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ABSTRACT

This study was undertaken to construct confidence intervals of the common odds 

ratio using several likelihood based procedures. The likelihood based procedures for 

the construction of confidence intervals of common odds ratio in K 2X2 contingency 

tables axe derived. Simulations are performed to study the properties of these 

procedures in terms of the tail and coverage probabilities and average lengths of 

the confidence intervals and the results are presented. Based on the simulation 

results obtained in this study, it is concluded that the Baxtlett method (B) is most 

suitable for constructing confidence interval for the common odds ratio in large 

sample design.
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C H A P T E R  1

IN T R O D U C T IO N

The comparison of two proportions in statistics has been actively studied by 

researchers for many years. One approach used for comparision of two proportions 

is inference regarding the corresponding odds ratio, a commonly used measure of 

association. The inference for the odds ratio is widely used in biostatistics, such 

as case-control and follow-up (restrospective and prospective) studies in cancer epi

demiology. In a case-control study, odds ratio is the ratio of odds of disease oc

currence among the exposd group and the corresponding odds for the unexposed 

group. In a follow-up study, odds ratio is the ratio of odds of exposure for the 

disease group and the corresponding odds for the non-disease group.

The key parameter for the case-control study or for the follow-up stud} is the 

odds ratio (^ ), because it takes the same value whether it is calculated from the 

exposure or from the disease probabilities. In the above situation, we deal with only 

a 2 x 2 table. However, nuisance or confounding factors are involved in many studies. 

Confounding is denied as the distortion of a  disease/exposure brought about by the 

association of other factors with both disease and exposure. For example, age is a 

confounding factor in the case of alcohol consumption and cancer. One of the most 

important methods known for a  long time used to control the confounding factor, 

is to divide the sample into series of strata which are internally homogeneous with 

respect to the confounding factors. In such situations, the summary measure will 

be the common odds ratio. A full analysis of such series of 2 x 2 tables would be: (1) 

to test the homogeneity of the odds ratios in all tables; (2 ) once such a hypothesis 

is not rejected, to test the common odds ratio ip = 1 , that is, to test that there is

a
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no interaction between the exposure and disease and (3) if such a test fails (that 

is, when ip =  1 is not acceptable) then to obtain the confidence interval for the 

common odds ratio.

Considerable amount of work has been done in this area. For example, Mantel, 

Brown and Byar (1977), Tarone (1985) and Paul and Donner (1989,1992) studied 

procedures for testing homogenity of odds ratio when the number of strata is fixed 

and sample size in each stratum  can take any value up to infinity. Liang and Self 

(1985) studied procedure for testing homogenity of odds ratios in a large number of 

tables with sparse data in each table. Procedures for testing ip = 1 were developed 

by Cochran (1954), Mantel and Haenzel (1959) and Mantel and Fleiss (1980).

Several point estimators for the common odds ratio exist in the literature. Woolf 

(1955) proposed the emprical logit estimator that behaves well for the large data but 

not for the sparse data. Gart (1962,1971) developed unconditional and conditional 

maximum likelihood estmators. Mantel and Haenzel (1954) developed the Mantel- 

Haenzel (M-H) estimator. Breslow and Liang (1982) recommended a modification 

of the M-H estimator based on the jacknife principle. A number of simulation stud

ies have been conducted to compare the properties (bias and precision) of various 

estimators of the common odds ratio (McKinlay, 1975, 1978; Lubin, 1981; Hauck, 

Andersen and Leahy, 19S2, 1984; Jewell, 1984)

Relatively less attention has been given to confidence interval procedures for the 

common odds ratio. Gart (1970) gave an exact and an approximate method to 

construct the confidence interval for the common odds ratio. Brown (1981) studied 

the validity of three approximate methods developed by Cornfield (1956), Miettinen 

and Woolf (1955) for constructing confidence interval for the common odds ratio in a 

single 2 x 2  table. Hauck and Wallemark (1983) studied seven methods to construct 

the confidence interval in multiple tables. From the above study, the authors have

■>
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concluded that the method using M-H estimator with Breslow's variance estimator 

provides coverage close to nominal. Robins, Brcslow and Grecndland (19S6) have 

compared six procedures based on various estimators of the variance of the M-H 

estimator to construct confidence interval for the common odds ratio. Sato (1990) 

developed a  new confidence interval procedure using the M-H estimator and its 

asymptotic variance.

Several likelihood based procedures for constructing the confidence interval for 

a parameter in the presence of nuisance parameters are available in the literature 

(Bartlett, 1953; Levin and Kong, 19S0; Diciccio, 1990; Fraser, 1991). However, 

these procedures have not been used to construct the confidence interval for the 

common odds ratio. In this thesis, we apply several likelihood based procedures 

to construct confidence interval for the common odds ratio. Properties of these 

confidence intervals, in terms of coverage, are investigated by simulation.

In chapter 2, we review five likelihood based procedures to construct confidence 

interval for a parameter of interest. In chapter 3, we review maximum likelihood 

estimation of the common odds ratio. In chapter 4, we derive the likelihood based 

procedures to construct confidence interval for the common odds ratio. In chapter 

5, we conduct a simulation study to investigate the properties of the various interval 

estimation procedures derived in chapter 4.

3
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C H A P T E R  2 

A R E V IE W  O F L IK E L IH O O D  B A SED  P R O C E D U R E S  F O R  

T H E  C O N S T R U C T IO N  O F C O N F ID E N C E  IN TER V A L

Let f ( X ; 7 , p) be a density of a random variable X indexed by 7  and p, where 7  is 

tlie parameter of interest and p — (p i , • • • . p k )1 is a  vector of K nuisance parameters. 

Given the sample X j, * • • , X n denote the log-likelihood by 1(7 , p). Now, define the 

likelihood scores ^  and Then the maximum likelihood estimates (MLEs) of 

the parameters 7  and p — {pi. • • • .Pk )' are obtained by solving

and

fc =  1.• • • . K
Opk

simultaneously.

2.1 P ro ced u re  based  on  th e  asy m p to tic  p ro p e rtie s  o f M L E  

Denote the MLEs of the given parameters 7  and p =  (pi, ■ • ■ . p k )' by 7  and p 

— ( P ly ' "  iPk )' respectively. The asymptotic 100(1 — a)% confidence interval for 

7  is given by

7  — { y /v a r j  < 7  <  7  +  Qy/varj

where C is an appropriate quantile of a standard normal random variable. The 

quantity var{7 ) is obtained by inverting the Fisher information matrix of (7 , p). The 

elements of the Fisher information matrix are the negative of the expected values 

of the second order mixed partial derivatives of the log-likelihood function with 

respect to the parameters 7  and p. Thus, l(X,  7 , p) is the log-likelihood function. 

Then the asymptotic variance-covariance of (7 ,/?) is given by
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where

d2l

and
d2i 

' dpdp

The unknown parameters in var(7 ) are then replaced by their corresponding max

imum likelihood estimators. Note that J7 7  is a scalar, J7p is a lx K  matrix, JP7 is 

a  K x l m atrix and Ipp is a K xK  matrix.

2.2 P ro ce d u re  based  on  L ikelihood R a tio  

Denote the unconstrained maximum log likelihood by 1(7 , p) and the constrained 

maximum likelihood by l ( j , p), where p =  (p i,--* , p k )1 which maximize the log- 

likelihood function 1(7 , p) for given value of 7 . Then the likelihood ratio is given 

by

L R  =  2(l(7 ,p) — 1(7 , p))

has a  distribution which is approximately chi-square with one degree of freedom. 

Thus, the 7  values that satisfy

L R  = 2 m , p ) - l ( 7 ,p)) < X2(1- a)(l)

are the approximate 1 0 0 ( 1  — a)% confidence limits for 7 , where X(i_0 )(l.) is the 

( 1  — a ) th  quantile of a  chi-squared distribution with one degree of freedom.
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2.3 P ro ce d u re  based  on a d ju s te d  likelihood ra tio

Diciccio (1988) and Diciccio, Fraser and Field (1990) developed a  confidence 

interval procedure for the parameters of a location-scale family of distributions, 

where the location may be a  function of several regression variables X i, ■ • • , X jc- 

Thus, if k =  1 we deal with the confidence interval procedure for the parameters of 

a  two parameter distribution. Let p =  (pi,-* - ,Pk )' be the regression parameters 

and 7  be the scalar parameter. In many situations, inference for a scalar parameter 

in the presence of nuisance parameters requires pivotal quantities. From Diciccio 

(1988) the pivotal statistics are,

P k - ^ e > L z h ,  6  =  1 , . . . , *
7

and
V-Ptv'+i =  log(-) .
7

where p and 7  are the MLE’s of p =  (/»!,••■ , p k ) ' and 7 . Therefore, the log- 

likelihood l(7 , p) can be written in terms of a vector of pivotals P  =  (Pi , • • • , Pk +i )'- 

We denote this as l(P).  It is obvious that the likelihood l(P) attains its maximum 

value 1(0) at Pfc =  0, k  =  1 , • • • , K  + 1 . Suppose the k th  parameter is of interest, 

then the associated pivotal is Pk and the corresponding likelihood ratio (LRk)  is

L R t =  2  [i(0 ) -  ;(P (P t ))]

where l(P(Pk)) is the maximized log-likelihood function for a  given value of Pk- 

The statistic LRk  is approximately distributed as chi-square with one degree of 

freedom. Now define the signed root of the likelihood ratio by

SRk  =  —y/LRk, Pk < 0

and

SRk  =  +y/LRk,  Pk > 0 .

6
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The distribution of SRk  can be approximated by the standard normal distribution, 

which has an error of order n~ 2 . That is

Pr(Pk < pk) =  $(SRk)  +  0 (n"21),

where $  is the distribution function of a standard normal random variable. Many 

researchers including Brandorff-Nielsen (19S6), Diciccio (1984,1988), Efron (1985) 

and McCullagh (19S4; 19S7) studied on further reduction of error and concluded 

th a t mean and variance adjustment to the approximate standard normal distribu- 

tion of the signed root likelihood ratio statistics reduces the error to the order n~ 2 . 

Thus,

Pr(Pk < Pk) =  $ ( S R k ~ flk) +  0 (n -§ )

where (ik and <r| are the mean and variance of SRk,  respectively. The above equa

tion can not be used as the exact values of mean and variance axe not available. 

However, in principle, they can be sufficiently well approximated such that the 

above equation remains valid. Diciccio, Field and Fraser (1990) presented a pro

cedure whereby the mean and variance adjustments in the above equation can be 

achieved using a simple formula that involves only first and second order partial 

derivatives.

The general form of the approximation is

Pr(Pk < Pk) =  H S R k) + t (S R k) 1 +  m* -j- 0(ra a )
SRk h (P (P k) )x \ I* \±  

where I  is the observed information matrix of order (K  + 1 ) x (K  +  1) with Pk, 

k =  1 ,..., K , K  + 1 being replaced by zero. J* is the submatrix of I  corresponding to 

(P i,--  - ,P fc_ i ,P fc+1,-- - ,PK+i) with Pj , j  =  1  + l , j ^ k  being replaced

by its maximum likelihood estimate for given value of Pk- 1 fj ^ and | I m\% are 

the square roots of the determinants of the matrices I  and I* respectively for k = 

1 , - - • , K  + 1 and h(P(Pk)  =  J -  , Pj =  Pj , j  =  1, ...K, K  +  l , j  ^  k.
Pk—Pk
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When k =  1, the above approximation reduces to

P t{P < v) = $ (S R )  +  4>(SR)

where

ZiOr) =

1 , (-fa(Q ))*' 
S R +  2i(p)

^ l ( x )

+  0(tT3-)

dx1

and <f> is the density function of N(0,1)- Thus, 1 0 0 ( 1  — a)% approximate lower and 

upper confidence limits for the given pivotal (kth) axe obtained by solving

Pr{Pk < Pk) =  f

and

P r { P k  <  Pk)  =  1 - 2

Hence, the confidence limits for the kth parameter of interest can be obtained from 

the pivoted limits.

2.4 B a r t le t t ’s p ro ced u re  based  on th e  likelihood score 

Bartlett (1953) showed that, in the case of "nuisance parameter” there is an 

alternative to maximum likelihood estimator 7  and is given by

T M  — ( —  -  j  r 1—
[ /> \d - i  ,‘‘ pp dp

with variance

Ifi-p ~  I f f  Ifp'Ipp -Ipf-

Also, he showed that is a standardized normal variable. That is,

T(7) ~ N {  0,1).
Vi-ff-p

An approximate 100(1 — a)%  confidence interval for 7  can then be obtained by 

solving

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where Z s l is the appropriate quantile of the standard normal random variate.

2.5 B a r t le t t ’s p rocedure  co rrec ted  for bias an d  skew ness 

When the nuisance parameters p in T(7 ) are replaced by their corresponding 

maximum likelihod estimates, the statistic T(7 ) involves a bias of 0 (n“ 3 ) and is 

given by

Bias  =  £ (T (7 )) =  - \ t r a c s  +  2̂ )) +  ^ a a c  ( I j M )  ,

where

i  =  1’ -

See, Bartlett (1953), Levin and Kong (1990).

Skewness or the third cumulant of T(7 ) to the order of n~% is obtained for 

$ = t  = q =  1, K , as

where /  =  (A , • • • , f K )' =  I1PI - 1
p p  ■

The statistic T(~f) corrected for skewness and bias are a  better approximation 

for the normal distribution. Therefore, a more accurate 100(1 — a)% confidence 

interval for 7  can be obtained by solving
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r(T ) _  B{T{7 )) _  K M ( Z \ - 1 )  =  

VAt-p 6 j | 7.p

10
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C H A P T E R  3

N O T A TIO N S A N D  EST IM A T IO N S O F C O M M O N  ODDS R A T IO

3.1 N o ta tio n s

Consider K pairs of mutually independent binomial variates Xu,-X-ji with cor

responding parameters Pik,P2k and sample sizes N i k, N 2k, where k =  l,*** ,K .

Xu- ~  B{Nik,Pik)

and

X 2k ~  B (N 2k,p2k).

Thus the data for the kth table or for the kth pair or the kth stratum are

1 (success) 2 (failure)

1 Xu- jV u - X u  Nlk

group

2 X 2k N2k - X 2k N2k

Tk N k - T k N k

and the corresponding table of probabilities for the kth stratum  are

l(success) 2 (failure)

1 Pit 9u

group

2 p 2k ?2 k

where pu- +  gut =  1 and p2k +  q2k =  1. Thus, qlk =  1 -  p u  and q2 k - l ~  p2k. 

The odds ratio for the kth table (stratum) is

i>k = (3.1)
P2kqik

11
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The alternative name cross product ratio is used for odds ratio as it is equal to the 

ratio of the products p\k<l2 k and p2 kQik’, the probabilities from diagonally opposite 

cells. The odds ratio can be any nonnegative number. In other words

0  < *0 jt <  oo.

The odds ratio does not change values when the orientation of the table is reversed 

or when the rows become the columns and vice versa. Therefore, it is not necessary 

to identify the clssification as the response in order to calculate odds ratio. It is 

sometimes more convenient to use log{‘4>k)> the natural logarithm of if>k- Because 

the odds ratio is symmetric about this value, reversal of rows or columns changes 

only the sign. In this study, we consider only the case where the odds ratio is the 

same in all strata (tables). That is,

i>k =  0 <  i> < oo

for all k =  1 , . . . , if.

3.2 U n co n d itio n a l m axim um  likelihood  e s tim a to r

The distributions of X ik  and X 2k are binomials with indices Nik  and N 2 k and 

probabilities pu- and p2k respectively. The likelihood L,  dropping the combinatorial 

terms, is
K

L cx n ( P i ^ A'xi(?i*)Nlt_A'in ? 2 0 A'Sk(g2Jc)iV2'!" X2t-
k=i

Using equation 3.1 with »ve have

„  _  Pi*V2k =  ;------
WQik + pu-

and

92 k = 1 - P 2fc- 

12
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So the likelihood

V Q i k + P i k  V<hk +  P ikk= 1

and the log-Hkelihood 1 is

1 =  C +  E  (*!**<*(— ) +  N lklogqlk +  X 2kl o g ^ ~  + N 2klog * * *  ") ,
?U- Wu- WQik+PlkJ

= c  +  V  | ( x : t + x m ) M — ) +  +  JV s iJ^ -T -ra r  -  x , j o Sw )  ,

where, C is a constant independent of the parameters i/>, p n ,  Now, T*. =  

Xu- +  X 2 fc. Define pk = l o g ^ ,  7  =  lo9i’- Then ^ 7  =  ept, pu . =  =»

Qik =  e~ t • The log-likelihood I can be written as

K

l = C + Y ,  (TkP* +  ( ^ 2 k ~  X 2 k h  -  N lklog( 1 +  ep*) -  N 2klog(e^ +  e * )).
fc=i

(3.2)

The log-likelihood involves the K  -f 1 parameters 7  and pk, k =  1 , • • • ,K .  The 

maximum log-likelihood estimators of 7  and pk (k  =  1 , K )  are obtained by 

maximizing the log-likelihood (3.2) directly by using IMSL subroutine DUMINF 

(IMSL.LIB 1989) . Denote the MLEs of pk and 7  be pk and 7 „. These are the 

unconditional maximum likelihood estimators.

3.3 C ond itiona l m axim um  likelihood 

When working with the increasing strata case, the principal distribution of in

terest will be that of X i k, given Tkl N 2k and N2k. As originally noted by Fisher 

(1935), this distribution is the extended (or noncentral) hypergeometric distribution 

(Harkness, 1965) which is given by

& “ ) ( t Nx  ) 4 Xlk

13
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where ak =max ( 0 , Tk — N 2k), bk =  min (Tk , N ik). 

Then the joint likelihood is

K  ( N lk\ (  N^k \~lfXlk

By reparametrization of =  e7, we have

K (Nil\ ( Nik \ e-fXlk
L ~  TT ^x ^) \Tk~Xlk}e

l i  v ^ i> *  ( N i k \  (  N i k  N _ 7 U '
Jc=l t - ' - U .  —  CL)' \  U )  vTk —u/

Prom this, the log-likelihood can be written as

* =  £ ( X i ^  +  C W o< 7/fc(7))
k - i

where
ik

f  /V-. 1. \  /  \  ^

and Cjt is a constant independent of the parameter j .

The partial derivative of I with respect to the parameter 7  is

*  i r A  “  A W  a -r S '

i i ,  ("**)(_ w“  )e7A'i»
Now,

Further,

Y  —h l. A l f c « —V i *

Thus,

and

M k = a k

=  1 % ( 7 )

£
d j

fk(  7 ) ^ 7

=  E * » - Z > ( * » W -
fc-1 fe=l

14
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But, for the maximum likelihood estimator of 7,

dl n 
d1 ~

Hence, the maximum likelihood estimator of 7  is obtained by solving the equation

K  K
£ X U . =

fc=l k = l

This equation can be solved by IMSL subroutine ZBREN. Denote the maximum 

likelihood estimator of 7  by j c. This is a conditional maximum likelihood estimator.

15
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C H A P T E R  4

L IK E L IH O O D  BA SED  C O N F ID E N C E  IN TER V A L 

P R O C E D U R E  F O R  T H E  C O M M O N  O D D S R A T IO

4.1 C onfidence in terva l es tim atio n  based  on th e  co nd itional m ax im um  

likelihood e s tim a to r  o f th e  com m on odds ra tio .

4.1.1 P ro ced u re  based  on th e  a sy m p to tic  p ro p e rtie s  o f M LE

From the definition of variance,

F a r(X u .;7) =  -  ( S f c l ) f  ,

where

and

£(*u-;7)= £  x lk (yU) ( t N3y )eyXlkxr VAtfc/ \Tk — Aifc/___

/ t ( 7 )

TPt v 2  \    \  v 2  v - V i t /  — X i k )

-L  x . *  j-----------
Ait=at

From chapter 3 we have

( - )

so the second derivative with respect to 7  is

1 Pfkil)  1 . d f t ( 7 )  .2' 

372 373 3 7

From /*(7 ), we have

Ajksai-\ t k = a k

1 0
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So

and

Thus,

a 1 dh h )
m “ ; l )  =  A W S T

1 d'-h(  7 )
E ( X l k;7 ) =

/*( 7 ) d'y2

| d  = -  ( J > ( * r t ;7) -  E w ^ ) ) 1
7  W i  jt=i

A
=  V’a r(J fifc; 7 ).

Jk=l

Now, the asymptotic variance of the conditional maximum likelihood estimator 7 c 

is

V a r (  7 , )  =  - - r i i y  
-fi'VoTr)

Therefore,

T^ar (7C) =
X £=i Var(A"u.;7 )

Thus, an approximate confidence interval estimation for 7 C is obtained as

7c ±  Z± y/Var%

which can be written as

7* ±  z % \ ^ --------- j z — : (4-2)

Denote the estimates of the lower and upper limits of the confidence interval for 7  

obtained from (4.2) by 7 McZ, and 7 McU. Then tin approximate confidence interval 

for tj), by using the conditional maximum likelihood estimator of 7 , is

ciMcL

17
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Denote these by V-’Mc.L and 4>mcU-

4.1.2 P ro ced u re  based  on likelihood ra tio  

From chapter 3, the conditional log-likeihood is

K

k=1

and the maximized log-likelihood, using the maximum likelihood estimator 7 C is

K
i(7c) =  E  (*>‘7= +  c * -  k v M i ' ) )  ■

k= 1

Thus,

L j j = 2 [ i a ) - / ( T)]

The confidence limit for 7  using the likelihood ratio procedure is obtained by solving

2E Xik(jc -  7 ) +  l o g f k^
fk(  7c).fc=l L

Tliis equation can be solved by using IMSL subroutine ZREAL. Denote the lower 

and upper limits of the confidence interval for 7 , obtained from (4.3) by ^LcL and 

‘jLeU’ Then the estimators for the lower and the upper limit of the confidence 

interval for ip, using the likelihood ratio procedure, axe

i>LcL =  e 11' 1

and

ipLcU ~  e ,LcV•

4.1.3 P ro ce d u re  based  on a d ju s te d  likelihood ra tio

18
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According to the procedure developed by Diciccio, Field and Fraser (1990), as 

discussed in chapter 2 , odds ratio is the only parameter of interest in the conditional 

approach. Therefore, the pivotal statistic is

P  =  l o g t .

By repaxametrization of logil> =  7 , we have

P  = 7  -  7 .

Therefore,

7  =  P  +  7 ,

where 7  =  7 c=conditional maximum likelihood estimator of 7 . From chapter 3, the 

conditional log-likelihood is

K

1(7) = £ ( * i*7 + C»-1o9A(7)).
fc=l

Then, the corresponding log-likelihood,using the pivotal P, is

K
l(P) = Y ,  (Xu(P + 7) + Ct -  logMP + 7)) •

Jt=l

When P  =  0, the corresponding log-likelihood is

K
m  = £  & i»7 + c t  -  h a m ) )  ■

fc=i

Hence, the likelihood ratio statistic is

L R =  2 [1(0) -;(/> )]

=  2 ± ( X m P )  +  l° a ^ )
k= 1

19
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Prom chapter 2, the signed root likelihood ratio is

S R  = - V L R ,  i f  P  <  0

and

S R  = VLR ,  i f  P >  0.

Now, from the log-likelihood, involving the pivotal, we have

K  K

fc=l k= 1

and
A'

M 0 ) =  - £ V a r ( X lfc;7 ).
k= 1

Follwing the procedure in section 2.3, the marginal tail probability for the pivotal 

P can be given as

P r(P  <  p) =  4>(SB) +  H S R )  f - r j j  +

Hence, the 100(1 — a)% approximate lower and upper confidence limits are obtained 

by solving

P r(P  < P) = H S R )  + H S R )  +  j f f l )  =  I

and

P r (P  <  p) =  H S R )  +  H S R )  - 1 - f

respectively. Denote these as P i  and Pu- Therefore, the corresponding lower and 

upper limits of 7  using Diciccio’s procedure are 7  +  P i  and 7  +  Pu  respectively. 

Then the lower and the upper limits of the confidence interval for ip are

ipDcL — e7+Pt 

20
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and

i>DcU = e ^ p“.

4.1.4 B a r t le t t ’s p ro ced u re  based  on likelihood score

In this approach (conditional), we have determined the likelihood, using only the 

parameter of interest 7  (or tp). From chapter 2, the alternative to the maximum 

likelihood estimate 7 c, is

with variance I 77. Thus, an approximate confidence interval for 7  can be obtained 

by solving

V  A l

where Z± is the appropriate quantile of the standard normal distribution. From 

Fisher information matrix

and also from section 4.1.1 we have

g -  =  £ ( * » - - E ( X i « 7 ) )
^  fc=l

and

Therefore, an approximate confidence interval for 7  can be obtained by solving

This equation can be solved by using IMSL subroutine ZBREN. Denote the lower 

limit and the upper limit of 7  obtained by B artlett’s procedure by 7 b cl iBcU- 

Then the corresponding lower and upper limits for the confidence interval of the 

odds ratio ip are

21
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i>BcL =  e7Bet

and

i>BcV =  .

4 .1 . 5  B a r t le t t ’s p ro ced u re  co rrec ted  fo r b ias a n d  skew ness 

Since the conditional likelihood involves only one parameter 7 , from chapter 2,

B ( T ( j ) )  = 0.

The third cumulant for the alternative to the maximum lkelihood estimate for a 

single parameter 7 C, is

JT3(T(T) ) = 2 £ ( 0 )  +  3 ^ 2 .

Therefore, the 100(1 — a)% approximate confidence interval for 7  is obtained by 

solving
i f 3(7)(Z i - 1) 

T(  7 )  H r  =
6 Iy-f

Applying
d2l

the partial derivative of I 7 7  with respect to 7  is

Prom section 4.1.1

Therefore,
1 k= 1

a n  a i ,  Tr . „  A  a i .
= (j>ar ; J

*>*>
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But under regularity conditions

Therefore,

Thus,

and

But from section 4.1.1

< >  = °-

a n  a i , n 
( a72 07

« n s _ F A
a7 W

j r , ( r w )  =  - £ ( 0 ) .

an
a7 2

3/ik(7 ) ■

Hence, the third derivatives of /*,. (7 ) with respect to 7  is

i?!£ =  v r
^  k

1 ( dM l ) ^ d 2M  i ) \
fU7 ) ^7  ^72 y \fk(i) ®i

2 f 3A-(7)v a/*(7)
1 a a 7

But from section 4.1.1, we have

E ( X lk; i )  = 1 fl/t(7)
/fc(7) d7

and

Furthermore,

■■2. \  i  & h i i )E{Xlk,  7 ) =
/*(7) 572

W & ? 7 )  =
1 Ml)  

Ml)  dl* '
23
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Hence,

=  £ 3 £ ( Z l t ; 7 ) ^ ? t ;7) -  £ 2 (S (X i i ; 7 ))! -  ' £ E & l t n )

and

Qzl

t =i 1 = 1  te i

B ( | ? )  = J 2 3B<X ^ S ^ 7 )  -  5 > ( S ( * i « 7 ))S -
0/7 fc=l &=1 fcsl

Therefore, the third cumulant of T(  7 ) is

K  K

K , m i ) )  =  - ^ 3 E ( X n .,7 )E(Xh . ,7 )  + W u , 7 ) ) ’
1—1 fc=l

+  X > ( X ? t ,7 ) <4-5)
fc=l

By using the the values for T(7 ) and J7 7  and / ^ ( T ^ ) )  from equations (4.1), (4.4) 

and (4.5) the confidence interval for 7  is obtained as

6 l|,

Thus, the lower confidence limit for Tis obtained by solving

K a P W )T(l) -  -  1) =  + 4
6 /2  2

77

and the upper confidence limit is obtained by solving

r ( T) - ^ Tl 7 )) ( 4 - 1) =  - 4 -
61 4 ,

These equations can be solved by using IMSL subroutine ZBREN. Denote the lower 

limit and upper limit of 7  obtained by B artlett’s corrected procedure by jBCcL 

7BCcU- The corresponding lower limit and upper limit of the odds ratio are

i>BCcL =  eii?c<:£

and

4>bccU  =  e ^ CcU.

24
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4.2 Confidence interval estim ation based on the unconditional m axim um  

likelihood estim ator o f common odds ratio.

4.2.1 Procedure based on the asym ptotic properties o f MLE

Gart(1962) showed that the asymptotic variance of the unconditional estimator 

Tpu is

Vot{$u) =  — ,

Where

K  

fc=i

and

{Vfc) 1 — i^ikPikQik) 1 +  {N2kP2k<i2k) l - 

Also, from section 3.1,

e Pk
Pik -  — — —, qik  =1 +  epk 1 +  ePk

and

Therefore,

g Pk

P2k =  =

r i =  Nlk(e^ + e^)2 +  N2ke^(l +  ePk)2 
{ NlkN2k'>ePk

An approximate 100(1 — a)% confidence interval using the unconditional maximum

likelihood estimator of the com m on odds ratio is given by

/ t i2
3 y v

Denote the lower limit and the upper limit of the unconditional odds ratio using 

asymptotic property of the mle by 4>MuL and i ’MuU-

25
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4.2.2 Procedure based on likelihood ratio

Let p = (p u ,...,P ia ') ' and ip be the maximum likelihood estimator of p = 

(pn,. . . ,PiK)'  and ^  respectively and the corresponding maximized log-likelihood be 

l(ip,p). Further, for a given ip, let p =  (p n , ...,PiA')' be t t e  maximum likelihood es

timator of p =  (pn , • • ■ , pi A'yand the corresponding log-likelihood by l(ip,p). Then 

following the procedure discussed in chapter 2 , the confidence interval using the 

likelihood procedure is obtained by solving

2  [/(^ ,p) -  <  X(i_a)(l)-

From chapter 3, the maximized log-likelihood l{i>,p), using the paxametrization of 

7  and pk is

K

l = C + Y ,  i^kPk +  (N2k -  X 2k) i  -  N lklog{ 1 +  e*fc) -  N ^ l o g ^  + e“ )) .
k=1

We still need to find l(ip,p). Again from section 3.2, we have

J(Vsp) =  C + T  ( X lklog( +  N lklogqlk + X 2kl o g ^ ~  +  N 2klog * * *  )  .
^5ifc ^ q ik + P ik J

For a  given ip, the maximum likelihood estimator for plk , k =  1, • • • , K  is obtained 

by solving =  0. Now, the partial derivative of I with respect to put is

81 _ X lk (Nik -  X lk) + X u  (N u - X u ) (N2k) ( l - i P )
dpik Plk qik plk qik V’9iJt+Pifc

_ x lk + X 2k (Nik +  N 2k -  X u  -  X 2k) N 2k( 1  -  iP) = Q
put 9 ifc i > q i k + p i k

From this and using the reparametrization of pk = log( 1£yrlfc) and 7  =  logip we 

obtain

r ( l  +  e*0 (Nk - T k)(l + e*>) N 2k( i  +  e P * ) ( l - e 7) 

k eP* 1 ei  +  eP* ’

26
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which, can be written as

where

a n d

A kX l  + B kX k +  Ck =  0

B k =  -T*( 1 +  e7) +  N lke7  +  JV2fc, 

= (J\T* -  Tfc),

Cfc =  —Tj^e1 

X k = ep*.

Now, Pifce(0,1), pke(—oo, oo) and e(0, oo). The solution of the quadratic equation

is

v  - B k ±  y / B l - 4 A kCk 
Xk ~  2At  •

We have to show that, it has two real roots and only one root is admissible. That is, 

only one solution is in the range (0 ,oc). Now A t =  N k — Tk is positive, —Ck =  Tjte7  

is positive therefore, —A k C i; is positive.

~ A kCk > 0 = > B l -  4A kCk > 0. (4.6)

Therefore, the quadratic equation has two real roots. Now,

~ 4A kCk > 0  => B \  — AAkCk > B \ ,

y jB \  — 4AkCk > B k. (4.7)

Prom this it is clear that —B k + y /B f  — 4A k Cu >  0  and —B k —y/B%— 4AkCk 

<  0. Therefore, we have only one admissible solution. Using this, the maximum 

likelihood estimate of ePk for a given e7  is

=  ~ B i  +  'J B l  ~  (4.8)
2 A k

27
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Putting this in l{7 ,p) we obtain 

K
l ( j ,p)  = C + J 2  (TkPk + (N2k -  X 2k)1 -  N lklog( 1 +  e'*) -  N 2klog(e7 +  e * ))  .

k=l

Prom section 2 .2 , an approximate 1 0 0 ( 1  — a)% confidence interval for 7  is obtained 

by solving

L R  = 2 { m , p ) - l ( - r , p ) ) < x l - M

The above equation can be solved by using IMSL subroutine ZREAL. Denote the 

lower limit and upper limit of 7  obtained by the likelihood procedure by jluL and 

7LuU' The corresponding lower limit and upper limit of the odds ratio axe

i>luL =  e7Lu£

and

i>LuU =  e 1LuV.

4.2.3 Procedure based on adjusted likelihood ratio

In this approach (unconditional), 7  is a scalar parameter and p =  (pi, • • • , p k )' 

is the vector of nuisance parameters. As discussed in chapter 2, according to the 

procedure developed by Diciccio, Field and Fraser (1990), the pivotal statistics are

p k = { p k Z Pk\  fc =  i , . . . , i f

and
ib

Pk + 1 = log-?.
i>

Thus,

Pk =  Pk +  Pki>

and

7  =  7 +  Pa'+i- 

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



From chapter 3, the log-likelihood ceui be written as 

K

I = C + Y ,  +  (N 2* "  ~ N ^log{l  + e'*) -  N2klog(e  ̂+  e * )).
k= 1

Therefore, in terms of the pivotals, the log-likelihood is

K

HP) = C + Y ,  (Tt(pt + Pki>) + (JVat -  JfsO(i + Pk+i)) -
t= l

A'

X ) +  e « +p*^) +  N 2klo g {e^PK+l +  e'*+Pk*)) (4.9)
fc=i

Hence,

A'

Z(0) =  C +  X  (TkPk +  {N2k -  X 2kYf -  N lklog(l + <f*) -  N 2klog{e* +  e « ))  . 
fc=i

Now, we need to find Z(P(Pa*+i )). From equation (4.9) we obtain

J !L  =  _  J W fc+P**W  _  =  Q
9P<: * ePJc+-P*̂  ̂ £7+^+1 cPk+Pk'i>

_  N lkePk+Pk*_______N 2ke^k+Pk^  _  Q
( 1  +  ePk+Pk^) e i+f>K+' +  e^*+p*^

=> Tjt(l +  e^ +p^ ) (e ^ +p'c+l +  e*k+Pk*) -  +  e^ +p*^)

-iV 2fce ^ +pfc^ (l +  e' k+Pk*) =  0 (4.10)

Let Xjt =  e^p*. Then equation (4.10) can be written as

A kX k +  B kX k + Ck =  0

where

A k = (Nk - T k) e ^ k,

B k =  -  (T * (l +  e^+PK+1) -  N i keif+PK+l -  N 2fc)

20
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and

Ck = -Tuc*****'.

Now, using the same argument as in the derivation in section 4.2.1, we have the 

values for Pk (k =  1 , • • • , K)  that maximize l(P) for a given value of Pk +i as

Substituting this value in equation (4.9), we obtain the maximized log-likelihood 

for a  given value of P k + i as

K
l(P(PK+l)) = C + 5 2  (Tk(pk + Pk*) +  (N 2k -  X 2k) t f  +  Pjc+i)) -

k=i
K

Y  (Niklog{l + e''*+p*^) +  N2klog{ei+p«+' +  e^ + p*^)J (4.11)
k= 1

Therefore, the likelihood ratio statistic for the pivotal P k + i  is

L R K+1= 2 [ m - l ( P ( P IC+1))]

K
=  2  Y  ( - T k P k i )  +  (N2k -  X 2k) ( - P K+i))

k=i

, l  + epk „  , e^ +  epk \
—2  }  ( Niklog----------------- +  N 2klog ) .

\  1 +  QPk+Pk̂ ) £7+-Pk+1 -J- Qpk+Pk^ )

Prom chapter 2 , the signed root statistic is

S R k +i =  -y /L R ic + u  i f  7  <  7

and

S R k +i = + ^ /L R k +i ,  i f  7  >  7 .

Prom equation (4.9), we have

dl(P)  _  ? N 2kePk+p^ ( * )
— IkW —dPk 1  -}- gPk+-Pi! 0  e7F-Pjf+t +  ePk+Pk^

30
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and

Hence,

ai(p)  - * * ) - £  n ^ +Pk~dPK + 1  Ci+PK+,+ c ^+p*#
k = l  k=1

d2 Z(P) _  Nnii?2el,l‘+Pk^ N 2kc » +Pk*ei+PK+'{jr)

and

3 P 2 ( i +  epfc+Pfc^)2 (eTf+JV+i +  e^+ ^*)2  '

_ _ d % P ) _  _  N2kj> c^p‘<+'c,,k+Pk'1'
dPkdPic+i (e->+pA-+i +  e',* +p * * ) 2

d2l(P) _  y ,  J\T2 fĉ +pK+‘e'i*+p**
^ A '+ i (e->+p«+> +  e<’k + P**)

Therefore, 3q1̂  for a given Pfc =  0, k — 1 , • • • , K  +  1 is

d2Z(0 ) Wifc^V* N 2tec*l' c t(i>2)
 yT- =  77” :---TTZ -I TTTT T^T- =  a t5P| (1 + ef>k )2 (ê  + eP* )2

521(0) N 2ke^e^{i>)
dPkdPK+i (ei  +  e** ) 2

and
52 /(0) v^JV 2*eV *(tf)

= bk

#^A'+i "  (e^ +  )2

The information matrix I can be written as

\^  A l -^12

^ = ^ 2 1  J'22 , | / |  =  | / l l | . | / 2 2 - / 2 l / f 1l /l2 l

where I n  is a diagonal matrix with kth diagonal element a t ,  I 12 is a K  x 1 matrix 

with kth element bk, I 12 =  I 21 and 12 2=  d is a scalar.

Therefore, the determinant of the information matrix I (given Pk — 0 and Pk +i ~

"•(a-)('-£¥)
31
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and the determinant of the submatrix / ‘for given P ( k  =  l,-*- , K )  is

/  A'

\ n =  U -
& i p (p k +i )

dP-k=i k

t=i

x N2ke^k+Pk^e">+PK+1ip2 
(1  + ePk+Fki}2 +  (e-r+p^+i + e ^ + ^ ) ^

From the equation (4.9), we have,

( pi.p k +i ) )  =  3 ^ -  =  E  (W -  -
v '  8pf--+i p.= p, ^  v

jV2 jte^+ 'P/f+1 \
e'T+.Pif+i 4 . ep*+-P*  ̂/

Following the procedure in section 2.3, the marginal tail probability for the pivotal 

Pk +i can be written as

(  1 |/ |*  \  
P t ( P k +1 <  P K + 1 ) =  $(SPa*+i )  +  ^(SPa' +i )  ( "cd *"S R k+1 Ii (P(Pa'+i )]I*IV

Hence, the 100(1 — a)%  approximate lower and upper confidence limits can be 

obtained by solving

* ( 5 Ra-+i ) +  ,S(SJ?a-+1) ( |
\  S R k + i h  (P(PK+i)) \P  I V  2

and

$ (S P a '+ i) +  ^(5Pa-+i) f W  r  I = 1 - 1
+ ^ 5 P a'+ i Zx(P(Pjir+i))|I*[*;  2

respectively. Denote these as Pj, and P y . Therefore, the corresponding lower and 

upper limits of 7  using Dicicdo’s procedure are ;yePL and ~fePu respectively. Then 

the estimators for the lower and the upper limits of the confidence interval for tp 

are
7 -n c ̂  L

VDuL =  e '

32
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and

i>DuU =  e^c V •

4.2.4 B artlett's  procedure based on th e  likelihood score

In this approach, we are interested to construct confidence interval for the pa

rameter in the presence of nuisance parameters <f> =  ( p n , ...jPi/l'V- Prom section

2.3 (chapter 2), Bartlett^s alternative to the maximum likelihood estimate i{>,

T ^  = d $ ~

with variance /e-t-.o has asymptotically normal distribution. As reviewed in section 

2.3, the 100(1 — a)% confidence interval for is obtained by solving

V Abxfr.d

where Z sl is an approximate quantile of a standard normal distribution. From the 

unconditional log-likelihood discussed in chapter 3, the partial derivative of I with 

respect to V* is

—  — V '  {N2k ~  X 2k)
di}> ifrqik + pik “  ^

The second partial derivative of I with respect to ^  is

dH N2kq\k ^ {N2k- X 2k)
(V’fzu-+pu - )2 ^  V>2

Furthermore,

E ( X 2k) =  N 2kp2k.

Therefore,

_ E ( ^ L \  _  _  Y ' N2*<lik , y '  N 2kq2k 
&l>2 ^  ( ^ u -  +  PH- )2 i>2

3 3
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Reparametrization of the above equation in terms of 7  and pk leads to

=  N ^ ePk 
( /U 2 '  I sdlj>̂  k \ ^ePk "b e 7 ) 2 e 7  

But from Fisher information matrix

I w  = - E ( - ^ ) .

Therefore,
r V '' N 2 kepi c,  N
x** = X ,  (en  +  ey ) 2 ^  = s (™y)-

Furthermore, reparametrization of in terms of pk and 7  gives

61  =  y *  N ^ pk ~  ^2fc(e7 +  e Pk)
2-s e"|f(e'r +  epk)

From the unconditional log-likelihood in chapter 3, we have

01 _  (X lk +  X 2k) (N lk +  N 2k -  X 2k .- X lk) N 2k( 1 -  -0)
dpi k pik qik i>qik+pik '

But

— (P llj—iPlA'/*

Therefore,

g Sg  = 0 , h #  V.
tfpu-opu-1

Further, when k = k 1

d2l =  X u. + X 2r. _  JV zfc+^xfc-X afc-Jgzt i^2 fc( l - ^ ) 2

5P u  Pu- 9u- W > 3u+ Pu ) 2

and

5 21  ̂ N l k P i k  +  N 2kp 2k , N 2kq2k +  .Nu-Su- iV2fc(l — ^ )2 
- i s v o ir-J  = --------- - 5 ----------- +

a Pu- P lk  l i t  ( H i t  + Pit)2

3 4

(4.12)

(4.13)
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Using the reparametrization pik =  1 , we have

_ E (— \ = N^ 1 + ePk^  , ^ 2fc(l +  ep t ) 4
dp\k epk ePk (e"1' -j- epk ) 2

and

- £ ( -
d2i

■) =  o.
dpikPik

Therefore, the matrix 1$$ is diagonal, and is given by

( i n  0  ••• 0  \

0  "t22 * * * 0

V o  o ilCK t

where

i M l + e w )2 , N2fc( l  +  e « ) 4 e7
% f,), — ,,, ■., I  ■

epk epk(epk +  e7 ) 2

Now, from ~  , we have

d2l _  N2k( l - i> ) q lk i J\T2fe 

dpikdip (ifqlk +  pu - )2 <̂ZU- +  Plk ’

— ^2k(qik -  i>qik +  i>qik +  pik) 
(i>qik +  pik)2 

N2k 
(i>qik +  pik)2'

By reparametrization of plk — , we have

321 _  -N2fc(l +  ep* ) 2

dpikdi> (e7  +  ep* ) 2

But from Fisher information matrix,

35
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Therefore,

(  ri \

\ t k )

with kth row element r*, where

r k =
i% .(l +  eP* ) 2 

(e7  +  epfc ) 2

Similarly,

I w  =  ( r i  • • • r jv' ) .

As mentioned in chapter 2, we have

But from the above derivations, is a scalar. Therefore,

r -  Y '  N2kCpk L L
^  (ePfc + e7)2e7 *fc* ’

2—  r f

Reparametrization of in terms of 7  and pk gives

31 _ T fc( l +  e * )  m w , , j y 2fc( i  +  e P * ) ( i - e i
-(ATfc- r fc)(l  +  e ^ )

5pu- ep*

Therefore, ( is a AT x l  matrix and given by

/  \

(e7  +  ep*)

\ « A ' /

36
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)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with kth row element uk, which is equal to From the above discussions,

('§$)' is a  scalar and is given by

^  iv

= ŷ 2 rku k(hk)  1 (4-15)
V k=l

From equations (4.13), (4.14) and (4.15) the lower limit and the upper limit of 7  

are obtained by solving

T ^  =  ± Z *  (4.16)

that is by solving

where

E f e l  (CP*t -  TuUki'lkk)'1)

D =  y -  -  X 2k(e-t +  ePt)
* ^  e" (̂e  ̂4" )

jV2fc(l +  e ^ )2 
(e7  +  ep* ) 2 ’

_ W )  _  _  J f u d  +  ^ X !  - * ) ,
epk v *-;v '  (eT' +  e ^ )

_  JSTU.(1 +  ep* ) 2 iyr2fc(i +  e^ ) 4 e^ 
epk epk(epk +  e7 )2 ’

and

2 ^  (ept C7)2e7 ‘

Note that the left hand side of the equation (4.16) involves ePk, which can be 

replaced from (4.8), by,

epk =
- B k + y / B l - 4 A kCk

2 A k 

where

A k = (Nk - T k),

B k =  —Tjt(l +  e7) +  N lke^ + N2k,

37
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and

Ck =  -T ke \

Denote the lower limit and the upper limit of 7  obtained by Bartlett’s procedure 

by 7 BucL and jBucU- The corresponding lower limit and upper limit of the odds 

ratio are

i>BucL =  e7fluci

and

j>BucU =  •

4.2.5 B artle tt’s procedure corrected for B ias and Skewness 

In this procedure the nuisance parameters <j> =  (p u , • • • ,Pi k )‘ in T(ip) are re

placed by their corresponding maximxim likelihood estimates <f> =  (p n , • * • ^ia')*- 

This involves a  bias of order n ~ . As reviewed in chapter 2, bias in is given

by

J K « (r* )  =  — 1  trace ( i S t j j g g j , )  +  2 ^ ) )

+^irace  ( / ^ m )

where M is the K  x K  array ( Mi , M2 ,  M k )  with j th  column given by

m'=(£(̂ S^)+2w )7̂ -
For convenience, we consider

Bias{T^,) =  Bi  + B 2 ,

where

f t — +

38
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and

Now, let

Then

B2 =  +^trace .

02l
dpikdpik - 3 k -

82l
d<f>d<f>T

f j i  0

0  32

0  \  

0

with kth diagonal element ~J~ and

d n

/* i o 

0  <2

0  \  

0

V o  o ••• t K  )

with kth row diagonal element E( o ^ g ^ o 1Hk) =  tk- From section 4.2.3 (chapter 

4), we have

Hence

and

—  = Y -
dip "  i^Qik+Pik

Nile qik (N 2k — X 2k) H—

d2l N2k
dpikdij> (i>qik +  Pik)2

dH_____________ 2N2k{ l - j > )
dpi kdpi kd $  {i>qi k +  pik  )3 *

3 9
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By the parametrization of pik =  : ^  , we have

E(
p i

dpikdpikdip
2N2k(l -  e^)(l + ep“)3 

( e 7  +  e Pk )3

That is

tk =
2 i % . ( l - e 7)(l +  ep* ) 3 

(e7 +  eph)z

From section 4-2.3, we have

(4.17)

— { E( gt£,oi>11 )■> " ' i  ^QikdplK^ )

and

Hence

E {  &  x -
dpu-dip (tpqik +  pu-)a

dpik dpikd^ i i ’q ik+ p ik )3 ' 

By the parameterization of pu- =  we have

d  ( £ (  ) ) _ 2 N 2k ( l - e ^ ) { l  + epk)3
dpik dpikcty' (e7  +  epfc) 3

Therefore,

dl*i!>4>

j h  0  ••• 0  ^ 

0  /•> • ■ • 0

d<j>

\ 0  0  ••• lK /

with kth diagonal element lk, where

2iV2fc(l -  e^)(l +  e^ * )3
h  =

( e i  +  e',fc)3

(4.18)

Therefore, from the above discussions E( qPi^ ~ q^ ) + 2 ^ ^  is a  K  x K  matrix with

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



diagonal element t k + 2 lk. Also the diagonal element of the matrix 7 ^  is (i**)-1 * 

Therefore,
K

1 ^  [tk +  2 lk)

k= 1 H-Jk

Now, the jth  array element of the matrix M is

We have shown that

d2l
d<j>d<j>T

f h  o 

0  h

V o  o
Therefore,

d3l
d4>kd<f>d<j>'r

where

From section 4.2.3, we have

Oplk

/ 0  0

0 sk •  • 

• »

Vo o 

an

° \
o

3k J

' ° \  
• 0

• 0 J

(4.19)

d2l _  { Xl k + X 2k) {Nl k + N 2k - X l k - X 2k)

dPlk P\k 9u-

Hence

N 2k{ i - i > ?  _

W’tflfc +plJfc)2 *

an 2(Xlk + X 2k) 2(Nlk + N2k- X l k - X 2k)

dPlk Pu-3 ?u-

41
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Therefore,

^  OH x 2N lk{qi k - Pi k)  , 2N 2k
E ( * - r )  = --------" --------dplk P2ik<lh ' Pu-C^Sifc +  Pu-)

2N2kty)  2N2k( l - i > ) \
9i*(^9ife +  PU-) fateife +  Pi* ) 3 *

By using the reparainetrization of pu.., qik and ■$, we have

F( dH 2 jVu.(l —e ^ H l  +  e' * ) 3 2iV2fc( l  +  ep* ) 3 

{dplk } ~  (e' * ) 2 + (e',fc)2 ( e 7  +  ep*)

2 iNT2fc( l  +  ep* )3 e7  2 i\Tu .(l -  e f (  1 +  ep* ) 3

— ------------------j ? T ? p  = * ‘ ^

Let R.H.S of the above equation is equal to s k.

We have already shown that I## is a diagonal matrix with diagonal element i kk> 

Therefore.

d i4><t>
d<i>k

/ o  o ••• o \

0  Vk " •  0

\ 0  0 0 /

where

Prom section 4.2.4, we have

8  8 2( , 
S n k E{ d p l J ’

c- d2l N NikPik + N 2kP2k , N2kQ2k + NikQik N 2k( l  — i>Y 
=  ---------15-----------  +^Pu- Pik (^SiJfc+Pifc)2 *

Hence, using the reparainetrization of pu-, qu- and »̂, we have

a  an . Wlfc(ePi -  1)(1 +  ep* ) 3 N 2k (e^(ep* -  1 ) -  2 ep‘ ) ( 1  +  ep‘ ) 3

$Pu- dp\k (e*’* ) 2 ( e ^ )2(ei' +  e^ * )2

4 2
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, J W ' ( e M - l + 2 e ’ ) ( l + e " ) J , 2 WM (1  -  £’ )3(X +  e" ) 3 

+ --------------( T V + e ^ --------------+ ----------( . — cP.)3------------” * (4'21)

Let the R.H.S of the above equation is equal to vk But, kth array element of M is

=  ( E ( a ,  f ‘ ) +  2 ^ 2* )  I ' , 11*

Therefore,

Mfc =

/  0 \ 
0

m k

\  0  /
with m k =  (sjt +  2r?fc)(rfc)(ifcfc)-1 . Therefore, M is a  K xK  matrix with diagonal 

element m k. Hence,

{ 0  • • • 0  \

0 0
=

\  0 m K*KK /

Therefore,
1 A  +  2v*)(rfc) (4.22)

Prom equations (4.19) and (4.22), we can find the bias in terms of 7  and pk. That 

is

n : , . ( T \ - n  1 H -  1 V  >'mk +  ~l l '> I 1 V ' (* *  +  J ” * ) ( r ‘ )

fc=l

B a rtlett’s correction for Skewness
_ fj

As reviewed in chapter 2, the third cumulant of to the order 0 ( n ~ ) is 

obtained for s, f, q =  1 , * * • , K  is given by

if3W=2£0 +3(̂ )
4 3
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« E E / ^ » )+̂ +l r +tr

W V f  f f ( ‘' P f  d 3* \ i , dhA* , dr<f,,<f>t
L L L ^ 4  ( % w ) +  +  d<f,t + d4>q

» t  q

From section 4.2.4, we have

d2l _  y  _  y  ( ^ 2 k — X 2k)
d^ 2 ~  f r [  ( H i k  +  PU-)2 ^  V-2

Hence

dH __ y  —2 iV2 j!.g^fc<2ifc y  2(jV2fc — X 2k)
~  h  ^ k + p i k f  “  V’3

and

_  y  -ZNikqlk  y  %N2 kg2k 
(V’tfu-+  Pu-)3 V’3

Also from section 4.2.4, we have

Therefore,

r _  y  ~ N 2 fcg2fc y  N 2 kq2k

** h i  ^ q i k + P i k ^ 2 h .

d l ^  ^  2N2kqlk -^2fcgu-(pifc +  2V>gu)E ^ 2kqlk _  y
J_ -L TK r ̂  ^

&l> j fe  C^?lfc +  Plfc)3 V,2(pu* +  V’ffuO

From equations (4.23) and (4.24), we have

nE( ^  'I I 2 ^ w' —2i?(a ^ ) +  3 w  ~

44
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V ' , y>  Nzkqikjpik -  tygik) ( .
^ ( ^ 2 i f c + P u - )3 “  $2{1>qik + pik)2

Let the R.H.S of the above equation be A. Prom chapter 2 review, /  =  , we

have the sth element

E( is a i f  x 1 matrix and it’s sth element can be determined as follows:

d z l _  d_ f  d~l \  
dip2d p i s d $  \5 ^ 5 p ia/

_  d f  N 2» \
d $  + P i « ) 2 )

_  —SiVfeagl*
(^?1« +  P l* ) 3

d H  - 2  N 2 llqu
di>2dpi*  ( i x h i + p u ) 3 '

a r
q̂ ! is a i f  x 1 matrix and it’s sth element can be determined as follows:

(  ~ ^ 2s A
dij) dtj) +  P i* )2 /

_ 2 iV2a(7ia 
+  p i .<)3

from the above equations, we have

2E ( — 1 ) +  2 - ^ - — =  0 .

From section 4.2.4, 1 ^  is known and it is a  scalar. Therefore, is a  i f  x 1 

matrix. I t’s sth element is

d i w  _  d  / y -  —i^2«<zL , y ^  N 2#i>qi» \
dp i*  d p u  ty d u  + p i* ) 2 "  i>2 {i>qu +  pi*) j  ’
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(4.26)

Hence.
0/yy =  2 N 2 .Qlr__________ N 2s
d p i .  - rp i . ) 3 - r p i s ) 2 '

By reparainetrization of p i . t q \ .  and ip. we have

d l v 0  = 2N2.{1 -r ep*); _  ~i~ eP' ) 2

3pi* (e'J t  ep* ) 3 e ^ e 7  -j- ê * )2

Let the R.H.S of the above equation be g..  Therefore,

f ,  f „ r (  , ,  „3/vo. , (>•.)(*.>f- v2£(  1 ^ T s r  J ■  V ~rr-x= 1 v *—1

But from equation (4.17). the kth element of the matrix E{ q£  ) is ji~e *'

when $ — t — h. and zero otherwise. We have already shown that the above value is
0 1 't k. From equation (4.13). the kth element of the matrix a^°f is

_  2.Y2fc(l - e pt)(l r e pt )3 

~~ (e^T-e^ ) 3

when s — t — k. otherwise zero and we have already shown that this value is equal 

to /*.

Now, we need to calculate When s =  t =  k, it is

d ip .0t _  d_ f  N lh ^  N 2 kp2k ̂  N 2 kq2k _  jy2fc( l  -  ip) 2

dip dip \ p i kqik ' p \k ‘ q\k {ipqik -f P i t ) 2

N 2k(Plk -  qik) + 2N 2k ( l - i P )
Pikqikiipqik +  pu - ) 2 (ipqik +  p u ) 3 

By reparametrization of pu-. qkk and ip. we have

dlp.pt N 2 k{ep- -  1)(1 +  epk )3
_ _ r

dip ePk{e*-r e~t)~

2N2k(l — e7)(l -j- ep* ) 3

( e 7  - i -  e P k y  

4 6

(4.27)
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when s = i — k. otherwise zero. Let the R.H.S of the above equation be e* 

from eq 4.24 we have

and from equation (4.26). we have

- 3  +

(m-Kgt-)

t = i  lkk

From equation (4.27). we have

+ 3  £ £ / . / .  ( * * * £ * ; >  + dJ§ f  + d- t  + d- t )

K
Tk

=  3 5 3 ( - r^ ) 2 (cfc). 
lkk

From equation (4.20) and from equation (4.21). we have

Thus.

K ZW ) = A -  3 E  +  3 ^ ( ^ ) 2 (efc) -  E ^ ) *  C2** +  3u*) *z—'  ii-i- '  ti-i. i t tfc=l i= i *■* Jfc=i

The lower and upper confidence limits of 7  are obtained by solving

T* B(T*) ^ W ( 2 | - l )
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Note that the left hand side of the equation (4.28) involves epk, which can be 

replaced from (4.8), by,

in. - B t  +  V B l  -  4A„C> 
2  A t

where

A k = (Nk - T k), 

B k = - T k( 1 +  e7) +  N ik e 7 +  JV2*,

and

Cfc =  - T ke \

Denote the lower limit and the upper limit of 7  obtained by B artlett’s corrected 

procedure by j b CucL and JbcucU- The corresponding lower limit and upper limit 

of the odds ratio are

^BCucL =  e7BC“ci

and

4 ’b c u c U =  e f̂lCucy.
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C H A P T E R  5

SIM U L A TIO N  S T U D IE S

In this chapter, the performance of the likelihood based procedures except the 

adjusted likelihood procedure based on the unconditional likelihood derived in chap

ter 4. are examined through simulations. The adjusted likelihood based procedure 

based on the unconditional likelihood is showing some convergence problems that 

could not be resolved by the author. IMSL random number generator RNBIN was 

used to generate binomial variables. The range of values for the parameters K, -Wu, 

IV2J;, ip and pik used in the simulation studies were chosen to be representative of sit

uations which arise in epidemiologic practice. In the simulation study, for each of the 

K  =5, 10 strata, the sample sizes chosen were (Nik,N 2 k) = (5,5), (10,10), (20,20), 

(5,20). The values of probabilities p it chosen were pu. =  0.05 +  0.04fc(^§) [Robins, 

Breslow and Greenland (19S6)] and the values of ip chosen were ip= 1, 3.5 and 6.5. 

For all the likelihood procedures and for each combination of K, (JNTj*, N 2 k), Pik 

and ip, we produced the tail and the coverage probabilities and the average lengths 

based on 1000 samples. The validity of the confidence interval is determined by the 

probability that the random interval covers the parameter value. This probability 

is called coverage probability. We have use 95% nominal confidence coefficient. The 

tail probabilities are the probabilities that the parameter value lies outside the ran

dom interval. Using the conventional rule, we added 0.5 to each observed frequency 

in any simulated table where a  zero observed frequency occured. Tables 5.1a and 

5.1b list the lower and upper tail probabilities, coverage probabilities and average 

length of the confidence intervals for the common odds ratio using the conditional 

likelihood. Tables 5.2a and 5.2b list the lower and upper tail probabilities, coverage
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probabilities and average length of the confidence intervals for the common odds 

ratio using the unconditional likelihood.

R esu lts : The ML method (Procedure based on maximum likelihood estimate) 

provides adequate coverage ( p > 0.9, where p is estimated coverage probability) 

for 0 =  1 .0  and unacceptable coverage for other values of 0  for both conditional 

and unconditional likelihoods. The LR method (Procedure based on likelihood 

ratio ) provides excellent coverage for 0  =  1.0,3.5 and 6.5 for all designs used for 

conditional likelihood except for the design Nik  =  N 2k =  5, K  =  10 and 0  =  

6.5. The LR method based on the unconditional likelihood also provides excellent 

coverage for all designs used. The methods B and BC (Bartlett and B artlett’s 

corrected) provide excellent coverage for -0=1.0, 3.5 and 6.5 for all designs used for 

both conditional and unconditional likelihood except for the design Nik  =  N 2k =  5 

, K  — 10 and 0  =  6.5 for conditional likelihood. The SQ method (Signed square 

root of the likelihood ratio) provides excellent coverage (p >0.94) for 0  =  1,3.5 and 

6.5 for the design Nik  =  N 2k =  20 and K  =  5 and also for 0  =  3.5 and 6.5 for the 

design Nik — N 2k =  10 and K  =  10. For all other designs the coverage dropped 

below 94% for conditional likelihood. The SQ method provides excellent coverage 

for the unconditional likelihood for all the designs used. From Tables 5.1a and 

5.1b, we note that the likelihood ratio intervals provide the upper tail probabilities 

which are larger than those of the lower tail probabilities for many of the designs 

used for conditional likelihood. The SQ method gives higher values for lower tail 

probabilities than LR method for all designs used for conditional likelihood and 

most of the designs used for unconditional likelihood. For Nik  =  N 2k =  20 and 

K  =  5, the methods LR, B, BC and SQ performed equally well in terms of coverage 

and tail probabilities for conditional likelihood. But for the same design, when 

0  =  6.5 these methods provide excellent upper tail probabilities and an adequate
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lower tail probabilities. For Nik =  N2k =  10 and K  =  5, the methods B and 

BC performed well in terms of tail and coverage probabilities when tp =  1 .0 , for 

conditional likelihood. For Nik = N 2k =  20 and K  =  1 0 , the SQ method performed 

well in terms of tail and coverage probabilities, when =  1.0 and 3.5 for conditional 

likelihood. For Nik — N 2k — 10 and K  =  1 0 , the methods B and BC performed well 

in terms of tail and coverage probabilities when =  1 . 0  for conditional likelihood. 

For unconditional likelihood the SQ method (Signed square root of likelihood ratio) 

performed well in terms of coverage and tail probabilities when K  =  5 for all the 

designs used. For Nik  =  N2k — 20 and K  — 10, the methods B and SQ performed 

equally well in terms of tail and coverage probabilities for unconditional likelihood. 

For Nik — N2k =  10 and K  =  1 0 , the methods LR, B, BC and SQ performed well in 

terms of tail and coverage probabilities when if) =  1 . 0  for unconditional likelihood. 

But for other values of tp the methods LR, B, and SQ provide excellent upper tail 

probabilities and unacceptable lower tail probabilities. For the design Nik = 5 and 

N 2k =  20 and K  =  5, the methods LR, B, and BC performed well in terms of tail 

and coverage probabilities for — 1 and 3.5.

In summary, for conditional likelihood, in terms of coverage probabilities, the 

methods LR, B and BC provide excellent coverage for all the designs used. But 

in terms of tail probabilities Bartlett’s method perfomed slightly better than other 

method. For unconditional likelihood, in terms of coverage probabilities, the meth

ods LR, B, BC and SQ provide excellent coverage for all the designs used. But 

in terms of tail probabilities, the methods B and SQ peformed well. However, in 

terms of average length the method B gave the shortest average length. For the 

Bartlett method, the unconditional likelihood gave the coverage probability closed 

to 0.95 and the tail probabilities closed to 0.25 for most of the designs used. Based 

on the results of these likelihood based procedures, the Bartletts method B with
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unconditional likelihood seems to be most suitable for constructing confidence lim

its for common odds ratio, atlcast for the kinds of designs that have been used in 

the simulations study in this thesis. However, most of these procedures fall short of 

producing adequate coverage probability when K (>  25) increases and the sample 

sizes (<  5) in each tables are small. The likelihood procedure corrected for appro

priate tails in small samples developed following Deciccio, Field and Fraser (1990) 

is expected to  perform well in these situations.
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Table 5 -la: Lower and upper tail probabilities, coverage 
probabilities and average lengths of the confidence intervals for 
the common odds ratio using the conditional likelihood.

plk = 0.05+0.04k (20/K), K=5, alpha=0.05

N2k Psi Method Lower Coverage Upper Length
20 20 1.0 ML 7.3 92.7 0.0 1.3

LR 2.5 95.1 2.4 1.4
B 2.6 95.0 2.4 1.0
BC 2.6 95.0 2.4 1.4
SQ 2.6 94.3 3.1 1.4
DA 3.8 93.7 2.5 1.4

3.5 ML 28.5 46.3 39.5 1.3
LR 2.3 95.6 2.0 5.7
B 1.8 96.2 2.8 5.5
BC 2.0 96.0 2.1 5.7
SQ 2.7 93.8 3.5 5.4
DA 3.8 94.2 2.0 5.0

6.5 ML 36.5 24.0 39.5 1.5
LR 1.4 96.0 2.0 12.0
B 1.3 95.8 2.8 11.4
BC 1.5 96.4 2.1 12.0
SQ 1.2 95.8 3.0 12.6
DA 3.7 94.3 2.0 12.3

10 10 1.0 ML 8.7 91.3 0.0 1.8
LR 1.4 96.4 2.4 2.2
B 2.1 95.7 2.2 2.2
BC 2.1 95.7 2.2 2.3
SQ 2.2 93.6 4.2 2.2
DA 5.8 90.0 4.2 2.2

3.5 ML 26.8 47.3 25.9 1.9
LR 0.9 97.0 2.1 8.9
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Psi Method Lower Coverage Upper Length
B 1.0 96.4 2.6 8.3
BC 1.3 96.4 2.3 9.0
SQ 1.3 96.0 2.7 9.0
DA 10.5 86.9 2.7 8.7

6.5 ML 29.4 24.9 45.7 2.0
LR 0.2 96.4 3.4 17.1
B 0.6 95.5 3.9 15.8
BC 0.9 95.5 3.6 17.0
SQ 1.0 95.3 3.7 18.1
DA 6.7 89.1 3.7 17.5

5 5 1.0 ML 0.0 91.9 45.7 2.0
LR 2.0 97.9 0.1 3.9
B 2.3 96.1 1.6 3.4
BC 2.3 96.1 1.6 3.7
SQ 2.5 91.3 6.1 3.4
DA 3.4 91.9 4.7 3.5

3.5 ML 0.0 87.2 12.3 8.5
LR 0.2 99.5 0.3 12.7
B 0.1 95.7 4.2 10.4
BC 0.2 96.2 3.5 12.2
SQ 0.3 93.4 6.2 11.7
DA 1.2 93.1 5.7 12.9

6.5 ML 0.0 81.5 18.4 13.6
LR 0.0 99.6 0.4 22.5
B 0.0 94.0 6.0 16.9
BC 0.0 94.9 5.1 20.6
SQ 0.0 93.2 6.8 20.2
DA 1.9 91.8 6.3 23.1

5 20 1.0 ML 0.0 92.7 7.3 2.2
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Psi Method Lower UpperCoverage Lengthlk 2k
LR 97.2

95.7 2.7
BC 95.7

90.2SQ
90.1DA

ML 91.5
97.3 1 0 . 0LR
96.0

BC 96.1 11.1

90.5SQ 15.1
91.2DA

ML 90.4 15.1
97.3 19.3LR

17.695.5
95.8 19.6BC

SQ 92.3 17.4
92.5 19.4DA
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Table 5.1b: Lower and upper tail probabilities, coverage 
probabilities and average lengths of the confidence intervals for 
the common odds ratio using the conditional likelihood.

plk = 0.05+0.04k(20/K), K=10, alpha=0.05

Ni* N?k Psi Method Lower Coverage Upper Length
20 20 1.0 ML 5.2 94.5 0.3 0.9

LR 1.6 96.0 2.4 0.9
B 1.7 95.9 2.4 0.9
BC 1.7 95.9 2.4 0.9
SQ 2.2 95.4 2.4 0.8
DA 7.8 81.0 11.2 0.8

3.5 ML 20.1 42.5 28.4 1.0
LR 1.7 95.8 2.5 3.7
B 1.9 95.5 2.6 3.6
BC 1.9 95.6 2.5 3.7
SQ 1.9 95.6 2.6 3.6
DA 6.2 91.3 2.5 3.4

6.5 ML 33.7 23.9 42.4 1.1
LR 1.2 96.6 2.2 7.5
B 1.1 96.3 2.6 7.4
BC 1.1 96.4 2.5 7.4
SQ 1.4 96.4 2.2 7.5
DA 4.7 92.4 2.9 7.9

10 10 1.0 ML 6.1 93.9 0.0 1.2
LR 2.4 95.0 2.6 1.4
B 2.3 95.1 2.6 1.4
BC 2.3 95.1 2.6 1.4
SQ 2.8 92.0 5.2 1.3
DA 5.8 89.5 4.2 1.1

3.5 ML 23.0 44 .7 32.3 1.3
LR 0.7 96.1 3.2 5.2
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£

N 2k Psi Method Lower Coverage Upper Length
B 0.7 96.1 3.2 5.0
BC 0.7 96.1 3.2 5.2
SQ 0.8 95.3 3.9 5.9
DA 10.1 86.0 3.9 4.0

6.5 ML 23.8 23.5 52.7 1.4
LR 0.3 95.5 4.2 10.0
B 0.2 94.9 4.9 9.6
BC 0.8 95.2 4.5 10.0
SQ 0.3 94 .7 5.0 9.8
DA 8.6 87.0 4.4 9.8

5 5 1.0 ML 0.0 93.5 6.5 1.8
LR 1.2 97 .3 1.5 2.1
B 1.2 97.3 1.5 1.9
BC 1.2 97.3 1.5 1.9
SQ 3.2 84.7 12.1 1.5
DA 5.6 87.8 6.6 1.7

3.5 ML 0.0 86.3 13.7 5.4
LR 0.9 96. 6 3.3 6.5
B 0.1 95.3 4.6 6.0
BC 0.2 96.2 3.6 6.4
SQ 0.3 89.4 10.3 5.6
DA 0.8 90.9 8.3 5.9

6.5 ML 0.0 74 .6 25.4 8.5
LR 0.0 92.1 7.9 10 .4
B 0.0 90.3 9.6 9.6
BC 0.0 91.4 8.3 10.5
SQ 0.0 86.1 13.9 9.5
DA 1.2 87.3 11.5 9.9

5 20 1.0 ML 0.0 95.5 5.0 1.5
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N1k N2Jc Psi Method Lower Coverage Upper Length
LR 1.8 96.4 1.0 1.6
B 2.0 96.3 1.7 1.6
BC 2.0 96.3 1.7 1.6
SQ 8.2 68.2 23.5 0.9
DA 5.1 83.7 11.2 1.2

3.5 ML 0.0 94.5 5.5 5.2
LR 0.8 96.7 2.5 5.7
B 1.1 96.4 2.3 5.6
BC 1.1 96.4 2.3 5.6
SQ 3.0 82.2 14 .8 4.1
DA 3.1 90.1 6.8 4.6

6.5 ML 0.0 92.9 7.1 9.6
LR 0.2 96.8 3.0 10.8
B 0.4 96.3 3.2 10 .4
BC 0.6 96.4 3.0 10.8
SQ 0.2 88.3 10.9 8.7
DA 1.4 90.9 7.7 9.3
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Table 5.2a: Lower and upper tail probabilities, coverage 
probabilities and average lengths of the confidence intervals for 
the common odds ratio using the unconditional likelihood.

plk = 0.05+0.04k<20/K), K=5, alpha=0.05

Nik N2k Psi Method Lower Coverage Upper Length
20 20 1.0 ML 6. 6 93.4 0.0 1.3

LR 2.7 95.0 2.3 1.5
B 2.7 94.9 2.4 1.4
BC 3.4 94.3 2.3 1.5
SQ 2.8 94.3 2.3 1.5

3.5 ML 24 .2 56. 9 18.9 1.9
LR 2.5 95.4 2.0 6.1
B 2.7 95.3 2.0 5.8
BC 2.3 95.7 2.4 6.2
SQ 3.0 95.0 2.0 6.1

6.5 ML 31.4 44.2 24.4 2.9
LR 1.5 97.0 1.5 13.6
B 1.8 96.5 1.7 12.3
BC 1.7 95.9 2.4 12.3
SQ 2.2 96.2 1.5 12.5

10 10 1.0 ML 8.3 91.7 0.0 1.9
LR 2.9 94 .7 2.7 2.4
B 2.7 94.4 2.8 2.3
BC 3.1 94.8 2.1 2.4
SQ 2.8 94.3 2.8 2.4

3.5 ML 23.6 58.0 18.4 2.8
LR 1.2 96.8 2.0 10.5
B 1.6 96.3 2.1 9.4
BC 1.4 95.7 2.9 9.8
SQ 2.0 96.0 1.9 10.3

6.5 ML 26.3 46.6 27.1 4.1
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L en gthCoverage UpperPsi Method LowerI K 2 K

21.797.0LR
18.696.0
18.695.5BC
21.496.1

96.1ML
96.3LR
95.8
94 .4BC

94.3SQ
10.491.1ML
16.196.8LR
13.496.1
13.694.9BC
14.296.1
27.692.9ML
23.297.4LR

95.9 22.9
94 .0 24 .9BC

23.496.1
92.720 ML
95.9LR
95.3
94 .7BC
95.1SQ
91.5ML

1 1 . 696.3LR
95.2 10.4
96.5 2 . 2BC
94.8 11.5
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Nik N2k Psi Method Lower Coverage Upper Length
6.5 ML 0.0 90.4 9.5 15.1

LR 0.2 97.6 2.2 23.8
B 1.7 95.9 2.4 20.9
BC 0.3 96.2 3.5 22.7
SQ 2.2 95.6 2.2 23.7
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Table 5.2b: Lower and upper tail probabilities, coverage 
probabilities and average lengths of the confidence intervals for 
the common odds ratio using the unconditional likelihood.

plk = 0.05+0.04k (20/K), K=10, alpha=0.05

Nik N2k Psi Method Lower Coverage Upper Length
20 20 1.0 ML 0.2 95.3 4.5 0.9

LR 1.7 95.8 2.5 0.9
B 1.8 95.7 2.5 1.0
BC 2.0 95.3 2.7 1.0
SQ 1.8 95.7 2.7 0.9

3.5 ML 24.8 55.6 18.6 1.4
LR 2.4 95.8 1.8 3.9
B 2.8 94.9 2.3 3.8
BC 1.9 95.1 3.0 3.9
SQ 2.8 95.8 1.8 3.8

6.5 ML 29.0 44.5 26.5 2.1
LR 1.5 96.9 1.6 8.4
B 2.1 96.2 1.7 7.8
BC 1.2 96.2 2.6 8.1
SQ 2.3 96.1 1.5 8.0

10 10 1.0 ML 0.0 93.9 6.1 1.4
LR 2.7 94.4 2.9 1.5
B 2.7 94.6 2.7 1.4
BC 2.4 94.5 3.1 1.5
SQ 2.7 94 .4 2.9 1.5

3.5 ML 0.0 96.1 3.8 7.9
LR 1.0 96.5 2.5 5.8
B 1.2 96.1 2.7 5.6
BC 1.0 95.3 3.7 5.8
SQ 1.3 96.2 2.5 5.8

6.5 ML 0.0 97.2 2.8 20.6
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N ik N 2k Psi Method Lower Coverage Upper Length
LR 0.3 97.5 2.1 11.9
B 0.4 97.2 2.4 11.0
BC 0.3 95.3 4.4 11.8
SQ 0.8 99.0 0.2 11.6

5 5 1.0 ML 0.1 96.7 3.2 1.5
LR 1.6 95.9 2.5 2.3
B 1.6 96.0 2.5 2.2
BC 2.0 95.5 2.5 2.5
SQ 1.9 95.6 2.5 2.2

3.5 ML 0.0 94.9 5.1 6.3
LR 0.6 97.3 2.1 7.9
B 0.5 97.1 2.4 7.4
BC 0.3 94.6 5.1 8.2
SQ 0.7 97.1 2.2 7.9

6.5 ML 0.0 95.4 4.6 16.4
LR 0.6 96.1 3.9 12.3
B 0.0 94.8 5.2 12.3
BC 0.0 92.8 7.9 14.3
SQ 0.0 96.0 4.0 13.4

5 20 1.0 ML 0.0 95.5 5.0 1.5
LR 2.3 95.6 2.1 1.6
B 2.0 96.1 1.9 1.6
BC 2.1 95.7 2.2 1.5
SQ 2.3 95.6 2.1 1.6

3.5 ML 0.0 94.5 5.5 5.2
LR 2.1 95h6 1.7 6.4
B 2.4 95.6 1.7 6.4
BC 2.4 95.6 2.0 6.2
SQ 0.6 94.2 5.2 6.7
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N i k N 2 k Psi Method Lower Coverage Upper Length
6.5 ML 0.0 92.9 7.1 9.6

LR 1.5 96.8 1.7 13.3
B 1.4 96.5 2.0 12.0
BC 0.2 92.5 7.2 10.7
SQ 1.6 96.7 1.7 12.6
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