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ABSTRACT
♦

IDENTIFICATION OF HUMAN YVH1 SUBSTRATES AND BINDING 
PARTNERS BY BIOLOGICAL MASS SPECTROMETRY

Dual specificity phosphatases belong to the protein tyrosine phosphatase 

family of enzymes. These members have the ability to dephosphorylate both 

phosphotyrosine and phosphoserine/-phosphothreonine residues on the 

substrate proteins and have been found to be the regulators of critical cellular 

functions such as cell growth and cell cycle progression. The first dual specificity 

phosphatase was identified from vaccina virus. Later studies found homologues 

of VH1 in other organisms including yeast and humans. The human homologue, 

hYVH1, is a 36kDa enzyme containing a novel zinc finger domain. This research 

project was carried out as a first step towards the physiological characterization 

of this enzyme. In this project, we have identified the first associating protein of 

hYVH1 using affinity chromatography and mass spectrometry. The protein 

identified is Hsp70, a member of the heat shock family of proteins, known to get 

induced in response to cellular insults and to prevent apoptosis. Using substrate 

trapping mutants and two-dimensional gel electrophoresis we have identified 

unique spots which qualify to be the potential substrate of hYVH1. The 

identification and functional characterization of these potential substrates and 

interacting proteins will greatly enhance the elucidation of the physiological 

relevance of this evolutionary conserved phosphatase.

i i i
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INTRODUCTION

1.1 Protein tyrosine phosphatase (PTP) superfamily

In cellular systems, environmental signals are communicated via regulatory 

post-translational modifications. Phosphorylation is a reversible form of post- 

translational modification, in which the gamma (y) phosphate group of ATP is 

added to a serine, threonine or tyrosine residue of a target protein by the action 

of a protein kinase. The event of phosphorylation is reversed by another group of 

enzymes called phosphatases.

Protein kinases and phosphatases work in a coordinated manner to regulate 

the activities of proteins and control a wide range of cellular functions (Hunter, 

1995). These include communication between cells, proliferation and 

differentiation, cell cycle control, transcription, mRNA processing, molecular 

transport into and out of cells, metabolic processes, cytoskeleton organization 

and cell adhesion (Alonso et at., 2004). Since phosphorylation is reversible, the 

protein phosphatases play a crucial role in the completion of the process by 

reversing the phosphorylation state of the protein and bringing it back to its 

original form whether it had initially been activated or inactivated by 

phosphorylation (Figure 1). The disruption of phosphatase activities puts a cell 

under a malfunctioning state leading to the development of many diseases 

including abnormal cell growth, oncogenesis, neuromuscular illness, diabetes, 

and immune disorders (Alonso et a!., 2004; Ducret et at., 2005).

Protein phosphatases are mainly divided into two families. These include

- 1 -
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Figure 1. Post-translational modification of proteins via 

phosphorylation. The figure above shows the modification of proteins 

which can take place at the serine/-threonine or tyrosine residues of the 

target protein to be phosphoryiated by a protein kinase in an ATP- 

dependent manner. Once phosphoryiated the proteins are taken back to 

their original state by the action of protein phosphatases.
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serine/-threonine phosphatases and protein tyrosine phosphatases (PTPs). 

Serine/-threonine phosphatases are metalloenzymes and they require a metal 

ion to perform catalysis (Barford et al., 1998). On the other hand, PTPs are 

classified by the presence of the signature motif C(X)5R and they mediate 

catalysis via the formation of a phosphoenzyme reaction intermediate (Stone and 

Dixon, 1994).

There are approximately 107 PTPs encoding genes in the human genome 

(Alonso et al., 2004).The PTP family is divided into receptor-like and 

nonreceptor-like or intracellular enzymes based on the presence of extracellular 

and transmembrane regions (Barford et al., 1998; Fischer et al., 1991). 

Furthermore, the intracellular PTPs are subdivided into four subfamilies which 

include tyrosine specific phosphatases, dual-specificity phosphatases (DSPs), 

CDC25-phosphatases and low molecular weight phosphatases (Figure 2) 

(Barford et al., 1998; Fauman and Saper, 1996). In addition to the presence of 

the very essential catalytic domain in these enzymes, other domains also play 

critical roles and are responsible for the regulation of their catalytic activity, 

substrate specificity, and targeting to different subcellular locations (Fauman and 

Saper, 1996; Tonks and Neel, 1996).

1.2 Catalytic mechanism of PTPs

The catalytic domains of PTPs are highly conserved among all members of 

this family (Stone and Dixon, 1994). The first step in catalysis involves a 

nucleophilic attack of the thiol group of the catalytic cysteine on the 

phosphoamino acid of the substrate. This results in the formation of a covalent-

-3 -
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bonded thiol-phosphate intermediate between the enzyme and the substrate. 

The next step includes the release of the substrate from the enzyme pocket. This 

happens when the catalytic aspartic acid donates a proton to the oxygen on the 

substrate breaking the bond between the substrate and the phosphate group. In 

the last step, the catalytic aspartic acid acts as a base and abstracts the 

hydrogen from a water molecule. This creates a nucleophilic hydroxyl group that 

attacks the phosphate group breaking the phospho-thiol bond. As a result, the 

enzyme is regenerated and is free to undergo another round of 

dephosphorylation (Figure 3) (Barford et al., 1998).
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Figure 2. Schematic of the classification of PTPs. PTPs are recognized 

by the presence of the signature motif C(X)5R. The classification scheme 

above shows receptor PTPs, which contain extracellular and transmembrane 

regions, and intracellular (cytosolic) PTPs. The intracellular PTPs are further 

subdivided into three main classes which include tyrosine specific PTPs, dual 

specificity PTPs (DSPs), and lipid PTPs that dephosphorylate lipid 

phosphoinositides as their physiological substrates.
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Figure 3. Catalytic mechanism of PTPs. A) Formation of the phospho-thiol 

intermediate between the enzyme and the substrate and the release of the 

substrate from the enzyme pocket. B) Regeneration of the PTP by the break 

down of the covalent bond between the enzyme and the phosphate group.
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1.3 Dual specificity phosphatases

Dual specificity phosphatases (DSPs) make a subclass of the PTP family. 

These enzymes possess the signature catalytic motif C(X)sR, and follow the 

same catalytic mechanism as other PTPs (Wang et al., 2003). However, as 

suggested by their name, these enzymes are distinguished from other 

subclasses of PTPs due to their dual specificity for phosphotyrosine and 

phosphoserine-/threonine containing substrates (Stone and Dixon, 1994). 

Structurally speaking, these enzymes contain one serine in their catalytic motif 

(CXXGXSR) (Stewart et al., 1999), instead of the two glycines in case of tyrosine 

specific phosphatases (CXXGXGR) (Groves et al., 1998). As a result, their 

enzyme pocket is shallow and can accommodate residues like serine and 

threonine for hydrolysis (Barford et al., 1998).

To date, there are 38 DSPs found in the human genome. These include 

MAPK phosphatases (11), Cdc25 phosphatases (3), Cdc14 phosphatases (4), 

PRL phosphatases (4), and atypical DSPs (17) (Ducret et al., 2005). Among the 

DSPs, the ones that have been most extensively studied include the Cdc25 

phosphatases and MAPK phosphatases (MKPs).

Cdc25 phosphatases regulate the activity of an important group of enzymes 

called cyclin dependent kinases (CDKs) which are regulators of the mammalian 

cell cycle (Ferguson et al., 2005). In cases where the phosphorylation of CDKs 

results in the inactivation of a CDK/cyclin complex (Honda et al., 1992; Liu et al., 

1997), Cdc25 phosphatases dephosphorylate and activate the cyclin bound 

enzyme in response to extracellular signals due to mitogen and growth factors,

- 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



resulting in cell cycle progression (Ducret et al., 2005). Hence, the activation of 

CDKs via dephosphorylation by Cdc25 phosphatases provides an example of 

how dephosphorylation is not merely restricted to inactivation but also activation 

of enzymes.

In contrast to Cdc25 phosphatases, MKPs are associated with the activation 

of a group of enzymes called MAPKs (Wu and Bennett, 2005). MAPKs are 

important enzymes that play vital roles in signal transduction due to mitogenic 

signals, apoptosis, cellular survival and stress response (Ducret et al., 2005). 

They are activated by phosphorylation and in their activated form they, in turn, 

phosphorylate many proteins including transcription factors to activate gene 

expression in order to allow a cell to respond to the original signal (Yang et al., 

2003). The inactivation of MAPKs by MKPs is necessary to closely regulate 

cellular responses to signals and preventing the cell from going into an 

overwhelmed state. In brief, DSPs play important roles in cell cycle regulation 

and cellular signaling processes and any disturbance in their activity can result in 

the development of pathological states such as cancer. Therefore, this group of 

enzymes makes attractive candidates as therapeutic targets to treat human 

disease (Ducret et al., 2005).

1.4 Studies of hYVH1 orthologues

In 1991, the open reading frame H1 in the HINDIII restriction fragment of the 

vaccina virus genome was found to have amino acid sequence similarity to 

protein tyrosine phosphatases. On expression and purification of the protein in 

the bacterial systems, it showed activity against both phosphoserine-/threonine

- 8 -
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and phosphotyrosine residues (Guan et al., 1991). On site directed mutagenesis 

of the catalytic cysteine residue, the enzyme showed lack of hydrolyses of 

phosphoryiated serine/-threonine and tyrosine residues. Therefore, it was 

confirmed that the newly found enzyme from the vaccina virus shares the 

catalytic mechanism of PTPs but possess dual activity against phosphoserine/- 

threonine and phosphotyrosine substrates. Thus, the enzyme was named as 

VH1 dual-specificity phosphatase (Guan et al., 1991; Guan and Dixon 1991; Pot 

and Dixon, 1992; Streuli etal., 1990).

One year later, the eukaryotic homologue of the VH1 dual specificity 

phosphatase was found in yeast Saccharomyces cerevisiae and was called 

yeast VH1 or YVH1. The gene for YVH1 was expressed in Escherichia Coli and 

was shown to possess phosphatase activity. In addition, it was found that 

inactivation of YVH1 gene decreased the growth rate in yeast increasing the 

doubling time in yeast to two-folds (Guan et al., 1992) and disrupted sporulation 

(Park et al., 1996). Moreover, it was observed that the mRNA of this enzyme was 

dramatically induced by nitrogen starvation conditions (Guan et al., 1992).

In addition to the yeast VH1-like phosphatases, there are only 17 open- 

reading frames in yeast corresponding to PTPs and dual specificity 

phosphatases (Muda et al., 1999). Those phosphatases that have been 

conserved from yeast to humans are of particular interest of study because they 

are likely to be the regulators of conserved functions in eukaryotic organisms. 

One such enzyme is the human orthologue of the dual-specificity phosphatase 

YVH1 called human YVH1 (hYVH1). The mRNA of this enzyme is widely found in

- 9 -
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human tissues, with the highest levels found in spleen, testis and ovary. 

Moreover, the hYVH1 gene is located on chromosome 1q21-q22 which falls in a 

region amplified in liposarcomas (Muda et al., 1999).

Human YVH1 is a 340 amino acid protein with 31% sequence identity with the 

yeast enzyme. Interestingly, the human orthologue can restore the yeast 

phenotypical defects when YVH1 is deleted. The YVH1 orthologues are the only 

PTPs known to contain a novel zinc finger domain which employs two moles of 

zinc per mol of protein. It has been shown that this COOH zinc finger is essential 

for the complementation of YVH1 slow growth phenotype (Muda et al., 1999). 

However, the physiological function of hYVH1 is unknown and requires 

knowledge about its interacting proteins and substrates as a first step towards its 

physiological characterization.

- 1 0 -
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Figure 4. Schematic of the dual specific ity phosphatase hYVH1. The

enzyme contains the signature motif C(X)5R of PTPs, and the amino acids 

found in this motif are shown. In addition, the enzyme contains a novel C- 

terminal zinc finger domain which binds 2 moles of zinc per mol of protein.
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1.5 Regulation of proteins via protein-protein interactions

The study of interacting proteins is a major resource for understanding the 

physiological function of an uncharacterized protein. Protein-protein interactions 

can regulate the activity of enzymes, the stability of proteins, the subcellular 

distribution of proteins, and the formation of functional multiprotein complexes. 

For example, specific binding partners of protein kinase C enzymes regulate the 

activity and subcellular location of different isoforms to gain functional diversity 

(Poole et al., 2004).

There are many techniques available to study protein-protein interactions. 

These include yeast two-hybrid system (Miller and Stagljar, 2004), Glutathione-S- 

transferase fusion based assays (Vikis and Guan, 2004) and blot overlay or far 

western blot (Hall, 2004), just to name a few. Recently, the use of proteomic 

based approaches to rapidly identify interacting proteins has become widely 

utilized. This approach consists of the use of affinity chromatography to capture 

the multiprotein complex followed by mass spectrometry to sequence and identify 

the unknown proteins. However, the identification of a novel protein is coupled to 

its functional characterization in order to elucidate its physiological relevance.

Interacting proteins play an important role in the regulation of many proteins. 

For example, interacting proteins regulate the localization of Cdc25C in and out 

of nucleus and effect cell cycle progression (Hutchins and Clarke, 2004). 

Furthermore, the 14-3-3 interacting proteins bind to phosphoryiated serine 

residues of proteins in the signaling networks and mediate a variety of effects in 

eukaryotes including conformational changes, inhibition of enzyme activity,

- 1 2 -
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bridging between two molecules and change in localization (Thomas et al., 

2005). In addition, the interacting partners of leukocyte common antigen-related 

(LAR) receptor PTPs (LAR-RPTP) have indicated their role in actin cytoskeleton 

remodeling (Chagnon et al., 2004). Thus, the knowledge about novel interacting 

proteins can open unanticipated doors into the understanding of a particular 

protein.

1.6 Identification of PTP substrates

PTPs regulate a broad range of cellular activities. The function of a particular 

PTP can be understood by knowing the substrate of the enzyme. However, 

phosphoproteins are low abundance signalling proteins, due to a low 

stoichiometry of cellular protein phosphorylation, (Shu et al., 2004) with a high 

turnover (Szeszak, 1976). These factors make the capture of phosphoproteins 

from the cell a challenging task. An approach to identify the substrates for PTPs 

relies on the formation of substrate-trapping mutants of the enzyme. Based on 

the knowledge of the catalytic mechanism of PTPs two substrate-trap mutants 

can be generated; one by substituting the catalytic cysteine (C) to a serine (S) 

residue and the other by substituting the catalytic aspartic acid (D) residue to an 

alanine (A). On expression in cells, these mutants would compete with the wild 

type enzyme for the substrate. These mutants are designed as such that they 

would be able to bind the substrate but would disable its release from the 

enzyme pocket making the substrate amenable to be captured as an enzyme- 

substrate complex using affinity purification.

The idea of the formation of substrate trap-mutants came from studies on the

-13 -
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prototypical PTP called PTP1B. The crystal structure of the substrate bound (Jia 

et al., 1995) and unbound enzyme (Barford et al., 1994) was determined. The 

invariant residues were found by aligning the sequences of the PTP catalytic 

domains and these residues were found to be clustered around the region of the 

active site (Flint et al., 1997). Two such invariant residues are the catalytically 

active cysteine (Barford et al., 1994; Stuckey et al., 1994) and catalytic aspartic 

acid (Denu and Dixon, 1995; Jia et al., 1995; Zhang et al., 1994). The 

substitution of the catalytically active cysteine to a serine or alanine residue has 

been used in the past by several researchers to successfully target PTP 

substrates (Furukawa et al., 1994; Jia et al., 1995; Shiozaki and Russell, 1995; 

Sun et al., 1993). However, for other PTPs, the interaction between the enzyme 

and the substrate is inadequate to allow the isolation of their complex in the 

absence of the catalytic cysteine residue (Flint et al., 1997). In such cases, the 

catalytic aspartic acid can be mutated to an alanine to stabilize the interaction 

between the enzyme-substrate complex. This will allow the substrate to be 

trapped in the enzyme pocket by hindering the cleavage of the P—O bond in the 

substrate. The validity of this mutant was tested by expressing GST-tagged 

(C215S) and (D181A) mutants in COS cells. It was followed by 

immunoprecipiation with GST-sepharose resin and immunoblotting with anti

tyrosine antibody. Several pTyr proteins were captured, however, the (D181A) 

mutant proved to be a better mutant (Flint et al., 1997). It also indicates its 

capacity as a better substrate trap due to a more stabilized interaction between 

the enzyme and the substrate.
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MASS SPECTROMETRY

Mass spectrometry is a highly sensitive analytical tool (picomole to femtomole 

sensitivity) that is used to study biomolecules (such as proteins and nucleic 

acids) (Siuzdak, 1994). The technique is based on determining the mass to 

charge (m/z) ratio of the ionized particles in their gaseous state. The two most 

commonly used types of mass spectrometry techniques include MALDI-TOF 

(Matrix-Assisted Laser Desorption Ionization-Time of flight), and ESI-MS 

(Electrospray Ionization-mass spectrometry). In general, a mass spectrometer 

consists of three parts: an ion source which ionizes the sample into gaseous 

charged particles, an analyzer which determines the mass to charge ratio of the 

ions and a detector which records the number of ions with the same mass to 

charge ratio (Aebersold and Mann, 2003).

The two most common types of ionization methods include MALDI (Matrix- 

Assisted Laser Desorption Ionization) and ESI (Electrospray inonization). ESI is 

the preferred choice for ionization from solutions (e.g., aqueous or 

aqueous/organic solvent systems) and is employed to identify proteins from a 

more complex sample of peptides (Siuzdak, 1994). In order to achieve ionization 

via ESI, the source of separation of protein mixture (e.g., a chromatographic 

column) is directly attached to the mass spectrometer. Once separated, the 

charged particles are directed to the mass analyzer where they are separated 

according to their m/z ratio and travel to the detector resulting in the generation 

of a mass spectrum.
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ESI is usually coupled with a quadropole analyzer. In this analyzer, ions of a 

particular m/z ratio are passed through a four rod mass filter and make their way 

to a collision cell. Once fragmented in the collision cell, the resultant fragments 

are read by the analyzer and are passed onto the detector to generate a CID 

(collision induced dissociation) spectrum. The data from the spectrum are 

matched against protein databases for the identification of the protein (Aebersold 

& Mann, 2003).

The mass spectrometer used in this research project is a MALDI-TOF 

instrument. MALDI is the method of choice for the ionization of charged gaseous 

particles from relatively simpler mixture of peptides. MALDI refers to an ionization 

procedure in which the sample is crystallized with a matrix such as alpha matrix 

(alpha-cyano-4-hydroxycinnamic acid). The matrix is desorbed into gaseous ion 

particles using a nitrogen laser and the ions travel through a time of flight tube to 

the analyzer (Siuzdak, 1994). Prior to MALDI analysis, the proteins are separated 

by SDS-PAGE or chromatography. In case of SDS-PAGE, the gels are stained 

either with coomassie or silver stain. The protein bands are carefully excised 

from the gel and are in-gel digested using a proteolytic enzyme such as trypsin. 

The resultant sample consists of a mixture of peptides of different masses 

(Aebersold and Mann, 2003). The samples can be further processed by a 

process called zip-tipping to remove salt contamination. The refined sample is 

applied to the MALDI plate along with the matrix and the plate is inserted into a 

chamber for the sample to be bombarded and ionized by a nitrogen laser. The 

data from the mass spectrometer is collected in the form of a mass spectrum
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which is a plot of the relative abundance of various ion fragments plotted against 

their mass-to-charge (m/z) ratio. This mass spectrum is also referred to as a 

peptide mass fingerprint (PMF) (Aebersold and Mann, 2003). The peptide mass 

finger print generated by a particular proteolytic enzyme is a signature spectrum 

of a protein.

MALDI is normally attached to a time of flight (TOF) analyzer which separates 

the ions based on the difference in their m/z values. The charged particles are 

accelerated and given their maximum kinetic energies before entering the time of 

flight tube. The velocity of these particles can be calculated by rearranging the 

equation for kinetic energy, where KE=mv2/2 or v= [(2E/m)]1/2 i.e., the velocity of 

the particles during their time of flight is inversely proportional to their masses. 

Therefore, ions of smaller masses will travel faster and reach the detector earlier 

than the larger ions.

(http://www.abrf.org/ABRFNews/1995/December1995/dec95maldi.html).

The TOF analyzer can be used either in a linear mode or a reflector mode. 

When used in the linear mode, particles of the same molecular weight that 

slightly differ in their velocities generate a broad peak on the spectrum. The 

resolution of this spectrum can be improved by using the analyzer in the reflector 

mode. In this mode, ions that slightly differ in their velocities are first brought to a 

stop. They are reaccelerated and reflected by a mirror before reaching the 

detector which results in the generation of narrower and well resolved peaks 

enhancing the resolution of the spectrum

(http://www.abrf.org/ABRFNews/1995/December1995/dec95maldi.html).
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Tandem mass spectrometry (MS/MS) refers to successive rounds of mass 

spectrometry where the fragment ions are further analyzed by a second or a third 

round of mass spectrometry. Using MALDI, MS/MS analysis can be performed to 

get partial sequencing information on a peptide through a process called post

source decay (PSD). The result of PSD creates Y-ions, in which the charge of 

the fragment ion is retained on the C-terminal, and also b-ions, in which the 

charge is retained on the N-terminal. In MALDI-PSD, the parent ion is 

fragmented through metastable fragmentation in the time of flight tube. The ions 

are deflected through a reflector mirror on the end of the tube at different voltage 

settings (Vacratsis et al., 2003). This generates a spectrum that provides 

information about the fragmentation pattern and m/z values of the Y and b ions, 

and allows us to perform de novo sequencing of the peptide. As a result, the 

unknown protein is identified unambiguously.
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Objectives

Dual specificity phosphatases are PTPs that dephosphorylate proteins at 

serine-/threonine residues in addition to the tyrosine residues. The enzyme to be 

studied in this research project is also a dual specificity phosphatase, called 

human YVH1. It is a 36kDa protein and contains a zinc finger domain. 

Interestingly, hYVH1 has been shown to complement growth defect in yeast 

under stress conditions such as nitrogen starvation and low temperature, 

however, the physiological function of this enzyme is still unknown. The purpose 

of this research project was to take the first step towards the characterization of 

hYVH1 by using affinity chromatography and mass spectrometry to 

capture/identify the substrates and interacting proteins of this enzyme.
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CHAPTER 2 

MATERIALS AND METHODS

2.1 Bioinformatics and DNA constructs

The amino acid sequence of the dual specificity phosphatase human YVH1

was aligned with the well characterized MAP kinases dual specificity

phosphatases (MKPs) using ClustalW software (http://www.ebi.ac.uk/clustalw/) in

order to identify the probable catalytic hYVH1 residues. The two expression

vectors used in the study were the mammalian expression vector (pCMV) and

bacterial expression vector (pGEX-6TI) which contained the FLAG-hYVH1 and

GST-hYVH1 recombinant cDNAs, respectively. These vectors were subjected to

polymerase chain reaction (PCR) to mutate the catalytic aspartic acid residue

(D84) to an alanine (A), using the site directed mutagenesis protocol provided by

Stratagene. The sense and anti-sense PCR primers were obtained from

Invitrogen and the sequence of the primers was as follows:

5’ GTG CCA GCG CTG GCC AAA CCC GAG AC 3’ (sense)
5’ GT CTC GGG TTT GGC CAG CGC TGG CAC 3’ (antisense)

These primers were resuspended in autoclaved millipore water (ddhhO) at a 

concentration of 0.1/yg///l. The template cDNAs, hYVH1 (pCMV) and hYVH1 

(pGEX) were used at a concentration of 0.1/yg//;l. Other components of the PCR 

reaction included 10x Pfx amplification buffer, 50mM MgS04, 10mM dNTP 

mixture, autoclaved ddH20  and DNA polymerase. The reaction was performed in 

autoclaved PCR tubes using a Techgene thermal cycler. The denaturation, 

annealing and extension temperatures for the PCR reaction were set to 95°C, 55 

°C and 68°C, respectively. The PCR product was subjected to Dpn I digestion at
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37°C for one hour to digest the methylated parent DNA and was stored at -20°C 

until ready to be transformed.

2.2 DNA transformation

Competent cells (DH5a) from Escherichia Coli (E.Coli) were transformed with 

the PCR DNA products and the transformed bacterial cells were grown on 

ampicillin-agar plates. Colonies were picked from each sample plate hWH1 

(pCMV) and hYVH1 (pGEX) into 10ml small cultures which were incubated 

overnight at 37°C. This was followed by plasmid DNA purification using Promega 

miniprep kit. Automated DNA sequence analysis for the mutant constructs was 

done at the great lake institute for environmental research (GLIER), Windsor, 

ON. The DNA with confirmed sequence for the hWH1(D84A) mutant for the 

pCMV and pGEX vectors was amplified in E.Coli using large 500ml cultures and 

was purified using Sigma maxiprep kit.

2.3 Protein purification

E.Coli competent cells (BLR) were transformed with the bacterial vector pGEX 

containing hYVH1 (D84A) DNA and the transformed bacterial cells were grown 

grown on ampicillin-agar plates. Bacterial colonies from agar-ampicillin plates 

were picked into 10ml cultures and were grown overnight in the shaker at 37°C. 

These small cultures were transferred into large 500ml cultures and the cultures 

were grown until the absorbance 600nm was read to be between 0.5-0.6 

(approximately 2 hours). At this point, protein expression was induced with 0.4 

mM IPTG and the bacterial cultures were grown overnight at room temperature 

with gentle agitation. The cultures were spun down at 5000rpm for 15min and the
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pellet was resuspended in 20ml of STET buffer (10mM Tris-base pH 8.0, 150mM 

NaCI, 1mM EDTA and 1% Triton) + 0.1% /?-mercarptoethanol + protease 

inhibitors (aprotinin and PMSF) and the cells were lysed by sonication. The 

sonicated cells were centrifuged at 12,000rpm for 15min and the clear 

supernatant was bound to 2.5ml of GST-sepharose resin at 4°C for 2hrs. The 

beads were washed twice with 20ml of STET buffer + 0.1 % yff-mercaptoethanol. 

The GST-hYVH1 (D84A) protein was eluted off the beads using 4ml of elution 

buffer (50mM Tris base pH 8.0, 150mM NaCI, and 0.1 % /?-mercaptoethanol) 

containing 20mM glutathione. The protein induction and purification efficiency 

was analyzed by SDS-PAGE. The protein was concentrated and elution buffer 

was exchanged for storage buffer (50mM Tris pH 7.5, 100mM NaCI, 5mM DTT) 

using centricons (Amicon).

2.4 GST pulldown assays

GST-sepharose resin (30/vl) was washed twice with and resuspended in 

STET + 0.1 % /ff-mercaptoethanol. 200//g of GST protein was bound to the resin 

for two hours at 4°C. After two hours, the beads were spun down and the 

supernatant was removed. The beads were washed once with lysis buffer 

containing protease inhibitors (PMSF and aprotinin) and 20ml of lysates from 

HEK293 cells were passed over the beads to preclear the lysates for GST affinity 

proteins. These precleared lysates were passed over the GST sepharose resin 

bound GST control, GST-hYVH1 and GST-hYVH1 (D84A) proteins for 4 hours at 

4°C. The beads were washed twice with IP wash buffer and were collected by 

centrifugation at 3,000g for 2min. These beads were resuspended in loading
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buffer (2x), analyzed by 10% SDS/PAGE and protein bands were visualized by 

staining (coomassie or silver staining).

2.5 Cell culture and transfection

Human embryonic kidney cells were grown in DMEM/F-12 growth medium 

supplemented with 10% (v/v) Fetal Bovine Serum (FBS), 1% L-glutamine and 1% 

penicillin/streptomycin in 10cm plates. Cells were subcultured every two to three 

days once they reached 80-90% confluency. 1.5 x 106 cells were split one day 

before transfection. These cells were transfected with pCMV containing wild type 

hYVH1 or hYVH1 (D84A) cDNA. Transfection was done using Fugene reagent 

(Roche). For all transfections, the mixture was made by mixing Fugene and DNA 

in a 3:1 ratio into 100 j j \ of serum free media (Invitrogen).

2.6 Cell Lysis

HEK 293 cells were lysed 24hours post-transfection. The cells were washed 

with cold (4°C) PBS in the tissue culture hood. Lysing was performed outside the 

hood on the lab bench by resting the culture plates on ice and adding 1ml of lysis 

buffer (50mM Tris-base pH 7.4, 1% Triton x-100, 150mM NaCI, 0.1% SDS) for 

the GST-pull down assays and 500//I of lysis buffer for the co- 

immunoprecipitation experiments. The lysates were collected using a 1ml pipette 

into clean falcon tubes. These fresh lysates were used to carry out further 

experiments.

2.7 Co-immunoprecipitation and FLAG elution

Immunoprecipitations were performed with 20//I of M2 agarose resin/ plate of 

cells. The resin was washed twice with 1ml of IP wash buffer, and it was
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resuspended in 500//I of IP wash buffer. The lysates were incubated with the 

resin in a 15ml falcon tube in the cold room on a shaker for 4hrs. At the end of 

the incubation period, the tubes were spun down at 3,000g for 2min in a swinging 

bucket rotor. The supernatant was decanted and the beads were washed twice 

with IP wash buffer (50mM Tris base pH 7.4, 0.1% Triton x-100, 150mM NaCI, 

0.1% SDS). For two-dimensional electrophoresis experiments without FLAG 

elution, the second wash was done with 10mM Tris buffer (pH 8.0). These beads 

were incubated in BIO-RAD sample rehydration buffer (8M urea, 2% CHAPS, 

50mM DTT, 0.2% Bio-Lyte® 3/10 ampholyte, 0.001% Bromophenol blue) at room 

temperature for 30min in 15ml falcon tubes. The tubes were spun down at 

4,000g for 2min and the collected supernatant was loaded on the IEF strips (pi 

range 3-10).

In case of FLAG elution employment, the immunoprecipitants were washed 

twice with IP wash buffer and hYVH1-substrate complex was eluted with 50//I of 

FLAG peptide (lOO^g/ml) dissolved in 1xTBS (20mM Tris base pH 7.6, 137mM 

NaCI). The FLAG elution was repeated, and the supernatants were combined 

and precipitated in 3 volumes of acetone overnight at -20°C. The precipitates 

were collected by centrifugation at 14,000g at 4°C for 15min. These precipitates 

were dissolved in sample rehydration buffer and were loaded on the IEF strips.

2.8 Gel electrophoresis and western blotting

Proteins were resolved on 10% or 12% polyacrylamide gels. For western blot 

analysis, the proteins were transferred to Polyvinylidene Fluoride (PVDF) 

membrane. The membrane was blocked for 1 hr at room temperature in blocking
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buffer, 0.3% gelatin (a-FLAG primary antibody) and 5% dry milk (a-hYVH1 

primary antibody) dissolved in 1xTBS-Tween. This was followed by an overnight 

incubation of the membrane with the primary antibody a-FLAG (1:1000) or a- 

hYVH1 (1:3000) at 4°C with gentle agitation. The membrane was washed for 15 

min with 1xTBS-Tween for three times. It was incubated with the secondary 

antibody, goat anti-mouse (1:5000) for a-FLAG antibody, and goat anti-rabbit 

(1:3000) for a-hYVH1 antibody. The secondary antibody was conjugated with the 

enzyme horse reddish peroxidase (HRP) and proteins were visualized by a 

chemiluminescence machine.

2.9 Two dimensional electrophoresis

The protein sample was loaded on the IEF strips and was incubated overnight 

(passive rehydration). The strips were transferred to an electrophoresis chamber 

and proteins were resolved in the first dimension at 500V using the preset 

method. The strips were taken out of the IEF chamber and were equilibrated with 

BIO-RAD equilibration buffer I (6M urea, 0.375M Tris, pH 8.8, 2% SDS, 20% 

glycerol, 2% (w/v) DTT) and equilibration buffer II (6M urea, 0.375M Tris, pH 8.8, 

2% SDS, 20% glycerol, 2.5% (w/v) iodoacetamide) with slight agitation. The 

proteins were resolved in the second dimension on 12% polyacrylamide gels. 

The gels were stained with mass spectrometry compatible silver staining kit 

(Invitrogen) according to the protocol provided by the manufacturer.

2.10 Mass Spectrometry

The unique spots/bands on the gel were carefully excised manually in a 

vacuum chamber. The protein bands were destained using the reagent provided
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in the Invitrogen kit. The proteins were in-gel digested using trypsin digestion 

buffer (50mM ammonium bicarbonate (AB) containing 13ng//vl trypsin). The tubes 

were first incubated on ice for 30min to allow trypsin to enter through the gel 

around the protein band followed by an overnight trypsin digestion at 37°C on a 

shaker. The sample was spun down briefly and the peptides were extracted with 

a mixture of 60% acetonitrile and 1% formic acid solution at 37°C for 45min. The 

supernatant containing the pool of peptides was collected and was concentrated 

in the Speed Vac. The samples were spotted on the MALDI plate along with the 

a-matrix for a first round of mass spectrometry. The sample was then desalted 

with C18 ziptips to improve resolution and reloaded for analysis by the MALDI- 

TOF instrument (Voyager-DE, Applied Biosystems) equipped with a nitrogen 

laser of 337nm. This new spectrum was taken as the mass finger print of the p70 

band and preliminary database search was done using the peptides from this 

spectrum against the NCBI database using the prospector software 

(http://prospector.ucsf.edu/). For MS/MS sequencing MALDI-Post Source Decay 

(PSD) was performed to obtain partial sequence information. Selected parent 

ions were analyzed in reflectron mode for sequence determination. PSD spectra 

was acquired in 8-10 segments with mirror ratios ranging from 1.0-0.25, and 

“stitched” together using the Data Explorer software. In silico fragmentation using 

the Prospector software and BLAST searches

(http://www.ncbi.nlm.nih.gov/BLAST/) were used to compare the determined 

MS/MS sequences with sequences in the NCBI database.
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CHAPTER 3 

RESULTS

3.1 Identification of hYVH1 interacting proteins by affinity chromatography 

and mass spectrometry

3.1.1 FLAG immunoprecipitation

Human embryonic kidney (HEK293) cells were used to find the interacting 

proteins of hYVH1 in vivo. Cells were transfected with mammalian pCMV empty 

vector or pCMV vector containing FLAG-tagged wild type hYVH1. Cellular 

lysates were collected 24hrs post-transfection and were immunoprecipitated with 

M2-agarose anti-FLAG resin as described in Materials and Methods. The 

immunoprecipitants were resolved by SDS-PAGE and were visualized by 

coomassie staining. On comparison of the control and wild type hYVH1 lanes, a 

70kDa protein band was observed in the wild type lane but not in the control lane 

which was suggestive of an interaction between hYVH1 and p70 (Figure 5).

3.1.2 Identification of p70 by mass spectrometry

The p70 band was excised out of the gel and was in-gel digested with trypsin 

which cleaves proteins after basic residues, lysine (K) and arginine (R). The 

digested sample containing the pool of peptides from the p70 band was loaded 

onto the MALDI plate to be analyzed by the mass spectrometer. The peptide 

mass finger print was obtained for p70 showing many peptides in the spectrum 

(Figure 6). However, due to a poor resolution of the spectrum, a second mass 

finger print was generated following desalting with C18 ziptips (Figure 7). This 

spectrum had an increased signal to noise ratio and better mass accuracy. The
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m/z values of selected peptides from this spectrum were used to do a preliminary 

database search for candidate proteins against the NCBI protein database using 

the software program MS-FIT. A number of matching hits were obtained (Table 

1). However, in order to unambiguously identify the p70 band, the peptide ion 

with m/z value = 1487 was analyzed by MALDI-PSD to obtain partial sequence 

information (Figure 8). In silico digestion and the resulting fragment ion series (y 

and b ions) of the precursor ion (m/z = 1487) provided the sequence of the 

peptide ion as ‘TTPSYVAFTDTER’ corresponding to the protein Hsp70. Blast 

search for the obtained peptide sequence corresponded to amino acids Thr37- 

Arg49 of Hsp70 sequence as well as of its constitutive active isoform Hsc71. 

Sequence alignment was done between Hsp70 and Hsc71 using ClustalW and 

the two proteins were found be -80% identical (Figure 9). Hence, two more 

peptide fragments were selected from the p70 PMF for MALDI-PSD analysis. 

The results from PSD analysis (y and b ions) deduced the peptide sequences 

‘ATAGDTHLGGEDFDNR’ and LLQDFFNGR’ for the precursor ions (m/z = 

1675) and (m/z = 1109), respectively (Figure 10 & 11). Blast search analysis 

identified these two peptides specific for Hsp70. In addition, from the results of 

sequence alignment between Hsp70 and Hsc71, the two peptides were found 

only in Hsp70. Therefore, it was concluded that the unknown p70 protein which 

was found to interact with hYVH1 by FLAG-IP was the heat shock protein Hsp 

70.

3.1.3 Interaction specificity of hYVH1 to Hsp70

In order to test the interaction specificity between hYVH1 and Hsp70, co-
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immunoprecipitation experiments were carried out in vivo. FLAG-Hsp70 and 

FLAG-Hsc71 were co-transfected with wild type myc.hYVHI in HEK293 cells. 

After 24hrs, cells were lysed and the cellular extracts were immunoprecipitated 

with M2-agarose anti-FLAG resin. Both lysates and immunoprecipitants were 

resolved by SDS-PAGE and were visualized by western blot analyses. FLAG- 

Hsp70 and FLAG-Hsc71 were visualized using a-FLAG 1° antibody and goat a- 

mouse 2° antibody whereas myc-hYVH1 was visualized by a-hYVH1 1° primary 

antibody and goat a-rabbit 2° antibody. The co-immunoprecipitation experiment 

demonstrated that Hsp70 is able to copurify hYVH1 confirming the mass 

spectrometry results (Figure 12A&12B).

The interaction between hYVH1 and Hsc71 was studied using a set of 

replicate experiments with FLAG.Hsc71 instead of FLAG.Hsp70 (Figure 13A 

&13B). However, while a large amount of hYVH1 coimmunoprecipitated with 

FLAG-Hsp70 (Figure 12A; lane 6), very low amounts of hWH1 

coimmunoprecipitated with FLAG-Hsc71 (Figure 13B; lane 6). These results 

suggest that under these conditions the interaction of hYVH1 is much stronger 

and thus more specific to Hsp70 than Hsc71 supporting the mass spectrometry 

results identifying Hsp70 as a hYVH1 interacting partner.

3.1.4 Endogenous hYVH1 and Hsp70 complex formation.

The purpose of these experiments was to determine if hYVH1 interacts with 

Hsp70 endogenously and, hence, physiologically. Protein agarose A resin was 

bound separately to anti-hYVH1 and anti-Hsp70 antibodies. HEK293 cellular 

lysates from 10cm plates were passed over the resin and the resin bound protein
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complexes were isolated and separated by SDS-PAGE. The resolved proteins 

were visualized by immunoblotting with both anti-hYVH1 and anti-Hsp70 

antibodies. The results of hYVH1 IP showed that Hsp70 came down with hYVH1 

(Figure 14A) and the results of Hsp70 IP showed that hYVH1 came down with 

Hsp70 (Figure 14B). The results showed that endogenous Hsp70 and hYVH1 

interact, suggesting the interaction is physiologically relevant.
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Figure 5. Detection of p70 using FLAG immunoprecipitation. The

coomassie stained gel above shows the results from a FLAG-IP experiment. 

Untransfected and FLAG-hYVH1 transfected lysates from HEK293 cells were 

immunoprecipitated with M2-agarose anti-FLAG resin. The figure above shows 

the presence of light chain (~26kDa) and heavy chain (~56kDa) bands from 

the anti-FLAG antibody in both lanes. The wild type FLAG-hYVH1 lane shows 

the 38kDa hYVH1 band and a novel p70 band which was found to be 

repeatedly absent in the control lane.
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Figure 6. Peptide mass finger print of p70. The spectrum above 

represents the first peptide mass finger print of the p70 band as generated by 

the MALDI-TOF instrument. The peaks observed in the spectrum are 

representative of some of the peptides found in the peptide pool of the p70 

band which was obtained after in-gel trypsin digestion. However, sample 

decontamination is required to generate a better quality of mass finger print for 

p70 with a higher signal to noise ratio.
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Figure 7. Peptide mass fingerprint after C18 zip tipping. The mass 

spectrum was obtained after C18 ziptipping of the p70 peptide sample. It 

shows well resolved peaks and the signal to noise ratio of the spectrum has 

increased after ziptipping. Peptides from this spectrum were used to perform 

a preliminary database search to obtain a list of candidate proteins for p70.
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Ranking Accession# Name of 
protein

1
5123454 Heat shock 

70kDa

2
14714528 PMPCB

protein

-5W
51094701 Nexin 8

4
26252129 ZNF1

protein

5
17028348 MTHFDIL1

Protein

Table 1. A number of reported hits from preliminary NCBI database search.

The table above shows the list of proteins obtained, with the m/z values of the 

peptides from the p70 mass finger, as a result of a preliminary database search 

against NCBI using the prospector software.
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Figure 8. MS/MS spectrum for 1487 m/z parent ion. The spectrum above 

shows results of the ion fragmentation for the parent ion with m/z value of 

1487, selected from the p70 mass finger print. The sequence of the peptide 

along with the y ion fragmentation is shown in the figure. The spectrum 

represents the peptide which contains amino acids 37- 49 and is found in both 

Hsp70 and Hsc71 proteins.
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Figure 9. Alignment of Hsp70 and Hsc71 using ClustalW. Grey box 

represents the peptide common in both Hsp70 and Hsc71 (m/z 1487). Two 

black boxes represent the peptides specific to Hsp70 (m/z 1109 & 1675).
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Figure 10. MS/MS spectrum of the parent ion m/z 1109. The MS/MS 

spectrum above shows the ion fragmentation of the peptide with m/z value 

of 1109. The peptide includes amino acid 349-357 in the Hsp70 amino acid 

sequence and is not found in Hsc71.
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Figure 11. MS/MS spectrum for the parent ion m/z 1675. The spectrum 

above shows the ion fragmentation of the peptide, with m/z value 1675, taken 

from the peptide mass finger print of p70. The fragment ions include a mixture 

of y and b ions. The spectrum represents the peptide, with amino acid 

residues 221-236, found only in the Hsp70 isoform.
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—► hYVH1
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Figure 12. Overexpression of hYVH1 and Hsp70 in HEK293 cells, c-myc

hYVH1 was transfected alone or co-transfected with FLAG-Hsp70 in HEK293

cells. Lysates were immunoprecipitated with a-FLAG resin. Both lysates and

immunoprecipitants were visualized with a-FLAG and a-hYVH1 antibodies.

The control lanes represent results for the untransfected lysates. A) a-FLAG

western blot analysis shows the presence o f the FLAG-Hsp70 band in the

lysates (3) and also in the immunoprecipitants (6). B) a-hYVH1 western blot

shows that the c-myc-hYVH1 cotransfected with FLAG-Hsp70 was found in

the lysates (3) and was also co-immunoprecipitated with Hsp70 in the FLAG IP

(6).
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Figure 13. Co-immunoprecipitation of hYVH1 and Hsc71. c-myc-hYVH1

was co-transfected with FLAG-Hsc71 in HEK293 cells. Lysates were

immunoprecipitated with a-FLAG resin. The proteins in the lysates and the

immunoprecipitants were visualized by western blot analyses with a-FLAG and

<7-hYVH1 antibodies. The control lanes show results for the untransfected

lysates. A) a-FLAG western blot analysis shows that Hsc71 was found in the

lysates lane (3) and in the IP lane (6) B) a-hYVH1 western blot shows normal

levels of hYVH1 in the lysates (3) but a very little amount of hYVH1 in the co-

IP lane (6).
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Figure 14. Endogenous interaction of hYVH1 with Hsp70. Lysates from two

HEK293 plates were bound separately with protein agarose A resin. Two

separate immunoprecipitations were performed, one with a-hYVH1 antibody

and another with a-Hsp70 antibody. A) The immunoprecipitants of the two IPs

were visualized with a-Hsp70 antibody. The presence of Hsp70, in case of

hYVH1 IP, (2) shows that hYVH1 pulled down Hsp70. B) Western blot analysis

of the two IPs with a-hYVH1 antibody shows that Hsp70 was also able to

successfully pull down hYVH1(2).
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3.2 Identification of hYVH1 substrates using substrate trap mutants

3.2.1 Construction of substrate trap mutants

It has been demonstrated that PTPs can form substrate traps when certain 

catalytic residues are mutated (Flint et al., 1997; Furukawa et a l, 1994; Jia et al., 

1995; Milarski et al., 1993; Shiozaki and Russell, 1995; Sun et al., 1993). 

Therefore, substrate trap variants of hYVH1 were desired to be used to capture 

potential substrates. The catalytically active cysteine to serine mutant had been 

previously constructed and represents one type of substrate trap. The catalytic 

aspartic acid to alanine mutant was created by first identifying the invariant 

catalytic aspartic acid residue in hYVH1 sequence. Sequence alignments were 

done between well characterized MKPs with experimentally determined catalytic 

residues (PDB codes: 1MKP and 1M3G). In addition, the aspartic acid residue in 

hYVH1 was also aligned with other orthologues of YVH1 including S. cerevisiae 

and P. falciparum. As a result, the position of the catalytic aspartic aicd in 

hYVH1 was marked at residue number 84 in the hWH1 amino acid sequence 

(Figure 15).

Using PCR and site-directed mutagenesis, the catalytic aspartic acid residue 

of hYVH1 was mutated to an alanine and a hWH1 (D84A) mutant was 

constructed in a mammalian pCMV vector and a bacterial pGEX vector. The 

PCR products were analyzed by DNA gel electrophoresis. An expected size of 

6Kb band was found for both pCMV.hyvhl and pGEX.hyvhl vectors containing 

the D84A mutation while no plasmid DNA was observed in the control lane 

(Figure 16).
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3.2.2 Does the interaction between hYVH1 and Hsp70 require catalytic 

activity?

The interaction between hYVH1 and Hsp70 was further studied to 

determine the status of Hsp70 as a substrate or an associating protein to hYVH1. 

HEK293 cells were transfected with empty FLAG-pCMV mammalian vector or 

pCMV vector containing FLAG-hYVH1, FLAG-hYVH1 (C115S) and FLAG- 

hYVH1 (D84A). Cell lysis was done 24hrs post-transfection. 

Coimmunoprecipitation experiments were performed with the HEK293 lysates. 

The immunoprecipitates were resolved by SDS-PAGE and were visualized by 

coomassie staining. The results showed the Hsp70 band in the wild-type and 

mutant lanes but not in the control lane. In addition, the intensity of the Hsp70 

band was found to be the same for wild-type and mutant forms of hYVH1 (Figure

17). The equal binding affinity of Hsp70 with wild-type and mutant hYVH1 

indicated that the interaction between the two proteins is independent of the 

catalytic activity of hYVH1. Thus, the results from this experiment are consistent 

with the fact that Hsp70 is an interacting partner and not a substrate to hYVH1.

3.2.3 GST pull down assays

In an attempt to find hYVH1 substrates, recombinant GST-tagged hYVH1 was 

used as a bait to fish out the hWH1-substrate complex. HEK293 lysates from 

twenty large sized plates (20cm in diameter) were precleared for GST-affinity 

proteins using GST protein bound to GST-sepharose resin. The pre-cleared
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lysates were then used to capture the target enzyme-substrate complex. GST- 

protein, GST-tagged wild type hYVH1 and GST-tagged hYVH1 (D84A) mutant 

were bound to GST-sepharose resin. The precleared lysates were passed over 

the resin bound proteins for 4hrs. The GST-resin was washed to get rid of the 

non-specific protein binding and was loaded on SDS-PAGE to resolve the 

proteins bound to the resin. A unique 90kDa band was observed only in the GST- 

hYVH1 (D84A) lane and not in the control and wild-type hYVH1 lanes (Figure

18). The band was excised out of the gel and was analyzed by the MALDI-TOF 

mass spectrometer. Unfortunately, the p90 turned out to be a bacterial protein 

which was purified and isolated during the purification of GST-hYVH1 proteins 

from E.Coli. To counteract this problem, we loaded the purified GST-hYVH1 

proteins in the absence of 293 lysates as negative controls for our next set of 

GST-pull down experiments. In addition, to increase the resolution of proteins on 

the gel we resorted to silver staining. However, no promising unique bands were 

detected using the in vitro GST-pull down method (Figure 19).
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Figure 15. Alignment of hYVH1 with MKP dual specificity phosphatases 

and YVH1 orthologues. The sequence alignment of amino acids was done 

using ClustalW algorithm. The two human MKPs chosen are Psyt MKP-3 and 

MKP Pac-1 with PDB codes 1MKP and 1M3G, respectively. In addition, 

hYVH1 is aligned with P. falciparum and S. cerevisiae YVH1 phosphatases. 

The catalytic aspartic acid/base residue (D84) and the catalytic cysteine 

(C115) of hYVH1 are represented in two separate boxes.
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1 2  3 4

Lane 1 Control 
Lane 2 pGEX-hyvhl 
Lane 3 pCMV-hyvhl 
Lane 4 DNA ladder

Figure 16. Confirmation of PCR products using DNA electrophoresis.

The PCR products were run on a DNA gel to verify for the size and presence 

of the two types of vectors (pCMV & pGEX) containing mutant hYVH1 cDNAs. 

No plasmid DNA was found in the control lane (lane 1), however, lane 2 and 

lane 3 show approximately 6Kb band for pGEX.hYVhl and pCMV.hYVHI 

cDNA, respectively.
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Figure 17. Hsp70 interacts with wild type and catalytic hYVH1 mutants 

with equal affinity. HEK293 cells were transfected with FLAG-tagged wild 

type and hYVH1 mutants. The lysates were immunoprecipitated with a-FLAG 

resin and the immunoprecipitants were resolved by SDS-PAGE. The 

coomassie stained gel above shows the presence of an Hsp70 band in lanes 

2, 3 & 4 but not in the control lane. The band has the same intensity in the 

three lanes indicating that Hsp70 interacts with wild type hYVH1 (lane 2), 

hYVH1-C115S (lane 3), and hYVH1-D84A (lane 4) with equal affinity.
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Figure 18. Coomassie stained gel showing results from a GST pull 

down assay. Purified GST-hYVH1 and GST-hYVH1 (D84A) proteins were 

bound to GST-Sepharose resin. Lysates from HEK293 cells were passed 

over the resin bound proteins to capture the hYVH1 -substrate complex. The 

resin bound protein complexes were resolved by gel electrophoresis. The 

coomassie stained gel above showed a unique band (~90kDa) in the mutant 

lane (3) which was found to be absent in GST-hYVH1 lane (4) and the control 

lane (2). The band had been excised for mass spectrometry analysis.
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Figure 19. Silver stained gel showing results from a GST pull down 

assay. Purified GST, GST-hYVH1, GST-hYVH1 (D84A) were bound to 

GST-Sepharose resin. HEK293 lysates were precleared for GST 

proteins and the precleared lysates were passed over the resin bound 

proteins, GST, GST-hYVH1 & GST-hYVH1 (D84A). The resin and the 

purified proteins were loaded on SDS-PAGE gels and the gels were 

visualized by silver staining. The position of GST-hYVH1 protein (wild 

type and mutant) are marked at -60 kDa. Some of the GST cleaved off 

from hYVH1 and is marked at -26 kDa. The experiment did not show 

any unique bands on comparison of the control, wild type and mutant

lanes.
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3.3 Identification of hYVH1 substrates using the in vivo approach

3.3.1 One dimensional gel electrophoresis and silver staining

Previous attempts using the substrate trapping mutants and coomassie 

staining revealed few detectable bands besides Hsp70. Therefore, it was 

decided to use mass spectrometry-compatible silver staining for the FLAG-affinity 

chromatography experiments to increase sensitivity for capturing the substrates 

of hYVH1 in vivo in HEK293 cells. Cells were transfected with empty pCMV 

vector or pCMV vector containing wild-type or mutant hYVH1 (hYVH1 - C115S & 

hYVH1-D84A). After 24hrs, cells were lysed and the lysates were 

immunoprecipitated using M2-agarose anti-FLAG resin. The immunoprecipitants 

were resolved by one-dimensional electrophoresis and proteins were visualized 

by silver staining. The results showed a large number of protein bands on the 

silver stained gel. However, the heavy and light chain IgGs, hYVH1 (wt & mutant) 

and Hsp70 bands overlapped some of the potential substrate bands on the gel 

(Figure 20). Therefore, the protein band visualization needed to be optimized in 

order to enhance their resolution on the protein gel.

3.3.2 Two dimensional gel electrophoresis

In order to overcome the problem of antibody overlapping as observed in one 

dimensional electrophoresis, we competitively eluted the hYVH1 complexes 

using the FLAG peptide and concentrated the eluant by acetone precipitation 

overnight at -20°C. In addition, proteins were separated by two-dimensional 

electrophoresis (2-DE) for increased resolution. This technique separates 

proteins according to their isoelectric point (pi) first, in a process called isoelectric
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focusing (IEF) on pH gradient strips. This is followed by the separation of 

proteins based on their molecular weight (MW) in the second dimension.

HEK293 cells were transfected with pCMV empty vector and hYVH1 (D84A). 

Cells were lysed 24hrs post-transfection and the control and hYVH1 (D84A) 

lysates were immunoprecipitated with M2-agarose anti-FLAG resin. The proteins 

were eluted from the resin using FLAG peptide and were acetone precipitated. 

The proteins were loaded onto the IEF strips using the passive rehydration 

method and were resolved in the first dimension according to their pi and in the 

second dimension according to their MWs.

The results from preliminary efforts using this strategy showed Hsp70, hYVH1 

(D84A) and a possible unique spot on the gel around 30kDa (p30) whereas none 

of these proteins were observed on the control gel (Figure 21A & 21B). 

However, while collecting the eluting peptides some of the resin entered into the 

sample and hence a slight amount of light and heavy chain IgGs from the anti- 

FLAG antibody were also observed. Also, it was concluded that the acetone 

precipitation step was not compatible with IEF.

To confirm that the spot around 30kDa was real, and in the attempt to 

optimize IEF, we scaled up the number of cells from 5 big plates (20cm in 

diameter) to 10 big plates. Also, to eliminate sample loss and optimize IEF, 2-DE 

experiments were performed without FLAG elution. With scaling up the number 

of cells, we were better able to detect the presence of the p30 spot on the gel 

with enhanced resolution and confidence using the optimized procedures. Also, 

reference protein spots (RF1, RF2 & RF3) were found to be helpful in defining
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the position of p30 during reproducible trials. The pi of p30 was approximated to 

be between pi 4.5 to 5.5 using the calculated pi of Hsp70 and hYVH1 (Figure 

22.1 & 22.2). .

Since the expression of Hsp70 increases in response to heat shock, we 

tested if under these conditions hYVH1 substrates were elevated (i.e. more 

phosphorylated) (Figure 23). The same reference points and p30 were 

observed, however, a p30 spot with an altered pi was observed. This may 

represent a more heavily phosphorylated version of p30 or a different protein. 

The level of Hsp70 coimmunoprecipitating with hYVH1 also seemed to be 

enhanced under the heat shock conditions (Figure 23.1).

To test if the p30 spot coimmunoprecipitated with the substrate trapping 

mutant of hYVH1 (D84A) was a substrate or an interacting protein, the 

experiment was performed comparing wild-type hYVH1 with hYVH1 (D84A). The 

results showed coimmunoprecipitation of p30 only with hYVH1 (D84A) mutant 

but not with wild-type hYVH1. This suggests that the p30 protein trapped by the 

hYVH1 (D84A) mutant represents a potential physiological hYVH1 substrate 

(Figure 24).
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Figure 20. Identification of hYVH1 substrates using one-dimensional 

electrophoresis and silver staining. HEK293 cells were transfected with 

pCMV vector containing hYVH1 or hYVH1 (C115S) or hWH1 (D84A).The 

cellular lysates were immunoprecipitated with a-FLAG resin. The 

immunoprecipitants from the FLAG-IP were resolved by SDS-PAGE and 

were visualized by silver staining. Hsp70 and hYVH1 bands were observed in 

hWH1 and mutant lanes but not in the control lane. The gel also contains 

numerous other bands, however, due to overlapping of protein bands in one 

dimensional electrophoresis it was difficult to spot a unique band on the gel in 

the mutant lanes.
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A) Control B) hYVH1 (D84A)

Figure 21. Use of two-dimensional electrophoresis and FLAG-elution to 

capture hYVH1 substrates. Lysates from HEK293 untransfected cells (A) and 

cells transfected with hYVH1 (D84A) (B) were immunoprecipitated with anti- 

FLAG resin. The hYVH1 -protein complexes were eluted with FLAG peptide and 

were resolved in the first dimension by isoelectric focusing and in the second 

dimension by SDS/PAGE. The gels were visualized by silver staining. A faint p30 

spot was observed in the hWH1 (D84A) mutant gel which was found to be 

absent in the control gel.
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A) Control B) hYVH1 (D84A)

Figure 22.1 Use of two-dimensional gel electrophoresis and FLAG- 

immunoprecipitation to capture the substrates of hYVH1. HEK293 

cells were used to perfom FLAG-IP with untransfected lysates (A) and 

lysates from cells transfected with hYVH1 (D84A) DNA (B) The enzyrne- 

substrate complex was resolved by two dimensional electrophoresis and 

gels were visualized by silver staining.
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A) Control B) hYVH1 (D84A)

Figure 22.2 Enlarged view of p30 with the hYVH1 (D84A) mutant. The 2D

gels above represent a zoomed in view of the p30 area from the FLAG IP 

experiment (figure 22.1). The p30 spot is marked in reference to three other 

areas on the gels. The figure above shows the control (A) and hYVH1 (D84A) 

mutant (B) results where p30 is only observed on the hYVH1 (D84A) gel.
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A) Control B) hYVH1 (D84A)

Figure 23.1 Use of two-dimensional electrophoresis and FLAG- 

immunoprecipitation to capture hYVH1 substrates under heat shock 

conditions. Both untransfected (A) and hYVH1 (D84A) transfected (B) HEK293 

cells were heat shocked to 42°C for one hour. Cellular lysates were 

immunoprecipitated with anti-FLAG resin and hYVH1-substrate complex was 

resolved by 2-DE and visualized by silver staining.
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A) Control B> hYVHI-DMA

Figure 23.2 Enlarged view of p30 with the hYVH1 (D84A) mutant under 

heat shock conditions. The figure above shows a zoomed in view of the 

FLAG-IP experiment performed under heat shock conditions (figure 23.1). 

Heat shock conditions resulted in the presence of an additional spot next to 

p30 as marked by an asterisk which was found to be absent in the control.
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A) hYVH1 B)hYVH1-D84A

Figure 24. Comparison of p30 with wild type hYVH1 and hYVH1 (D84A) 

mutant using two dimensional electrophoresis. HEK293 cells were 

transfected with pCMV vector containing hYVH1 or hYVH1 (D84A). Lysates 

were immunoprecipitated with a-FLAG antibody and proteins were resolved 

by two-dimensional electrophoresis. The gels were silver stained and the p30 

protein was observed with mutant hYVH1 and not wildtype hYVH1 validating 

its status as a potential substrate of hYVH1.
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CHAPTER 4 

DISCUSSION

The dual specificity phosphatase human YVH1 is a 36kDa protein which 

contains a novel zinc finger domain. Past studies have shown that hYVH1 can 

complement the slow growth phenotype in yeast (Muda et al., 1999). However, 

the exact physiological function of this enzyme is unknown. In this study, we 

aimed to identify the interacting partners and substrates of hYVH1 as a first step 

towards the characterization of this evolutionary conserved enzyme.

4.1 Identification of Hsp70 as an interacting protein of hYVH1

In this study, we have identified the first novel binding partner of hYVH1 using 

affinity chromatography and mass spectrometry. The identified protein is Hsp70 

which belongs to the heat shock family of proteins. Two mass fingerprints were 

obtained for Hsp70 in order to have a spectrum with a high signal to noise ratio. 

To enhance the resolution of the original spectrum, the peptide samples were 

desalted using the C18 ziptips which are made of hydrophobic reverse phase 

chromatography resin packed into a pipette tip for rapid desalting. The C18 zip 

tips decontaminated the sample for any salt impurities that might have retained in 

the original sample. The result of this step was increased number of peptide 

peaks detected, higher mass accuracy, and improved resolution. The increase in 

the number of peptides detected results from improved co-crystal formation and 

thus ionization of the peptide molecules in the absence of salt. The higher mass 

accuracy and resolution occurs because eliminating the salt molecules allows for 

the peptide ions to keep a tighter flight path in the TOF tube.
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The peptide masses from this improved ziptipped spectrum were used for 

preliminary database searching and to select precursor ions for MS/MS analyses. 

In the process of identification of Hsp70 by mass spectrometry, it was found to be 

similar with its constitutive isoform Hsc71 and the MS/MS spectrum for the 

precursor ion (m/z = 1487) with the TTPSYVAFTDTER’ was common to both 

Hsp70 and Hsc71. Our sequence alignment results demonstrated that the two 

proteins are highly identical to each other. However, the MALDI-PSD analysis for 

the partial sequencing of two more precursor ions (m/z = 1109 & m/z = 1657) 

with amino acid sequence ‘LLQDFFNGR’ and ‘ATAGDTHLGGEDFDNR’, 

respectively were only specific to Hsp70 which clearly demonstrated that the 

interacting protein was indeed Hsp70 and not Hsc71. The interaction between 

hYVH1 and Hsp70 was also confirmed from our overexpresssion studies via 

reciprocal western blot analyses. Importantly, Hsp70 and hYVH1 were found to 

coimmunoprecipitate under endogenous conditions addressing the possibility 

that the interaction was an overexpression artifact. The endogenous experiment 

strongly suggests the interaction between hYVH1 and Hsp70 in cells is 

physiologically relevant. In addition, our comparison for the interaction of hYVH1 

with Hsp70 and not Hsc71 demonstrates Hsp70 isoform specificity for hYVH1. 

The specificity is intriguing since Hsc71 and Hsp70 share such high sequence 

identity and it would be expected on a biochemical basis that hYVH1 could 

interact with both equally in vitro. This suggests that in vivo, other factors such 

as specific subcellular localization, or additional proteins are needed to be 

present for them to be captured as an in vivo protein complex.
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Heat stress is a major source of cellular apoptosis. Hsp70 is inducible in 

response to cellular insults such as heat and other cellular insults playing an anti- 

apoptotic role under these conditions (Gabai and Sherman, 2002; Pirkkala et al., 

2001). Interestingly, hYVH1 is also implicated to counteract stress conditions 

such as low temperature and nitrogen starvation in yeast (Muda et al., 1999). 

Hence, the interaction between the two proteins seems to be functionally relevant 

and requires to be characterized by functional studies.

4.2 Identification of hYVH1 substrates using the substrate trap mutants 

In this study, two types of substrate trap mutants were used to capture the 

hYVH1-substrate complex. These two mutants (C115S) and (D84A) were 

created by mutating the two invariant catalytic residues of hYVH1, the catalytic 

cysteine and the catalytic aspartic acid, using site-directed mutagenesis. The 

substrate trap mutants were designed as such that the enzyme was kept enabled 

to bind the substrate but would not allow its release from the enzyme pocket. The 

substrate-trapping strategy of the two mutants differed from each other due to 

their individual roles in the enzyme catalysis. Mechanistically, the C115S mutant 

will hold the substrate due to hydrophobic and electrostatic interactions between 

the substrate and the enzyme pocket and is incapable of making a covalent 

interaction between the enzyme and the substrate. In case of D84A mutant, the 

enzyme is still able to make a covalent thiol-phosphate intermediate between the 

enzyme and the substrate due to the nucleophilic attack by the catalytic cysteine. 

However, a lack of the catalytic aspartic acid residue would not allow the 

breakage of the phospho-substrate bond resulting in a more stabilized substrate
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trap in the enzyme pocket. Therefore, due to the reason of a stronger covalent 

interaction between the enzyme and the substrate, which occurs with the D84A 

mutant, it was,the first choice to be used for trapping the hYVH1 substrate.

Recombinant GST-tagged proteins are widely used as bait proteins to fish 

protein complexes (Lee, 2005; Singh et al., 2005; Craig et al., 2004). Our first 

attempts to capture hYVH1 substrates also used the purified GST-hYVH1 

proteins. Both GST-wild-type and GST-hYVH1 (D84A) mutant proteins were 

immobilized on GST-sepharose resin and fresh lysates from HEK293 cells were 

passed over the resin bound proteins to capture the substrate. The results 

identified a unique protein on the gel as an E.Coli protein. Experiments were 

repeated with controls for the bacterial proteins, yet no promising results were 

obtained using this approach. This was mainly attributed to problems with the 

instability and unfolding of the enzyme which hinders it from binding its substrate. 

It was also reasoned to be due to the lack of an intracellular regulation of the 

enzyme since hYVH1 has been shown to be phosphorylated in vivo (Vacratsis, 

unpublished data).

As an alternative to the GST pull down assays, we used an in vivo approach 

to capture the substrate-phosphatase complex from HEK293 cells. The results of 

a previous experiment, to check the requirement of the catalytic activity for the 

interaction between hYVH1 variants and Hsp70, showed no additional proteins 

bands with coomassie staining. Hence, we decided to use silver staining for 

increased sensitivity and resolution of proteins for the in vivo set of experiments. 

Although a large number of protein bands were observed by silver staining, we
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faced the problem of overlapping of protein bands due to overcrowding of 

proteins in one dimensional electrophoresis. Moreover, some of the protein 

bands seemed to be covered by the light and heavy chain IgGs of the anti-FLAG 

antibody. Therefore, we eluted the proteins using FLAG peptide and precipitated 

them with acetone. In addition, the problem of overlapping was circumvented by 

resolving proteins via 2-DE which produced promising results (Figure 21). Final 

optimization of the IEF conditions involved increasing the cell number used and 

not performing FLAG elution of the proteins to avoid any possible interference 

from acetone.

A faint p30 band was observed in our initial attempts to resolve the substrate 

in the 2-DE experiments. To increase the intensity of the p30 band we scaled up 

on the number of cells in our experiments by 5-fold. This led to a more 

pronounced detection of the p30 protein spot on the 2D gels and its location was 

marked by reference points. The absence of the p30 protein spot in the control 

gels and wild type hYVH1 gels confirmed it to be a potential substrate of hYVH1. 

The same set of results was obtained under heat shock conditions at 42° C. Heat 

shock increased the level of Hsp70 present and increased the intensity of the 

p30 spot on the gel. In addition a new p30 spot appeared at a region more acidic 

than the previous p30 protein spot that may represent a heat shock induced 

hYVH1 substrate. However, since adding phosphate groups to a protein would 

make the pi shift to the acidic region, the new spot may represent a more 

phosphorylated version of p30.

Using the substrate trap approach and two-dimensional electrophoresis we
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revealed a potential substrate of hWH1. However, the identification of this 

protein by in gel trypsin digestion and mass spectrometry faced a technical 

challenge. The. amount of tryptic peptides obtained from the gel was below the 

detection limit when analyzed by mass spectrometry. This may be due to low 

level of protein or possibly the acidic p30 may resist in gel trypsin digestion and 

extraction.

However, using bioinformatics we have narrowed the candidate list to less 

than 100 human protein sequences that share the pi -  (4.5-5.2) and MW ~ (27- 

35kDa) of the p30 protein spot. From this list we searched for feasible 

candidates. One is an Hsp70 co-chaperone called Bag-1 which is a regulator of 

the activity of Hsp70 and also is an anti-apoptitic protein. The fact that Bag-1 is a 

regulator of Hsp70, and Hsp70 is an interacting protein to hYVH1, strikingly 

increases the relativity of Bag-1 being a potential hYVH1 substrate. Furthermore, 

Bag family members such as Bag-2 have been found to be phosphorylated 

(Ueda et al., 2004). More interestingly, one of the Bag-1 isoforms (Bag-1 M) has 

also been found to be phosphorylated (Townsend et al., 2005). It is very 

promising that future studies testing the possible interaction between hWH1 and 

Bag-1 as well as functional studies on Hsp70 and hYVH1 will delineate the the 

physiological function of the evolutionary conserved dual specificity phosphatase 

hYVH1.
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FUTURE PROSPECTIVES

This study reported the first interacting protein of the dual specificity 

phosphatase hYVH1 called Hsp70. Although much analytical work was done to 

lay the foundation for the characterization of this enzyme, future biochemical and 

functional studies will further elucidate the nature of the interaction between 

hYVH1 and Hsp70. The interaction between the two proteins will be studied 

under various stress conditions such as heat shock, apoptotic inducers and 

hydrogen peroxide (H2O2 ) treatment to see if stress weakens or strengthens the 

Hsp70 interaction with hYVH1. In addition, the interaction domains of the two 

proteins will also be studied by making zinc-finger truncated mutants of hYVH1 

and substrate binding or ATPase-binding truncated mutants of Hsp70. To 

determine the biological settings and the domains mediating the interaction, the 

coimmunoprecipitation experiments will be repeated in other cell lines under 

various conditions and variants of the two proteins.

Recent preliminary data from our lab shows that hYVH1 may be partially 

located in the mitochondria. Since Hsp70 has been shown to translocate 

proteins to the mitochondria, it will be intriguing to study if Hsp70 plays a role in 

the translocation of hYVH1 to the mitochondria by performing localization studies 

on the two proteins using immunofluorescence assays. Moreover, enzymatic 

assays will be done to study the effect of the Hsp70-hYVH1 interaction on the 

enzymatic activity of hYVH1 and the anti-apoptotic activity of Hsp70. These 

studies will determine whether Hsp70 increases or decreases the phosphatase 

activity of hYVH1 or if hYVH1 modulates the anti-apoptotic effects of Hsp70.
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Further attempts will be made to determine the identity of the p30 protein. 

Biochemical fractionation may be used once the data on the localization of
i

hYVH1 is confirmed and can be used to target that particular fraction of cellular 

extracts to enrich the p30 protein.

Moreover, cell cycle assays will be done to get an insight about the cell cycle 

stage where levels of the hYVH1-p30 complex are greatest. In addition, co- 

immunoprecipitation experiments and Western blot studies are currently being 

done by others in the lab to test if Bag-1 is a hYVH1 substrate using hYVH1 

substrate trapping variants and detecting endogenous Bag-1 using an anti-Bag 

antibody.

In summary, our proteomic approaches using affinity chromatography and 

mass spectrometry have opened exciting new doors to be explored concerning 

hYVH1. It is promising that future work based on these studies will elucidate 

breakthrough details about the physiological function of the hYVH1 phosphatase.
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