University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

1978

An assessment of analytical methods and their biases in the determination of major elements in rock analysis.

Frank. Talerice *University of Windsor*

Follow this and additional works at: http://scholar.uwindsor.ca/etd

Recommended Citation

Talerice, Frank., "An assessment of analytical methods and their biases in the determination of major elements in rock analysis." (1978). *Electronic Theses and Dissertations*. Paper 982.

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

National Library of Canada

Cataloguing Branch
Canadian Theses Division

Ottawa, Canada K1A 0N4,

NOTICE

Bibliothèque nationale du Canada

Direction du catalogage Division des thèses canadiennes

AVIS

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

- Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED.
EXACTLY AS RECEIVED

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban use ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE AN ASSESSMENT OF ANALYTICAL METHODS AND THEIR BLASES
IN THE DETERMINATION OF MAJOR ELEMENTS IN ROCK ANALYSIS

bу

Frank Talerico

A Thesis

Submitted to the Faculty of Graduate Studies

Through the Department of Geology
in Partial Fulfillment of the Requirements
for the Degree of Master of Science at

The University of Windsor

Windsor, Ontario, Canada · 1978

Frank Talerico 1978
All Rights Reserved

ABSTRACT

Replicate analyses of a granodiorite sample (NSX) by up to six different methods—atomic absorption, flame emission, gravimetry, titration, spectrophotometry and x-ray fluorescence—for eight elements—silica, aluminum, total iron, calcium, magnesium, sodium, potassium and manganese—were made to examine if there is bias between methods and to assess the precision and accuracy of each method. In addition, several international standard reference materials were run as control samples and to show that precision and accuracy in this study is repeatable to the values recommended for the standards. Sample NSX has also been well analyzed by thirty—five different laboratories; hence the replicate determination on NSX by the different methods gives information on accuracy of the method.

Results show that there are statistically significant differences between the different methods in terms of precision and also the different malytical methods yield different results. It is inferred that these differences are inherent in the methodology and there are biases between methods. Survey of data for three Canadian reference standards, show that while analytical results scatter widely, tabulation by method shows some systematic bias. In particular, MgO determination by titration is always higher.

As a result of the assessment of means and standard deviations of results, it is recommended that atomic absorption should be used for the determination of silicon, x-ray fluorescence for aluminum, flame emission

for sodium and potassium, titration for calcium and magnesium, while manganese is especially well determined by atomic absorption, titration, spectrophotometry and x-ray fluorescence. These method preferences actually
relate to the position of the elements in the periodic table.

ACKNOWLEDGEMENTS

I sincerely thank my thesis advisor, Dr. A. Turek, for the suggestion of this topic and for his guidance which proved invaluable to the completion of this study. Also, I thank Dr. T. E. Smith for his assistance and the use of the x-ray equipment. Dr. P. Hudec introduced me to the Wang computer which expedited the processing of data. Numerous discussions with Dr. J. Huang, Mr. D. Mitchell and Mr. D. Quirt on argon plasma and computer programming are gratefully acknowledged.

TABLE OF CONTENTS

	ABSTRACT	pge.	(ii)
•	ACKNOWLEDGEMENTS		(iv)
	LIST OF TABLES		(x)
	LIST OF FIGURES	•	(xvi)
	LIST OF APPENDICES	•	xviii)
τ.	INTRODUCTION		1
α.	Literature review		. 3
	A. BRIEF HISTORY	•	۶ ,
	B. GENERAL EVIDENCE OF BLASES		. 4
	C. STATISTICAL EVIDENCE OF BIASES	•	·7
	D. SUGGESTED SOLUTIONS TO STATISTICAL BLASES	,	8
	E. EVIDENCE OF ANALYTICAL METHOD BLASES		8
•	F. SUGGESTED SOLUTIONS TO ANALYTICAL METHOD BLASES.	٠	. 9
	G. CONCLUSIONS		11
ττ.	EXPERIMENTAL SAMPLE PREPARATION PROCEDURES		16
	A. SAMPLE PREPARATION		16
•	B. PREPARATION OF SOLUTION 'A'		. 16
	C. PREPARATION OF SOLUTION 'B'		. 17
	D. PREPARATION OF SOLUTION'JA'		17
	E. PREPARATION OF STANDARD SOLUTIONS		. 18
	F. PREPARATION OF X-RAY FLUORESCENCE GLASS PELLETS.		19
τv.	ANALYTICAL PROCEDURES		20
	A. ATOMIC ABSORPTION SPECTROSCOPY	•	20
	a. Theory	•	20
	b. Analytical Procedure		22
	1. Silicon by Atomic Absorption		
	Chartracopy	_	23

	2. Aluminum by Atomic Absorption Spectroscopy	28
•	3. Total Iron by Atomic Absorption Spectroscopy	31
	4. Calcium by Atomic Absorption Spectroscopy	34
٠.	5. Magnesium by Atomic Absorption Spectroscopy	37
	6. Sodium by Atomic Absorption	43
	7. Potassium by Atomic Absorption Spectroscopy	46
	8. Manganese by Atomic Absorption Spectroscopy	49
B. FLAM	E EMISSION SPECTROSCOPY	52
a	. Theory	52
ъ	. Analytical Procedure	54
	1. Sodium by Flame Emission Spectroscopy	54
	2. Potassium by Flame Emission Spectroscopy	57
c. "GRAV	IMETRY	60
а	Theory	60
ъ	. Analytical Procedure	61
	1. Silicon by Gravimetry	61
	2. Aluminum by Gravimetry	62
D. TUTE	RATION	66
	1. Theory	• 66
ŀ	b. Analytical Procedure	68
	1. Total Iron by Titration	6

2. Calcium by Complexiometric Titration	72
3. Magnesium by Titration	. 77
(i) Theory	. 77
(ii) Procedure	. 79
Reagents	. 79
Method	80
E. SPECTROPHOTOMETRY	S7
a. Theory	87
b. Analytical Procedure	
. 1. Silicon by Spectrophotometry	§ 9
2. Aluminum by Spectrophotometry	92
3. Total (ron by Spectrophotometry	96
4. Manganese by Spectrophotometry	.100
F. X-RAY FLUORESCENCE SPECTROSCOPY	103
a. Theory	103
b. Analytical Procedure	105
V. STATISTICAL TREATMENT OF RESULTS	107
A. INTRODUCTORY STATEMENT	107
B. TERMINOLOGY AND DEFINITIONS	107
a. Accuracy	107
b. Precision	107
c. Arithmetic Mean (\bar{x})	107
d. Slope (m)	108
e. Standard Deviation (S.D.)	108
f., Confidence Limits	108
g. Coefficient of Variation (C.V.)	108

	h. Variance (Var.)	108
· · · ·	i. Correlation Coefficient (r)	ios
	j. Rejection of Values	109
.··		.109
•	1. Sample Set	109
	2. Population Set	
	k. Significance by Comparison of ♥ V Sample Means to a Population	110
	1. Significance by Comparison of Variances	110
	g: -: Sicance by Comparison of Means	110
		113
VI. EV	ALUATION OF ANALYTICAL RESULTS	113
•	A. STLTCON	
	B. ALUMINUM	121
	C. TOTAL TRON	128
· ·		⁻ 136
÷	D. CALCIUM	142
	E. MAGNES TUM	149
	F. SODIUM	153
	G. POTASSTUM	
•	H. MANGANESE	159
	SUMMARY AND CONCLUSIONS	165
		172
	APPENDIX I	· 173
•	APPENDIX II	174
	APPENDUX III	175
· .	APPENDIX IV	176
	APPENDIX V	17
	ADDRESS MT	

APPENDIX VII	- 178
APPENDIX VII	179
APPENDIX VIII	181
APPENDIX IX	
APPENDIX X	184
APPENDICK	186
APPENDIX XI	.191
APPENDIX XII	
APPENDIX XIII	194
APPENDIX XIV	196
APPENDIX XIV	. 198
APPENDIX XV	198
PREPERIORS	200

LIST OF TABLES

TABLE		PAGE
1.	RESULTS RECEIVED IN COLLABORATIVE STUDY (ABBEY ET AL, 1975) INCLUDING ITS SUPPLEMENT I (ABBEY, 1976): SY-2 Values by Method Rather than Laboratory	13
2.	RESULTS RECEIVED IN COLLABORATIVE STUDY (ABBEY ET AL, 1975) INCLUDING ITS SUPPLEMENT I (ABBEY, 1976): SY-2 Averages for All Reported Values (1975)Study + 1976 Supplement	13
3.	RESULTS RECEIVED IN COLLABORATIVE STUDY (ABBEY ET AL, 1970 INCLUDING ITS SUPPLEMENT (ABBEY, 1976): SY-3 Values by Method Rather than Laboratory	14
4.	RESULTS RECEIVED IN COLLABORATIVE STUDY (ABBEY ET AL, 1975) INCLUDING ITS SUPPLEMENT I (ABBEY, 1976): SY-3 Averages for All Reported Values (1975 Study + 1976 Supplement)	. 14
5.	RESULTS RECEIVED IN COLLABORATIVE STUDY (ABBEY ET AL, 1975) INCLUDING-ITS SUPPLEMENT I (ABBEY, 1976): MRG-1 Values by Method Rather than Laboratory	15
6.	RESULTS RECEIVED IN COLLABORATIVE STUDY (ABBEY ET AL, 1975) INCLUDING ITS SUPPLEMENT I (ABBEY, 1976): MRG-1 Averages for All Reported Values (1975 Study + 1976 Supplement)	. 15
7.	TONIC STANDARDS FOR SILICON IN SOLUTION 'A' BY ATOMIC ABSORPTION	. 24
8.	ATOMIC ABSORPTION	. 26
9.	STATION IN SOLUTION 'JA' BY ATOMIC ABSORPTION	27
. 10.	SILICON IN SOLUTION 'A' BY ATOMIC ABSORPTION	. 2/7
11.	TONIC STANDARDS FOR ALUMINUM IN SOLUTION 'B' BY ATOMIC ABSORPTION	. 50
12.	ALUMINUM IN SOLUTION 'B' BY ATOMIC ABSORPTION:	. 🗸 30 -
13.	. CONIC STANDARDS FOR TOTAL TRON BY ATOMIC ABSORPTION	. 33

14.	TOTAL TRON BY ATOMIC ABSORPTION	33
15.	TONIC STANDARDS FOR CALCIUM WITH LANTHANUM OXIDE BY ATOMIC ABSORPTION	36
16,	CALCIUM WITH LANTHANUM OXIDE BY ATOMIC ABSORPTION	. 36
17.	TONEC STANDARES FOR MAGNES LUM WITH LANTHANUM OXIDE BY ATOMIC ABSORPTION.	39
	CONIC STANDARDS FOR MAGNESIUM WITHOUT LANTHANUM OXIDE BY ATOMIC ABSORPTION	41
19.	MAGNESIUM WITHOUT LANTHANUM OXIDE BY ATOMIC ABSORPTION	42
20.	MAGNESTUM WITH LANTHANUM OXIDE BY ATOMIC ABSORPTION	42
21.	TONIC STANDARDS FOR SODIUM BY ATOMIC ABSORPTION	45
22.	SODIUM BY ATOMIC ABSORPTION	45
23.	IONIC STANDARDS FOR POTASSIUM BY ATOMIC ABSORPTION	48
24.	POTASSIUM BY ATOMIC ABSORPTION	48
25.	TONIC STANDARDS FOR MANGANESE BY ATOMIC ABSORPTION	51
26.	MANGANESE BY ATOMIC ABSORPTION	51
27.	TONIC STANDARDS FOR SODIUM BY FLAME EMISSION	56
28.	SODIUM BY FLAME EMISSION	56
29.	IONIC STANDARDS FOR POTASSIUM BY FLAME EMISSION	· 59
30.	POTASSIUM BY FLAME EMISSION	59
31:	GRAVIMETRIC DETERMINATION OF SILICON	65
32.	GRAVIMETRIC DETERMINATION OF ALUMINUM	65
33.	IONIC STANDARDS FOR SILICON BY SPECTROPHOTOMETRY	91
34.	STLTCON TN SOLUTION 'A' BY SPECTROPHOTOMETRY	91
35.	TONIC STANDARDS FOR ALUMINUM BY SPECTROPHOTOMETRY	95
36.	ALUMINUM BY SPECTROPHOTOMETRY	95
37	TONIC STANDARDS FOR TOTAL IRON BY SPECTROPHOTOMETRY	98

38.	TOTAL TRON BY SPECTROPHOTOMETRY	99
39.	IONIC STANDARDS FOR MANGANESE BY SPECTROPHOTOMETRY	102
40.	MANGANESE BY SPECTROPHOTOMETRY	102
41.	PERCENT OXIDE FOR X-RAY FLUORESCENCE DETERMINATION	106
42,	REJECTION TEST FOR NSX SAMPLES	112
43.	SILICON IN 'JA' BY ATOMIC ABSORPTION	115
44.	SILICON IN 'A' BY ATOMIC ABSORPTION	115
45.	SILICON BY GRAVIMETRY	116
46.	SILICON BY SPECTROPHOTOMETRY	116
47.	SILICON BY X-RAY FLUORESCENCE	117
48.	F-test AND T-test FOR SILICON BY ATOMIC ABSORPTION AND SPECTROPHOTOMETRY	118
49	F-test AND T-test FOR SILICON BY ATOMIC ABSORPTION AND GRAVIMETRY	118
50.	F-test AND T-test FOR SILICON BY ATOMIC ABSORPTION AND X-RAY FLUORESCENCE	119
51.	F-test AND T-test FOR SILICON BY GRAVIMETRY AND X-RAY FLUORESCENCE	119
52.	F-test AND T-test FOR SILICON BY GRAVIMETRY AND SPECTROPHOTOMETRY	120
53.	F-test AND T-test FOR STLICON BY X-RAY FLUORESCENCE AND SPECTROPHOTOMETRY	120
54.	RESULTS FOR (SOLUTION 'A') ALUMINUM BY ATOMIC ABSORPTION	123
55.	RESULTS FOR (SOLUTION 'A') ALUMINUM BY SPECTROPHOTOMETRY	123
56.		124
57.	. RESULTS FOR (SOLUTION 'B') ALUMINUM BY GRAVIMETRY	124
58	. F-test AND T-test FOR ALUMINUM BY ATOMIC ABSORPTION AND SPECTROPHOTOMETRY	125
59	. F-test AND T-test FOR ALUMINUM BY ATOMIC ABSORPTION AND GRAVIMETRY) 125

60.	F-test AND T-test FOR ALUMINUM BY ATOMIC ABSORPTION AND X RAY FLUORESCENCE	126
61.	F-test AND T-test FOR ALUMINUM BY GRAVIMETRY AND SPECTROPHOTOMETRY	126
62.	F-test AND T-test FOR ALUMINUM BY X-RAY FLUORESCENCE AND SPECTROPHOTOMETRY	127
63.	F-test AND T-test FOR ALUMINUM BY GRAVINETRY AND X-RAY FLUORESCENCE	127
64.	RESULTS FOR TRON BY ATOMIC ABSORPTION	130
65.	RESULTS FOR TRON BY SPECTROPHOTOMETRY	130
66.	TRON BY TITRATION (DICHROMATE)	131
67.	TOTAL TRON BY X-RAY FLUORESCENCE	132
68.	F-test AND T-test FOR TOTAL IRON BY ATOMIC ABSORPTION AND TITRATION	133
69.	F-test AND T-test FOR TOTAL IRON BY ATOMIC ABSORPTION AND SPECTROPHOTOMETRY	133
70.	F-test AND T-test FOR TOTAL TRON BY ATOMIC ABSORPTION AND X-RAY FLUORESCENCE	134
71.	F-test AND T-test FOR TOTAL IRON BY TITRATION AND SPECTROPHOTOMETRY	134
72.	F-test AND T-test FOR TOTAL IRON BY X-RAY FLUORESCENCE AND SPECTROPHOTOMETRY	.135
73.	F-test AND T-test FOR TOTAL IRON BY TITRATION AND X-RAY FLUORESCENCE	135
.74.	RESULTS FOR CALCIUM BY ATOMIC ABSORPTION	138
75.	CALCIUM BY X-RAY FLUORESCENCE	138
76.	RESULTS FOR CALCIUM OXIDE BY EDTA TITRATION	139
77.	F-test AND T-test FOR CALCIUM BY ATOMIC ABSORPTION AND TITRATION	140
78.	F-fest AND T-test FOR CALCIUM BY ATOMIC ABSORPTION AND X-RAY FLUORESCENCE	140
79.	F-test AND T-test FOR CALCIUM BY TITRADION AND X-RAY FLUORESCENCE	141

80.	RESULTS FOR (WITHOUT LANTHANUM OXIDE) MAGNESIUM BY ATOMIC ABSORPTION	144
81.	RESULTS FOR (WITH LANTHANUM OXIDE) MAGNESIUM BY ATOMIC ABSORPTION	144
82.	MAGNESIUM OXIDE BY EDTA TITRATION	145
83.	MAGNESTUM BY X RAY FLUORESCENCE	146
84.	F-test AND T-test FOR MAGNESTUM BY ATOMIC -ABSORPTION AND TUTRATION	147
85.	F-test AND T-test FOR MAGNESIUM BY ATOMIC ABSORPTION AND X-RAY FLUORESCENCE	147
86.	F-test AND T-test FOR MAGNESIUM BY TITRATION AND X-RAY FLUORESCENCE	148
87.	RESULTS FOR SODIUM BY ATOMIC ABSORPTION	151
88.	RESULTS FOR SODIUM BY FLAME EMISSION	151
89.	F-test AND T-test FOR SODIUM BY ATOMIC ABSORPTION AND FLAME EMISSION	152
90.	RESULTS FOR POTASSIUM BY ATOMIC ABSORPTION	155
91.	RESULTS FOR POTASSIUM BY FLAME EMISSION	155
92.	POTASSIUM BY X-RAY FLUORESCENCE	156
93.	F-test AND T-test FOR POTASSIUM BY ATOMIC ABSORPTION AND X-RAY FLUORESCENCE	157
94.	F-test AND T-test FOR POTASSIUM BY FLAME EMISSION AND X-RAY FLUORESCENCE	157
95.	F-test AND T-test FOR POTASSIUM BY ATOMIC ABSORPTION AND FLAME EMISSION	158
96.	RESULTS FOR MANGANESE BY ATOMIC ABSORPTION	161
97.	RESULTS FOR MANGANESE BY SPECTROPHOTOMETRY	161
98.	MANGANESE BY X-RAY FLUORESCENCE	163
99.	F-test AND T-test FOR MANGANESE BY ATOMIC ABSORPTION AND SPECTROPHOTOMETRY	16:
100.	F-test AND T-test FOR MANGAMESE BY ATOMIC ABSORPTION AND X-RAY FLUORESCENCE	16:

101.	F-test AND T-test FOR MANGANESE BY SPECTROPHOTOMETRY AND X-RAY FLUORESCENCE	164
102.	SUMMARY OF ANALYTICAL RESULTS FOR NSX 'IN-HOUSE' SAMPLE	165
103.	PREFERRED METHOD, ACCORDING TO STATISTICAL PARAMETERS	170

LIST OF FIGURES

1.	Schematic layout of atomic absorption unit (Ewing, 1960) and diagram of energy absorbance	pge.	22
2.	Calibration curve for silicon by atomic absorption (on solution 'A')		23
3.	Calibration curve for silicon by atomic absorption (on solution 'JA')		25
4.	Calibration curve for silicon by atomic absorption (on solution 'B')		29
5.	Calibration curve for total iron by atomic absorption	¥	32
6.	Calibration curve for calcium by atomic absorption	•	35
7.	Calibration curve for magnesium with lanthamum . oxide by atomic absorption		38
8.	Calibration curve for magnesium without lanthanum , oxide by atomic absorption		40
9.	Calibration curve for sodium by atomic absorption	٠.	44
10.	Calibration curve for potassium by atomic absorption		47
u.	Calibration curve for manganese by atomic absorption		50
12.	Schematic layout of flame emission unit (Ewing, 1960) and diagram of energy emission	-	52
13.	Calibration curve for sodium by flame emission		55
14.	Calibration curve for potassium by flame emission		58
15.	Bonding structure of urea (Skoog and West, 1974)		6:2
16.	Bonding structure of ammonium acetate to aluminum (Skoog and West, 1974)		63
17.	Single cell photoelectric photometer (Adapted from Evans Electroselenium Limited, n.d.)		67
18.	Formation of five-membered chelate ring (Adapted from Skoog and West 1974)		72

LIST OF FIGURES (CONT'D)

19.	.Calcium titration EDTA calibration graph	74
20.	Calcium titration graph for BCR-1 standard sample	. 74
1.	Calcium titration graph for GA standard sample	75
2.	Calcium titration graph for AC2-2 standard sample	. 75
3. '	Calcium titration graph for SYN.G2 standard sample	76
3 4.	Calcium titration graph for NSX-1 rock sample	. 76
3.	Titration graph for total (Ca + Mg) in BCR-1	82
25 .	Titration graph (average change per unit for total (Ca + Mg) in BCR-1	82
7 .	Titration graph for total (Ca +Mg) in GA	83
28.	Titration graph (average change per unit) for total (Ca + Mg) in GA	. 83
29.	Titration graph for total (Ca + Mg) in AC2-2	\$4
30.	Titration graph (average change per unit) for total (Ca +Mg) in AC2-2	. \$4
Э.	Titration graph for total (Ca + Mg) in SYN.G2	\$5
I .	Titration graph (average change per unit) total (Ca +Mg) in SYN.G2	· 85
з.	Titration graph for total (Ca + Mg) in NSX-5	86
34.	Titration graph (average change per unit) total (Ca + Mg) in NSX-5	. 86
35.	Optical diagram of the Bausch & Lomb spectronic-70 (Ewing, 1969)	88
36.	Calibration curve for silicon (on solution 'A') by spectrophotometry	90
37.	Calibration curve for aluminum (on solution 'A') by spectrophotometry	94
33.	Calibration curve for total iron (on solution 'B') by spectrophotometry	97
39.	Calibration curve for manganese by spectrophotometry	101
40.	Schematic layout of x-ray fluorescence spectrometer	103

LIST OF APPENDICES

I.	INSTRUMENTAL CONDITIONS FOR ATOMIC ABSORPTION, FLAME EMISSION AND SPECTROPHOTOMETRY.	pge. 172
II.	X RAY FLUORES CENCE ANALYTICAL CONDITIONS	173
III.	SUMMARY OF RESULTS OF ALL SAMPLES	174
ıv.	OXIDE CONVERSION FACTORS	175
v.	SPECTROPHOTOMETER CALCULATIONS USING WANG 2200	176
VI.	TITRATION CALCULATIONS USING WANG 2200	177
VII.	GRAVIMETRIC CALCULATIONS USING WANG 2200	- 178
	PROGRAM #1 FOR MONROE 344: Si, Al, Fe, Ca and K DETERMINATIONS	179
IX.	PROGRAM #947 FOR WANG 700 SERLES: MAGNESIUM AND MANGANESE DETERMINATIONS.	. 181
X.	PROGRAM #665 FOR WANG 700 SERIES: (f) FACTOR USING DEAD TIME CPS FROM QUARTZ	184
XI.	X-RAY MATRIX CORRELATION OF MAJOR ELEMENTS	186
XII.	COMPUTER GRAPHS USING WANG 2200	. 191
XIII.	2*STD REJECTION TEST USING WANG 2200	194
XIV.	TOTAL POPULATION REJECTION TEST USING WANG 2200	196
xv.	STATISTICAL COMPARISON BY F-test AND T-test USING WANG 2200 COMPUTER	198

T. TNTRODUCTION

Numerous geochemical studies, both collaborative and individual, have reported results which varied from laboratory to laboratory, from analyst to analyst, from sample to sample and even from time to time. The major cause of variability in analytical results in geochemical collaborative studies has been attributed to inter-laboratory and analyst biases; however, there is a general lack of conformity in the statistical evaluation of analytical data, and no co-operative studies have been made to assess the biases between methods. Thus, perhaps the methods themselves, in their unique daracteristics, requirements and interferences have been the cause of much of the scatter of results.

In this thesis several methods of analysis are examined, to determine the possibility of the existence of inter-method bias. Every source of bias is limited as far as possible by limiting the number of analysts involved to one only.

The review of literature is limited by the fact that little has been done on this subject and only recently some of the more alert researchers have alluded to this problem.

In this study, eight elements (silicon, aluminum, total iron, calcium, magnesium, sodium, potassium and manganese) have been determined by up to even different methods to try to isolate possible bias between methods, using analyses of variance and other statistical procedures. The following tabulation summarizes the elements and methods used in this study:

OXTDES	•	•	METH	ODS*		
;	AA	FE	G	T · ·	SP	XRF
sio ₂	X		X	·	X	. X
Al ₂ ³ 3	₹ X		x		х	x
Fe ₂ 0 ₃ (t)	X	r		· x		x
CaO	X	- -		Х	•	x
MgO	X	·		x		, X
Na ₂ O	X	X				
к ₂ n	X	х		·		x
MnO	х				X	x

^{*}Where AA is atomic absorption spectroscopy. FE is flame emission spectroscopy, G is gravimetry. T is titration SP is spectrophotometry and XRF is x-ray fluorescence spectroscopy.

II. LITERATURE REVIEW

There has been little written specifically—on methods and their biases in rock analysis. Nevertheless, one can detect, woven into numerous reports, suspicion of biases between methods. With the advent of new instrumental methods, problems have been noted but not necessarily anchored to any one origin. The statistical analyses of these methods lie prone to subjective translation and arbitrary decision. Values often vary, not only laboratory to laboratory, but also method to method. While certain standardization would begin to rectify this situation, several authors have gone further by suggesting other positive action.

A. BRIEF HISTORY

Originally, 'classical' chemical methods were sequential and slow because they involved time-consuming precipitations. However, with the inception of 'analytical chemistry' and its use of new reagents and techniques, methods became more rapid either with greater accuracy, without greater accuracy or at the expense of greater accuracy. Their speed was due to their 'directness', in being more metal specific. Flame photometry added speed plus accuracy to the determination of sodium and potassium. These mapid methods were generally based on colorimetry and their accuracy usually diminished, relative to gravimetric methods. Instrumental methods are mechanically-orientated and as such have better answered the need for accumate standard procedure than did 'classical' methods which required great skill to achieve consistent results (Bennett, 1977).

While this increase in instrumental methods has its benefits, it also has its drawbacks. On the one hand, an analyst may better suit the method to the element because of the variety from which to choose. On the other hand, the achievement of consistent results must now consider another factor—according to Abbey (1977), variations in new methods are infinite and greatly influence the results of techniques used and the final assessment of data. These variations and their influences on biases must be acknowledged and understood so that they can contribute to a more accurate geothemical analysis.

B. GENERAL EVIDENCE OF BLASES

This infinite variation in method and results (Abbey, 1977) has been evidenced in several reports. Abbey et al. (1975) noted, in their collaborative study, that even among laboratories which they felt to be the better laboratories, there existed a number of "conspicuous outliers" in the results. It is interesting to note that, while Abbey considered this to be interlaboratory variation, Roubault et al. (1970) offered a different explanation of variation in results.

Roubault et al. (1970) stated that each determination concerns the difference between a 'true' and a mean/median value. This small or

very small 'residual value' is usually hidden among glaring similar values which agree but add no information. This report added further that any analytical method which cannot measure such small values is of little consequence. The variations of results which both Abbey et al. (1977) and Roubault et al. (1970) mentioned could well be studied for evidence of intermethod bias. Tables 1 to 6 of this report break down Abbey's values. (listed according to laboratory) into values according to elements and the methods employed.

According to Abbey (1977) and Roubault et al; (1970), the amount of valid information which collaboration offers diminishes as its number of mesults increases. After reaching peak information, statistical analytical (quantity) data must be replaced with first-rate (quality) analysis (Roubault et al, 1970). Thus, once a close harmony of the more obvious data is established, a closer study of the results could be made (la Roche and Govindaraju, 1976). Of special importance would be concurrent data compiled by one laboratory using a limited number of methods of determination, and special requests could be issued for qualified, specialist laboratories to use several methods on several elements (Roubault et al., 1970). This trend lies close to the aim of this thesis. The number of possible sources of bias is reduced to one 'laboratory' and one analyst, thereby isolating probable source of bias to one factor only—that of method.

Some specific information on such inconsistencies of results is available. La Roche and Govindaraju (1976) note that whereas atomic absorption is poor in precision, x-ray fluorescence shows very good precision. In another case, Abbey et al. (1975) noted that in the determination of carbon dioxide by two variations on a method (acid and combustion), at

Abbey suggests this difference may be caused by non-carbonate carbons or contamination. Yet he states that in several G. S. C. laboratories reporting CO₂ values on rocks which did not contain non-carbonate carbon, there were differences in results; Abbey (1977) did not attribute them to rethod bias but rather to inter-laboratory bias. Abbey reports the combustion values were persistently but not consistently higher. Then he stated that while bias may be the cause of the high values, not enough information was available to confirm this. In his later supplement (Abbey, 1976), he noted that there is a definite difference between methods but makes no statement on the existence of 'bias'. Turek et al. (1978) used four separate methods to determine carbon dioxide and also found combustion methods to give high results.

Others have noted such disagreeing results. Bennett (1977) noted that for calcium determination, results were lower by instrumental than by chemical methods. Varian Techtron (1972) noted that different methods have their own interferences—even atomic absorption and flame emission.

Abbey (1977) noted that in Fairbairn's 1951 pioneering report on the first U. S. Geological Survey standards G-1 and W-1, there appeared, to the amazement of analysts and petrographers, a great divergence in (what Abbey considered to be) inter-laboratory results on the same constituent of the same sample. Yet it sould be noted that the methods employed in that 1951 study included chemical and spectrographic analysis.

Interferences can vary even between analyses, be they chemical or thysical. Abbey et al. (1975) noted that direct interference is more likely to occur in chemical methods than in instrumental methods. This disagrees with Varian Techtron (1972). Interferences can vary between elements within instrumental analysis (Quirt 1978; Appendix I) (Mitchell, 1978). Such a

variety of interferences and the resulting variety of values, could be investigated as a factor contributing to inter-method bias.

C. STATISTICAL EVIDENCE OF BLASES

Tt is well known that collaborative analyses on goechemical standards reveal widespread values (Turek et al., 1978). Analysts tend to assess analytical data by intuitive judgement which often is not in line with statistical judgement (Ellis, 1976; Steele, 1977). These subjective decisions pervade statistical reports on analyses.

Abbey (1977) cites the different parameters which various countries use for rejecting 'outliers' -- from France's one and more standard deviations to South Africa's three and more standard deviations. When la Roche and Govindaraju (1976) were faced with a high median and a low mean, they chose as a preferred value the higher of the two because several 'select' laboratories had reported even higher preferred values than their own. It was further noted that the chosen value was almost identical to the prefermed median of chemical methods and the preferred mean of physical method. In the case of Na₂9 in the same report, only physical methods were usedmainly atomic absorption and flame spectrophotometry. Their decision in this case was to recommend an average of the two results as a preferred value. Such arbitrary actions are, at the moment, necessary because the many variations in the results have no immediate solution. Instances of such subjective decisions are indeed widespread (Abbey, 1975; Abbey, 1976; Abbey, 1977; la Roche and Govindaraju, 1976; Roubault et al., 1970; Ellis, 1976; Steele, 1977).

D. SUGGESTED SOLUTIONS TO STATISTICAL BLASES

Suggested solutions to the problems of divergent results are as numercus as the problems themselves. Abbey et al. (1975) noted that if has been suggested that in the extremely difficult problem of 'choosing' values, one can use 'semi-empirical' methods. Flanagan (in Steele, 1977) suggested the need for 'statistical experimental design' to derive maximum information from submitted collaborative analytical data. La Roche and Govindaraju (1976) devised a letter code to designate sample preparation, analytical method, laboratory, even analyst. Abbey (1977) claims, however, that while letter codes for methods and biases are effective for commercial products, they are impractical for rocks because the variations in methods are infinite and important. In the same report, however, he did suggest several steps which would facilitate more accurate statistical analysis -- including a more meaningful, standardized terminology. of analytical method and assigned values (Is this not the direction in which la Roche and Govindaraju were headed with the letter code?) and a more consistent procedure for deducing compositional values from raw data. However, he himself failed to take advantage of this breakdown of methods in arriving at the so-called recommended value. This would, indeed, remove much of the subjective element in statistical analysis. The resulting improvement of statistical treatment would in turn improve the understanding of analytical methods, which would in turn improve the statistical analysis, until a complementary cycle is established.

E. EVIDENCE OF ANALYTICAL METHOD BIASES

While biases have several origins--laboratories, elements, analysts-one type is evidenced in several reports yet rarely considered in its own

right. Turek et al.(1976) found in his H₂? determinations that the Karl Fischer method showed a higher mean than the Penfield method which also showed a lower precision. Turek et al. (1978) found that in determining carbon dioxide, the different methods (gravimetric, titrimetric and volumetric) showed obvious; distinct biases between means and corresponding standard deviations. Another little-discussed possible source of bias may be in sample heterogeneity—a problem that has been studied by Ridley et al. (1976) and Turek et al. (1978).

La Roche and Govindaraju (1976) found many instances of bias between methods. For K₂O, atomic absorption and x-ray fluorescence gave different mesults. For iron, the preferred mean of physical methods was lower than that of chemical methods. For MnO the mean for chemical methods was higher than that of other methods; the minor constituents by physical methods showed a lower standard deviation than by chemical methods. For the feldspar sample (FK-N) for K₂O only physical methods were used yet results still indicated a bias. Atomic absorption gave a higher mean than x-ray fluorescence but it yielded a lower standard deviation. For aluminum, the mean for chemical methods alone was slightly lower than the mean for either both chemical and physical together or physical methods alone (la Roche and Govindaraju, 1976).

La Roche and Govindaraju (1976) did state that agreement between mean and median is not always the only criteria valuable in determining recommended or proposed values. They feel it is equally necessary to consider agreement between results of different analytical methods.

F. SUGGESTED SOLUTIONS TO ANALYTICAL METHOD BLASES

Chemical and physical analysis work hand in hand with statistical analysis. Christie and Alfsen (1977) stated that reliable reference

materials form a basis of control for analytical and chemical methods and would allow for better understanding of method conditions and parameters. The resulting 'true' concentrations would allow any analytical method to be tested statistically. While statistical analysis of collaborative studies would give important information on populations which determine characteristics, estimation of 'inter-laboratory standard deviation' would allow the analyst to evaluate a given method.

In considering the relationship between analytical method and statistical analysis, Roubault et al. (1970) recommended an improvement in quality of method rather than in quantity of data. Here Roubault seems to agree with Abbey (1977) who found that in the collaborative study, precision seemed to deteriorate with an increase in available results. The of Abbey's suggestions, like that of Roubault et al. (1970), was an improvement in quality—but by careful selection of a reliable, limited group of analysts to determine a limited, select group of elements.

De Laeter and Rosman (1977) stated that accuracy of analysis depends on many uncertainties. They cite Ridley et al. (1976) where homogeneity was shown to be a major contributor to incongruent results. Control must indeed start as early in a study as possible and homogeneity tests are one of the early controls which can be exercised. But it must be noted that while Ridley et al. (1976) proved inhomogeneity does cause bias, it does not follow that all bias is caused by inhomogeneity. Strong proof of this point lies in the 1978 report by Turek et al. where homogeneity tests were run and showed a good level, yet bias still occurred. This indicates that bias was caused by additional factors.

Other controls have been suggested, such as sending specific instructions with the samples to be analyzed. Turek et al (1978) sent dissolution instructions and specified that atomic absorption alone was to be used. La Roche and Govindaraju (1976) suggested that the method of x-ray fluorescence for geochemical rock standards gives a more systematic control of results. Abbey (1975) stated that some collaborating laboratories used several methods where possible, providing (in some cases) independent checks on results, while others placed all confidence on one method. Abbey declined stating which approach he felt was more effective.

Flanagan (1969) suggested a standard method of rock analysis. Abbey (1977) claimed this would be impractical because (a) there is little difference between methods and (b) silica's varying composition would make the structuring of one method very difficult. One must remember, however, that many differences of results do occur, and that la Roche and Govindaraju (1976) said that these small 'residual' values are what really matter, not useless agreements en masse, which has been termed, somewhat feciciously, the democratic method of arriving at a 'recommended' value.

Abbey (1977) did propose several controls relating to method which included (a) greater communication between institutions regarding samples, (b) more uniformity of sample preparation and homogeneity tests and (c) more careful selection of collaborating laboratories and tasks to be performed.

G. CONCLUSIONS

All in all, based on a review of literature containing aspects of method bias, there seems to exist a paradox. At one end of the spectrum lie the ideal, theoretical conditions of geochemical analysis—systematic controls, complete comprehension, universal standardization, speed and accuracy—thile at the other end of this spectrum lie the existant conditions—inconsistent terminology, confusion of method and of results and arbitrary

statistical decisions. Nevertheless, all are becoming aware of the situation and eventually, from the many valid suggestions for improvement, the 'existant' conditions may become compatable with the 'ideal' conditions.

It is hoped that this study of method biases may contribute to this end.

RESULTS RECEIVED IN COLLABORATIVE STUDY (ABBEY ET AL, 1975) INCLUDING 1TS SUPPLEMENT I (ABBEY, 1976)

	2	KECKIVES A Method Rather	hy Me	thod Rath		than Laboratory	
Table	, ,	SY-2 values	SIII K	1			
	Element	Method*	z	×	à, b	b	
ـــــــــــــــــــــــــــــــــــــــ			=	60.25	0,0082	0.00	
_	$$10_2$	V	11	% 09	428	0.65	
	1	χς ·	٥ ز	50.87	0.0534	0.23	
		ပ္ ;		60. 2	0,2535	0.50	
		κ.	3				
⊥_		<	18	12.12	0.0215	0,15	
	6	< 5	<u> </u>	11.96	0,1018	0.32	
		ر د	2 0	11,85	0.0176	0,13	
		× c	12	12,20	0,0797	0.28	
			26	8.00	0,0137	0,12	
	CnO	< €	7 2	· } ·	0,0088	0.09	
		⊶ ×	14	7,98	0,0275	0.17	
			3.9	2,65	0,0092	0.10	•
_	MgO	< 8	2 2	2,81	0.0000		
		- ×	. &	2,63	0,0037	0,06	
				1 07	0 0117	0.11	
	Na ₂ 0	۷,	30	4.27	0.0381	0, 20	
_		ᄄ	oI,				
		<	31	4,30	0,0934	0,31	
	к ₂ 0	ς :	99	4.46	0.0258	0, 16	
		<u>,</u>	-14	4.47	о, 006 <u>в</u>	0,08	
			2.6	0.32	0,0001	0,01	
	NnO _	< 50	20	0,32	0.0001	0,01	
			5	26 3	0.0117	0,11	
	Fe203	< :	10	6.25	0,0130	0,11	1
		ν E	29	6,32	0.0274	0.17	
	_	→ >	83	6,31	0.0113	0.12	
		<				my octon	

*Where A is atomic absorption, E is flame emission, T is titration, S is spectrophotometry, G is gravimetry, and X is x-ray.

	_									$\overline{}$
ines	*(3	ď	0,16	0,14	0.04	0.08	0.05	0.08	00.00	0.03
Augrage for All Reported Values	Averages for 1976 Supplement)*	q. 2	0.0250	0,0186	0.0015	0,0065	0,0020	.0,0061	0,0000	0,0011
le 2 or All Re	v + 1976	ι×	60.14	12.03	7,96	2.70	4.32	4,41	0.32	6.31
-Table	Stuc	×	~	4	ი	3	7	က	8	4
Augran	AVC1 AP	Element	\$ 10 ₂	$^{A1}_{2}^{03}$	CaO	MgO .	Na ₂ 0	K ₂ 0	MnO	F. 0.
		Ь—					,		•	

*Values differ from those of Abbey because Abbey selected recommended values whereas these values are based on all reported values, rejecting those values two standard deviations away from the mean.

S Y-3

Table 4

RESULTS RECEIVED IN COLLABORATIVE STUDY (ABBEY ET AL., 1975) INCLUDING ITS SUPPLEMENT I (ABBEY, 1976)

	erin call	MECHI INC.					
Table	1e 3	SY-3 Values by Method Rather	by Me	thod Rathe	than	Laboratory	>
	Element	≰ Method*	×	;×	g 2	ь	
	810	•	_	59,77	0.0231	0.15	
	20.0	: v3	11	59,35	0,4073	0.74	
		G	45	59.49	0,0480	0.22	
		×	. 11	59,92	0,1236	0,35	
	A1-02	V	30	11.74	0.0580	0.24	
	5-2-3	₹£	œ	11.80	0.2491	0.50	
	_	Ü	20	11,78	0.0762	0.28	
		'×	11	11,97	0,1148	0,34	
	CaO	V	35	8.32	0,0322	0,18	
) }	E	23	8,15	0,0157	0, 13	
	·	×	14	8.14	0,0704	0.27	
•	Oalw	V	40	2,64	0.0048	0.07	
			20	2.80	0.0082	0.09	
		· ×	7	2.62	0,0002	0,01	
	Na.O	A	30	4.08	0.0149	0.12	
	27	ध		4.16	0,0355	0, 19	
	К.0	\ \ \	21	4.21	0.0085	0,92	
	7.7	<u>ن</u>	43	4.24	0,0109	0,10	
		×	13	4,22	0.0219	0,15	
	MnO	V	38	0.33	0,0001	0,01	•
		rα	26	0,32	0,0001	0,01	
	Fe,0, ,	V	.23	6.51	0.0127	0.11	•
	6-2	· S	17	6.44	0.0260	0.16	
	•	Ţ	30		0.0248		
	•	×	13	6.42	(1)	0,14	_
	100	0.0040	heornt	ion E is	flame	emission.	

*Where A is atomic absorption, E is flame emission, T is titration, S is spectrophotometry, G is gravimetry, and X is x-ray.

values, rejecting those values two standard deviations away from the mean.

these values are based on all reported

*Values differ from those of Abbey because Abbey selected recommended values whereas

Average	s for	or All	<u> </u>	Averages for All Reported Values	Values
(1975 S	tud	y + 19	9	Study + 1976 Supplement)*	ent)*
 Element	z	ı×	[g 2	¢
\$10 ₂	4	59.63		0.0504	0.23
A12 ^O 3	₹	11.83		0.0077	0,09
Ca0	ဗ	8(20		0.00	0,08
) MgO	'n	2.69	1	0,0065	, 0, 08.
Na ₂ O	8	4.12		0,0016	0,04
K20.	ິຕ	4.22		0,0002	0.01
Nn0	2	0,33		0,000	0.01
Fe203	7	6.48		0.0028	0.52

RESULTS RECEIVED IN COLLABORATIVE STUDY (ABBEY ET AL., 1975) INCLUDING ITS SUPPLEMENT I (ABBEY, 1976)

	.	MRG-1 Val	Values by	Method Ra	Rather than Laboratory	Laborato	гy
	1 2	_	z	ι×	g 2	b	
			1	20 23	0 0462	0.21	
	$\sin 0_2$	₹ F) T	39,33	0.0181		
		n C	90	39,15	0.0573	0.24	
	•	: :	,	39,42	0,6991	0.84	
			30	8, 48	0.0307	0.18	
	M1203	; v	9	8, 69	0.4852		
		י ני	6 17	8.43	0.0377		
		×	- ا	8,63	0,0184	0,14	
			3.9	14,80	0.0243	0.16	
	O EO	€ €	20	14,34	0.0305	0.17	
		· ×	6	15.01	0,1508	0,39	
	3		37	13, 55	0.0423	0.21	
	ogw -	€ €	15	13.57	0.0732	0.27	
		• ×	7	13.42	0.2604	0,51	
		-	96	0.71	0.0011	0,03	
	Na ₂ 0	¥ E3	39	0.74	0,0042	0,07	
			96	0 18	0.0001	0.01	
	K ₂ 0	< μ	37		0,0006	0,03	
		: ×	2	0,14	0,0025	0,05	
			43	0,17	0,0000	0.	
•	Ouk —	¢ 90	21		0,0002	0,02	
	5		31	17.92	0,0400	0,20	_
	re203	t tr	10	17	0,0538		
		: E	30		0,0782		
		· >	6		0.4641	0,68	- 1

*Where A is atomic absorption, E is Tlame emission, T is titration, S is spectrophotometry, G is gravimetry, and X is x-ray.

m		b	0.10	0.11	0.28	0.07	0.02,	0.02	0.01	0.13
Table 6 MRG-1	Averages for Air, hero. (1975 Study + 1976 Supplement)*	g 6	0.0107	0.0113	0,0783	0,0044	0,0002	0,0005	0,0000	0.0181
6 411 Rep	+ 1976 3	 1 ×	39.32	8,56	14.72	13,51	0,73	0,17	0.17	17,85
Table Table	ss ror Study	z	.4	. 	က်	· m	87	හ	83	4
	Average (1975: 5	Element	S 102	- 1203	Ca0	OBK	Na ₂ 0	K ₂ 0	Mn0	Fe, 03

*Values differ from those of Abbey because Abbey selected recommended values whereas these values are based on all reported values, rejecting those values two standard deviations away from the mean.

TIT. EXPERIMENTAL SAMPLE PREPARATION PROCEDURES

A. SAMPLE PREPARATION

A typical rapid rock analysis scheme involves the determination of thirteen constituents (Turek and Riddle, 1977). Most elements are determined on solution 'B' $(Al_2O_3, Fe_2O_3, CaO, MgO, NaO, K_2O, TiO_2, P_2O_5, MnO)$. Solution 'A' is prepared for the determination of SiO_2 . Separate aliquots of powder are required for the determination of H_2O , CO_2 and FeO.

Silicon cannot be determined on solution 'B' because it escapes during the dissolution. 'An alternate method called here 'JA' is given by Ward (1977) and is useful in the determination of $Al_2 ?_3$ and $Si ?_2$ by atomic absorption. This solution 'JA' is not appropriate for colorimetric (spectrophotometer) methods, because boric acid interferes with color production. Therefore, solution 'A' had to be made for spectrophotometric determination of $Si ?_2$ and as a check on solution 'B' for $Al_2 ?_3$.

B. PREPARATION OF SOLUTION 'A'

A rock powder fusion was made and dissolved to produce solution 'A' (Turek and Riddle, 1977). Six separate dissolutions of sample NSX, one of feldspar #70, one blank, and one GA reference sample were prepared.

Accurately, about 0.1 g of the sample was weighed into a graphite crucible which contained 1.5 g of flux (1 part lithium metaborate to 2 parts lithium tetraborate). The flux was weighed in first, so as to wrap around the rock sample during fusion. The mixture was placed in a nuffle furnace for thirty minutes at a setting of 1125°C and then was removed and allowed to cool. The bead was dissolved in a 400-ml plastic

beaker which was half full of water with 40 ml of 25% v/v nitric acid. When dissolution was complete, the solution was quantitatively transferred into a 500-ml volumetric nalgene flask, made up to volume, and mixed thoroughly.

C. PREPARATION OF SOLUTION 'B'

Solution 'B' was a dissolution of the rock powder by hydrochloric, perchloric and hydrofluoric acids (Turek and Riddle, 1977). Nine dissolutions of sample NSX were made and also one of: BCR-1, GA, 'in-house' AC-2 and a blank. A reference sample synthetically prepared from ionic standards to simulate G-2 (SYN.G2) was prepared by G. Marzetti and used in this study.

Accurately, about 1 g (9 times) of the NSX sample, 0.5 g of BCR-1, GA and AC2-2 were placed in separate 30-ml platinum crucibles. The dried rock powder was wetted down and baked to dryness, using 10 ml of hydrofluoric aid (48% HF). Another 10 ml of hydrofluoric were added to the crucibles (no heat) and allowed to go to dryness. At dryness, 5 ml of hydrofluoric and 5 ml of perchloric acid (72% HC194) were added and reheated to dryness. The samples were heated on maximum heat setting until all fumes were given off and for one-half hour at the highest setting. After cooling, 20 ml of 6N HC1 were added to dissolve the encrusted residue. Contents of the platinum dishes were then transferred to 500-ml volumetric flasks, rinsing frequently with 2½N HC1, and made up to volume with triple-distilled water.

D. PREPARATION OF SOLUTION 'JA'

The method given by Ward (1977), was modified for use with a Parr acid digestion bomb and prevents the volatilization of silicon as SiF4.

Accurately, about 0.5 g of dried rock powder samples were placed into the teflon liners of the Parr digestion bombs. Prior to sealing each bomb, 4 ml of 2½N hydrochloric acid, 2 ml of 2½N nitric acid, and 10 ml of concentrated hydrofluoric acid (48%) were poured into the teflon liners. The sealed bombs were then heated in a warming oven at 90° for three hours. They were cooled for one hour in a refrigerator: then, the contents of the teflon liners were quantitatively transferred to 500-ml plastic volumetric flasks. In order to complex the remaining hydrofluoric acid, 9.33 g of boric acid crystals were added to each flask and made up to volume with triple-distilled water.

The preparation of solution 'JA' has two advantages over solution 'B':

- (i) Solution 'B' requires 24 hours for dissolution, whereas solution 'JA' requires approximately 4 hours.
- (ii) During digestion of solution 'B', silicon is baked off and therefore cannot be analyzed, whereas in solution 'JA', the system is closed, silicon does not escape and hydrofluoric acid is complexed by the boric acid.

E. PREPARATION OF STANDARD SOLUTIONS

For each element to be analyzed, standard solutions were prepared for the purpose of construction of calibration curves. These standard solutions were made from Fisher Chemical Company certified ionic stock solutions of 1000 µg/ml concentration. A range of standards which would bracket the amount of the constituents being analyzed was prepared for each element.

Tron standards were acidified with 6N hydrochloric acid; a separate æt of standards for calcium and one for magnesium were prepared and

diluted with a releasing agent--lanthanum oxide.

The range of concentration of the standard solutions and the working conditions are listed in each element's respective table. Working conditions were obtained from Varian Techtron (1976), for use with model AA-175.

F. PREPARATION OF X-RAY FLUORESCENCE GLASS PELLETS

For x-ray analysis, glass pellets were prepared because of their superiority over rock pellets with regard to homogeneity and to reduce the matrix effect. It should be noted, however, that sodium escapes during high temperature fusion in glass pellets, whereas sodium can be analyzed in rock pellets.

Accurately, about 1.0 g of rock sample were weighed into a graphite crucible which already contained 2.0 g of lithium tetraborate flux. The flux was weighed in first, so as to wrap around the rock powder during fusion. The ratio of rock powder to flux must be exactly one part sample to two parts flux.

The mixture was placed in a muffle furnace (preheated to 1150°C) for twenty minutes. Immediately, the melt was poured out onto a freshly cleaned aluminum plate. The resulting glass bead, when cool, was crushed for three minutes in a shatterbox. The resulting glass powder was transferred into an air-tight plastic vial and kept in a dessicator.

The total amount of glass powder was mixed with four drops of 2% w/v polyvinyl alcohol (which acts as a binder). Borax was added to provide a backing for the pellets and the whole mixture was pelletized in a 32-mm die for fifteen seconds at 5.98 KPa (9-ton) pressure. The resulting glass pellets were labelled and dried for 24 hours.

IV. AMALYTICAL PROCEDURES

A. ATOMIC ABSORPTION SPECTROSCOPY

Theory

The method of atomic absorption spectroscopy consists of creating a plasma to contain the free atoms of the elements to be measured. The free atoms are present in both excited and ground states; a beam of light of exactly the same wavelength as that emitted by the excited atoms is passed through the plasma or flame. The intensity of the light beam is measured before and after passing through the absorbing ground-state atoms. The amount of absorbed energy is directly proportional to the number of atoms present.

Compounds, upon vaporizing in the flame, partially or totally dissociate into their atomic constituents. The number of excited atoms, N_j , is related to the number of ground-state atoms, N_o , at any given temperature, T, as noted by the Boltzmann Principle (Price, 1969).

$$N_{j} = N_{o} \times \frac{P_{j}}{P_{o}} \exp \frac{-E_{j}}{kT}.$$

where P and P are statistical weights of the two energy states E and E , respectively.

The ratio N:N, the proportion of excited-state atoms to ground-state atoms is therefore a function of temperature.

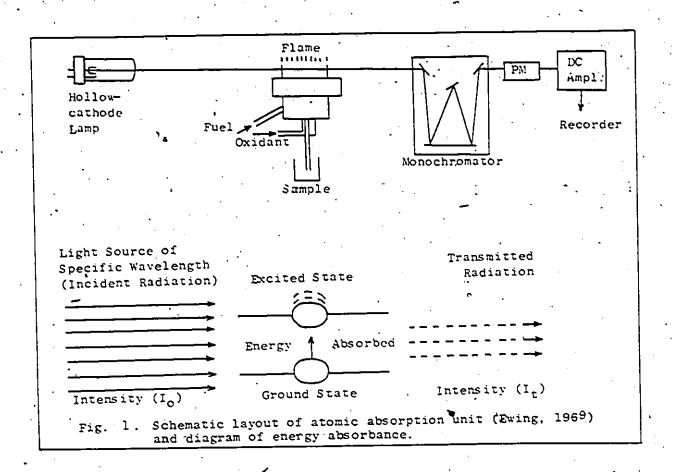
The value $\mathbf{E}_{\mathbf{j}}$ (wavelength of the spectral line corresponding to the transition between ground and excited states) is inversely proportional to the number of atoms in the excited state.

Atoms in the ground state only absorb energy at wavelengths corresponding to their own resonance lines. When an electron is raised from a lower excitation state (\mathbf{E}_1) to a higher excitation state (\mathbf{E}_2) , a line spectrum is produced. The first energy line produced by excitation of the atoms is usually the most sensitive and therefore the most frequently used in atomic absorption. The absorption at the peak of energy line is proportional to the concentration of atoms held in the plasma vapour.

A narrow band of radiation at a specified wavelength is emitted by a light source, a hollow cathode lamp. The radiation is directed through the plasma vapour containing the atoms and onto the opening slit of the monodromator which separates the desired energy lines from others being emitted. The intensity of transmitted radiation is governed by Beer's Law (Price, $I_{\rm p} = I_{\rm p} \exp(-abc)$

where To is the intensity of incident radiation; Tt is the intensity of transmitted radiation; 'a' is the absorption coefficient at the wavelength used; 'b' is the concentration of absorbing atoms and 'c' is the length of the absorption path.

Absorbance is proportional to the concentration for any given absorption path length at any given wavelength (Varian Techtron, 1971).


The model used for this thesis was Atomic Absorption Spectrophotometer A-175 Series by Varian Techtron Pty., Ltd.

The calculations for percent oxide in the sample solutions are:

% Oxide =
$$\frac{\text{Conc. x Vt x D x CF x }10^{-4}}{\text{Wt. of Sample}}$$

where conc. is the concentration of the analyte in ug/ml; Vt is the total volume of the sample solution in ml; D is the dilution factor and CF is the conversion factor (see Appendix IV).

The concentration of the analyte (Conc.) is obtained by deducing a calibration factor; CF = 1/slope from the calibration curves.

b. Analytical Procedure

L Silicon by Atomic Absorption Spectroscopy

Silicon was determined on two dissolutions, sample 'JA' and sample 'A'.
Solution 'B' was not used because the silicon evaporated during dissolution.

Tonic standards of 50 µg/ml Si to 400 µg/ml Si were used for both dissolutions. Working conditions for the ionic standards and the sample solutions were identical (Appendix I and Table 7). The calibration curves
are produced in Figs. 2 and 3. Absorbance readings for the samples are
in Tables 9 and 10. The concentration of silicon in solution as percent
oxide is reported in Tables 43 and 44.

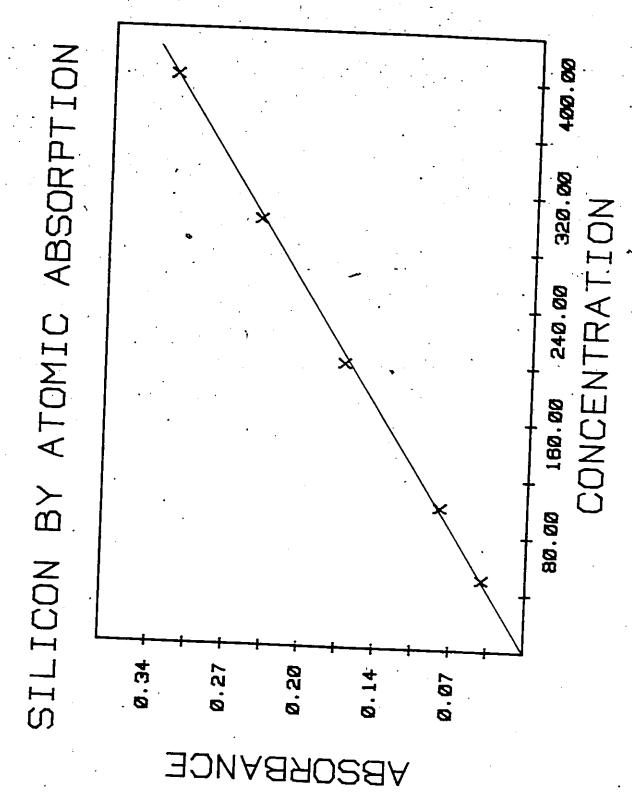


Fig. 2 , calibration curve for silicon by atomic absorption (on solution 'A') (µg/ml)

TABLE 7. IONIC STANDARDS FOR SILICON IN SOLUTION 'A' BY ATOMIC ABSORPTION.

		WORKING COND	ITIONS	250.7 nm
WAVELENGTH SLIT WIDTH LAMP CURREN FUEL FLAME STOIC SUPPORT GAS MODE	HIOMETRY		reducing; yellow nit	.2 nm 15.0 mA acetylene
CONC. OF STANDARD	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
50	0.046	6	0.045	0.040
100	0.089	6	0.090	0.080
200	0.170	, 6	0.174	0.170
300	0.255	6	0.254	0.250
400	0.334	₽ 6	0.337	0.330

THE SLOPE IS 0.0008
THE INTERCEPT IS -0.0086
THE CORRELATION COEFFICIENT IS 0.99986

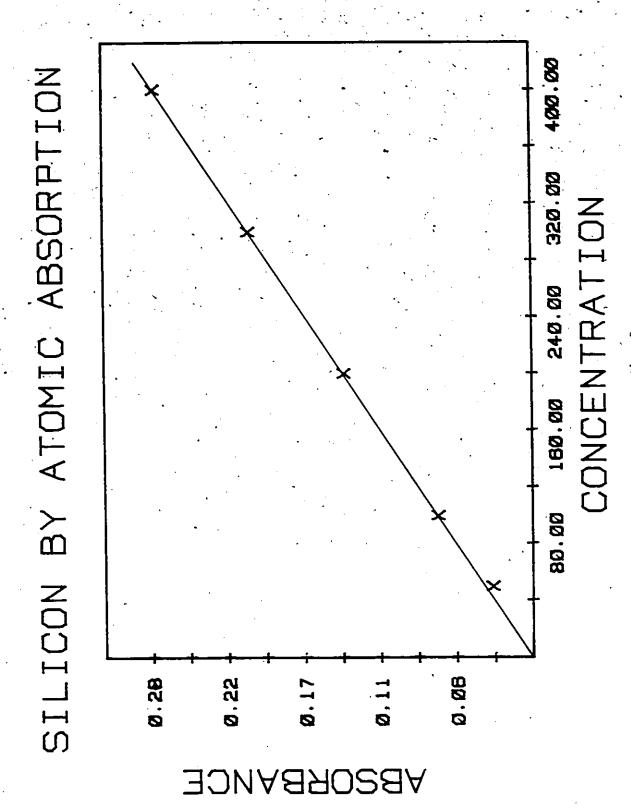


Fig. 3 Calibration curve for silicon by atomic absorption (on solution 'JA' $(\mu g/m 1)$

TABLE 8 . IONIC STANDARDS FOR SILICON IN SOLUTION 'JA' BY ATOMIC ABSORPTION

WAVELENGTH SLIT WIDTH LAMP CURRE FUEL FLAME STOI SUPPORT GA MODE	NT CHIOMETRY	WORKING COND	reducing; yellow	250.7 nm .2 nm 15.0 mA acetylene outer edge trous oxide absorbance
CONC. OF STANDARD ug/ml	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
50	0.040	6	0.041	0.030
100	0.079	6	0.079	0.070
200	0.152	6	0.153	0.140
300	0.225	6	0,226	0.210
400	0.295	6	0.296	0.280

THE SLOPE IS 0.0007
THE INTERCEPT IS -0.0098
THE CORRELATION COEFFICIENT IS 0.99995

TABLE 9
SILICON IN SOLUTION 'JA' BY ATOMIC ABSORPTION

ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
BCR-1 GA SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-7 NSX-8 NSX-9	0.180 0.225 0.229 0.221 0.241 0.225 0.224 0.220 0.222 0.222 0.224 0.222	66666666666	0.180 0.225 0.229 0.221 0.246 0.225 0.224 0.220 0.222 0.222 0.222	0.180 0.225 0.228 0.221 0.241 0.225 0.224 0.220 0.222 0.222 0.222

TABLE 10 SILICON IN SOLUTION 'A' BY ATOMIC ABSORPTION


ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
GA SiO ₂ -Pure NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-5 NSX-6 NSX-7	0.053 0.076 0.052 0.056 0.053 0.051 0.052 0.064 0.052	6 6 6 6 6 6 6 6	0.052 0.074 0.052 0.056 0.052 0.050 0.051 0.064 0.051	0.052 0.074 0.051 0.056 0.053 0.050 0.051 0.063 0.051

2. Aluminum by Atomic Absorption Spectroscopy

Aluminum was determined on both solution 'B' and solution 'A'. . Solution 'A' was the dissolution used in the calculations of biases.

Solution 'B' was not used, due to lower values obtained (Tetley, 1973).

Tonic standards prepared ranged from 20 µg/ml Al to 100 µg/ml Al for both solutions. The working conditions are the same for the ionic standards and the sample solutions (Table 11). Typical calibration curve for aluminum standards is shown in Fig. 4. Readings are recorded in Tables Il and 12. The percent oxides for both solution 'A' and 'B' were calculated and noted in Table 54.

8

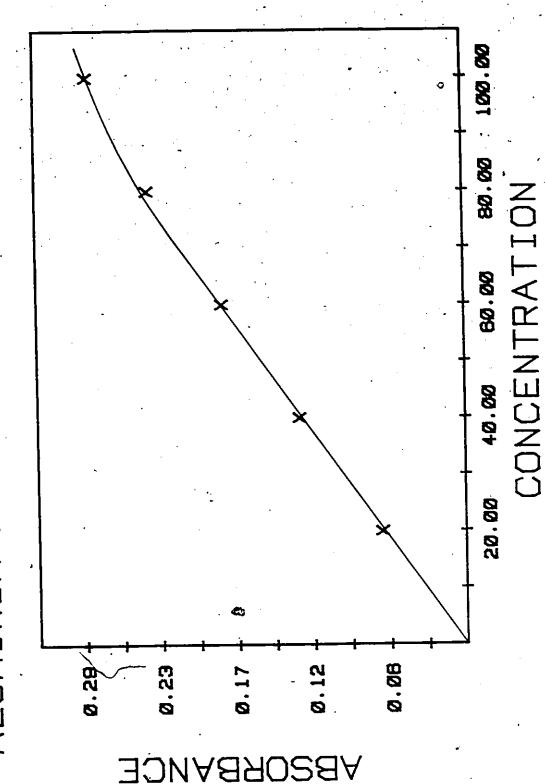


Fig. 4 (Calibration curve for aluminum by atomic absorption (on solution 'B') ($\mu g/m1$)

TABLE 11. IONIC STANDARDS
ALUMINUM IN SOLUTION 'A' BY ATOMIC ABSORPTION

WAVELENGTH SLIT WIDTH LAMP CURREN FUEL FLAME STOIC SUPPORT GAS MODE	CHIOMETRY	WORKING CONDI	cing; red cone	309.3 nm .2 nm 10.0 mA acetylene 1-2 cm high trous oxide absorbance
CONC. OF STANDARD US/ml	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED . A	AVERAGE READING A
20	0.069	6	0.069	0.065
40	0.133	. 6	0.135	0.127
60	0,198	. 6	0.199	0.186
. 480	0.255	6	0.258	0.242
100	0.299	6	0.300	0.288

THE SLOPE IS 0.0030
THE INTERCEPT IS 0.0002
THE CORRELATION COEFFICIENT IS 0.99920

SLOPE DERIVED FROM STRAIGHT PORTION OF CURVE

TABLE 12.

ALUMINUM IN SOLUTION 'A' BY ATOMIC ABSORPTION

ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 BLANK	0.048 0.256 0.051 0.056 0.053 0.052 0.052 0.062 0.052	6 6 6 6 6 6 6 6 6	0.052 0.260 0.052 0.056 0.053 0.054 0.052 0.062 0.062 0.052	0.051 0.260 0.052 0.057 0.053 0.051 0.050 0.060 0.050

3. Total Iron by Atomic Absorption Spectroscopy

Total iron was determined directly on solution 'B'. The ionic standards ranging from 15 to 6 µg/ml were acidified with 6N HCl.

The working conditions are listed in Appendix I. Fig. 5 is the calibration graph. Tables 13 and 14 are the absorbance readings. Concentrations as percent oxide are listed in Table 64.

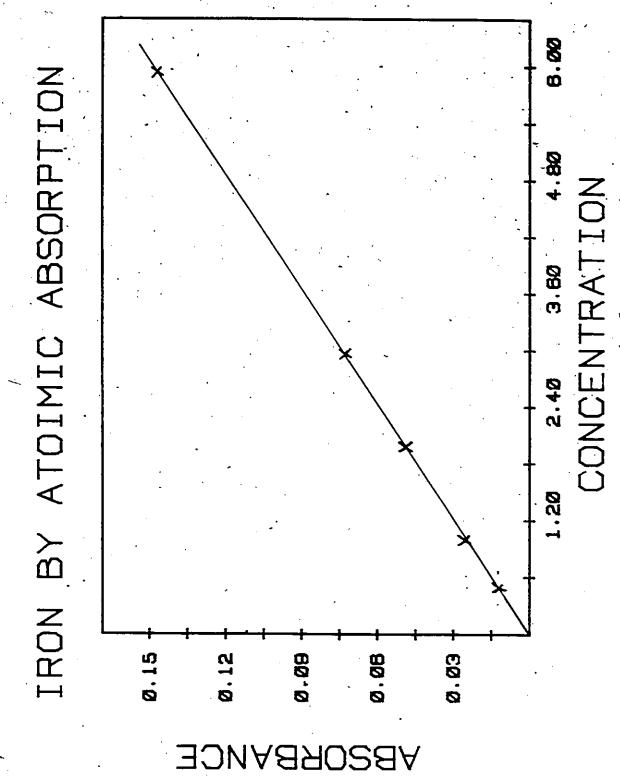


Fig. 5 Calibration curve for total iron by atomic absorption $(\mu g/m 1)$

TABLE 13. IONIC STANDARDS FOR

IRON BY ATOMIC ABSORPTION

*		WORKING CONDI	TIONS	
WAVELENGTH SLIT WIDTH LAMP CURRE FUEL FLAME STOIL SUPPORT GAS MODE	NT CHIOMETRY			248.3 nm 2 nm 5.0 mA acetylene oxidizing air absorbance
CONC. OF STANDARD µg/ml	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
.5	0.010	6	0.013	0.010
1	0.024	· 6	0.026	0.020
2	0.047	. 6	0.050	0.050
3	0.071	6	0.073	0.070
. 6	0.146	- 6	0.146	0.140

THE SLOPE IS 0.0244
THE INTERCEPT IS 0.0005
THE CORRELATION COEFFICIENT IS 0.99990

TABLE 14.

IRON BY ATOMIC ABSORPTION

	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-6 NSX-7 NSX-8 NSX-9 BLANK	- 0.108 0.058 0.071 0.048 0.068 0.069 0.064 0.068 0.065 0.067 0.068 0.069	12 12 12 12 12 12 12 12 12 12 12 12 12	0.108 0.050 0.071 0.047 0.066 0.068 0.066 0.064 0.068 0.066 0.067 0.067	0.110 0.050 0.073 0.047 0.069 0.072 0.069 0.067 0.071 0.069 0.070 0.070

4. Calcium by Atomic Absorption Spectroscopy

Calcium was determined directly on solution 'B'. A releasing agent, lanthanum oxide (4633.2 ppm) was used to dilute all samples and standards. The use of a releasing agent is recommended by Varian Techtron (1971).

The ionic standards were not prepared using lanthanum oxide because they only contained calcium but the blank solution was diluted with the releasing agent.

Standards were prepared ranging from 0.5 µg/ml to 7 µg/ml. The calibration curve is shown in Fig. 6. Tables 15 and 16 are the absorbance readings. Percent oxides are listed in Table 74.

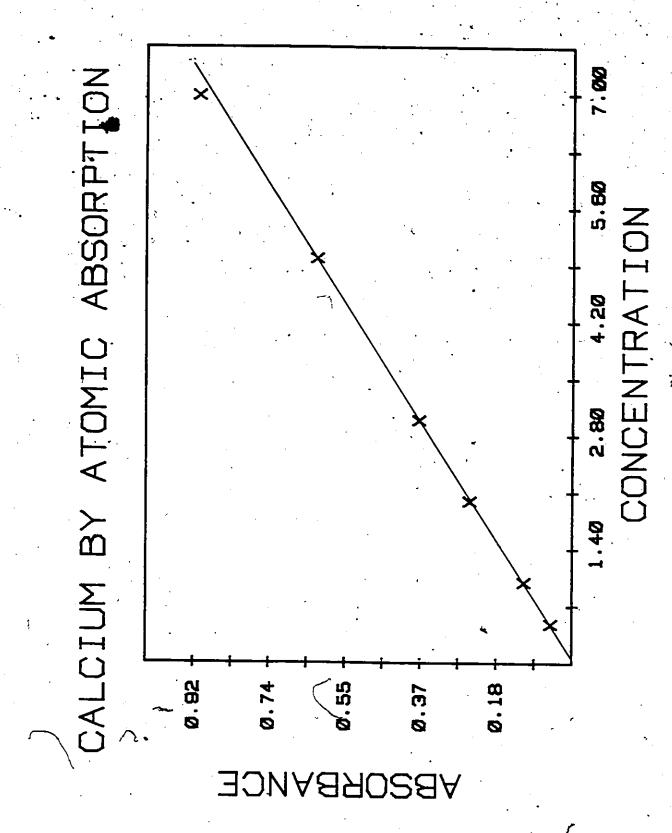


Fig. 6 Calibration curve for calcium by atomic absorption $(\mu g/m1)$.

TABLE 15. IONIC STANDARDS FOR

CALCIUM WITH LANTHANUM OXIDE BY ATOMIC ABSORPTION

_ · ·				
WAVELENGTH SLIT WIDTH LAMP CURRE FUEL FLAME STOI SUPPORT GA MODE	NT CHIOMETRY	,	ng; red cone l-l	crous oxide
CONC. OF STANDARD US/ml	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
.5	0.052	6	0.054	0.054
. 1	0.116	- 6	0.115	0.118
2	0.248	6	0.251	0.250
3.	0.374	· 6	0.374	0.375
5	0.616	6	0.629	0.625
7	0.890	6	0.931	0.913
· ·		· ·		

THE SLOPE IS 0.1283
THE INTERCEPT IS -0.0066
THE CORRELATION COEFFICIENT IS 0.99967

TABLE 16
CALCIUM WITH LANTHANUM OXIDE BY ATOMIC ABSORPTION

ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-7 NSX-8 NSX-9 BLANK	0.640 0.471 0.399 0.228 0.383 0.378 0.378 0.364 0.359 0.360 0.379 0.343 0.078	66666666666	0.676 0.469 0.394 0.225 0.383 0.393 0.379 0.380 0.359 0.360 0.364 0.382 0.343 0.000	0.598 0.391 0.316 0.147 0.305 0.315 0.301 0.302 0.281 0.282 0.286 0.305 0.265 0.000

5. Magnesium by Atomic Absorption Spectroscopy .

Magnesium was determined directly on solution 'B'. The sample solutions and blank were the same as those used for calcium determinations. Magnesium also needed a releasing agent, lanthanum oxide (Varian Techtron, 1972) Operating conditions are listed in Appendix I. The standards ranged from 0.1 µg/ml to 2 µg/ml. The calibration graph (Fig. 7) was prepared using only 0.1 µg/ml to 0.8 µg/ml which bracketed the concentration of the sample solutions.

.Two sets of samples were analyzed, one set without a releasing agent and the other with a releasing agent. Concentration as percent oxides for the two sets are tabulated in Tables 80 and 81; the results using the releasing agent are more correct and illustrate the need for the use of a meleasing agent. Absorbance readings are in Tables 19 and 20.

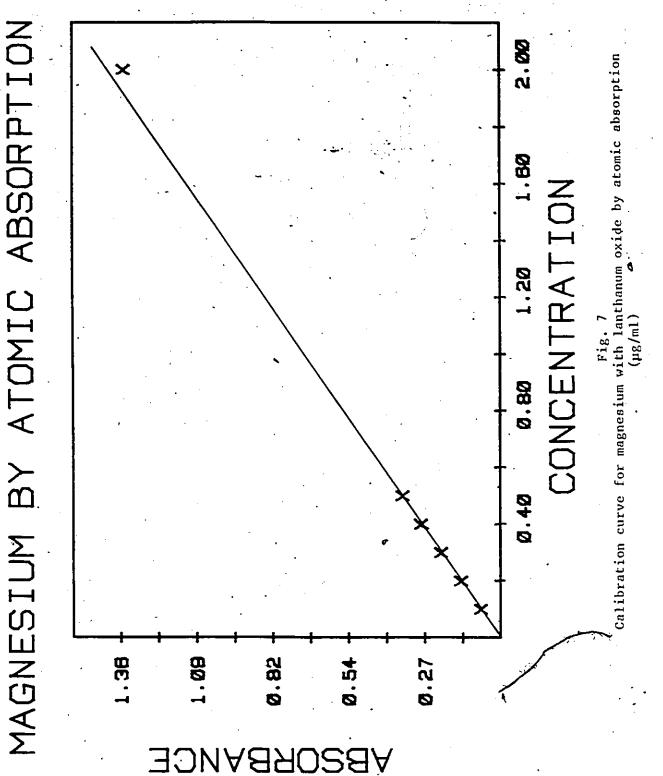


TABLE 17. IONIC STANDARDS FOR MAGNESIUM WITH LANTHANUM OXIDE BY ATOMIC ABSORPTION

WAVELENGTH	•	WORKING COND	TIONS	
SLIT WIDTH				285.2 nm .2 nm
LAMP CURRE FUEL	NT			3.0 mA
FLAME STOI		•		acetylene oxidizing
SUPPORT GAT	S			air
FRUE				absorbance
CONC. OF	ACTUAL	ANALYSIS	ZERO	AVERAGE
STANDARD ug/ml	READING A	REPEATS	CORRECTED A	READING A
			~~~~	* 
.1	0.071	6 .	0.071	0.076
•2	- 0.157	6	0.146	0.150
.3	0.227	6	- 0.223	0.225
, v <u>.</u>	0 202	-		0.225
.4	0.302	6	0.291	0.298
<b>.</b> 5	0.372	6	0.360	. 0.357
2	1.364	6	1.363	1.363

THE SLOPE IS 0.7496
THE INTERCEPT IS -0.0006
THE CORRELATION COEFFICIENT IS 0.99991

# MAGNESIUM BY ATOMIC ABSORPTION

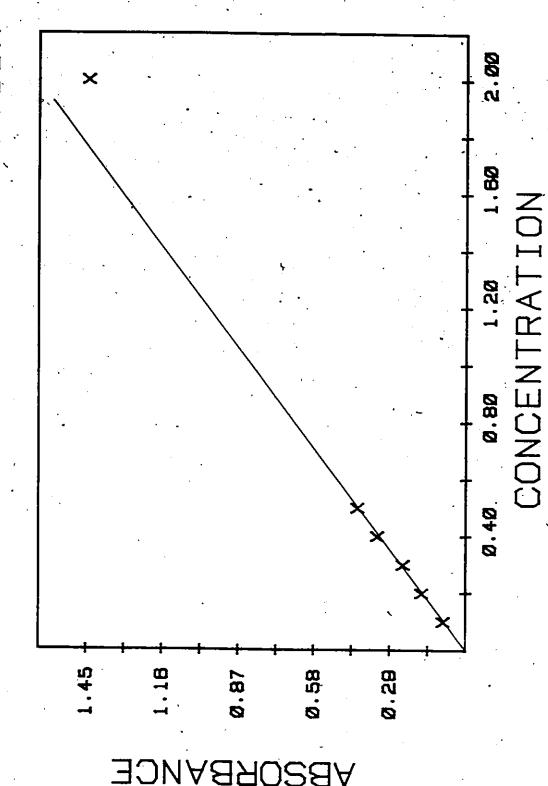



Fig. 8 Calibration curve for magnesium without lanthanum oxide by atomic absorption  $(\mu g/m 1)$ 

TABLE 18. IONIC STANDARDS FOR MAGNESIUM WITHOUT LANTHANUM OXIDE BY ATOMIC ABSORPTION

WAYELENGTH SLIT WIDTH LAMP CURRENT FUEL FLAME STOICHIOMETRY SUPPORT GAS		WORKING CONDI	285.2 nm .2 nm 3.0 mA acetylene oxidizing air absorbance	
CONC. OF STANDARD	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
.1	0.086	6	0.088	0.088
•2	0.170	6 .	0.171	0.171
.3	0.242	6 ~	0.249	0.245
.4	0.339	6 .	0.340	0.345
•5	0.429	6	0.429	0.423
2 .	1.444	6	1.444	1.456

THE SLOPE IS 0.8580
THE INTERCEPT IS -0.0003
THE CORRELATION COEFFICIENT IS 0.99995

TABLE 19
MAGNESIUM WITHOUT LANTHANUM OXIDE BY ATOMIC ABSORPTION

ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
BCR-1	0.400	666566666666	0.400	0.378
GA	0.480		0.483	0.461
AC2-2	0.612		0.614	0.592
SYN.G2	0.366		0.367	0.345
NSX-1	0.611		0.614	0.592
NSX-2	0.626		0.624	0.602
NSX-4	0.607		0.607	0.585
NSX-5	0.615		0.615	0.593
NSX-6	0.603		0.602	0.580
NSX-6	0.574		0.574	0.552
NSX-7	0.593		0.591	0.569
NSX-8	0.596		0.597	0.575
NSX-9	0.498		0.498	0.476
BLANK	0.022		0.000	0.000

TABLE 20
MAGNESIUM WITH LANTHANUM OXIDE BY ATOMIC ABSORPTION

ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-8 NSX-9 BLANK	0.884 0.485 0.605 0.371 0.595 0.603 0.604 0.603 0.597 0.558 0.576 0.475 0.049	66666666666	0.881 0.487 0.603 0.368 0.597 0.603 0.602 0.601 0.589 0.556 0.582 0.568 0.489 0.000	0.832 0.438 0.554 0.319 0.548 0.553 0.552 0.540 0.507 0.533 0.519 0.440 0.000

# 6. Sodium by Atomic Absorption Spectroscopy

Sodium was determined directly on solution 'B'. The ionic standards ranged from 0.5 µg/ml to 4 µg/ml. The calibration curve is Fig. 9. The desorbance readings are in Tables 21 and 22. The concentration as percent oxides are in Table 87.




Fig. 9
Calibration curve for sodium by atomic absorption
(µg/ml)

TABLE 21 . IONIC STANDARDS FOR

# SODIUM BY ATOMIC ABSORPTION

	,			
WAVELENGTH SLIT WIDTH LAMP CURRENT FUEL FLAME STOICH SUPPORT GAS MODE	HIOMETRY	WORKING CONDITION		589.6 nm .2 nm 5.0 mA acetylene oxidizing air absorbance
CONC. OF STANDARD	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
.5	0.154	. 6	0.154	0.160
1	0.385	6	0.377	0.350
2	0.754	6	0.748	0.740
3 ·	1.174	. 6	-1.165	1.170
4	1.334	6	1.328	1.330
•	_			

THE SLOPE IS 0.3829
THE INTERCEPT IS -0.0119
THE CORRELATION COEFFICIENT IS 0.99938

SLOPE DERIVED FROM STRAIGHT PORTION OF CURVE

TABLE 22
SODIUM BY ATOMIC ABSORPTION

ROCK SAMPLE	ACTUAL READI NG A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-5 NSX-6 NSX-7 NSX-8 NSX-9	1.086 1.099 1.055 1.232 1.055 1.080 1.059 1.090 1.121 1.048 1.079 1.118	666666666666	1.042 1.100 1.051 1.249 1.049 1.044 1.061 1.070 1.000 1.073 1.066 1.080 0.939	1.012 1.070 1.021 1.219 1.019 1.101 1.031 1.040 1.043 1.034 1.036

# 7. Potassium by Atomic Absorption Spectroscopy

Potassium was analyzed directly on solution 'B'. Working conditions are listed in Appendix T. The ionic standards spanned 0.5  $\mu$ g/ml to 4  $\mu$ g/ml. The calibration graph is in Fig. 10. Absorbance readings are given in Tables 23 and 24. Concentration as percent oxides is reported in Table 90.



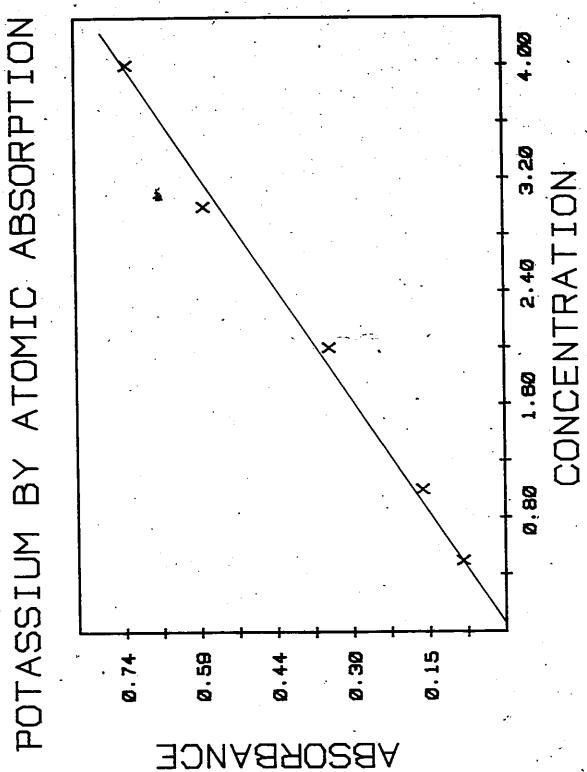



Fig. 10 calibration curve for potassium by atomic absorption  $(\mu g/m1)$ 

TABLE - 23. IONIC STANDARDS FOR

# POTASSIUM BY ATOMIC ABSORPTION

		WORKING CONDI	TIONS	, ,
WAVELENGTH SLIT WIDTH LAMP CURRENT FUEL				766.5 nm .2 nm 5.0 mA acetylene
FLAME STOICH SUPPORT GAS MODE	IIOMETRY		·•	oxidizing air absorbance
CONC. OF STANDARD pg/ml	ACTUAL READING `A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
.5	0.078	6	0.076	0.085
1	0.170	. 6	0.170	0.163
2	0_349	. 6	0.347	0.345
3	0.586	6	0.587	0.587
4	0.764	6 8	0.746	. 0.738

THE SLOPE IS 0.1860 THE INTERCEPT IS -0.0065 THE CORRELATION COEFFICIENT IS 0.99884

TABLE 24
POTASSIUM BY ATOMIC ABSORPTION

			<del>-</del> -	
ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
BCR-1 GA 1 AC2-2 SYN-G2 NSX-1 NSX-2 NSX-3 NSX-5 NSX-6 NSX-6 NSX-7 NSX-7 NSX-8 NSX-9 BLANK	0.334 0.699 0.682 0.838 0.669 0.684 0.678 0.689 0.701 0.589 0.581 0.589	666666666666	0.319 0.693 0.676 0.849 0.673 0.697 0.678 0.679 0.687 0.679 0.591 0.629 0.556 0.000	0.319 0.693 0.676 0.849 0.673 0.696 0.678 0.678 0.679 0.591 0.628 0.556

### & Manganese by Atomic Absorption Spectroscopy

Manganese was determined directly on solution 'B'. The working conditions are listed in Appendix T. Tonic standards were prepared from 0.5 µg/ml to 3 µg/ml. The plot of the calibration curve is given in Fig. 11. Absorbance readings are given in Tables 25 and 26. Percent cide is noted in Table 96.



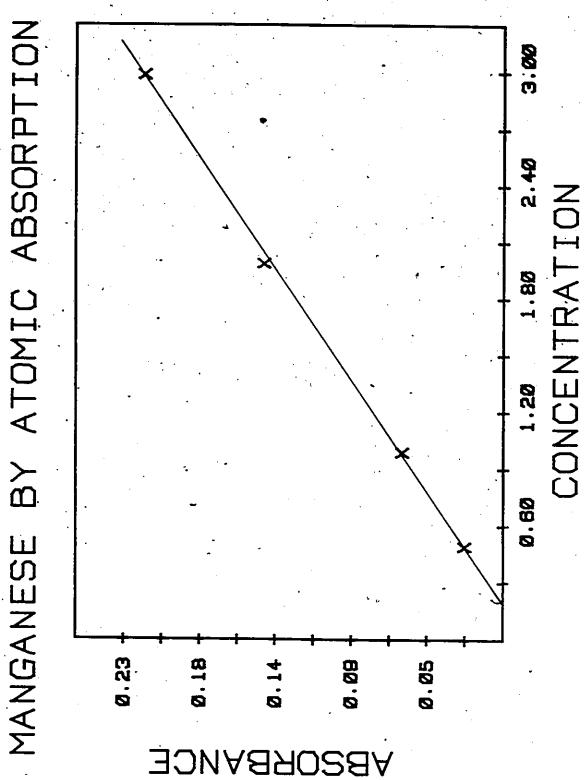



Fig. 11 Calibration curve for manganese by atomic absorption  $(\mu g/m1)$ 

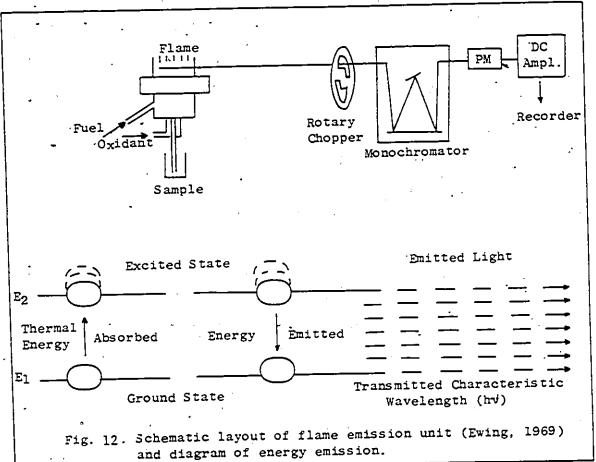
TABLE 25 . IONIC STANDARDS FOR AMANGANESE BY ATOMIC ABSORPTION

110100 00000		WORKING CONDI	TIONS	,
WAVELENGTH SLIT WIDTH LAMP CURRE FUEL FLAME STOI SUPPORT GA MODE	NT CHIOMETRY			279.5 nm .2 nm 5.0 mA acetylene oxidizing air absorbance
CONC. OF STANDARD	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
•5	0.023	6	0.026	0.024
1	0.060	6	0.064	0.062
2	0.144	6	0.148	0.146
3	0.218	. 6	0.219	0.219

THE SLOPE IS 0.0786
THE INTERCEPT IS -.0151
THE CORRELATION COEFFICIENT IS 0.99955

SLOPE DERIVED FROM STRAIGHT PORTION OF CURVE (FIRST 3 POINTS)

TABLE 26.
MANGANESE BY ATOMIC ABSORPTION


ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-8 NSX-8	0.115 0.051 0.051 0.053 0.048 0.047 0.049 0.049 0.049 0.046 0.047 0.047	6666666666	0.114 0.052 0.050 0.053 0.048 0.047 0.048 0.048 0.049 0.046 0.046 0.046	0.114 0.052 0.050 0.053 0.048 0.047 0.048 0.048 0.049 0.046 0.046 0.046

# FLAME EMISSION SPECTROSCOPY

## Theory

Atoms present or injected into a thermally produced plasma emit and absorb radiation of discrete and characteristic wavelengths. In emission spectroscopy, lines are used which are produced in almost any transition and sometimes those which are produced by ionized atoms.

An emission spectral line is produced when energy of the characteristic length is emitted by an atom when an effectron drops from higher excitation state  $(E_2)$  to a lower state  $(E_1)$ . This change in energy level gives a quantum of energy  $(h \lor)$  -- a photon; where h is Planck's constant and  $\lor$  is frequency (Ewing, 1969).



and diagram of energy emission.

The excited atoms emit light of the characteristic wavelength. The intensity of this transmittance is related to the concentration of the element in the sample. Detailed description of flame chemistry is given by Ewing (1969), Price (1969), Ernest and Billings (1972) and Skoog and West (1971).

The instrument used for flame emission is the same one used for atomic desorption analysis, the hollow cathode lamp is of course not used and the meadings are in percent transmittance (%T).

The equation for the calculations of percent oxide in the sample solu-

where Conc. is the concentration of the analyte in µg/ml; Vt is the total volume of the sample solution in ml; D is the dilution factor and CF is the conversion factor (Appendix IV).

The concentration of the analyte (Conc.) is obtained by deducing a calibration factor; CF = 1/slope from the calibration curves.

# b. Analytical Procedure

L Sodium by Flame Emission Spectroscopy

Sodium was determined on solution 'B' by flame emission. The working conditions are listed in Appendix I.

Varian Techtron (1972) reported that partial ionization occurs in the air-acetylene flame; however, this is not considered a serious problem. Calibration curve is Fig. 13. Transmittance readings are given in Tables 27 and 28. Percent oxides are listed in Table 88.

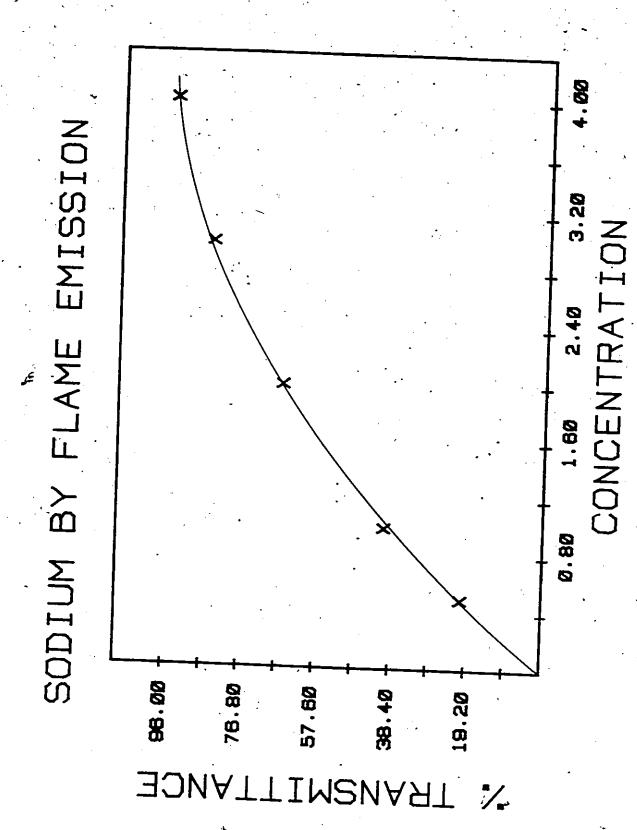



Fig. 13 Calibration curve for sodium by flame emigsion (µg/ml)

TABLE 27. IONIC STANDARDS FOR SODIUM BY FLAME EMISSION

WAVELENGTH SLIT WIDTH LAMP CURRE FUEL FLAME STOI SUPPORT GA MODE	NT CHIOMETRY	WORKING CONDI		589.0 nm 2 nm 0.0 mA acetylene oxidizing air ransmittance
CONC. OF STANDARD Ug/ml	ACTUAL READING 2T	ANALYSIS REPEATS	ZERO CORRECTED %T	AYERAGE READING 2T
.5	24.500	6	21.500	20.650
1	44.300	6	45.730	40.550
2	66,000	6	68.070	67.100
3, (	88.200	٦6	88.690	85.610
,		·		•

CONCENTRATION DERIVED DIRECTLY FROM CURVE

TABLE 28
SODIUM BY FLAME EMISSION

ROCK SAMPLE	ACTUAL READING %T	ANALYSIS REPEATS	BLANK & ZERO CORRECTED %T	AVERAGE READING %T
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-8 NSX-9	81.400 85.500 84.300 92.800 83.300 81.200 83.000 82.000 83.300 81.400 80.200 80.700 74.600	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	81.280 83.500 82.700 90.880 81.800 80.030 80.750 80.580 81.830 80.200 79.280 79.100 73.800	78.5\0 80.730 79.930 88.110 79.030 77.260 77.980 77.810 79.060 77.430 76.510 76.330 71.030

# 2. Potassium by Flame Emission Spectroscopy

Potassium was determined on solution 'B' by flame emission. Work-ing conditions are listed in Appendix I.

Potassium is partially ionized in the air-acetylene flame (Varian Techtron, 1972). Again, this is not a serious analytical problem at low concentrations. The calibration curve is Fig. 14. Percent transmittance is given in Tables 29 and 30. Percent oxides are listed in Table 91.

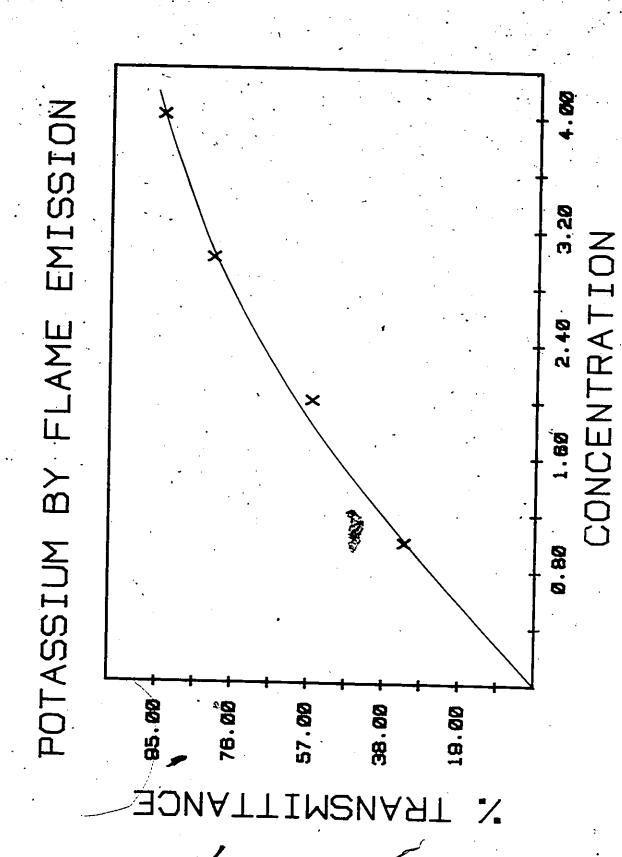



Fig. 14 Calibration curve for potassium by flame emission (µg/ml)

TABLE 29 IONIC STANDARDS FOR

# POTASSIUM BY FLAME EMISSION

WAVELENGTH SLIT WIDTH LAMP CURRE FUEL FLAME STOI SUPPORT GA MODE	CHIOMETRY	WORKING CONDI	TIONS	766.5 nm .2 nm 0.0 mA acetylene oxidizing air transmittance
CONC. OF STANDARD Pg/ml	ACTUAL READING #T	ANALYSIS REPEATS	ŽERO CORRECTED ŽT	AVERAGE READING %T
.5	12.200	6	12.100	12.800
. [	34.100	6	34.170	33.090
2	59.000	6	58.900	56.770
3	85.400°	6	85.900	81.850
· 4	97.500	6	98,670	94.840

# CONCENTRATION DERIVED DIRECTLY FROM CURVE

TABLE 30.
POTASSIUM BY FLAME EMISSION

ROCK SAMPLE	ACTUAL READING 2T	ANALYSIS REPEATS	BLANK & ZERO CORRECTED 2T >	AVERAGE READING %T
BCR-1	51.000	666666666666	49.880	49.650
GA	92.900		92.100	91.870
AC2-2	92.400		91.620	91.390
SYN.G2	106.200		104.950	104.720
NSX-1	92.800		93.820	93.590
NSX-2	90.600		89.730	89.500
NSX-3	90.200		89.500	89.270
NSX-4	90.400		89.070	88.840
NSX-5	90.500		89.270	89.040
NSX-6	89.600		88.600	83.370
NSX-7	82.000		80.250	80.020
NSX-8	84.300		83.670	83.440
NSX-9	77:300		75.970	75.740
BLANK	0.300		0.000	0.000

### C. GRAVUMETRY

### a. Theory

On the procedure of isolating and weighing an element or a definite compound of the element in as pure a form as possible (Vogel, 1961). The element to be determined is most commonly precipitated chemically from a solution of the sample; after filtration and/or other suitable treatment, the solid residue is weighed. In gravimetric analysis, a large portion of the determinations involve the transformation of the constituent or compound into a suitable form for weighing. The constituent then can easily be calculated from a knowledge of the formula of the compound and the atomic weights of the constituent elements. The general formula for percent oxide is:

% Oxide = Gravimetric Factor x Wt. of Precipitate x 100
Wt. of Sample in the Aliquot

where the weight of sample in the aliquot, calculated from the total sample volume is:

Wt. of Sample in Aliquot = Volume of Aliquot x Wt. of Sample

Total Volume of Sample

The gravimetric factor is given by the formula:

G. F. = Formula Wt. of Oxide to be Determined

Formula Wt. of Precipitate

Calculations were completed on a Wang-System 2200 mini-computer.

The program plot for these calculations is listed in Appendix VII.

## b. Analytical Procedure

## 1. Silicon by Gravimetry

Silicon was determined as an 'insoluble' silicate--quinoline silicomolybdate (Vogel, 1961). Solution 'A' was used for this determination.

Sodium hydroxide pellets were added to deter silicon from slowly precipitating out before the formation of the complex. Thymol Blue (0.04%) indicator was added as a visual indicator for pH control. Hydrochloric wid was added slowly, noting the colour change from blue through yellow just to red; excess dilute hydrochloric acid was added to ensure the widity of the solution. Ammonium molybdate solution was added to produce beteropoly acids. Concentrated hydrochloric acid (50 ml) was added to form a precipitate. Quinoline (50 ml) was added to destroy molybdophosphoric wid produced by the presence of phosphorous.

The suspension was warmed to allow full formation of the coagulate.

The solution was quickly cooled before filtering in a sintered glass

filtering crucible.

This experiment was performed quickly to minimize the contamination of the solution by the silicon from the glassware. The precipitate was weighed as:  $(C_9H_7)_4$   $H_4(SiO_4. 12MoO_3)$ .

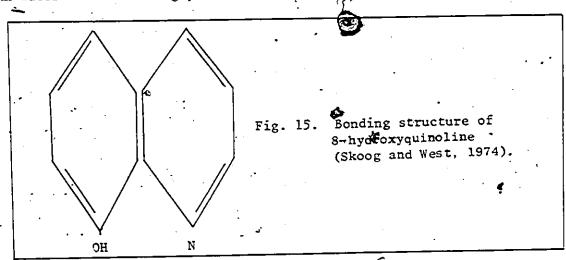
The following formula was used to calculate % SiO2:

where gravimetric factor is:

$$GF = \frac{\text{Mwt (SiO}_2)}{\text{Mwt} \left[ -(C_9H_7)_4 \quad (H_4 \text{ SiO}_4, 12MoO_3) \right]}$$
= 0.0260753

## 2. Aluminum by Gravimetry

Aluminum was determined gravimetrically on solution 'A'. The method is essentially that given by Vogel (1961) with modification. Aluminum meacts with the organic precipitant 8-hydroxyquinoline to form an insoluble delate, aluminum oxinate, in the pH range 4.5 to 9.5.


$$A1^{3+} + 3C_9H_6(OH)N: \longrightarrow A1 \left[ C_9H_6(O-)N: \right]_3(s) + 3H^+$$

Eight-hydroxyquinoline ( $C_9H_7ON$ ) oxinate, forms sparingly soluble derivatives with metallic ions such as aluminum:  $M(C_9H_6ON)_3$  (M being the metallic ion eg., Aluminum).

Urea was used for the homogeneous generation of hydroxide ions:

$$CO(NH_2)_2 + 3H_2O = CO_2 + 2NH_4^+ + 2OH^-$$

Urea was added to produce a dense readily filterable and highly pure precipitate. The solution becomes a colourless, crystalline form, insoluble in water with a melting point of  $75^{\circ}$ C -  $76^{\circ}$ C.



Precipitation is complete when the solution changes from a greenyellow to a pale orange-yellow colour. The precipitate formed was
coagulated by warming to 70°C, forming an insoluble complex with aluminum.

The 8-hydroxyquinoline decomposes at approximately 80°C.* At 70°C,
the reaction is quick and below 70°C the 8-hydroxyquinoline precipitates out.

The aluminum co-ordinates with a pair of electrons on nitrogen and on the phenoxide oxygen of each 8-hydroxyquinoline anion. In doing this, three protons are displaced and it assumes a co-ordination number of 6. Precipitation is complete as long as pH does not fall below 4.5. This is an organic precipitant and therefore a low temperature has to be used to dry it.

Hydrochloric acid was added during decomposition so that hydrogen ions would become available and no hydroxide compounds precipitate.

The acid is also added so that Al + 30H will not complex as Al(OH)₃ and lose some Al in the precipitate. The reaction occurs within a pH range of 4 to 5.

The addition of acetic acid prevents precipitation when 8-hydroxy-quinoline is added to the aluminum. The acetic acid gradually evaporated and aluminum oxinate precipitated slowly from a homogeneous solution.

Though acetic acid remained in solution to prevent excess 8-hydroxy-quinoline from co-precipitating.

The ammonium acetate is added to act as buffer, to raise the pH to 4.5 to allow a reaction to occur whereby the oxygen and nitrogen bonds to aluminum.

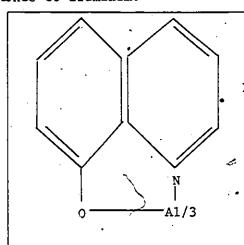



Fig. 16. Bonding a structure of 8-hydroxyquinoline to aluminum (Skoog and West, 1974).

The solution was left standing at room temperature to stabilize before filtering. The precipitate may adhere to the beaker walls, so it had to be loosened with a rubber policeman. The beakers were covered with watch-glasses to maintain some of the acetic acid in solution from totally evaporating, since some had to remain to keep the 8-hydroxyquinoline from precipitating.

The dry glass crucibles were brought to constant weight before filtering and at the final weighing. Constant weight was obtained by woling the crucibles in a dessicator so that the precipitate would not absorb water.

The crucibles with the precipitate had to be handled with tissue or gloves to minimize transfer of heat and moisture to the crucibles before weighing.

The precipitate was weighed as  $Al(C_9H_6ON)_3$ : the gravimetric factor can be calculated using the formula:

$$GF = \frac{\text{Molecular Wt. of } (Al_2O_3)}{2 \times \text{Molecular Wt. of } Al(C_9H_6ON)_3}$$
$$= 0.1109614$$

Concentrations as percent oxide are in Table 57.

TABLE 31.

GRAVIMETRIC DETERMINATION OF SILICON

SAMPLE SAMPLE VOLUME ALI	
Si02-Pure 0.1000 500 20 0.0 GA (1) 0.1000 500 20 0.0 GA (2) 0.1000 500 20 0.0 NSX-1 0.1012 500 20 0.0 NSX-2 0.1110 500 20 0.0 NSX-3 0.1044 500 20 0.0 NSX-4 0.1001 500 20 0.0 NSX-5 0.1017 500 20 0.0 NSX-6 0.1260 500 20 0.0	0040 0040 0040 0040 0040 0044 0041 0040 0040 0050

TABLE 32.

GRAVIMETRIC DETERMINATION OF ALUMINUM

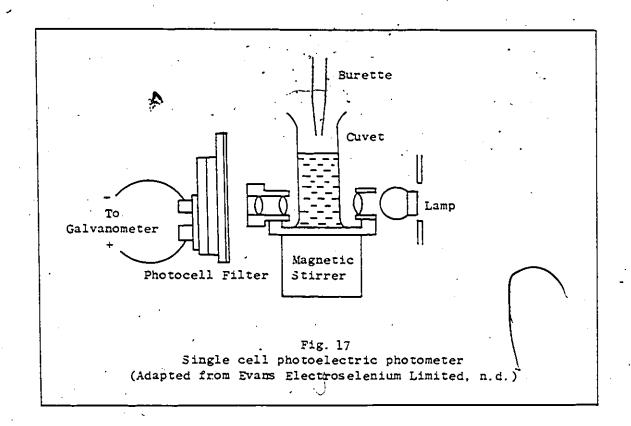
ROCK SAMPLE	WEIGHT OF SAMPLE g	TOTAL VOLUME ml	ALIQUOT VOLUME	WEIGHT IN ALIQUOT 9
AL 80 ppm SYN.G2 GA NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7	0.5000 0.5000 0.1000 0.1012 0.1110 0.1044 0.1001 0.1017 0.1260 0.1014	500 500 500 500 500 500 500 500 500	20 20 20 20 20 20 20 20 20	0.0200 0.0200 0.0040 0.0040 0.0044 0.0041 0.0040 0.0040 0.0050 0.0040

#### D. TUTRATUON

## a. Theory

Titration is a technique for determining the amount of a substance by measuring the quantity of a reagent required to react completely with a sample containing that substance (Skoog and West, 1974). The concentration of the unknown sample is obtained by comparing the unknown to a standard solution which is a reagent of exactly known composition.

The equivalence point (stoichiometric completion of the reaction) is the point wherein the standard solution becomes chemically equivalent to the substance with which it must react. It is the theoretical point when the chemical reaction becomes complete. When a distinct visible change occurs, it is the end point. The difference between the end point and the theoretical equivalence point is called the titration error.


Photometric titration is the photoelectric registration of the distinct colour change at end point. The constituent to be analyzed is a wavelength absorbing medium. The change in absorbance/transmittance of a solution is related to the change in concentration of the light-absorbing constituent. The colour change is related to the amount of light able to pass through the solution. A photocell registers the intensity of light as electric pulses. The electrical pulses are presented on the photo-extinction scale of the external galvanometer (Evans Electroselenium Limited, n.d.). Best performance of most photometers is when readings on samples fall in the range between approximately 10% to 80% transmittance.

The analytical wavelength is produced by a filter. The best filter

is one which produces the best spread of readings between a blank and a standard. The choice of filter also corresponds to a visual colour for the light beam which is complementary to that of the solution. The readings are plotted as percent reading against volume of titrant. The intersection of two straight lines on the titration curve establishes the end-point value.

Various texts extensively describe the principles of titration (eg. Vogel, 1961; Kenner and O'Brian, 1971; Skoog and West, 1971 and 1974; Willard et al., 1965).

Calculations were done on the Wang-System 2200 mini-computer. The program is listed in Appendix VI.



## b. Analytical Procedure

## 1. Total Tron by Titration

Total iron was determined by an oxidation-reduction titration on solution 'B' with potassium dichromate  $(K_2Cr_2O_7)$ , 0.01392 normal, as the oxydizing agent. It does not oxidize the chloride ion made available by the addition of hydrochloric acid. The product stays as  $Cr^{3+}$  ions' since no other stable oxidation state exists between  $Cr_2O_7^{2-}$  and  $Cr^{3+}$ . Half-cell reaction in acid solution is

$$cr_2o_7^{2-} + 14H^++6e \longrightarrow 2Cr^{3+} +7H_2o$$

Before titration, 10 ml of HCl was added to the 20 ml aliquot, to ensure reduction of iron to iron TT.

$$. \quad \text{Fe}_2\text{O}_3 + 6\text{H}_{(\text{HCl})}^+ \longrightarrow 2\text{Fe}^{3+} + 3\text{H}_2\text{O}$$

The iron is present as a chloro-complex (dark brown), and consequently used as a reduction indicator. A stannous chloride solution (10% w/v) was added drop-wise until the yellow solution turned clear.

$$\operatorname{Sn} \operatorname{Cl}_2.2\operatorname{H}_2\circ + \operatorname{HC1} \longrightarrow \operatorname{Sn}^{2+} + ----$$

The iron was reduced to the ferrous state by the reaction with tin II (stannous) chloride. After the reduction, speed was necessary in order to mevent a negative error by oxidation of ferrous iron in the acid solution by oxygen in the air.

To prevent pre-precipitation, the solution was kept warm so that the iron remained in solution (reduction).

$$\operatorname{sn}^{2+} + 2\operatorname{Fe}^{3+} \longrightarrow \operatorname{Sn}^{4+} + 2\operatorname{Fe}^{2+}$$
(excess)(yellow) (colourless  $\longrightarrow$  light green)

Tron and tin are present as chloro-complexes with the following meaction:

$$\operatorname{SnCl}_{4}^{2-} + \operatorname{2FeCl}_{4}^{-} \longrightarrow \operatorname{SnCl}_{6}^{2-} + \operatorname{2Fe}^{2+} + \operatorname{6Cl}^{-}$$

The  $FeCl_4^-$  has a yellow colour (dark brown concentrate) while  $Fe^{2+}$  is a pale green colour and colourless in the reduced solution.

Completion was marked by the disappearance of the yellow colour.

Near the end point, the reaction was slow and the stannous chloride had to be added drop-wise. To guarantee that all iron was reduced to the ferrous state, two drops of stannous chloride were added in excess. But excess stannous chloride causes errors in later steps, so the solution must be diluted before titration.

The potassium chloride formed during titration reacts with stannous tin, therefore the excess stannous chloride was removed before titration by the addition of mercury(II) chloride. On addition of mercury (II), mercury (I) chloride forms an insoluble substance which will separate from the solution as a silky, finely-divided precipitate.

$$sn^{2+} + Hg^{2+} \Longrightarrow Hg_{2}Cl_{2} + Sn^{4+}$$

The mercuric chloride was added quickly to prevent the reaction:  $sh^{+2} + Hg_2^{2+} \longrightarrow 2H_g^0 + Sn^{4+}, \text{ and the $H^0$ from oxidizing, producing high results.}$ 

If too much stannous ions are added in the reduction step, mercuric chloride reacts to form elemental mercury which in turn reacts with potassium dichromate, causing an error. Within three minutes, a finely divided, shiny white precipitate should form after the addition of mercuric chloride.

Absence of a precipitate indicates that the amount of stannous chloride was low and that all the ferric iron was not reduced. A heavy, white to grey precipitate is an indication that too much stannous chloride was added; therefore, solution should be discarded.

Immediately after the formation of the mercuric chloride precipitate, sulfuric acid, phosphoric acid and the diphenylamine indicator were added quickly to prevent air oxidation of the ferrous ion.

Sulfuric acid (5 ml of conc) was added to ensure correct acidity and provide hydrogen ions since the indicator works better in the presence of sulfate ions.

Phosphoric acid (5 ml of conc.) was added to prevent a premature colour change before the equivalence point, to act as a colour clarifier and reduce interference. Phosphoric acid forms a colourless complex  $Fe(H_2PO_4)_6^{-3}$  with ferric ions as they are produced during the reaction. The formation of the colourless complex prevents the tan colour of the  $FeCl_4^{-3}$  from obscuring the end point.

The complex also served to depress the potential of the ferric-ferrous half-cell and keep the potential at a lower value before the end point.

This caused a sharper potential break at the end point.

$$E = E_0 + .059 \log \frac{Fe^{3+}}{Fe}$$
 (concentration lowered by complexing).

Diphehylamine sulfanate (8 ml) was the redox indicator used. The indicator itself oxidized from colourless to a lavender shade. The presence of the complexed ferric ions and the green colour of the chromic ions combined with the indicator colour to form a grey to black colour just before the end point. The end point was a light purple colour which lasted for thirty seconds. Blank runs were impossible since the colour change was not sharp in the absence of iron.

$$K_2 \text{Cr}_2 \text{O}_7^{\phantom{0}} + 6 \text{Fe}^{2+} + 7 \text{H}_2 \text{SO}_4 \longrightarrow K_2 \text{SO}_4 + \text{Cr}_2 (\text{SO}_4)_3 + 6 \text{Fe}^{3+} + 3 \text{SO}_4^{2+} + 7 \text{H}_2 \text{O}$$

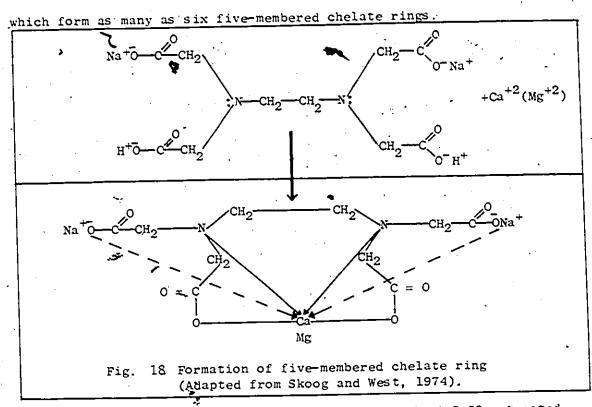
$$\text{Cr}_2 \text{O}_7^{2-} + 6 \text{Fe}^{2+} + 14 \text{H}^+ \longrightarrow 2 \text{Cr}^{3+} + 6 \text{Fe}^{3+} + 7 \text{H}_2 \text{O}$$

The above method is that of Maxwell (1968) with modification. The percent total iron (as  ${\rm Fe_2}{}^9{}_3$ ) was calculated using the formula:

 $% \text{Te}_{2} \circ_{3} \text{(T)} = \frac{\text{Vol titrant } (\text{K}_{2}^{\text{Cr}_{2}} \circ_{7})}{1000} \times \text{Normality } \times \frac{159.08}{2} \times \frac{100}{\text{Sample Wt. (g)}}$ 

where Normality was 0.01392.

Concentration of Fe₂0₃ as percent oxide is given in Table 66.


# 2. Calcium by Complexiometric Titration.

Calcium was determined on solution 'B' by an EDTA titration using an EEL photometric titrator.

EDTA is ethylenediamine tetra acetic acid disodium salt.

$$(Na^{+}OOCCH_{2}^{-})$$
  $(HOOCCH_{2})$   $N-CH_{2}-CH_{2}-N(CH_{2}COOH)(CH_{2}COO^{-}Na^{+})$ 

It forms a soluble, stable chelate and complexes with metal ions to form a 1:1 metal complex. The acid  $(H_4Y)$  is insoluble in water and is prepared as the disodium salt  $(Na_2H_2Y)$ . EDTA has donor nitrogen and oxygen atoms

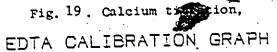


EDTA was standardized against the primary standard CaCO3, treated with HCl:

$$CaCO_3 + 2HCl \longrightarrow Ca^{+2} + CO_2(g) + H_2O + 2Cl$$

The solution was buffered with KOH to 12.5 for quantitative reaction. The buffered solution consumed liberated  $\mathrm{H}^+$  ions and prevented a reaction with other ions.

A calcium selective indicator was used; Patton-Reader's reagent--HHSNN Perlman, 1966), in preference to other metallic ions, and thus indicated a colour change when the calcium was depleted by the EDTA complex.


Interferences were overcome by adding hydroxylamine hydrochloride (10%w/v) which reduced some of the metals (particularly Fe) to a lower valence state (Maxwell, 1968). Triethanolamine (20%w/v) complexed with iron and titanium. Aluminum interferences were eliminated by buffering the solution at a pH of 12.5 with potassium hydroxide which precipitated aluminum as the hydroxide. Other interferences were eliminated by the selective indicator.

The titrations were done using an EEL photoelectric titrator with a blue-green filter (No. 603) giving the end point. Sample solution (15 ml) was titrated against 0.0018 M EDTA. The graphical solution to the end point is shown in Figs. 19 to 24.

The calculations were completed on Wang-System 2200 mini-computer.

The program for this plot is listed in Appendix VI. Percent oxides and the formula for the calculations are in Table. 76. Percent oxide was calculated by using the formula:

where (F) = 0.0001020 g of CaO/ml of EDTA



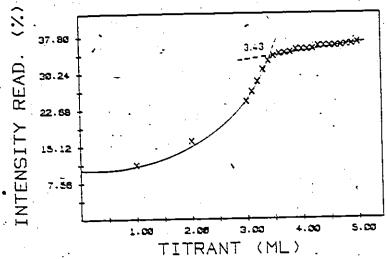



Fig. 20. Calcium titration graph for BCR-1 STANDARD SAMPLE

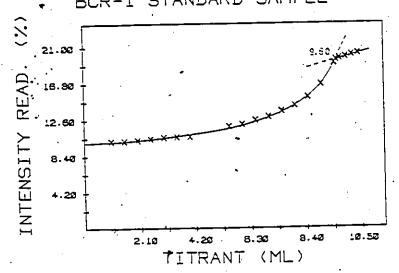



Fig. 21. Calcium titration graph for GA STANDARD SAMPLE

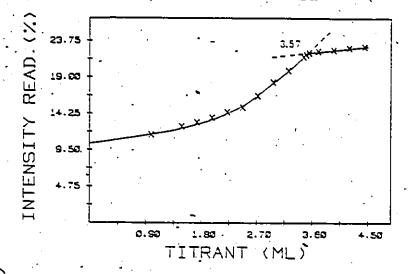



Fig. 22. Calcium titration graph for AC2-2 STANDARD SAMPLE

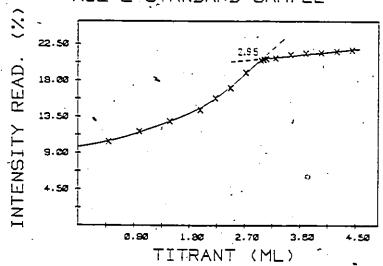



Fig. 23. Calcium titration graph for SYN.G2 STANDARD SAMPLE

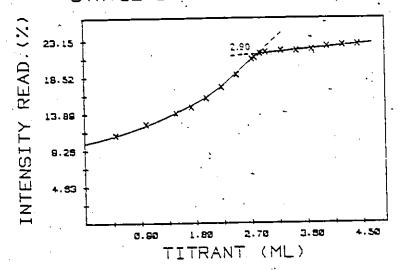
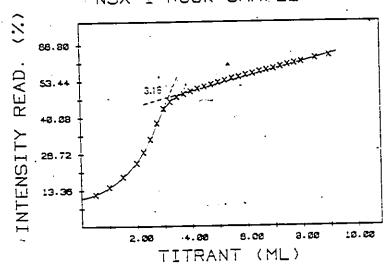




Fig. 24 Galcium titration graph for NSX-1 ROCK SAMPLE



## 3. Magnesium by Complexiometric Titration

## (i) Theory

The theory of magnesium complexiometric titration is similar to that of calcium titration, except that during the titration with EDTA, a weak calcium complex forms first. Then any free magnesium present forms a strong magnesium EDTA chelate.

$$M^{++} + H_2Y^{=} \rightleftharpoons MY^{=} + 2H^{+}$$

When these reactions are complete, a drop of EDTA solution in 'excess' extracts the magnesium from the magnesium-dye complex, liberating the free dye (green colour). The colour change at the end point is from a light red to a bright green.

The EEL titrator was used for photo-electric assessment of the end point of chemical titrations. The solution sample was titrated against EDTA using a complementary optical filter and a suitable indicator. The type of filter selected had to be compatable with the end colour of the used indicator.

Readings were shown on the photo-extinction scale of the external galvanometer. The change in the galvanometer readings were recorded for each equal addition of titrant. The galvanometer response was plotted as volume of EDTA against percent transmittance.

The end point for calcium titration is the second inflection point on the curve and in cases where the end point was vaguely defined, the average change per unit of titrant against volume of titrant added was plotted (Figs. 25 to 34).

The end point is the first positive change of the curve after the second inflection. This point should coincide with the point where the second deflection ends and a constant slope or almost constant results

begin. This point indicates a constant change in colour which may be megarded as the 'stoichiometric point'.

The tungsten lamp emits its major portion of energy near the inframed region. Only 15% falls within the visible region.

The selenium photocell increases the relative response sensitivity, being greatest for the green through yellow wavelength. The strongest wavelength of the Fraunhofer Lines for magnesium are 5183.621Å and for calcium, 4307.74Å, according to the sun's spectrum (Weast, 1975). The wavelength for the colour green is 5200Å with upper and lower limits being 5750Å and 4912Å, respectively.

The indicator was a mixture of Phthalein Purple and Methyl Red.

The maximum wavelength of the indicator is 5300Å with absorbance of

3000 above pH of 7, and with the addition of Methyl Red the sensitivity

and colour span was extended to a higher wavelength. The filter chosen

was specially made for this titration and was complimentary to Phthalein

Rurple. The filter is composed of a thin orange film sandwiched between

two layers of green polarized plastic sheets.

Eriochrome Black T was tested on a calcium and magnesium (50 µg/ml) standard and a calcium and magnesium (1000 µg/ml). Values obtained were calculated values. Shapiro (1959) found that EDTA titrations of small amounts of magnesium (0.01-2%) with high calcium, were unobtainable and proposed a rapid photometric determination with Thiazone Yellow for low magnesium rocks.

Metals such as iron, titanium, aluminum, copper, nickel, manganese and cesium mask the end point by oxidation or blockage. Interference by these metals may be lowered by adding potassium cyanide for copper and mickel, triethanolamine for iron and aluminum, and hydorxylamine for meducing oxidants.

Tron and aluminum (1000 µg/ml) were added to the calcium and magnesium (1000 µg/ml) and titrated with EDTA. Masking solution and Erio-T indicator were also added. The end point was vaguely definable. The procedure was repeated using the calcium and magnesium (50 µg/ml) and the end point did mot appear.

The same procedure was followed using Phthalein Purple mixed with Methyl Red. The results were excellent, the colour change was from a light red to a distinct bright green, at the end point. This is an innovation, developed in this study. The results from BCR-1, AC2-2, GA, Synthetic G2, and NSX 1-9 were examined and they are in close proximity to literature values and values obtained by other methods.

The above method was a modification based on Maxwell, 1968; Skoog and West, 1974; Vogel, 1961; Shapiro, 1959; Kenner and O'Brian, 1971. I believe this is a significant inovation in the determination of magnesium by complexiometric titration and it is planned to report this in an appropriate scientific journal.

Concentrations as percent oxide are in Table 82. The following is the detailed procedure:

## <u>(ii) Procedure</u>

Magnesium oxide is determined by difference as [(MgO + CaO) - (CaO)].

Reagents

- 1. EDTA solution (0.002 M). Dissolve 1.4925 g disodium salt with triple-distilled water (2 litres).
- 2. Hydroxylamine hydrochloride solution (10%). Dissolve 10 g to 100 ml with triple-distilled water.
- 3. Triethanolamine and potassium cyanide. Dissolve 64 g of KCN in 600 ml of triple-distilled water. Add 400 ml of triethanolamine.
  - 4. Ammonia ammonium chloride buffer. Dissolve 68 g of  $NH_LC1$  in 200

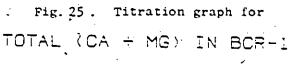
ml of triple-distilled water, add 570 ml of NH₄OH. Dilute to 1 litre with triple-distilled water.

5. Phthalein Purple indicator (Phthalein complexore). Mix thoroughly by grinding in porcelain mortar: 0.1 g of Phthalein Purple, 0.075 g of Napthol Green-B, 0.005 g of Methyl Red and 10 g of KCl.

#### Method

- L Pipet a suitable aliquot of salution 'B' (15 ml) into a 60-ml EEL reaction vessel. Drop in a miniature bar magnet.
- 2. Add 2 ml of hydroxylamine hydrochloride solution and stir.
- 3. Add 10 ml of ammonia ammonium chloride buffer to obtain a pH > 10.5.
- 4. Add 5 ml of metal masking reagent (triethanolamine and potassium cyanide) and stir.
- 5. Add approximately 0.5 mg of Phthalein Purple, i.e. until the galvanometer reading drops to ten percent transmittance with polarized green filter, as described above.
  - 6. Titrate against 0.002 M EDTA, using the EEL colourimetric titrator with the green filter.
  - 7. Record titer and galvanometer reading every .25 ml, until colour change is imminent. Continue recording every .05 ml until the colour change is complete and the galvanometer indicates an almost constant response.
  - 8(a) End point is deduced from a graph of the volume of EDTA titrant against percent transmittance.
    - (b) The end point is the second inflection of the curve but for vague end points or more precise work, end point may also be deduced by plotting average change per unit of titrant added (galvanometer reading) against volume of titrant added. The first upward deflec-

tion, after the largest per unit average change, indicates the equivalence point (eg. Fig. 25). This should coincide with the inflection point deduced from interpretation method 8(a).


Standardization of EDTA: 5 ml of a standard solution (50 ppm each of calcium and magnesium). A titer of approx 4 ml should result. Calculate a factor, x, for 1 ml of EDTA = x grams of magnesium.

1 ml of 0.01 M EDTA = 0.0002432 g Mg (Voge1, 1961)

1 ml of 0.0018453 M.EDTA 
$$\equiv \frac{0.0002432 \times 0.0018453 \times 1.6579 \text{ g MgO}}{0.01}$$

= 0.0000742 g Mg9

$$Z MgO = \frac{\left[V_{01}, (CaO + MgO) - Vol., (CaO)\right] :: 0.0000742 \times \frac{Samp. Vol.}{Aliquot} \times 100}{Sample Weight}$$



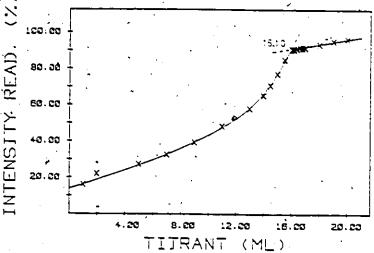
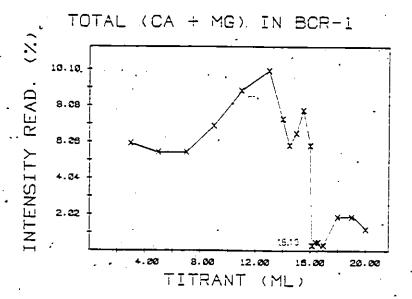
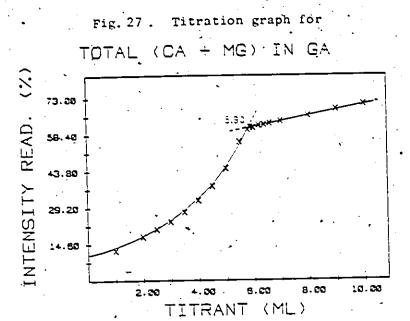





Fig. 26. Titration graph (average change per unit) for





TOTAL (CA + MG) IN GA

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80

10.80



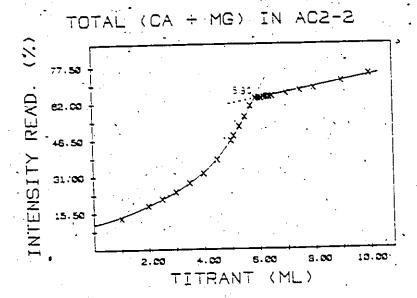
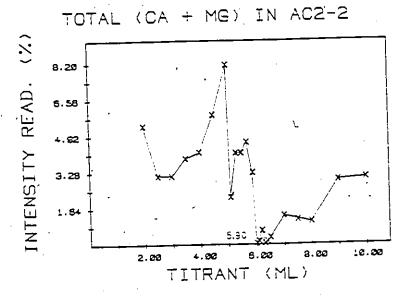




Fig. 30. Titration graph (average change per unit) for



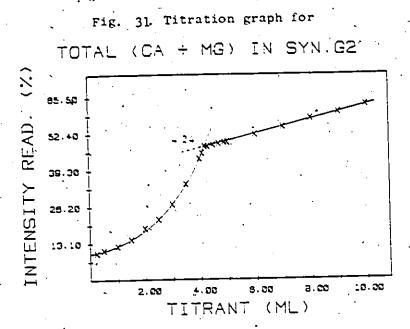
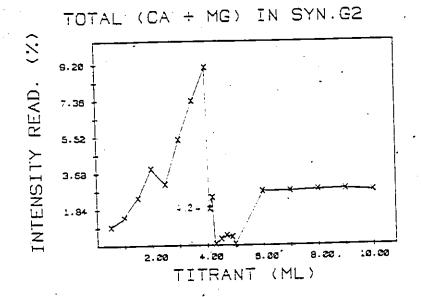




Fig. 32 . Titration graph (average change per unit) for



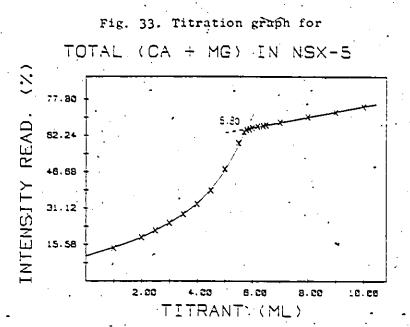
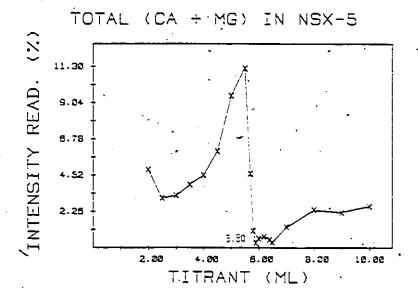




Fig. 34. Titration graph (average change per unit) for



#### E. SPECTROPHOTOMETRY

#### a. Theory

Spectrophotometric methods are based on the absorption of electromagnetic radiation. Electromagnetic energy is transferred to the constituents of the sample solution, resulting in the atoms being promoted from their ground state to a higher, excited state. As is the case with atomic desorption, there is a relationship between excited—and ground—state atoms. Atoms in the ground state absorb energy which corresponds to their own spectral lines.

When a beam of monochromatic radiation passes through a sample solution of an absorbing species, the radiant power of the beam is progressively meduced, as part of the energy is absorbed by the particles of that species.

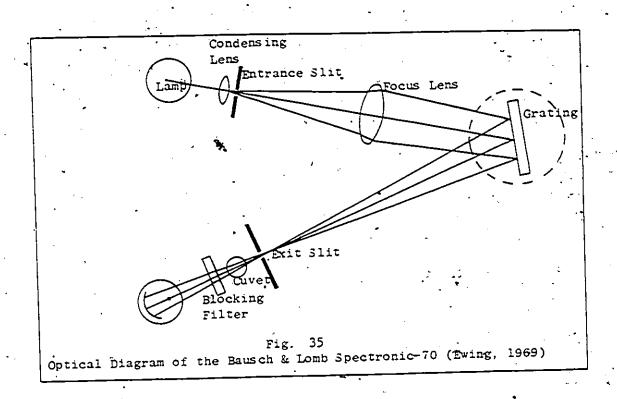
Decrease of intensity is dependant upon the concentration of the substance responsible for the absorption and upon the length of the path travelled by the beam (Skoog and West, 1974). The above relationships are expressed by Beer's Law, which has been discussed in the section on Atomic Absorption Spectroscopy.

There are two difficulties involved: (a) true absorption curves cannot be determined and (b) Beer's Law is not always followed, therefore the apparent absorptivity will vary with both concentration and instruments. The above difficulties are overcome by using a monochromator capable of isolating a distinct narrow band of wavelengths.

The instrument 'Spectronic 20' is extensively used for the visible region, 340nm to 625nm (it is capable of extension to 950mm by changing the

mototube). This is a single-beam instrument using a vacuum phototube as detector.

The Spectronic-70 instrument was used in this thesis (Fig. 35):


It is similar to the Spectronic-20 without the reference phototube and mask.

All calculations were performed on the Wang-System 2200 mini-computer.

The program is listed in Appendix V: The percent oxides were derived from the general formula:

Z Oxide = 
$$\frac{\text{Conc. x } \forall \text{t x } \forall \text{d x } \text{CF x } 10^{-4}}{\text{Wt. of Sample x } \forall \text{a}}$$

where Conc. is the concentration of the analyte in µg/ml; Vt is the total wolume of the sample solution in ml; Vd is the diluted volume in ml; Va is the aliquot volume in ml and CF is the conversion factor (Appendix TV).



#### b. Analytical Procedure

#### 1. Silicon by Spectrophotometry

Silicon was determined on solution 'A'. Solution 'B' could not be used because silicon escaped during the dissolution; solution 'JA' also could not be used because the boric acid interfered with colour development.

Dissolved silicic acid reacted with a molybdate solution in an acid medium, resulting in a yellow silicomolybdic complex: Si(Mo₁₂O₄₀) (Tetley, 1974). Measurements were made on the reduced complex, molybdenum blue. Reduction was accomplished by the addition of sodium sulfite in 1-ammino-2-naphthol-4-sulfonic acid (Vogel, 1961). A wavelength of 650 nm was used for maximum absorbance. The molybdenum blue complex required time and stability to form; therefore, the solutions were allowed to stand overnight.

Phosphorous interfered by developing a phosphomolybdate complex. The addition of (10%) tartaric acid reduced that interference. The tartaric acid had to be added after the silicomolybdate complex formed and before the reduction to the molybdenum blue complex.

An aliquot of the concentrated solution 'A' (10 ml) was transferred to a 200-ml volumetric flask. To this was added 25 ml of sodium fluoride, 4 ml of ammonium molybdate and 50 ml of triple-distilled water. The mixture was swirled and allowed to stand for 10 min. To obtain the proper pH, 10 ml of tartaric acid was added. Finally, 3 ml of reducing solution were added and the flask was made up to volume with triple-distilled water.

The calibration graph is Fig. 36. Absorbance readings are in Tables 33 and 34. Concentrations as percent oxide are listed in Table 46. Since Beer's Law gives a straight line, only two points were required for calibration of ionic standards.

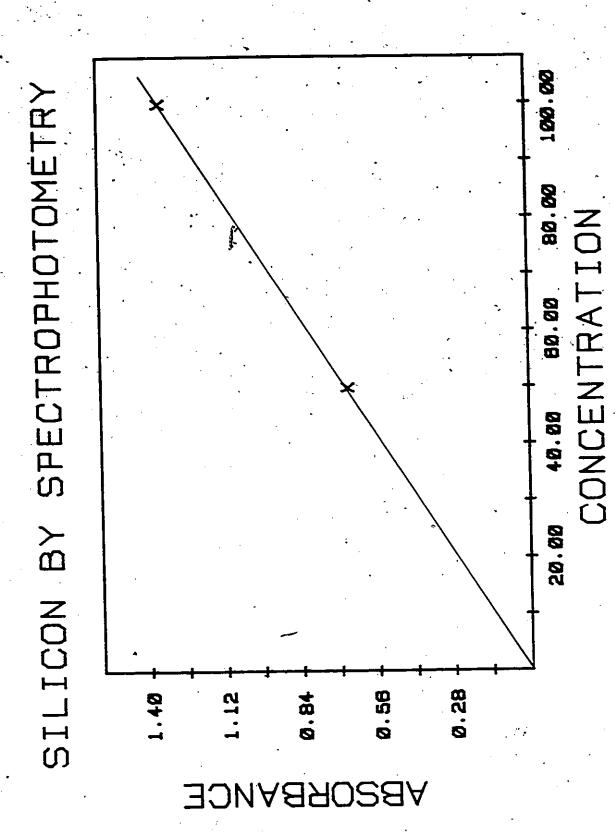



Fig. 36 Calibration curve for silicon (on solution 'A') by spectrophotometry  $(\mu g/m 1)$ 

TABLE 33 . IONIC STANDARDS FOR

#### SILICON. BY SPECTROPHOTOMETRY

INSTRUMENT MAKE WAVELENGTH MODE		WORKING CONDIT	St	PECTRONIC 70 AUSCH & LOMB 650.0 nm ABSORBANCE
CONC. OF STANDARD ug/ml	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
50	0.705	3	0.703	0.670
100	1.390	<b>.</b> 3	1.390 '	1.357

THE SLOPE IS 0.0135
THE INTERCEPT IS -0.0040
THE CORRELATION COEFFICIENT IS 1.00000

TABLE 34.
SILICON IN SOLUTION 'A' BY SPECTROPHOTOMETRY

ROCK SAMPLE	ACTUAL READING 4	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
GA SiO -Pure NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 BLANK	0.933 1.233 0.927 1.020 0.950 0.923 0.937 1.150 0.923 0.033	3 3 3 3 3 3 3 3	0.900 1.230 0.894 0.987 0.917 0.890 0.904 1.117 0.890 0.000	0.900 1.230 0.894 0.987 0.917 0.890 0.904 1.117 0.890 0.000

#### Aluminum by Spectrophotometry

Aluminum was determined spectrophotometrically on solution 'A', as the alizarin red-S complex (sodium alizarin-3-sulfonate)(Turek, 1973; Turek and Riddle, 1977). Solution 'A'. had to be used for the determination of aluminum due to the extinction of the slope of the graph (Log I./I. vs Conc.) above the concentration of 3 ppm. This was due to the precipitation of the complex (Tetley, 1974). Above this concentration, a further proportionally increased intensity would not occur, as Beer-Lambert's Law was not followed (Ewing, 1969). The concentration of the solution had to lie on the straight line portion of the graph (before the inflection occurs). It was impossible to achieve this, and hence dilutions were required.

The alizarin-coloured complex  $A1^{+3}$  +  $nAzH \longrightarrow A1Az_n$   $(3-n)^+$  +  $nH^+$  was a red colour with maximum absorbence at 475 nm. The procedure used was a modification by Turek and Riddle (1977) of the method originally described by Shapiro and Brannock (1962).

Tron (III) strongly interfered by forming a green-coloured complex with alizarin sulfonate. The absorption peak overlapped the aluminumcalcium-alizarin complex peak, but this interference was eliminated by reducing Fe (III) to Fe (II). Ferrous iron then reacted with thioglycolic æid to form a blue complex, thereby eliminating the interference.

Calcium interfered by producing a calcium-alizarin complex which enbanced the absorption of the complex formed (Tetley, 1974). Between a pH 3.9 and pH 4.6, the complex has a ratio of 2:1 for aluminum to alizarin sulfonate and a ratio of 1:1 for calcium-alizarin sulfonate. The calcium interference was thus used to enhance the intensity of the complex. The solution was buffered to pH 4.2 with sodium acetate-acetic acid to ensure that all the aluminum present would form a complex, whereas calcium could mt form a complex under these pH conditions.

Lithium borate and silicon interfered by enhancing the colour but this interference was negligible (Tetley, 1974).

Seven ml of solution 'A' were pipetted into a 100-ml volumetric flask along with 2 ml of CaCl₂ (14%), 1 ml hydroxylamine hydrochloride (10%), 1 ml of potassium ferricyanide solution and allowed to stand for 5 minutes, 10 ml of buffer solution was added and allowed to stand for 10 minutes. Finally, 10 ml of alizarin red-S solution (0.05%) was pitetted in; the flask was made up to volume with triple-distilled water, mixed and allowed to form a stable colour (3 hours).

A set of standards and a blank were perpared at the same time as the sample solutions. Absorbance readings were obtained at 475 nm (Tables 35 and 36).

A calibration graph of the standards was plotted (Fig. 37). The concentrations were deduced from the straight line portion of the curve before the flattening of the curve. Concentrations as percent oxides are listed in Table 55.



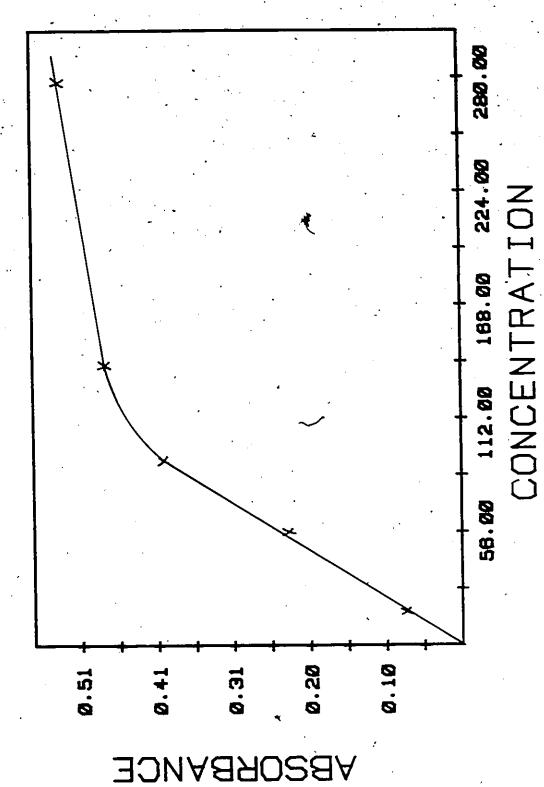



Fig. 37

Calibration curve for aluminum (on solution 'A') by spectrophotometry

(µg/ml) / 100 ml

### TABLE 35 . IONIC STANDARDS FOR ALUMINUM BY SPECTROPHOTOMETRY

INSTRUMENT MAKE WAVELENGTH MODE		WORKING CONDIT	TIONS	SPECTRONIC 70 BAUSCH & LOMB 475.0 nm ABSORBANCE
CONC. OF STANDARD µg/ml	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
5	0.439	3	0.075	0.075
10	0.600	3	0.230	0.230
15	0.768	. 3	0.397	0.397

THE SLOPE IS 0.0244
THE INTERCEPT IS -0.0102
THE CORRELATION COEFFICIENT IS 0.99358

SLOPE DERIVED FROM STRAIGHT PORTION OF CURVE USING FURST 3 POINTS

TABLE 36.

#### ALUMINUM BY SPECTROPHOTOMETRY

ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
GA SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 BLANK	0.628	3	0.258	0.258
	0.639	3	0.266	0.266
	0.688	3	0.318	0.317
	0.721	3	0.353	0.352
	0.660	3	0.290	0.290
	0.650	3	0.285	0.281
	0.640	3	0.272	0.270
	0.783	3	0.412	0.413
	0.660	3	0.288	0.288
	0.370	3	0.000	0.000

#### 3. Total Tron by Spectrophotometry

Total iron was determined spectrophotometrically as the red ferrous bipyridine complex--2,2'-bipyridine (Riley, 1958).

The complex ion contained three molecules of bipyridyl in which the six co-ordination positions of iron were occupied by nitrogen atoms. The colour system obeyed Beer's Law, independent of the pH (range 1.5 to 12). Reduction to iron UV valence state from iron UU in the sample was done by the addition of hydroxylamine hydrochloride. The solution was buffered with sodium acetate to a pH range of 4.8 to 5.0.

Copper, molybdenum and silver interfere at levels greater than 5, 7 and 5 ppm, respectively, but these elements were not in sufficient concentrations in the samples in this thesis to cause any appreciable interference.

All solutions were prepared at the same time. Concentrations were deduced. from the graph (Fig. 38). Absorbance readings are given in Table 37.

Oncentration as percent oxides are listed on Table 65. Percent transmittance is given in Table 38.

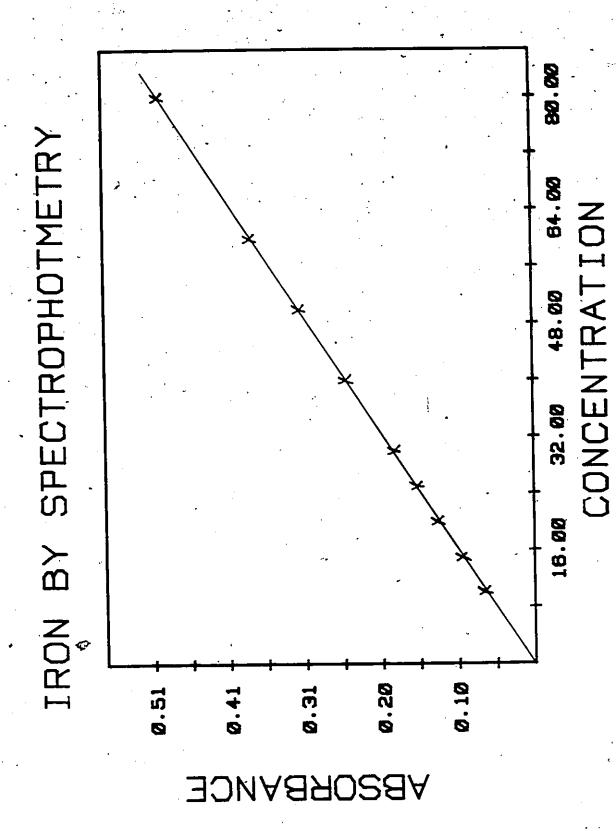



Fig. 38 Calibration curve for total iron (on solution''B') by spectrophotometry (µg/ml)

TABLE 37 . IONIC STANDARDS FOR IRON BY SPECTROPHOTOMETRY

INSTRUMENT MAKE WAVELENGTH MODE		WORKING CONDIT		SPECTRONIC 70 BAUSCH & LOMB 524.4 nm ABSORBANCE
CONC. OF STANDARD ug/ml	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
10	0.070	6	0.071	0.060
15	0.102	6	0.101	0.090
20	0.135	6	0.134	0.120
25	0.163	6	0.162	0.150
30 .	.0.195	6	0.194	0.190
40	0.260	6	0.260	0.250
50	0.325	6	0.323	0.310
60	0.390	6	. 0.389	0.380
80	0.512	6	0.512	0.500

THE SLOPE IS 0.0064
THE INTERCEPT IS -0.0009
THE CORRELATION COEFFICIENT IS 0.99997

TABLE 38.

#### IRON BY SPECTROPHOTOMETRY

ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING - A
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5	0.582 0.125 0.188 0.123 0.188 0.188 0.188	12 12 12 12 12 12 12 12	0.581 0.125 0.187 0.122 0.187 0.188 0.183 0.185	0.576 0.121 0.182 0.118 0.182 0.183 0.178 0.181
NSX-6 NSX-7 NSX-8 NSX-9 BLANK	0.185 0.183 0.183 0.180 0.180 0.005	12 12 12 12 12 12	0.184 0.183 0.183 0.180 0.180 0.000	0.179 0.178 0.178 0.175 0.175 0.000

#### 4 Manganese by Spectrophotometry

Manganese was determined spectrophotometrically on solution 'B'. using the method described by Willard et al. (1965) with some modification. Usually, a mild oxidizing agent such as 0.5 g of ammonium persulfate would have been added to oxidize carbon compounds, but because oxidizing had already taken place during dissolution, this step was omitted.

An aliquot of solution 'B' (10 ml) was pipetted into 50-ml volumetric flasks. Five ml of 85% phosphoric acid were added to complex  $Fe^{+3}$ , which was necessary to prevent the absorption of visible light and render the solution colourless. Manganese (IT) was oxidized to manganese (VII) by the addition of 0.2 g potassium periodate (KIO $_{\Lambda}$ ).

$$2Mn^{+2} + 5\pi0_4^- + 3H_2^0 \longrightarrow 2Mn0_4^- + 6H^+ + 5\pi0_3^-$$

The solutions were warmed for ten minutes to increase the reaction rate and increase the solubility of potassium periodate. After cooling, the flasks were made up to volume with triple-distilled water, shaken and then allowed to stand for four hours to stabilize the pink colour.

· Standards were prepared at the same time as the sample solutions. Absorbance readings were taken at 545.0 nm which is the region of maximum absorbance (Table 39)

The readings, working conditions and range of the standards are listed in Appendix  $\tau$ .

A calibration curve of the standards is in Fig. 39 and results are given in Tables 39 and 40. Concentrations as percent oxide are in Table 97.

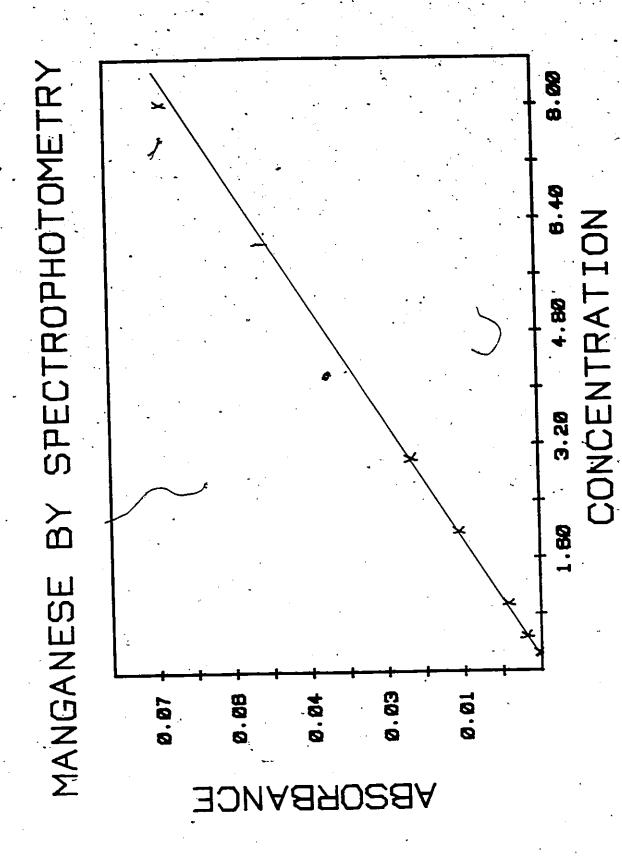


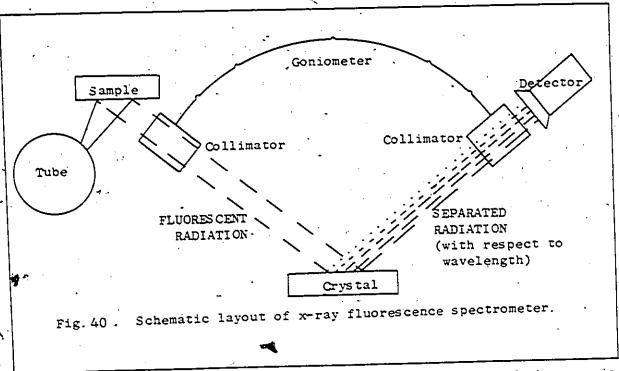

Fig. 39 Calibration curve for manganese by spectrophotometry (µg/ml)

TABLE 39 . IONIC STANDARDS FOR MANGANESE BY SPECTROPHOTOMETRY

	-	`		
INSTRUMENT MAKE WAVELENGTH MODE		WORKING CONDIT	TIONS	SPECTRONIC 70 BAUSCH & LOMB 545.0 nm ABSORBANCE
CONC. OF STANDARD Ug/ml	ACTUAL READING A	ANALYSIS REPEATS	ZERO CORRECTED A	AVERAGE READING A
.25	0.000	6	0.000	0.000
•5 ·	0.001	6	0.002	0.002
1	0.006	- 6	0.005	0.005
. 2	0.013	6	0.014	0.014
. 3	0.022	, * 6	0.022	0.022
. 8	0.064	6	0.064	0.064
_				

THE SLOPE IS 0.0080
THE INTERCEPT IS -0.0014
THE CORRELATION COEFFICIENT IS 0.99834

TABLE 40.


MANGANESE BY SPECTROPHOTOMETRY

ROCK SAMPLE	ACTUAL READING A	ANALYSIS REPEATS	BLANK & ZERO CORRECTED A	AVERAGE READING A
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-8 NSX-9	0.030 0.020 0.009 5.000 0.010 0.008 0.009 0.009 0.009 0.010 0.009	10 10 10 10 10 10 10 10 10	0.022 0.010 0.009 0.004 0.009 0.008 0.008 0.008 0.009 0.009	0.022 0.010 0.009 0.004 0.009 0.008 0.008 0.009 0.009 0.009

#### F. X-RAY FLUORESCENCE SPECTROSCOPY

#### a. Theory

The technique of x-ray fluorescence is based upon the fact that;
when a beam of electrons of sufficient energy strikes the surface of any
matter secondary (fluorescence) x-rays are emitted by the sample (Norrish



and Chappell, 1967). This secondary radiation is composed of characteristic wavelengths of each element present. A collimator is used to direct a parallel beam of secondary radiation onto an analyzing crystal which separates wavelengths. A second collimator directs the reflected wavelengths into a radiation detector which is connected to a goniometer. The goniometer and the angular position of the cristal is a function of the wavelength. The intensity of radiation of each wavelength is proportional to the concentration of the corresponding element. The detector converts the x-rays into a series of electrical pulses which register on a counter as 'counts per second'. In order to yield the

'true' count rate which is proportional to the concentration of the element being analyzed, the measured intensity must be corrected for various effects. Dead time corrections and background correction is required. For major rock analysis matrix correlations are also essential.

All above corrections and calculations were made on a Monroe 344 for silicon, aluminum, iron, calcium and potassium determinations. Magnesium and manganese calculations as well as corrections for quartz were made on a Wang-System 700 Series mini-computer. The programs are listed in Appendix W. The analytical conditions are given in Appendix T. Concentration as percent oxides are listed in Table 41. In this study all x-ray analyses were made using a Philips PW140 x-ray spectrometer.

#### b. Analytical Procedure

The procedure follows the established methodology in this laboratory. It is essentially identical for all elements determined—silicon, aluminum, but al iron, calcium, magnesium, potassium and manganese. Sodium could not be determined by x-ray fluorescence, because sodium escapes due to the high temperatures in the formation of the glass bead (as described in the section on the Preparation of X-ray Fluorescence Glass Pellets). Sodium, however, could be determined by x-ray fluorescence but it must be in the form of mock powder pellets. X-ray fluorescence is a comparative technique; all analyses were made using GA as a standard.

Variations between procedures took the form of instrumental adjustment. Working conditions (instrumental adjustment) are listed in Appendix I.

The analytical results for all the x-ray determinations are, unlike the treatment of other analytical data, given below in one table (Table 41).

Matrix corrections were performed on the IBM 360 computer.

TABLE 41.

PERCENT OXIDE FOR X-RAY FLUORES CENCE DETERMINATION

Sample	Si	Al	Fe	Ca	Mg	К	Mn ·
GA (Lit.)	69.9000	14.5000	2.8300	2.4500	0.9500	4.0300	0.0900
GA,	70.5600	14.6610	2.9000	2.4800	0.9500	4.0100	0.0900
NS X-1	70.7870	15.4020	4.3890	2.1260	1.1930	3.8710	0.0760
NS X-2	71.1450	15.0790	4.3770	2.1120	2.1990	3.8830	0.0850
NS X-3	72.2950	15.6340	4.4380	2.1280	1.1880	3.9030	0.0850
NS X-4.	70.1970	15.3350	4.4380	2.1280	1.1880	3.9030	0.0850
NS X-5	71.7990	15.6140	4.3300	2.1180	1.1720	3.8900	0.0850
NS X-6	71.2510	15.7180	4.2630	2:1130	1.1730	3.9020	0.0900
G-2	70.874	15.684	2.9000	1.4030	0.8500	4.4460	0.0340
BCR -1	55.996	14.3910	13.1520	6.8700	3.4500	1.7610	0.1780
NBS-70	70.5970	18.9330	0.3260	0.1570	0.0790	11.1720	0.0030
MRB-S.	76.6100	12.3900	1.9490	0,5740	0.2810	3.6750	0.0210
x	71.2400	15.4600	4.3500	2.1000	1.3400	3.8800	0.0800
. Var .	0.4545	0.0474	0.0030	0.0016	0.1443	0.0002	0.0000
÷.	0.6700	0.2100	ó.0500	0.0400	0.3700	0.0100	0.0000
c.v.	0.9500	1.4100	1.2700	1.9300	28.1600	0.4200	4.9600
Rej. Val.	nil	nil	nil	nil	nil	nil	nil

 $[\]bar{x}$  is the arithmetic mean, Var is the variance,  $\sigma$  is the standard deviation, C.V. is the coefficient of variation and Rej. Val. is the rejection value.

#### V. STATISTICAL TREATMENT OF RESULTS

#### A. INTRODUCTORY STATEMENT.

Relatively elementary statistical treatment and testing of data was required in this study. The following are the definitions of terms, functions and equations. A more extensive approach to statistics can be found in numerous texts, eg. Brookes, et al. (1966), Kenney and Keeping (1954), Koch and Link (1970), Moroney (1965), Weinberg and Schumaker (1969) and Wine (1964).

#### B. TERMINOLOGY AND DEFINITIONS

a. Accuracy is the proximity of the measurements to the 'true' or 'actual' value of the quantity being measured.

$$Acc = (x - \bar{x})$$

where x is the 'true' value and  $\bar{x}$  is the mean. Accuracy is difficult to measure, as the 'true' value x is seldom known but inferred.

- b. Precision is the extent to which the results of a series of determinations are scattered about the mean value. The parameters by which precision can be described are: standard deviation, variance, coefficient of variation and relative standard deviation.
- c. Arithmetic Mean (x) is the measure of the central tendency of a population. It is the value obtained by adding the terms and dividing their sum by the number of terms.

$$\bar{x} = \frac{1}{n} = x_i$$

$$n \quad i=1$$

where  $\bar{x}_i$  is the individual term and n is the total number of terms.

d. Slope is a line. The slope of a calibration curve is obtained by the least square simple regression with y regressed on x for no error in x. The equation of this line is: y = mx + b, where m is the slope and b is the intercept:

$$m = \frac{\leq (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\leq (x_{i} - \bar{x})^{2}}$$

where  $\bar{x} = x/n$  and  $\bar{y} = y/n$ 

e. Standard Deviation (S.D.) is a measure of dispersion or variability.

It is the average value of the deviations from the mean.

S.D. = 
$$\begin{bmatrix} 1 \\ -\infty \end{bmatrix} (x_1 - \overline{x})^2$$
 (S.D. of a sample of a population)

#### f. Confidence Limits

The standard deviation ( $\sigma$ ), determined for a number of samples (n), with a mean result ( $\bar{x}$ ), indicates that there is a 95% chance that the true value of the mean for this sample lies within the values  $\bar{x} + 1.96 \, \sigma / \sqrt{n}$ . This range is known as the '95% confidence interval', and it provides a convenient estimate of the reliability of the mean.

<u>coefficient of Variation (C.V.)</u> is a measure of relative dispersion and is calculated as follows:

$$c.v. = \frac{c}{\bar{x}} \times 100$$

- h. Variance  $(\overline{Var.})$  is the mean of the squared differences from the mean of the distribution. It is the standard deviation squared.  $\overline{Var.} = (S.D.)^2$
- i. Correlation Coefficient (r) is a precise measure of the manner in which two variables correlate (Weinberg, 1969). It is calculated by the

correlation of the line of best fit (m and b in the equation y=mx+b) with the individual data points

$$r = \frac{z (x_{i} - \bar{x}) (y - \bar{y})}{\sqrt{z (x_{i} - \bar{x})^{2} z (y_{i} - \bar{y})^{2}}}$$
 (Wine, 1964)

A correlation coefficient of +1.000 indicates a perfect positive correlation, while a correlation of -1.000 indicates a perfect negative correlation.

#### j. Rejection of Values

Values may be rejected on the basis of the sample value being significantly different from the rest of the population. The rejected value referred to as an 'outlier'. Several criteria for rejection of outliers may be used, perhaps the most commonly used criteria is the 95% confidence range, or mughly two standard deviations. The rational for rejection is not necessarily that a value is wrong, but that it does not belong to this sample of the population. The following tests were used in this correction. Table 42 shows the values rejected using this equation—only two determinations were rejected.

L Sample set: "Student's t-distribution" tests the hypothesis that an individual measurement does not belong to this sample set; the equation used is:

t (calc.) = 
$$\frac{\left| \overline{x} - x_i \right| \sqrt{(n-1)}}{S.D.}$$

where  $\bar{x}$  is the sample set mean,  $x_i$  is the measurement being tested and S.D. is the standard deviation. The procedure is repeated until values are no longer rejected.

2. Population Set: Outliers are rejected from a population if they are 2* or away from the mean.

Rejected Value = < 2* >

where or is the standard deviation of a population. This method was used in 'cleaning' the SY-2, SY-3 and MRG data (Abbey, 1975; Abbey, 1976).

#### k Significance by Comparison of Sample Means to a Population

The mean values of concentration as percentage oxides in the 'in-house' standard NSX rock sample, generated by the various analytical methods, were compared by the use of the "Student's t-test".

$$t(calc.) = \frac{\left| \bar{x} - \bar{x} \right| \sqrt{(n-1)}}{\sigma}$$

where  $\overline{X}$  is population mean,  $\overline{X}$  is a sample mean and  $\overline{G}$  is the standard deviation. If t(calc.) is greater than t(Tables), then it may be concluded that the means are significantly different at the 5% significance level and there exists a bias between them.

#### Significance by Comparison of Variances

Snedecor's f-test was applied to determine if there are any significant differences (at the 5% level) in precision.

$$f = \frac{\text{Var.}_1}{\text{Var.}_2}$$

where  $Varl_1 > Var._2$  and the degrees of freedom used is d.f. = (n-1).

A difference in precision exists wherever the calculated f value exceeds the tabulated value for a given level of significance.

#### m. Significance by Comparison of Means

The t-test was applied to determine the existence of a bias between individual mean values of concentration obtained by the different methods.

$$t - (calc.) = \frac{\left| \overline{x}_1 - \overline{x}_2 \right|}{\sqrt{var_1 + var_2}}$$

where  $\bar{x}_1$  and  $\bar{x}_2$  are the sample means and  $\text{Var}_1$  and  $\text{Var}_2$  are the variances, respectively.

The degrees of freedom used are:

$$K = \frac{\frac{(\text{Var}_1)^2}{\text{N}_1^{-1}} + \frac{(\text{Var}_2)^2}{\text{N}_2^{-1}}}{(\text{Var}_1 + \text{Var}_2)^2}$$

A bias exists wherever the calculated t-value exceeds the tabulated value of a given level of significance.

TABLE 42

#### REJECTION TEST FOR NSX SAMPLES (% Oxide in Sample Solutions)

Me thod*	Statistics**	S1 Solution A	Al Solution A	Al Solution B	Fe	Ca.	Mez=	VET:	Уa	, κ	Atn
22	N N	67,880	.7 15.870	9 15,340	9 1.070	9 2.040	9 0.950	9	9 3.460	9 4. 290	9 0.080 ′
•	Vār C.V. Rej. Val.	0.004 0.060 0.090 nil	0.334 0.570 3.640 nil	0,055 0,230 1,500 nil	0.009 0.090 2.350 nil	0.007 0.000 3.990 mil	0.000 0.020 2.840 nil	0.001 0.030 3.340 nil	0.167 0.400 11.790 nil	0.040 0.200 4.660 n#1	0.000 0.000 5.880 nil
FE	X V2r C.V. Rej, Val.								9 3,890 0,002 0,040 1,040 4,140	9 4.140 0.028 0.160 4.070 nil	
SP.	N X Var G.V. Rej. Val.	70.090 0.135 0.360 0.520 nil	7 15,840 0,492 0,700 4,420 mil		9 3.980 0.003 0.050 1.480 n11						9 0.070 0.000 0.000 1.100 0.080
7	N X Var C.V. Rej. Val.				8 4,450 0,001 0,030 0,770 n11	9 2.160 0.000 0.010 0.510 nil	9 1.210 0.008 0.080 7.400 nil				
G	N Vār T C.V. Rej. Vil.	68,670 0.372 0.600 0.890 nil	15.890 0.056 0.230 1.490 mil				_		•		
			1	cide in Glass	Pellet	:s)		6		6	6
XRF	N X Var G C.V. Rej. Val.	6 71,240 0,455 0,670 0,950 n:1	15. 0. 0	3 ,460 ,047 ,210 ,410	4.350 0.003 0.050 1.270 n11	2.100 0.002 0.040 1.930 mil	0. 0. 28.	340 .144 .370 .160	,	3.880 0.000 0.010 0.420 mil	0.080 0.000 0.000 4.960 nil

*Method: where AA is atomic absorption, FE is flame emission. SP is spectrophotometry. T is titrimetry. G is gravimetry and NRF is x-ray fluorescence.

--Statistics: where N is number of sample, X is arithmetic mean, Var is variance, T is standard deviation for a sample, set, C.V. is the coefficient of variation and Rej. Val. is rejected value.

**Mg: Magnesium without lanthanum oxide.

TIME: Magnesium with lanthanum oxide.

#### VI. EVALUATION OF ANALYTICAL RESULTS

#### A. SILICON

Silicon was determined by the following methods: atomic absorption, spectrophotometry, gravimetry and x-ray fluorescence. By atomic absorption, silicon was determined on the two solutions 'A' and 'JA'. The results are comparable for the two solutions. All the analytical results for SiO₂ determined on the NSX subsamples by the four different methods are given in Tables 43 to 47. Each table also gives the values for the control standards. CA, pure SiO₂, BCR-1, AC2-2, G-2, NBS-70 and MRB-S. The mean, variance and standard deviation in each table refers to the NSX subsamples. No values were rejected.

From the above tables, it is obvious that in terms of accuracy and precision, atomic absorption gives the best value. It is closest to the mecommended value and has the lowest standard deviation. The following tabulation summarizes the results:

	AA	SP .	G	XRF
Average % SiO ₂ in NSX	67.88	70.09	68.67	71.24
S.D.	0.06	0.36	0.60	0.67
Rec'd Value	.67.54 (Î	urek <u>et al</u> .,1978)		

In the determination of SiO₂ by atomic absorption, there is an analytical problem in that burner clogging due to formation of silicon carbide occurs, a condition that must be monitored or else loss of signal occurs. Also the use of a nitrous oxide as support gas produces a noisy signal. The gravimetric method is of course very exacting and time-consuming. The spectrophotometric determination of silicon is relatively simple but delay time for colour development is an inconvenience. In x-ray fluorescence determination the choice of a suitable standard to closely match the unknown is very important.

It should be noted that gravimetric and spectrophotometric methods also measure the proxying elements (eg. Ga and Ge) while atomic absorption and x-ray fluorescence are metal specific and should yield lower values than dhemical methods.

The statistical comparison of the results obtained by the four methods has been evaluated using F- and t-tests (Tables 48 to 53). F-test of variances shows that precision by atomic absorption is significantly better than by the other three methods. Comparing the means using the t-test the stomic absorption and gravimetric values are not significant at the 5% level, however, the atomic absorption values are significantly different from spectrophotometry and x-ray fluorescence. These differences, therefore, demonstrate that there is a bias between the methods, and atomic absorption appears to be the most accurate and precise method.

TABLE 43.
SILICON IN 'JA' BY ATOMIC ABSORPTION

BCR-1 54.39 GA 68.73 AC2-2 67.50 NSX-1 67.42 NSX-2 67.40 NSX-3 67.40 NSX-4 67.49 NSX-5 67.41 NSX-6 67.45 NSX-7 67.38 NSX-8 67.39 NSX-9 67.45	SAMPLE		PERCENT. OXIDE
GA 68.73 AC2-2 67.50 NSX-1 67.42 NSX-2 67.40 NSX-3 67.40 NSX-4 67.49 NSX-5 67.41 NSX-6 67.45 NSX-7 67.38 NSX-8 67.39			. FA 20
AC2-2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-7 NSX-8  67.40 67.49 67.49 67.49 67.49	<del>-</del>	•	
NSX-1 67.42 NSX-2 67.40 NSX-3 67.40 NSX-4 57.49 NSX-5 67.41 NSX-6 67.45 NSX-7 67.38 NSX-8 67.39	GA		• -
NSX-1 67.42 NSX-2 67.40 NSX-3 67.40 NSX-4 67.49 NSX-5 67.41 NSX-6 67.45 NSX-7 67.38 NSX-8 67.39	AC2-2		67.50
NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-7 NSX-8 67.40 67.49 67.41 67.45 67.38 67.39			67.42
NSX-3 67.40 NSX-4 67.49 NSX-5 67.41 NSX-6 67.45 NSX-7 67.38 NSX-8 67.39	**=		
NSX-4 NSX-5 NSX-6 NSX-7 NSX-7 NSX-8 67.49 67.41 67.45 67.38 67.39			-
NSX-5 67.41 NSX-6 67.45 NSX-7 67.38 NSX-8 67.39	NSX-3		•
NSX-5 67.41 NSX-6 67.45 NSX-7 67.38 NSX-8 67.39	NSX-4	-	<b>57.49</b>
NSX-6 67.45 NSX-7 67.38 NSX-8 67.39			67.41
NSX-7 67.38 NSX-8 67.39	* - =		
NSX-8 67.39		,	-
1107-0	NSX-/		
NSX-9 67.45	NSX-8		67.39
			67.45

THE MEAN IS 67.4260
THE VARIANCE IS 0.0011
THE STANDARD DEVIATION IS 0.0336

TABLE 44.

SILICON IN 'A' BY ATOMIC ABSORPTION

SAMPLE	PERCENT OXIDE
GA	70.32
SiO ₂ -Pu <del>re</del>	99.87
NSX=1	67.90
NSX-2	67.81
··-·	67.87
NSX-3	67 <b>.</b> 98
NSX-4	
NSX-5 . ,	67.96
NSX-6	67.80
NSX-7	67.90

THE MEAN IS 67.8939
THE VARIANCE IS 0.0041
THE STANDARD DEVIATION IS 0.0641

TABLE 45

#### SILICON BY GRAVIMETRY

SAMPLE WEIGHT	OF PRECIPITATE	PERCENT OXIDE
SiO ₂ -Pure	0.1534	99.99
SiO2-Pure	0.1534	99.99
GA (1)	0.1094	71.31
GA (2)	0.1096	71.44
NSX-1	0.1064	68,53
NSX-2	0.1161	68.18
NSX-3	0.1090	68.06
NSX-4	0.1060	69.03
NSX-5	0.1091	69.93
NSX-6	0.1318	68,18
NSX-7	0.1070	68.78

THE MEAN IS 68.6753
THE VARIANCE IS 0.3692
THE STANDARD DEVIATION IS 0.6076

TABLE 46.
SILICON BY SPECTROPHOTOMETRY

SAMPLE	PERCENT OXIDE
GA Si0_Pure NSX21 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6	71.30 97.45 69.99 70.45 69.59 70.44 70.42 70.23
NSX-7	69.54

THE MEAN IS 70.0974
THE VARIANCE IS 0.1356
THE STANDARD DEVIATION IS 0.3682

TABLE 47.

#### SILICON BY X-RAY FLUORESCENCE

SAMPLE		PERCENT
GA (Lit.) GA (Exp.) G-2 BCR-1 NBS-70 MRB-8 NSX-1 NSX-2 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6	<b>⇔</b> 0	69.90 70.56 70.87 60.00 30.60 76.61 70.79 71.15 72.30 70.20 71.80 71.25

THE MEAN IS 71.2400 THE VARIANCE IS 0.4545 THE STANDARD DEVIATION IS 0.6700

TABLE 48.
F-test AND T-test FOR STLICON BY
ATOMIC ABSORPTION AND SPECTROPHOTOMETRY

SILICON

F-test AND T-test FOR SILICON BY ATOMIC ABSORPTION AND GRAVIMETRY

TABLE 49.

STLTCON

AA 6	PERCENT PERCENT OXIDE OXIDE	67.90 67.81 67.87 67.98 67.96 67.96 67.90 67.90 67.90 67.90 68.18	F-calc.= 87.61 WITH 7 AND 7 DEGREES OF FREEDOM F-table= 3.79 WITH 7 AND 7 DEGREES OF FREEDOM THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL
SP SP	PERCENT OXIDE	69.99 70.45 69.59 70.44 70.23 69.54	ES OF FREEDOM ES OF FREEDOM S
AA	PERCENT OXIDE	67.90 67.81 67.83 67.98 67.96 67.90	F-calc.= 32.99 WITA 7 AND 7 DEGRE F-table= 3.79 WITA 7 AND 7 DEGRE TAE DIFFERENCE BETWEEN THE VARIANCE IS SIGNIFICANT AT THE 5% LEVEL

68.67 00.60 **ICES** IS SIGNIFICANI AI IHE 5% LEVEL HEAN 67.88 00.06 70.09

MEAN S.D.

67.88 00.06

ATOMIC ABSORPTION AND X-RAY FLUORESCENCE F-test AND T-test FOR SILICON BY TABLE 50.

SILICON

XF		70.78 71.14 72.29 70.19 71.79	
W	PERCENT OXIDE	67.90 67.81 67.87 67.98 67.96 67.80	

6 DEGREES OF FREEDOM 6 DEGREES OF FREEDOM 7 AND 7 AND .F-calc.=109.25 WITH F-table= 3.87 WITH

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

F-test AND T-test FOR SILICON BY GRAVIMETRY AND X-RAY FLUORESCENCE TABLE 51.

## SILICON

5	ĀF.
PERCEUT OXIDE	PERCENT OXIDE
63, 53	70.78
68/18	71.14
63,06	72.29
69,03	70.19
69,93	71.79
68,18	71.25
. 68,78	

7 AND 6 DEGREES OF FREEDOM 7 AND 6 DEGREES OF FREEDOM 3.29 WITH 3.87 WITH F-calc.= F-table=

# THE DIFFERENCE BETWEEN THE VARIANCES IS NOT SIGNIFICANT AT THE 5% LEVEL

3.352 WITH 9 DEGREES OF FREEDOM 2.262 FOR 9 DEGREES OF FREEDOM T-calc = T-table=

## THE DIFFERENCE BETWEEN THE MEANS IS SIGNIFICANT AT THE 5% LEVEL

68 67		MEAN		71.2
00.60	•	S.D.		9:00
)			-	

71.24 00.67

MEAN S.D.

67.88 00.06

TABLE 52. F-test AND T-test FOR SILICON BY GRAMIMETRY AND SPECTROPHOTOMETRY

z		PERCENI OXIDE	66 69	70.45	69,69	70.44	70,42	70,23	69,54	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SILICON	5	PERCENT	OXIDE	68,53	68.18	68.03	69,03	69,93	68,13	68.78	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F-calc. 2.70 WITH 7 AND 7 DEGREES OF FREEDOM F-table 3.79 WITH 7 AND 7 DEGREES OF FREEDOM THE DIFFERENCE BETWEEN THE VARIANCES IS NOT SIGNIFICANT AT THE 5% LEVEL

T-calc = 2.001 WITH 9 DEGREES OF FREEDOM T-table= 2.262 FOR 9 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE MEANS IS NOT SIGNIFICANT AT THE 5% LEVEL

70.09 00.36
MEAN S.D.
68:67

TABLE 53.
F-test AND T-test FOR SILICON BY
X-RAY FLUORESCENCE AND SPECTROPHOTOMETRY

## SILICON

SP	PERCENT OXIDE	69.99 70.45 69.59 70.44	70.42 70.23 69.54	7 DEGREES 0 7 DEGREES 0 VARIANCES % LEVEL
	i 1 1		•	AND AND THE
1 1 1 1 1 1 1 1 1 1 1 1 1 X X	PERCENT OXIDE	70.78	70.19 71.79 71.25	F-calc.= 3.3 WITH 6 F-table= 4.21 WITH 6 THE DIFFERENCE BETWEEN IS NOT SIGNIFICANT AT

T-calc = 1.494 WITH 7 DEGREES OF FREEDOM T-table= 2.365 FOR 7 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE MEANS IS NOT SIGNIFICANT AT THE 5% LEVEL

70.09	<b>-</b>
	•
HEAN S.D.	
71.24	5

#### B. ALUMINUM

Aluminum was determined by the following methods: atomic absorption, spectrophotometry, gravimetry and x-ray fluorescence. All the analytical mosults for Al₂?₃ determined on the NSX subsamples by the four different methods are given in Tables 54 to 57. Each table also gives the values for the control standards GA, SYN.G2, BCR-1, NBS-70, MRB-8 and an ionic standard (80 µg/ml). The mean, variance and standard deviation in each table meters to the values for the NSX subsamples. No values were rejected (Table 42).

From the above tables it is obvious that in terms of accuracy and precision x-ray fluorescence gives the best value. It is closest to the 'recommended' value and has the lowest standard deviation. The following tabulation summarizes the results:

	AA	SP	G	XRF
Average % Al ₂ O ₃ in NSX	15.88	15.85	15.80	15.46
S.D.	0.58	0.70	0.24	0.21
Rec'd Value	15.27 (Tu	rek <u>et al.</u> ,1978	3)	

In the determination of Al₂O₃ by atomic absorption there is an analytical problem in that a noisy signal is produced when using nitrous oxides as support gas. The gravimetric method is very exacting and time-consuming. The spectrophotometric determination of aluminum is relatively simple but

the time for colour development is an inconvenience. In x-ray fluorescence determination, the choice of a suitable standard to closely match the unknown is very important.

It should be noted that gravimetric and spectrophotometric methods also measure the proxying elements (eg. Zn and Ga) while atomic absorption and x-ray fluorescence are metal specific and should yield lower values than demical methods.

The statistical comparison of the results obtained by the four methods has been evaluated using F- and t-tests (Tables 58 to 63). F-test of variances shows that precision by x-ray fluorescence is significantly better than by the other three methods. Comparing the means using the t-test the values are not significant at the 5% level for the four methods, however, the values for x-ray fluorescence are closer to the 'recommended' value.

These differences, therefore, demonstrate that there is a bias between the methods, and x-ray fluorescence appears to be the most accurate and precise method.

TABLE 54. RESULTS FOR (SOLUTION 'A')

## ALUMINUM BY ATOMIC ABSORPTION

SAMPLE	PERCENT OXIDE
GA SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7	16.15 16.37 16.40 16.25 15.47 16.77 15.48 14.99
· · · · · · · · · · · · · · · · · · ·	

THE MEAN IS 15.8780
THE VARIANCE IS 0.3318
THE STANDARD DEVIATION IS 0.5760

TABLE 55. RESULTS FOR (SOLUTION 'A')

### ALUMINUM BY SPECTROPHOTOMETRY

SAMPLE	PERCENT . OXIDE
GA į	14.74
SYN.G2	15.10
NSX-1	16.78
NSX-2	16.02
NSX-3	15.24
NSX-4	15.51
NSX-5	14.86
NSX-6	16.87
NSX-7	15.65

THE MEAN IS 15.8526
THE VARIANCE IS 0.4918
THE STANDARD DEVIATION IS 0.7013

TABLE 56.

## ALUMINUM BY X-RAY FLUORESCENCE

SAMPLE	•	PERCENT OXIDE
		 · 
GA (Lit.) GA (Exp.) G-2 BCR-1 NBS-70 MRB-8 NSX-1 NSX-2 NSX-3 NSX-4		14.50 14.66 15.68 14.39 18.93 12.39 15.40 15.08 15.63
NSX-5 NSX-6		 15.61 15.72

THE MEAN IS 15.4600
THE VARIANCE IS 0.0474
THE STANDARD DEVIATION IS 0.2100

## TABLE 57. RESULTS FOR (SOLUTION 'B')

## ALUMINUM BY GRAVIMETRY

AL 80 ppm 0.0272 15.09 SYN.G2 0.0271 15.03	SAMPLE	WEIGHT	OF PF	RECIPITATE	PERCENT OXIDE
GA 0.0054 14.97 NSX-1 0.0057 15.76 NSX-2 0.0063 15.81 NSX-3 0.0066 15.50 NSX-4 0.0058 16.18 NSX-5 0.0059 16.09 NSX-6 0.0071 15.74 NSX-7 0.0059 16.16	SYN.G2 GA NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6	Pm	0.027 0.005 0.006 0.006 0.006 0.005 0.005	71 54 57 53 56 58 59 71	15.03 14.97 15.76 15.81 15.50 16.18 16.09 15.74

THE MEAN IS 15.8952
THE VARIANCE IS 0.0567
THE STANDARD DEVIATION IS 0.2382

TABLE 59. F-test AND T-test FOR ALUMINUM BY ATOMIC ARSORPTION AND GRAVIMETRY	ALUMINUM	AA G	PERCENT 0XIDE 0XIDE	16.40 16.25 15.47 15.47 16.72 16.18 16.09	14.99   15.74 15.74   16.16	F-calc. 6.08 WITH 7 AND 7 DEGREES OF FREEDOM F-table 3.79 WITH 7 AND 7 DEGREES OF FREEDOM	THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL			15.87 MEAN 15.89 . 00.57 S.D. 00.23
									-	
MINÙM BY OPHOTOMETRY	•	SP	PERCENT UXIDE	16.78 16.02 15.24 15.51	16.87 15.65	7 DEGREES OF FREEDOM 7 DEGREES OF FREEDOM	STANCES EVEL	ES OF FREEDOM ES OF FREEDOM	INS LEVEL	15.84 00.70
TABLE 58. Friest AND Triest FOR ALUMINUM BY ATOMIC ABSORPTION AND SPECTROPHOTOMETRY	ALUMINUM .		. 1 2 2 5 6 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1.48 WITH 7 AND 7 3.79 WITH 7 AND 7	THE DIFFERENCE BETWEEN THE VARIANCES IS NOT SIGNIFICANT AT THE 5% LEVEL	U.027 WITH 11 DEGREES OF 2.201 FOR 11 DEGREES OF	THE DIFFERENCE BETWEEN THE MEANS IS NOT SIGNIFICANT AT THE 5% LEVEL	MEAN S.D.
Frtest ATOMIC ABS	•	AA	PERCENT OXIDE	16.40 16.25 15.47 16.77	15.74	F-calc.= l F-table= 3	THE DIFFERE IS NOT SIGN	T-calc = U T-table= 2	THE DIFFERE IS NOT SIGN	15.87

TABLE 60.

F-test AND T-test FOR ALUMINUM BY
ATOMIC ABSORPTION AND X-RAY FLUORESCENCE

# ALUMINUM

XF	PERCENT 0XIDE	15.40 15.07 15.63 15.61 15.61
AA	PERCENT OXIDE	16.40 16.25 15.47 16.77 15.43 14.99

F-calc.= 7.52 WITH 7 AND 6 DEGREES OF FREEDOM F-table= 3.87 WITH 7 AND 6 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

TABLE 61.
F-test AND T-test FOR ALUMINUM BY GRAVIMETRY AND SPECTROPHOTOMETRY

# · ALUMINUM.

dS	PERCEUT OXIDE	16.78 16.02 15.24 15.51 14.86 16.87
5	PERCENT OXIDE	15.76 15.81 15.50 16.18 16.09 15.74

F-calc.= 8.66 WITH 7 AND 7 DEGREES.OF FREEDOM F-table= 3.79 WITH 7 AND 7 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

10.04	?
MEAN	S:D.
•	~
15.89	00.23

15.46 00.21

MEAN S.D.

> 15.87 00.57

PERCENT OXIDE

PERCENT

0X IDE

6 DEGREES OF FREEDOM 6 DEGREES OF FREEDOM

1.23 JITH 7 AND 3.87 WITH 7.AND

F-table= f-calc.≖

THE DIFFERENCE BETWEEN THE VARIANCES IS NOT SIGNIFICANT AT THE 5% LEVEL

X-RAY FLUORES CENCE AND SPECTROPHOTOMETRY F-test AND T-test FOR ALUMINUM BY TABLE 62.

GRAVIMETRY AND X-RAY FLUORESCENCE F-test AND T-est FOR ALUMINUM BY

TABLE 63.

ALUMINUM

TOORT		
_		

ALUMINUM

. dS	PERCENT	OXIDE	11 12 13	16.02	15,24	15.51	14.86	16.87	15,65	
	XF	PERCENT	OXIUE	15.40	15.07	15,63	15,33	15.61	15.71	

5.81

5.76

6.18 16.09

15.74 16.16

7 DEGREES OF FREEDOM 7 DEGREES OF FREEDOM 6 ANU 6 AND F-calc.= 11.15 WITH F-table= 4.21 WITH

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 56 LEVEL

1 10 DEGREES OF FREEDOM 1 10 DEGREES OF FREEDOM		15.46 00.21
S 0F S 0F	IS :VEL	
DEGREE DEGREE	MEEN THE MEANS I AT THE 5% LEVEL	
20	1 13	MEAN S.D.
WITH FOR	SETWE	-
1.370 WITH 2.228 FOR	ERENCE E	· ,
T-calc = T-table=	THE DIFFERENCE BETWEEN THE MEANS IS NOT SIGNIFICANT AT THE 5% LEVI	15.89

15.84 00.70

NEAN S.D.

15.46 00.21

#### C. TOTAL TRON

Total iron was determined by the following methods: atomic absorption, spectrophotometry and x-ray fluorescence. Total iron was determined on solution 'B' by atomic absorption, titration and spectrophotometry. All the malytical results for Fe₂O₃(t) determined on the NSX subsamples by the four different methods are given in Tables 64 to 67. Each table also gives the values for the control standards GA, BCR-1, AC2-2, and SYN.G2, etc. The mean, variance and standard deviation in each table refers to the values for the NSX subsamples. No values were rejected (Table 42).

From the above tables it is obvious that in terms of accuracy and precision atomic absorption gives the best value. It is closest to the 'recommended' value and has a very good standard deviation. The following tabulation summarizes the results:

-	AA	SP	T	XRF
Average % Fe ₂ 0 ₃ (t) in MSX	4.07	3.99	4.41	4.35
S.D.	0.09	0.06	0.12	0.05
Rec'd Value	4.08 (Tu	rek <u>et al</u> .,1978	)	

The spectrophotometric determination of total iron is relatively simple but delay time for colour development is an inconvenience. The titration method

that the analyst has good eyesight and is not colour blind. In x-ray fluorescence determination, the choice of a suitable standard to closely match the unknown is very important. It should be noted that the spectrophotometric method also measures the proxying elements (eg. Co and Tc) while atomic desorption and x-ray fluorescence are metal specific and should give lower values than the chemical methods.

The statistical comparison of the results obtained by the four methods has been evaluated using F- and t-tests (Tables 68 to 73). F-test of variances shows that precision by atomic absorption is comparable to the precision by the other three methods. Comparing the means using the t-test, the values by atomic absorption and spectrophotometry are not significant at the 5% level, however, the atomic absorption values are significantly different from titration and x-ray fluorescence. These differences, therefore, demonstrate that there is a bias between methods, and atomic absorption seems to be the most accurate and precise method.

TABLE 64. RESULTS FOR

## IRON BY ATOMIC ABSORPTION

SAMPLE	PERCENT OXIDE
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-8 NSX-9	12.88 2.91 4.27 2.75 4.03 4.20 4.03 3.86 4.13 4.03 4.10 4.09 4.18

THE MEAN IS 4.0770 THE VARIANCE IS 0.0089 THE STANDARD DEVIATION IS 0.0945

TABLE 65. RESULTS FOR

IRON BY SPECTROPHOTOMETRY

SAMPLE	PERCENT OXIDE
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-5 NSX-6 NSX-7 NSX-8 NSX-9	12.87 2.68 4.07 2.63 4.06 4.08 3.98 3.98 3.98 3.98 3.98 3.98 3.98

THE MEAN IS 3.9859
THE VARIANCE IS 0.0033
THE STANDARD DEVIATION IS 0.0576

_
<u> </u>
≨
2
<u>ਲ</u>
(DICHROMATE)
ᅙ
Z
TITRATION
BY
×
IRON

PERCENT OX IDE	13.91 13.91 13.88 12.83	2.03 3.12 3.13 2.75 2.75	4.83 4.83 4.83	2.53 2.51 2.51	4.44 4.11 4.50	4444 0444 044
TITER VOLUME ml	2.5048 2.5050 2.5000 2.8880	0.5650 0.5650 0.5600 1.2400 1.2450	1.1000 1.0650 1.3040	1.1400 1.1320	1.0000 1.0000 0.9400	0.9900 1.0100 1.0100
AL IQUOT VOLUME ml	20 20 20 25	20 20 50 50	25 25 30	50 50	25 25 25 25	25 25 25 25
TOTAL VOLUME	500 500 500 500	200 200 200 200 200	500 500 500	500 500	20000	200 200 200 200 200 200
SAMPLE WEIGHT q	5002	5008 5008 5001 5028 5028	20000	2000	. 5013 . 5006 . 5076	5029 5008 5006 5005
ROCK SAMPLE	BCR-1(a) BCR-1(b) BCR-1(c)	BCR-1(d) MEAN (d) GA (b) GA (c) GA (d)	MEAN AC2-2 (a) AC2-2 (b) AC2-2 (c)	MEAN SYN.G2(a) SYN.G2(b)	MEAN NSX-1 NSX-2 NSX-3	NSX-5 NSX-5 NSX-6

THE MEAN IS 4.4127 THE VARIANCE IS 0.0135 THE STANDARD DEVIATION IS 0.1166

TABLE 66.

## TOTAL TRON BY X-RAY FLUORESCENCE

SAMPLE	PERCENT OXTDE
GA (Lit.)	2.83
GA (Exp.)	2.90
G-2	2.90
BCR-1	13.15
NBS-70	0.33
MRB-8	1.95
NSX-1	4.39
NSX-1	4.38
NSX-3	4.44
	4.44
NSX-4	4.33
NSX-5	4.26
NSX-6	4.20

THE MEAN IS 4.3500
THE VARIANCE IS 0.0030
THE STANDARD DEVIATION IS 0.0500

Frtest AND Trtest FOR TOTAL IRON BY ATOMIC ABSORPTION AND TITRATION TABLE

# TOTAL IRON

	PERCENT 0XIDE	4.43	4.11	4.50	4.39	4.49	4.46	4.45	
W AA	PERCENT OXIDE	4.03	4.20 4.03	3. 86.	4,13	4.03	4,10	4.09	4.18

B DEGREES OF FREEDOM B DEGREES OF FREEDOM 9 AND 9 AND 1.52 WITH 3.23 WITH F-calc.= F-table=

THE DIFFERENCE BETWEEN THE VARIANCES IS NOT SIGNIFICANT AT THE 5% LEVEL

2.236 WITH 14 DEGREES OF FREEDOM 2.145 FUR 14 DEGREES OF FREEDOM T-calc = T-table=

THE DIFFERENCE BETWEEN THE MEANS IS SIGNIFICANT AT THE 5% LEVEL

4,45

0.03

MEAN S.D.

4.07

ATOMIC AISSORPTION AND SPECTROPHOTOMETRY F-test AND T-test FOR TOTAL IRON BY TABLE 69.

W	SP
PERCENT OXIDE	PERCENT OXIDE
4.03	
•	
4.03	
4.09	3,91
4.18	

9 DEGREES OF FREEDOM 9 DEGREES OF FREEDOM 9 AIID 9 AIID 2.69 WITH 3.18 WITH F-calc.= F-table=

THE DIFFERENCE BETWEEN THE VARIANCES IS NOT SIGNIFICANT AT THE 5% LEVEL

13 DEGREES OF FREEDOM 13 DEGREES OF FREEDOM 0,823 WITH 2,160 FOR I-table= T-calc =

THE DIFFERENCE BETWEEN THE MEANS IS NOT SIGNIFICANT AT THE 5% LEVEL

4.07 0.09

TABLE 70. F-test AND T-test FOR TOTAL IRON BY ATOMIC ABSORPTION AND X-RAY FLUORESCENCE

TOTAL IRON

			•		
 			e 3 3 3 7 8	FREEDOM	
- 1	X.	PERCENT OXIDE	WW44WV	9F 0F	•
		PEI 0)		DEGREES DEGREES	BETWEEN THE VARIANCES AT THE 5% LEVEL
1				ဖြစ်	VAR
1	71(,			AND	THE 5% LE
	] : 	`		. 20 0	岩岩
			•	HE HE	
		·		3.57	RENCE
	AA	PERCENT OXIDE	4.03 4.03 4.03 4.03 4.03 4.09	F-calc.= F-table=	THE DIFFERENCE IS SIGNIFICANT

TABLE 71.
F-test AND T-test FOR TOTAL IRON BY TITRATION AND SPECTROPHOTOMETRY

# TOTAL IRON

PERCENT OXIDE	4 4 6 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	•
PERCENT / OXIDE	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	ERCENT OXIDE 0

F-calc.= 4.09 WITH 8 AND 9 DEGREES OF FREED F-table= 3.39 WITH 8 AND 9 DEGREES OF FREED

# THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

HEAN 3.98	S.D. 0.05
4,45	0,03

4,35

MEAN S.D.

4.07

TABLE 72.
F-test AND T-test FOR TOTAL IRON BY X-RAY FLUORESCENCE AND SPECTROPHOTOMETRY

# TOTAL IRON

dS ,	PERCENT 0XIDE	4.06 3.98 3.98 3.98 3.98 3.98 3.88
1 X	PERCENT OXIDE	4.38 4.43 4.43 4.26

F-calc.= 1.32 WITH 6 AND 9 DEGREES OF FREEDOM F-table= 2.44 WITH 6 AND 9 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS NOT SIGNIFICANT AT THE 5% LEVEL

T-calc = 4.773 WITH 11 DEGREES OF FREEDOM T-table= 2.201 FOR 11 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE MEANS IS SIGNIFICANT AT THE 5% LEVEL

MEAN	S.D.	•
•		
75	, ,	200

3.98

TABLE 73.
F-test AND T-test FOR TOTAL IRON BY TITRATION AND X-RAY FLUORESCENCE

# TOTAL IRON

i JX	PERCENT OXIDE	4.38 4.43 4.43 4.26
	PERCENT OXIDE	4.43 4.44 4.11 4.50 4.39 4.46 4.46

F-calc.= 5.43 WITH 8 AND 6 DEGREES OF FREEDOM F-table= 3.58 WITH 8 AND 6 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

4,35
e
MEAN S.D.
4,45

#### D. CALCIUM

Calcium was determined by the following methods: atomic absorption, titration and x-ray fluorescence. All the analytical results for CaO determined on the NSX subsamples by the three different methods are given in Tables 74 to 76. Each table also gives the values for the control standards GA, BCR-1, AC2-2, SYN.G2, G-2, NBS-70 and MRB-8. The mean, variance and standard deviation in each table refers to the values for the NSX subsamples. No values were rejected.

From the above tables it is obvious that in terms of accuracy and precision, titration gives the best value. It is very close to the recommended value and has the lowest standard deviation. The following tabulation summarizes the results:

	AA	T	XRF
Average % CaO in NSX	2.08	2.16	2.10
s.D.	0.08	0.01	0.04
Rec'd Value	2.11	(Turek <u>et al</u> .,1978)	·

In the determination of CaO by titration, the time needed for the preparation of the reagents is an inconvenience. The atomic absorption method is fast but the use of nitrous oxide as support gas produces a noisy signal, also a releasing agent is mandatory; it decomposes the complexes formed with calcium such as Ca-Al and Ca-Si. In x-ray fluorescence determination the choice of a suitable standard to closely match the unknown is very important.

It should be noted that the titration method also measures the proxying elements (Ba, Sr, Pb), while atomic absorption and x-ray fluorescence are metal specific and should yield lower values than chemical methods.

The statistical comparison of the results obtained by the three methods has been evaluated using F- and t-tests (Tables 77 to 79). F-test of variances shows that precision by titration is significantly better than by the other two methods. Comparing the means using the t-test shows no significant difference at the 5% level, however, titration does give a higher value than atomic absorption and x-ray fluorescence. This is what one would expect, instrumental atomic absorption and x-ray fluorescence are metal specific while chemical titration measures proxying elements.

These differences, therefore, demonstrate that there is a bias between the methods, and titration appears to be the most precise and accurate method.

TABLE 74. RESULTS FOR

## . CALCIUM BY ATOMIC ABSORPTION

SAMPLE		PERCENT OXIDE
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-8 NSX-9		6.69 2.72 2.21 1.02 2.14 2.21 2.10 2.11 1.96 1.97 2.01 2.14 2.16

THE MEAN IS 2.0937
THE VARIANCE IS 0.0068
THE STANDARD DEVIATION IS 0.0827

TABLE 75_

## CALCIUM BY X-RAY FLUORESCENCE

SAMPLE	PERCENT
GA (Lit.)	2.45
GA (Exp.)	2.48
G-2	1.40
BCR-1	6.87
NBS-70	0.16
MRB-8	0.57
NSX-1	2.13
NSX-2	2.11
NSX-3	2.13
NSX-4	2.13
NSX-5.	2.12
NSX-6	J · 2.11
	£

THE MEAN IS 2.1000
THE VARIANCE IS 0.0016
THE STANDARD DEVIATION IS 0.0400

TABLE 76. RESULTS FOR CALCIUM OXIDE BY EDTA TITRATION

ROCK SAMPLE	WEIGHT OF SAMPLE 9	TOTAL VOLUME ml	ALIQUOT VOLUME ml	EDTA TITRANT ml	PERCENT OXIDE
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-8 NSX-9 BLANK	0.5002 0.5028 0.5000 0.5000 0.9968 0.9963 0.9987 0.9974 1.0000 0.9998 0.9942 0.9939 0.8585 0.0000	500 500 500 500 1000 1000 1000 1000 100	15 15 15 15 15 15 15 15 15 15 15	9.60 3.57 2.95 2.90 3.18 3.17 3.17 3.16 3.18 3.19 3.16 2.72 0.00	6.55 2.42 2.01 1.98 2.17 2.18 2.16 2.17 2.15 2.17 2.19 2.17 2.16 0.00

% CaO =  $\frac{\text{Titrant x (F) x Volume of Solution / Volume of Aliquot x 100}}{\text{Weight of Sample}}$ 

where (F) = .0001020 gm of CaO / ml of EDTA

THE MEAN IS 2.1688
THE VARIANCE IS 0.0001
THE STANDARD DEVIATION IS 0.0109

TABLE 77. F-test AND T-test FOR CALCIUM BY ATOMIC ABSORPTION AND TITRATION

## CALCIUM

L L L L L L L L L L L L L L L L L L L	PERCENT . 0XIDE	2.17 2.18 2.16 2.17 2.17 2.17 2.16
AA	PERCENT OXIDE	2.14 2.10 2.11 1.96 1.97 2.14 2.16

F-calc, 57,56 WITH 9 AND 9 DEGREES OF FREEDOM F-table 3.18 WITH 9 AND 9 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

TABLE 78,
P-test AND T-test FOR CALCIUM BY
ATOMIC ABSORPTION AND X-RAY FLUORESCENCE

## CALCIUM

₹ }	PERCENT OXIDE	2.12 2.12 2.12 2.12 1.12
•		
AA		2.14 2.21 2.10 2.11 1.96 1.97 2.01 2.14

F-calc.= 4.27 WITH 9 AND 6 DEGREES OF FREEDOM F-table= 3.37 WITH 9 AND 6 DEGREES OF FREEDOM

# THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

	2,10	0.04
		•
	MEAN	S, D.
	2.08	80.0
	2,16	0.0
·.	MEAN	S.D.
	2.08	0.08

TABLE 79. F. test AND T-test FOR CALCIUM BY TITRATION AND X-RAY FLUORESCENCE

## CALCIUM

1	PERCENT 0XIDE	2.12 2.13 2.12 2.12 2.13 2.11 2.11
	PERCENT 0XIDE	2.17 2.18 2.17 2.17 2.19 2.17 2.17

F-calc.= 13.46 WITH 9 AND 6 DEGREES OF FREEDOM F-table= 3.37 WITH 9 AND 6 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

MEAN	S,D.,
2.16	0.01

#### E. MAGNESTUM

Magnesium was determined by the following methods: atomic absorption, titration and x-ray fluorescence. By atomic absorption magnesium was determined twice on solution 'B', once using lanthanum oxide as a releasing agent and again without the releasing agent. The results are slightly higher for the solution containing the releasing agent. All the analytical results for MgO determined on the NSX subsamples by the three different methods are given in Tables SO to 83. Each table also gives the values for the control standards GA, BCR-1, AC2-2, SYN.G2, G-2, NBS-70, and MRB-8. The mean, variance and standard deviation in each table refers to the values for the NSX subsamples. No values were rejected.

From the above tables it is obvious that in terms of accuracy and precision atomic absorption gives the best value and has a low standard deviation. The following tabulation summarizes the results:

		AA	Ť	XRF
<del></del>	Averæge % MgO in NSX	1.06	1.21	1.34
	-S.D.	0.03	0.08	0.37
	Rec'd Value	1.11	(Turek <u>et al</u> .,1978	)

In the determination of MgO by titration there is an analytical problem in that magnesium is determined by difference, with the calcium values being subtracted from the total (Ca + Mg) value; therefore before one can determine megnesium by titration, calcium must first be determined by the same method. In the x-ray fluorescence determination the choice of a suitable standard to closely match the unknown is very important.

It should be noted that the titration method also measures the proxying elements (eg. Be, Fe and Li) while atomic absorption and x-ray fluoresmence are metal specific and should yield lower values than chemical methods.

The statistical comparison of the results obtained by the three methods has been evaluated using F- and t-tests (Tables 84 to 86). F-test of variances shows that precision by atomic absorption is significantly better than by the other two methods. Comparing the means using the t-test the values are not significant at the 5% level, however, the atomic absorption values are closest to the 'recommended values', and the titration value is next best.

These differences, therefore, demonstrate that there is a bias between methods, and atomic absorption appears to be the most accurate and precise method.

TABLE 80. RESULTS FOR (WITHOUT LANTHANUM OXIDE)
MAGNESIUM BY ATOMIC ABSORPTION

SAMPLE	•	-	- -	PERCENT OXIDE
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-7				3.14 0.76 0.98 0.57 0.98 1.00 0.97 0.98 0.96 0.91 0.95 0.96
NSX-9				

THE MEAN IS 0.9632
THE VARIANCE IS 0.0007
THE STANDARD DEVIATION IS 0.0277

## TABLE 81. RESULTS FOR (WITH LANTHANUM OXIDE)

## MAGNESIUM BY ATOMIC ABSORPTION

SAMPLE	PERCENT OXIDE
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-8 NSX-8 NSX-9	3.44 0.86 1.10 0.63 1.09 1.10 1.10 1.10 1.07 1.00 1.06 1.03

THE MEAN IS 1.0679
THE VARIANCE IS 0.0012
THE STANDARD DEVIATION IS 0.0350

MAGNESIUM OXIDĘ BY EDTA TITRATION

. •	
PERCENT OXIDE	3.21 1.14 1.16 1.10 1.25 1.29 1.37 0.00
-	·
Mg TITRANT ml	2.33 2.33 2.22 2.22 2.32 2.33 2.53 2.53
(Ca+Mg) TITRANT ml	16.10 5.90 5.90 5.90 5.40 5.40 5.80 5.80 5.60
ALIQUOT VOLUME m1	20 20 20 20 20 20 20 20 20 20 20 20 20 2
TOTAL VOLUME m1	500 500 500 500 500 600 600 600 600 600
WEIGHT OF SAMPLE 9	0.5002 0.5002 0.5000 0.5000 0.9963 0.9987 0.9998 0.9998 0.9939 0.8585 0.0000
. , .	1-
ROCK AMPLE	3CR-1 3CR-1 3CR-1 3CR-2 5YN. G2 5YN. G2 5YN. G2 5YN. G2 NSX-3 NSX-4 NSX-6 NSX-7 NSX-8 NSX-8 NSX-8

Volume of Aliquot x 100 % MgO = Titrant x (F) x Volume of Solution / V Weight of Sample

where (F) ≠ .0000742 gm of Mg0 / ml of EDTA

THE MEAN IS 1.2122
THE VARIANCE IS 0.0080
THE STANDARD DEVIATION IS 0.0896

TABLE 82.

TABLE 83.

## MAGNESTUM BY X-RAY FLUORESCENCE

SAMPLE	•	PERÇENT OXIDE
GA (Lit.) GA (Exp.) G-2 BCR-1 NBS-70 MRB-8 NSX-1 NSX-2 NSX-3		0.95 0.95 0.85 3.45 0.08 0.28 1.19 2.20 1.19
NSX-4 NSX-5 NSX-6		1.19 1.17 1.17

THE MEAN IS 1.3400
THE VARIANCE IS 0.1443
THE STANDARD DEVIATION IS 0.3700

TABLE . 84.
F-test AND T-test FOR MAGNESIUM BY ATOMIC ABSORPTION AND TITRATION

# MAGNES IUM

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PERCENT 0XIDE	1.10 1.15 1.10 1.25 1.30 1.29 1.19 61.16
	PERCENT OXIDE	1.09 1.10 1.07 1.06 1.06

F-calc.= 5.06 WITH 9 AND 9 DEGREES OF FREEDOM F-table= 3.18 WITH 9 AND 9 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

TABLE 85.
F-test AND T-test FOR MAGNESIUM BY
ATOMIC AESORPTION AND X-RAY FLUORESCENCE

## MAGNESIUM

	PERCENT OXIDE	1.19 2.19 1.18 1.17 1.17
A	PERCENT OXIDE	1.09 1.10 1.10 1.07 1.00 1.06 1.03

F-calc.= 10.57 WITH 9 AND 6 DEGREES OF FREEDOM F-table= 3.37 WITH 9 AND 6 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

1,3/	٠, د
	٠.
MEAN	s.D.
<b>-</b>	
1.06	0.03

MEAN S.D.

 $\frac{1.06}{0.03}$ 

TABLE , 86. F-test AND T-test FOR MAGNESIUM BY TITRATION AND X-RAY FLUORESCENCE

# MAGNES IUM

XF	PERCENT OXIDE	
1 t 0 1 0 t 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0 1 t 0	1 2 2 2 2 3 1 2 4 3 4 3 4 3 4 3 4 3 4 4 5 6 6 7 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 8 8	
	PERCENT OXIDE	1.10 1.15 1.25 1.25 1.29 1.19 1.16

F-calc.= 16.90 WITH 9 AND 6 DEGREES OF FREEDOM F-table= 3.37 WITH 9 AND 6 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE '5% LEVEL

1.34	0.37
MEAN	S.D.
1,21	0.08

## F. SODTUM

Sodium was determined by only two methods: atomic absorption and flame emission. All the analytical results for Na20 determined on the NSX subsamples by the two different methods are given in Tables 87 and 88. Each table also gives the values for the control standards GA, BCR-1, AC2-2, and SN.G2. The mean, variance and standard deviation in each table refers to the values for the NSX subsamples. The values of 4.14 was rejected in the determination of Na20 by flame emission.

From the above tables it is obvious that in terms of accuracy and precision, atomic absorption gives the better value. It is closer to the 'recommended' value and has the lowest standard deviation. Because the recommended value for NSX came from Turek et al (1978), which specified the use of only atomic absorption, thus the NSX values in this thesis are very close to the collaborative 'recommended' value. The following tabulation summarizes the results:

·	AA	FE .
Averæe % Na20 in NSX	3.69	3.93
S.D.	0.08	0.09
Poold Value	3.66 (Turek	et al.,1978)

Rec'd Value

The atomic absorption and flame emission determination were both conducted on the same instrument.

The statistical comparison of the results obtained by the two methods has been evaluated using F- and t-tests (Table 89). F-test of variances shows that precision by atomic absorption is not significantly better than flame emission at the 5% level. Comparing the means using the t-test the atomic absorption values are significantly different at the 5% level.

These differences, therefore, demonstrate that there is a bias between methods, and atomic absorption appears to be the most accurate and precise method.

#### TABLE 87. RESULTS FOR

### SODIUM BY ATOMIC ABSORPTION

SAMPLE	•	PERCENT OXIDE
BCR-1 GA AC2-2 SYN.G2 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6 NSX-7 NSX-8 NSX-9		3.59 3.74 3.59 4.29 3.59 3.63 3.67 3.67 3.64 3.66 3.71

THE MEAN IS 3.6915
THE VARIANCE IS 0.0064
THE STANDARD DEVIATION IS 0.0802

TABLE 88. RESULTS FOR SODIUM BY FLAME EMISSION

SAMPLE'	PERCENT
*	OXIDE
BCR-1	3.92
6A	4.01
AC2-2	3.99
SYN.G2	4.41
NSX-1	3.96
-NSX-2	3.88
NSX-3	3.90
NSX-4	3.90
NSX-5	3.95
NSX-6	3.87
NSX-7	3.85
NSX-8	3.84
NSX-9	4.14

THE MEAN IS 3.9276
THE VARIANCE IS 0.0073
THE STANDARD DEVIATION IS 0.0857

F-test AND T-test FOR SODIUM BY. ATOMIC ARSORPTION AND FLAME EMISSION

SOUIUMTA

PERCENT OXIDE	PERCENT 0X1DE
3.59	3,96
3,89	3,88
3,63	3,90
3.67	3,95
3,64	3.87
3.66	3.85
3,71	3.84
3.72	

F-calc. 1.77 WITH 9 AND 8 DEGREES OF FREEDOM F-table 3.23 WITH 9 AND 8 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS NOT SIGNIFICANT AT THE 5% LEVEL

T-calc = 4.600 WITH 14 DEGREES OF FREEDOM T-table= 2.145 FOR 14 DEGREES OF FREEDOM

THE DIFFERENCE BETHEEN THE MEANS IS SIGNIFICANT AT THE 5% LEVEL 3,46 MEAN 3 0,40 S.D. (

#### G. POTASSIUM

Potassium was determined by the following methods: atomic absorption, flame emission and x-ray fluorescence. All the analytical results for \$20 determined on the NSX subsamples by the different methods are given in Tables to 92. Each table also gives the values for the control standards GA, ECR-1, AC2-2, SYN.G2, G-2, NBS-70 and MRB-8. The mean, variance and standard deviation in each table refers to the values for the NSX subsamples. No values were rejected.

From the above tables it is obvious that in terms of accuracy and precision x-ray, fluorescence gives the best value. This is somewhat surprising as general consensus is that flame emission is the preferred method for the determination of potassium. The following tabulation summarizes the results:

	AA	FE	XRF
Average % K ₂ ? in NSX	4.29	4.14	3.88
S.D.	0.20	0.17	0.01
Rec'd Value	3.93	(Turek <u>et al</u> .,1978)	

The atomic absorption and flame emission determinations were both conducted on the same instrument. In x-ray fluorescence determination the choice of a suitable standard to closely match the unknown is very important. All three methods are instrumental and metal specific.

The statistical comparison of the results obtained by the three methods has been evaluated using F- and t-tests (Tables 93 to 95). F-test of variances shows that precision by x-ray fluorescence is significantly better than by the other two methods. Comparing the means using the t-test the values are significantly different at the 5% level. The x-ray fluorescence value is closer to the 'recommended' value.

These differences, therefore, demonstrate that there is a bias between methods, and x-ray fluorescence appears to be the most accurate and mecise method.

TABLE 90. RESULTS FOR

## POTASSIUM BY ATOMIC ABSORPTION

		· · .		PERCENT. OXIDE
			<del></del> -	2.06
				4.46
•				4.37
	•		•	5.50
		•		4.37
*			•	4.52
				4.39
•				4.40
		• .	'	4.45
				4.39
				3.85
				4.09
			•	4.19
				7017

THE MEAN IS 4.3016
THE VARIANCE IS 0.0403
THE STANDARD DEVIATION IS 0.2009

## TABLE 91. RESULTS FOR

## POTASSIUM BY FLAME EMISSION

OXIDE	
p.cp. 1	1
DI.K= I :	
GA 4.30	
AC2-2 4.30	
SYN. G2 4.93	š
NSX-1 4.42	2
NSX-2 4.23	3
113A-4	
N3A=3	
18.3 4 = 4	
NSX-5 4-19	_
NSX-6 4.10	
NSX-7 3.79	9
NSX-8 3-9	5
N3A-0	
NSX-9 4.11	

THE MEAN IS 4.1478
THE VARIANCE IS 0.0284
THE STANDARD DEVIATION IS 0.1685

TABLE 92.

## POTASSTUM BY X-RAY FLUORESCENCE

SAMPLE		•	<i>:</i>	PERCENT OX UDE
GA (Lit.) GA (Exp.) G-2 BCR-1 NBS-70 MRB-8 NSX-1 NSX-2 NSX-3 NSX-4	·	•		4.03 4.01 4.45 1.76 11.17 3.68 3.87 3.88 3.90 3.90
NSX-5 NSX-6				3.89

THE MEAN IS 3.8800

THE VARIANCE IS 0.0002
THE STANDARD DEVIATION IS 0.0100

TABLE 93.
F-test AND T-test FOR POTASSIUM BY
ATOMIC ABSORPTION AND X-RAY FLUORESCENCE

## POTASSIUM

XF	ENT DE	3.87 3.90 3.90 3.90 3.90
AA	PERCENT 0XIDE	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

F-calc.= 200 WITH 9 AND 6 DEGREES OF FREEDOM F-table= 3.37 WITH 9 AND 6 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

TABLE 94.
F-test AND T-test FOR POTASSIUM BY
FIAME EMISSION AND X-RAY FLUORESCENCE

## POTASS IUM

XF	PERCENT OXIDE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	PERCENT OXIDE	4.42 4.23 4.19 4.19 3.79 3.39 4.15

F-calc.= 2800 WITH 9 AND 6 DEGREES OF FREEDOM F-table= 3.37 WITH 9 AND 6 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL ,

٠	3.88
	•
	MEAN S.D.
	4.14
	3.88 0.01
	MEAN S.D.
~	
	4.29

TABLE 95. F-test AND T-test FOR POTASSIUM BY ATOMIC ABSORPTION AND FLAME EMISSION

# POTASSIUM

PERCENT	4.42 4.23 4.21 4.19 4.16 3.79 3.95
· PERCENT OXIDE	4 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

F-calc. 2.04 WITH 9 AND 9 DEGREES OF FREEDOM F-table 3.18 WITH 9 AND 9 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS NOT SIGNIFICANT AT THE 5% LEVEL

T-calc = 3.072 WITH 14 DEGREES OF FREEDOM T-table= 2.145 FOR 14 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE MEANS IS SIGNIFICANT AT THE 5% LEVEL 4.29 MEAN 4.14 0.20 S.D. 0.16

### H. MANGANESE

Manganese was determined by the following methods: atomic absorption, spectrophotometry and x-ray fluorescence. All the analytical results for MnO determined on the NSX subsamples by the three different methods are given in Tables 96 to 98. Each table also gives the values for the control standards GA, BCR-1, AC2-2, SYN.G2, G-2, NBS-70 and MRB-8. The mean, variance and standard deviation in each table refers to the values for the NSX subsamples. Only one value was rejected. The reason for the rejection is that for the determination of MnO by spectrophotometry all the values for the NSX subsamples are the same except one, the rejected value.

From the above tables it is obvious that in terms of accuracy and recision all three methods give comparable values. Following tabulation summarizes the results:

 	•	AA		SP 🍎	XRF
1 P	Average % MnO in NSX	0.08		0.07	0.08
 f	Ś.D.	0.00	,	0.00	0.00
 •	Rec'd Value	0.08	(Turek	et al.,1978)	

- The spectrophotometric determination of manganese is relatively simple but the delay time for colour development is an inconvenience. In x-ray fluorescence determination the choice of a suitable standard to closely match the unknown is very important.

It should be noted that the spectrophotometric method also measures proxying elements (eg. Cr and V) while atomic absorption and x-ray fluorescence are metal specific and should yield lower values than the chemical methods.

The statistical comparison of the results obtained by the three methods has been evaluated using F- and t-tests (Tables 99 to 101). F-test of wriances shows that precision is significantly different between the three methods. Comparing the means using the t-test, the values for atomic absorption are significantly different than by the other two methods.

These differences, therefore, demonstrate that there is a bias between methods. In the MMO determination the bias seems vague since the values between the three methods are comparable, but nevertheless it does exist.

TABLE 96- RESULTS FOR

### MANGANESE BY ATOMIC ABSORPTION

SAMPLE		PERCENT OXIDE
BCR-1		0.21
GA		0.09
AC2-2		0.09
SYN.G2	•	0.01
NSX-1		0.09
NSX-2		0.08
NSX-3	•	0.09
NSX-4		0.09
NSX-5	•	0.09
NSX-6		0.08
NSX-7		0.08
NSX-8	· •	0.08
NSX-9	•	0.08

THE MEAN IS 0.0894
THE VARIANCE IS 0.0000
THE STANDARD DEVIATION IS 0.0017

### TABLE 97. RESULTS FOR

### MANGANESE BY SPECTROPHOTOMETRY

SAMPLE	PERCENT OXIDE
BCR-1	0.17 0.08
AC2-2	0.07
SYN_G2 NSX-1	0.03 0.07
NSX-2 NSX-3	0.07 0.07
NSX-4	0.07
NSX-5 NSX-6	0.07 0.07
NSX-7 NSX-8	0.07 0.07
NSX-9	0.08

THE MEAN IS 0.0754
THE VARIANCE IS 0.0000
THE STANDARD DEVIATION IS 0.0037

TABLE 98

### MANGANESE BY X-RAY FLUORESCENCE

SAMPLE	PERCENT OXIDE
GA (Lit.) GA (Exp.) G-2 BCR-1 NBS-70 MRB-8 NSX-1 NSX-2 NSX-3 NSX-4 NSX-5 NSX-6	0.09 0.09 0.03 0.17 0.00 0.02 0.08 0.09 0.09 0.09

THE MEAN IS 0.0800
THE VARIANCE IS 0.0000
THE STANDARD DEVIATION IS 0.0000

F-test AND T-test FOR MANGANESE BY ATOMIC AISORPTION AND SPECTROPHOTOMETRY TABLE

MANGANESE

•					
	SP	PERCENT OXIDE	0.07 0.07 0.07 0.07	0.07 0.07 0.08	9 DEGREES OF FREEDOM
1	,		·.		AND
1	1			,	6
				i i i	WITH
( ( (				 	4.00 WITH
1	8	PERCENT OXIDE	0.09	0000	F-calc.=

F-table= 3.18 WITH 9 AND 9 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

ATOMIC AISORPTION AND X-RAY PLUORESCENCE TABLE 100. F. test AND T-test FOR MANGANESE BY.

### MANGANESE

₹	XF
PERCENT OXIDE	PERCENT 0XIDE
0.09 0.09 0.09 0.09 0.08 0.08 0.08	0.00 0.08 0.08 0.08 0.09

9 AND 6 DEGREES OF FREEDOM 9 AND. 6 DEGREES OF FREEDOM F-calc.= 170 WITH F-table= 3.37 WITH

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL

	80.0	0.0
	•	
	MEAN	s.D.
		•
		•
•	0.08	0,00

0.07

MEAN S.D.

0.08

TABLE 101.
F-test AND T-test FOR MANGANESE BY
SPECTROPHOTOMETRY AND X-RAY FLUORESCENCE

### MANGANESE

XF	PERCENT OXIDE	0.07 0.08 0.08 0.08 0.08
	[ 1 1 1 1 1 1 1 1 1 1 1	A
Sp	PERCENT OXIDE	0.07 0.07 0.07 0.07 0.07 0.07 0.08

F-calc. = 370 WITH 9 AND 6 DEGREES OF FREEDOM F-table = 3.37 WITH 9 AND 6 DEGREES OF FREEDOM

THE DIFFERENCE BETWEEN THE VARIANCES IS SIGNIFICANT AT THE 5% LEVEL.

	•	
MEAN	S.D.	•
0.07	00.0	

0.08

TABLE 102

STAINARRY OF ANALYTICAL RESULTS FOR MIX 'IN-HOLDE' SAMPLE

													-					
Method			•					Blen	ents (	Blenents (Percent Oxides)	Oxides)				٠			7
- <b></b>		15			Po(t)	.3	3		871	· *	Ма	i	, ¥		Ţ		<b>3</b>	•
	,		-		,		-1		1,2		)'	,	, >	t	,,			. b
	×	ь	×	b	×	ь	×	ь	×	ь	•	6	•	,	۲ ا	,		
*	67.88	090.0	15.870 0.	0.570	4.07	4.07 0.090	2,08	0.000	1.06	1.06 0.030	3.46 0.400		4, 29 . 0. 200	0. 200	,		0.080	0.000
8.	_			1	٠		-				3,89	0,040	4.14 0.160	091.0			`	
ЗP	70.09	70.09 0.360	15.840 0.	00.100	3,98	3,98 0.050	· -				÷		٠		-		0,070 0,000	0,000
۲	• ,			•	4,45	4,45 0.030	2, 16	2,16 0.010	1.21	0.080							١	
9	68.67	0.600	15.890 0.	0,230								•		•		•		
×	71.24	71.24 0.670	15.460 0.	0.210	4.35	4,35 0,050	2.10	0.040	1.34	0.370			3.88	0.010			000.00 0000	0,000
APE			14,820	0.480	4.17 0.03	0.03	2,53	0.062	1.61	0.062	3,90	0.111	5.58	0.174	0,62	0,01	0.112 0.003	0,003
Bec.	67,54		15.270		4.08 0.08	90.0	2.11	0,098	1.11	1,11 0.045	3,766	0,086	3.93 0.104	0,104	0,16		0.080	0.006
																	•	

where X_is arithmetic mean, \(\sigma\) is standard doviation, AA is atomic absorption spectroscopy, FE is flame emission spectroscopy, SP is spectrophotometry, T is titration, G is gravimetry, XP is x-ray fluorescence spectroscopy, APE is argon playma emission, and Rec. Val. is recommended value.

.quirt, 1978.

** Turek, 1978.

### VII. SUMMARY AND CONCLUSIONS

A complete chemical analysis of a rock involves the determination of thirteen constituents; in this study eight constituents have been determined in replicate by up to six different methods. (Results by one method, argon plasma emission, is taken from Quirt, 1978.) The data is summarized in Table 102 which gives the average by a particular method of the replicate determinations together with the associated standard deviation. Table 102 also gives the recommended value for sample NSX which has been extensively malyzed by thirty-five laboratories. If the recommended value can be accepted as the 'true' concentration then inference with respect to accuracy can be made. It should be noted that the collaborative analytical results for sample NSX are exceptionally good and standard deviation for all constituents is better than for such well known international standards as G-2 and GA.

The purpose of this study has been to examine the possible bias between methods. The precision of analyses by all methods is good and comparing the standard deviations given in Table 102 to precision of analyses on
international standards SY-2, SY-3 and MRG-1 as tabulated in Tables 1 to 6
the precision of the NSX results compares very favourably. Similarily in
terms of accuracy the values for the international standard GA, BCR-1,
etc., obtained in this study are in agreement with the recommended values;
also the results for NSX agree with the recorded value. Hence, in terms
of accuracy and precision the replicate analysis reported for NSX by different methods are all acceptable values. However, inspection of the data

(Table 102) does show some significant differences in precision (i.e. standard deviation of results) and the differences between the means indicate either accuracy or more likely a bias between methods.

The argon plasma emission results are generally slightly higher, current work by Mitchell (1978) on trace elements suggests that this may be due to matrix effects, particularily shift in background of the argon continuum emission. The other methods do not show such obvious systematic effects.

Examining the individual results for each element by the different methods the following conclusions are made:

- (1) In the determination of silicon, atomic absorption appears to be the best method; it has the lowest standard deviation and the result is closest to the recommended value. Gravimetric method offers similar accuracy but poorer precision.
- (2) For aluminum there are no significant differences (at the 5% level)

  between all four methods in terms of accuracy, but in terms of precision

  x-ray fluorescence and gravimetry appear superior.
- (3) Precision in the determination of iron is very similar for all four methods. Atomic absorption appears most accurate while spectrophotometry is second best.
- (4) Calcium values show no significant differences in terms of accuracy but atomic absorption and titration give the most precise answers.

  It is interesting to note that titration gives 2.16% CaO compared to 2.08% (by atomic absorption) and 2.10% (x-ray fluorescence). This
- is what one would expect, atomic absorption and x-ray fluorescence are metal specific while titration also measures the proxying elements

  (Ba, Sr, Pb). Though not significant statistically, this in my opinion

is an example of method bias.

- Magnesium by atomic absorption shows best precision and is closest to the recommended values. The differences in precision for atomic absorption, titration and x-ray fluorescence is significant for all. Statistically the differences in means is not significant, but this is because magnesium by x-ray fluorescence suffers from very poor precision. Again the 1.06% MgO value by atomic absorption versus slightly higher 1.21% MgO by titration is in my opinion due to method bias.
  - (6) Sodium has been determined by atomic absorption and flame emission;

    flame emission is generally accepted as superior to atomic absorption.
  - (7) In the determination of potassium by atomic absorption, flame emission and x-ray fluorescence, x-ray fluorescence appears best in terms of precision and accuracy. This is somewhat surprising as general consensus is that flame emission is the preferred method for determining potassium, hence this may be a situation of laboratory/analyst bias. The calibration graph for potassium by flame emission is not satisfactory and may be the cause of the problem.
    - (8) Manganese is a minor element and all three methods give comparable values. Preferences for atomic absorption is a personal one. Determination of manganese by atomic absorption is very easy; instrumental stability is excellent, and manganese is probably the next easiest element to copper to determine by atomic absorption.

Based on the results in Table 102 the following tabulations for method preference has been developed and is given in Table 103. It is interesting to note that the recommended methods are related to the position of the elements in the periodic table. Thus for sodium and potassium (alkaline

elements) flame emission is recommended; for calcium and magnesium (rare earth elements) titration (i.e. chemical method) is recommended; for iron and manganese (transition elements) atomic absorption is the preferred method; for silicon and aluminum (again adjacent to eachother in the periodic table) atomic absorption is recommended for silicon, x-ray fluorescence for aluminum, both being instrumental methods.

In terms of biases between methods there are significant differences between means and the standard deviations. It is believed that some of these are differences due to biases between methods. For example iron by titration on all the NSX determinations and on the standards is higher than by the other methods. Similarily silicon shows large differences between the different methods. Generally it is thought that silicon is best determined gravimetrically; however, this study does not show this. Silicon, the number one constituent in most rocks remains as the most difficult to determine with an uncertainty of about +1.3% (at 95% confidence level).

For calcium and magnesium though the differences are not significant; the slightly higher titration value compared to atomic absorption is in my compared to method bias. Examining the data for SY-2, SY-3 and MRG-1 (Tables 1 to 6) it is interesting to note that titration for magnesium is always the highest value.

Tt is clear from this study that differences in precision, by a factor of 10, exist between the different methods. Also the mean values are different. What is obviously needed is a controlled collaborative study to further examine the problem and to establish a hierarchy of methodology for rock analyses. Something like this has been done in water analysis where a method is identified on the basis of precision and accuracy for the level of precision and accuracy required by the analyst.

TABLE 103.

PREFERRED METHOD, ACCORDING TO STATISTICAL PARAMETERS*

Element				Method**		•	
	AA	FE	SP	Т	· G	XF	APE***
Si	1	,	3		2		
Al:	3				2	1	
Fe(t)	1	i.	2			3	
.Ca	3			1	,	2	
Mg .	2			1		3	
Na	1	2		·			3
K	3 .	2		-		1 .	
Мп	1		2 -			3	

^{*}Other typical elements not analyzed are phosphorous and titanium.

^{**}where AA is atomic absorption, FE is flame emission, SP is spectrophotometry, T is titration, G is gravimetry, XF is x-ray fluorescence and APE is argon plasma emission.

^{***}Quirt, 1978.

APPENDICES

APPENDIX I INSTRUMENTAL COMBITIONS FOR ATOMIC ANSORPTION, PLAME EMISSION AND SPECTROPHOTOMETER

									Though.
Plement	Method	Instrument	Wavelength (nm)	S11t Width	Slit Lamp Width Current	Fuel	Plane Stoichiometry	Suppor	
				Ē	(Little)				
	:	Varian	250.7	0.3	. 0'91	Acetylene	Reducing Yellow Outer Edge	Nitrous Oxide	Atsarbance .
 	Ę	AA 175					٠		Alsorbance
SI	3.5	Spectronic 70	650,0				Reducing		
7	¥¥	Varian Techtron	309.3	0.2	19.0	Acetylene	Red Cone 1-2 cm high	Mitrous Oxide	* Absorbance
4	dS	Bausch & Lonb	475.0	. 1					, and the second
E. (1)	*	Varian	248.3	0.2	5.0	Acetylene	Oxidizing	Atr	Absorbance
		AA 175. Bausch & Loub	4 604					•	Ausorbance
Fe (t)	SP	Spectronic 70	١				Reducing	NI P. POLIS	Absorbance
క	₹	Varian Techtron	422.7	0.3	3.0	Acetylene	1	ł	g 10 secs.
- N	*	Varian	285.2	0.2	3,0	Acetylene	Oxidizing	Air	Absorbance
o L	Ì	AA 175							
ž	¥	Varian Techtron	9.684	0.3	5.0	Acetylene	oxidizing	VII.	
	¥.	Varian	589.0	0.2	l	Acetylene	o Oxidizing	Air	Absorbance
		Varian	2 991	0.2	5.0	Acetylene	g Oxidizing	Air	Absorbance
×	¥	Techtron AA 175	700.			- 1			
- 1 	84	1	766.5	0.2		Acetylene	e Oxidizing	Air	Transmittance
	-	Varian				toot ulone	Oxidizing	Air	Absorbance
Mn	YY	<b>—</b>	279.5	0.7		, l			
			ab 545.0						Albor Dans
un I	ds.								

X-RAY FLUORESCENT ANALYTICAL CONDITIONS

				-		1	
Element	. 51	A1	Fe	Ca	МВ	×	Mn
Crystal	TLAP	TLAP	L1F 200	L1F 200	ADP	ADP	Lif 200
Cup	Al	ਟੋ	A1	Al	Cu	A1	A1
Tube	Cr	٠ ٢	Cr	Cr	W	Cr	W
kV .	. 45	50	50	50	09	.50	50
mA	20	40	40	٠40 ٠	40	. 40	40
1.1.	140	120	210	250	190	160	150
*	220	170	140	230	300	400	120
Attenuation	2	3	3	3	2	.2	3
Collimator	Coarse	Coarse	Fine	Fine	Coarse	Fine	, Coarse
EC Volts	1590 (pot. 500)	1700 (pot. 540)	1500 (pot, 480)	1640 (pot, 520)	1710 (pot. 540)	1600 (pot. 480)	880, (pot. 280)
, Peak	31,810	37.53° (145.04°)	57,68 ⁰ (57,51 ⁰ )	$113,32^{0}$ (113,09°)	136,80 @100 sec.	41.02 ⁰ (41.20 ⁰ )	62.98 ⁰ (62.96 ⁰ )
Background					$B_1 = 135.6^{\circ}$ @20 sec. $B_2 = 139.0^{\circ}$ @20 sec.		$B_1 = 61.5^{\circ}$ @10 sec. $B_2 = 64.15^{\circ}$ @10 sec.
Standard	GA .	, GA	В	Ϋ́D	CA	GA	GA
Standard % Oxide	6.69	14.5	2.83	2,45	0.95	4,03	0.09
							•

APPENDIX . III

### SUMMARY OF RESULTS OF ALL SAMPLES

					Elements	(Percent	Oxides)	•			
ample	Methode .	<u>.</u>			Ca.	Mg	Na.	κ	р.	T.	Min
·		. \$1						2.060			0.210
	AR	·		12.880	6.690	3.440	3.39	2,330			
•	PE						<del></del>	2.000			0.170
_	SP			12.870		3,210					
BCn-	T			13,630	6.330	3,430	<del></del>	1,761			0.178
	XF	35.996	14.391	13.152	6,980	5,390	3.66	3.610	0.40	2.10	0,275
	APE		13.810	14.090	6,920	3,460	3.27	1.700	0.36	2.20	0.180
	Klass	54,300	13.610		2,720	0.860	3.74	4.460			0.090
	۸۸	70.320	16,150	2,910	24,720	0.500	4.01	4,300			
	FE	<u> </u>		0 240							0.080
	SΡ	71.300	14.740	2,680	2.420	1,140					
~	τ		1 020	2,970							
3	G	71.370	14,970	2,900	2.480	0.950		4.010			0,090
	XF	70,360	14.661	2,800	2.800.	1,140	4.13	5.560		0.41	0.104
	APE	70,012		2.830	2.450	0.950	3.35	4.030	0.12	0.38	0.090
	Rives	69,900	14.500	4.270	2,210	1,100	3.59	4.370			0.090
	_ , AA			4.2.0		- ,	3.99	4.300	-		
7 9	• FE			4,070		<u> </u>					0.070
AC2-2 n-bouse	SP		<u> </u>	4.820	2.010	1,450					
~ <u>F</u>			15,270	1.080	2,110	1,110	3.36	3.930	0.16	0.57	0.080
	RV	67,540		2.750	1,020	0.630	4.29	5,300			0.010
	AA		16.370				4.41	4.930			
8 5	FE		15,100	2,630							0.030
SYN, G2 ynthet1c)	39		13.100	2,320	. 1.960	0.660					
2 2	·	<u> </u>	15.030	2,024	-						
			13,120	2.370	1,960	0.660	4.04	4.980	0.13	0.33	0.080
	RVee				0.000	1,060	3.'46	4,290			0.060
	AA_	67.880	15,870	4.070	2,080	1,000	3.89	4,140			
_	FE			3.980						·	0.070
<u> </u>	SP	70,090	15.840	4,450	2.160						
KIX n-house)			13.890								
X EX	<u> </u>	68,670	15.460	4.350	2,100	1.340		3.880			0.080
~ =	Ţ.Y.F	71,240	14.820	4,170	2.320	1.610	3.90	5.580		0.62	0.11
_	APE**	67,340	15.270	4,080	2,110	1,110	3.36	3.930	0.16	0.57	0.080
	RVL		18.933	0.326	0.157	0.079		11.172		· ·	0.00
	XF	70.597	17.810	0.079	0.320	0.052	3.39	13.420			
X 25	APE		17.900	0.075	0.110	-	2,55	11,800		0.01	
ž .		67.100		1,949		0,281		3.675			0.02
=	XF	76.610	12.390	1,820		0.250	4.41	3,620	3.62	0.16	0.02
<u> </u>	RV	76.700	12.100			0.850		4, 446			0.03
ر ان	XF	70.874	15.684	2.900		0.760	4.07	4.310	0.14	0.50	0.030
	RV	69.110	15,400	2,650	1,540	3,				acroohoto	

^{*}Where AA is atomic absorption spectroscopy, FE is flame emission spectroscopy, SP is spectrophotometry, T is titration, G is gravimetry, XF is x-ray fluorescence spectroscopy, APE is argon plasma emission, and 8V is recommended value.

esquirt, personal communication, 1978.
essFlanagan, 1973 and 1976.
ssTurek, personal communication, 1978.
zz=Turek, 1978.
zzsSmith, personal communication, 1978.

### APPENDIX IV OXIDE CONVERSION FACTORS

These may be calculated from the atomic weights of the atoms involved. Some frequently used conversion factors are:

### OXIDES

Al 
$$\frac{1.8899}{\sqrt{0.5291}}$$
 Al₂O₃  $K \frac{1.2046}{\sqrt{0.8302}}$  K₂O

Ba  $\frac{1.1165}{\sqrt{0.8957}}$  BaO

Mg  $\frac{1.6579}{\sqrt{0.6032}}$  MgO

C  $\frac{3.666}{\sqrt{0.272}}$  CO₂

Mn  $\frac{1.2913}{\sqrt{0.7744}}$  MnO

Ca  $\frac{1.3992}{\sqrt{0.7147}}$  CaO

Na  $\frac{1.3480}{\sqrt{0.7919}}$  Na₂O

Co  $\frac{1.2715}{\sqrt{0.7864}}$  CoO

Ni  $\frac{1.2725}{\sqrt{0.7858}}$  NiO

Cr  $\frac{1.4615}{\sqrt{0.6842}}$  Cr₂O₃

P  $\frac{2.2912}{\sqrt{0.4365}}$  P₂O₅

Cu  $\frac{1.2518}{\sqrt{0.7988}}$  CuO

Re  $\frac{1.1288}{\sqrt{0.8858}}$  Re₂O₃

Fe  $\frac{1.2865}{\sqrt{0.7773}}$  FeO

Si  $\frac{2.1392}{\sqrt{0.4675}}$  SiO₂

FeO  $\frac{1.4113}{\sqrt{0.8998}}$  Fe₂O₃

Ti  $\frac{1.6681}{\sqrt{0.5995}}$  TiO₂

P  $\frac{9.0000}{\sqrt{1.1111}}$  H₂O

Zr  $\frac{1.3508}{\sqrt{0.7403}}$  ZrO₂

### SPECTROPHOTOMETER CALCULATIONS USING WANG 2200

```
5 PRINT "**IRON BY SPECTROPHOTOMETER"
 10 SELECT PRINT 005
20 PRINT HEX(03)
 30 STOP "INPUT PRINT STATEMENT No. 350 WITH TITLE CENTRED OVER
    38 SPACES; RUN/CONTINUE*
 40 DIM A(20),E(20),X(20),A$7
50 PRINT HEX(03)
 60 INPUT "INPUT THE NUMBER OF READINGS". K
 70 PRINT HEX(03)
 80 PRINT "INPUT THE CONCENTRATIONS"
 90 FOR F=1 TO K
 100 INPUT A(F)
 110 NEXT F
 120 PRINT HEX(03)
 130 INPUT "INPUT THE VOLUME", B
 140 INPUT "INPUT THE CORRECTION FACTOR", D
 150 PRINT HEX(03)
 160 PRINT "INPUT THE SAMPLE WEIGHTS"
 170 FOR F=1 TO K
 180 INPUT E(F)
 190 NEXT F
 200 FOR F=1 TO K
 210 X(F)=A(F)*B*D*(10<math>\frac{1}{2}(-4))/E(F)
 220 NEXT F
 230 W, Y=0
 240 INPUT "INPUT THE NUMBER OF MSX VALUES",Q
 250 01=0-1
 260 FOR F=(K-Q1) TO K
 270 W=W+X(F)
 280 V=V+(X(F)32)
 290 NEXT F
 300 P=W/Q
 310 L=(V/Q)-(P\(2)
 320 M=SQR(L)
 330 PRINT HEX(03) + ~
 340 SELECT PRINT 211
 350 PRINT " IRON BY SPECTROPHOTOMETER"
 360 PRINT HEX(OAOA)
 370 PRINT "SAMPLE
                       CONCENTRATION
                                          PERCENT*
 380 PRINT "
                                          OXIDE*
                      ppm
 390 PRINT "-----
 400 FOR F=1 TO K
 410 INPUT "INPUT THE ROCK STANDARD", A$
 420 PRINTUSING 430,A$,A(F),X(F)
 430
           %####### ###.####
                                          ###.##
 440 NEXT F
 450 PRINT
 460 PRINT
 470 PRINTUSING 480,P,L,M
  480
           % THE MEAN IS #4.###
               THE VARIANCE IS #.####
               THE STANDARD DEVIATION IS #.####
 490 STOP
 500 END
```

```
TO SELECT PRINT 005
 20 PRINT HEX(03)
30 STOP "INPUT PRINT STATEMENT No. 410 WITH TITLE CENTRED OVER
    38 SPACES; RUN/CONTINUE"
 40 DIM A(30),E(30),X(30),A$7,C(30)
50 PRINT HEX(03)
 60 INPUT "INPUT THE NUMBER OF READINGS", K
..70 PRINT.HEX(03)
 80 PRINT "INPUT THE TITER VOLUMES"
 90 FOR F=1 TO K
 100 INPUT A(F)
 110 NEXT F
 120 PRINT HEX(03)
 130 INPUT "INPUT THE VOLUME", B
 140 INPUT "INPUT THE NORMALITY".N
 150 PRINT " INPUT THE ALIQUOTES"
 160 FOR F=1 TO K
 170 INPUT C(F)
 180 NEXT F
  190 PRINT HEX(03)
  200 INPUT "INPUT THE EQUIVALENT WT. OF IRON",D
  210 PRINT HEX(03)
  220 PRINT "INPUT THE SAMPLE WEIGHTS"
 230 FOR F=1 TO K
  240 INPUT E(F)
  250 NEXT F
  260 FOR F=1 TO K
  270 X(F)=A(F)+B+N+D/10/E(F)/C(F)
  280 NEXT F
 ·290 W, V=0
  300 INPUT "INPUT THE NUMBER OF MSX VALUES",Q
  310 01=0-1
  320 FOR F=(K-Q1) TO K
  330 W=W+X(F)
  340 V=V+(X(F)½2)
  350 NEXT F
  360 P=W/0
  370 L=(Y/Q)-(P\2)
  380 H=SQR(L)
  390 PRINT HEX(03)
  400 SELECT PRINT 211
  410 PRINT " -
                      IRON BY TITRATION"
  420 PRINT HEX(OAOA)
  430 PRINT "SAMPLE
                         TITER VOLUME
                                           PERCENT"
  440 PRINT "
                                            OXIDE"
  450 PRINT "-
  460 FOR F=1 TO K
  470 INPUT "INPUT THE ROCK STANDARD", A$
  480 PRINTUSING 490,A$,A(F),X(F)
  490
  500 NEXT F
  510 PRINT "-
  520 PRINT
  530 PRINTUSING 540,P,L,M
                THE MEAN IS ##.####
                THE VARIANCE IS ##.####
                THE STANDARD DEVIATION IS #.####
  550 STOP
```

560 END

### APPENDIX VII

### GRAVIMETRIC CALCULATIONS USING WANG 2200

```
5 PRINT " ALUMINUM BY GRAVIMETRIC"
10 SELECT PRINT 005
 20 PRINT HEX(03)
 30 STOP "INPUT PRINT STATEMENT No. 340 WITH TITLE CENTRED OVER
    38 SPACES; RUN/CONTINUE"
 40 DIM A(20),E(20),X(20),A$9
 50 PRINT HEX(03)
 60 INPUT "INPUT THE NUMBER OF READINGS", K
70 PRINT HEX(03)
 80 PRINT "INPUT THE WEIGHT OF PRECIPITATE"
 90 FOR F=1 TO K
 100 INPUT A(F)
 110 NEXT F
 120 PRINT HEX(03)
 130 INPUT "INPUT THE GRAVIMETRIC FACTOR",D
 140 PRINT HEX(03)
 150 PRINT "INPUT THE SAMPLE WEIGHTS"
 160 FOR F=1 TO K
 170 INPUT E(F)
 180 NEXT F
 190 FOR F=1 TO K
 200 X(F)=A(F)+D+100/E(F)
 210 NEXT F
 220 W,V=0
 230 INPUT "INPUT THE NUMBER OF NSX VALUES",Q
 240 Q1=Q-1
 250 FOR F=(K-Q1) TO K
 260 W=W+X(F)
  270 V=V+(X(F)52)
  280 NEXT F
  290 P=\(\mathbf{I}/\text{0}\)
  300 L=(V/Q)-(P½2)
  310 M=SQR(L)
  320 PRINT HEX(03)
  330 SELECT PRINT 211
              . ALUMINUM BY GRAVIMETRIC*
  340 PRINT "
  350 PRINT HEX(OAQA)
  360 PRINT "SAMPLE WEIGHT OF PRECIPITATE PERCENT"
  370 PRINT
  380 PRINT "-----
  390 FOR F=1 TO K
  400 INPUT "INPUT THE ROCK STANDARD", A$
  410 PRINTUSING 420,A$,A(F),X(F)
            %#######
  420
  430 NEXT F
  440 PRINT
  450 PRINT
  460 PRINTUSING 470,P,L,M
                THE MEAN IS # . ####
  470
                THE VARIANCE IS #.####
                THE STANDARD DEVIATION IS #.####
  480 STOP
  490 END
```

### APPENDIX VIII

### PROGRAM #1 FOR MONROE 344

Si, Al, Fe, Ca and K Determinations

Fixed Counts
No Background

```
Set Decimal Point
LOAD
      Reset
RUN
      Reset
      2.55 (DT on 10^6 Counts - Flow Counter \rightarrow 1.02 for 400,000 Counts
             1.60 for 10^6 Counts on Scint. Counter
      Store
      1
      1 Exp (C_p - No. \text{ of Counts on Peak Eg. } 10^6)
      Store
      2
      15.19 (% Oxide in Standard)
LOAD S/S
      Variable - T_p (.000)
       RCL
       1/x
```

RCL

2

RCL

3 (Constant)

### APPENDIX VIII (CONT'D)

T_p (Time on Peak)

S/S (% Oxide or pp)

CYCLE

### APPENDIX IX

### PROGRAM #947 FOR WANG 700 SERIES

Magnewium and Manganese Determination

Fixed Time
One or Two Background Positions
Without MA Corrections
Feeding Directly the ppm or % of Standard

### Operating Instructions

Verify Prog: 947

Store Dir 00: Dead Time

Store Dir Ol: f*

Store Dir 02: ppm or % of Standard

Store Dir 03: Time for Peak

Store Dir 04: Time for Background

Store Dir 10: [1,000,000] ← Any Large Number

### Prime Search 1

CB1, GO Read DT Corrected cos at Y

 $C_{B_2}$ , GO Read DT Corrected  $(C_{B_1} + C_{B_2})$  f at Y and cps at X.

 $C_{\mathbf{p}}$  ,  $\underline{\text{GO}}$  Read ppm (or %) at Y and DT Corrected at X

- x-

FOR ONE BACKGROUND  $C_{B2} = 0$   $f = \frac{C_p}{C_p}$  Using DT Corrected cps of QUARTZ

FOR NO BACKGROUND  $C_{B_1} = C_{B_2} = 0$ 

FOR TWO BACKGROUNDS  $f = \frac{C_p}{C_{B_1} + C_{B_2}}$  No. 5

FOR f CALCULATION, USING PROGRAM #665

### APPENDIX IX (CONT'D)

```
Recall Dir
Mark
STOP
 Store Dir
 Recall Dir
                                   'X ·
 Change Sign
  Recall Dir
 Recall Dir
  Store Dir
                                     Х
   Clear X
  STOP ,
  Store Dir
   Recall Dir
   Х
   Change Sign
    Recall Dir
```

Store Dir Recall Dir Recall Dir Change Sign Store Dir Recall Dir. STOP , Store Dir Recall Dir. Change Sign Recall Dir Recall Dir Store Dir

### APPENDIX IX (CONT'D)

Recall Dir 05

Store Dir : 08

Recall Dir 10

SKIP IF Y < X

Search

2 .

Recall Dir 02

Store Dir

Mark

Recall Dir

Recall Dir

X

Recall Dir 07

STOP

END PROGRAM

### APPENDIX X

### PROGRAM #665 FOR WANG 700 SERIES

### (f) Factor Using Dead Time cps from QUARTZ

Fixed Time
Two Background Positions

### Operating Instructions

Verify Prog: 665

Store Dir 00: Dead Time

Store Dir Ol: Time for Peak

Store Dir 02: Time for Background

### Prime Search 1

CB1 GO Read DT Corrected cps

 $C_{B_2}$ , GO Read  $(C_{B_1} + C_{B_2})$  at Y and DT Corrected cps at X

 $C_{\mathbf{p}}$  ,  $\underline{\mathsf{GO}}$  Read f at Y and DT Corrected cps at X

FOR ONE BACKGROUND  $C_{B_2} = 0$ 

FOR TWO BACKGROUNDS  $f = \frac{C_p}{C_{B_1} + C_{B_2}}$  Using DT Corrected cps from QUARTZ

Mark

1

STOP CB

Store Dir 03

Ī

Recall Dir 00

Х

Change Sign

Ī

Recall Dir 🐪 🤦

.

Recall Dir

()

### APPENDIX X (CONT'D)

### Program #665 (Cont'd)

Store Dir Clear X STOP , CB2 Store Dir Recall Dir 00 Change Sign Recall Dir Recall Dir Store Dir Recall Dir Store Dir Recall Dir 04

STOP ,

Store Dir 05

Recall Dir Change Sign Recall Dir Recall Dir Store Dir Recall Dir Recall Dir STOP END PROGRAM

## APPENDIX XI

# X-RAY MATRIX CORRELATION OF MAJOR ELEMENTS

```
160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            195
                                                                                                                                                                                                        'MNO', 5X, PE203', 6X,
                                                                                                                                                                                       'NA20', 5X, 'MGO', 5X, 'AL203'. 4X 'SIQ2'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CALCULATE TOTAL ABSORPTION COEFFICIENT OF STANDARD (ASD) FOR EACH
                                                                                                   Z (9)), (FER, Z (11)),
                                                                                                                     Z(3)), (CA, Z(8)), (NA, Z(2)), (K, Z(7)),
                                                                                                                                     DIME(SION Z (12), P (12), Q(12), AO (15, 12), ASD (15),
                                                                                                                                                                                                          , 6X,
                                                                                                                                                                                                           'TI02'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ' ST)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WSD (J) + ASD (I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ((100, 0-WSD (1))
                                                                                                     EQUIVALENCE (SI, Z (5)), (AKM Z (4)),
                                                                                                                                                                                                          ' ' CAO' .
                                                                                                                                                                                         3 FORMAT ('0', 7X, 'L12B407', 4X,
                                                                                                                                                                                                                                                                                                                                  J=1, 12
XXXXXXXX TALERICO
                                                                                                                                                                                                                                                                                                                                                                    (WSD (J), J=1, 12)
                                                                                                                                                                                                                                                                                                               EL, (AO(1, J), J=1, 12)
                                                                                                                                                                                                                                                             (1A3, 11F7, 4/1F7.4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         上1,12)
                                                                                                                                                                                                           25X, 'P205', 6X, 'K20', 6X,
                                                                                                                                                                         DIMENSION X (12), WSD (12)
                                                                                                                                                                                                                                                                               (3X, 1A3, 12F9.4)
                                                                    DOUBLE PRECISION CHANGE
                                                                                                                                                                                                                                                                                                                                  (Ao (1, J),
                                                                                                                                                                                                                                                                                                                                                  3X 12F6.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WSD(J) = WSD(J) \cdot * \cdot
                                                                                      DATA CHANGE/6HCHANGE/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PRINT 19, (WSD (J),
                                  DOUBLE PRECISION NO
                                                      REAL NN, MG, NA, K
                                                                                                                                                         2B (15), NC (12)
                                                                                                                                                                                                                                                                                                                                                                                                                                                       J=2, 12
                                                                                                                                                                                                                                                                                                                                                                                                                       DO 240 J=2, 12
                                                                                                                        2Z (10)); MG,
                                                                                                                                                                                                                                                                                                 [=1, 15
                                                                                                                                                                                                                            'TOTAL'
                                                                                                                                                                                                                                                                                                                                                     (A3,
                                                                                                                                                                                                                                                                                                                                                                     READ 9, SD,
                                                                                                                                                                                                                                                                                                                                                                                      PRINT 12
                                                                                                                                                                                                                                                                                                                                                                                                      ST = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                      ST = ST
 WATFIV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (I) QSA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ASD (I)
                                                                                                                                                                                                                                              PRINT 3
                    REAL NC
                                                                                                                                                                                                                                                                                FORMAT
                                                                                                                                                                                                                                                                                                                  READ 5,
                                                                                                                                                                                                                                                                                                                                                    FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 255
                                                                                                                                                                                                                                                                                                                                   PRINT 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                          DO 245
                                                                                                                                                                                                                                                               FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DO 255
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         245
   $10B
```

20

 $\infty$ 

22

21

25 26 27 27 28

265 270

285 290 295 300

255

210 215. 220

29 30 31 32 33

34 35 36 37

225 230 235 240

221

```
CHECK THAT ALL ELEMENTS ARE TO BE CORRECTED BY CHECKING FOR BLANK
(cònt' D)
                                                                                                                                                                                             NO, (NC'(I), I=1,12)
TO 6
                                                                                                                                                                                                                                                                                                                         / 100.0)
                                                                                                                                                                READ IN UNCORRECTED NOMINAL COMPOSITIONS
 X
                                                                                                                                                                                                                                                                                                 Is 12), SUMINC
                      , 63<u>8</u>
                                             638
                                                                                                                                                                                                                                                                                                                     ((100.0-NC(1))
                                                                                       PRINT 11, SD, (ASD (J), J=1,12)
                                  (8)
                                                                                12F9.3//)
                                             ASD
                                 ASD
                                                                                                                                                                                          (5,16,END=110)
                                                                                                                                                                                                                                                                                                                                                       SUMNC - SUMNC + NC (J)
                                                                                                                                        16 FORMAT (A6, 12F6,3)
                                                                                                                                                                                                                                                                                                                                                                               FORMAT (6X, 13F9.3)
                                                                                                                                                                                                      IF (NO, EQ. CHANGE)
                                                                                                                            15 FORMAT (3X, 1A6)
                                                                             FORMAT (3X, A3,
                                                                                                                                                                                                                                                                                                                                                                  PRINT 19, (NC(J)
                                                                ASD (12) = ASD
                   = ASD
                               = ASD
                                          = ASD
                                                    ASD (1.1) = ASD
                                                                                                                                                                                                                                                                                 SUMINC
                                                                                                                 FORMAT (1HO)
                                                                                                                                                                                                                              PRINT 15, NO
                                                                                                                                                                                                                                                       SUMNC = 0.0
                                                                                                      PRINT 12
                                                                                                                                                                                                                                           ITER = 0
                               \overline{z}
                                        ASD (8)
                            ASD (
                                                                                                                                                                                                                                                                                                                               S UMNC -
                                                                                                                                                                                          READ
                                                                                                                                                                                                                                                                                                       00 24
                                                                                                                                                                                                                                                                                                                  NC (J(
                                                                                                                                                                                                                                                                  17 00
                                                                                                                                                                                                                                                                                           PRINT
                                                                                                                                                                                                                                                                                                                                            DO 25
                                                                                                                                                                                                                                                                               S UMINC
                                                                                                                                                                                                                                                                                                                                                                                                                                 12 00
                                                                                                                 Q
                                                                                                                                                                                                                                                                                                                    70
                                                                                                                                                                                                                                                                                                                                                                                                      00
```

43

45 46 48

J = 1Q (1) : DO 20

56 57 58

49 50 51 52 53 54

420

425

400

380

385

390 395 410

405

455

445

460

465

505 510

ASD (I

495 500

485 490 491

480

```
CALCULATE ABSORPTION COEFFICIENTS FOR SAMPLE USING NOMINAL COMPOSI
APPENDIX XI (CONT'D)
                                                                                                       (SUMNO-PT)
                                                                                                        (100.0-PT)
                                                                                                                 IF (Q(1), LE, 0, 0) Z(1) = NC(1)
                               = NC(I.)
                                                                                                                                                                                                                                                        638
                                         IF (Q(1), GT, 0, 0) P(1)
                                                                                                                                                                                                                                                          A(13)
                                                                                                                                        FORMAT (15X, 12F9.3)
                      20 Q (I) = AO (I, J)
                                                                          I = 1, 12
                                                                                                                                                            45 \text{ B(I)}' = \text{ASD (I)}
                                                                                                         Z (I) = NC (I)
                                                                                                                                                                                                      50 DO 55 I=1,15
                                                                                                                                                                                                                                                                                         A(12)= A(15)
                                                                                                                                                                                                                                                                               A(11) = A(11)
                                                                                                                                                                                                                                                                                                    ITER = ITER
                                                                                                                              CONTINUE
                                                     CONTI NUE
                                                                                     = PJ
                                                                                                                                                                                                                                                                                                               99
82
                                                                                                                                                   DO 45'
                                                                                                                                                                                                                                                                     A(8)
                                                                                                                                                                                                                                      55
                                                                                                                               23
                                                                                                                                                                                                                                                                                                   82
                                                                                                                                                                                                                                                                               80
81
                                                                                                                                                                                                                                                                                                              83
                                                                                                                                                                                                                                                                                                                         84
                        59
60
61
62
63
                                                                           64
                                                                                     65
                                                                                                66
67
                                                                                                                    68
```

# APPENDIX XI (CONT'D)

```
525
                    530
                              535
540
                                                   545
                                                                      555
                                                                                          565
                                                             550
                                                                                560
                                                                                                     570
                                                                                                                                                                                                         615
                                                                                                                                   585
                                                                                                                                                       590
595
                                                                                                                                                                          600
                                                                                                                                                                                    605
                                                                                                                                                                                               610
                                                                                                                                                                                                                   620
                                                                                                               575
                                                                                                                                                                                                                             625
                                                                                                                                                                                                                                       630
                                                                                                                                                                                                                                                 635
                                                                                                                                                                                                                                                           640
                                                                                                                                                                                                                                                                                          655
                                                                                                                                                                                                                                                                     645
                                                                                                                                                                                                                                                                               650
                                                                                                                                                                                                                                                                                                    099
                                                                                                                                                                                                                                                                                         92 FORMAT (/6X, 9H ITERATED, 13.6H TIMES, 6X, 20H PRESUMMATION TOTAL
                                                                                                                                                                                                                                                                                                  2F6.3, 10X, 41H VOLATILE LOSS AND NON ANALYSED ELEMENTS =, F6.3/)
                                                                                                                                 IF LAST TWO ITERATIONS ARE NOT WITHIN ,0001, REPEAT
                                                                                                                                                      IF ((AIS (A(I)-B(I)) / A(I)), GT, 0001) GO TO 80
                                                                                          (SUME-PT)
                                                           (100.0 / (100.0-NO(1)))
                                                                                                                                                                                                                                     = 2, 12)
= 2, 12), SUMX
60 IF (A(1), EQ, 1.0) Z(1) = NC(1)
                                                                                          (100,0-PT) /
                                                                                                    IF (A(J), EQ, 1.0) Z(J) = NC(J)
                                                                                                                                                                                                                                                                                                            PRINT 92, ITER, SUMX, RES
                                                                                                                                                                                                                                                                     SUMEL + Z(J)
                                       65 SUMZ = SUMZ + Z(J)
                                                                      = SUMX + X(N)
                                                                                                                                                                                                                                                (X(N),
                                                                                                                                                                                                                                                                               RES = \cdot 100, -S UMX
                             DO 65 J = 1,12
                                                 DO 61 N - 2,12
                                                                               DO 70 J - 1,12
                                                                                                                                                                                    00.85 I = 1,12
                                                           X(N) = Z(N)
                                                                                          = Z(J)
                                                                                                                                                                                                                   TOTAL = \beta.0
                                                                                                                                                                                                                            SUMEL = 10.0
          SUMX = 0.0
                  SUMZ = 0.0
                                                                                                                                                                                              85 \text{ B}(1) = A(1)
                                                                                                                                                                          GO TO 90
                                                                                                                                                                CONTINUE
                                                                                                                                                                                                         GO TO 50
                                                                                                                                                                                                                                                PRINT 30
                                                                                                                                                                                                                                      PRINT 3
                                                                                                                                                                                                                                                                     95 SUMEL-
                                                                                                                                                                                                                                                           DO 95
                                                                      S UMX
                                                                                          2(3)
                                                                                                                                                                                     80
                                                                                                                                                                                                                   90
                                                                                                    70
                                                                                                                                                                  75
                                                                      61
                                                                                                                         ပ ပ ပ
88
88
89
89
90
91
92
94
95
96
                                                                                                                                                                                                                           106
                                                                                                                                                                                                                                                108
                                                                                                                                                               100
                                                                                                                                                                                    102
                                                                                                                                                                                              103
                                                                                                                                                                                                       104
                                                                                                                                                                                                                  105
                                                                                                                                                                                                                                                          109
                                                                                                                                                                          101
                                                                                                                                                                                                                                      107
                                                                                                                                                                                                                                                                     110
                                                                                                                                                                                                                                                                              111
```

# APPENDIX XI (CONT'D)

	_	•							
	NC(1)		TOTA				-		
	00,00		, 12)						
	0.0/(1	· (f) 2	J = 2						
2, 12	Z(J) = Z(J) * 100,0/(100,0-NC(1))	(AI, +	(z(J))						
] = [	$(\Gamma)$ 2 =	= TOI	30,	0.	0.0	14		٠	
96 00	2(3)	TOTAL	PRINT	H = 0	FE = 0,0	GO TO 14	110 STOP	END	
		96	100				110		SENTRY
									Œ.
114	115	116	117	811	119	120	121	122	

### APPENDIX ~XII

### COMPUTER GRAPHS USING WANG 2200

```
10 REM ---- PLOTTER III, COMPUTER GRAPHS----
20 DIM C(50),D(50),X$20,Y$20,T$32,W(28),X(28),L1(28),Y(28)
30 SELECT PRINT 005
40 PRINT HEX(03)
50 INPUT "HAS THE PLOTTER BEEN HOMED", D$
60 IF D$="Y" THEN 80
70 STOP " HOME THE PLOTTER"
80 SELECT PRINT 413
 90 X,Y=200
100 REM ---- DRAW BORDER ----
110 PLOT 6!X,,D1,!(X/2),,D1,4!,Y,D1,!,(Y/2),D1
120 PLOT !-(X/2),,D1,6!+ ¥,D1,!,-(Y/2),D1,4!,-Y,D1,!,,R1
 130 SELECT PRINT 005
 140 PRINT HEX(03)
 150 REM --- INPUT LABELS ----
 160 INPUT "INPUT THE TITLE",T$
 170 INPUT "X-AXIS LABEL",X$
 180 INPUT "Y-AXIS LABEL",Y$
 190 C=2
 200 S=13*C
 210 X2=(6*X-LEN(X$)*42)/2
 220 Y2=(4*Y-(LEN(Y$)*42))/2
 230 SELECT PRINT 413
 240 PLOT !C,,C1,!S,,S1
 250 PLOT !,-5*S,U1,!X2,,U1
  260 PRINT X$
  270 PLOT !,,RI
280 STOP "CHANGE AXIS ORIENTATION"
  290 PLOT !C,,C1,!S,,S1
  300 PLOT !Y2,,U1,!,10*S,U1
  310 PRINT YS
  320 PLOT !,,R1
  330 STOP "CHANGE AXIS ORIENTATION TO NORMAL"
  340 REM ---- INPUT DATA ----
  350 SELECT PRINT 005
  360 PRINT HEX(03)
  370 INPUT "INPUT THE NUMBER OF DATA POINTS", A
  380 PRINT "INPUT THE DATA POINTS"
  390 FOR G=1 TO A
  400 INPUT C(G),D(G)
   410 NEXT G
```

### APPENDIX XII (CONT'D)

```
415 PRINT "----COMPUTER GRAPHS----"
 420 INPUT "INPUT THE MAXIMUM LIMIT OF THE X-AXIS", E
 430 INPUT "INPUT THE MAXIMUM LIMIT OF THE Y-AXIS", F
 440 SELECT PRINT 005 :
 450 PRINT HEX(03)
 460 REM ---- SLOPE, INTERCEPT, CORR. COEF.
 470 L,M,N,V,Q,R,U=0
 480 FOR G=1.TO A
 490 L=L+C(G)
 500 M=M+D(G)
510 NEXT G
520 N=L/A
530 V=M/A
540 FOR G=1 TO (A+4)
550 Q=Q+((C(G)-N)*(D(G)-V))
560 R=R+((C(G)-N)½2)
570 U=U+((D(G)-V)ν2)
580 NEXT G
590 J=(Q/R)+.00005
600 T1=(V-(J*N))+.00005
610 V1=(Q/SQR(R*U))+.000005
620 REM ---- PLOT DIVISIONS ON AXIS -
630 I1=(6*X/10)
640 I2=(4*Y/10)
650 SELECT PRINT 413
660 FOR G=1 TO 10
670 PLOT !1,,C1,!0,,S1
680 PLOT !!!,,Ui,!,,"+"1
690 NEXT G
700 PLOT !,,R1
710 FOR G=1 TO 10
720 PLOT !, I2, U1, !1, , C1, !0, , S1, !, ,
730 NEXT G
740 PLOT !,,R1
750 I1=(6*X/5)
760 I2=(4*Y/5)
770 SELECT PRINT 413
780 REM ---- NUMBER X-AXIS DIVISIONS ----
790 PLOT !,-50,U1
800 FOR G=1 TO 5
810 E1=G*((E/5))+0.005
820 I1=6*X/5
830 PLOT !1,,C1,!13,,S1
```

### APPENDIX XII (CONT'D)

```
835 PRINT "----COMPUTER GRAPHS"
840 PLOT !!!, ,UI,!-(4*S),,U1
850 PRINTUSING 860,E1
860 %####.##
870 PLOT !-(4*S),,U1
880 NEXT G
390 PLOT !,,R1
900 REM ---- NUMBER Y-AXIS DIVISIONS ----
910 FOR G=1 TO 5
920 PLOT !-200,,U1,!-10,(4*Y/5),U1
930 PLOT !1,,C1,!13,,S1
940 F1=G*((F/5))+0.005
950 PRINTUSING 860,F1
960 PLOT !2,,U1
970 NEXT G
980 PLOT !,,R1
.990 REM ---- PLOT POINTS ----
1000 SELECT PRINT 413
 1010 T,P,T2,P2=0
1020 FOR G=1 TO A
1030 T2=((C(G)*6*X)/E)/3
1040 P2=((D(G)*4*Y)/F)/3
 1050 T3=T2-T
 1060 P3=P2-P
 1070 T=T2
 1080 P=P2
 1090 PLOT 3!T3,P3,U1,!1,,C1,!0,,S1,!,,"X"1
 1100 NEXT G
 1110 PLOT !,,R1
 1120 REM ---- TITLE ----
 1130 PLOT 4!,Y,U1,!,210,U1,!-275,,U1
 1140 SELECT PRINT 413 -
 1150 PLOT !2,,C1,!26,,S1
 1160 R=((8*X)-LEN(T$)*50)/2
 1170 PLOT !R,,U1
 1180 PRINT T$
 1190 SELECT PRINT 005
 1200 PRINTUSING 1210, J, T1, V1
 1210 % THE SLOPE IS ####.####
        THE INTERCEPT IS ##.####
       THE CORRELATION COEFFICIENT IS #.#####
 1220 STOP
 1230 END
```

### 2*S.D. REJECTION TEST USING WANG 2200

```
20 SELECT PRINT 005
30 DIM B(60),R(20),X(60)
40 PRINT HEX(03)
50 STOP "INPUT A PRINT STATEMENT No. 220 WITH THE TITLE CENTERED
 OVER 31 SPACES STARTING 35 SPACES FROM THE LEFT; RUN/CONTINUE
60 IF ZG:1 THEN 100
70 P: HEX(03)
80 INPUT "IF ONLY THE RESULTS ARE REQUIRED, AND NOT THE TABLE, I
NPUT 1", Z6
                           .90 PRINT HEX(03)
100 INPUT "INPUT THE NUMBER OF VALUES", E
110 PRINT HEX(03)
120 PRINT "INPUT THE VALUES"
130 FOR G=1 TO E
140 INPUT B(G)
150 NEXT G
160 INPUT " INPUT THE INCORRECT VALUE", I
170 IF I=0 THEN 200
180 GOSUB '1(I.E)
190 GOTO 160
200 SELECT PRINT 211
210 PRINT " REJECTION TEST"
220 PRINT " SPECTROPHOTOMETRIC"
230 PRINT
240 IF Z6=1 THEN 350
250 PRINT " PERCENT"
270 PRINT " OXIDE"
280 PRINT " ------
 290 FOR G=1 TO E
 300 PRINTUSING 310,B(G) 310 %
 320 NEXT G
 330 PRINT "
 340 T9=0
 350 S=1
 360 J=0
 370 K=0
 380 Y=0
 390 FOR G=1 TO E
 400 IF B(G)=9999 THEN 450
 410 Y=Y+1
 420 X(Y)=B(G)
-430 J=J+X(Y) -
 440 K=K+(X(Y)½2)
 450 NEXT G
 460 M1=J/Y
```

### APPENDIX XIII (CONT'D)

```
470 S1=SQR((K/Y)-(M1\2))
480 Z3=M1+(2*S1)
490 Z4=M1-(2*S1)
500 FOR G=1 TO E
510 IF B(G)=9999 THEN 580
520 IF B(G)1Z3 THEN 550
530 IF B(G)!Z4 THEN 550
540 GOTO 580
.550 R(S)=B(G)
560 B(G)=9999
570 S=S+1
580 NEXT G
590 T9=T9+1
600 IF S=1 THEN 630
610 IF T9=2 THEN 630
620 GOTO 360
630 P7=0
640 SELECT PRINT 211
650 PRINT "
                     REJECTED VALUE(S)
660 FOR S=1 TO 15
670 IF R(S)=0 THEN 710
680 P7=1
690 PRINTUSING 310,R(S)
700 NEXT S
-710 IF P7=1 THEN 730
720 PRINT " NONE OF THE VALUES ARE REJECTED"
 730 PRINT HEX(OA)
 740 V7=$1\sq2
 750 M1=M1+.005
 751 V7=V7+.00005
 752 S1=S1+.00005
 760 PRINTUSING 770,E
 770 % THE TOTAL No. OF VALUES IS ####
 780 PRINTUSING 790,M1,V7,S1
                THE MEAN IS ###.##
                 THE VARIANCE IS ########
                 THE STANDARD DEVIATION IS ##.####
 820 GOTO 920.
 830 DEFFN '1(H,E4)
 840 PRINT "INCORRECT VALUE IS",H
 850 INPUT "CORRECT VALUE IS",H]
 860 FOR G=1 TO E4
 870 IF B(G)=H THEN 900
 880 NEXT G
 890 GOTO 910
 900 B(G)=H1
 910 RETURN
 920 STOP
 930 END
```

### APPENDIX XIV TOTAL POPULATION REJECTION TEST USING WANG 2200

```
20 SELECT PRINT 005
30 DIM B(60),R(20),X(60)
40 PRINT HEX(03)
50 STOP "INPUT A PRINT STATEMENT No. 230 WITH THE TITLE CENTERED
 OVER 31 SPACES STARTING 5 SPACES FROM THE LEFT; RUN/CONTINUE"
60 IF Z6=1 THEN 100
70 PRINT HEX(03)
80 INPUT "IF ONLY THE RESULTS ARE REQUIRED, AND NOT THE TABLE, I NPUT '1'", Z6
90 PRINT HEX(03)
100 INPUT "INPUT THE NUMBER OF VALUES", E
110 PRINT HEX(03)
120 PRINT "INPUT THE VALUES"
130 FOR G=1 TO E
140 INPUT B(G)
150 NEXT G
,160 INPUT " INPUT THE INCORRECT VALUE", I
170 IF I=0 THEN 200
180 GOSUB '1(I,E)
190 GOTO 160
200 IF Z6=1 THEN 340
210 SELECT PRINT 211
            REJECTION TEST*
IRON BY TITRATION*
220 PRINT *
230 PRINT "
240 PRINT
250 PRINT "
                PERCENT"
OXIDE"
260 PRINT "
270 RINT *
280 PRINT *.
290 FOR G=1 TO E
300 PRINTUSING 310,B(G)
310
320 NEXT G
330 PRINT "
340 S=0
350 J=0
360 K=0
370 Y=0
380 IR G=1 TO E
390 IF B(G)=9999 THEN 440
400 Y=Y+1
410 X(Y)=B(G)
420 J=J+X(Y)
430 K=K+(X(Y)\s2)
440 NEXT G
450 M1=J/Y
460 S1=SQR((K/Y)-(M1½2))
470 01=Y-0.85
480 T4=1.96-.00554568/SQR(Q1)+2.4059333/Q1+.671777/(Q11/2)-.38312
14/(Q1½3)
490 Q6=0
500 FOR G=1 TO E
510 IF B(G)=9999 THEN 590
520 IF B(G)!M1 THEN 550
```

### APPENDIX XIV(CONT'D)

```
530 Q5=B(G)-M1
540 GOTO 560
550 Q5=M1-B(G) ..
560 IF Q5!Q6 THEN 590
570 Q6=Q5
580 T9=G
590 NEXT G
600 N=0
610 FOR G=1 TO E
620 IF B(G)!1B(T9) THEN 640
630 N=N+1
640 NEXT G
:650 P=M1-B(T9)
 660 IF P10 THEN 680
 670 P=P*(-1)
 680 T1=(P*SQR(N))/S1
 690 IF T11T4 THEN 710
 700 GOTO 760
 710 S=S+1
 720 R(S)=B(T9)
 730 B(T9)=9999
 740 Y=0
 750 GOTO 350
 760 P7=0
 770 SELECT PRINT 211
                         REJECTED VALUE(S)"
 780 PRINT "
 790 FOR S=1 TO 15
  800 IF R(S)=0 THEN 840
  810 P7=1
  820 PRINTUSING 310,R(S)
  830.NEXT S
  840 IF P7=1 THEN 860
                NONE OF THE VALUES ARE REJECTED"
  850 PRINT *
  860 PRINT HEX (OAOA)
  870 V7=S132
  880 PRINTUSING 890,E
                  THE TOTAL No. OF VALUES IS ####
  890
  900 PRINTUSING 920,M1,V7,S1
   910 M6=100*S1/M1+.005
                   THE MEAN IS ###.##
                   THE VARIANCE IS ####.####
                   THE STANDARD DEVIATION IS ##.##
   930 PRINTUSING 940,M6
                  THE RELATIVE STANDARD DEVIATION IS ##.##
   940
   950 GOTO 1050
   960 DEFFN '1(H,E4)
   970 PRINT "INCORRECT VALUE IS",H
   980 INPUT "CORRECT VALUE IS",H1
   990 FOR G=1 TO E4
   1000 IF B(G)=H THEN 1030
   1010 NEXT G
    1020 GOTO 1040
    1030 B(G)=H1
    1040 RETURN
    1050 STOP
    1060 END
```

### APPENDIX XV

### STATISTICAL COMPARISON BY F-test AND T-test USING THE WANG 2200 COMPUTER

```
10 REM ---- F-TEST AND T-TEST----TALERICO**
20 SELECT PRINT 005
30 PRINT HEX(U3)
40 STOP "INPUT -A PRINT STATEMENT No. 340 WITH THE TITLE CENTERED
 OVER 42 SPACES; RUN/CONTINUE"
50 UIM A(20),k(20),w(10),C(10),D(10),H(10),I(10),K(10),X(10),Z(1
0),T(10),R(10),S(10),Q(20),G(20),X1(10),X2(10)
60 PRINT HEX(03)
7J INPUT "INPUT THE TOTAL NUMBER OF READINGS FOR COLUMN ONE",Q
80 PRINT HEX(03)
90 PRINT "INPUT THE OF READINGS IN COLUMN ONE"
100 FOR X1=1 TO Q
110 INPUT A(X1)
120 NEXT X1
130 PRINT HEX(03)
140 INPUT "INPUT THE TOTAL NUMBER OF READINGS FOR COLUMN TWO", G
150 PRÎNT/HEX(03)
160 PRINT "INPUT THE OF READINGS IN COLUMN TWO"
170 FOR X1=1 TO G -
180 INPUT 6(X1)
190 NEXT X1
200 PRINT HEX(03)
210 INPUT "THE LARGEST STANDARD DEVIATION IS", R
220 PRINT HEX(03)
230 IMPUT "THE SMALLER STANDARD DEVIATION IS",S
240 PRINT HEX(03)
250 E=(R½2)
260 F=(S<sup>1</sup><sub>2</sub>2)
270 W=E/F
280 INPUT "THE NUMBER OF READINGS FOR COLUMN ONE", N
290 PRINT HEX(03)
300 INPUT "THE NUMBER OF READINGS FOR COLUMN TWO",0
310 PRINT HEX(03)
 320 SELECT PRINT 211
                             MAGNESIUM"
 340 PRINT "
 350 PRINT
 360 PRINT "----
 370 PRINT "
 380 PRINT "-
                                     PERCENT"
OXIDE"
 390 PRINT // PERCENT
 400 PRINT " OXIDE
 410 PRINT "---
```

### APPENDIX XV (CONT'D)

```
411 FOR X1=1 TO Q
3420 PRINTUSING 430,A(XT),B(X1)
 430 % ##.##
 440 NEXT-X1
 460 PRINT "-
 470 PRINT
 430 PRINT HEX (03)
 490 PRINTUSING 500,W,N,O
 500 %F-calc.= ##.## WITH ## AND ## DEGREES OF FREEDOM 510 INPUT "F-table=",T
 520 PRINTUSING 530,T,N,O
            %F-table= ##.## WITH ## AND ## DEGREES OF FREEDOM
 530
 340 IF WIT THEN 570
 550 PRINT "THE DIFFERENCE BETWEEN THE VARIANCES
             IS SIGNIFICANT AT THE 5% LEVEL"
 560 6070 590
 570 PRINT "THE DIFFERENCE BETWEEN THE VARIANCES
           . IS NOT SIGNIFICANT AT THE 5% LEVEL"
  530 IF WIT THEN 550
 -590 PRINT
  600 PRINT HEX(03)
 610 C=(E<sup>1</sup><sub>2</sub>2)/(N-1)
  620 D=(F½2)/(O-1)
  630 H=C+D
  640 I=(E+F)1<sub>2</sub>2
  650 K=I/H
  L, I - NA3M" TUPNI COO
  670 INPUT "MEAN-2"> 8
  630 L=ABS(J-P)
  690 Z=SQR(E+F)
  700 T1=L/Z
  710 PRINT HEX(OA)
  720 PRINTUSING 730,T1,K
          %T-calc = ##.### WITH ### DEGREES OF FREEDOM
  730
  740 INPUT "T-table =",T2
  750 PRINTUSING 760,T2,K
           %T-table= ##.### FOR ### DEGREES OF FREEDOM
  760
  770 IF T11T2 THEN 800
  780 PRINT "THE DIFFERENCE BETWEEN THE MEANS
              IS NOT SIGNIFICANT AT THE 5% LEVEL"
  790 GOTO 810
  300 PRINT "THE DIFFERENCE BETWEEN THE MEANS
              IS SIGNIFICANT AT THE 5% LEVEL"
  310 STOP
  320 END
```

### REFERENCES

- Abbey, S., 1972. Standard samples of silicate rocks and minerals--a review and compilation. Geol. Surv. Can., Paper 72-30: 13 pp.
- Abbey, S., 1976. SY-2, SY-3 and MRG-1: a report on the collaborative analysis of three Canadian rock samples for use as certified reference materials--Supplement I. Energy, Mines Resour., Can., Cammet Report 76-36: 28 pp.
- Abbey, S., 1977. "Standard samples": how 'standard' are they? Geostandards Newsletter, No. 1. I: 39-45.
- Abbey, S., Gillieson, A. H. and Perrault, G., 1975. SY-2, SY-3 and MRG-1: a report on the collaborative analysis of three Canadian rock samples for use as certified reference materials. Energy, Mines Resour., Can., MRP/MSL 75-132 (TR): 56 pp.
- American Public Health Association, American Water Works Association and Water Pollution Control Federation, 1971. Standard methods for the examination of water and wastewater. American Public Health Office, Washington, 814 pp.
- Angino, E. E. and Billings, C. K., 1972. Atomic absorption spectrometry in geology. 2nd Ed. Elsevier Publishing Co., Amsterdam, 191 pp.
- Bennett, H., 1977. Analysis of silicates—ceramic and geochemical. Analyst, 102: 153-179.
- Brookes, C. J., Betteley, I. G. and Loxston, S. M., 1966. Mathematics and statistics for chemists. John Wiley and Sons, Ltd., New York, 418 pp.
- Christie, O. H. J. and Alfsen, K. N., 1977. Data transformation as a means to obtain reliable consensus values for reference materials. Geostandards Newsletter, No. 1. I: 47-49.
- Day, R. A. Jr., and Underwood; A. L., 1974. Quantitative analysis. 3rd Ed. Prentice-Hall, Inc., New Jersey, 192 pp.
- DeLaeter, J. R. and Rosman, K. J. R., 1977. Trace element data on geostandards by mass spectrometric isotope dilution technique. Geostandards Newsletter, No. 1. I. 35-38.
- Donaldson, E. M., 1978. Methods for the analysis of ores, rocks and replated minerals. Energy, Mines Resour., Can., Monograph 881: 379pp.
- Easton, A. J., 1972. Chemical analysis of silicate rocks. Elsevier Publishing Co., Amsterdam, 258 pp.
- Ellis, A. J., 1976. The T. A. G. C. interlaboratory water analysis comparison programme. Geochim. Cosmochim. Acta, 40: 1359-1374.

- Ernest, E. A. and Billings, G. K., 1972. Atomic absorption spectrometry in geology. Elsevier Publishing Co., Amsterdam, 182 pp.
- Byans Electroselenium Limited, n.d. EEL titrator operating instructions. Halstead, England.
- Bying, G. N., 1969. Instrumental methods of chemical analysis. McGraw-Hill Book Co., New York, 627 pp.
- Rairbairn, H. W., et al, 1951. A comparative investigation on precision and accuracy in chemical spectrochemical and modal analysis of silicate rocks. U. S. Geol. Surv. Bull., 980: 1-71.
- Flanagan, F. J., 1969. U. S. Geological survey standards--II--first compilation of data for new U. S. G. S. rocks. Geochim. Cosmochim. Acta, 33: 81-120.
- Flanagan, F. J., 1973. 1972 values for international geochemical reference samples. Geochim. Cosmochim. Acta, 33, 5: 1189-1200.
- Flanagan, F. J., 1976. Description and analysis of eight new U. S. G. S. rock standards. U. S. Geol. Surv., Professional Paper 840. United States Government Printing Office, Washington, 192 pp.
- Jeffrey, P. G., 1975. Chemical methods of rock analysis. Pergamon Press, Oxford, 509 pp.
- Kenner, C. T. and O'Brien, R. E., 1971. Analytical determinations and separations: a textbook in quantitative analysis. Collier-Macmillan Ltd., London, 395 pp.
- Kenner, J. F. and Keeping, E. S., 1954. Mathematics of statistics. I. 3rd Ed. D. Van Nostrand Co., Inc., New Jersey, 384 pp.
- Koch, G. S. and Link, R. F., 1970. Statistical analysis of geological data. John Wiley and Sons Ltd., New York, 375 pp.
  - La Roche, H. de and Govindaraju, K., 1976. Nouveaux etalons geochimiques: granite GS-N et feldspath FK-N. Analysis, 4: 347-373.
  - Maxwell, J. A., 1968. Rock and mineral analysis. Interscience Publishers, New York, 584 pp.
  - Mitchell, K. D., 1978. Untitled. Unpublished Masters Thesis, University of Windsor, n.p.
  - Moroney, M. J., 1965. Facts from figures. Cox and Wyman, Ltd., London, 472 pp.
  - Norrish, K. and Chappell, B., 1967. X-ray fluorescence spectrography.

    Physical methods in determinative mineralogy. ed. J. Kussman. Academic Press, London, 161-214.
  - Perlman, P., 1966. Reagents and solutions in analytical chemistry. Franklin Publishing Co., Inc., New Jersey, 318 pp.
  - Price, W. J., 1969. Atomic absorption spectroscopy. Spectroscopy. ed. D. R. Browning. McGraw-Hill Publishing Co. Ltd., London, 183 pp.

- Price, W. J., 1969. Flame emission spectroscopy. Spectroscopy. 'ed. D. R. Browning. McGraw-Hill Publishing Co. Ltd., London, 183 pp.
- Quirt, D. H., 1978. A comparative study of major element rock analysis by argon plasma emission and atomic absorption and emission spectrophotometry. Unpublished Masters Thesis, University of Windsor, 268 pp.
- Ridley, J. D., Turek, A., and Riddle, C., 1976. Variability of chemical analyses as a function of sample heterogeneity, and the implications to the analyses of rock standards. Geochim. et Cosmochim. Acta, 40: 1375-1379.
- Riley, J. P., 1958. Rapid analysis of silicate rocks and minerals. Anal. Chem. Acta, 19: 413-428.
- Roubault, M., La Roche, H. de and Govindaraju, K., 1970. Present status (1970) of the co-operative studies on the geochemical standards of the 'Centre de Recherches Petrographique'. Sciences de la Terre, No. 4. XV: 351-393.
- Shapiro, L., 1959. Rapid photometric determination of low level magnesium. in rocks. Chem. Analyst 48: 73-74.
- Shapiro, L. and Brannock, W. W., 1962. Rapid analysis of silicate. carbonate and phosphate rocks. U. S. Geol. Surv. Bull., 1144-A: 1-56.
- Skoog, D. A. and West, D. M., 1971. Principles of instrumental analysis. Holt, Rinehart and Winston, Inc., New York, 710 pp.
- Skoog, D. A. and West, D. M., 1974. Analytical chemistry: an introduction: 2nd ed. Holt, Rinehart and Winston, Inc., New York, 598 pp.
- Steele, T. W., 1977. Topics on reference materials during the international symposium (1976) on analytical chemistry and processing of materials.

  Geostandards Newsletter, No. 1. I: 21-23.
- Tetley, N., 1974. Chemical analysis of geochemical rock standards: granites G-2, GA; syenite SY-2, SY-3; ultramafics PCC-1, UM-1, UM-2, UM-4. Unpublished Theis, University of Windsor.
- Turek, A., 1966. Rubidium-strontium isotopic studies in the Kalgoorlie-Norsemen Area, Western Australia. Ph.D. Thesis, Australian National University, Australia.
- Turek, A., 1973. Geochemistry laboratory manual. Unpublished, University of Windsor, 33 pp.
- Turek, A., and Riddle, C., 1977. Geochemistry laboratory manual. Revised. Unpublished, University of Windsor, 72 pp.
- Turek, A., Riddle, C., Cozens, B. J., and Tetley, N. W., 1976. Determination of chemical water in rock analysis by Karl Fischer titration. Chem. Geol., 17: 261-267.
- Turek, A., Riddle, C., Marzetti, G., 1978. A collaborative study of analytical precision in the analysis of a rock powder and a fused glass powder. Geostandards Newsletter (submitted).

- Turek, A., Riddle, C. and Talerico, F., 1978. Determination of carbon dioxide in rock analysis by non-aqueous titration. Chem. Geol., 21: 351-357.
- Varian Techtron, 1971. Instruction manual for Varian Techtron model AA-5: atomic absorption spectrophotometer. Melbourne, Australia.
- Varian Techtron, 1972. Analytical methods for flame spectroscopy. Spring-vale, Australia.
- Varian Tectron, 1976. Atomic absorption spectrophotometers, model AA-175: operation manual. Springvale, Australia.
- Vogel, A. I., 1961. Testbook of quantitative inorganic analysis. Lowe and Brydone Ltd., London, 1216 pp.
- Ward, A. F., 1977. Analysis of major and minor elements in rocks using optical emission spectrometry from an inductively coupled argon plasma source. Unpublished report, Waltham, Massachusettes, 77 pp.
- Weast, R. C., 1975. Handbook of chemistry and physics. 56th ed. Chemical Rubber Co. Press, Cleveland.
- Weinberg, G. H. and Schumaker, J. A., 1964. Statistics, an intuitive approach. 2nd ed. Brooks/Cole Publishing Co., California, 362 pp.
- Willard, H. H., Merritt, L. L. and Dean, J. A., 1965. Instrumental methods of analysis. Van Nostrand Reinhold Co., New York, 784 pp.
- Wine, R. L., 1964. Statistics-for scientists and engineers. Prentice-Hall, Inc., New Jersey, 659 pp.

### VITA AUCTORIS

BORN: San Giovanni in Fiori, Italy. January 7, 1947.

SECONDARY SCHOOL: Patterson Collegiate Institute. 1963 to 1967.

POST SECONDARY SCHOOL: St. Clair College. 1967 to 1971.

University of Windsor, 1972 to 1978.

DEGREES AND DIPLOMAS: Architectural Technology Diploma. 1971.

Bachelor of Science (General) Degree. 1976.

Bachelor of Science (Honours) Degree. 1977

Masters of Science. 1978.