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ABSTRACT

An experimental investigation of bond strength andv}characteristics of Carbon
Fibre Reinforced Plastic (CFRP) bars in concrete beams has been conducted at the
University of Windsor. A total of twenty-eight concrete T-beams reinforced with CFRP
bars was tested statically as simply supported beams. Three types of CFRP bars were
used and three different parameters affecting bond characteristics were considered in the
test program, namely (1) pressure induced on the bar due to support condition, (2)
embedment length and (3) transverse reinforcement.

Results indicated that the average bond strength of the three types of CFRP bars
varied from each other and depended primarily on their surface conditions. It was found
that the tensile force in the CFRP bars increased when the bond length increased, but the
average bond strength decreased when the bond length increased. Confinement provided

by transverse reinforcement increased the average bond strength of CFRP bars and the

average bond strength varied as ./ f:’when other factors were constant. However, the

&

results gave no satisfactory information about the influences of support conditions on
bond strength.

It has also been concluded that the expressions for development length and bond
strength of conventional steel reinforcing bar provided in the CSA and ACI codes cannot
be directly applied for the use of CFRP bars due to their inherent physical and
mechanical properties. Preliminary expressions for bond strength of the three types of
CFRP bars were developed, as well as expressions for development length depending on

the types of CFRP bars.
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CHAPTER 1

INTRODUCTION

1.1 General

Concrete is made by mixing cement, water, fine aggregate (sand), coarse
aggregate, and frequently other additives (that modify properties). The hardened concrete
without reinforcement is strong in compression, but it is weak in tension. Steel

reinforcing bars are normally used in the tension side of concrete structures to overcome

the tensile limitation.

Steel is a high strength material. When properly protected from ion attack, steel
reinforcement can last for decades without exhibiting any visible signs of deterioration.
However, it is not always possible to provide this kind of corrosion protection.
Insufficient concrete cover, poor design or workmanship and presence of humidity and/or
aggressive agents can lead to cracking of the concrete and corrosion of the steel

reinforcing bars.

Much effort has been directed towards the design of new structures to reduce or
eliminate the corrosion probiems through the increase of the concrete cover, using €epoxy
coated steel and stainless steel. These methods are not cost-effective or efficient to solve
the long-term corrosion problems. Another uncommon method is to use cathodic
protection. This method significantly increases the cost and complexity of concrete

system.



In recent years, advanced composite material (also known as Fibre Reinforced
Plastic (FRP)) in concrete structures has been an alternative for concrete reinforcement.
The FRP composites offer several significant benefits such as: (1) non-corrosive (2) high
tensile strength (3) light weight (4) non-conductive (5) excellent fatigue resistance and

(6) magnetic transparency.

Currently, standard codes and/or specifications for the application of FRP
reinforcement in concrete structural design are being developed. Much research has been
conducted to develop a database and to gain more confidence in using these promising
composite materials. Researches have also been directed at the bond performance of FRP
bars in concrete structures. The bond design relates to more reliable assessment of both
the demand and supply sides of the anchorage/development design problem. Proper
consideration of the conditions affecting bond is necessary to limit slippage of reinforcing
bar relative to concrete. Bond strength and development length of reinforcement are

briefly discussed in the following sections.

1.2 Bond Strength

Early design of reinforced concrete structures was based on the assumption that
slip of reinforcement had to be prevented in order to minimize cracking, to develop
flexural and shear strengths and to maintain the composite behaviour of reinforced
concrete components. The transfer of axial force from a reinforcing bar to the
surrounding concrete results in the development of shear-type stresses along the contact

surface. The stress acting parallel to the bar along the interface is called bond stress and is



denoted by u per unit area of bar surface. The bond strength of a reinforcing bar can be
established experimentally by measuring the force needed to produce excessive slippage
or pullout of a bar embedded in concrete. If shear-type bond stresses, u, of constant
magnitude are assumed to act uniformly on the bar’s surface over the anchorage length /j,

equilibrium of the bar, as shown in Figure 1.1, gives

uyolh=T

T af
S 1.1
“TSol als (1.1

Past experience and investigations (Lutz and Gergely 1967) have concluded that

the bond strength of steel is a function of bar diameter and that the average bond strength

varied approximately in proportion to 4/ f-’. The bond strength may be written as follows.

Ky fo
U=
db

(1.2)

where K| is a coefficient .

1.3 Bond Failure

Factors that contribute to bond strength are chemical adhesion, friction and
bearing of the bar deformations (also referred to as ribs or lugs) against concrete. The
mechanisms that initiate bond failure may involve a breakup of adhesion between the bar
and the concrete, longitudinal splitting of the concrete around the bar, crushing of the
concrete in front of the bar ribs, shearing of the concrete key between the ribs along a
cylindrical surface surrounding the ribs, or any combinations of the above. When bond

failure occurs, it results generally in splitting of concrete along the bars, either in vertical



planes as in Figure 1.2(a) or in horizontal plane, Figure 1.2(b). If the bars were greased or
lubricated in concrete beam, the bars would slip longitudinally with respect to the

adjacent concrete, which would experience tensile strain due to flexure, as shown in

Figure 1.3.

1.4  Development Length

The development length, /;, is the length necessary to introduce or develop a given
stress into the bar through bond. The concept of development length is that a certain
minimum length of bar is needed on either side of a point of maximum steel stress to

prevent the bar from pulling out. The value of /;may be obtained from Equation (1.1)

[ = L9 (1.3)
4u

Substituting Equation (1.1) into Equation (1.2), the development length of reinforcement

can also be expressed as follows.

li=K: Arfs (1.4)

v

where K5 is a coefficient.

1.5 Objectives

The purpose of the experimental program presented here is to investigate the bond
strength and characteristics of carbon fibre reinforced plastic (CFRP) bars in concrete
beams. The bond characteristics are examined using bond tests by beam specimens. The

research program included the following specific tasks.



a. Development of an experimental expression for the bond strength of concrete beams
reinforced with CFRP bar.

b. Development of an expression for the development length of concrete beams
reinforced with CFRP bar.

c. Investigation of the effect of pressure induced on the bar due to support condition of
concrete beams on bond strength.

d. Investigation of the effect of embedment length of CFRP bars on bond strength.

e. Investigation of the effect of transverse reinforcement on bond strength.

1.6 Research Significance

Currently, limited data are available on the bond behaviour of FRP bars in
concrete members while design guidelines provided in CSA 23.3-M94 (and CSA 23.3-
M84) and ACI 318-93 (and ACI 318-89) for steel cannot be directly used for FRP bars
due to inherent differences in surface deformations and mechanical properties. Therefore,
there is an urgent need to investigate the bond characteristics of FRP reinforcing bars in
concrete structures. The experimental results contribute to the guidelines for future FRP

development and its usage.
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CHAPTER 2

LITERATURE REVIEW

2.1 General

This chapter briefly reviews FRP materials and their general characteristics. A
review of published research work conducted to determine the bond characteristics of

steel and FRP reinforcements is also included

22 Fibre Materials
At present, a number of fibre materials are studied for application in structural
engineering. They include carbon fibres, aramid fibres and glass fibres. A brief

discussion of each fibre is as follows. Figure 2.1 outlines the classification of FRP

reinforcement according to material type.

2.2.1 Carbon Fibre

Carbon fibre is made from either petroleum or coal pitch and polyacrylic (PAN).
Each fibre is between 5 and 20 umm in diameter, and is an aggregate of imperfect fine
graphite crystals. Its characteristics differ depending on the composition and orientation
of the crystals. Commercially available carbon fibres are classified into pitch carbon and
PAN carbon fibres: the pitch carbon being ordinary or high Young’s modulus fibre; and

the PAN carbon, high strength or high Young’s modulus fibre.



2.2.2 Aramid Fibre

Three types of aramid fibres are available commercially bearing trade names such
as Kevlar, Twaron and Technora. Kevlar and Twaron are aromatic polyamide fibres
whose nuclei are bonded linearly by aramid. Technora, on the other hand, is an aromatic

polyetheramide fibre whose nuclei are bonded by ether.

2.2.3 G@Glass Fibre

Two types of glass fibres are commercially available for use as continuous fibre
materials, namely E-glass fibre and alkali-resistant glass fibre. The E-glass fibre contains
large amounts of boric and aluminate, while the alkali-resistant glass fibre contains a
considerable amount of zirconia, which serves to prevent corrosion by alkali attacks from

cement matrixes.

23 FRP Reinforcement

When using continuous fibres such as carbon, aramid or glass as reinforcing
materials for concrete, the fibres are bonded and processed by impregnating them with
binding agents, for example, epoxy resins or vinyl ester resins. The fibres may be formed
as one-dimensional bars, two-dimensional grids or three-dimensional textiles. As an
alternative for steel reinforcement, the bars in general are processed by the pultrusion
method, in which fibres are shaped while subjected to a specific tension to prevent static
fracture by eliminating twists from the fibres and allowing uniform tensile stress. Further,

to ensure good bonding with concrete, the fibres are braided, wound around the surface in



a spiral pattern or coated with sand. The classification of FRP reinforcement according to

shape may be seen in Figure 2.2.

24 Bond Test of Reinforcement

Pullout and flexure beam tests are the two tests used by most researchers to
determine bond performance of reinforcement in concrete members. A summary of test

method for bond of continuous FRP bars may be seen in Figure 2.3.

2.5 Published Research Work

Standard guidelines for determination of bond strength in steel reinforced
concrete members are well established and available elsewhere; however, these
guidelines should be modified in the case of FRP reinforcement. FRP has no or slightly
effectuate ridges (deformed surface) and has relatively high tensile strength. The
following summarizes the work being done to determine the bond characteristics of steel

and FRP reinforcements.

2.5.1 Plain and Deformed Steel Reinforcing Bars

For steel bars, two basic hypotheses were used to determine bond strength
between the reinforcing bar and its surrounding concrete. The first hypothesis considered
bond strength as a linear function of slip (Nilson 1971; Mirza and Houde 1979). Mathey
and Watstein (1961) investigated bond in beams and pullout specimens and suggested
that either a loaded-end slip of 0.25 mm (0.01 in.) or a free-end slip of 0.05 mm (0.002

in.) used to define the “critical” bond strength, depending on which of these slips



developed first. Slips greater than these limits were usually accompanied by large crack
widths which may not be acceptable (Park and Paulay 1975). Ferguson et al. (1965) also
concluded that the embedment length had only a minor effect on the stress attained by
any steel bar until the loaded-end slip reached 0.25 mm (0.01 in.). The second hypothesis
assumed that bond strength related only to the steel strength (Glanville 1913). Kankam
(1997) tested double pullout test specimens reinforced with 25 mm diameter plain round
mild steel, cold worked and hot-rolled ribbed bars to establish a fundamental relationship

based on the two hypotheses. KanKam developed prediction models for each type of

reinforcing bars.

Bond strength of plain rebars was lower than that of deformed rebars (Mo et al.
1996; Kankam 1997) since plain rebars had no surface deformation and no bearing
component. It was reported that the maximum bond strength of plain rebar was 1.0 — 2.0
MPa as compared to 6.0 — 6.7 MPa high yield ribbed bars (Kankam 1997). Deformed
bars were considered simply as plain bars with better bond properties. A comprehensive
study of the mechanics of bond of deformed bars in concrete was conducted by Lutz and
Gergely (1967). They noted that plain bars depended primarily on chemical adhesion and
friction. However, deformed bars depended primarily on mechanical interlocking

between concrete and steel (Treece and Jirsa 1989). Chemical adhesion and friction were

secondary.

10



2.5.2 High Yield Strength Reinforcing Bars

Mathey and Watstein (1961) investigated bond of eighteen beam and eighteen
pullout specimens consisting of deformed reinforcing bars with a nominal yield strength
of 689.5 MPa (100 ksi). Two different diameters were used, 12.7 mm (0.5 in) and 25.4
mm (1 in.), and the embedment lengths ranged from 178 mm (7 in.) to 432 mm (17 in.)
for 12.7 mm diameter bars and from 178 mm (7 in.) to 864 mm (34 in.) for 25.4 mm
diameter bars. The test procedures and beam specimens were as described in the report of
the ACI Committee 208 (1958). It was concluded that, for a.bar of a given size, bond
strength decreased with increase in the embedment length. The bond strength also
decreased with an increase in the bar diameter for a given length-diameter ratio. The
ultimate bond strengths in the pullout specimens agreed in general with the values
obtained from beams with 12.7 mm diameter bars. However, for 25.4 mm diameter bars,
the bond strengths in pullout specimens were significantly greater than the values

obtained from beams.

A similar test was conducted by Ferguson et al. (1962). Bar diameters of 9.5 mm
(0.375 in.), 22.2 mm (0.875 in.) and 34.9 mm (1.375 in.) having yield point of 517 MPa
(75 ksi) were investigated. A total of seventy-six beams was investigated including
variables such as strength of concrete, clear cover over bars, development length, bar
size, effect of stirrups, etc. It was concluded that diagonal tension was a complicating
factor when bars split out in bond. The developed bond s&ength was lower as the

development length for larger bars was increased, but the bond strength showed to be

primarily a function of length rather than bar size. Ultimate bond strength varied as .‘/ I



when other factors were constant. Results also indicated that the width of the beam was a

significant factor in ultimate bond strength developed.

2.5.3 FRP Reinforcement

A test method for evaluation of bond of FRP reinforcement and specific design
guidelines has not yet been standardized (Mochizuki et al. 1993). It depends primarily on
researchers’ point of view and application. Recommendations for design and construction
of concrete structures using continuous fibre reinforcing materials (CFRM) has been
given by the Research Committee on CFRM, Japan Society of Civil Engineers (Machida
1993, 1997; Okamura et al. 1993; Sonobe et al. 1997). In the mean time, development of

design guidelines has also been undertaken by the ACI Committee 440 (1996).

Abdel-Sayed et al. (1998) conducted bond tests by testing seven pullout and
eighteen T-shaped beam specimens reinforced with either 8 or 10 mm diameter Glasform
CFRP bars. The bond strengths of puliout and beam specimens; were calculated based on
a free-end slip of 0.10 mm. It was found that bond strengths, which were obtained from
the pullout specimens reinforced with 8 mm diameter CFRP bars, ranged from 1.32 MPa
(192 psi) to 4.31 MPa (625 psi). For beams reinforced with 8 mm diameter CFRP bars,
the ultimate bond strength ranged from 3.30 MPa (479 psi) to 5.66 MPa (821 psi) and for
10 mm diameter CFRP bars, the ultimate bond strength ranged from 4.36 MPa (632 psi)
to 5.02 MPa (728 psi). Comparison of the two tests showed that the ultimate bond
strengths obtained from beam specimens were relatively higher than and more consistent

than the bond strength obtained from the pullout tests. Abdel-Sayed noted that the results
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obtained from pullout tests may not be directly applied for design but it could serve only

as a guide for bond evaluation. A preliminary expression for bond strength of Glasform

CFRP bars was suggested as follows.

245/
= ZINS

h

< 470 psi (U. S. Units)

where u = bond strength (psi);

J&' = compressive strength of concrete (psi);

dp = nominal diameter of CFRP bar (in.).

@

A different way of testing for bond of CFRP bars wa; conducted by Jerrett and
Ahmad (1995). The CFRP bars were manufactured by Mitsubishi Kasei Corporation
under the trade name Leadline. The bond tests were conducted on three concrete slabs
containing three smooth rods and three deformed rods each. The slabs thicknesses were
152 mm, 305 mm and 457 mm. The results showed that deformed rods, as compared to
the smooth rods, had a higher load at which there was initial free end displacement and
showed an ability to obtain significantly higher short-term loads after initial free end
displacement. The reserve strength factor, defined as the ratio of ultimate load to the load
at initial free end displacement, was 1.0 for the smooth rods and ranged from 3.5 to 9 for
deformed rods. The loads of smooth and deformed rods at initial free end displacement
and at ultimate load varied almost linearly with embedment length. The average bond
strength for smooth rods at failure was 417 kPa (61 psi). For the deformed rods, the
average bond strength at initial free end displacement was 1630 kPa (236 psi) and the

ay

average bond strength associated with the maximum load was '}440 kPa (1080 psi).
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Bond strength of glass fibre reinforced plastic (GFRP) bars embedded in concrete
beams was studied by Benmokrane et al. (1995, 1996, 1997) and Tighiouart et al. (1998).
Four different nominal diameters of GFRP and steel rebars, némely 12.7 mm, 15.9 mm,
19.1 mm and 25.4 mm, were used in order to investigate the effect of bar diameter on the
bond strength. Three embedment lengths, namely 6, 10 and 16 times bar diameter, were
used in order to investigate the effect of embedment length on the bond strength. The
bond tests were conducted by beam specimens in accordance with the RILEM
specifications (RILEM 1978) for testing beams. It was generally believed that beam tests
could realistically simulate the stress conditions of reinforced concrete elements
subjected to bending. The direct pullout test was also conducted on a concrete wall (1200
x 760 x 400 mm) reinforced with the FRP bars placed at top, bottom and middle of the
wall in order to investigate the top bar effect. Simple pullout specimens, according to
ASTM C234, we;'e also made by placing one GFRP rebar at the center of a 255 x 400

mm concrete cylinder. The anchorage length was kept at 380 mm.

According to the RILEM specifications (RILEM 1978), bond strength was
quantified at different slips at each end of the reinforcement. The average bond strengths
at 0.0l mm, 0.10 mm and 0.20 mm and the maximum bond strength with the
corresponding type and diameter of the reinforcing bars were evaluated. Test results
showed that the average bond strength of GFRP reinforcing bars decreased as the
reinforcing bar diameter increased. The bond strength of GFRP reinforcing bars was
lower (60 to 90 percent) than that of steel reinforcing bars (Larralde et al. 1993). The

bond strength from beam tests was lower (55 to 95 percent) than that from pullout tests.
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Furthermore, distributions of tensile and bond stresses along the embedment portion of
GFRP reinforcing bars were nonlinear (Larralde et al. 1993). The bond stresses were
exponentially distributed along the embedment length before debonding. The maximum
bond stress moved progressively towards the free end of the reinforcing bars with
increasing load. The basic equations of development length and bond strength, based on a

free-end slip of 0.01 mm, for the use of GFRP bars were developed as shown in the

following:

_ 0.064 Anf;

where [z, = basic development iength (mm);

lan

497 1=
(SI'Units) and wu= %— (SI Units)
b

Ap = nominal cross-sectional area of GFRP bar (mmz);
Jr = tensile strength of GFRP bar (MPa);

Je' = compressive strength of concrete (MPa);

u = mean bond strength (MPa);

dy = nominal diameter of GFRP bar (mm).

Daniali (1992) investigated bond strength of GFRP bars by testing thirty beams in
accordance with the recommendation of the ACI Committee 208 ( 1958). These beams
were reinforced with 12.7 mm (0.5 in.), 19.1 mm (0.75 in.) or 25.4 mm (1 in.) diameter
FRP bars and 9.5 mm (0.375 in.) diameter FRP shear reinforcements having varying
embedment lengths. Tension failure of reinforcement, pullout failure and splitting failure
were observed during the tests. Daniali found that the cover sglitting could be prevented

by providing shear reinforcements in the constant moment regions. It was concluded that
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the development length varied from 203 mm (8 in.) for 12.7 mm diameter bars to 762

mm (30 in.) for 25.4 mm diameter bars.

The average bond strength and development length of aramid FRP (AFRP) bar
were around 13 MPa and 55 mm (Saafi and Toutanji 1998). Pleimann (1987, 1991)
conducted pullout tests by examining the bond strength of glass, aramid FRP and steel
bars. Three different diameters of GFRP bars, namely 6.35 mm (0.25 in.), 9.53 mm
(0.375 in.) and 12.7 mm (0.5 in.) and one 9.53 mm (0.375 in.) diameter of AFRP were
tested. Pleimann proposed that the development lengths of glass and aramid bars could be
evaluated according to the following equations:

Anfp

Ny

Anf

49 f°

where /; = development length of FRP reinforcement (mm);

For GFRP bar, ls = (SI Units)

For AFRP bar,ls = (SI Units)

Ap = cross-sectional area of FRP reinforcement (mmz);
Jr: = ultimate tensile strength of FRP reinforcement (MPa);

fo’ = compressive strength of concrete (MPa).

A similar equation for basic development length of FRP rebars was developed by
Faza and GangaRao (1993) by applying a reduction factor ¢ = 0.75 to the ultimate tensile
capacity of the rebar. Thus, a reduced bond strength value was assumed. They concluded
that the ACI basic development equation should be modified to account for the use of

FRP rebars. The modified development equation was as follows.
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s = 0.028 27 (SI Units)

JE

where /4, = basic development length of FRP bar (mm);
A = cross-sectional area of FRP bar (mm?);
Jfr = effective yield strength of FRP bar (MPa) (taken as 80% of the ultimate
strength of FRP bar);

fo> = compressive strength of concrete (MPa).

It was noted that each of the above studies considered only a small number of
parameters that influence bond performance of FRP bars. Thus, those studies may not
result in comprehensive design guidelines. An extensive investigation of the bond
strength of GFRP bars was conducted by Ehsani et al. (1993) and Ehsani et al. (1996). A
total of one hundred and two specimens, including forty-eight beam specimens, eighteen
pullout specimens and thirty-six hooked rebar specimens, was constructed and tested.
Variables included in the study were concrete compressive strength, embedment length,
clear concrete cover, rebar diameter, concrete cast depth, radius of bend and tail length.
Based on the theoretical analysis of test results, it was recommended that the allowable
slips at the loaded-end and free-end of GFRP bars be limited to 0.38 mm (0.015 in.) and
0.064 mm (0.0025 in.), respectively. A minimum development length of 381 mm (15 in.)
must be provided. The equations for the basic development length and bond strength

were presented in the following:

. . 14.25 7
Lip = 9-0327;;%" (SIUnits) and u= —dL(SI Units)
c h

where [/ = basic development of straight rebar (mm);
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A, = nominal cross-sectional area of rebar (mmz);
J<’= compressive strength of concrete (MPa);
Jy = tensile strength of rebar (MPa);

dj, = rebar diameter (mm).

Another study related to physical and mechanical properties of FRP rods was
conducted by Khin et al. (1994). Three different types of FRP reinforcements, namely
seven CFRP rods, four AFRP rods and one vinylon FRP rod, were examined by pullout
tests according to the provisional testing procedures of Japan Society of Civil Engineers
(JSCE). Test results indicated that the maximum bond strengths ranged from 4.3 MPa to
15.3 MPa for carbon rods, 7.7 MPa to 12.6 MPa for aramid rods and 9.2 MPa for vinylon
rod. Khin et al. concluded that bond strength of FRP rods in concrete depended not only
on the surface condition of the rods but also on the fibre type, fibre strength, spiral rod

adhesion and spiral strength of spiral FRP rods.

Yamasaki et al. (1993) examined bond characteristics of three kinds of fibre
materials (carbon, glass and aramid) of different deformed shapes (spiral, straight,
sanded-straight, sand-braided, deformed and 7-piece stranded) by pullout tests. Bond
strength at free end slip of 0.10 mm and maximum bond strength were determined for
FRP bars of different raw materials and surface conditions. It was concluded that (1) the
bond strength at initial slip and the maximum bond strength were more likely to differ
with the surface of the continuous fibre bars than with the kinds of fibre materials; (2) the

loaded-end slip could be roughly estimated from the free-end slip; (3) applying sand
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particles to the surface of straight bars provided the bond strength equivalent to that of
the deformed bar; (4) the bond strength of straight of bars almost equaled that of the

round steel bars.

A similar study on different shape of surface and cross-section of FRP bars were
conducted by Makitani et al. (1993). Results showed that the bond strength of FRP bars
increased considerably if the surface of bars was processed in spiral type and covered by

sand.

An experimental program consisting of three series of tests was conducted by
Kanakubo et al. (1993) in order to investigate the bond performance of concrete members
reinforced with FRP bars (carbon, glass and aramid). The first; second and third series of
tests were simple bond test, cantilever type bond test and anti-symmetrical loading test,
respectively. The test variables were the types of longitudinal bars, lateral reinforcement,
percentage of lateral reinforcement and concrete type. The first series of test results
showed that the bond splitting strength could be estimated using ratio of lug height to
diameter of FRP bars. Results obtained from cantilever type bond tests indicated that the
tendency of the bond splitting strength without lateral reinforcement was equal to that of
the first test and the increment of the strength caused by lateral reinforcement could be
evaluated in terms of its percentage and elastic modulus. Bond strength obtained from
the anti-symmetrical loading test agreed with the results obtained from the former two
tests. Thus, Kanakubo concluded that bond performance of beam could be predicted from

results of the cantilever type of bond test.
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Much of FRP research work has been conducted on GFRP for non-prestressed
reinforcement. As pointed out by Erki and Rizkalla (1993), GFRP was the least
expensive type of FRP reinforcement available in the market and was proposed for non-
prestressed reinforcement. Surface treatments such as sand coating and external fiber

windings were used to produce a rough or ribbed surface to improve the bond between

the rebar and its surrounding concrete.

2.6 Code Requirements

The code requirements for bond and/or basic development length of concrete
reinforcement are outlined in the following sections. Three different codes are included
and examined, namely Canadian Standards Association specification (CSA standard
A23.3-84 and A23.3-94 Design of Concrete Structures) and American Concrete Institute
specification (ACI 318-89 Building Code Requirement for Reinforced Concrete and
Commentary) and Japan Society of Civil Engineers (JSCE) recommendations for design

and construction of concrete structures using continuous fibre reinforcing materials.

2.6.1 CSA Code
According to CAN3-A23.3-M84, the basic development length, /4, in millimeters,
of deformed steel bars and deformed wire in tension can be calculated as follows.

For 35.7 mm diameter bar and smaller, /4 = 2%% but not less than 0.0584,f,

For 43.7 mm diameter bar, /g, = f/GTf”
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For 56.4 mm diameter bar, /g, = 34]%
Jr

O.36dh 'y

For deformed wire, /g, =

=y

In the edition of CAN3-A23.3-M94, the development length, I4,, of deformed bars

and wires in tension are given in the following form.

lan = 0.45k 1k 2k3ka b db

'ﬁ"
where k;, k2, k3 and k4 are modification factors for bar location, coating, concrete density

and bar size, respectively.

The basic.development length, /4, may be modified -by multiplying applicable
modification factors. These modification factors are for top reinforcement, reinforcement
with yield strength, f, great than 400 MPa, low density concrete, reinforcement direction
and spacing, reinforcement in excess of that required by analysis and reinforcement
enclosed with spiral reinforcement. These modification factors may be found in CSA
specification clauses 12.2.3, 12.2.4 and 12.2.5. The development length, /4 shall not be

less than 300 mm.

The empirical expression for bond strength is as follows.

19.7./ 7
Uu=——>-—

7 (SI Units)
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2.6.2 ACICode
According to ACI 318M-89/318RM-89, the basic development length, /4, can be

calculated as follows.

SI Units:

For 35.7 mm diameter bar and smaller and deformed wire, ls= ——-—0'(3/2_ﬁ"ﬁ

For 43.7 mm diameter bar, /s» = f/S_f;

40 f;

R}
c

For 56.4 mm diameter bar, ls» =

U.S Units:

For 35 mm (1.375 in.) diameter bar and smaller and deformed wire, /s = 9-:)/4—}1:&

For 44.5 mm (1.75 in) diameter bar, ls = O.i)/—Sf_S’ﬁ-

For 57.2 mm (2.25 in.) diameter bar, /s =—O‘ﬁﬁ'

There are modification factors to account for bar spacing, amount of cover and
enclosing transverse reinforcement. These modification factors can be found in clauses
12.2.3.1 through 12.2.3.6. The development length, /4 shall not be less than 300 mm (12

in.).
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The empirical expression for bond strength is as follows.

95 [f

h

u

(U. S. Units)

2.6.3 JSCE Standard

According to the recommendations for design and construction of concrete
structures using continuous fibre reinforcing materials of Japan Society of Civil
Engineers (JSCE), the basic development length of tensile reinforcement types which
undergo bond splitting failure may be calculated as follows.

Ja

dr 2 20ds

la =an
hod

where foor = 0.28a2 f«*> | (N /mm?) < 32N/ mm?;
a; = coefficient;
a; = modification factor for bond strength;
Ja = design tensile strength of reinforcement (MPa);

d, = diameter of reinforcement (mm);

Jex” = characteristic compressive strength of concrete (MPa);

=13

The value of a, depends on the value of k. which can be calculated as follows.

kc=_c_+15A,*£
dv sd»v E,

where ¢ = downward cover of main reinforcement or half of the space between the

anchored reinforcement whichever is the smaller (mm);
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dp = diameter of reinforcement (mm);

A, = area of transverse reinforcement (mmz);

s = distance between the centers of the transverse reinforcement (mm);
E; = modulus of elasticity of transverse reinforcement (MPa);

E, = standard modulus of elasticity (200 MPa).

In addition, the development length may also be modified by modification factors

such as location of reinforcement.
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Carbon PAN-based

Inorganic —E pitch-based
Fibre
Glass alkali-resistant
—l: E-glass
Aramid
Organic . .
Fibre Polyvinylalcohol (PVA) Fibre

Others

Figure 2.1: Classification of FRP reinforcement according to material
(Source: Fukuyama, 1999)

Bar —— linear —— round bar —[ no treatment surface fiber-wound
surface treatment ——E sand

other

~— square bar—E no treatment surface

surface treatment

—— deformed

| stranded
no treatment surface

L braided surface treatment

Grid —— plain grid (meshed form)

L— three-dimensional grid

Figure 2.2: Classification of FRP reinforcement according to shape
(Source: Fukuyama, 1999)
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Figure 2.3: Classification of test method for bond of continuous fiber
reinforcing material (Source: Machida, 1993)
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CHAPTER 3

EXPERIMENTAL INVESTIGATION

3.1 General
Factors affecting bond properties depend on both the type of reinforcement and
the concrete. These factors may be summarized as follows:
a. size and type of FRP bars (carbon, glass, aramid)
b. surface deformations (smooth, deformed, sand-coated, braided)
c. concrete compressive strength
d. concrete confinement (concrete cover and transverse reinforcement)
e. type of loading (static, cyclic, impact)
f. mechanical properties (tensile strength and modulus of elasticity)
g. type and volume of fibre
h. position of FRP bars (top bar effect)
1. embedment length of FRP bars
j- setup of test specimens (cantilever, simply supported)

k. type of bond tests (pullout test, bond beam test)

3.2 Purposes

The purpose of this experimental program is to investigate the bond strength and
characteristics of Glasform and DFI CFRP bars using beam specimens. The mean bond

strength of the CFRP bars was examined through concrete T-beam reinforced with a



CFRP bar. The following three parameters were investigated in this experimental
research.

a. pressure induced on the bar due to support condition of beam specimen

b. embedment length of CFRP bar

c. transverse reinforcement

33 Materials
3.3.1 CFRP Bars

Three types of carbon fiber reinforced plastic (CFRP) bars were used in the tests,
as shown in Figures 3.1(a) and (b). Types A (G1-D8 and G1-D10) and B (G2-D9.79)
CFRP bars were manufactured by Glasform Inc., USA. These CFRP bars were
manufactured by the pultrusion process and made up of continuous longitudinal carbon
fibers bound togéther with a thermosetting resin. The indentation of type A CFRP bars
was parallel to and along the length of the bar while type B CFRP bar was characterized
by spiral indentation. Type C CFRP bar was manufactured by DFI Pultruded Composite
Inc., USA. These CFRP bars were made of carbon fibers (fibers not preheated before
passing through the die) with a carbon content of 65% by volume. The surface was
characterized by spiral indentation along the length of the bar. The physical properties of
types B and C CFRP bars are shown in Table 3.1 and the mechanical properties of types

A, B and C CFRP bars are shown in Table 3.2.
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3.3.2 Concrete

Concrete was made by mixing of fine aggregate (sand), 20 mm (0.75 in.) coarse
aggregate (gravel), type III Portland cement (high-early-strength cement) and water. A
minimum 7-day concrete compressive strength of 35 - 40 Mi’a (5100 - 5800 psi) was
assumed and a water-cement of 0.55 was used in the mix design. Three 150 x 300 mm (6
x 12 in) standard concrete cylinders were prepared for each beam specimen and tested at
the same day of bond beam test. The proportioning of concrete mix and compressive

strength of beam specimens are presented in Tables 3.3 and 3.4, respectively.

3.4  Testing Instrumentation
3.4.1 Hydraulic Jack and Load Cell

A universal flat load cell of capacity 225 kN (50 000 Ib) and a manually operated
hydraulic jack were used in beam testing. The load cell was calibrated using universal
testing machine to obtain the load-strain relationship required for beam testing. The load
cell was wired to a strain indicator which gave readings in microstrain. The load-strain
readings are presented in Table A.l and the corresponding calibration curve is shown in

Figure A.1.

3.4.2 Strain Indicator and Switch & Balance Unit

P-3500 digital strain indicator was used with electric resistance strain gauges.
This strain indicator would accept full, half or quarter-bridge inputs and all required
bridge completion components for 120-ohm and 350-ohm bridges were provided. SB-1

switch & balance unit, which provided an output of ten channels of strain gauge readings



on a single strain indicator, was used in beam testing. Both instruments were

manufactured by Measurement Group, Inc., USA.

3.4.3 Strain Gauges and Strain Gauge Cement
PC-12 strain gauge cement was used to glue strain gauges on the surface of CFRP
bar. The strain gauges used in beam testing were of type KFG-5-120-C1-11 KYOWA

strain gauges. Both PC-12 strain gauge cement and strain gauges were manufactured by

KYOWA Electronic Instruments Co. Ltd.

3.4.4 Dial Gauges

Mitutoyo shock proof dial gauges were used in the bearn‘testing. These dial gauges

were graduated in 0.01 mm with a range of 20 mm and 50 mm.

3.5 Formwork and Casting of Beam Specimens

3.5.1 Preparation of Formwork

A total of five wooden forms was prepared to cast the beam specimens. Two
forms of length 1829 mm (72 in.) and three forms of length 2438 mm were cut and made
by 15.9 mm (0.625 in.) thick plywood. Two types of transverse reinforcement (steel
stirrups) were prepared, namely (a) Type A stirrups with a total length of 711 mm (28 in.)
and (b) Type B with a total length of 558 mm (22 in.). Type A stirrups were used in the
bonded part of reinforcement while Type B stirrups were used in the unbonded part of
reinforcement. These two-leg steel stirrups were made from 6 mm (0.24 in.) diameter

mild steel longitudinal bars with a minimum yield stress of 400 MPa (58 ksi). Steel
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stirrups spaced at 152 mm (6 in.) were hung from two 6 mm diameter mild steel
longitudinal bars and tied with mechanical wire and a CFRP bar was tied with these
stirrups. Then the assembly was ready to set in to wood forms. The unbonded part of
reinforcement was covered by 50.8 mm (2 in.) thick blue styrospan. Figures 3.2 and 3.3

show sketches of two types of transverse reinforcement and a completed formwork,

respectively.

3.5.2 Casting of Beam Specimens

The quantities of concrete mix were measured accurately, loaded and mixed in a
mechanical mixer. The concrete was placed into forms and vibrated with the aid of
laboratory internal vibrator and then smoothed with a trowel. In order to prevent rapid
moisture loss in the initial hardening process, plastic sheets were used to cover the
surface of the be-am specimens. The forms were removed 24-30 hours after casting,
sprayed with intermittent water for the first 3 days and left to air dry until testing (7 days
after casting). Three 150 x 300 mm (6 x12 in.) standard concrete cylinders were made
for each beam specimen and cured under water for the first 3 days and left in the air until
testing. The top and bottom of these concrete cylinders were capped with capping
material prior to testing. Both concrete T-beams and concrete cylinders were cast and

stored in the concrete laboratory at the University of Windsor.
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3.6 Test Program
3.6.1 Tension Test

Tension tests were conducted on G2-D9.79 and D1-D9.70 CFRP bars in order to
determine the modulus of elasticity of the CFRP bars. A typical tension specimen of
length 864 mm (34 in.) was selected and gripped by anchorage system on both ends with
76 mm (3 in.) overhanging the anchorage system. Three strain gauges were placed on the
surface of the bar, wired and connected to switch & balance unit to give the strain
readings. Two tension specimens from each type of CFRP bar were tested using the

universal testing machine. Typical setup of tension test is shown in Figure 3.4.

3.6.2 Beam Test

A total of twenty-eight concrete T-beams reinforced with G2-D9.79 and DI-
D9.70 CFRP bars was tested in this experimental program. Three parameters affecting
bond characteristics were considered in this test program, namely (1) pressure induced on
the bar due to support condition of beam specimen (2) embedment length of CFRP bar

and (3) transverse reinforcement.

3.6.2.1 Details of Beam Specimens

The total length of beam specimens was 1829 mm (72 in.) or 2438 mm (96 in.)
with a depth of 356 mm (14 in.) and an effective depth of 312 mm (12.3 in). A clear
cover of 38.1 mm (1.5 in) was selected to avoid splitting of the concrete cover. The beam
specimens were grouped into Groups A, B and C. Beam specimens in Groups A and B

were tested using steel I-beam section supports and steel roller supports, respectively
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(The different support conditions will be discussed in the following sections). In addition
to CFRP reinforcement, Group C beam specimens were also reinforced with transverse
reinforcement (stirrups) and tested using steel roller supports. The beam specimens were
designated by three sets of letters and numbers. The first set of letters and numbers refers
to manufacturer and type of CFRP bar manufactured by the manufacturer, respectively.
The second set of letters and numbers refers to the diameter of CFRP bar. The third set of
letters and numbers refers to group of beam specimen and embedment length (in inches)
of the CFRP bar, respectively. Configurations of beam specimens are shown in Figures
3.5(a), (b), (c) and (d). Detailed information about bond test beam specimens may be seen

in Table 3.5.

3.6.2.2 Pressure Induced on The Bar Due to Support Condition

Two support conditions of beam specimens were considered in the test program,
namely (1) steel roller supports and (2) steel I-beam section supports. The steel roller
supports consisted of two 305 x 305 mm (12 x12 in.) square plates and one 63.5 mm (2.5
in) diameter by 305 mm (12 in.) long steel roller for each end of beam support. For 1829
mm (72 in.) beam specimens, the beam ends were set up on top of the horizontal steel
rollers as simply supported with a span of 1727 mm (68 in.) and 50.8 mm (2 in.)
overhanging the supports. For 2438 mm (96 in) beam specimass, the beams were set up
in the same manner, but with a span of 2337 mm (94 in.) and 50.8 mm (2 in.)
overhanging the supports. A 50 x 125 x 3 mm (2 x 5 x 0.12 in) thick steel plate was
placed undemeath the bottom of the beam specimens on both ends to avoid stress
concentration on the supports. A photograph showing a pair of steel roller supports is

shown in Figure 3.6.

33



In order to minimize stress disturbances (support reaction forces) and confinement
effect (concrete cover), a pair of special supports was designed and called steel I-beam
section supports. The steel I-beam section supports were fabricated by steel angles, steel
columns and steel plates. The beams were set up in such a way that the web of the beams
was held by the angles welded to the steel plate. Some thin steel splices were inserted
into the space between the web and the angles to hold the beams as tight as possible. A
sketch of plan and cross-sectional view of this special support may be seen in Figures
3.7(a) and (b). A photograph showing a pair of steel I-beam section supports may be seen

in Figures 3.8(a) and (b).

3.6.2.3 Embedment Length

Five different embedment lengths of CFRP bar were used in this experimental
research, namely 305 mm (12 in.), 457 mm (18 in.), 610 mm.(24 in.), 762 mm (30 in.)
and 914 mm (36 in). The embedment lengths were used to establish a relationship

between bond strength and embedment length of CFRP bar.

3.6.2.4 Transverse Reinforcement

Group C beam specimens were reinforced with steel stirrups along the length of
the beams. The results obtained from Group C beam specimens may provide a
comparison with Group B beam specimens. The use of steel stirrups may increase the

shear resistance and limit the crack width of beam.
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3.7 Test Setup

3.7.1 Setup of Test Beams a
The beams were set up on testing bed of a testing frame by using either steel roller

supports or steel I-beam section supports. The beams were then tested statically as a

simply supported beam. Figure 3.9 shows a sketch of the location of measuring devices

and loading configuration. Photographs showing a complete test setup of Group A and

Groups B, C beam specimens may be seen in Figures 3.10 and 3.11. Detailed

information of test setup is presented in the following sections.

3.7.2 Attachment of Measuring Devices

One strain gauge was glued to each of the rear and front faces of the CFRP bar
(offset to the middle of the bar + 50.8 mm (2 in.)) after the surface was cleaned by
acetone, M-Prep -conditioner A and neutralized by M-Prep neutralizer SA. The strain
gauges were wired and connected to switch & balance unit and strains were read from
strain indicator. Two dial gauges were attached to both ends oof the beams and other two
were attached to the unbonded ends of the bar. Two dial gauges were also located at the

mid-span of the beams.

3.7.3 Loading Configuration

All beams were tested statically as a simply supported beam. The central
concentrated load was applied in the increment of 4.4 kN (1000 Ib) at two equal loading
points spaced at 610 mm (24 in.) by using a load spreader system. The load spreader

system consisted of a 12.7 x 152 x 152 x 902 mm (0.5 x 6 x 6 x 35.5 in) steel HSS
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section, a 30 x 180 mm (1.18 x 7.09 in) circular steel roller and a 25 x 25 x 300 mm (I x

1 x 11.8 in) rectangular steel bar.

3.7.4 Compression Test

The compression tests of concrete cylinders were conducted using RIEHLE

testing machine by applying the load constantly and slowly.

3.8 Data Collection

3.8.1 Strain Readings

The strains of CFRP bar were read from a strain indics.or in microstrain for each
load increment. The average value of two strain readings was used to calculate the tensile

force of CFRP bar.

3.8.2 Dial Gauge Readings
Elongation and loaded-end slips of the bar were read from dial gauges 2 and 3
located at the unbonded ends of the bar and free-end slips of the bar were recorded from

dial gauges 1 and 4 for each load increment. The mid-span deflections were also recorded

by two dial gauges.

3.8.3 Identification of Crack

The transverse cracks within the shear span and constant moment zone were

traced with a black marker and indicated the extent of the cracks at each load increment.

.
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3.8.4 Compressive Strength
The compression tests were done on the same day of bond tests. The average
value of three concrete cylinder compressive strengths indicated the strength of the

concrete.
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Table 3.1: Physical properties of G2-D9.79 and D1-D9.70 CFRP bars

Type of CFRP Bar

Physical Properties
Glasform2 (G2-D9.79) DFII (D1-D9.70)
nominal diameter (mm) 9.79 92.70
pitch of indentation (mm) 35.0 9.49
width of indentation (mm) 7.45 3.08
depth of indentation (mm) 0.13 0.37
angle of indentation (degree) 45 70

Note:

The pitch and width of indentation of DFI1 CFRP bar may slightly differ from bar to bar
due to inconsistency of indentation.

Table 3.2: Mechanical properties of CFRP bars

Properties of Type of CFRP Bar
Reinforcement A B C
Designation G1-D§ G1-D10 G2-D9.79 D1-D9.70
Manufacturer Glasform Glasform Glasform DFI
d, (mm) 8 10 9.79 9.70
E( (GPa) 159 157 158 177

Table 3.3: Proportioning of concrete mix

Components kg/m
Cement 320
Sand 785
Gravel 1122
Water 173
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Glasforml Dlameter = 8 mm (0“315 n.)

ks g T e

Glasform!, Diameter = 10 mm (0.394 in.)

Figure 3.1(a): Type A CFRP bar (G1-D8 and G1-D10)

DF[I Dlameter =970 mm (~0.382 m.)

Figure 3.1(b): Types B and C CFRP bars (G2-D9.79 and D1-D9.70)

50.8 889 5038

< le—pled
1 + 508 889 508
——>|e > » |

_Jr 50.8

All dimensions are in millimeter (mm).

[y
v

[e)}
[V5)
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(a) Type A stirrup (b) Type B stirrup

Figure 3.2: Types of transverse reinforcement (a) Type A stirrup (b) Type B stirrup
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Figure 3.3: Picture of a complete formwork

CFRP bar

Anchorage system

1 Machine upper portion

Strain cauge |

i 5 i
Strain gauge 2 Strain gauge 3

1 Machine lower portion

Figure 3.4: Setup of tension test
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Figure 3.6: Picture of steel roller support

Steel Angle Bolted

Concrete Beam and Welded to L
/ Beam to Support
Concrete Beam
279 mm / 279 mm
(11 in) (Il in.)
[e——4/
[‘ 1 A
Steel — ® °
Bolts ° o 292 mm
_ (11.5in.)
;/
Steel I-Beam 470 mm
Section T~ Pa— (18:51n)
121 mm
(4.75in.)

7 7 7 7 77 7 7 7 /7

l¢——— 699 mm (27.5 in) ———

Figure 3.7(a): Plan view of steel [-beam section support
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A88.9 mm
(3.5in.)

143 mm
(55/8 in.) 106 mm
(16in.)
Steel Rod

63.5 mm
(2.51in.)

Figure 3.7(b): Cross-section of steel [-beam section support

Figure 3.8(a): Picture of steel I-beam section supports (plan view)
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Figure 3.8(b): Picture of steel [-beam section supports (side view)
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Figure 3.10(a): Picture of complete test setup of Group A beam specimen
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Figure 3.10 (b): Picture of complete test setup of Group A beam specimen (side view)
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Figure 3.11 (a): Picture of complete test setup of Groups B and C beam specimens

Figure 3.11(b): Picture of complete test setup of Groups B and C beam specimen (side view)
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 General

This chapter presents all the results of the beam specimens by analyzing the
experimental data. Data obtained from previous research work (Abdel-Sayed et al. 1998;
Jerrett and Ahmad 1995) is also analyzed and the results serve as a comparison.
Mechanical properties, such as modulus of elasticity, of Glasform2 and DFI1 CFRP bars

were determined from tension tests and used in the calculations of beam specimens.

4.2 Calculations Required
4.2.1 Calculation of Tensile Force

The average tensile strain of CFRP bars obtained from the experiment was used to
calculate tensile forces. The tensile force was the product of modulus of elasticity,
average strain and cross-sectional area of CFRP bars.

T=FEr*c* A 4.1

The tensile force T acting on CFRP bar in beam specimens can also be calculated
by pure bending moment M = P *a due to two equal concentrated forces P.

_ Pxq
J

T 4.2)

where a is shear span and j denotes the distance between resultant tensile and

compressive forces as shown in Figure 4.1.
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4.2.2 Calculation of Mean Bond Strength

The average bond strength of CFRP bar over the embedment length may be
evaluated by Equation (1.1) by substituting the tensile force obtained from Equation
4.1).

T T

= = 43
ol mwedixls (4.3)

u

4.2.3 Determination of K, and K;

Expression for average bond strength of CFRP bar may also be obtained directly
from Equation (1.2), Section 1.2, by analysing the experimental results and determination
of K, value. Expression of development length was then derived based on the developed

average bond strength equation.

4.3 Results of Tension Tests

The modulus of elasticity of CFRP bar were determined by averaging the results
obtained from two tension specimens for each type of CFRP bar. The average modulus of
elasticity of G2-D9.79 and D1-D9.70 CFRP bars were 158 GPa (23 000 ksi) and 177 GPa
(25 700 ksi), respectively. The ultimate breaking load of CFRP bars were not reported
since the CFRP bars slipped or crushed within the grips. The stress-strain data and

curves of G2-D9.79 and D1-D9.70 CFRP bars are presented in Appendixes B and C.
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4.4 Results of G1-D8 and G1-D10 CFRP Bars

Bond strengths of G1-D8 and G1-D10 CFRP bars were determined by pullout

and/or beam tests. The definition of bond failure was defined as a free-end slip of 0.10

mmni.

4.4.1 Pullout Test (G1-D8 CFRP Bar)

A total of seven pullout specimens reinforced with G1-D8 CFRP bars was tested
by varying the bond length of 60 mm, 80 mm and 120 mm (Abdel-Sayed et al. 1998).
The test and analyzed results are summarized in Table 4.1. It was found that the bond
strength ranged from 1.32 MPa to 4.31 MPa and the value of K, ranged from 1.93 to 6.76
with an average value of 3.68. The relationship between tensile force and bond length is
shown in Figure 4.2. The effects of bond length and square root of concrete compressive
strength (tensile strength of concrete) on bond strength are plotted and shown in Figures

4.3 and 4.4, respectively.

4.4.2 Beam Test (G1-D8 CFRP bar)

A total of fifteen beam specimens reinforced with G1-D8 CFRP bars was tested
(Abdel-Sayed et. al 1998). The embedment length and concrete compressive strength
were varied in order to establish the effects of these parameters on the bond strength.
Transverse reinforcement (steel stirrups) was used in some beam specimens in order to
prevent premature shear failure and to examine the effect of confinement provided by
stirrups. Four types of failure modes were observed in the tests, namely shear (dowel),

compression, tension and bond. It was found that the average bond strength ranged from
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3.30 MPa to 5.66 MPa and the value of K, ranged from 5.25 to 8.26 with an average
value of 6.27. The bond test results of beam specimens are summarized in Table 4.2.
Figures 4.5, 4.6 and 4.7 plot the relationships of tensile force vs. bond length, bond
strength vs. bond length and bond strength vs. square root of concrete compressive
strength, respectively. The applied load vs. free-end and loaded-end slips of beams G1-
D8-B12 to G1-D8-B15 are shown in Appendix G. A sketch of crack pattern at failure of

the four beams is shown in Appendix D.

A summary of the effect of transverse reinforcement on the bond strength of beam
specimens is presented in Table 4.3. Bond strengths of five beam specimens with
transverse reinforcement were compared to that of five beam specimens without
additional transverse reinforcement. It was found that, in general, the transverse

reinforcement increased the average bond strength.

4.4.3 Beam Test (G1-D10 CFRP bar)

The average bond strength of G1-D10 CFRP bar was determined by testing seven
beam specimens (Abdel-Sayed et al. 1998). The observed modes of failure of the beam
specimens were shear, compression and bond. The average bond strength was between
4.11 MPa and 5.02 MPa and the value of K, was between 5.55 to 6.79 with an average
value of 6.25. The beam test results are summarized in Table 4.4. The relationships of
tensile force vs. bond length, bond strength vs. bond length and bond strength vs. square
root of concrete compressive strength can be seen in Figures 4.8, 4.9 and 4.10,

respectively.
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4.44 Comparison of Pullout and Beam Tests Results

The bond strengths of G1-D8 CFRP bar were obtained from pullout and beam
tests in the previous section. Table 4.5 presents a comparison of bond strength of pullout
and beam specimens. It was found that the bond strength obtained from pullout

specimens was relatively lower than that obtained from beam specimens.

4.5 Results of G2-D9.79 CFRP Bar

A total of fourteen beams reinforced with G2-D9.79 mm CFRP bar was tested.
All beam specimens failed in bond with a free-end slip greater than 0.10 mm and with a
vertical crack formed within the shear span or constant moment zone. Inclined flexural
cracks formed within the shear span of beams G2-D9.79-C30 and G2-D9.79-C36 had
reduced their bond length to 406 mm (16 in.) and 559 mm (?2 in.), respectively. Two
additional beams. (G2-D9.79-B36(F1) and G2-D9.79-B36(F2)) with CFRP bar fully
bonded by concrete were tested. It was observed that inclined flexural crack formed
within the shear span of the two beams and free-end slip increased with the increase of
crack width and applied load. Excessive slip occurring at one of the free-ends was
observed in the tests. The bond strength were 2.61 MPa and 2.37 MPa for beams G2-

D9.79-B36(F1) and G2-D9.79-B36(F2), respectively.

The tensile force of the CFRP bar was calculated by Equation (4.1) and
compared to that obtained from pure bending moment, Equation (4.2). The results are
presented in Table 4.6. Tensile forces and bond strengths at three levels of free-end slip

of 0.05 mm, 0.10 mm and 0.25 mm, and two levels of loaded-end slip of 0.25 mm and
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0.50 mm are calculated and presented in Tables 4.7, 4.8, 4.9 and 4.10, respectively. The
tensile force vs. bond length and bond strength vs. bond length at three levels of free-end
slip are shown in Figures 4.11 and 4.12, respectively. For loaded-end slip, the tensile
force vs. bond length and bond strength vs. bond length can be seen in Figures 4.13 and
4.14, respectively. The bond strength at free-end slip vs. square root of concrete

compressive strength can be seen in Figure 4.15.

A summary of calculations of tensile force, bond strength, the values of K; and K,
for G2-D9.79 CFRP bar at free-end and loaded-end slips are presented in Tables 4.11 and
4.12, respectively. It was found that the average bond strength at free-end slip of 0.05
mm ranged from 1.19 MPa to 3.84 MPa and the value of K, ranged from 1.95 to 5.67
with an average of 3.16. For a free-end slip of 0.10 mm, the average bond strength ranged
from 1.75 MPa to 4.14 MPa and the value of K, ranged from 2.45 to 6.12 with an average
of 3.40. The tensile force, bond strength and the values of K, and K, at loaded-end slips
of 0.25 mm and 0.50 mm were calculated and used to serve a comparison to that obtained

from free-end slips.

The effect of support condition on bond strength is summarized in Table 4.13. It
was found that bond strength obtained from steel I-beam section and steel roller supports
varied from each other. Table 4.14 presents the effect of transverse reinforcement on
bond strength of groups B and C beam specimens. It was noted that, in general, bond
strength increased due to confinement provided by stirrups. Comparison of the bond

strength between groups B and C beam specimens is shown in Appendix R.
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4.6 Results of D1-D9.70 CFRP Bar

A total of fourteen beam specimens reinforced with D1-D9.70 CFRP was tested.
Five out of fourteen beam specimens failed in bond / splitting of cover and nine beam
specimens failure in compression. A vertical crack was formed within the constant
moment zone for the beam specimens that failed in bond. However, the bond length of
beam DI1-D9.70-C24 was reduced to 279 mm (11 in.) due to inclined flexural crack
formed within the shear span. Comparison of the maximum tensile force obtained from
Equations (4.1) and (4.2) are presented in Table 4.15. Tensile force and bond strength at
free-end slips of 0.05 mm and 0.10 mm are calculated and presented in Tables 4.16 and
4.17, respectively. The tensile force vs. bond length and bond strength vs. bond length at
free-end slip can be seen in Figures 4.16 and 4.17, respectively. The bond strength at

free-end slip vs. square root of concrete compressive strength can be seen in F igure 4.18.

A summary of calculations of tensile force, bond strength, the values of K; and K»
for D1-D-9.70 CFRP bar at free-end slip is presented in Table 4.18. It was found that the
average bond strength at free-end slip of 0.05 mm ranged from 4.56 MPa to 6.21 MPa
and the value of K, ranged from 6.67 to 9.29 with an average value of 8.08. For a free-
end slip of 0.10 mm, the average bond strength ranged from 4.67 MPa to 6.53 MPa and

the value of K, ranged from 6.82 t0 9.76 with an average value of 8.47.
The effect of support condition on bond strength is summarized in Table 4.19. It

was found that bond strength obtained from steel I-beam section and steel roller supports

varied from each other. The effect of transverse reinforcement on bond strength of groups
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B and C beam specimens is summarized in Table 4.20. It was noted that, in general, bond
strength increased due to confinement effect. Appendix W shows a comparison of bond

strength between groups B and C beam specimens.

4.7  Results of Leadline CFRP Bar

Bond strength of Leadline CFRP bars was determined by Jerrett and Ahmad
(1995). Results showed that the average bond strength for smooth rods at failure was 417
kPa. For deformed rods, the average bond strength at initial free-end displacement and
maximum load were 1.63 MPa and 7.44 MPa, respectively. Results of their test is

presented in Appendix X.

Further analysis was conducted in order to determine the value of K; for bond
strength expressién. It was found that, for smooth rods, bond strengths were 0.483 MPa,
0.317 MPa and 0.453 MPa for bond length of 152 mm, 305 mm and 457 mm,
respectively. The average value of K, was 0.498 for smooth rod. The average bond
strength at initial free-end displacement of deformed rods were 0.88 MPa, 1.91 MPa and
2.09 MPa for bond length of 152 mm, 305 mm and 457 mm and the average bond
strength associated with maximum load were 7.81 MPa, 7.55 MPa and 7.35 MPa for
bond length of 152 mm, 305 mm and 457 mm. For deformed rods, the average value of

K, was 9.04.
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4.8  Summary of Test Results
Bond strength of different types of CFRP bars were determined in the previous

section and summarized in Table 4.21. It should be noted that, bond strength of types G1-
D8, G1-D10, G2-D9.79 and D1-D9.70 CFRP bars were determined based on a free-end

slip of 0.10 mm. For smooth and deformed Leadline CFRP bars, the bond strength was

calculated corresponding to maximum load.

Expressions for bond strength of different types of CFRP bars can be established
by determining the corresponding value of K,, Equation (1.2) in Section 1.2. It showed
that expressions for bond strength of CFRP bars depended on the value of K;. Therefore,

the bond strength equation was modified for the use of CFRP bars as:

) ‘.’
u =%— /" for G1-D8 and G1-D10 CFRP bars
h

40y f
u= uﬁ for G2-D9.79 CFRP bar

h

47 f
u= 8—d—‘/7 for D1-D9.70 CFRP bar

h

where u = mean bond strength (MPa);
Jo' = compressive strength of concrete (MPa);

d, = nominal diameter of CFRP bar (mm).

These equations can be rearranged and presented in terms of development length,

as shown in the following:
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_0.0509 457

7

_0.0936 4nf7

Nra

_0.0377 4y

V7

where [/; = development length of CFRP bar (mm);

la for G1-D8 and G1-D10 CFRP bars

la for G2-D9.79 CFRP bar

la for D1-D9.70 CFRP bar

Ap = nominal cross-sectional area of CFRP bar (mmz);
Jr= tensile strength of CFRP bar (MPa);

f2' = compressive strength of concrete (MPa).
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CHAPTERSS

DISCUSSION OF TEST RESULTS

5.1 General

This chapter discusses the results presented in Chapter 4 and the effects of three
parameters, namely pressure induced on the bar due to support condition, embedment
length and transverse reinforcement, on bond strength. Adcgtional discussions of the
effect of concrete compressive strength on bond strength, relationships between applied

load and slip of beam specimens are also included.

5.2 Results of Tension Test

The stress-strain data obtained from the two tension specimens are consistent for
G2-D9.79 CFRP bars, as well as D1-D9.70 CFRP bar. The modulus of elasticity of CFRP
bars is lower than that of conventional steel reinforcing bars, approximately 79 to 88
percent of that of steel reinforcing bar. The ultimate breaking load is not reported since

the CFRP bars slipped or crushed inside the grips.

5.3 Comparison of Pullout and Beam Specimens

Bond strengths obtained from pullout tests are inconsistent and varied from each
other, as seen in Figures 4.2 and 4.3. In pullout specimens, the'bar is subjected to tension
while the concrete surrounding the bar is subjected to compression and, in beam

specimens, the concrete surrounding the bar is under tension. This indicates that beam
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test would be more realistic simulating the real behaviour of member in flexure and more

suitable for such computations.

54 Effect of Bar Diameter

The values of bond strength presented in Tables 4.2 and 4.4 slightly indicate that
bond strength decreases when the diameter of the bar increases. More test data are needed
to verify this observation. In fact, the smaller bond strength of larger diameter can be
explained by the bleeding of water in concrete. The larger the diameter of the bar, the
higher the quantity of bleeding the water gets trapped beneath the bar. Thus, it creates a

greater void and reduces the contact surface between the bar and the concrete and hence

the bond.

55 Effect of Pressure Induced on The Bar Due to Support Condition

The use of steel I-beam section support, instead of steel roller support, was to
eliminate the stress disturbance (support reaction forces) and confinement effect
(concrete cover). But, the results in Tables 4.13 and 4.19 do not give a satisfactory

§

comparison of bond strength by considering these two suppoﬁ conditions. In addition,
there was difficulty in setting the test beams on the steel I-beam section support. It should
be noted that the load-deflection curves of beams, tested by steel I-beam section support,

are less steeper (larger deflection) due to slightly increased settlement of beams with the

increase of applied load.
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5.6 Effect of Embedment Length

Theoretical expression of the bond strength of reinforcing bar shows that the bond
strength decreases as the embedment length of the reinforcing bar increases. This
assumption was made to bond strength of constant magnitude acting uniformly on the
reinforcing bar’s surface over the anchorage length. This conclusion is confirmed by the
results obtained from pullout and beam tests. As an example, Figures 4.5 and 4.6 show
that as the embedment length (bond length) increases, the applied load approaches the
tensile strength of the bar and the average bond strength reduces. Similar figures of
tensile force vs. bond length and bond strength vs. bond length of all beam specimens are

presented in Chapter 4.

In general, the distribution of tensile and bond strength along the embedment
length of FRP reinforcement (Benmokrane et al. 1996) are similar to that of steel
reinforcing bars (Jiang et al. 1984), which is non-linear. As a consequence of the non-

linear distribution of bond strength, it is common to use mean bond strength for design

purposes.

5.7 Effect of Transverse Reinforcement

With little confinement, beams reinforced with deformed bars fail in bond by
splitting of the concrete because the small concrete cover cannot sustain the greater
circumferencial tensile stress. As the confinement improved, commonly by the use of

transverse reinforcement (stirrups), bond failure must occur by shearing of the concrete
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keys instead of splitting. Thus, bond strength depends strongly or the amount of

transverse reinforcement.

Table 4.3 presents the values of bond strength of beams reinforced with G1-D8
CFRP bar and with/without transverse reinforcement. It clearly indicates that the average
bond strength increases due to confinement provided by transverse reinforcement.
Similar results are observed for beams reinforced with G2-D9.79 and D1-D9.70 CFRP

bars, as shown in Tables 4.14 and 4.20.

5.8 Effect of Concrete Compressive Strength

As mentioned in Section 1.3, bond strength of reinforcing bars depends on
chemical adhesion, friction and bearing of the bar deformations against concrete. Bond
failure may occur as a result of tensile splitting and shearing of concrete. In such cases,
bond failure is proportional to the tensile strength of concrete (Ferguson and Thompson
1962) and is considered a key parameter (ACI 408 1992). The tensile strength of concrete

is proportional to square root of the concrete compressive strength.

The relationships between bond strength and square root of concrete compressive
strength are plotted for all beam specimens, as shown in the figures presented in Chapter
4. It clearly indicates that, in general, bond strength increases with the increase of

concrete compressive strength.
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59 Empirical Expression for Bond Strength of CFRP Bar -

Expressions for bond strengths of different types of CFRP bars have been
established by determining the corresponding value of K;. It clearly indicates that the
bond performance of D1-D9.70 CFRP bar is much better than that of G1-D8 and G1-D10
CFRP bars. Bond strength of G2-D9.79 CFRP bar is lower due to the glassy and smooth
bar surface. Bond between the bar and its surrounding concrete depends primarily on

chemical adhesion and friction.

5.10 Relationships Between Applied Load and Slip

The applied load vs. free-end and loaded-end slips of beams reinforced with G1-
D8, G2-D9.79 and DI1-D9.70 CFRP bars are shown in Appendixes G, H and L
Obviously, the loaded-end slip is greater than free-end slip. The loaded-end slip increases
rapidly with the increase of applied load immediately after a vertical crack forms within
the constant moment zone of the beams. Due to the low modulus of elasticity of CFRP
bars, the measured loaded-end slip value includes the elongation of the bars. The free-end
slip will not take place until the adhesion resistance between the bar and its surrounding

congcrete is broken.

5.11  Appearance of Concrete Cover A fier Test

After the test was completed, the bottom cover over the CFRP bar was removed
to observe the contact surface between the bar and its surrounding concrete. The
appearance of concrete cover of beams reinforced with G2-D9.79 and D1-D9.70 CFRP

bars are shown in Figures 5.1 and 5.2, respectively. By observation of Figure 5.1, it may
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be noted that the bond of G2-D9.79 CFRP bar depends primarily on friction and chemical
adhesion. There are no signs of the concrete being crushed against the bar deformations.
In addition, the contact surface between the CFRP bar and the concrete is glassy and

smooth. All of these may explain the lower bond strength of the G2-D9.70 CFRP bar as

proved by the test results

In contrast, test results show that D1-D9.70 CFRP bar has a better bond
performance in concrete beams. This fact can be explained by observation of the physical
properties of the bar and the appearance of concrete cover. Figure 5.2 shows the bond of
D1-D9.70 CFRP bar depends on chemical adhesion, friction and bearing of the bar
deformations. The contact surface between the bar and the surrounding concrete is not as

glassy and smooth as that observed in Figure 5.1.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

£

6.1 Conclusions

Bond performances of three types of CFRP bars in concrete beams were
experimentally determined using beam specimens. Based on the test and analyzed results,

the following conclusions can be drawn:

(1) The modulus of elasticity of CFRP bars is lower than that of steel reinforcing bar,
approximately 79 to 88 percent of that of steel reinforcing bar.

(2) Bond strengths obtained from pullout tests are inconsistent. Therefore results may not
be directly applied for design but can serve as a guide for bond evaluation.

(3) The average bond strength decreases when the diameter of the bar increases.

(4) The test results give no satisfactory information about the influences of support
conditions on the bond strength.

(5) The tensile force in the CFRP bar increases when the bond length increases, but the
average bond strength decreases when the bond length increases.

(6) The average bond strength increases due to confinement provided by transverse

reinforcement.
(7) The average bond strength varied as /<’ when other factors were constant.

(8) Bond performance of CFRP bar depends strongly on its surface condition.
(9) The K, values of CFRP bars depend on types of CFRP bars. The values are calculated

to be 6.25 for G1-D8 and G1-D10 CFRP bars, 3.40 for G2-D9.79 CFRP bars and 8.47

for D1-D9.70 CFRP bars.
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(10) Bond performances of G1-D8, G1-D10 and D1-D9.70 CFRP bars are much better
than the G2-D9.79 CFRP bar.

(11) The expressions for development length and bond strength of steel reinforcing
bars provided in CSA and ACI codes should be modified for the use of CFRP bars

due to inherent differences in surface deformations and mechanical properties.

6.2 Recommendations for Further Study
The experimental research investigated the effect of three parameters affecting the
bond performance of CFRP bars in concrete beams. More test data and parameters are
needed to contribute and develop the guidelines for future CFRP bar development and its
usage. The following recommendations can be made for further study of bond
performance of CFRP bars.
(1) Criteria for defining critical bond strength of CFRP bars based on either free-end or
loaded-end slips has not yet been developed. An extended study in this area is needed.
(2) More pullout test data are needed in order to establish a sound comparison and
relationships between beam tests and pullout tests. )
(3) A detailed relationship between bond strength and concrete compressive strength
should be established in order to realize the effect of low, normal and high strength
concrete on bond performance.

(4) An extended study of the effect of physical and mechanical properties of different

kinds of CFRP bars on bond strength is needed.
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Appendix A

Calibration Data and Curve of Universal Flat Load Cell
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Table A.1: Calibration data of universal flat load cell

Universal Flat Load Cell (222 kN)
No. 3 365 689
Oct. 13. 1999
Strain Reading
Load (kN) (microstrain)
0 0
10 173
20 344 °
30 514
40 686
50 860
60 1032
70 1205
80 1379
90 1551
100 1725
110 1897
120 2070
130 2242
140 2417
150 2589
160 2762
170 2934
180 3109
190 3280
200 3453
210 3626
220 3799
230 3970
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Appendix B

Stress-Strain Data and Curve of G2-D9.79 CFRP Bar
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Table B.1: Stress-strain data of G2-D9.79 CFRP bar

Test |
Stress (MPa) Strain (mm/mm)
0 0

29.54 0.000194
59.08 0.000393
88.62 0.000587
118.17 0.000791
147.71 0.000968
177.25 0.001158
206.79 0.001351
236.33 0.001548
265.87 0.001725
295.42 0.001921
324.96 0.002093
354.50 0.002283
384.04 0.002471
413.58 0.002650
443.12 0.002834
472.66 0.003015
502.21 0.003197
531.75 0.003379
561.29 0.003557
590.83 0.003728
620.37 0.003892
649.91 0.004046
679.46 0.004231
709.00 0.004413
738.54 0.004565

120

Test 2
Stress (MPa) Strain (mm/mm)
0 0

29.54 0.000210
59.08 0.000393

88.62 0.000596
118.17 0.000788
147.71 0.000981
177.25 0.001187
206.79 0.001374
236.33 0.001557
265.87 0.001752
295.42 0.001938
324.96 0.002132
354.50 0.002314
384.04 0.002505
413.58 0.002692
443.12 0.002874
472.66 0.003061
502.21 0.003246
531.75 0.003434
561.29 0.003622
590.83 0.003799
620.37 0.003974
64991 0.004239
679.46 0.004413
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Appendix C

Stress-Strain Data and Curve of D1-D9.70 CFRP Bar
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Table C.1: Stress-strain data of D1-D9.70 CFRP bar

Test 1
Stress (MPa) Strain (mm/mm)

0 0.000000
30.11 0.000173
60.22 0.000350
90.33 0.000534
120.44 0.000709
150.55 0.000858
180.66 0.001053
210.76 0.001217
240.87 0.001395
270.98 0.001570
301.09 0.001734
331.20 0.001903
361.31 0.002071
391.42 0.002241
421.53 0.002406
451.64 0.002577
481.75 0.002753
511.86 0.002912
541.97 0.003101

Test 2
Stress (MPa) Strain (mm/mm)
0 0

30.11 0.000198
60.22 0.000375
90.33 0.000550
120.44 0.000727
150.55 0.000905
180.66 0.001071
210.76 0.001256
240.87 0.001428
270.98 0.001601
301.09 0.001763
331.20 0.001938
361.31 0.002108
391.42 0.002265
421.53 0.002434
451.64 0.002605
481.75 0.002775
511.86 0.002932
541.97 0.003102
572.07 0.003266
602.18 0.003430
632.29 . 0.003583
662.40 0.003747
692.51 NA
722.62 0.004066
752.73 0.004228
782.84 0.004376
812.95 0.004527
843.06 0.004925
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Appendix D

Crack Pattern of Beams Reinforced with G1-D8 CFRP Bar
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Appendix E

Crack Pattern of Beams Reinforced with G2-D9.79 CFRP Bar
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Appendix F

Crack Pattern of Beams Reinforced with D1-D9.70 CFRP Bar
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Appendix G

Applied Load vs. Slip Curve (G1-D8 Bar)
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Appendix H

Applied Load vs. Slip Curve (G2-D9.79 Bar)
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Appendix I

Applied Load vs. Slip Curve (D1-D9.70 Bar)
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Appendix J

Load-Deflection Curve (G2-D9.79 Bar)
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Appendix K

Load-Deflection Curve (D1-D9.70 Bar)
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Appendix L

Tensile Force vs. Bond Length (G2-D9.79 Bar, Free-end Slip)
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Appendix M

Bond Strength vs. Bond Length (G2-D9.79 bar, Free-end Slip)
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Appendix N

Bond Strength vs. Free-end Slip (G2-D9.79 Bar)
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Appendix O

Tensile Force vs. Bond Length (G2-D9.79 Bar, Loaded-end Slip)
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Appendix P

Bond Strength vs. Bond Length (G2-D9.79 Bar, Loaded-end Slip)
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Appendix Q

Bond Strength vs. /£’ (G2-D9.79 Bar, Free-end Slip)
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Appendix R

S

Effect of Transverse Reinforcement on Bond Strength
(G2-D9.79 Bar)
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Figure R.2
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Appendix S

Tensile Force vs. Bond Length (D1-D9.70 Bar, Free-end Slip)

247



006

(drs pua-aayy ww gg'q ‘req 0L°6d-1Q) Y3uod| puoq "sA 310§ ajisua | : 'S aIngiyg

(wrur) y3ua puog
008 004 009 00S 00¥ 00¢ 002 001
™ 3
(suawoadg wedq) 18au1] eemm SUSWIOAAG wedqg ¢
L 4
s
4

000 X

000t

0002

00'0e

00°0v

00°0S

(N) 93104 3fisua

0009

00°0L

00’08

0006

248



006

(dijs pua-soy ww 00 ‘req (£'6Q- 1) Wua| puoq ‘sa 3910§ A[ISUa ] :7’S 2Ingiy

(urw) y13ud puog
008 00 009 00§ 4 ooy 00e 002 001
(Suwoadg WEdE) JEIUI ] eevmsme suaundadg weog ¢
*
L J
L 4

000
oo'ot
0002
00'0€
oooy
00°0S
0009
0002
0008
00°06
00°004

(N) 32104 apisuay

249



006

(dijs pua-a21) “xeq 0 "6- 1) Y3uay puoq ‘sa 3010 3[Isua) wnunxep :¢'S andig

(urw) y13udg puog
008 004 009 00S 0ot 00€ 002 00t
(sudwiioads weaq [1y) 129U e i
¢, R 3 e
* suawioadg wedg [V ¢
 J
® [ J *
* o ~—
® ®
®
: .
o §
*

000

0002

oo°o¥

00°09

0008

0000t

00’021

(NDI) 90104 3afisuay

250



3

Appendix T

Bond Strength vs. Bond Length (D1-D9.70 Bar, Free-end Slip)
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Appendix U

Bond Strength vs. Free-end Slip (D1-D9.70 Bar)
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Appendix V

Bond Strength vs. /£ (D1-D9.70 Bar, Free-end Slip)
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Appendix W

Effect of Transverse Reinforcement on Bond Strength
(D1-D9.70 Bar)
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Appendix X

Results of the CFRP Bond Test (Jerrett and Ahmad 1995)
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