 

Based on the degree of hybridization, the HEVs can be categorized full hybrid and mild 

hybrid. The hybridization always is determined into the ratio of the power of the 

propulsion motor to that of the engine. A full hybrid, sometimes also called a strong 

hybrid, is a vehicle that can run on just the engine, just the batteries, or a combination of 

both. The full HEV can be operated at different distinct regimes: electric mode, cruise 

mode, overdrive mode, battery charge mode, power boost mode, and negative split mode.  

Mild hybrids are essentially conventional vehicles with some degree of hybrid hardware, 

but with limited hybrid feature utilization. Typically they are a parallel system with start-

stop only or possibly in combination with modest levels of engine assist or regenerative 

braking features. Unlike full hybrids, Mild hybrids generally cannot provide ICE-OFF  
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Table 1.3. Comparison of Emissions and Fuel Cost of X-vehicles 

Emissions and Fuel Cost for a 100-Mile Trip 

Vehicle Greenhouse Gas Emissions Total Fuel Cost 

(compact sedans) (pounds of CO2 equivalent) (U.S. Dollars) 

Conventional 87 lb CO2 $13.36 

Hybrid Electric 57 lb CO2 $8.78 

Plug-in Hybrid Electric 62 lb CO2 $7.10 

All-Electric 54 lb CO2 $3.74 

 

all-electric propulsion. A plug-in hybrid electric vehicle is one of the full hybrids, able to 

run in electric-only mode, with larger batteries and the ability to recharge from the 

electric power grid. And can be parallel or series hybrid designs. They are also called 

gas-optional, or griddable hybrids. Their main benefit is that they can be gasoline-

independent for daily commuting, but also have the extended range of a hybrid for long 

trips. Basically, the higher the hybridization the vehicle is, the more improvement of the 

fuel economy and emissions are. The hybridization of Honda Civic is 15.9% which is the 

mild hybrid. The hybridization of Toyota Prius is 62.3% which is the full hybrid.  

 

Based on the powertrain system design, several kinds of hybrid electric vehicles have 

been conceived, usually distinguished by their architecture, which is related to the path 

that the power flow follows from the energy sources to the wheels. They are (see Figure 

1.3): series hybrid, parallel hybrid, and power-split hybrid.  

 

The series configuration is the simplest architecture in the hybrid electric vehicles. The 

engine directly drives the generator which transforms the mechanical power from engine 
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into the electric power and supplies the power to the power storage device through the 

inverter, or to the propulsion motor directly. The serial HEV is driven by the propulsion 

motor. The engine, as the auxiliary driving unit, extends the driving range of the vehicle.   

The motor power is supplied by either a power-storage device, or a generator, or the 

combination of both with a split ratio determined by the power management controller. 

Since the engine operation is independent of the vehicle speed and road condition, it is 

controlled to operate near its optimal condition most of the time. In addition, because the 

mechanical power transition path is eliminated, the energy loss due to the torque 

converter and the transmission is avoided. However, because of more processes to 

convert and transform, the energy from the engine to the wheels results in the lower 

efficiency. In addition, all of the serial elements, such as the engine, generator, and motor, 

need the extra stand-by powers to meet the vehicle dynamics requirements. 

 

In a parallel configuration, the single electric motor and the engine are installed such that 

they can power the vehicle either individually or together. The engine mainly supplies the 

power to drive the vehicle. Meanwhile the motor works as the auxiliary power unit. The 

role of the motor is to assist the engine to operate efficiently and to capture regenerative 

braking energy. Comparing with the series HEV, the engine is larger and more powerful, 

while the motor is smaller and less powerful. The main advantage of the parallel hybrid 

vehicle is the relatively high efficiency. The engine power is directly transferred to the 

wheels and therefore no power conversion is needed. The main disadvantage of the 

parallel hybrid vehicle is the engine speed is directly coupled to the vehicle speed and 

road condition and therefore the engine can not be operated in the most economic point 

continuously.  
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a) Series Hybrid 

    

b) Parallel hybrid 

 

c) Power-split hybrid 

Figure 1.3. HEV configurations 

 

B:  Battery 

E:  Engine 

G:  Generator 

I:  Inverter 

M:  Motor 

T: Transmission 

W:  Wheel 

-: Electric Link 

=: Mechanical Link 
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The power-split configuration (also called series-parallel HEV) combines the parallel and 

series powertrains. The power from the engine is split. One part of the power is 

transferred to the wheels through a mechanical path. The other part flows to the wheels 

via the electric path, which consists of the generator and the electric motor. A power split 

device (PSD), which is a planetary gear set, connects the engine, motor, and generator to 

work as a continuously variable transmission (CVT) and provides the advantage of 

adjusting the engine in the economic operation range. The generator is used to control the 

engine speed, the motor controls the engine torque. The generator is also used to convert 

excessive engine power to electric power that can be stored in the battery. The motor is 

operated for the power supply and for the recovery of energy during braking. Since only a 

small part of the engine power flows through the electric path, most of the power will be 

directly transferred to the wheels via a mechanical connection. This mechanical 

connection has a high efficiency. Therefore, the efficiency of the power-split 

configuration is high compared to the series. 

1.3 Power Split Device Architecture Introduction  

The earliest development of the power split mechanisms can be tracked back to 1969 [10]. 

But this power-split concept was not applied to passenger vehicles until the late 1990s. 

The first production power-split passenger vehicle is the Toyota Hybrid System (THS) 

[11] (Figure 1.4) which is known as the single mode PSD system. THS is vastly applied 

on the Toyota HEVs, such as Prius, and becomes the front-runner on the market. The 

advantage of the THS PSD is its relative simplicity and its increased performance over 

competing hybrid designs. However, the performance and fuel economy at high speeds 

and on steep grades is not outstanding due to the undersized engine and low efficiency at 
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high speed. This is common to many vehicle types, because actual driving conditions are 

different than the idealized conditions in the laboratory testing, such as faster 

accelerations and higher top speeds. 

 

Another major design for power-split HEV on the market is the Allison Hybrid System 

(AHSII) (Figure 1.5) [12] which is invented by GM as a dual-mode PSD system in 2003. 

The main difference between single mode and dual mode PSD is the addition of clutches 

and/or brakes to create different transmission configurations. This increases the number 

of possible power flow paths through the transmission. The clutches are engaged and 

disengaged based on the system information such as the engine/motor efficiency maps, 

battery SOC, road load and driver demand to determine the operation mode. The dual-

mode PSD system provides more efficient performance over a wider range of vehicle 

loads than that achieved by the single-mode design. However, the additional mechanical 

components will certainly increase both capital and maintenance costs. 

 

Many other power split designs are developed by different companies. Bosch developed a 

power split transmission with circulating power for the hybrid electric vehicles [13] in 

2004. GETRAG tested their democar with axle-split and torque-split hybrid 

transmissions to reduce the fuel consumption 24% and 35% respectively [14]. Ford 

Motor Company installed the power split transmission in Ford Escape Hybrid and 

brought to the market in 2004. Renault also developed a dual mode power split 

transmission [15].  
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Figure 1.4. Single mode PSD system (Source: adapted from [13]) 

 

Figure 1.5. Dual mode PSD system (Source: adapted from [13]) 

 

1.4 Literature Review  

1.4.1 Modeling power-split system 

The proper modeling and simulation tools can shorten the vehicle development timing, 

reduce the development cost, validate the HEV control strategy, evaluate the vehicle 

performance, etc. in the early design and analysis stage. A considerable amount of work has 
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been done in the power split system modeling and simulation. A dynamic model (Zhang et 

al.) was created to evaluate an electric variable transmission (EVT) developed by Allison 

Transmission Division of General Motors [16]. The model is based on Kane's equations, 

and the concept of generalized velocity is used. The EVT performance was simulated by 

using the model. A mathematical model [17] of a vehicle with a power-split device based on 

the steady-state performance was presented by the researchers from Michigan Technological 

University (Rizoulis et al.). A math-based universal model [18] that presents different 

designs of power-split powertrains was created (Liu). This universal model presents the 

powertrain dynamics regardless of the various connections of engine-to-gear, motor-to-

gear, and clutch-to-gear. A dynamic model (Zanasi et al.) of a planetary gear with 

internal elasticity [19] was presented. The model of the whole vehicle is given using the 

Power-Oriented Graphs approach. A dynamic model [20] of a multi-regime hybrid 

vehicle powertrain architecture (Wishart et al.) was presented to focus on the formulae 

governing the operation of the planetary gear systems in the powertrain and on the 

performance of a more complex heavy-duty vehicle with varying loading conditions. 

 

1.4.2 Energy management optimization of power-split HEVs 

The research of the energy management optimizations has been done on the different 

configuration of HEVs design. The global optimization and the local optimization of the 

HEV energy management are two major research directions. The typical represents of the 

global optimization are the Dynamic Programming (DP) [21]-[25] and Pontryagin’s 

Minimum Principle (PMP) [26]-[29]. The typical example of the local optimization is 

Equivalent Fuel Consumption Minimization (ECM) [30]-[34].  Many papers about the power 
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split HEVs energy management optimization have been published. Banvait et al. [35] 

studied the energy control strategy of the plug-in hybrid electric vehicle with PSD using 

particle swarm optimization. Liu [36], [37] presented a stochastic dynamic programming 

method and the equivalent consumption minimization strategy to optimize the single 

mode power split HEV. Both approaches determine the engine power based on the 

overall vehicle efficiency and apply the electrical machines to optimize the engine 

operation. The performance of these two algorithms is assessed by comparing against the 

simulation results. Bole [23] also presented a dynamic programming method and the 

equivalent consumption minimization strategy to optimize the dual mode power split 

HEV. The optimization results of dynamic programming and equivalent consumption 

minimization compared with the developed rule-based control strategy simulation results. 

Moura [24] presented a dynamic programming method with consideration of trade-off of 

the fuel and electricity of usage and the fuel-to-electricity pricing to optimize the single 

mode PHEV energy management. 

 

1.4.3 Control strategy of power-split HEVs 

The supervisory control system represents the vehicle level controller that coordinates the 

sub-systems to satisfy certain performance targets. Control Strategy is the algorithm to make 

the controller to achieve the vehicle energy management and control the power systems. It is 

the vehicle “brain” and is the ultimate factor to determine the success or failure of a HEV 

development. So far, most of the research on the HEV control strategy is still on the 

computer simulation stage, particularly for the instantaneous optimal control strategy and the  

global optimal control strategy. It is difficult for them to be applied on the commercial 
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vehicles because of the heavy burden computation and very expensive high performance 

CPU. Although some vehicle OEMs, such as Toyota, GMC, Honda, are selling the HEVs 

with developed control strategies, those control strategies are companies’ core technical 

secrets and can not be published.  

 

Most of the early HEV control strategies are the speed – based control algorithms [38], [39] 

because it is simple and easy to be understood. The vehicle speed is the critical parameter in 

the control strategy. When the vehicle speed is lower then the threshold setup, the engine will 

be turned off. When the vehicle speed is higher then the threshold setup, the engine will be 

started. However, the disadvantage of the speed-based control strategy is that when the 

vehicle is driven at the high speed cruise, the engine may operate at the low efficiency zone.  

 

The current control strategy is the torque-based control algorithm. The torque-based control 

strategy reasonably distributes the torque required by vehicle wheel between the engine, 

motor and generator to minimize the vehicle fuel consumption and emissions. The objective 

of the control strategy is to improve the vehicle fuel economy and reduce the emissions, so 

the rules to develop the control strategy are as follows: 

 Control the engine to be operated at high efficiency zone. 

 Keep the motor to be operated at high efficiency zone. 

 Maintain the battery SOC to be within the specific range.   

The current presented torque-base HEV control strategies include: 

 Rule-based control strategy by adjusting the engine operation zone. 

 Instantaneous optimal control strategy by real time calculating to determine the 

engine and motor/generator optimal operation points. 
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 Global optimal control strategy by applying the optimal control theory. 

 Fuzzy logic or neural network intelligent control system. 

 

Despite the early efforts, to my knowledge, the effects of the power-split planetary gear 

ratios to the vehicle fuel consumptions and operation costs do not yet exist in the 

literature. It is important and significant to optimize the PSD gear ratio to minimize the 

vehicle fuel consumptions and operation costs.  

 

1.5 Contribution  

This thesis focuses on the process of the single mode power-split PHEV (Figure 1.6) 

modeling, energy management optimization, ruled-based control strategy development,  

 

 

Figure 1.6. PHEV configuration and energy flow. (E– engine, G – generator, M – motor, 

W – wheel, I – Inverter, B - Battery).  
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and investigation of the effects of PSD gear ratios to the PHEV fuel consumptions and 

operation costs. A dynamic power-split PHEV simulation model is derived. By using this 

model, an optimal solution for the power-split PHEV with its benchmark performance is 

provided through the dynamic programming. The rule-based control strategy is then 

developed and the control strategy parameters are optimized by using the genetic 

algorithm. The effects of PSD gear ratios to the PHEV fuel consumptions and operation 

costs at the different driving cycles are finally discussed in this thesis. The main 

contributions of the thesis include the following:  

 A backward-looking dynamic model of the power-split PHEV powertrain systems 

is created. The engine, power-split device, motor/generator, battery, and vehicle 

dynamics are integrated to perform a simulation. This simulation tool can be used 

to analyze the interaction between sub-systems and evaluate vehicle performance 

using measures such as fuel economy and operation costs.  

 An optimal control design procedure based on dynamic programming (DP) is 

adopted in the power-split HEV fuel efficiency optimization study. DP is 

employed to find the optimal operation of the power-split system and achieve the 

benchmarks. The results are then applied to develop the real time control strategy 

designs.  

 A rule-based control strategy based on the DP optimal results is developed. The 

comparisons between the rule-based control strategy and optimal benchmarks are 

discussed at different driving cycles. The developed rule-based control strategy is 

then applied to investigate the PSD gear ratios to PHEV fuel consumptions and 

operation costs at the different driving cycles. 
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 The rule-based control strategy parameters of the power-split PHEV are 

optimized by using non-dominated sorting genetic algorithm (NSGA-II). NSGA-

II is employed to find the optimal control strategy parameters to minimize the 

vehicle fuel consumptions and operation costs. The results provide the engineers 

the fast and economic vehicle control strategy tunings. 

 An innovative six-step approach to design the power split PHEV planetary gear 

ratio to minimize the fuel consumption and operation cost is presented.  

 

1.6 Outline of the Thesis  

 

The organization of this thesis is as follows. After the introduction in Chapter 1, the 

development of an integrated model for power-split plug-in hybrid electric vehicles is 

presented in Chapter 2. The optimal control by using dynamic programming is presented 

in Chapter 3. Chapter 4 presents the development of the rule-based control strategy for 

PHEV. Chapter 5 presents the optimization of rule-based control strategy parameters by 

using genetic algorithm NSGA-II. An innovative design approach to optimize the PSD 

gear ratio to minimize the vehicle fuel consumption and operation cost is developed in 

Chapter 6. Finally, a summary of this thesis and suggested future work are presented in 

Chapter 7.  
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CHAPTER 2 

MODELING PHEV SYSTEMS 

2.1 Introduction 

Based on the level of details of the each modeled component, the vehicle model may be 

steady-state, quasi-steady, or dynamic. For example, the ADVISOR [40], [41] model can 

be categorized as a steady-state model, the PSAT [42] model as quasi-steady one, and 

PSIM [43] and Virtual Test Bed (VTB) [44] models as dynamic. On the other hand, 

based on the direction of calculation, vehicle models can be classified as forward-looking 

models or backward facing models [40] (See Figure 2.1 and Figure 2.2). In a forward-

looking model, vehicle speed is controlled to follow a driving cycle during the analysis of 

fuel economy, thus facilitating the controller development. 

 

Figure 2.1. Flow diagram of the backward-looking model 

 

Figure 2.2. Flow diagram of the forward-looking model 
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When using backward-looking models, the control logic does not have to be considered 

complicated system constraints because the models calculate the exact torque or speed 

that a system requires and allow the controller to have only feasible control options. In 

contrast, in forward-looking models, the controller considers constraints and component 

losses and instantaneously makes decisions for the entire system. Therefore, the 

controller needs to collect the information required from the components and produces a 

control signal according to time-forward strategies. In this chapter, a backward-looking 

simulation model is developed for the power-split plug-in hybrid vehicles. The simulation 

model is implemented in the Matlab environment. 

 

2.2 Engine Model 

Figure 2.3 is the diagram of the inputs and outputs of the engine model. The inputs 

include the engine output torque and speed, and the outputs required are engine operation 

efficiency, fuel consumption rate, emissions, operation fuel cost. The inputs and outputs 

of the engine model are just considered during analysis the PHEV energy management. 

The theoretical engine model is not superior to the experimental engine model because of 

the accuracy caused by the many assumptions and the expensive computer operation cost. 

So the experimental engine model always used to simulate the HEV powertrain system. 

 

Figure 2.3. Inputs and outputs of the engine model 
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In order to support the computation over long driving cycles, a look-up table is used that 

provides torque as a function of engine speed and mass of fuel injected per cycle. The 

engine dynamics are ignored. The assumption is made that the working condition is at 

constant average level. The fuel consumption is evaluated by (2.1): 
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The fuel consumption map, in g, of the engine as function of the engine speed and engine 

torque is shown in Figure 2.4.  

2.3 Motor/Generator Model 

Figure 2.5 is the diagram of the inputs and outputs of the motor/generator model. The 

input is the motor/generator output speed. The model outputs include the motor/generator 

output torque, power, efficiency and electricity operation cost.  
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Figure 2.4. Engine fuel consumption map 
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Figure 2.5. Inputs and outputs of the Motor/Generator model 

 

Same as the engine model, the inputs and outputs of the motor/generator model are just 

considered during analysis the PHEV energy management. The look-up tables provide 

efficiency of the motor/generator as a function of the torque and speed. The 

motor/generator is the function of torque and speed, η=f(T, ω). When motor/generator 

consumes the energy, which means the power flows from battery to the motor/generator, 

the consumed power is represented by (2.2). 

                                           MG

MGMG
MG

T
P




                                                (2.2) 

 

When the motor/generator generates electrical energy, which means the power flows 

from motor/generator to the battery pack, the generated power is represented by: 

                                          MGMGMGMG TP                                                 (2.3) 

Equations (2.2) and (2.3) will be used for the battery State-of-Charge (SOC) calculation. 

Figure 2.6 and Figure 2.7 are the efficiency maps for the Toyota Prius motor and 

generator which are at 15 kW and 35 kW respectively. 
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Figure 2.6. Generator efficiency map   
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Figure 2.7. Electric motor efficiency map  
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2.4 Battery Model 

Figure 2.8 is the relationship of the input and output of the battery model. The inputs 

include the battery capacity Q, internal resistance Rint , open circuit voltage VOC, and 

battery power output Pbatt. The output is the battery SOC. The battery model is 

represented by an equivalent circuit with an internal resistance, as shown in Figure 2.9. 

The battery Rint is the function of the SOC and the current direction Ibatt (Figure 2.10): 

            
),(int battISOCfR 

                                             (2.4) 

The battery SOC is the function of the VOC (Figure 2.11): 

)( OCVfSOC 
                                                   (2.5) 

Both functions are obtained through the curve fitting based on the battery test results.  

 

 

Figure 2.8. Inputs and outputs of the battery model 

 

 

Figure 2.9. Battery electrical equivalent circuit 
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Figure 2.10 Battery internal resistance map with SOC 

 

 

Figure 2.11. Battery open circuit voltage map with SOC 

 

The battery pack dynamics are associated with SOC, and SOC depends on the equivalent 

battery capacity Q and the current flowing through the battery IBatt: 

                                        Q
I

COS Batt
                                             (2.6) 

The battery output power is a function of VOC, IBatt, and Rint: 

                                         int

2 RIIVP BattBattOCbatt                                       (2.7) 
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This expression may be written in terms of SOC and solved to obtain the equation for 

SOC: 

                            int

int

2

2

4

QR

RPVV
COS

BattOCOC 


                                (2.8) 

The power required from the battery will be: 

                                               k

C

k

MGMGMGBatt TP                                            (2.9) 

Where, k=1 when power flows to the battery and k=-1 when power flows away from the 

battery. 

 

2.5 PSD Model 

The planetary gear set is the core of the power split transmission as shown in Figure 2.12. 

The planetary gear set consists of a ring gear, a sun gear, a carrier, and pinion gears 

where the engine is connected to the carrier, the generator to the sun gear, and the motor 

to the ring gear and final driveline. The basic gear ratio of the planetary gear set follows: 

                            

k
R

R

s

r

cr

cs 



                                           (2.10) 

 

Figure 2.12. PHEV planetary gear set 
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The relationships between the torques are: 

      cs T
k

k
T

1
                                                  (2.11) 
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                                                   (2.12) 

Figure 2.13 shows the free body diagram of planetary gear set. The relationships between 

the torques are: 
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2.6 Powertrain Dynamic Model 

Figure 2.14 shows the free body diagram of the powertrain. The torques determine the 

rotational speeds in the transmission. The powertrain dynamic equations are following: 















dfmrfrrm

sggg

ceee

TZTTZII

TTI

TTI

)()( 





                      (2.14) 

Combining equations (2.10)–(2.14), and only considering the vehicle dynamics along the 

longitidinal direction which is the dominating factor for the fuel economic, the 

powertrain dyamic model can be derived:        
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Where: 

   tiretd RFT                                                  (2.16) 
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Figure 2.13. Free body diagram of planetary gear set 

 

 

 

 

 

Figure 2.14. Free body diagram of powertrain 
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2.7 Vehicle Model 

 

Figure 2.15. Vehicle free body diagram 

 

The propulsion system produces mechanical energy that is stored in the vehicle. The 

amount of mechanical energy consumed while driving the vehicle depends on the 

following effects: 

 The aerodynamic friction losses 

 The uphill driving losses 

 The rolling friction losses 

The vehicle model is derived from the basic equation of solid-body motions (Figure 2.15): 

rgadt FFFF
dt

dv
m                                      (2.17) 

     
25.0 VACF FDad                                                (2.18) 
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 sinmgF g                                                     (2.19) 

       
 cosmgfF rr                                                  (2.20) 

2.8 Summary 

The backward-looking model of PHEV was created in this chapter under Matlab 

environment. It provided the necessary platform to simulate the PHEV fuel consumption 

and study the control strategy. The main study in this chapter focused on following: 

1. The look-up table based PHEV engine, motor/generator, and battery models were 

created. Those models represent the static state of the systems. However, the 

simulations will focus on the PHEV energy consumptions, so the model accuracy 

is enough. 

2. The dynamic PSD and powertrain system models were created based on the 

system loads balances. 

3.  The vehicle model was created by applying the vehicle longitudinal dynamics.   
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CHAPTER 3 

OPTIMAL CONTROL OF PHEV 

3.1 Introduction 

The optimal energy management of HEV is a global optimization problem whose 

objective is to determine the power split between the engine and the motor to minimize 

the vehicle fuel consumption and operation cost. Comparing with other optimal 

approaches, such as Pontryagin’s Minimum Principle (PMP) [45], [46], the Equivalent 

Consumption Minimization Strategy (ECMS) [35], [46], the DP approach guarantees the 

global optimal results and the results are unbeatable under the given driving cycles. In 

this study, the DP approach was used to optimize the PHEV control strategy to minimize 

the fuel consumption and operation cost. 

 

3.2 Mathematic Model of Optimal Control 

Figure 1.4 shows the PHEV configuration in this study. From the Figure 2.12 and 

equation (2.14) and (2.15), the relationship of the torque on the wheels with the engine 

torque and motor/generator torque can be derived: 
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The same routine to derive the relation of the engine speed and the engine torque: 
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             (3.2) 

The relation of the motor speed and vehicle speed is written: 

                                                       ftire

m
ZR

v


                                                       
(3.3)

 

The constrains of the components are as following: 

                                                     max,min, eee TTT                                                   (3.4) 

   max,min, eee                                                  (3.5)
 

   max,min, ggg TTT                                                   (3.6) 

   max,min, ggg                                                (3.7) 

    max,min, mmm                                              (3.8) 

   max,min, mmm TTT                                                  (3.9) 

For a given drive cycle, the vehicle speed at the given time is known. Considering 

equations (3.1) - (3.3), there are only two independent variables:  motor torque Tm and 

generator torque Tg. The engine torque Te can be derived from the motor torque Tm and 

generator torque Tg. The engine speed can be derived from the engine torque Te. 

 

The state variable of the PHEV is defined as following: 

         )]([)( tSOCtx                                               (3.10) 
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SOC(t) is the battery state of charge at the time t. it meets following constrain: 

maxmin SOCSOCSOC                                       (3.11) 

The control variables are determined: 

 )](),([)( tTtTtu gm                                               (3.12) 

And they meet the constrains of (3.4) to (3.9). 

 

Given the driving cycle, the PHEV optimal control can be expressed: it is desired to 

determine a control law to minimize the performance measurement, from the initial state 

)]0([)0( SOCx   to the end of state )]([)( ff tSOCtx   at the driving cycle time 

ft . The optimal function of the PHEV is: 

                                              


ft

dttutxLJ
0

))(),((                                           (3.13) 

For the PHEV, the fuel consumption function includes the fuel consumption and 

electricity consumption during the vehicle operation. The fuel consumption function can 

be described: 

 )()()(),(( telectrictfueltutxL electric                              (3.14) 

 

3.3 Dynamic Programming 

Dynamic Programming (DP) [47] which was developed by Bellman is a powerful tool to 

transform the complex decision-making problem to a series of sub-problems by the 



 

36 

global optimization. For a given driving cycle, the optimal operation strategy to minimize 

fuel consumption, or combined cost of fuel/electricity consumption can be obtained. 

 

Due to the nonlinear characteristics of the hybrid powertrain, it is not possible to solve 

DP analytically. Instead, DP has to be solved numerically by some approximations. 

Equation (3.13) is a continuously operating system which can be approximated by a 

discrete system by considering N equally spaced time increments in the interval 

ftt 0 . Due to the fact that the system level dynamics are the main concern to 

evaluate fuel economy over a long driving cycle, dynamics that are much faster than 1 Hz 

could be ignored [48]. The sample time for the main-loop control problem is selected to 

be 1 second. The discrete-time model of PHEV can be described as: 

      kukxfkx ,1                                            (3.15) 

The state variable is SOC:    )(),()(1 kTkTfkSOCkSOC gm .                          (3.16) 

The cost function of the PHEV powertrain can be expressed as: 
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                                (3.17) 

Assume that the fuel price ratio is β=0.65, which is consistent with the energy price in the 

year 2010: $2.77 USD per gallon of gasoline and $0.1145 USD per kWh of electricity 

[49]. 
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The optimization goal is to find the control variable, u(k), to minimize the cost function. 

The optimization problem is subject to a set of inequality constraints arising from the 

component speed, torque and SOC characteristics. The constraints for state X: 

maxmin SOCSOCSOC   

edischbatteryech PPP argarg   

max,min, MMM   

max,min, GGG   

max,min, GGG TTT   

The constraints for control U: 

max,min, MMM TTT   

max,min, eee TTT   

max,min, eee   

In addition, one equality constraint for optimization problem is imposed the drivability, 

        GMedem PPPP                                            (3.18) 

Based on Bellman’s principle, the DP algorithm is presented as follows: 

))]1(),1(([min
)1(

*

1 


 NuNxLJ
Nu

N                                  (3.19) 

Step k, for 0≤k<N-1: 

))]1(())(),(([min))(( *

1
)1(

*  


kxJkukxLkxJ k
Nu

k                          (3.20) 

and: 

0))((* NxJk                                                     (3.21) 
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The dynamic programming process consists of two parts. The first part can be 

characterized as a backward procedure, because it travels through the states starting from 

the destination and finishing at the origin. The recursive equation is solved backwards 

from step N-1 to 0 in order to find the optimal control policy. Each of the minimizations 

is performed subject to the constraints above and the driving cycle. The optimal 

performance measurement ))((* kxJk and optimal control u(k) can be obtained at every 

step under the related state. Similarly, the second part is a forward procedure which 

traverses the states starting from the origin and moving towards the destination to 

determine the optimal control policy and optimal trajectory. 

 

A standard way to solve equation (3.20) numerically is to use quantization and 

interpolation [50]-[52]. For continuous state space and control space, the state and control 

values are first discretized into finite grids. At each step of the optimization 

 

 

Figure 3.1. Numerical dynamic programming algorithm 
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search, the function is evaluated only at the grid points of the state variables. If the next 

state does not fall exactly on a quantized value, then the values of in equation (3.20) as 

well as in equation (3.19) are determined through linear interpolation. 

 

3.4 Reduction of Dynamic Programming Grid Size 

In order to reduce the computation burden of dynamic programming, the “limit 

trajectories” [53], [54] approach is used to reduce the grid size. If the initial state x(0) is 

defined, it is possible to bound a region in the state space by means of the limit 

trajectories. Those state space trajectories obtained apply the extreme controls to the 

system equations. The only states to be explored are confined in the region defined by 

these trajectories and the constraints. Because the state variable is SOC, the SOC limit 

trajectories are determined as follows: 

When the wheel torque wheelT > 0, the maximum electricity consumption will be based on 

the maximum motor torque )(_ kT him . )(_ kT him is the smallest of the following three: 

1)  
i

kTwheel )(

;
 

2) The maximum motor torque provided by the motor; 

3) The maximum output motor torque under the limitation of the battery discharge 

capacity; 

When the wheel torque wheelT < 0, the maximum electricity generated by the motor will be 

based on the maximum motor torque )(_ kT lom . )(_ kT lom is the largest of the following 

three: 
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1)  
i

kTwheel )(

;
 

2) The maximum motor torque provided by the motor; 

3) The maximum output motor torque under the limitation of the battery charge 

capacity; 

Figure 3.2 shows the SOC limit trajectories. The state SOC will be explored in the limit 

trajectory boundaries. In this way, the calculation burden is greatly reduced. 

 

3.5 Simulation Results 

The DP optimal control is applied to PHEV in appendix I to calculate the vehicle fuel 

consumption. Figure 3.3 shows the SOC limit trajectories of UDDS driving cycle. 

Because the PHEV battery is charged before the operation, and considering the battery 

operation range, the highest SOC value is set to 0.9 and the lowest is set to 0.32. The grid 

size of the state variables and the control signals will directly influence the simulation 

accuracy and computational cost. Small grid sizes lead to longer computation time but more 

accurate optimization results and larger grid sizes save computational cost but may obtain  

 

Figure 3.2. The limit trajectory boundaries 
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Table 3.1. The Selected Grid Points in DDP 

States  

SOC 0.32:0.005:0.9 

Controls Inputs  

Motor Torque [Nm] -300:15:300 

Generator Torque [Nm] -55:5:55 

 

inaccurate results. Also, the state and input grids need to be coherent. A state grid may not be 

reached by the control. The selected grid points are shown in Table 3.1.   

 

Figure 3.4-3.6 are the simulation results of SOC, motor torque, engine torque and powers 

in two (2) driving cycles. The fuel consumption of 2 UDDS driving cycles is 273.93g 

(1.55L/100km) which is the best fuel economy that the PHEV can achieve. Any other 

control strategies can’t compete this result. 

 

3.6 Summary 

The optimal control model of PHEV was created under the condition of given driving 

cycles to optimize the vehicle fuel consumption and operation cost in this chapter. The 

optimal control strategy was obtained by the DP approach. The optimal control strategy 

not only can evaluate the real time control strategy, but also direct the real time control 

strategy optimization. The purpose of this study is to determine the global optimal fuel 

consumption and operation cost as the benchmark of the real-time PHEV control 

strategy. The main study in this chapter focused on following: 

 The optimal control model of PHEV was created. The state variable of the 

optimal control model is SOC, the control variables are the motor and generator 
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torques. In order to reduce the computation burden, the “limit trajectories” 

approach is used to reduce the grid size. 

 The step was set to 1 second which was determined based on the given driving 

cycles. The assumption was made that the vehicle fuel consumption is constant 

within each steps, therefore changing the continuous optimal control to a series of 

sub-problems. 

 The optimal results are the best PHEV fuel consumptions by using DP approach.   

 

 

 

Figure 3.3. The limit trajectory boundaries for UDDS Driving cycle 
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Figure 3.4. DP simulation results – SOC  
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Figure 3.5 DP simulation results – Motor Torque  
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Figure 3.6. DP simulation results – Engine Torque  
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Figure 3.7. DP simulation results – Power  
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CHAPTER 4 

PHEV RULE-BASED CONTROL STRATEGY 

4.1 Introduction 

Due to the multiple-power-source nature and the complex configuration and operation 

modes, the PHEV energy management is implemented by effectively controlling of the 

multiple power sources. The algorithm of the vehicle energy management and power 

systems control is called the control strategy. The PHEV control strategy and the vehicle 

controller are the vehicle nerve center and more complicated than that of an engine-only 

vehicle. The main function of the control strategy is the power management, i.e., the 

design of the high-level control algorithm that determines the proper power split between 

the motor and the engine to minimize fuel consumption and emissions, while satisfying 

constraints such as drivability, charge sustaining and component reliability. 

 

The HEV control strategy studies mainly focus on the three areas: rule-based control 

strategy [55], [56], real time local optimization [57], [58], and fuzzy-logic/neural network 

intelligent control strategy [59], [60]. Because of the expensive computer operation cost 

of the real time local optimization, it currently cannot be applied on the commercial 

HEV. The popular control strategy used in the commercial vehicles is the rule-based 

control strategy [61], [62]. The fuzzy-logic/neural network intelligent control strategy has 

been applied in different engineering fields. The fuzzy logic control strategy is also used 

on the HEV. 
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In this chapter, a rule-based control strategy for PHEV will be developed based on the 

PHEV optimal control strategy created in Chapter III.      

4.2 PHEV Torque Balance Control 

From equation 2.16, the torque on the driveline is tiretd RFT   . The energy management 

control strategy should meet the requirement of the torque demanded from vehicle 

wheels. The energy management control strategy will determine the power split ratio of 

the engine to the motor. When the torque on the driveline dT is positive, then: 

mdred TTT  _                                                   (4.1) 

gdree TTT  _                                                    (4.2) 

Where gme TTT ,, are the torques of the engine, the motor and the generator. dreT _ is the 

torque which is transferred from the engine to the driveline. The torque of the generator is 

always negative to adjust the engine torque based on the engine efficiency map.  When 

the torque on the driveline dT is negative, then: 

brakemd TTT                                                    (4.3) 

Where brakem TT , are the torques of the motor and the hydraulic brake. 

 

The goal of the control strategy is to choose an operating point that minimizes the 

engine’s fuel consumption and emissions. The engine will be operated in the economic 

area which follows opteT _  curve. When the engine torque falls below the limit offeT _ , the 

engine will be shut off. At the same time, the negative generator torque adjusts the engine 

always operate upper the opteT min__ . 
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In order to determine the engine economic area, the engine directly driving efficiency and 

the motor driving efficiency would be compared, therefore determining opteT min__   and 

offeT _ .The engine directly driving efficiency: 

  de1                         (4.3) 

The motor driving efficiency with the energy from the engine: 

    dminvgopte  _2              (4.4)
 

If 21  , then the engine operation point is not in the economic area. The engine should 

be shut off and the engine torque would be offeT _ . If just considering the battery charging, 

the minimum optimal engine torque opteT min__ would be determined. However, the torques 

would be setup as the final control strategy parameters by optimization and calibration on 

the vehicle. The control strategy parameters optimization will be discussed in next 

chapter. 

 

4.3 PHEV Operation Modes 

Most of the rule-based control strategies are based on “IF-THEN” type of the control 

rules and perform the load balancing between the power sources. The typical PHEV 

control strategy is PSAT control strategy which is based on charge-depleting (CD) mode 

and charge-sustaining (CS) mode. The global energy management optimization of PHEV 

and PHEV control strategy testing show that the blended control strategy has better 

energy efficiency compared with the electric-only control strategy. The PHEV uses 6 

operation modes to achieve the most efficient operation in response to the driving 

conditions based on the blended control strategy in this study. 
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Figure 4.1. PHEV basic operation modes 

 

Figure 4.1 represents the PHEV 6 basic operation modes: 

1) AB, BC, and GH are all electric mode, including the driving and generation 

modes; 

2) Point C is the engine start mode; 

3) CD is the power boost mode; 

4) DE is the low SOC normal driving and power boost mode; 

5) EF is the battery charging mode; 

6) FG is the negative power split mode. 

Table 4.1 list the analysis of every operation modes and relationship of the torques. 

  

4.4 Design of PHEV Energy Management Control Strategy 

The important step of the PHEV rule-based control strategies based on “IF-THEN” is the 

determination of the control strategy parameters. Table 4.2 lists the parameters of the 

PHEV rule-based control strategy. 
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 Table 4.1 PHEV Operation Mode Analysis 

 
Analysis and Description Diagram 

 

 

 

1 

All electric model 

1) Vehicle launch: low speed and low 

load. max_md TT  , 0eT , 0gT  

2) Vehicle normal operation and 

SOC>SOCmin, contmd TT max__ , 

0eT , 0gT  

3) If SOC>SOCmax, 0mT ; 

If SOC<SOCmax, Regenerative 

brake:
 

0dT , 

0eT , 0gT , genmm TT _  

mT  is the maximum value as 

following: 

 dT   

 The maximum motor 

torque provided by the 

motor; 

 The maximum output 

motor torque under the 

limit of the battery charge 

capacity; 

 

 

 

 

 

 

 

2 

Engine Start Mode 

The engine is started by the generator, and 

the vehicle is driven by the motor. 

dm TT 
 

starteg TT _  
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Table 4.1 PHEV operation mode analysis (Cont.) 

 

 

3 

Power Boost Mode: 

Motor is main power source and engine is 

the power boost source 

High load and SOC>SOCmin:
 max_md TT   

max_mm TT 
 

mddre TTT _  

dreeg TTT _  

 

 

 

 

 

 

4 

Low SOC normal driving mode:  

Engine is main power source and motor is 

the power boost source, SOC<SOCmin: 

      max__0 dred TT 
 

dred TT _ , 0mT
 

drege TTT _  

 

 

 

 

5 

Battery charging mode: 

Vehicle speed v=0: 

ge TT   

 

6 Negative power split mode:  

When SOC>SOCmin: 

max_max__ mdred TTT 
 

optee TT _
 

max_mm TT   
 



 

51 

Table 4.2 Parameters of the PHEV Rule-based Control Strategy 

Item Parameters Descriptions 

1 SOCmin Highest desired battery SOC 

2 SOCmax  Lowest desired battery SOC 

3 αg_charge  Desired generator charge torque coefficient  

4 αm_discharge  Desired motor discharge torque coefficient  

5 αe_opt_low Desired engine lowest torque coefficient  

6 αe_opt_high Desired engine highest torque coefficient  

7 ωe_lau  Engine Lowest speed  

  

The baseline parameters of rule-based PHEV control strategy are determined based on 

the DP simulation results (Table 4.3). Combining the PHEV operation mode analysis, 

also considering that the engine can’t be started in 2 seconds after it is shut down, the 

PHEV “IF-THEN” rule-based control strategy are listed in Table 4.4. 

 

Table 4.3. Baseline Parameters of Rule–based PHEV Control Strategy 

Item Parameters Baseline Values Actual Values 

1 SOCmin 0.3 - 

2 SOCmax 0.9 - 

3 αg_charge 1 43 Nm 

4 αm_discharge 0.76 116 Nm 

5 αe_opt_low 0.6 55 Nm 

6 αe_opt_high 1 93 Nm 

7 αωe_lau 1 1,200 rpm 

 



 

52 

Table 4.4. PHEV “IF-THEN” Rule-based Control Strategy 

Item Condition Engine Motor Generator 

1 
0<Td≤Tm_discharge & Engine ON Min 

Time Met & SOC>SOCmin 
Te=0 Tm=Td Tg=0 

3 

0<Td≤Tm_discharge & Engine ON Min 

Time NOT Met & SOC>SOCmin & 

Te_opt_low>Td 

Te=Te_opt_low Tm=0 Tg=Te_opt_low-Td 

4 

0<Td≤Tm_discharge & Engine ON Min 

Time NOT Met & SOC>SOCmin & 

Te_opt_low<Td<Te_opt_high 

Te=Te_dr Tm=0 Tg= Te_g 

5 
0<Td≤Tm_discharge & ωe <ωe_lau & 

SOC>SOCmin 
Te=0 Tm=Td Tg=0 

6 

Td>Tm_discharge & Engine OFF Min Time 

Met & SOCmin<SOC<SOCmax & 

ωe >ωe_lau 

Te=Te_opt_low Tm=Tm_discharge 
Tg=Te_opt_low- Td 

+Tm_discharge 

7 

Tm_discharge<Td<Tm_max & Engine OFF 

Min Time NOT Met & 

SOCmin<SOC<SOCmax & ωe >ωe_lau 

Te=0 Tm=Td Tg=0 

8 

Td>Tm_max & Engine OFF Min Time 

NOT Met & SOCmin<SOC<SOCmax & 

ωe >ωe_lau 

Te=0 Tm=Tm_max Tg=Tm_max-Td 

9 
Td<Te_opt_low &SOC<SOCmin & 

ωe >ωe_lau 

Te=max(Te_opt_low, 

Td+Te_g) 
Tm=0 Tg=Te_g 

10 
Te_opt_low<Td<Te_opt_high &SOC<SOCmin 

& ωe >ωe_lau 

Te=max(Te_opt_high, 

Treq+Te_g) 
Tm=0 Tg=Te_g 

11 
Td>Te_max+Tm_charge & SOC>SOCmin & 

ωe >ωe_lau 
Te=Te_max Tm=Tm_discharge 

Tg_dr= Td - 

Tde_dr- Tm 

12 Td<0 & SOC<SOCmax Te=0 
Tm=min(Td, 

Battery limit) 
Tg=0 
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4.5 Simulation Results 

The PHEV rule-based control strategy was simulated in the Matlab environment. 2 

UDDS driving cycles were used. The PSD gear ratio was set to 3.0. Figure 4.2 – Figure 

4.5 show the simulation results. 

 

From Figure 4.2, at second 1670 the SOC reduces to 0.32 which is set to minimum SOC 

value, the vehicle control strategy is changed from CD mode to CS mode. From Figure 

4.3 and 4.4, the motor operation time reduces and the engine operation time increases. 

This is because the engine becomes the main power source after the second 1670. 

 

Before the second 1670, the engine always operates around lower limit of the engine 

economy zone. After the second 1670, the engine always operates around higher limit of 

the engine economy zone. In this way, the engine not only can operate at the high 

efficiency zone, but also provide the power to charge the battery. Figure 4.5 shows the 

power relationship between the engine power, motor power and the required power. At 

some points, the engine power is larger than the required power after the second 1670.  

 

The fuel consumption based on the rule-based control strategy is 309.53 g (1.75 L/100 

km). Comparing with the fuel consumption based on the DP simulation results, the fuel 

consumption increases 12.98%.   



 

54 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 400 800 1200 1600 2000 2400 2800

Time (s)

S
O

C

 

Figure 4.2. Rule-based control strategy simulation results – SOC  

 

 

-100

-50

0

50

100

150

0 400 800 1200 1600 2000 2400 2800

Time (s)

M
o

to
r 

T
o

rq
u

e 
(N

m
)

 

Figure 4.3. Rule-based control strategy simulation results – Motor Torque  
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Figure 4.4. Rule-based control strategy simulation results – Engine Torque 
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Figure 4.5. Rule-based control strategy simulation results – Power 
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4.6 Summary 

The power split HPEV rule-based control strategy was studied in this chapter. Because it 

is difficult to create the accurate math models of the vehicle systems and components and 

complex to coordinate the operations between the vehicle systems, the rule-based is still 

the key method to design the control strategy. The main study in this chapter focused on 

following: 

1. Analysed the power split PHEV energy management control strategy, determined 

the direction to minimize the PHEV fuel consumption is to control the engine to 

operate at the economy zone, defined the control strategy to ensure the engine 

operate at the economy zone is through the adjustment of the generator load. 

2. Studied the vehicle operation modes and relationships between the loads to 

provide the base to create the rule-based control strategy. 

3. Determined the rule-based control strategy parameters based on the vehicle 

system characteristics and DP simulation results. 

4. Simulated the rule-based control strategy using the vehicle model created in 

Chapter II. The control strategy can coordinate and control the torque output of 

the engine, motor, and generator to ensure the fuel energy conversion efficiency 

as high as possible.       
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CHAPTER 5 

RULE BASED CONTROL STRATEGY PARAMETERS 

OPTIMIZATION 

5.1 Introduction 

The common problem during the design of the control strategy is the optimization of 

control strategy parameters. The general method to determine the parameters is to 

initially set up the parameters, then validate by trail-and-error. If trail-and-error is 

implemented on the vehicle, the parameters calibration cycle is around 30 minutes, 

including the parameters adjustment and driving cycle vehicle running. This method 

spends a lot of time and money to get the final parameters, but also has difficulty 

searching for the optimal solution. The improved method is to introduce the gradient-

based Sequential Quadratic Programming (SQP) to optimize the control strategy 

parameters [63], [64]. However, for the HEV system objective function, it is difficult to 

make the assumptions, such as continuity, differentiability, and satisfaction of the 

Lipschitz condition etc. to determine the objective function gradients.   

 

Genetic algorithm (GA), as a powerful and broadly applicable stochastic search and 

optimization technique, has turned much of its attention to optimization problems in 

industrial engineering, resulting in a fresh body of research and applications.  Recently, 

GA is also widely applied in the optimization of HEV control strategy parameters [65]-

[68]. Because HEV has a number of control strategy parameters, as well as multiple 

objective functions, which are conflicting, the optimization of HEV control strategy 
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parameters can be formulated to multi-objective constrained nonlinear optimization 

problem. 

 

Multiple-objective optimization models have been solved by many researchers. The 

classical optimization methods convert multi-objective optimization into a single 

objective optimization by allocating weights to each of the objective functions which 

reflect their importance in the overall problem and focusing on a particular optimal 

solution at one time [69]. In fact, it is always difficult to find the suitable weights capable 

of accurately indicating the actual situation. Adopting such procedures does not only 

entail repetition of the same process many times to find multiple solutions, but also lacks 

quality solutions. Therefore, this method has been replaced by the multi-objective 

evolutionary algorithms (MOEAs) Pareto optimal solutions in a single simulation run. 

 

Non-dominated Sorting Genetic Algorithm (NSGA) [70] is one of MOEAs and a popular 

non-domination based genetic algorithm for multi-objective optimization. It is a very 

effective algorithm but has been generally criticized for its computational complexity, 

lack of elitism and for choosing the optimal parameter value for sharing parameter σshare. 

An improved version of NSGA, utilizing parameter less elitist approach named NSGA-II, 

was proposed by Deb et al. [71]. NSGA-II has a better sorting algorithm, incorporates 

elitism and does not require a sharing parameter to be chosen a priori. 

 

In this paper, the rule-based control strategy parameters based on the blended operation 

are optimized by using NSGA-II. 



 

59 

5.2 GA Terminology and Definition  

Chromosome : A solution vector x∈X is called an individual, or Chromosome. 

Genes : Chromosomes are made of discrete units called Genes. Each gene controls one or 

more features of the chromosome. 

Encoding : Normally, a chromosome corresponds to a unique solution x in the solution 

space. This requires a mapping mechanism between the solution space and the 

chromosomes. This mapping is called an encoding. In fact, GA works on the encoding of 

a problem, not on the problem itself. 

Population : GA operates with a collection of chromosomes, called a population. The 

population is normally randomly initialized.  

Crossover and Mutation : GA use two operators to generate new solutions from existing 

ones: crossover and mutation.  

Parents and Offspring : In crossover, generally two chromosomes, called parents, are 

combined together to form new chromosomes, called offspring.  

Fitness Function : Fitness Function is the function to be optimized. 

Definition 1: Dominating: A feasible solution x is said to dominate another feasible 

solution y (x   y), if and only if, )()( yfxf kk   for k=1, 2 … p, and )()( yfxf mm  for least 

one objective function m. 

Definition 2: Pareto optimal: A solution is said to be Pareto optimal if it is not 

dominated by another solution in the solution space. 
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5.3 NSGA-II Description  

Without loss of generality, a multiple-objective optimization problem can be represented 

formally as follows: 
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                        (5.1) 

where: 

pRxf )(  is a vector of p objective functions, nRx  is a vector of n decision variables, 

)(xg  is m inequality constrain functions. The set of Pareto optimal solutions forms a 

Pareto front P (Figure 5.1). Where Y is the solution space (possible solution area); P is 

the Pareto front; 
21, ff are the objective functions; A, B, C, D are the optimal solutions for 

the corresponding objective functions. 

 

Figure 5.1. Pareto optimal front 
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The ultimate goal of a multi-objective optimization algorithm is to identify solutions in 

the Pareto optimal set. However, identifying the entire Pareto optimal set, for many 

multi-objective problems, is practically impossible due to its size. In addition, for many 

problems, especially for combinatorial optimization problems, proof of solution 

optimality is computationally infeasible. Therefore, a practical approach to multi-

objective optimization is to investigate a set of solutions (the best-known Pareto set) that 

represent the Pareto optimal set as much as possible. With these concerns in mind, a 

multi-objective optimization approach should achieve the following three conflicting 

goals: 

1. The best-known Pareto front should be as close possible as to the true Pareto front. 

Ideally, the best-known Pareto set should be a subset of the Pareto optimal set. 

2. Solutions in the best-known Pareto set should be uniformly distributed and 

diverse over of the Pareto front in order to provide the decision maker a true 

picture of trade-offs. 

3. In addition, the best-known Pareto front should capture the whole spectrum of the 

Pareto front. This requires investigating solutions at the extreme ends of the 

objective function space. 

 

In order to maintain sustainable diversity in a population with appropriate setting of its 

associated parameters, the density-estimation metric and the crowded-comparison 

operator are used in NSGA-II.  
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1) Density Estimation: To get an estimate of the density of solutions surrounding a 

particular solution in the population, we calculate the average distance of two points on 

either side of this point along each of the objectives. This quantity cedisi tan serves as an 

estimate of the perimeter of the cuboid formed by using the nearest neighbors as the 

vertices (call this the crowding distance). In Figure 4.2, the crowding distance of the ith 

solution in its front (marked with solid circles) is the average side length of the cuboid 

(shown with a dashed box). The crowding-distance computation requires sorting the 

population according to each objective function value in ascending order of magnitude. 

Thereafter, for each objective function, the boundary solutions (solutions with smallest 

and largest function values) are assigned an infinite distance value. All other intermediate 

solutions are assigned a distance value equal to the absolute normalized difference in the 

function values of two adjacent solutions. This calculation is continued with other 

objective functions. The overall crowding-distance value is calculated as the sum of 

individual distance values corresponding to each objective. Each objective function is 

normalized before calculating the crowding distance. The algorithm as shown at the 

bottom of the page outlines the crowding-distance computation procedure of all solutions 

in an nondominated set I . 

 

After all population members in the set I  are assigned a distance metric, we can compare 

two solutions for their extent of proximity with other solutions. A solution with a smaller 

value of this distance measure is, in some sense, more crowded by other solutions. This is 

exactly what we compare in the proposed crowded-comparison operator, described below. 

Although Figure 5.2 illustrates the crowding-distance computation for two objectives, the 

procedure is applicable to more than two objectives as well. 
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Figure 5.2. Crowding-distance calculation. Points marked in filled circles are solutions of 

the same nondominated front 

 

2) Crowded-Comparison Operator: The crowded-comparison operator ( n  ) guides the 

selection process at the various stages of the algorithm toward a uniformly spread-out 

Paretooptimal front. Assume that every individual i in the population has two attributes: 

1) nondomination rank ( ranki ); 

2) crowding distance ( cedisi tan ). 

We now define a partial order n as 

ji n if ( )rankrank ji   

Or ( )( rankrank ji   and ( )tantan cediscedis ji  ) 
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That is, between two solutions with differing nondomination ranks, we prefer the solution 

with the lower (better) rank. Otherwise, if both solutions belong to the same front, then 

we prefer the solution that is located in a lesser crowded region. 

 

In NSGA-II, the initialized population is sorted based on non- domination. Each solution 

is assigned fitness equal to the level of non-domination (Level 1 is the best level, Level 2 is 

the next best Level and so on). In this manner, minimization of fitness is assumed. An 

offspring population, Q0, of size N is created, using binary tournament selection, crossover, 

and mutation. Since the elitism is introduced by comparing current populations with 

previously found best non-dominated solutions, the procedure is different after the first 

generation, and onwards. The NSGA-II procedure is known in Figure 5.3. Table 5.1 

describes the NSGA-II algorithm. 

 

 

 

Figure 5.3. NSGA-II procedure 
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Table 5.1. NSGA-II Elitism Procedure 

ttt QPR   

f=fast-nondomimated-sort( tR ) 

1tP =0 and i=1 

Until NfP it 1  

Crowding-distance-assignment( if ) 

itt fPP 11    

i=i+1 

sort( nif , ) 

)](:1[ 111   titt PNfPP   

1tQ =make-new-pop( 1tP ) 

t=t+1 

 

 

The NSGA-II algorithm is simple and straightforward. First, a combined population 

ttt QPR  is formed. The population tR is of size 2N. Then, the population tR is sorted 

according to nondomination. Since all previous and current population members are 

included in tR , elitism is ensured. Now, solutions belonging to the best nondominated set 

1f are of best solutions in the combined population and must be emphasized more than 

any other solution in the combined population. If the size of 1f is smaller then N, we 

definitely choose all members of the set 1f for the new population 1tP . The remaining 

members of the population 1tP are chosen from subsequent nondominated fronts in the 

order of their ranking. Thus, solutions from the set 2f are chosen next, followed by 

solutions from the set 3f , and so on. This procedure is continued until no more sets can 

be accommodated. Say that the set kf  is the last nondominated set beyond which no 

other set can be accommodated. In general, the count of solutions in all sets from 1f  to 
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kf  would be larger than the population size. To choose exactly N population members, 

we sort the solutions of the last front kf  using the crowded-comparison operator n  in 

descending order and choose the best solutions needed to fill all population slots. The 

new population 1tP  of size N is now used for selection, crossover, and mutation to create 

a new population 1tQ  of size N. The individuals are selected by using a binary 

tournament selection with crowed-comparison-operator. Real-coded GAs use Simulated 

Binary Crossover (SBX) operator for crossover and polynomial mutation. Figure 5.4 

shows the flow chart of the NSGA-II algorithm. 

 

Comparing with NSGA, the overall complexity of the algorithm and the computation 

burden of NSGA-II has reduced from O(pN
3
) of NSGA to O(pN

2
), which is governed by 

the nondominated sorting part of the algorithm. 

 

5.4 NSGA-II Objective Functions  

The power split PHEV rule-based control strategy optimization is a multi-objective 

problem which has two major objectives under the constraints. The mathematical 

description of the multi-objective optimization problems is as follows: 

Optimization objectives of the PHEV powertrain are to reduce the fuel consumption cost 

and the electricity cost. Two functions about the fuel consumption cost and the electricity 

cost can be expressed as: 
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Figure 5.4. The flowchart of multi-objective optimization algorithm of NSGA-II
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Generally, the constraints of multi-objective problems for the power split PHEV include 

the vehicle performance, such as accelerating ability and gradeability, and energy balance 

between energy sources and sinks of PHEV. This study mainly focuses on the PHEV 

energy management and operation cost, so the constraint considered in this study is as 

follows:  

       GMedem PPPP                                                  (5.4) 

The optimization parameters of multi-objective problems for the power split PHEV in 

Table II have a critical influence over PHEV fuel economy and operation cost. The 

parameters of PHEV and their range are listed follows:
 

6.03.0 min  SOC  

9.07.0 max  SOC
 

1.17.0 arg_  echg  

8.07.0 arg_  edischm  

7.04.0 __  lowopte  

1.19.0 __  highopte  

12501010 _  laue  

 

In this study, the population N is initially set to 20. The initialized population is sorted 

based on non-domination. The total generation of NSGA-II algorithm is set to 100. The 

crossover probability is 0.9 and the mutation probability is 0.01. When the generation 

meets the criteria, the final populations and related objectives will be obtained. 
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5.5 Simulations  

This section presents the rule-based control strategy parameters optimization results 

through the different driving cycles and the PSD ratios effects to the vehicle operation 

cost based on the optimization results. Two typical driving cycles - UDDS and HWFET 

driving cycles are used in the simulation. Two driving cycles specification can be found 

in appendix B. The influence of different numbers of the driving cycles on the rule-based 

control strategy parameters are studied through the simulations. Following are driving 

cycles schedule during the simulation to evaluate the driving cycle numbers effects to the 

operation costs including fuel consumptions and electricity costs: 

CASE I: UDDS – 1, 2, 3 driving cycles. 

CASE II: HWFET – 1, 2, 3 driving cycles. 

 

5.5.1. Baseline simulation 

The baseline of the PHEV rule-based control strategy parameters is shown in Table 4.3. 

The fuel consumptions and total operation costs for 1 UDDS driving cycle, 2 UDDS 

driving cycles, 3 UDDS driving cycles, 1 HWFET driving cycle, 2 HWFET driving 

cycles and 3 HWFET driving cycles are listed in Table 5.2. 

 

5.5.2. Objective optimization for PSD gear ratio =3.0 

The PHEV control strategy parameter optimization is carried out according to the 

parameters setting given in Chapter 4.4. The PSD gear ratio is set to 3.0. Table 5.7 only 

shows the optimization results of 3 HWFET driving cycles. The Pareto optimal results for 
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1 UDDS driving cycle, 2 UDDS driving cycles, and 3 UDDS driving cycles are shown in 

Figure 5.5. The Pareto optimal results for 1 HWFET driving cycle, 2 HWFET driving 

cycles and 3 HWFET driving cycles are shown in Fig 5.6.  

 

The purpose of NSGA-II is to find a bunch of trade-off solutions which are termed 

optimal. However, there also exist a number of poor schemes that can be substituted by 

other superior ones whose objectives are non-inferior to, and at least one objective better 

than theirs. From Table 5.3, the total costs of all of the Pareto optimal solutions are less 

than 0.898 (USD) which is the baseline total cost. 17 Pareto optimal solutions have the 

better fuel consumptions than 661.25 g, which is the baseline fuel consumption. This 

means that most of the Pareto solutions are better than the baseline. Better here means 

both of the objectives are smaller than the baseline. Though this fact cannot sufficiently 

demonstrate that the 20 solutions are true Pareto solutions, it does demonstrate that the 

solutions are at least better than the baseline.  

 

The range of each objective in the Pareto set for 3 HWFET driving cycles is as follows: 

Fuel Consumption: [510, 655] g. 

Total operation cost: [0.6606, 0.7414] (USD). 

Figure 5.5 and 5.6 show the relationships between the fuel consumption and electricity 

cost as the distribution of the Pareto optimal solutions with the different driving cycles, 

when PSD is 3.0. A set of alterative optimal PHEV parameter solutions can be obtained. 

In order to compare with the baseline, the best total operation cost and best fuel 
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consumption of the Pareto results for the UDDS and HWFET driving cycle with the  

different numbers of driving cycles are listed in Table 5.4 and 5.5, respectively.  

 

For the UDDS driving cycles, when considering the best operation cost solution only, the 

operation costs reduce 2.98%, 2.82%, and 2.74%, respectively, for 1 UDDS driving cycle, 

2 UDDS driving cycles, 3 UDDS driving cycles. The fuel consumption increases 5.35% 

and 3.58% for 2 UDDS driving cycles and 3 UDDS driving cycles, although it reduces 

27.12% for 1 UDDS driving cycle. When considering the best fuel consumption solution 

only, both fuel consumption and the operation cost reduce for 1 UDDS driving cycle, 2 

UDDS driving cycles, and 3 UDDS driving cycles. The fuel consumptions reduce 

27.12%, 3.53%, and 3.62%. The operation costs reduce 2.98%, 1.94%, and 2.53%, 

respectively, for 1 UDDS driving cycle, 2 UDDS driving cycles, and 3 UDDS driving 

cycles.  

 

For the HWFET driving cycles, when considering the best operation cost solution only, 

the operation costs reduce 24.22%, 25.04%, and 26.5%, respectively, for 1 HWFET 

driving cycle, 2 HWFET driving cycles, and 3 HWFET driving cycles. The fuel 

consumption increases 797.25% and 4.9% for 1 HWFET driving cycle and 2 HWFET 

driving cycles, although it reduces 11.17% for 3 HWFET driving cycles. When 

considering the best fuel consumption solution only, both fuel consumption and the 

operation costs reduce for 1 HWFET driving cycle, 2 HWFET driving cycles, and 3 

HWFET driving cycles. The fuel consumptions reduce 6.07%, 21.64%, and 22.87%. The 

operation costs reduce 0.00%, 11.58%, and 18.26%, respectively, for 1 HWFET driving 

cycle, 2 HWFET driving cycles, and 3 HWFET driving cycles. 
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Based on the analysis above, the conclusion can be made that the fuel consumption is the 

critical objective to determine which Pareto optimal solutions will be chosen as the final 

setting parameters. 

 

5.5.3. Control strategy parameters optimization for PSD gear ratio =3.0 

Although the optimal control strategy parameters are different with the different driving 

cycles, the trends to setup the parameters still can be obtained. 

 

For HWFET driving cycles, in order to get the best fuel consumptions, the ranges 

between maximum SOC and minimum SOC are 0.6, 0.599, and 0.552, respectively for 1 

HWFET driving cycle, 2 HWFET driving cycles, and 3 HWFET driving cycles.  

However, in order to have the best total operation cost, the ranges between maximum 

SOC and minimum SOC are 0.212, 0.208, and 0.233, respectively.  The desired generator 

charge torque will be higher to get the best fuel consumption, compared to the torque for 

the best total operation cost. However, the desired motor discharge torque and the desired 

engine lowest torque will be lower to get the best fuel consumption. The engine’s lowest 

speed is almost same for the best operation cost and the best fuel consumption. 

 

For the UDDS driving cycles, the best operation cost and the best fuel consumption 

achieve the best simultaneously for 1 UDDS driving cycle. But for 2 UDDS driving 

cycles and 3 UDDS driving cycles, the optimal control strategy parameters have the same 

trend as the HWFET driving cycles.  
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Most researchers only used 1 driving cycle to optimize the control strategy parameters of 

HEV by using GA, because they assume that the number of driving cycles will not affect 

the control strategy parameters. But for PHEV, the number of driving cycles will 

obviously influence the control strategy parameters. When determining the control 

strategy parameters, at least three driving cycles should be considered based on the 

battery capacity in this study. 

 

Table 5.2. PHEV Operations Costs and Fuel Consumptions with Baseline Rule–

based Control Strategy 

Item 1 UDDS 2 UDDS 3 UDDS 1  HWT. 2  HWT. 3  HWT. 

Baseline Total Cost($) 0.235 0.568 0.949 0.289 0.587 0.898 

Baseline Fuel(g) 46.13 309.53 714.81 14.16 330.65 661.25 
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Table 5.3. Objectives of the Output – 20 Tradeoff Solutions for 3 HWFET Driving 

Cycles

No. SOCmax SOCmin αg_charge αm_discharge αe_opt_low αe_opt_high αωe_lau Fuel Cons.(g) Elec. Cost($US) Total Cost($US) 

1 0.8931 0.3415 0.7000 0.7267 0.5655 1.0915 0.8622 587.4029 0.2546 0.7344 

2 0.7000 0.6000 0.7123 0.7808 0.6262 1.0012 0.8500 617.2907 0.0464 0.7133 

3 0.7000 0.4673 0.7195 0.7000 0.7000 1.0547 0.8509 604.2579 0.1079 0.6606 

4 0.7000 0.5996 0.7113 0.7772 0.6221 1.0027 0.8500 628.7101 0.0471 0.6801 

5 0.8752 0.3719 0.7061 0.7000 0.5449 1.1000 0.8500 672.7689 0.2324 0.7399 

6 0.8318 0.5050 0.7196 0.7552 0.6212 1.0994 0.8509 651.4669 0.1513 0.6844 

7 0.8215 0.5084 0.7201 0.7626 0.6224 1.0993 0.8500 655.2454 0.1450 0.6903 

8 0.8422 0.4036 0.7084 0.7028 0.6158 1.0975 0.8532 639.8811 0.2026 0.7150 

9 0.7003 0.5230 0.7511 0.7004 0.6921 1.0582 0.8752 566.531 0.0822 0.6843 

10 0.8088 0.4172 0.7158 0.7047 0.6128 1.0961 0.8549 667.3826 0.1810 0.7077 

11 0.7044 0.5766 0.7510 0.7000 0.7000 1.0811 0.8774 616.8726 0.0593 0.6872 

12 0.7039 0.5133 0.7105 0.7028 0.6995 1.0614 0.8637 579.6275 0.0882 0.6798 

13 0.8324 0.4088 0.7083 0.7035 0.6161 1.1000 0.8531 559.7747 0.1958 0.7121 

14 0.8691 0.3432 0.7001 0.7305 0.5602 1.0935 0.8618 559.4005 0.2426 0.7414 

15 0.7000 0.4952 0.7112 0.7402 0.6680 1.1000 0.8500 548.7519 0.0953 0.6761 

16 0.7050 0.5599 0.7304 0.7005 0.6734 1.0508 0.8689 708.7293 0.0673 0.6802 

17 0.7000 0.4676 0.7193 0.7000 0.7000 1.0533 0.8509 544.5978 0.1078 0.6763 

18 0.8107 0.4154 0.7159 0.7046 0.6122 1.0949 0.8549 510.0097 0.1827 0.7090 

19 0.7003 0.4679 0.7194 0.7000 0.7000 1.0534 0.8518 539.349 0.1078 0.6882 

20 0.7050 0.5603 0.7298 0.7005 0.6724 1.0503 0.8688 530.1569 0.0671 0.6836 
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Figure 5.5. NSGA-II Pareto optimal results for UDDS. (a) 1 UDDS driving cycle. (b) 2 

UDDS driving cycles. (c) 3 UDDS driving cycles. 
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Figure 5.6. NSGA-II Pareto optimal results for HWFET: (a)1 HWFET driving cycle. (b) 

2 HWFET driving cycles. (c) 3 HWFET driving cycles. 
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Table 5.4. PHEV NSGA-II Simulation Results in UDDS Driving Cycles – Control 

Strategy Parameters and Operations Costs  

Item 
Best Total Costs Best Fuel Consumptions 

1 UDDS 2 UDDS 3 UDDS 1 UDDS 2 UDDS 3 UDDS 

SOCmax 0.869 0.894 0.863 0.869 0.900 0.900 

SOCmin 0.443 0.364 0.373 0.443 0.300 0.300 

αg_charge 0.794 0.877 0.920 0.794 0.867 0.998 

αm_discharge 0.800 0.799 0.794 0.800 0.710 0.800 

αe_opt_low 0.561 0.572 0.700 0.561 0.668 0.644 

αe_opt_high 1.095 1.049 1.064 1.095 0.901 1.100 

αωe_lau 0.850 0.851 0.951 0.850 1.100 0.917 

Tot. Cost ($) 0.228 0.552 0.923 0.228 0.557 0.925 

Cost Comparison 2.98% 2.82% 2.74% 2.98% 1.94% 2.53% 

Fuel (g) 33.62 326.1 740.4 33.62 298.60 688.9 

Fuel Comparison 27.12% -5.35% -3.58% 27.12% 3.53% 3.62% 
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Table 5.5. PHEV NSGA-II Simulation Results in HWFET Driving Cycles – Control 

Strategy Parameters and Operations Costs 

Item 
Best Total Costs Best Fuel Consumptions 

1 HWT. 2 HWT. 3 HWT. 1 HWT. 2 HWT. 3 HWT. 

SOCmax 0.717 0.791 0.700 0.900 0.899 0.893 

SOCmin 0.505 0.583 0.467 0.300 0.300 0.341 

αg_charge 0.916 0.729 0.720 1.036 0.942 0.700 

αm_discharge 0.800 0.799 0.700 0.745 0.789 0.727 

αe_opt_low 0.700 0.693 0.700 0.615 0.648 0.566 

αe_opt_high 1.100 1.100 1.055 0.906 1.036 1.091 

αωe_lau 0.850 0.852 0.851 0.850 0.852 0.862 

Tot. Cost ($) 0.219 0.440 0.660 0.289 0.519 0.734 

Cost Comparison 24.22% 25.04% 26.50% 0.00% 11.58% 18.26% 

Fuel (g) 127.05 346.85 587.40 13.30 259.09 510.01 

Fuel Comparison -797.25% -4.90% 11.17% 6.07% 21.64% 22.87% 
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5.6 Summary 

The PHEV rule-based control strategy parameter optimization based on the genetic 

algorithm NSGA-II was studied in this chapter. It will save the vehicle controller 

calibration time and reduce the development cost to apply this approach as off-line 

optimization. The main study in this chapter focused on following: 

 The NSGA-II objective functions were created based on the PHEV rule-based 

control strategy vehicle model. The constrains of the rule-based control strategy 

parameters were determined by evaluating the performance of the components 

and systems. The total generation of NSGA-II algorithm is set to 100. The 

crossover probability is 0.9 and the mutation probability is 0.01. 

 The simulations of the baseline vehicle (PSD gear ratio = 3.0) for 1, 2, and 3 

UDDS and HWFET driving cycles were implemented and the optimal simulations 

of the baseline vehicle at the different driving cycles also were discussed. 

Comparing the optimal simulation results with the baseline, the best fuel 

consumptions are improved at all of the driving cycles. However, the best total 

cost only are improved at 1 UDDS driving cycle and 3 HWFET driving cycles.   
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CHAPTER 6 

OPTIMAL DESIGN OF PSD GEAR RATIO 

6.1 Introduction 

The HEVs perfectly combine the advantages of the conventional vehicles and electric 

vehicles. The power split HEVs are the highlight in the HEV family. Same as the other 

vehicles, the power split device (Transmission – e-CVT) design is one of the most 

important parts during the development of the power split HEV. The power split device 

gear ratio is one of the most critical parameters. The basic power split device gear ratio 

design is based on the vehicle performance requirements [72]. The gear ratio should 

ensure the vehicle to meet the acceleration, gradeability, maximum top speed 

requirements. With the development of the HEV study, the optimal methods [73], [74] 

are implemented to optimize the planetary gear parameters to lower the fuel 

consumption. However, because of the condition of assembly of planetary gear set, the 

series gear ratios are not continuous. The simulation results cannot meet the practice 

requirements. 

 

An innovative six step design approach to optimize the PSD gear ratio to minimize the 

fuel consumption and operation cost is presented in this chapter. Figure 6.1 shows the 

flow chart of the design procedure. The related study from step 2 to step 5 has been 

discussed in Chapter 2 to Chapter 5. This chapter will focus on step 1 and step 6.       
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Figure 6.1. Flow chat of six-step approach to design PHEV PSD gear ratio 

 

6.2 Determination of Initial PSD Gear Ratio  

Rearranging (2.10) to express the speed function of planetary gear components as 

following: 

  crs kk  )1(                                                 (6.1) 

(6.1) is a plane equation, which is called the Characteristic Speed Plane (CSP), in the 

Cartesian Coordinate System, r, c, s represented by the x, y and z axes, respectively 

(Figure 6.2). 
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Figure 6.2. Relationship between characteristic speed plane with maximum vehicle 

performance plane  

 

The CSP shows the working range of the planetary gear. The plane A in Figure 6.2 

represents the CSP, where A1A2 is located at plane abcd, which is parallel to the plane xy, 

and represents the speed relationship between the carrier and the ring gear when the sun 

gear is running at highest speed. A2A3 is located at plane bcgf, which is parallel to the 

plane xz, and represents the speed relationship between the sun gear and the ring gear 

when the carrier gear is running at highest speed. A3A4 is located at plane cdgh, which is 

parallel to the plane yz, and represents the speed relationship between the carrier and the 

sun gear when the ring gear is running at highest speed. Plane B was created when 

r=r,max, c=c,max and s=s,max. The normal vector of plane A and B are u=[k, -(k+1), 

1] and v=(2/r,max, -2/=c,max, 1/=s,max). 
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In order to have better vehicle performance, the engine and motor should have a wider 

range of speed regulation. This means the smaller the angle between plane A and B is the 

better the vehicle performance will be. The angle between plane A and B can be 

calculated as follows: 

   
vu

vu
BA 




 1cos),(                                                 (6.2) 

 

6.3 PSD Planetary Gear Ratio Numerical Analysis 

6.3.1. Initial planetary gear ratio 

From (6.2), the analyses to the planetary gear ratio variation with the maximum speeds of 

the traction motor, the engine and the generator/motor are illustrated in Figures 6.3, 6.4 

and 6.5. The optimal planetary gear ratio affects the maximum speeds of the engine, the 

traction motor and the generator/motor. The optimal planetary gear ratio will be 

decreased with the increase of the designed maximum traction motor speed (Figure 6.3), 

the decrease of the designed maximum engine speed (Figure 6.4), and the decrease of the 

designed maximum generator/motor speed (Figure 6.5).  

 

Based on the vehicle information of Appendix I, the curve of the angle between plane A 

and B with the planetary gear ratio was determined in Figure 6.6. The minimum angle is 

0.03 (rad) at k=3.08. The gear ratios from 2.6 to 3.4 were considered for the further 

simulation.  
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Figure 6.3. Planetary gear ratio versus maximum ring gear speed (r,max) 
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Figure 6.4. Planetary gear ratio versus maximum carrier speed (c,max) 
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Figure 6.5. Planetary gear ratio versus maximum sun gear speed (s,max) 
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Figure 6.6. Initial PSD gear ratio 
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6.4 Planetary Gear Condition of Assembly 

Consideration of the condition of assembly [75], the determination of the tooth number of 

the planetary gear train will be based on the gear ratio. Assuming that the ring gear is 

fixed when designing the tooth number of the planetary gear train, the sun gear is the 

driving gear, and the carrier is the driven component. From equation (2.10), the gear ratio 

between the sun gear and the carrier i is: 

     i=1+k                                                             (6.3) 

The relationship between the tooth number of planetary gear train – Zs, Zr, and Zc – is: 

          
s

sr
c Z

iZZ
Z

2

1

2





                                                (6.4) 

Based on the condition of assembly: 

  
C

n

ZZ sr 
                                                         (6.5) 

Combining the equations from (6.3) to (6.5): 
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i
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i
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2

2
:1::: 


                                       (6.6) 

Table 6.1. shows all of the gear ratio which meet the equation (6.6) from k=2.6 to k=3.4. 

 

Table 6.1. The Tooth Number Which Meet the Condition of Assembly From Gear 

Ratio 2.6 to 3.4  

k C Za Zb Zc 

2.60 24 20 52 16 

2.75 20 16 44 14 

2.90 26 20 58 19 

3.00 24 18 54 18 

3.20 28 20 64 22 

3.25 34 24 78 27 

3.40 22 15 51 18 
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6.5. PSD Gear Ratio Optimization Design 

The optimization simulations of the power split PHEV at different gear ratios are carried 

out through NSGA-II for the UDDS and HWFET driving cycles. The different numbers 

of the driving cycles are used in the simulations to evaluate the influence on the rule-

based control strategy parameters. Following are driving cycles used during the 

simulation to evaluate the driving cycle numbers effects to the operation costs including 

fuel consumptions and electricity costs at different planetary gear ratios between 2.6 to 

3.4:  

CASE I: UDDS – 1, 2, 3 driving cycles. 

CASE II: HWFET – 1, 2, 3 driving cycles. 

 

Based on the driving cycle numbers and the gear ratios from 2.6 to 3.4, the simulation 

matrix is set up. Figure 6.7- Figure 6.12 show the simulation results. 

 

For 1 UDDS driving cycle, both fuel consumptions and operation costs decrease with the 

increase of gear ratios. For 2 UDDS driving cycles, the fuel consumptions decrease with 

the increase of the gear ratios. However, both of the lowest operation costs and fuel 

consumptions still are at gear ratio 3.4. For 3 UDDS driving cycles, the lowest economy 

fuel consumption and operation cost can be found at gear ratio 2.9. 

 

For 1 HWFET driving cycle, both fuel consumption and operation costs have the same 

trend as the UDDS driving cycles, as they decrease with the increase of the gear ratio. For 

2 and 3 UDDS driving cycles, the economy fuel consumption can be found at gear ratio 

3.0 and 3.2, respectively. The economy operation costs are shown at gear ratio 3.25 or 3.4. 
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Table XI shows the differences of the maximum and minimum optimal fuel 

consumptions between gear 2.6 and 3.4. When the number of driving cycles increases, 

the difference also increases. This is because the vehicle was run at CD mode at the first 

or first and a half driving cycle, and CS mode at the third driving cycle.  

 

From the simulation results above, the designed all electric operation range (AEOR) will 

influence the PSD gear ratio selection. In other word, the battery capacity will influence 

the PSD gear ratio selection. If the designed AERO is larger and the more battery 

capacity will be chosen, the higher PSD gear ratio will be selected. If the designed AERO 

is lower and the less battery capacity will be chosen, the lower PSD gear ratio will be 

selected. 

 

However, the PSD planetary gear design is a trade-off process. When designing a power 

split PHEV planetary gear, not only are the fuel consumption and operation costs 

considered, but also the vehicle performance, emission, gear weight, strength, standards 

etc.   

 

Table 6.2. The Differences of the Maximum and Minimum Fuel consumptions at 

Gear Ratio 2.6 to 3.4  

# of Driving Cycle 1 2 3 

UDDS 3.40 11.35 25.89 

HWFET 2.54 27.85 62.28 
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Figure 6.7. Fuel consumption and operation cost for 1 UDDS driving for various PSD 

gear ratios. (a) Best fuel consumptions. (b) Best operation costs. 
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(b) 

Figure 6.8. Fuel consumption and operation cost for 2 UDDS driving cycle for various 

PSD gear ratios. (a) Best fuel consumptions. (b) Best operation costs. 
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(b) 

Figure 6.9. Fuel consumption and operation cost for 3 UDDS driving cycles for various 

PSD gear ratios. (a) Best fuel consumptions. (b) Best operation costs. 
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(b) 

Figure 6.10. Fuel consumption and operation cost for 1 HWFET cycle for various PSD 

gear ratios. (a) Best fuel consumptions. (b) Best operation costs. 
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(b) 

Figure 6.11. Fuel consumption and operation cost for 2 HWFET driving cycles for 

various PSD gear ratios. (a) Best fuel consumptions. (b) Best operation costs. 
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(b) 

Figure 6.12. Fuel consumption and operation cost for 3 HWFET driving cycles for 

various PSD gear ratios. (a) Best fuel consumptions. (b) Best operation costs. 
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6.6 Summary 

An innovative PSD gear ratio design approached of the single mode power split PHEV 

was presented in this chapter. The NSGA-II algorithm was used to optimize the rule-

based control strategies parameters at the different diving cycles and different gear ratios. 

An important conclusion obtained is that the designed AEOR is the key parameter to 

determine the PSD gear ratio. The main study in this chapter focused on following: 

 The initial PSD gear ratio determination was presented. It was based on the main 

power sources maximum speed to ensure the engine and motor to have the wider 

operation ranges. 

 The condition of assembly of PSD planetary gear was discussed and the available 

gear ratios were analysed at a reasonable range. 

 The fuel consumptions and operation costs were simulated by NSGA-II, therefore 

determining the best PSD gear ration to minimum the PHEV fuel consumption 

and operation cost.      

 

 

From the above chapters discussed, the innovative PSD gear ratio design approached of 

the single mode power split PHEV can be summarized as following : 

 Step 1 – Designing the initial planetary gear ratio of PHEV: the gear ratio range 

was be determined based on the vehicle performance requirements. 

 Step 2 – Modeling the vehicle systems: the dynamic PSD and powertrain models 

were used for the PHEV energy management simulations. 

 Step 3 – Determining the ideal PHEV control strategy: DP was employed to 

optimize the control strategy.  
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 Step 4 – Developing the real time control strategy: the rule based control strategy 

was developed based on DP simulation results:  

 Step 5 – Optimizing the rule-based control strategy parameters: NSGA-II was 

used to optimize the rule-based control parameters. 

 Step 6 – Determining the final PHEV planetary gear ratio: two typical driving 

cycles - the UDDS and HWFET - were used to determine the PSD gear ratio.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

7.1 Summary and Conclusion   

The main objective of this study was to present an innovative design approach to 

optimize the single mode power split PHEV PSD gear ratio to minimize the vehicle fuel 

consumption and operation cost in this thesis.   

 

The works that have been done on this research and main conclusions are summarized as 

follows: 

 The backward-looking power split PHEV model was effectively created under the 

Matlab environment based on the power source testing results. It provided a 

simulation platform for the vehicle control strategy development. The interaction 

between the sub-systems can be analyzed, the vehicle performance, such as fuel 

economy and drivability, can be evaluated, the components size also can be 

studied by using this vehicle model. The model accurate is enough for the energy 

consumption simulations. It also laid the solid foundation for the close-loop 

forward looking vehicle model simulation. 

 The DP optimal control model of PHEV was created under the condition of given 

driving cycles to optimize the vehicle fuel consumption and operation cost. The 

state variable of the optimal control model is SOC, the control variables are the 

motor and generator torques. The step was determined based on the given driving 

cycles. The assumption was made that the vehicle consumption is constant within 

each steps, therefore changing the continuous optimal control to a series of sub-
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problems. The optimal control strategy was obtained by the DP approach. The 

purpose of this study is to determine the global optimal fuel consumption and 

operation cost as the benchmark of the real-time PHEV control strategy. 

 The rule-based PHEV control strategy was developed by studying the vehicle 

operation modes. The control strategy parameters were determined based on the 

engine, motor, battery internal resistance, and the DP simulation results. 

Comparing with the fuel consumption based on the DP simulation results, the fuel 

consumption increases 12.98%. 

 The multi-objective optimal model for the PHEV rule-based control strategy 

parameters was presented based on the non-dominated sorting genetic algorithm 

(NSGA-II). The control strategy parameters were optimized by using the 

backward looking vehicle model to calculate the objectives and constrains. The 

simulation results show that the optimized rule-based control strategy can reduce 

the vehicle fuel consumption 3.53% for 2 UDDS driving cycles and 21.64% for 2 

HWFET driving cycles. 

 An innovative design method for the single mode power split PHEV PSD gear 

ratio was discussed. The purpose of this study is to find an approach to design the 

PSD gear ratio by considering the vehicle performance and fuel consumptions. 

The significant of this method is not only improve vehicle performance and fuel 

consumptions, but also to reduce the vehicle PSD development time and save the 

cost. 
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7.2 Future Works 

The PHEV technology is still a new area for the automotive industry. There are many 

problems to be solved in the future. For this study, the further research is as following: 

 Forward-looking vehicle model development: In order to describe the vehicle 

operate in the real conditions, the forward looking vehicle model should be 

developed. The forward looking vehicle model is a close loop control system, 

including the driver model to simulate the actions of brake and acceleration 

pedals. The model should include the transient characteristics of the sub-system, 

such as clutches on and off. Some sub-system model should be improved. The 

engine emission did not consider in this study. The future work should consider 

the engine fuel consumption and emissions.  

 Adaptive control strategy study: Because the driver operations and road 

conditions are random, it is difficult to apply the specific driving cycle optimal 

control strategy to the actual vehicle.  In order to simulate the random driver 

operations and road conditions, the fuzzy control logic or neural network can be 

used. The real time on line recognition function to the driver intention, driving 

cycle characteristic parameters should be considered in the control strategy.  
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APPENDICES 

 

APPENDIX A    PHEV Vehicle Specification 

 

Table A.1. PHEV Vehicle Specification 

Vehicle Mass [kg] 
Coefficient of Aerodynamic 

Drag  

Frontal Area of Vehicle 

[m
2
] 

1,250 0.30 2.52 

Wheel Radius [m] 
Coefficient of Rolling 

Resistance 
Air Density [kg/m

3
] 

0.287 0.015 1.184 

Engine 

Max Power [kW] Max torque [Nm] Max Speed [rpm] 

57 @ 4,500 rpm 111 @ 4,200 rpm 5,000 

Motor I 

Rated Power [kW] Rated Torque [Nm] Max Speed [rpm] 

35 @ 940 to 2,000 

[rpm] 
305 @ 0 to 940 [rpm] 7,000 

Motor II 

Rated Power [kW] Rated Torque [Nm] Max Speed [rpm] 

15 60 11,000 

Battery 

Voltage [V] Capacity [Ah]   

312 13   
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APPENDIX B    UDDS and HWFET Driving Cycles 

0 500 1000 1500
0

5

10

15

20

25

30

Time

V
e
h
ic

le
 S

p
e
e
d
 (

m
/s

)

 

 

Urban Dynamometer Driving Schedule (UDDS)

 

Figure B.1. Urban dynamometer drive schedule (UDDS) driving cycle 
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Highway Fueleconomy Driving Schedule (HWFET)

 

Figure B.2. Highway fuel economy drive schedule (HWFET) driving cycle 

 



 

102 

Table B.1. Driving Cycles Specification 

Driving cycle UDDS HWFET 

Max. Speed (km/h) 91.24 96.39 

Ave. Speed (km/h) 31.53 76.27 

Distance (km) 11.99 16.51 

Time (s) 1369 779 
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