
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2004 

Supramolecular complexes containing pyridine N-oxides. Supramolecular complexes containing pyridine N-oxides. 

Dennis J. Hoffart 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Hoffart, Dennis J., "Supramolecular complexes containing pyridine N-oxides." (2004). Electronic Theses 
and Dissertations. 3672. 
https://scholar.uwindsor.ca/etd/3672 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3672?utm_source=scholar.uwindsor.ca%2Fetd%2F3672&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Supramolecular Complexes 

Containing 

Pyridine JV-Oxides

By

Dennis J. Hoffart

A Thesis

Submitted to the Faculty of Graduate Studies and Research 

through the Department of Chemistry and Biochemistry 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science at the 

University of Windsor

Windsor, Ontario, Canada 
August, 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 Library and 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-612-96379-9 
Our file Notre reference 
ISBN: 0-612-96379-9

The author has granted a non
exclusive license allowing the 
Library and Archives Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque et Archives Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L'auteur conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou aturement reproduits sans son 
autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



© Dennis J. Hoffart 2004 

All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract iv

Abstract

In the first section, the coordination chemistry of a new, divergent, N ,0  ligand was 

investigated. Several metal complexes of 4,4'-bipyridine A-monoxide, 2a, were 

characterised by X-ray crystallography, including Cu1, Cu11, Pd11, Cd11, Hg11, and Eum. 

The observed non-covalent interactions and coordinative preferences of 2a were 

contrasted with those of 4,4'-bipyridine and 4,4'-bipyridine N,N'-dioxide. Each of the 

compounds has a unique molecular topology that can be applied to the generation of 

ordered, pre-designed solids. Examples of this methodology are given with respect to the 

Cu1, Cu11, and Hg11 metal complexes.

Chapter three is concerned with the design and synthesis of multi-dimensional, 

polyrotaxane architectures. A new [2]pseudorotaxane, 3b c  DB24C8, was used as a 

divergent ligand to connect metal nodes into extended coordination frameworks. Three 

distinct polyrotaxane networks were synthesised, one two-dimensional net containing 

Cd11 in which one-dimensional polyrotaxane strands are pillared in the second dimension 

by 3b. Two different three-dimensional topologies were generated using five different 

lanthanide cations. Structures containing Smm, Eum, Gdm, Tbm are isomorphous and 

adopt an a-polonium type lattice. The slightly smaller lanthanide, Ybm, generates the

previously unreported 4 ,6  

V 6 J

three-dimensional net.
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Abstract v

The final chapter describes the integration of an electrostatic component into the 

formation of [2]pseudorotaxanes. A derivative of DB24C8,4d, was synthesised in which 

there are pendant -S O 3 ' groups on each benzo ring. The association constants of several 

threads were measured with 4d. It was shown that through the introduction of an 

electrostatic contribution to the recognition process that [2]pseudorotaxanes could be 

formed in a competitive solvent such as acetic acid. The X-ray crystal structure of 3b <= 

4d is presented and confirms the interpenetrated nature of the [2]pseudorotaxane.
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He is a great fish and I  must convince him, he thought. I  

must never let him learn his strength nor what he could do i f  

he made his run. I f  I  were him I  would put in everything 

now and go until something broke. But, thank God, they are 

not as intelligent as we who kill them; although they are 

more noble and more able.

Ernest Hemingway 

Excerpt from The Old Man and the Sea
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Chapter One - Introduction 1

Chapter One - Introduction

1.1 Supramolecular Chemistry

The way in which molecules interact with each other is the basis of life, from enzyme -  

substrate complexes to the base pairs present in our own DNA. The branch of chemistry 

dedicated to determining and understanding these interactions is termed supramolecular 

chemistry.

The beginning of supramolecular chemistry is generally credited to Charles Pedersen, 

Jean-Marie Lehn, and Donald Cram for their syntheses of crown ethers in 1967, 

cryptands in 1969, and spherands in 1973 respectively.M It was for this work that they 

shared the 1987 Nobel prize in Chemistry (Figure 1.1).

<
18-crown-6 [2 .2 .2]cryptand spherand

Figure 1.1
Macrocyclic hosts for cation complexation.
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Chapter One - Introduction 2

Although supramolecular chemistry as a specific science is relatively new, some of the 

ideas and concepts originate from the end of the nineteenth century; ideas such as Alfred 

Werner’s coordination chemistry in 1893, Emil Fischer’s idea of lock and key in 1894, 

and Paul Ehrlich’s model of a receptor in 1906.1 Based on concepts such as these, and 

also those of self-assembly and molecular recognition, supramolecular chemistry has 

evolved into a field of study that may be described as “chemistry of the intermolecular 

bond” or as “chemistry beyond the molecule” .1

1.2 Supramolecular Interactions

Intermolecular interactions are generally weaker than covalent bonds. However, the 

strength of the associations is cumulative and thus the stability of a supramolecular 

complex is dependent upon the number and strength of the individual interactions. 

Various examples of non-covalent interactions ordered by relative energies are illustrated 

in Figure 1.2. The examples given are as follows:1

1) Ion-ion: The electrostatic attraction between the
1 1  -j

tw(diazabicyclooctane) cation and the hexacyanoferrate ' anion.

2) Ion-dipole: The Na+ cation interacts with the 8' oxygen atoms of an 

18-crown-6 macrocycle.

3) Hydrogen bond: The 8' oxygen atoms interact with the 8+ hydrogen 

atoms in a carboxylic acid dimer.

4) Dipole-dipole: The 8' charge on the carbon atom of a ketone

interacts with the S+ charge on the oxygen atom of another ketone.

5) 7r-stacking: Two examples are shown, face to face, and edge to face 

interactions of two benzene molecules. The edge to face is 

sometimes regarded as a weak hydrogen bond.
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Chapter One - Introduction 3

6) Van de Waals: The example shown is the weak electrostatic

association of two polarisable noble gas atoms.

100-350

5 0 -2 0 0

4 - 1 2 0

5 - 5 0

0 - 5 0

<5

Ion -  Ion

Ion -  Dipole

Hydrogen.Bond _

Dipole -  Dipole

rc Stacking

Van der Waals

n 13-
I  1

8+

•>  R-
.0—H

V
8“ 8+

H—O

R'"
C-=-Q

0=
8- 8+ *R

r '"2?c= (> -R *^

o

-p 8+ 
\

1 R

Figure 1.2
Relative energies associated with non-covalent bonding interactions.1
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Chapter Two -  4,4'-Bipyridine N-Monoxide 4

Chapter Two - 4,4'-Bipyridine 7V-Monoxide

2.1 Introduction

Although the synthesis o f new materials has long been recognized as the 

most essential element in advancing technology, it generally remains 

more o f an art than o f a science -  in that the discovery o f  new 

compounds has mostly been serendipitous, using methods referred to by 

critics as ‘shake and bake’, ‘mix and wait’ and ‘heat and beat’. For 

much o f  the twentieth century, this worked well for the synthesis o f  

important solid-state materials, and we expect that it will continue to 

yield interesting compounds. However, it is becoming increasingly 

urgent to produce materials designed to perform highly specific and 

cooperative functions.

Omar Yaghi5

2.1.1 4,4'-Bipyridine

The use of 4,4'-bipyridine and its analogues in coordination chemistry and crystal 

engineering is ubiquitous. For example, a search of the Cambridge Structural Database 

(CSD) for 4,4'-bpy results in almost 560 hits, in which close to 500 are of 4,4'-bpy

7 (\involved in p coordination. The utility of 4,4'-bpy as a divergent, linear spacer 

manifests itself in the number and diversity of related compounds that have been used to

7 0mimic its coordination behaviour. ' Some examples are shown in Figure 2.1. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Two -  4,4'-Bipyridine N-Monoxide 5

variation of these ligands as 4,4'-bpy mimics, is intended to tailor the physical properties 

of the generated complexes whilst retaining the predictable coordination modes of 4,4'- 

bpy.

o-o
(a)

(C)

O = = -Q
(e)

(g) GO

Figure 2.1
(a) 4,4'-Bipyridine (4,4'-bpy) and its structural analogues: (b) l,4-bis(4-
pyridyl)phenylene (4,4'-pyph), (c) l,2-bis(4-pyridyl)acetylene (4,4'-pyac), (d) 
4,4'-bis(4-pyridyl)biphenylene (4,4'-pybiph), (e) l,4-bis(4-pyridyl)-l,3-
butadiene (4,4'-pybut), (f) l,4-bis(4'-pyridylethynyl)phenylene (4,4'-pyphac)
(g) 2,7-diazapyrene (diaz), (h) pyrazine (pyrz) . 7 ' 8

The structural topology of 4,4'-bpy complexes is strongly dependent on several factors:9

1) M etal: ligand stoichiometry.

2) Connection mode of 4,4'-bpy: Bridging, mono-dentate, or un-coordinated.

3) Stereochemical preference of metal.

4) Presence of coordinated solvent molecules or other ancillary ligands.

5) Role of anions: Coordinated or un-coordinated).

6) Presence of guest / template molecules.
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From a supramolecular perspective, 4,4'-bpy as a ligand is interesting due to the varied 

connection modes. It can act as a bridging ligand m a p  coordination mode, or it can 

coordinate to a single metal, leaving the other terminal nitrogen atom available for 

hydrogen bonding.9 It is noted that there are some reported structures10 in which 4,4'-bpy 

does not coordinate a metal, but instead is connected solely through hydrogen bonds and 

^-stacking interactions.

Metal :ligand stoichiometry is arguably the largest factor in the coordination chemistry of 

4,4'-bpy. A 1:1 ratio generates one-dimensional coordination polymers, for example, 

linear or zig-zag,9 while a ratio of 1:1.5 can yield an assortment of structural topologies,

7 0including molecular ladder and honeycomb nets. ’ Two-dimensional square grids and 

three-dimensional diamondoid nets are the result of a 1:2 stoichiometry.7,9 Finally, a 

three-dimensional cubic array is afforded by an octahedral metal and 4,4'-bpy in a ratio of 

1:3.9

Figure 2.2
Protonated 4,4'-bipyridine (4,4'-H2bpy2+)11.

An extension of 4,4'-bpy that is worthy of note is the ligand generated upon protonation 

(Figure 2.2).11 This ligand is incapable of metal coordination due to the fact that the lone 

pairs on the nitrogens are unavailable. Instead, the ligand forms metal complexes 

through second sphere coordination, typically via hydrogen bonding to an appropriate 

heteroatom of a metal bound ligand, for example, H2O, NH3, or Cl'. Acting in this
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fashion, the complexes are solely organised through hydrogen bond interactions. 

Interestingly, some complexes based on 4 ,4 '-H2bpy2+ display fascinating photophysical 

properties.9,11

2.1.2 4,4f-Bipyridine N,N- Dioxide

A simple modification of 4,4'-bpy that has only recently been used in a similar fashion, is 

4,4'-bipyridine A,A'-dioxide (4,4'-bpno). In contrast to the plethora of 4,4'-bpy 

compounds, there are approximately 40 reported crystal structures in the CSD containing 

4,4'-bpno.6 Although pyridine A-oxide ligands are known to form complexes with all 

transition metals,12 a majority of 4,4'-bpno structures incorporate a lanthanide cation13' 18 

due to the fact that water will often displace a pyridine A-oxide from a transition metal 

complex.12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Two -  4,4'-Bipyridine N-Monoxide 8

x

(e) (f)

Figure 2.3
Connection modes observed for 4,4'-bipyridine A ^'-dioxide9 ,1 6 ’19 (a) ‘single 
ring’ 7t-stacking, (b) ‘double ring’ 7i-stacking, (c) p2 metal coordination, (d) 
metal coordination and X-H---0 hydrogen bonding, (e) p2 X-H---0 hydrogen 
bonding, (f) N 5+---05' ion dipole interaction. (X = electronegative heteroatom)

Like 4,4'-bpy, 4,4'-bpno is a divergent, linear ligand that is capable of p coordination, 

coordination to a single metal centre through a single donor atom or, in a non

coordinating mode, act as a hydrogen bond acceptor. The two lone pairs on each of the 

oxygen atoms allow for a large variety of supramolecular connection motifs, some 

examples of which are shown in Figure 2.3. Not shown are combinations of these 

interactions in which all four lone pairs on the ligand are involved in some form of 

intermolecular interaction. Despite its linear topology, 4,4'-bpno is incapable of acting as 

a perfect linear spacer due to the spatial disposition of the lone pairs and as a result, two 

different bridging coordination modes have been observed.20 A cis or syn bonding 

conformation arises when each oxygen donates to a metal centre using lone pairs which 

are related by a mirror. A trans or anti conformation arises when the lone pairs involved
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in coordination are related by C2 symmetry or an inversion centre. The consequences of

1 ^  90this feature manifest themselves in the generation of distinct architectures.

2.1.3 Divergent N, 0-Ligands

Chemically and topologically similar to both 4,4'-bpy and 4,4'-bpno is the asymmetric 

molecule, 4,4'-bipyridine jV-monoxide, 2a. This divergent N, O ligand has largely been 

ignored in the literature. Indeed, 2a has only been reported as a synthetic method to 

activate the ortho position of a pyridyl ring in 4,4'-bpy to electrophilic aromatic

91substitution.

Some examples of other asymmetric, divergent N ,0  ligands that have been used in the 

synthesis of solid state NLO materials are highlighted in Figure 2.4. In combination with 

a tetrahedral metal centre, diamondoid nets are generated. Due to the asymmetry of the 

ligands, the nets are acentric and depending upon the degree of interpenetration,

99 94.crystallise in polar space groups.
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(a)

(d)

(b)

V ^ V / 0"
o

(e)
• O "

Figure 2.4
Examples o f some divergent N,0 ligands: (a) isonicotinate, (b) 4-(4-
pyridyl)benzoate (c) 4-(2-(4-pyridyl)ethenyl)benzoate, (d) nicotinate, (e) 4-
pyridylacrylate, (f) 3-(2-(4-pyridyl)ethenyl)benzoate 22-27

2.1.4 Scope

This chapter describes the synthesis and X-ray structures of the first metal complexes of 

4,4'-bipyridine iV-monoxide, and compared analogous complexes involving 4,4'- 

bipyridine and 4,4'-bipyridine N,N'~dioxide. Particular attention is given to the 

supramolecular interactions that exist between adjacent metal complexes in the solid 

state. In addition, the potential application of these metal complexes as secondary 

building units to the construction of multidimensional coordination networks is 

discussed.
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2.2 Experimental

2.2.1 General Comments

4,4'-Bipyridine and meta-chloroperoxybenzoic acid were purchased from Aldrich 

Chemicals and were used as received. All metal salts were purchased from Aldrich 

Chemicals except [Hgn][C104]2 and [Pdn][BF4]2 which were purchased from Strem and 

were used as received. All deuterated solvents were purchased from Cambridge Isotope 

Laboratories. All solvents were purchased from EM Science. 4,4'-Bipyridine N-

91 1monoxide was synthesized via modification of a published procedure. H NMR spectra 

were recorded on a Bruker Avance 300 or 500 instrument locked to the deuterated 

solvent at 300.1 or 500.1 MHz respectively. All peak positions are listed in ppm relative 

to TMS.

2.2.2 General Methods for X-ray Crystallography

Crystals were frozen in paratone oil inside a cryoloop to prevent loss of solvent. A 

matrix was run and a unit cell determined prior to collection. A full hemisphere was 

collected in each case. Reflection data were integrated from frame data obtained from 

hemisphere scans on a Bruker Apex diffractometer with a CCD area detector with Mo-Ka 

radiation (L = 0.71073 A). Diffraction data and unit cell parameters were consistent with 

assigned space groups. The structures were solved by Patterson or direct methods, 

completed by subsequent Fourier syntheses and refined with full-matrix least-squares
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methods against |7^| data. All non-hydrogen atoms were refined anisotropically. All 

hydrogen atoms were calculated and treated as idealised contributions. Scattering factors 

and anomalous coefficients are contained in the SHELXTL 5.03 software package 

(Sheldrick, G.M., Madison, WI).28 All crystallographic figures were prepared using 

DIAMOND.29
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2.2.3 Preparation of 4,4'-Bipyridine TV-Monoxide (2a)

2a was prepared by modification of a previously reported method.21 To a solution of 

4,4'-bipyridine (10.0 g, 64.0 mmols) in CHCI3 (200 mL) was added a solution of 57-86% 

mcpba (12.9 g, 64.0 mmol max) in CHCI3 (500 mL) and stirred for 3 days after which 

four portions of mcpba (2.0 g, 9.9 mmol max) in CHCI3 (150 mL) each were added every 

24 hrs. After stirring for a total of 17 days, the crude mixture was filtered and the solvent 

removed in vacuo. The brown solid was extracted with hot water (3 x 200 mL) to give a 

mixture of the mono and dioxide species. The water was removed to give a light tan 

solid which was further extracted with a mixture of EtOAc and MeOH (9:1) (3 x 50 mL) 

to yield pure 4,4' bipyridine A-monoxide. Yield 6.0 g (55%).

^  \ l —O

a b c d

Table 2.1
*H NMR spectroscopic data (D20, 300 MHz) for 2a.

Proton 8 (ppm) Multiplicity # of Protons J  (Hz)

a 8.317 d 2 7.10

b 7.796 d 2 7.10

c 7.598 d 2 6.14

d 8.524 d 2 6.14
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2.2.4 Preparation of [CuI(2a)3] [BF4] (2b)

One equivalent of [Cu1] [I] was ion exchanged with one equivalent of [AgI][BF4] in 

MeCN to give [CuI(MeCN)4][BF4]. [CuI(MeCN)4][BF4] (9.1 mg, 0.03 mmol) was 

combined with three equivalents of 2a (15.0 mg, 0.09 mmol) in MeCN ( 1 mL). Large 

yellow crystals were grown by slow vapour diffusion of zP^O into the MeCN solution. 

Yield (14.4 mg) 72.0%.

Table 2.2
Crystal data and details of structure solution and refinement for 2b.

Formula C3oH24BCuF4N 603 Collection Temp [K] 173(2)

Formula Weight 666.90 Pealed [g Cm4 ] 1.620

Crystal System Monoclinic p (Moita) [mm4] 0.873

Space Group C2/c Min/max trans 0.8335/1.0000

a [A] 26.532(3) Unique data 21645

b [A] 15.3203(12) R(int) 0.0221

c [A] 14.1113(11) R1 [I >2al] 0.0355

a  [°] 90 R1 [all data] 0.0437

P [°] 107.534(3) wR2 [I >2ctI] 0.0953

y[°] 90 wR2 [all data] 0.1009

V  [A3] 5469.5(8) Data/variables 4817/406

z 8 Goodness-of-fit 1.035
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2.2.5 Preparation of [Cul(2a)4| [PFf, ] (2c)

[CuI(MeCN)4][PF6] (8.1 mg, 0.02 mmol) was combined with four equivalents of 2a (15.0 

mg, 0.09 mmol) in MeCN (1 mL). Red plates were grown by slow vapour diffusion of 

z'Pr20 into the MeCN solution. Yield (11.3 mg) 56.8%.

Table 2.3
Crystal data and details o f structure solution and refinement for 2c.

Formula C4oH34CuF6N 80 5P Collection Temp [K] 100(2)

Formula Weight 915.26 Pcaicd [g cm'1] 1.555

Crystal System Triclinic p  ( M okcD [ m m '1] 0.685

Space Group P-l Min/max trans 0.4150/1.0000

a [A] 7.797(1) Unique data 18971

b [A] 14.593(3) R(int) 0.0906

c [A] 18.419(3) R1 [I >2al] 0.0618

a  [°] 89.763(3) R1 [all data] 0.0920

P H 76.129(3) wR2 [I >2<sl] 0.1440

y[°] 74.384(3) wR2 [all data] 0.1552

v  [A3] 1955(1) Data/variables 18982/551

z 2 Goodness-of-fit 0.955
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2.2.6 Preparation of [Cun(2a)4(H20 )2] [PF6]2 (2d)

[CuI(MeCN)4][PFe] (22.3 mg, 0.06 mmol) was combined with four equivalents of 2a 

(41.2 mg, 0.24 mmol) in H20  (1 mL) and heated in air until the solution turned a deep 

blue colour. Large blue crystals were observed to form upon cooling to room 

temperature. Yield (29.6 mg) 45.7%.

Table 2.4
Crystal data and details o f structure solution and refinement for 2d.

Formula C40H36CUF l2N g 0 6 P 2 Collection Temp [K] 173(2)

Formula Weight 1078.25 pcaicd [g c m '1] 1.492

Crystal System Tetragonal P  ( M orcx)  [m m '1] 0.621

Space Group P4nc Min/max trans 0.8572/1.0000

a  [A ] 17.183(8) Unique data 18131

b [A] 17.183(8) R(int) 0.0492

c[A] 8.128(6) R1 [I >2al] 0.0616

a  f  ] 90 R1 [all data] 0.0774

p n 90 wR2 [I >2ctI] 0.1270

y[°] 90 wR2 [all data] 0.1364

v  [A3] 2400(2) Data/variables 2112/190

z 2 Goodness-of-fit 1.119
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2.2.7 Preparation of [Pdn(2a)4]3[BF4]2[OTf]4 (2e)

[Pdu(MeCN)4][BF4]2 (9.7 mg, 0.02 mmol), [Gdm][OTf]3 (13.2 mg 0.02 mmol) and 2a 

(15.0 mg, 0.08 mmol) were combined in H2O (1 mL). Large colourless blocks of the 

mixed anion, Pd11 complex formed upon slow concentration of the solution. Yield (22.4 

mg) 83.3%.

Table 2.5
Crystal data and details o f structure solution and refinement for 2e.

Formula c31H 31.5B 0.5F 5N 6O M P d0.75s Collection Temp [K] 173(2)

Formula Weight 924.39 Pealed [g C m '1] 1.557

Crystal System Triclinic p (MokcD [mm'1] 0.508

Space Group P-l Min/max trans 0.8637/1.0000

a [A] 20.6240(18) Unique data 63606

b [A] 21.3105(19) R(int) 0.0602

c [A] 22.366(2) R1 [I >2cl] 0.0755

a  [°] 63.191(2) R1 [all data] 0.0999

P [°] 64.445(2) wR2 [I >2al] 0.2026

y[°] 82.821(2) wR2 [all data] 0.2268

V [A3] 7885.5(12) Data/variables 27680/2098

z 8 Goodness-of-fit 1.022
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2.2.8 Preparation of [Cdn(2a)2(H20 )4] [OTf]2 (2f)

One equivalent of [Cdn][Cl]2 was ion exchanged with two equivalents of [Ag*][OTf] in 

H2O. [Cdn][OTf]2 (22.6 mg, 0.04 mmol) and 2a (15 mg, 0.08 mmol) were then 

combined in MeCN (1 mL). Slow diffusion of /Pr20  into the MeCN solution produced 

small colourless blocks. Yield (24.9 mg) 64.4%.

Table 2.6
Crystal data and details o f structure solution and refinement for 2f.

Formula C46H54Cd2F 12N 10O28S4 Collection Temp [K] 173(2)

Formula Weight 1776.03 pcaicd [g cm'1] 2.201

Crystal System Monoclinic p (Mok«) [mm'1] 0.879

Space Group P2(l)/n Min/max trans 0.8504/1.0000

a [A] 12.0573(11) Unique data 17570

b [A] 13.8727(13) R(int) 0.0329

c[A] 20.2089(19) R1 [I >2ctI] 0.0372

a[°] 90 R1 [all data] 0.0458

P [°] 96.012(2) wR2 [I >2al] 0.0991

?n 90 wR2 [all data] 0.0934

V [A3] 3361.7(5) Data/variables 5909/460

z 2 Goodness-of-fit 1.035
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2.2.9 Preparation of [Hgn(2a)2] [CIO^ (2g)

[Hgn][C104]2 (50.0 mg, 0.11 mmol) was dissolved in MeCN (0.5 mL) and slowly 

diffused into a solution of 2a (38.0 mg, 0.22 mmol) in MeCN (0.5 mL). Pale, yellow 

crystals grew at the 2a -  Hgn solution interface. Yield (62.2 mg) 70.7%.

Table 2.7
Crystal data and details o f structure solution and refinement for 2g.

Formula C2oH16C12HgN40io Collection Temp [K] 173(2)

Formula Weight 743.86 Pealed [g Cm"1] 2.212

Crystal System Monoclinic p (MokcD [mm'1] 7.198

Space Group P2(l)/c Min/max trans 0.7234/1.0000

a [A] 7.8533(6) Unique data 8749

b [A] 18.6106(13) R(int) 0.0180

c [A] 7.9341(6) R1 [I >2gI] 0.0193

a  [°] 90 R1 [all data] 0.0221

P H 105.5990(10) wR2 [I >2al] 0.0457

y[°] 90 wR2 [all data] 0.0469

V [A3] 1116.89(14) Data/variables 1959/169

z 2 Goodness-of-fit 1.082

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Two -  4,4'-Bipyridine N-Monoxide 20

2.2.10 Preparation of [Euni(2a)4(H20 )4][0 Tf|3 (2h)

[Eum][OTf]3 (30.3 mg, 0.05 mmol) and 2a (34.8 mg, 0.20 mmol) were combined in 

MeCN (1 mL) and the resultant powder was recrystallised from MeCN solution over 

several days to give large colourless blocks. Yield (48.1 mg) 73.9%.

Table 2.8
Crystal data and details of structure solution and refinement for 2h.

Form ula C 4 7 H 4 6 EUF9N 1 0 O 1 7 S3 Collection Tem p [K] 173(2)

Form ula W eight 1442.08 Pealed [g Cm'1] 1.579

Crystal System M onoclinic p  (MoKa) [m m '1] 1.238

Space G roup P2/c M in/m ax trans 0.9026/1.0000

a [A] 9.8195(12) U nique data 23783

b [A] 16.899(2) R(int) 0.0218

c[A] 18.286(2) R1 [I >2al] 0.0457

a[°] 90 R1 [all data] 0.0471

PP] 92.084(2) wR2 [I >2cl] 0.1224

Yp] 90 wR2 [all data] 0.1234

V [A3] 3032.3(6) D ata/variables 5346/407

z 2 Goodness-of-fit 1.138
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2.3 Results and Discussion

2.3.1 Synthesis

Generally the oxidation of pyridines is carried out under harsh conditions, typically in 

refluxing acetic acid with a strong oxidiser such as hydrogen peroxide. Milder oxidation 

conditions were utilised to maximise the yield of the mono JV-oxide and try to limit the 

production of the Af .M-dioxide. Because the reaction proceeded at room temperature, the 

length of the reaction had to be increased to ensure maximum yields.

In contrast to the chemistry of 4,4'-bpy, metal-ligand stoichiometry was not as important 

a factor in determining the geometrical structure of the final product. This seems to be a 

general rule with one exception; a Cu-ligand ratio of 1:3 generates a trigonal planar 

structure while a Cu-ligand ratio of 1:4 yields a tetrahedral complex.

X-ray crystallography was the predominant method of characterisation for these materials 

as it gave the most pertinent structural information. These structures would not be 

expected to persist in solution.
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2.3.2 Supramolecular Interactions and Coordination Modes of 2a

(c) (d)

Figure 2.5
Observed supramolecular connection modes in the metal complexes o f 2a. (a)
‘single ring’ 7C-stacking, (b) ‘double ring’ m-stacking, (c) X - H - N  hydrogen 
bonding, (d) X -H ---0  hydrogen bonding, (e) A-oxide-metal coordination, (f) 
pyridine-metal coordination. Not included are all possible combinations o f 
connection modes a-f.

As a supramolecular tecton, 2a exhibits many of the connection modes of both 4,4'-bpy 

and 4,4'-bpno (Figure 2.5). Both of the aromatic rings of either aforementioned ligand 

are electronically equivalent whereas in 2a the pyridyl ring has more electron density 

than the A-oxide ring. This allows for good 7t-overlap in an anti-parallel manner (Figure 

2.6) with the A-oxide ring stacking over the pyridyl ring of another molecule of 2a and 

vice versa.
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Figure 2.6
An example o f x-stacking interactions observed in the metal complexes o f 2a. 
The electron density map 0 o f 2a shows the relatively electron rich pyridyl ring 
and the relatively electron poor A-oxide ring. Two views o f the crystal 
structure o f 2f are shown depicting the anti-parallel x-stacking interactions. 
Extraneous ligands have been truncated. Key: bronze = Cd11; blue = N, black 
= C; red = O; white = H. Solvent molecules and anions have been removed for 
clarity.

Table 2.9 summarizes the range of observed ^-stacking distances which compare well 

with the typical distance of ~ 3.5 A. The mode of Ji-stacking varies from compound to 

compound and can also vary within each of the complexes. In all of the complexes there 

is extensive rc-stacking which most often is complementary. This means that both 

aromatic rings 7t-stack with the aromatic rings of another molecule of 2a (Figure 2.6). 

However, other modes are also observed, such as ‘single ring’ ^-stacking.
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Table 2.9
Listing o f 7i-stacking distances observed in complexes o f 2b-2h. A range of 
distances is given for each compound due to the extensive jr-stacking observed 
in these compounds. Distances are measured from the centroid o f one aromatic 
ring to the closest atom o f the next ring.

Compound Range of Distances (A)
2b 3.384(2) 3.679(3)
2c 3.30(46) 3.7(8)
2d 3.395(2) 3.443(2)
2e 3.281(2) 3.689(1)
2f 3.378(3) 3.687(3)
2g 3.614(4) 3.661(4)
2h 3.297(6) 3.683(6)

Both 4,4'-bpy and 4,4'-bpno often act as bridging ligands. However, because of the 

mismatch of donor atoms, 2a generally coordinates through only a single atom to one 

metal centre. This leaves the other functionality available to engage in X-H---0 or X - 

H-.-N hydrogen bonding. The 2d structure exhibits an interesting array of hydrogen 

bonding; four molecules of 2a from four separate molecules of 2d form a square of four 

C-H- -0 hydrogen bonds and four O - H - O  hydrogen bonds, two to a coordinated water 

molecule below the plane of the square and two to a separate coordinated water molecule 

above the plane, as depicted in Figure 2.7. The partial positive charge on the nitrogen 

atom of the A-oxide polarises the adjacent C-H bond, making the a-hydrogen more 

acidic and thus, a better hydrogen bond donor. In this way, each oxygen of the A-oxide 

accepts two hydrogen bonds.
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Figure 2.7
The intermolecular hydrogen bond array o f four C -H ---0  and four 0 -H ---0  
hydrogen bonds connects molecules o f 2d in the solid state. Extraneous 
ligands have been truncated for simplicity. Key: bronze = Cu11; blue = N, 
black = C; red = O; white = H. Anions have been removed for clarity.

In metal complexes where the 2a ligand is A-bound, the A-oxide is available for 

hydrogen bonding, likewise when the A-oxide is participating in metal coordination, the 

pyridyl nitrogen can act as a hydrogen bond acceptor. Often many of the supramolecular 

interactions featured in this section occur in concert; a good example of this can be seen 

in the 2h structure illustrated in Figure 2.8.
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Figure 2.8
O - H - N  hydrogen bond pair observed in the extended structure o f 2h.
Molecules o f 2a not involved in O - H - N  hydrogen bonding have been 
truncated. Key: bronze = Eum; blue = N, black = C; red = O; white = H.
Anions and solvent molecules are omitted for clarity.

The strongest observed hydrogen bonds, judged by the bond distance, are the 0 ---H -0  

and N - • -H -0 interactions. This is to be expected as the electronegativities of carbon and 

hydrogen are similar, making the C-H bond relatively non-polar. However, it is the 

0---H-C interactions that typically align closest to the ideal angle of 180°. Table 2.10 

summarizes the hydrogen bond distances and angles observed in all of the metal 

complexes of 2a. A common feature of many of the 2a structures is the formation of 

hydrogen bonds to coordinated water molecules, as shown in Figure 2.7 and Figure 2.8. 

In homoleptic compounds such as 2e, however, where there are no coordinated water 

molecules, hydrogen bonding often occurs with non-coordinated water.
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Table 2.10
Listing o f hydrogen bond distances and angles observed in complexes 2b-2h. 
Note: all distances listed are measured from the acidic hydrogen to the 
electronegative acceptor heteroatom.

H y d r o g e n O - H - C O - H - O

B o n d s D i s t a n c e  (A) A n g l e  ( ° ) D i s t a n c e  (A) A n g l e  ( ° )

2b O l - H l l A - C l l 2 . 6 5 0 ( 2 ) 1 1 9 . 4 9 ( 1 5 )

0 1 - H 2 5 A - C 2 5 2 . 5 2 9 ( 2 ) 1 4 0 . 6 9 ( 1 6 )
0 2 - H 5 A - C 5 2 . 3 8 5 ( 2 ) 1 4 4 . 8 6 ( 1 6 )

0 2 - H 2 1 A - C 2 1 2 . 7 5 6 ( 3 ) 1 2 9 . 7 6 ( 1 4 )

0 3 - H 1 A - C 1 2 . 5 8 9 ( 3 ) 1 4 3 . 0 1 ( 1 6 )

0 3 -  - H 1 5 A - C 1 5 2 . 5 8 4 ( 3 ) 1 1 6 . 8 2 ( 1 5 )

2c 0 1 - H 2 1 A - C 2 1 2 . 3 0 ( 5 ) 1 6 3 . 8 8 ( 2 )

0 1 - H 3 1 A - C 3 1 2 . 3 8 ( 8 ) 1 6 4 . 4 3 ( 2 )

0 2 ' H 1 9 A - C 1 9 2 . 6 6 ( 5 ) 1 4 3 . 9 6 ( 2 )

0 2 - H 2 5 A - C 2 5 2 . 4 3 ( 2 ) 1 4 8 . 1 5 ( 2 )

0 3 - H 1 A - C 1 2 . 4 2 ( 7 ) 1 7 2 . 9 6 ( 2 )

0 3 - H 1 5 A - C 1 5 2 . 2 8 ( 1 ) 1 5 5 . 9 5 ( 2 )

0 4 - H 5 A - C 5 2 . 3 1 ( 1 ) 1 4 3 . 0 4 ( 2 )
0 4 - H 3 8 A - C 3 8 2 . 5 0 ( 3 ) 1 6 4 . 6 4 ( 2 )

2d 0 1 - 0 2 W 3 . 1 4 2 ( l ) a -

0 1 - H 9 A - C 9 2 . 2 4 3 ( 1 ) 1 4 3 . 8 3 ( 3 )

2e 0 1 - H 1 1 F - C 1 1 5 2 . 2 3 7 ( 3 ) 1 7 5 . 1 6 ( 1 ) 0 1 -  - H 2 9 B - 0 2 9 2 . 1 6 7 ( 2 ) 1 4 6 . 2 4 ( 2 )
0 2 - H 7 1 A - C 7 1 2 . 2 4 6 ( 3 ) 1 6 6 . 4 8 ( 1 ) 0 2 - H 3 0 C - 0 3 0 2 . 0 1 0 ( 1 ) 1 6 3 . 4 3 ( 3 )
0 3  - H 4 5 A - C 4 5 2 . 3 9 5 ( 1 ) 1 5 9 . 3 3 ( 2 ) 0 4 - H 2 8 C - 0 2 8 2 . 4 7 8 ( 2 ) 1 3 3 . 0 1 ( 2 )

0 3 - H 1 1 C - C 1 1 1 2 . 4 1 8 ( 3 ) 1 6 2 . 0 4 ( 1 ) 0 5 -  - H 3 3 B - 0 3 3 1 . 9 4 4 ( 1 ) 1 5 2 . 4 1 ( 2 )

0 4 - H 1 A - C 1 2 . 2 7 8 ( 1 ) 1 7 3 . 2 7 ( 2 ) 0 6 - H 2 8 B - 0 2 8 1 . 9 0 8 ( 2 ) 1 6 3 . 9 3 ( 3 )
0 5 -  - H 9 4 A - C 9 4 2 . 3 2 0 ( 1 ) 1 5 0 . 1 6 ( 2 ) 0 8 - H 2 5 C - 0 2 5 1 . 8 9 4 ( 1 ) 1 5 5 . 3 5 ( 2 )
0 6 -  - H 3 1 A - C 3 1 2 . 3 0 9 ( 1 ) 1 6 1 . 2 6 ( 2 ) 0 1 1 - H 2 7 C - 0 2 7 1 . 9 9 2 ( 2 ) 1 6 2 . 8 6 ( 2 )

0 7 - H 5 A - C 5 2 . 4 3 8 ( 3 ) 1 7 1 . 2 3 ( 1 ) 0 1 2  • H 2 6 C - 0 2 6 1 . 9 7 0 ( 1 ) 1 6 3 . 1 8 ( 2 )
0 7 - H 1 0 F - C 1 0 5 2 . 3 7 7 ( 3 ) 1 7 1 . 2 2 ( 1 )

0 8 - H 9 1 A - C 9 1 2 . 4 1 8 ( 1 ) 1 7 7 . 3 2 ( 2 )
0 9 - H 1 1 A - C 1 1 2 . 3 8 0 ( 3 ) 1 6 0 . 7 7 ( 1 )
0 9 - • •  H 4 1 A - C 4 1 2 . 3 5 5 ( 1 ) 1 6 5 . 3 9 ( 2 )
O 1 0 - H 4 4 A - C 4 4 2 . 3 5 0 ( 1 ) 1 5 3 . 0 3 ( 2 )

0 1 0 - H 1 0 C - C 1 0 1 2 . 2 0 3 ( 2 ) 1 6 5 . 9 2 ( 2 )
O i l -  - H 1 5 A - C 1 5 2 . 2 2 1 ( 4 ) 1 7 4 . 0 9 ( 1 )
0 1 2 - H 5 5 A - C 5 5 2 . 2 1 9 ( 4 ) 1 7 1 . 2 3 ( 1 )

2f 0 1 -  - H 4 W B - 0 4 1 . 8 3 2 ( 3 ) 1 6 4 . 7 5 ( 1 7 )
0 1 - H 6 W B - 0 6 1 . 8 5 3 ( 2 ) 1 7 4 . 5 2 ( 1 8 )
0 2 - H 3 W B - 0 3 1 . 8 0 0 ( 3 ) 1 7 0 . 2 3 ( 1 9 )
0 2 -  - H 4 W A - 0 4 1 . 7 5 2 ( 3 ) 1 7 5 . 0 4 ( 1 9 )

2f

2h N - H - O

D i s t a n c e  ( A ) A n g l e  ( o )
N 2 - H 1 W - 0 3 2 . 0 1 5 ( 5 ) 1 4 3 . 0 5 ( 2 7 )
N 4 - H 4 W - 0 4 1 . 9 2 7 ( 6 ) 1 6 8 . 5 6 ( 3 0 )

a Distance measured is the donor-acceptor heteroatom distance.
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Previously mentioned, 2a can participate in selective metal coordination at either the 

pyridyl or A-oxide terminals. Depending upon the characteristics of the metal cation, 

coordination can occur at the pyridyl nitrogen, the A-oxide, or in some cases both. 

Although pyridine A-oxide complexes are known with almost all transition metals,11 the 

late transition metals as used in this study prefer donation from the pyridyl portion of 2a 

rather than from the A-oxide. In contrast, the oxophilic lanthanide cations prefer 

donation from the A-oxide. However, a metal such as Hg°, which has similar 

characteristics of both transition metals and lanthanides, will coordinate to both donor 

groups (Figure 2.9).

(a) (b) (c)

Figure 2.9
Observed metal coordination modes for 2a. (a) 2d, (b) 2h, (c) 2g. Only a 
single molecule o f 2a per metal centre is shown for simplicity. Key: bronze = 
Cu1 (a) Eum (b) Hgn (c); blue = N, black = C; red = O; white = H. Anions and 
ancillary ligands are removed for clarity.
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2.3.3 Molecular Topologies for Use as Secondary Building Units

Pre-formed metal complexes, or secondary building units (SBU’s), with known 

geometrical conformations have been used in the generation of ordered, solid-state 

materials.31 In this respect, the mismatch of donor atoms on 2a is synthetically 

advantageous as it allows for control of specific metal ligand interactions. Judicious 

choice of metal can yield complexes that are entirely N  or O-bound, depending upon their 

coordination preferences. This mismatch also potentially enables for the introduction of 

both transition and lanthanide cations into the same framework, which can be used to 

specifically tune the physical properties of the material.32

Towards the realisation of solid-state materials constructed from SBU’s, a library of 

molecular topologies was compiled. Four distinct geometries: linear, trigonal planar, 

square planar, and tetrahedral were formed by coordination of the pyridyl nitrogen to a 

suitable transition metal cation (Figure 2.10).
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(c)

(a) 9

Figure 2.10
X-ray crystal structures of the four distinct molecular topologies formed by the 
self-assembly of 2a and a metal centre, (a) linear: 2f, (b) trigonal planar: 2b,
(c) square planar: 2e, (d) tetrahedral: 2c. Key: bronze = Cd11 (a) Cu1 (b) Pd11
(c) Cu1 (d); blue = N, black = C; red = O; white = H.

Possible network topologies as a result of combining pre-formed SBU’s with a secondary 

metal cation are shown in Figure 2.11. It should be noted that the geometry of the 

network is dependent upon the spatial orientation of the SBU as well as the preferred 

coordination geometry of the secondary metal cation. Thus the geometry of the 

architectures depicted here are the sole result of the SBU topology. Consideration of 

both the geometrical preferences of the metal cation and the SBU can lead to distinct 

architectures not show n here.
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Figure 2.11
Generation of ordered, multi-dimensional architectures through the use of 
secondary building units. Nets depicted on the right represent only a small 
number of possible topologies.
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The crystal structure of 2g is a good example of how a linear SBU can be used to 

construct a two-dimensional layered architecture. In this case, the building block is a 

Hgn centre with two 2a ligands coordinated in a trans fashion through the pyridyl 

functionality. The jY-oxide functionality is then directed towards the centre of another 

linear component and participates in metal coordination to a secondary Hg11 centre 

(Figure 2.12).

Figure 2.12
Incorporation of a linear SBU into a two-dimensional square net. (a) 
coordination environment of the Hg11 centre, highlighted is the linear SBU. (b) 
stick drawing of the square net, with the linear components highlighted in blue 
and red. Key: bronze = Hg11; blue = N, black = C; red = O; green = Cl; white 
= H. Hydrogens and anions have been omitted for clarity in (b).

Using the trigonal and square planar topologies of 2b and 2d respectively, two hydrogen- 

bonded networks were synthesised (Figure 2.13). As expected, a two-dimensional 

trigonal network was the result of combining the trigonal molecules of 2b. Likewise, a 

square grid network was generated by 2d through the hydrogen bonding array depicted in 

Figure 2.7. The trigonal units of 2b connect through a series of bifurcated C-H---0 

hydrogen bonds between the A-oxide functionality and the protons a to the coordinated
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pyridine. The topology of the network generated by 2d, is reminiscent of the extended 

Hg11 structure in which the individual SBUs are connected by metal coordinate bonds. 

Conversely, molecules of 2d interconnect solely through hydrogen bonds and 7t-stacking 

interactions. Similarly, the individual two-dimensional, trigonal sheets are held together 

in the solid state by a series of jr-stacking interactions.

Figure 2.13
Extended networks comprised of trigonal and square planar SBUs. The 
terminal N-oxide functionality connects the SBUs through C-H---0 and O- 
H---0 hydrogen bonding arrays. Key: bronze = Cu1 (left) Cu11 (right); blue =
N, black = C; red = O; white = H. Anions and extraneous ligands are omitted 
for clarity.

2.4 Conclusions

Through the mismatch of donor atoms on 2a, several molecular species were designed 

such that hydrogen bond acceptor atoms in geometrically unique positions would be 

available. This distinctive feature allows the aforementioned compounds to be used as
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molecular building units in the design and construction of complex, multi-dimensional 

solids. This feature is also shown to be useful in the synthesis of supramolecular solids in 

which the discrete molecular species are connected by non-covalent interactions, such as 

hydrogen bonding and 7i-stacking.

Similar in topology to 4,4'-bipyridine and 4,4'-bipyridine TV, TV'-dioxide, 2a exhibits 

comparable non-covalent interactions. However, the major difference is that it is 

significantly easier to generate discrete molecular species using 2a as it rarely engages in 

p2 coordination modes.
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Chapter Three - Multi-Dimensional Polyrotaxanes

3.1 Introduction

Considerable effort is being devoted to the fabrication o f nanoscale 

devices. Molecular machines, motors and switches have been made, 

generally operating in solution, but for most device applications (such as 

electronics and opto-electronics) a maximal degree o f  order and 

regularity is required. Crystalline materials would be excellent systems 

fo r these purposes, as crystals comprise a vast number o f  self-assembled 

molecules, with a perfectly ordered three-dimensional structure.

Gerard van Koten33

3.1.1 Interlocked and Interpenetrated Molecules

Rotaxanes are one of three main classes of interlocked and interpenetrated molecules, the 

others being catenanes and knots. They are comprised of two independent components; a 

dumbbell shaped “thread” or “axle” and a macrocyclic “bead” or “wheel”, mechanically 

interlocked and only separable by the breaking of a covalent bond. A pseudorotaxane is 

similar to a rotaxane except that the two components are allowed to freely associate and 

dissociate in a dynamic equilibrium. An integer often precedes the term pseudorotaxane 

or rotaxane and indicates the number of individual components in the system. Thus, a
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[2]rotaxane, the simplest example, consists of two interlocked components, and a

[3]rotaxane would then consist of three components.

[2] rotaxane [2]catenane

Figure 3.1
Cartoon depiction of a [2]rotaxane and a [2]catenane.

The first rotaxane was synthesised by Harrison and Harrison34 in 1967 by the “statistical” 

method in which the thread component was covalently capped by large “stopper” groups 

while, by chance, penetrating through a macrocycle supported on a resin. After 

successive reactions (70 times) the final product was isolated in only 6 % yield.

Clearly, in order for applied research of rotaxanes to be fruitful a better synthetic 

approach was needed. Towards this end, supramolecular chemists applied their 

knowledge of self-assembly and molecular recognition. Through the combined use of 

hydrogen bond donors and acceptors, Jt-7t stacking, ion-dipole interactions and other non- 

covalent intermolecular forces, rotaxanes can now be synthesised in near quantitative 

yields.35’36

It has been shown that a pseudorotaxane can be readily converted into a rotaxane through

T7 TOa variety of methods. ' “Clipping” involves the formation of a macrocycle around a
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pre-formed dumbbell shaped thread. “Slipping” is the association of both pre-formed 

components, in which the macrocycle when given enough kinetic energy is able to slip 

over the bulky end-groups of a pre-formed thread. “Threading”, the synthetic procedure 

employed in this study, is completed through the addition of large bulky stoppers to each 

end of the pseudorotaxane complex either covalently or through metal coordination 

(Figure 3.2).

Figure 3.2
Synthesis of a [2]rotaxane via the “threading” methodology. A dynamic 
equilibrium exists between the [2]pseudorotaxane and the uncomplexed 
thread and macrocycle. A [2]rotaxane can be irreversibly formed by the 
addition of large, bulky stopper groups to each end of the [2]pseudorotaxane, 
thereby preventing the macrocycle from dethreading.

Wisner and Loeb40 previously developed the 6/s-pyridinium ethane recognition site for 

the 24-membered cyclic polyether 24C8 and its benzo and naptho derivatives (Figure 

3.3). This motif has proven versatile as both components are readily functionalised. 

Numerous derivatives of pyridine are commercially available and are easily coupled 

together using 1,2-dibromoethane to form the 24C8 recognition site on the thread. Due to
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the interest in crown ether chemistry, there are numerous synthetic protocols for the 

preparation of derivitised crown ethers, some of which are also commercially available.

[2]Pseudorotaxane formation using functionalised bis(pyridinium) ethane 
cations and 24C8 and the benzo and naptho derivatives of 24C8.41

3.1.2 Metal-Capped Rotaxanes

The capping of a pseudorotaxane to form a rotaxane is typically completed by covalently 

linking a large bulky stopper to each end of a pseudorotaxane. It has been proven that 

metal coordination to divergent Lewis basic donor atoms located on the terminals of the 

thread component is a facile method for the conversion of a pseudorotaxane into a 

rotaxane.42'53 Incorporation of a metal centre into the rotaxane motif has many 

interesting consequences; the metal fragment chosen can impart new photophysical, 

electronic, and magnetic properties to the system.

x x

x = II,
X — M e, 
X  -  Ph,
x = co2r-t,
X =  py

Figure 3.3
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HhA >

Figure 3.4
Examples of metal capped [2] rotaxanes incorporating a cyclodextrin 
macrocycle, (a)51, (b)48,49

In the metal cation capping reaction (Figure 3.2 and Figure 3.4) the pseudorotaxane acts 

as a divergent ligand. One of the most ubiquitous uses of a divergent ligand in 

coordination chemistry is to generate coordination polymers where the metal cation acts 

as a node and the organic ligand acts as a spacer or linker. The geometry of the ligand 

and the coordination geometry of the node dictate the topology of the network. For 

instance, a tetrahedral ligand will tend to form diamondoid networks whereas a linear 

ligand connected to a octahedral node will generate a three dimensional cubic 

architecture.54 Whereas judicious choice of ligand topology can dictate the framework 

morphology, the coordination tendencies of specific metals can also predispose a 

particular coordination compound to adopt a desired architecture.54

3.1.3 Polyrotaxanes

There are a few basic approaches to the preparation of polyrotaxanes: (1) incorporation 

of a rotaxane into the monomeric unit of an organic polymerisation reaction,55 (2) use of
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a pseudorotaxane as a ligand and metal cations as stoppers in the construction of 

coordination polymers,56'60 and (3) a self-assembly process in which the macrocycle and
-I

thread are simultaneously formed upon coordination to a metal. ’ By definition, a one

dimensional polyrotaxane is a molecule in which an infinite number of rotaxanes are 

aligned and connected through covalent or coordinate bonds to form a chain. Similarily, 

a two-dimensional polyrotaxane is an infinite number of one-dimensional chains 

connected through covalent or coordinate bonds to form a grid and a three dimensional 

polyrotaxane carries this line of reasoning one step further to produce a structure that 

extends indefinitely in the x, y  , and z directions. Each of these approaches have 

advantages, and depending upon the intended application, one approach may be more 

useful or convenient. For example, Leigh55 used blocked isocyanates to stopper 

[2]rotaxanes, which at elevated temperatures ( > 150 °C) readily react with diammines or 

diols to produce main-chain, pendant, or cross-linked organic polymers in which a 

rotaxane assembly had been included (Figure 3.5).
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-NH
‘HN HN. HN HN,HN HN.

Ph-
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Figure 3.5
Leigh’s synthetic protocol for the production of main chain, cross-linked, and 
pendant organic polyrotaxanes.55

Kim and coworkers56'60 have applied the principles of self-assembly, molecular 

recognition and coordination chemistry to the design and synthesis of multi-dimensional 

polyrotaxanes. They have synthesised several one and two-dimensional architectures, as 

well as one example of a three-dimensional framework using a dialkylammonium thread 

and a cucurbit[6]uril, CB[6]. Through a series of supramolecular interactions, the most 

important of these interactions being a hydrophobic effect, the CB[6] “bead” threads onto 

a dialkylammonium thread. From a crystal engineering perspective, this is very 

attractive, the strong association (Ka = ~ 105 -  106 M '1) in water allows for a variety of 

synthetic conditions including a hydrothermal method, which would completely destroy
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other pseudorotaxane complexes formed through hydrogen bonding interactions. Once a 

[2]pseudorotaxane coordinates to a metal centre, the metal acts as a stopper, and the 

ligand is now a [2]rotaxane.

By varying the metal cation, the associated anion, and the position of the donor group on 

the terminus of the pseudorotaxane, Kim produced several multi-dimensional 

polyrotaxanes. These include zigzag, square-wave, straight-chain and helical shaped 

one-dimensional polyrotaxanes,60 two unique two-dimensional polyrotaxanes, a square 

grid and a hexagonal net. The latter displaying two-fold interpenetration, effectively 

filling the ~ 38 A diameter pores.56 Under hydrothermal conditions, cyano functional 

groups on a [2]pseudorotaxane were converted to carboxylates in the presence of 

Tbm(N03 )3j forming the first three-dimensional polyrotaxane (Figure 3.6).59 Contrary to 

what is expected, the polyrotaxane did not have a large degree of porosity due to the 

inclusion of one uncoordinated [2]pseudorotaxane molecule per unit cell.
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CN

CN

T b ( N 0 3) 3 / H 20 ,  
t r i e t h y la m in e ,  
1 5 0  ° C ,  3 d

T b 2 T b

Figure 3.6
Hydrothermal synthesis of a two and three-dimensional polyrotaxane using
Tb111.59

Previous work in the Loeb group has shown that one and two-dimensional polyrotaxanes 

are readily self-assembled from DED, DB24C8, and transition metal cations.63 The one

dimensional polyrotaxanes are generated in the solid state by vapour diffusion of z'P^O 

into a solution of the [2]pseudorotaxane complex and a metal cation in MeCN. The metal 

node, in the example in Figure 3.7, has octahedral geometry with two [2]rotaxane ligands 

coordinated in a trans arrangement with the other ancillary ligands being two molecules 

of MeCN and two molecules of water. It was proposed that if the 1:1 [2]pseudorotaxane 

to metal cation stoichiometry was changed to 2:1 and the reaction was carried out in a 

non-coordinating solvent such as MeN02 , the weakly coordinated MeCN ligands could 

be replaced by [2]rotaxane ligands. This was in fact the case and several two- 

dimensional, square grid, polyrotaxanes were characterised by X-ray crystallography and
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TGA.63 The Cu11, Co11, Ni11, and Cd11 structures are isomorphous, with the Cd11 crystals 

being the easiest to prepare. The metal centres are now coordinated by four [2]rotaxane 

ligands with the additional coordination sites on the metal being occupied by a molecule 

of water and one [BF4 '] anion. There is significant void space in these structures as the 

grids do not interpenetrate. They align in an ABA alternating pattern with dimensions of

22.2 A x 22.2 A (as measured between Cd11 centres). The channels are lined with the 

[2]rotaxane ligands and are filled with MeNCh solvent molecules and anions (15 solvent 

molecules per Cd11 centre). Figure 3.7 shows the structures of these one and two 

dimensional polyrotaxanes.63

(a)

(c)

Figure 3.7
Polyrotaxanes previously synthesised in the Loeb group.63 (a) Line drawing 
of the one dimensional Co1 polyrotaxane depicting the packing arrangement 
down the 001 axis, (b) space-filling diagram of the one dimensional Co11 
polyrotaxane. (c) and (d) space-filling representations of the two 
dimensional Cdn polyrotaxane showing the crown ether lined channels and 
the layering arrangement respectively. Where applicable, solvent molecules 
and anions have been removed for clarity.

(b)

(d)
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All coordination sites on the octahedral metal centres are still not fully occupied by 

[2]rotaxanes (structures remain two dimensional), and thus it was thought that by simply 

replacing the coordinated water and anion the dimensionality could be extended. 

However, all efforts in this direction failed. It was thought that perhaps the steric 

demands of the crown ether prevented a coordination number of six. Three solutions to 

this problem were proposed: (1) a larger cation with an increased coordination number 

would allow for more ligands to be connected to the metal node, (2) removal of the steric 

presence of the crown ether by extending the length of the thread component, (3) a 

combination of both these tactics. Extension of the thread also has the advantage of 

possibly generating even larger cavities than had been observed for the two dimensional 

polyrotaxanes.

(b)(a)

Figure 3.8
Ball and stick representations of some pyridine A-oxide metal complexes.
(a) [Hg(PyNO)6]2+, (b) [La(PyNO)8]3+, (c) [Nd(PyNO)8]3+.12 Hydrogens have 
been omitted for clarity.

A modification of DED that increases its length without disrupting the crown ether 

recognition site would be to oxidise the terminal nitrogen on the pyridine functionality to 

the respective A-oxide. An N -0  bond is typically ~ 1.3 A and thus the thread dimensions 

would be increased by ~ 2.6 A (Figure 3.9), effectively reducing the steric presence of the 

crown ether on the metal node (Figure 3.10). Pyridine A-oxides are known to be
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sterically undemanding ligands and readily saturate the coordination sphere of most 

metals (Figure 3.8) .12 Another perceived advantage is that pyridine A-oxides are also 

excellent ligands for the oxophilic lanthanide cations. These cations are physically 

larger than the transition metals and also display a coordination number of eight with 

pyridine A-oxide ligands, typically in a square anti-prism geometry. Thus a A, A-dioxide 

derivative of the DED thread was synthesised; which allows for investigation of the 

aforementioned hypotheses. Just as the coordination tendencies of DED me reminiscent 

of 4,4'-bipyridine, the coordination modes observed for 3b are similar to those for 4,4'- 

bipyridine AA'-dioxide (Figure 3.).

9 . 6  A - - - - - - - - - - - - - - ► - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 0 . 3  A

Figure 3.9
Geometric comparison of 4,4'-bipyridine, 4,4'-bipyridine A, A-dioxide, DED 
and, 3b.
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Figure 3.10

Comparison of the steric presence of 3b c  DB24C8 and DED c  DB24C8.
The same sized cone has been used in each diagram. Qualitatively it can be 
seen that DED c  DB24C8 is bulkier and that the crown ether is positioned 
much closer to the metal centre.

3.1.4 Functional Materials

A major focus in the research of interlocked molecules is their incorporation into 

molecular machines and nanotechnology. For these molecules to be useful on a 

macroscopic level there needs be a method of organising them in the solid state. One 

approach to the solution of this problem has been to use programmed self-assembly 

incorporating metal cations as nodes and pseudorotaxanes as linkers. Tailoring of the 

solid state properties of the material could be achieved by selective choice of the metal 

cation (e.g. coordination geometry, oxidation state, and magnetic properties) and also by 

chemical functionalisation of the distinct rotaxane components.
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These metal-based polyrotaxanes are interesting in terms of the design and synthesis of 

porous solid state materials. Coordination networks have been shown to possess many 

applications including small molecule sorption/desorption, ion exchange resins, in situ 

catalysis, and gas/fuel storage.8 The dynamic nature of the pseudorotaxane ligand is 

attractive due to the possibility of tailoring the properties of the solid simply through the 

functionalisation of the crown ether while still maintaining the designed network 

topology.

3.1.5 Scope

This chapter describes the design and organisation of a new [2]pseudorotaxane into an 

ordered, three dimensional crystalline lattice. The solution behavior of 3b c  DB24C8 

will be discussed along with the solid state structures of one two-dimensional 

polyrotaxane and five three-dimensional polyrotaxane structures.

3.2 Experimental

3.2.1 General Comments

1,2-Dibromoethane and all metal salts were purchased from Aldrich Chemicals except 

[Ybni][OTf]3 which was purchased from Strem and were used as received. All deuterated 

solvents were purchased from Cambridge Isotope Laboratories and used as recieved. All 

solvents were purchased from EM Science. ^  NMR spectra were recorded on a Brtiker
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Avance 300 or 500 instrument locked to the deuterated solvent at 300.1 or 500.1 MHz 

respectively. All peak positions are listed in ppm relative to TMS. TGA were performed 

on a Mettler Toledo TGA/SDTA8516 Instrument under He(g) atmosphere at scan rate of 

5 °C/min.

3.2.2 General Methods for X-ray Crystallography

Crystals were frozen in paratone oil inside a cryoloop to prevent loss of solvent. A 

matrix was run and a unit cell determined prior to collection. A full hemisphere was 

collected in each case. Reflection data were integrated from frame data obtained from 

hemisphere scans on a Bruker Apex diffractometer with a CCD area detector with Mo-Ka 

radiation (k = 0.71073 A). Diffraction data and unit cell parameters were consistent with 

assigned space groups. The structures were solved by Patterson or direct methods, 

completed by subsequent Fourier syntheses and refined with full-matrix least-squares 

methods against |i^| data. All non-hydrogen atoms were refined anisotropically. All 

hydrogen atoms were calculated and treated as idealised contributions. Scattering factors 

and anomalous coefficients are contained in the SHELXTL 5.03 software package 

(Sheldrick, G.M., Madison, WI).28 All crystallographic figures were prepared using 

DIAMOND.29
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3.2.3 Preparation of Bromoethylbipyridinium iV-Monoxide [Br] (3a)

2a (5.00 g, 29.0 mmols) was dissolved in 10 mL of 1:1 CHCl3:MeCN and was added to 

40 mL of 1,2-dibromoethane and this mixture refluxed for 24 hrs. The reaction solution 

was filtered hot and the isolated brown precipitate washed with CHCI3 and dried in air at 

room temperature. Yield (9.60 g) 92 %.

° —r /  \ — I  \ i —f
a_ b  c d  f  Br

Table 3.1
*H NMR Spectroscopic Data (D20, 300 MHz) for 3a.

Proton 8 (ppm) Multiplicity Peak Area J(H z)

a 8.928 d 2 6.9

b 8.363 d 2 6.9

c 8.439 d 2 7.9

d 8.046 d 2 7.9

e 4.992 t 2 5.8

f 3.930 t 2 5.8
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3.2.4 Preparation of A/.v(4,4'-Bipyridinium A-Monoxide) Ethane [OTf|2 (3b)

3a (5.00 g, 13.9 mmols) and 2a (3.59 g, 20.9 mmols) were dissolved in MeCN (75 mL) 

and refluxed for 1 week. The light brown precipitate was filtered, dried and then 

dissolved in a minimum amount of H2O. Five equivalents of [Na][OTf] were added and 

the mixture was heated until the solution was homogeneous. The solution was then 

cooled and the triflate salt of 3b was isolated as a light tan powder. Yield (4.23 g) 45.4%.

o—N
u  ̂ / ' N~ °a b c d

Table 3 .1
'H NMR Spectroscopic Data (CD3N02, 500 MHz) for 3b.

Proton 8 (ppm) Multiplicity Peak Area J(H z)

a 8.892 d 4 6.9

b 8.449 d 4 6.9

c 8.305 d 4 7.4

d 7.965 d 4 7.4

e 5.417 s 4
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3.2.5 Preparation of [Cdn(3b)2(DB24C8>] [OTf|6 (3c)

3b (15 mg, 0.02 mmols) and DB24C8 (30 mg, 0.06 mmols) were combined in 0.5 mL of 

MeN02. This solution was then added to a solution of [Cdn][BF4]2 (4 mg, 0.01 mmols) in 

0.5 mL of MeN0 2 . /P^O vapour was allowed to diffuse into the reaction mixture to 

produce orange, X-ray quality crystals. Yield (8.4 mg) 30.1%.

Table 3.3
Crystal data and details of structure solution and refinement for compound 3c.

Formula C78H84CdF18N 12038S6 Collection Temp [K] 223(2)

Formula Weight 2444.33 Pcaicd [g cm'1] 1.630

Crystal System Triclinic P (MoKa) [mm'1] 0.471

Space Group P-l Min/max trans 0.7034/1.0000

a [A] 11.5792(10) Unique data 19924

b [A] 12.4592(11) R(int) 0.1059

c[A] 19.0001(17) R1 [I >2ctI] 0.0988

ccf] 88.380(2) R1 [all data] 0.1526

p o 84.943(2) wR2 [I >2<rl] 0.2580

v f ] 65.788(2) wR2 [all data] 0.3022

V [A3] 2490.2(4) Data/variables 8737/691

Z 1 Goodness-of-fit 1.003
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3.2.6 Preparation of [Min(3b)3(DB24C8)3] [OTf|8.5[Cl]o.5 (Mm = Smm(3d), Euin(3e), 
Gdm(3f), Tbin(3g))

3b (15 mg, 0.02 mmols) was combined with DB24C8 (30 mg, 0.06 mmols) in 0.5 mL of 

MeCN. This pseudorotaxane was then added to a solution of [Min][OTf]3 (4.5 mg,

O.Olmmols) in 0.5 mL of MeCN in a vial. Large orange crystals were observed to form 

upon standing for four days. Yield (10 mg) 51 %. TGA results for all four compounds 

are consistent and show loss of MeCN and water solvent to ~ 90 °C and thermal 

decomposition of the coordination framework occurring at ~ 250 °C.

Table 3.4
Crystal data and details of structure solution and refinement for 3d.

Formula
C152H163.75C10.5F25.5N 14.75

O 6 4 . 0 9 s 8 . 5 s m
Collection Temp [K] 100(2)

Formula Weight 4147.67 Pealed [g  Cm"1] 1.322

Crystal System Triclinic P (MoKa) [mm'1] 0.476

Space Group P-l Min/max trans 0.8854/1.0000

a [A] 17.5661(13) Unique data 66987

b [A] 23.4327(13) R(int) 0.0483

c [A] 27.0910(17) R1 [I >2cjI] 0.1248

a[°] 78.0860(10) R1 [all data] 0.1421

P O 80.5090(10) wR2 [I >2ctI] 0.3295

74.0460(10) wR2 [all data] 0.3524

V [A3] 10421.2(12) Data/variables 27216/3064

z 2 Goodness-of-fit 1.576
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3.2.7 Preparation of [Ybm(3b)3(DB24D8)3] [OTf|8[Cl] (3h)

3b (15 mg, 0.02 mmols) was combined with DB24C8 (30 mg, 0.06 mmols) in 0.5 mL of 

MeCN to form the pseudorotaxane. This [2]pseudorotaxane solution was added to the 

bottom of a diffusion tube and 0.25 mL of MeCN was layered on top of this, followed by 

a solution of [Ybm][OTf]3 (4.7 mg, O.Olmmols) in 0.5 mL of MeCN. Large yellow 

crystals grew at the metal and [2]pseudorotaxane solution interface after four days. Yield 

(5.2 mg) 17.0 %.

Table 3.5
Crystal data and details of structure solution and refinement for 3h.

Formula
C160H175.5C1F24N 19O59.5

SgYb
Collection Temp [K] 100(2)

Formula Weight 4237.66 Pealed [g Cm'1] 1.215

Crystal System Triclinic p (Mok<x) [mm'1] 0.579

Space Group P-l Min/max trans 0.7412/1.0000

a [A] 20.495(3) Unique data 91905

b [A] 22.701(3) R(int) 0.0980

c [A] 27.435(3) R1 [I >2al] 0.1417

a p ] 84.146(3) R 1 [all data] 0.1841

P[°] 78.935(3) wR2 [I >2gI] 0.3729

y n 67.636(2) wR2 [all data] 0.4003

V [A3] 11579(3) Data/variables 40594/2444

z 2 Goodness-of-fit 1.426
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3.3 Results and Discussion

3.3.1 Synthetic Design and Considerations

Previous work in the Loeb group has shown that in a non-coordinating solvent, a 

transition metal will coordinate four [2]rotaxane ligands forming two-dimensional grids
/ I

with solvent and an anion in the apical coordination sites. All attempts to replace these 

apical ligands with [2]rotaxanes in order to extend these grids into the third dimension 

were previously unsuccessful. As mentioned, it was theorized then that the steric bulk of 

the crown ether on the ligand prevented higher coordination numbers. In order to allow 

more ligands to coordinate to a metal node, thereby increasing the dimensionality, three 

possibilities were investigated: a larger cation (Figure 3.11) with a higher coordination 

number, extension of the length of the thread portion of the [2]pseudorotaxane, and a 

combination of both.

Figure 3.11
Relative sizes o f the cations used in the construction o f multi-dimensional 
polyrotaxanes. Atomic radii: 1.71 A, 2.59 A, 2.56 A, 2.54 A, 2.51 A, and 
2.40 A for Cd to Yb respectively.

Several things must be considered when designing a synthetic protocol for these 

polyrotaxanes. First, the self-assembly of these solid state structures is inherently a 

dynamic process in which the intact [2]pseudorotaxane complex is in equilibrium with its
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uncomplexed components. This is in addition to the complexation and decomplexation 

of metal coordinate bonds. Secondly, the linking of a [2]pseudorotaxane into a 

polyrotaxane network can be considered a special case of a capping reaction whereby the 

metal nodes act as a stopper preventing the crown ether from becoming unthreaded. 

With these processes in mind, a few guidelines were followed and a synthetic approach 

developed (Figure 3.12):

1. All reactions were carried out at room temperature.

2. The [2]pseudorotaxane was formed prior to addition of the metal salt.

3. Excess crown ether will help to ensure that the thread is completely 

complexed and that the species coordinating the metal centre is a 

[2]pseudorotaxane.

4. All components must be soluble in a solvent such as MeCN that is 

amenable to the formation of hydrogen bonds.

5. The coordinating, functional group on the thread must be a better 

donor than the solvent, (i.e., the appropriate solvent must be non- or 

weakly-coordinating).

6 . X-ray quality, single crystals must be isolated as crystallography will 

be the only technique capable of unambiguous structural 

characterisation.
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Metal Cation
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V ...Q
O"

I
X = N

X = N-0

X = N

1 1  w 9

Figure 3.12
The synthetic protocol for the preparation of polyrotaxanes. Starting with a 
[2 ]pseudorotaxane (red and blue) and a suitable metal cation (green) multi
dimensional polyrotaxanes are easily prepared through self-assembly.
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3.3.2 Synthesis of a [2]Pseudorotaxane and its Components

The synthesis of thread, 3b, was completed in two steps from the previously synthesised, 

2a, following the method of Wisner.40 In order to increase the solubility of the thread in 

less competitive, less polar solvents suitable for the formation of hydrogen bonded 

[2]pseudorotaxanes such as MeCN and MeN02 , the hard bromide ions were exchanged 

for triflate anions. In MeCN, 3b has an association constant, Ka, of 1125 M' 1 with 

DB24C8 as measured by *H NMR spectroscopy at 298 K. This compares well to DED 

which, in MeCN, has a Ka of 878 M ' 1 with DB24C8.64 The Ka was calculated by 

comparing the relative peak areas between the complexed and uncomplexed forms in the 

^  NMR spectra using the single point method.

Figure 3.13
Ball and stick and space-filling models o f 3b c: DB24C8. Key: blue = N, 
black = C; red = O; white = H. Anions and selected hydrogen atoms have 
been removed for clarity.
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Table 3.6

Selected hydrogen bond distances and angles in 3b <= DB24C8.

Hydrogen Bonded Atoms C-H- -0 Distances (A) C-H-- 0  Angles (°)

H 8 A - 0 3 2.560(2) 147.03(1)

H9A---03 2.377(1) 156.47(1)

H11A---02 2.777(1) 155.84(1)

H11B---04 2.433(1) 166.63(2)

The solid state structure of the 3b c  DB24C8 (Figure 3.13) complex clearly shows the 

intermolecular interactions that exist between the thread and the crown. There are eight 

C-H -0 hydrogen bonds, as well as ion-dipole interactions between the electronegative 

oxygen atoms in the crown and the positively charged pyridinium nitrogen atoms of the 

thread (Table 3.6). Molecules of 3b c  DB24C8 align in the solid state to maximise 

intermolecular 7i-stacking interactions.

Due to the dynamic nature of a [2]pseudorotaxane, a large excess of DB24C8 (~ 3 

equivalents) was used in the preparation of 3b c  DB24C8 in order to ensure that the 

equilibrium was in favour of the complexed form. This is a necessary consideration in 

order to ensure that it is the [2]pseudorotaxane that is being converted to a [2]rotaxane 

through coordination of a metal cation, and not simply the uncomplexed thread.
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Table 3.7

Crystal data and details o f structure solution and refinement for 3b a  
DB24C8.

Formula C104H1 ifiF 12N12O32S4 Collection Temp [K] 223(2)

Formula Weight 2402.33 pcaicd [g cm'1] 1.433

Crystal System Monoclinic p (MoKa) [mm'1] 0.190

Space Group P2(l)/c Min/max trans 0.6819/1.0000

a [A] 10.8524(14) Unique data 15730

b [A] 19.706(3) R(int) 0.0287

c [A] 13.0660(17) R1 [I >2al] 0.1204

O p] 90.00 R1 [all data] 0.1219

p n 95.073(2) wR2 [I >2ctI] 0.2996

r n 90.00 wR2 [all data] 0.3009

V [A3] 2783.3(6) Data/variables 3622/370

z 1 Goodness-of-fit 1.115
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3.3.3 Two-Dimensional Polyrotaxane Based on a Cd11 Cation

Continuing from the two-dimensional polyrotaxanes previously synthesised in the Loeb 

group, a Cd11 metal node was employed in combination with the new longer thread, 3b. It 

was thought that the lessened steric requirements of the A-oxide donor would increase the 

ligand coordination number on the Cd11 centre from four to six, effectively increasing the 

dimensionality of the polyrotaxane topology. However, only two [2]rotaxanes are 

coordinated in the resultant structure, with the remaining ligands being two uncomplexed 

threads and two triflate anions (Figure 3.14). The two dimensional, square grids layer in 

an offset ABA pattern which eliminates any possible void space (Figure 3.15).

Figure 3.14
Ball and stick model o f the Cd11 coordination sphere showing the trans 
arrangement o f the ligands. Key: bronze = Cd11; blue = N, black = C; red = 
O; green = F; yellow = S. Hydrogen atoms, solvent molecules and some 
anions, have been omitted for clarity.
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Figure 3.15
Space-filling views o f 3c. Left: a single net showing complexed and
uncomplexed ligands. Right: Depiction o f how one net (green and orange) 
fills the cavity o f an adjacent net (blue and red). Solvent and anions have 
been omitted for clarity.

This network is reminiscent of the one-dimensional Co11 structure, and can be thought of 

as a pillared one-dimensional polyrotaxane (Figure 3.16). The two [2]rotaxanes 

coordinate to the Cd11 centre in one dimension while two uncomplexed threads cis to each 

[2]rotaxane unit pillar the polyrotaxane stands in the second dimension.
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Figure 3.16
Line drawing o f 3c depicting the pillared nature o f the polyrotaxane. It is 
also possible to see the how the individual layers close pack, eliminating void 
space. Hydrogen atoms, anions, and solvent molecules have been omitted for 
clarity.

In the two-dimensional 3c structure it was postulated that no interpenetration was 

observed due to the dynamic nature of the crown ether. During the self-assembly 

procedure the macrocycle is continually “flipping” and rotating about the thread, thus 

occupying a much larger volume than is observed in the solid-state picture. The 

increased length of 3b had an interesting, unforeseen effect on the topology of the new 

two-dimensional network. While not interpenetrated, the individual nets close pack with 

the crown ether of one layer filling the void space in an adjacent layer. Now that the 

[2]pseudorotaxane ligand is slightly longer, the cavity is also increased in size thus 

allowing for the “inclusion” of another net.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Three -  Multi-Dimensional Polyrotaxanes 64

3.3.4 Three-Dimensional Polyrotaxanes Based on Smm, Eu111, Gdm, Tb111 Cations

Since it was not possible to saturate the coordination sphere of a Cd11 centre with 

[2]rotaxanes following the aforementioned guidelines, a larger cation with more available 

coordination sites was used in the preparation of a three-dimensional polyrotaxane. The 

result (using four different lanthanides) was a three dimensional, “cubic” architecture in 

which all linkers are [2]rotaxanes. It is interesting to note that the complexes were still 

not homoleptic, with two coordination sites on the metal occupied by one triflate anion 

and one molecule of water respectively (Figure 3.17).
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Figure 3.17
Ball and stick representation o f the Smm centre with six coordinated 
[2]rotaxanes. Inset: primary coordination sphere o f the Smm cation showing 
the distorted square anti-prism geometry. Key: bronze = Smm; blue = N, black 
= C; red = O; green = F; yellow = S. Hydrogen atoms, anions, and solvent 
molecules have been omitted for clarity.

Single crystals, suitable for X-ray analysis, of 3d-g are readily prepared from an MeCN 

solution over a few days. The large crystals readily desolvate at room temperature and 

become opaque, amorphous solids, but will retain their crystallinity for extended periods 

of time when maintained in MeCN. Single crystal data have been collected for 

complexes containing Sm111, Eum, Gdm, and Tbm and preliminary analysis has shown 

them to be isomorphous. A full solution of the Smm data was performed and the same
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treatment of the other datasets was deemed redundant. All structural diagrams in this 

section are generated from the Smm structure and are assumed to represent all four 

polyrotaxane complexes.

Figure 3.18
Space-filling model depicting a single, cubic unit o f  the Smm structure. M etal- 
metal distances are ~ 24 A. The volume is ~ 10,000 A3. Hydrogen atoms, 
anions, and solvent molecules have been omitted for clarity. Also, extraneous 
ligands and the interpenetrated net has been removed for clarity.

The primary coordination sphere has a distorted square anti-prism geometry (Figure 

3.17), while the terminal oxygen atoms on the six [2]rotaxane ligands propagate in a 

distorted octahedral geometry. It is this geometry that propagates the polyrotaxane 

network in a “cubic” fashion (Figure 3.18). Despite the fact that these structures display 

single interpenetration, there is still some available void space which is occupied by
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anions and solvent. There are nine triflate anions, seven molecules of MeCN, and twelve 

molecules of water present in the asymmetric unit. As a result of the longer ligand 

dimensions, the cubes defined by twelve [2]rotaxanes and eight metal nodes at the 

comers have become large enough for interpenetration to occur as compared to Cdn(DED 

<= DB24C8)2 (Figure 3.19). Considering Van der Waals radii, the width of 3b c  

DB24C8 is ~ 11.6 A. Therefore the necessary cavity dimensions (metal-metal distance) 

required for interpenetration of a polyrotaxane network is estimated to be ~ 23.2 A 

(Figure 3.20).

Figure 3.19
Line drawing showing the twofold interpenetrated nature o f the Sm111, Eum, 
Gdra, and Tbm polyrotaxane networks.

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 4 . 1  A  ►

Figure 3.20
Comparison o f the metal-metal distances in the DED and 3b polyrotaxanes.
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3.3.5 Three Dimensional Polyrotaxane Based on a Ybm Cation

Upon switching to a slightly smaller cation, Ybm, another three-dimensional 

polyrotaxane was synthesised. These large crystals are easily isolated in acceptable yield 

by slow diffusion of a solution of Ybm[OTf]3 into a solution of 3b <= DB24C8 at room 

temperature (Figure 3.21).

fp2]pseudorotaxane ' '  ^M eC N ^ M[OTf]3
V____________-fHHgy-------______________

Figure 3.21
Diffusion tube used in the preparation o f 3h.

Instead of having a coordination number of eight, the Ybm cation is seven coordinate; six 

ligands are [2]rotaxanes with coordination of an ancillary triflate anion occupying an 

apical position. The primary coordination sphere is a slightly distorted pentagonal 

bipyramid (Table 3.8), that is, five ligands in a planar, pentagonal arrangement with two 

apical ligands normal to the face of the pentagon (Figure 3.22 and Figure 3.23).
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0 .5  m m

Figure 3.22
Ball and stick illustration o f the coordination environment around the Ybffl 
centre. The 3b threads are depicted with silver bonds and the crown ether 
molecules are connected by gold bonds. Inset (left): primary coordination 
sphere o f the Ybm cation displaying the pentagonal bipyramidal geometry. 
Inset (right): micrograph showing the colour and size o f the Yb11 crystals. 
Key: bronze = Ybm; blue = N, black = C; red = O; green = F; yellow = S. 
Hydrogen atoms, anions, and solvent molecules have been omitted for 
clarity.
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Table 3.8
Selected angles from 3h. The coordination angles show the near perfect 
pentagonal symmetry while the terminal O-Yb-O angles are close to expected 
angles for an equilateral triangle (60°) and a rectangle (90°).

Coordination Angles Terminal Angles

Angle (°) Angle (°)

O l-Y b l-0 3 71.48 O l-Y b l-0 3 57.13

0 3 -Y M -0 2 74.12 03-Y M -04 63.73

0 2 -Y M -0 6 73.25 04-Y M -06 85.68

0 6 -Y M -0 4 71.49 06-Y M -02 91.71

0 4 -Yb 1-01 71.49 0 2-Y b l-O l 61.26

Figure 3.23
Space-filling model of Ybm coordination sphere demonstating the pentagonal 
symmetry and packing of five [2]rotaxanes around a single metal node. The 
apical ligands are removed for clarity.
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With respect to the [2]rotaxane ligands, the Ybm centre has pentagonal pyramidal 

geometry, while the terminal N-oxide oxygens diverge from the pentagonal symmetry 

and allow for the planar tessellation of a five-connected node. Following the system for 

naming periodic, three-dimensional nets by Wells65, the network can be fully described as

/ 3 A 

4 ,6  

V 6

net, which is a previously unknown topology. The numbering scheme can be

explained as follows: (n , p), or in this case m , p  

v "  J

, where n is the number of edges of a

polygon and p  is the number of edges meeting at a vertex, such that a
/ 3 "\ 

4 , 6  

V 6  J

net is

comprised of triangles (1 = 3), rectangles (squares) (m = 4) and hexagons (n = 6) all 

meeting at a six-connected node (p = 6). The structure can also be characterised as a

pillared, ^  ,5  ̂ two dimensional, plane net (Figure 3.24). The ^  net, comprised of

alternating triangles and squares (five-connected), was until recently, ’ unknown in 

chemical systems.
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Figure 3.24

Plane tessellations observed in the 3h structural motif. Left: ^  ,5 j , as

observed down the crystallographic c axis. Right: hexagonal (6,3) pattern as 
viewed down the crystallographic b axis..

Similar to the other three dimensional structures, 3h is singly interpenetrated (Figure 

3.25). Despite the interpenetration, there is still available void space which is occupied 

by anions and solvent molecules.

Figure 3.25
Line drawing of showing the interpenetrated nature of 3h and the

propagation of the
3
4 , 6  
6

\

net.
j
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3.4 Conclusions

In an attempt to organise [2]rotaxanes into a three-dimensional, regular solid, a new 

thread was synthesised which is sterically less-demanding and has good donor properties 

for the oxophilic lanthanide cations. A [2]rotaxane ligand containing the 3b thread was 

coordinated to a Cd11 centre forming a two-dimensional polyrotaxane square grid. The 

Cd11 network is similar to other two-dimensional polyrotaxanes previously synthesized, 

indicating that a larger cation with a higher coordination number is necessary in order to 

self-assemble a three-dimensional solid.

Two different three-dimensional polyrotaxane topologies were self-assembled at room 

temperature incorporating several different lanthanide cations as nodes and 3b <z 

DB24C8 as a linker. The Yb111 network topology is previously unreported and is unique 

in that it is based upon a pentagonal geometry. The observed interpenetration was 

unexpected and generation of a non-interpenetrated, three-dimensional solid is the next 

challenge.

Now that a procedure for self-assembling ordered, three-dimensional motifs 

incorporating a mechanical linkage has been determined, the next challenge is to add 

functionality. In order to avoid interpenetration of the nets a larger crown, such as 

DN24C8, might be employed. Functionality may be incorporated into the crystal lattice 

by using a “molecular shuttle” or “flip switch” as a ligand instead of the [2]rotaxane.
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Chapter Four - Electrostatics in Pseudorotaxane Formation

4.1 Introduction

Pleasantest o f all ties is the tie o f host and guest.

Aeschylus68

4.1.1 Supramolecular Cation Complexation

With his seminal paper in 1967, Pedersen,69 showed that cyclic polyethers, which he 

termed crown ethers due to their solid state architecture, form stable complexes with 

metal and ammonium cations.

Typically, ethers are poor ligands. However, crown ethers are well suited to complex a 

variety of cations, making use of chelate and macrocyclic effects. Indeed, the interest in 

crown ether chemistry lies in their ability to selectively bind cations. This selectivity for 

a particular cation is a direct function of the size of the cavity within the macrocycle. The 

size-selectivity relationship of some example crown ethers are shown in Figure 4.1.1
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cO'

o. O-

0'

Figure 4.1
Cation selectivity as a function of cavity size in various crown ethers; the 
cavity of 15C5 is complementary to the Na+ cation, while 18C6 and 21C7 are 
selective towards K+ and Cs+, respectively.1

One of the tenets of supramolecular chemistry is that although a single intermolecular 

interaction may be weak, the cooperation of several such non-covalent interactions can be 

significant. That is, the larger the number of interactions present between a substrate and 

receptor, the stronger the association. With this in mind, different crown ethers have 

been designed to interact with a cation not only through the electronegative oxygen atoms 

but also through anionic groups placed on the periphery of the macrocycle. For example, 

the tetra-anion shown in Figure 4.2 displays a 4000-fold increase in the stability of the K+

7ftcomplex over 18C6.

Figure 4.2
The incorporation of electrostatic components onto the crown ether moiety 
greatly increases the stability of the cation complex.70
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4.1.2 Sulfonated Crown Ethers

Sulfonated crown ethers have received relatively little attention in the literature and have 

primarily been used in analytical sciences for the sequestration of alkali, alkaline earth, 

and lanthanide cations from aqueous solution.71'74 In this study, several mono-and di- 

sulfonated crown ethers were synthesised, and their binding constants with the 

aforementioned cations were compared (Figure 4.3).

-o3s ■03s

Figure 4.3
Relative lanthanide complex stabilities as a function of cavity size and charge 
for some sulfonated crown ethers. The dianionic crowns have higher complex 
stabilities than the monosulfonated corollaries.71
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4.1.3 Zwitterionic Rotaxanes

Many rotaxane or pseudorotaxane motifs involve a cationic component and thus, there is 

always the requisite counter ion. In some cases, the counter ion can compete for the 

recognition site via ion-pairing effectively decreasing the observed Ka or destroying the 

complex completely. From a crystal engineering/materials perspective the counter ions 

occupy valuable void space, hence removing them would increase the available porosity. 

For example, following the previous chapter, for the solid state application of molecular 

machinery it would be advantageous to remove any counter ions from the respective 

system. Some neutral motifs are known, amongst these the most notable being amide 

based rotaxanes.75 However, to-date, only two examples43,76 (Figure 4.4) of a 

zwitterionic rotaxane have appeared in the literature. Both examples also involve a 

neutral macrocycle and a zwitterionic thread, and furthermore involve the capping of a 

cationic thread with a anionic end group. In one case the end group was organic76 while 

in the other, the end group was a metal fragment43 There have not been any zwitterionic 

psesudorotaxanes or rotaxanes reported in the literature in which a cationic charge on a 

thread is compensated for by the anionic charge on the macrocycle or vice versa. These 

supramolecules are not formally zwitterionic, as the two charges are not covalently 

connected, but for the purposes of this thesis will be referred to as such.
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 N - '  CO—N
F e

(a)

=  a-cyclodextrin

(b)

M = Mn11, Co11

Figure 4.4
Two examples of zwitterionic rotaxanes: (a) Kaifer’s76 naphthalene sulfonate 
capped rotaxane, (b) Loeb’s43 metal-bromide capped zwitterionic rotaxane.

4.1.4 Scope

In this chapter a dianionic crown ether has been combined with four different cationic 

threads to form the first two examples of a zwitterionic [2]pseudorotaxane and two 

positively charged [2]pseudorotaxanes. The solution thermodynamics and the solid state 

structure of these new [2]pseudorotaxanes will be discussed. This study will serve as a 

model for the reduction of charged molecules (counter ions) in the formation of 

interlocked molecular species. Furthermore, it will also serve as a model for the effects 

of crow n ether m odification on the preparation of [2]pseudorotaxanes.
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4.2 Experimental

4.2.1 General Comments

All chemicals were purchased from Aldrich Chemicals and were used as received except 

4,4'(5')-diformyldibenzo-24-crown-8 (DFDB24C8), which was prepared by literature 

methods.77 All deuterated solvents were purchased from Cambridge Isotope 

Laboratories. All solvents were purchased from EM Science. *H NMR spectra were 

recorded on a Bruker Avance 500 instrument locked to the deuterated solvent at 500.1 

MHz. All peak positions are listed in ppm relative to TMS.

4.2.2 General Methods for X-ray Crystallography

The crystal was coated in paratone oil inside a cryoloop to prevent loss of solvent. A 

matrix was run and a unit cell determined prior to collection. A full hemisphere was 

collected in each case. Reflection data were integrated from frame data obtained from 

hemisphere scans on a Brtiker Apex diffractometer with a CCD area detector with Mo-Ka 

radiation (k = 0.71073 A). Diffraction data and unit cell parameters were consistent with 

assigned space groups. The structure was solved direct methods, completed by 

subsequent Fourier syntheses and refined with full-matrix least-squares methods against 

\F2\ data. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms 

were calculated and treated as idealised contributions. Scattering factors and anomalous
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coefficients are contained in the SHELXTL 5.03 software package (Sheldrick, G.M., 

Madison, WI).28 All crystallographic figures were prepared using DIAMOND.29

4.2.3 Preparation of 4,4'(5')-I)ibenzylalcohol-24-crovvn-8 (4a)

NaBH4 (115 mg, 3.0 mmol) was slowly added to a stirred solution of DFDB24C8 (250 

mg, 0.5 mmol) in a 1:1 mixture of CfhChiEtOH (100 mL) at 0°C, stirred for 1 hr and 

then brought to 25 °C over 2 hrs. The mixture was then acidified with HC1 (1M ) and 

extracted with CH2CI2 (3 x 100 mL). The organic layer was washed with NaHCOs (1 M) 

(3 x 50 mL), H2O (2 x 50 mL), and then dried over MgS04 . The solvent was removed 

under vacuum and the off-white solid dried at room temperature. Yield (210 mg) 83 %.

g

'O H

H O . •O H

Table 4.1
*H NMR Spectroscopic Data (CDC13, 500 MHz) for 4a.

Proton 8 (ppm) Multiplicity Peak Area J  (Hz)

a 6.916 s 2

b, c 6.831 -6.871 m 4

d 4.593 s 4

e 4.143-4.176 m 8

f 3.908-3.925 m 8

g 3.828 s 8
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4.2.4 Preparation of 4,4'(5')-Dibromomethyl dibenzo-24-crown-8 (4b)

PBr3 (70 pL, 0.6 mols) was added to a solution of 4a (175 mg, 0.3 mols) in dry THF (50 

mL) at 0 °C under an atmosphere of N2. The reaction was stirred for 1 hr after which 

time CH2CI2 (10 mL) was added to keep the solution homogeneous. After 2 hrs the 

mixture was warmed to 25 °C and the solvent was removed under vacuum. The resulting 

white solid was washed with cold EtOH and dried. Yield (188 mg) 88 %.

g

Table 4.2
’H NMR Spectroscopic Data (CDC13, 500 MHz) for 4b.

Proton 8 (ppm) Multiplicity Peak Area J(H z)

a, b 6.914-6.932 m 4

c 6.798 d 2

d 4.466 s 4

e 4.139-4.175 m 8

f 3.902-3.928 m 8

g 3.821 -3.827 m 8
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4.2.5 Preparation of the disodium salt of 4,4 '(5 ')-Disulfomethyl dibenzo-24-crown- 
8 (4c)

An aqueous solution (5 mL) of Na2S03 (310 mg, 2.5 mmol) was added to a solution of 

4b (770 mg, 1.2 mmol) in MeCN (45 mL) and stirred at room temperature for 48 hrs. 

The precipitate was filtered, washed with cold MeOH and the filtrate collected. The 

solvent was removed under vacuum and the white solid dried in vacuo. Yield (550 mg) 

67%

g

Table 4.3
*H NMR Spectroscopic Data (D2Q, 500 MHz) for 4c.

Proton 5 (ppm) Multiplicity Peak Area J  (Hz)

a, b, c 7.060-7.150 m 6

d 4.638 s 4

e 4.283-4.314 m 8

f 3.999-4.010 m 8

g 3.890 s 8
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4.2.6 Preparation of the tetramethylammonium salt of 4,4'(5')-Disulfodibenzo-24- 
crown-8 (4d)

Concentrated sulfuric acid (0.7 mL, 12.3 mmol) was added to a solution of DB24C8 (2.5 

g, 5.6 mmol) in MeCN (40 mL) and then refluxed for 45 min. The solvent was removed 

under vacuum and an excess of [Me4N+][OH‘] (25% in MeOH) was then added to the 

resulting pink oil. The white precipitate was collected by filtration and recrystallised 

from MeOH. Yield (3.8 g) 90 %.

f

Table 4.4
'H NMR Spectroscopic Data ((CD3)2SO, 500 MHz) for 4d.

Proton 8 (ppm) Multiplicity Peak Area ./(Hz)

a, b 7.118-7.130 m 4

c 6.867 d 2 8.8

d 4.040-4.072 m 8

e 3.748-3.772 m 8

f 3.664 s 8

[N(CH3)4]+ 3.090 s 24
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4.2.7 Formation of [2]Pseudorotaxanes

In all cases, except for DED, the thread and 4d were mixed in a 1:1 ratio at a 

concentration of 2 x 10'3 M in aqueous deuterated acetic acid (75% CD3COOD in D2O). 

A 2 x 10'3 M solution of DED in aqueous deuterated acetic acid (75% CD3COOD in 

D2O) was titrated with a 0.1 M solution of 4d from 0.1 equivalents to 3.0 equivalents.

4.2 Results and Discussion

4.3.2 Synthesis of Sulfonated Crown Ethers

4d was synthesised in a single step from DB24C8 (Figure 4.6)71 while 4c was prepared in 

four steps from DB24C8 (Figure 4.5). In each case, the exact conformation of the final 

product is unknown and is assumed to be a statistical mixture of both the syn and anti 

isomers. Any attempt to isolate one conformer or to separate the two was unsuccessful. 

Due to the symmetrical nature of the 'H NMR spectra, it was assumed that the two 

conformers would not greatly affect the recognition site and would not hinder the 

formation of a [2]pseudorotaxane.
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O OH

S 0 3Na

S 0 3Na

Figure 4.5
Synthesis of 4c: i) triflouroacetic acid, hexmethylenetetramine, 85 -  90 °C, 16
hrs, if) NaBHt, 0 °C, 3 hrs, Hi) PBr3, 0 °C, 3 hrs iv) Na2S03, RT, 48 hrs.

4c was the initial dianionic crown synthesised in this project with the idea that the 

methlyene group would give the sulfonate more structural freedom compared to 4d, 

while at the same time increasing the solubility in more organic solvents. Preliminary 

experiments showed that there was a competition between the sodium counter ion and the 

desired thread. Despite the perceived advantages of 4c, 4d was used for all further 

experiments due to its simple preparation and isolation as the tetramethylammonium salt, 

a non-competitive counter cation.
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The sulfonation of DB24C8 is straight forward through treatment with concentrated 

sulphuric acid (Figure 4.6). This generates the sulfonic acid, which is converted to the 

tetramethylammonium salt in situ by the addition of tetramethylammonium hydroxide. 

Sulfonation occurs on only one position of the aromatic ring, it is surmised that 

sulfonation in a second position does not occur due to the steric hindrance of the 

triethylene glycol chains of the crown ether.

o
0 0  h 2 s o 4

A, 45 min.

'p ^  0) [Me4N][OH]

O 'O
,0.

Figure 4.6
Synthesis of 4d.

The synthesis of all threads has been either previously reported64 or described in the 

previous chapter.

4.3.2 Solution Behaviour of [2]Pseudorotaxanes

The [2]pseudorotaxanes studied herein were prepared by simply combining the desired 

thread with the appropriate crown in a suitable solvent. Figure 4.7 shows the four 

[2]pseudorotaxanes that were prepared in this study. Typically, a non-polar solvent such 

as CH2CI2 or toluene that promotes hydrogen bonding is ideal. However, in this case,
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due to the insolubility of the [2]pseudorotaxane complex in such solvents, an aqueous 

solution of acetic acid was found to be suitable.

O — N ,

"SOv

Figure 4.7
Synthetic protocol for the preparation of [2]pseudorotaxanes used in this study.

The formation of a [2]pseudorotaxane is an equilibrium process and as such, the stability 

of the complex or the association constant, Ka, can be calculated in the following manner:

[Thread c  Crown]
Eqn. 4.1[Thread] [Crown]

This method works well when the equilibrium process is slow enough that it is possible 

to see peaks in the 'H NMR spectrum that can be assigned to both the complexed and 

uncomplexed forms. In this situation, the solution concentration of all species can be 

determined by the relative peak areas. However, if the process is fast on the NMR 

timescale, only a single peak will be observed at a weight averaged chemical shift. In 

this case, the Ka can be calculated by a non-linear least-squares refinement program such

78as EQNMR which uses NMR titration data and the following equation:

„ _ ûc [Thread] uc , [Thread] uc [Crown] u
calc -  -  -  +[Thread] total [Thread] Eqn. 4.2

total
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Of the four [2]pseudorotaxanes presently studied, only the formation of DED a  4d was 

fast on the NMR timescale. The titration data used to calculate the association constant is 

represented graphically in Figure 4.8.

DED + DB24C8 (2 x  103 M) in CDjCOOD

— 943 
E
£9.38

~  9.33 
c o
* 9 2 8
0
1  9.234>
5  9,18

0.0 0.5 1.0 1.5 2.0

Equivalents of DB24C8

2.5 3.0

DED + 4d (2 x  10'3 M) in CDjCOOD

9.15

9.20

~  9.25
CO

To 9.300
1  9.35

u  9.40
0.0 0.5 1.5 2.0 2.5 3.0

Equivalents of DSDB24C8

Figure 4.8
Graphical representation of the change in chemical shift of the a-pyridinium 
hydrogen as a function of crown ether concentration in CD3COODa? at 500 
MHz.

Due to solvent effects, it is difficult to directly compare the association constants between 

similar threads and either DB24C8 or 4d (Table 4.5). With the idea that the added 

electrostatic component would greatly increase the solution stability of the 

[2]pseudorotaxane complex, a method of comparing the stabilities between the 

“standard” [2]pseudorotaxane complex, DED c= DB24C8, and the new series of 

[2]pseudorotaxanes incorporating the sulfonated crown, 4d, was needed. In 

CDsCOOD^, there is no association between DB24C8 and DED as is evidenced in 

Figure 4.8. Although this still does not allow for a direct comparison, it does show that in 

C D 3 C O O D a? any observable association is a considerable im provem ent.
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Table 4.5
Comparison of association constants for [2]pseudorotaxanes containing 4d and 
DB24C8.

4d DB24C8

Thread in CD3COOD K-a (M'1) Thread in CD3CN Ka( M-')

(PhPy)2Et 31 (PhPy)2Et 387

02DED N/A 02DED 1125

DED 1301 DED 878

BZ2DED 1870 BZ2DED 1256

There are several necessary considerations when using acetic acid as a solvent. First, the 

pKa of CH3COOH is 4.76 and the pKa of an aryl sulfonic acid is — 6.5.79 Hence, the 

sulfonate is expected to remain unprotonated and continue to act as an anion in the 

[2]pseudorotaxane complex. However, the nitrogens on the terminal pyridines of DED 

will tend to be in the protonated form as the pKa of the pyridinium cation is ~ 5.2 (Figure 

4.9). Therefore, in acetic acid, DED c  4d is not zwitterionic as the thread is 4+ while the 

crown is 2'. However, it was thought that the extra positive charges on the thread would 

increase the electrostatic association. Indeed, (4-PhPy)2Et c  4d has a Ka of 31 M '1; much 

lower than expected when considering the difference between DED c= DB24C8 and 

(PhPy^Et c  DB24C8, indicating that the 4+ charge on the thread helps to stabilise the 

[2]pseudorotaxane complex. Along these lines of reasoning, it was expected that 

BZ2DED would also have an increased Ka due to the four pyridinium cations present in 

the thread.
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R R

CH3COOH +

N

CH3COO +

Figure 4.9
The acid/base equilibrium that exists between acetic acid and a pyridine.
Given that the concentration of CH3COOH is much larger than the 
concentration of the pyridine and that the pKa of acetic acid is lower than that 
of pyridinium the equilibrium is shifted to the right.

Despite the high polarity and competitive nature of acetic acid, hydrogen bonding 

between the acidic a-pyridinium and ethylene hydrogens on the thread and the oxygen 

atoms of the crown exist as evidenced by the downfield shift of these peaks in the *H 

NMR spectra. The upfield shifts of the other aromatic thread and crown protons and the 

observed yellow colour in solution indicate that there is a 7t-stacking component to the 

complex formation. Figure 4.10 shows the observed changes in chemical shift between 

the “free” components and the “complexed” supramolecule.
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Figure 4.10
*H NM R spectra showing the uncomplexed crown (top) and thread (bottom) 
and Bz2DED c : 4d (middle) at 500 MHz in CD3COODa(?. In the 
[2 ]pseudorotaxane spectrum, the peaks due to the complexed form are 
highlighted.
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By calculating the association constants at various temperatures the thermodynamic 

parameters AG°, AH°, and AS° can be extracted by a van’t Hoff analysis:

AG° = -RTlnKa = AH° - TAS° Eqn. 4.3

The van’t Hoff plot given in Figure 4.11 shows a linear fit following equation 4.3 and

over a small temperature range, can be assumed to be correct. However, there is a slight 

variation with temperature of the association constant resulting in a non-linear 

relationship. In this case, there is a non-negligible heat capacity and can be modeled

ftnfollowing the method of Dougherty in which the standard van’t Hoff analysis is 

modified to consider this effect:

AH0 = AH0 + TACP° Eqn. 4.4

AS0 = AS0 + ACp°lnT Eqn. 4.5

Substituting equation 4.4 and 4.5 into equation 4.3 gives:

R ln * a = ACp°lnT + (AS0 - ACp°) Eqn. 4.6

This modified equation now fits the data better (R = 0.9963) compared to the standard 

van’t Hoff analysis (R = 0.9873). Considering heat capacity, the thermodynamic 

parameters can be plotted against temperature as in Figure 4.11, the resulting plot shows 

that in the available temperature range, dependent upon the solvent, the formation of 

BZ2DED c  4d is enthalpic in nature.
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van 't Hoff Plot
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Figure 4.11
Van’t Hoff plot with a linear fit (dark blue) and Dougherty’s80 best fit (pink) 
and a plot o f the thermodynamic parameters for the [2 ]pseudorotaxane 
formation o f Bz2DED c; 4d. In the experimental temperature range, the 
[2 ]pseudorotaxane formation is primarily enthalpic in nature.

4.3.3 Solid State Structure of 3b a  4d

If the two components are combined in a 1:1 ratio in H2O, the [2]pseudorotaxane will 

crystallise overnight in quantitative yields. Single crystals suitable for X-ray diffraction 

were grown by combining 3b and 4d in H2O at 40 °C.
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Table 4.6

Ciystal data and details o f structure solution and refinement for 3b c  4d.

Formula C46H70N4O26S2 Collection Temp [K] 273(2)

Formula Weight 1159.18 pcaicd [g cm'1] 1.397

Crystal System Monoclinic p (Mok«) [mm'1] 0.186

Space Group P2(l)/n Min/max trans 0.8995/1.0000

a [A] 12.191(6) Unique data 21721

b[A] 18.702(9) R(int) 0.0466

c[A] 13.087(6) R1 [I >2al] 0.0593

<x[°] 90 R1 [all data] 0.0752

P [°] 112.518(9) wR2 [I >2ctI] 0.1620

r n 90 wR2 [all data] 0.1741

v  [A3] 2756(2) Data/variables 4853/352

Z 2 Goodness-of-fit 1.040

The solid state structure (Figure 4.12) clearly shows the interpenetrated nature of the 

[2]pseudorotaxane complex, providing evidence for the observed solution state 

behaviour. Also evident are all of the intermolecular, non-covalent interactions between 

the thread and the crown, including eight C-H---0 hydrogen bonds (Table 4.7) and the 

two N+- • O8' ion dipole interactions.
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Table 4.7

Hydrogen bond distances and angles in 3b c  4d.

Hydrogen Bonded Atoms C-H- - 0  Distances (A) C-H-.-O Angles (°)

H 8 A - 0 6 2.351(3) 154.94(21)

H 9 A - 0 6 2.687(8) 135.37(21)

H11A...07 2.575(5) 163.15(19)

H11B- -05 2.776(3) 150.88(20)

It was thought that addition of the sulfonate group directly to the aromatic ring of the 

crown, as compared with removal of the sulfonate group from the ring by a methylene 

carbon, might, through sterics, hinder the penetration of the crown by a bw-pyridinium 

dication. As is evident from the X-ray structure, this is not the case as the sulfonate 

functionalities are directed away from the interior of the crown and hence penetration by 

the thread is not impeded (Figure 4.12).

Figure 4.12
Ball and stick depiction o f 3b <z 4d as viewed down the thread axis. The 
sulfonate groups do not sterically interfere with recognition site. Key: blue =
N, black = C; red = O; yellow = S; white = H. Selected hydrogen atoms have 
been omitted for clarity.

In the solid state structure of 3b e  4d the thread is slightly offset from the axis of the 

crown so as to maximise the hydrogen bonding interactions between the a-pyridinium
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hydrogens on the thread and the oxygen atoms of the crown. The structure of 3b c  4d 

has the same conformation (Figure 4.13), thus supporting the suggestion that the 

sulfonate group does not sterically interfere with the formation of a [2]pseudorotaxane.

Figure 4.13
Comparison o f the solid state structures o f 3b <z DB24C8 and 3b <z 4d, 
showing the eight hydrogen bonds between the crown and the thread. Key: 
blue = N, black = C; red = O; yellow = S; white = H. Selected hydrogen atoms 
and anions are omitted for clarity.

A major impetus for the use of a negatively charged crown ether was the formation of a 

formally neutral [2]pseudorotaxane. The anionic, terminal sulfonate groups on the crown 

ether balance the cationic charge of the pyridinium nitrogens. The packing diagram 

(Figure 4.14) shows that the sulfonate of one [2]pseudorotaxane interacts with the 

pyridinium nitrogen of an adjacent [2]pseudorotaxane.
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Figure 4.14
Packing diagrams o f 3b c  4d. Highlighted is the intermolecular ion pairing (~
3.5 A). Key: blue = N, black = C; red = O; yellow = S; white = H. Hydrogen 
atoms and solvent molecules omitted for clarity.

4.4 Conclusions

An extra supramolecular interaction has been successfully added to the pseudorotaxane 

motif currently being used in the Loeb group. The added electrostatic component 

increases the Ka relative to the corresponding system in which there are no electrostatic 

considerations. Furthermore, the addition of an anionic component to the crown ether 

has allowed for the first observation of a zwitterionic [2]pseudorotaxane complex.

The solid state structure is in agreement with the observed shifted resonances in the *H 

NMR and confirms the solution evidence that the bis(pyridinium) thread penetrates the 

cavity of the 24 membered crown ether. Also evident, in the solid state, are all of the 

non-covalent interactions that allow for the formation of the [2]pseudorotaxane complex, 

namely, eight C-H---0 hydrogen bonds, two N+---08' ion dipole interactions, and the 

electrostatic attraction between the sulfonate anions and the pyridinium cations.
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The use of a sulfonated crown ether in combination with the bis(pyridinium) thread 

expands the scope and utility of this supramolecular motif. It is now possible to self- 

assemble these [2]pseudorotaxanes in competitive, polar solvents (such as CH3COOH 

and H2O), allowing for application in a increased array of further chemical 

transformations. In addition, the removal of ancillary anions is attractive from a crystal 

engineering/materials perspective in that solids can now be generated in which accessible 

void space would not be occupied by required counter ions.
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