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Abstract

A new numerical algorithm for solving the two-dimensional, steady, incompressible, 

laminar, viscous flow equations on a staggered grid is presented in this thesis. The 

proposed methodology is finite difference based, but essentially takes advantage of the 

best features of two well-established numerical formulations, the finite difference and 

finite volume methods. Some weaknesses of the finite difference approach are removed 

by exploiting the strengths of the finite volume method. In particular, the issue of 

velocity-pressure coupling is dealt with in the proposed finite difference formulation by 

developing a new pressure correction equation in a manner similar to the SIMPLE (Semi- 

Implicit Method for Pressure Linked Equations) approach commonly used in finite 

volume formulations. However, since this is purely a finite difference formulation, 

numerical approximation of fluxes is not required. Results obtained from the present 

method are based on the first-order upwind differencing scheme for the convective terms, 

but the methodology can easily be modified to accommodate higher order differencing 

schemes. Comparison with exact solutions for flow in a straight duct is made. The new 

formulation is also validated against experimental and other numerical data for well- 

known benchmark problems, namely the lid-driven cavity and backward-facing step 

flows. For curvilinear domains, the proposed method is validated against numerical 

results for a complex channel flow and compared to experimental results for the flow 

over a scour hole. For further validation, some of the results from the present method are 

compared to results obtained by FLUENT.
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NOMENCLATURE

u, v velocity components

p  pressure

p  density
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Generally speaking, incompressible fluid flow equations may be expressed in two 

different formulations based on the dependent variables used. First is the primitive 

variable formulation, in which the equations of motion are expressed in terms of the 

pressure and velocity. The second form of the equations is the so-called vorticity- 

streamfunction formulation, which is derived from the Navier-Stokes equations by 

incorporating the definitions for the vorticity and streamfunction.

There are many papers devoted to the numerical solution of the incompressible Navier- 

Stokes equations. While there are finite difference, finite element and finite volume 

methods available, most of the important research work in this field has been based on 

the finite volume methodology. The popularity of the finite volume approach is 

evidenced by the fact that most commercial Computational Fluid Dynamics (CFD) codes, 

such as STARCD and FLUENT, are based on finite volume formulations.

Since this thesis is based on a finite difference formulation and the primary objective is to 

exploit the advantages of the finite volume SIMPLE (Semi-Implicit Method for Pressure 

Linked Equations) algorithm within a finite difference context, the literature review will 

concentrate only on finite volume and finite difference formulations.

1
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1.2 Vorticity-Streamfunction Formulation

In the earliest work on solutions of the two-dimensional Navier-Stokes equations, many 

of the solution techniques were based on the use of the vorticity and the streamfimction 

as the dependent variables.

The vorticity-streamfunction formulation has the major advantages of avoiding the 

explicit appearance of the pressure and not having to solve the continuity equation 

directly. One of the major reasons for the success of the above formulation in predicting 

both steady and unsteady incompressible flow fields is that, by definition, the continuity 

equation is satisfied identically for all values of streamfunction, as mentioned by Currie

[1]. Furthermore, the pressure is eliminated by an appropriate combination of the 

differentiation of the momentum equations, so the velocity field can be determined 

without having to calculate the pressure field.

For incompressible flows, the streamfunction and vorticity equations can be derived for 

either steady or unsteady flows. In this thesis we only deal with steady incompressible 

laminar flows. However, from a CFD perspective, steady flows can be computed as the 

steady-state limit of an unsteady flow simulation. In this case, the unsteady flow 

equations are marched in time until the solution becomes time-invariant. In fact, such an 

unsteady method is akin to an iterative solution of the steady flow equations in which 

each iteration is analogous to a time step. A pioneering work in the category of unsteady 

methods applied to the vorticity-streamfunction formulation is the one developed at 

Imperial College in the late 1960's, as described by Gosman et al [2], Other important 

works are those of Briley [3], Bozeman and Dalton [4], Napolitano and Walters [5] and 

Osswald et al [6]. Gosman et al [2] used a segregated approach, where the vorticity

2
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transport equation was solved separately from the Poisson equation for the 

streamfunction. Osswald et al [6] also used a segregated approach but adopted the 

Strongly Implicit Procedure of Stone [7] for solving the vorticity equation, together with 

a block Gaussian elimination technique, as described by Ghia et al [8], for the 

streamfunction equation, as opposed to the simple point Gauss-Siedel method used by 

Gosman et al [2]. Napolitano and Walters [5] used a linearized block-ADI method for the 

simultaneous solution of the vorticity and streamfunction equations.

There are, however, a number of serious difficulties encountered when solving the 

equations in the vorticity-streamfunction formulation. Aside from the fact that these 

coupled equations are non-linear, one of the major difficulties is that the values of 

vorticity on no-slip boundaries and at outlets are not known a priori, while these values 

are needed to solve the discretized problem. While it is possible to overcome most of the 

difficulties, perhaps the most damaging restriction is that it is awkward to define the 

streamfunctions for three-dimensional flows, and there are three components of vorticity. 

Thus vorticity-streamfunction analyses are essentially limited to two-dimensional flows. 

As indicated earlier, the pressure is eliminated as a variable in the vorticity- 

streamfunction formulation. If the pressure field is required, an equation for pressure 

must be obtained and solved subject to appropriate boundary conditions. The usual 

approach is to derive a Poisson equation for pressure by summing the x-derivative of the 

w-momentum equation and the y-derivative of the v-momentum equation. The right hand 

side of the pressure equation is expressed in terms of velocity components, which are 

known from the solution of the vorticity and streamfunction equations. As a 

mathematical problem, the Poisson equation for pressure is an elliptic partial differential

3
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equation defined on a bounded domain. For the problem to be well-posed, a set of 

boundary conditions must be imposed on the entire boundary of the domain. For most 

fluid flow problems, physical boundary conditions for pressure are not available. Hence, 

it is common practice to introduce numerical boundary conditions, such as using the 

momentum equations to specify derivatives of pressure normal to boundaries. These 

numerical boundary conditions can lead to instabilities and additional loss of accuracy in 

the solution.

1.3 Primitive Variable Formulation

Since the early 1970’s there has been a noticeable shift of interest from the vorticity- 

streamfunction formulations of the incompressible Navier-Stokes equation to the 

primitive variables u, v, p  formulations.

The main difficulty with the primitive variable formulation for incompressible flows is 

that, even though there are three equations for the three unknowns u, v, p, there is no 

explicit equation which can be used for pressure. The usual procedure followed by most 

researchers is to treat the w-momentum equation as an elliptic equation for u and the v- 

momentum equation as an elliptic equation for v. These non-linear equations are coupled, 

and must be solved simultaneously, or iteratively using a segregated solver. The main 

problem lies in the determination of pressure which, in a sense, is only weakly coupled to 

the velocity, through the pressure gradients in the momentum equations. During the 

solution process, these pressure gradients are treated as known source terms in the 

momentum equations, having been computed from some appropriate pressure equation.

4
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One of the primary distinctions between finite difference and finite volume approaches 

lies in the methods used to determine the pressure field, i.e., the treatment of the velocity- 

pressure coupling problem. These methods are discussed in the next two sections.

1.3.1 Finite Difference Formulation

Finite difference primitive variable formulations have been used with success by different 

researchers such as Chorin [9] and Kim and Moin [10]. Generally speaking, for finite 

difference formulations, two procedures have been developed for this purpose. The first 

is to derive a Poisson equation for pressure, similar to that used in vorticity- 

streamfunction formulations. This is achieved by differentiating the w-momentum 

equation with respect to x, the v-momentum with respect to y  and summing the results. 

However, the continuity equation is still not explicitly satisfied if a primitive variable 

formulation is retained. This equation serves as a constraint on the velocity field, and 

some additional numerical “tricks” must be introduced to ensure conservation of mass 

[11]. A serious disadvantage of this approach is the complexities associated with 

approximating the Laplacian operator near a boundary. In particular, the pressure outside 

the domain may be needed to calculate pressure one grid line inside the boundaries. In 

general, no physical specification of pressure exists so, as in vorticity-streamfunction 

formulations, the boundary conditions employed in numerical simulations are usually 

Neumann-type, in this case obtained from the momentum equations.

The second approach is the introduction of artificial compressibility into the continuity 

equation, as suggested by Chorin [12]. This approach is outlined in Chapter 2.

For the case of the incompressible Navier-Stokes equations written in primitive variable 

formulation, the steady-state solution can be obtained either by taking an unsteady

5
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solution to the limit of large time, or by "directly" solving the steady equations. Unsteady 

methods devised to compute steady flows include the work of Chorin [12] and the 

fractional step method of Kim and Moin [10]. The fractional step method is a two step 

method. In the first step velocity is calculated from the momentum equation without a 

pressure gradient. In this step only discretization of time is considered. In the next step, 

velocity is corrected by using the pressure gradient and the transient term. From this 

equation a Poisson equation for pressure is derived. The resulting pressure is then used to 

correct the velocity. Even though these algorithms have shown sufficient accuracy and 

efficiency, the main body of recent work has been in the development of methods for the 

solution of the steady-state equations directly. In general, steady methods for the 

primitive variable formulation solve the governing equations using some form of a 

relaxation solution algorithm.

1.3.2 Finite Volume Formulation

Patankar and Spalding [13] solved the parabolized Navier-Stokes equations using a finite 

volume approach. The most significant contribution of their research was the 

development of the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) 

algorithm to resolve the velocity-pressure coupling problem. This algorithm and 

subsequent modifications have become the standard in CFD community. The first widely 

used finite volume scheme for the steady incompressible Navier-Stokes equations was 

the one introduced by Caretto et al [14], based on the SIMPLE algorithm. The work of 

Caretto et al [14] was a milestone in that it resulted in the production of computer codes 

which allowed for the solution of the equations in primitive variable form for many

6
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practical problems without the necessity of rewriting the computer code for each new 

problem.

The SIMPLE algorithm [15] uses a segregated solution technique in which the pressure 

field and velocity fields are solved for separately within an iteration cycle (i.e. a complete 

sweep of the flow field). The necessary pressure-velocity coupling for the satisfaction of 

mass conservation is attained through the solution of a pressure correction equation, 

derived from the finite volume discretization of the continuity equation by means of 

certain simplifying assumptions. A new algorithm was later introduced by Patankar [15], 

called SIMPLER. SIMPLER uses a more accurate pressure correction equation and the 

velocity field is guessed initially instead of the pressure field. This new procedure 

reduced the level of under-relaxation required, resulting in an increased convergence rate 

and, consequently, in less computer time. This improvement was carried further by 

variations of SIMPLER, like SIMPLEC, SIMPLEX and FIMOSE. The major difference 

among all these different algorithms is in the way the pressure-velocity coupling is 

achieved. (For an evaluation of these different algorithms, see the papers of Van 

Doormaal and Raithby [16] and Latimer and Pollard [17].) All the above algorithms 

require the determination of optimum relaxation factors in order to attain an optimal 

convergence rate.

A wealth of different pressure-velocity coupling algorithms were developed in the wake 

of the relative success of the SIMPLE procedure. All of these algorithms use a finite 

volume discretization procedure and a segregated solution technique, but differ in the 

often arbitrary way that the velocity and pressure fields are corrected in order to satisfy 

mass conservation. This class of solutions is typified by investigations such as the works

7
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of Raithby and Schneider [18], Briley [19], and Pratap and Spalding [20]. Raithby and 

Schneider [18] proposed a scheme that does not require the solution of a second 

correcting equation for the pressure, as required by SIMPLER. It is referred to as the 

PUMPIN method and is based on averaging the pressures obtained by integrating the 

momentum equations between a reference point and each point in the grid, along several 

different paths.

Most of the research works mentioned above used a staggered grid arrangement to 

prevent the checkerboard problem [21]. Thiart [22], Miller and Schmidt [23] and Barton 

and Kirby [24] solved the flow equations on a non-staggered or colocated grid. Thiart 

[22] prevented the pressure checkerboarding through a differencing scheme that 

incorporated the influence of pressure on velocity gradients. Barton and Kirby [24] 

prevented it by applying fourth-order dissipation to the pressure field. The methods of 

Thiart [22] and Barton and Kirby [24] were implemented in a SIMPLE type algorithm. 

Miller and Schmidt [23] used a pressure weighted interpolation method for the solution 

of the equations and his method was implemented in a SIMPLEC type algorithm. Peric et 

al [25] presented a comparison of two finite volume solution methods for two- 

dimensional incompressible fluid flows, one with staggered and the other with colocated 

grids. They concluded that the computational effort and accuracy are almost identical for 

both solution methods.

Karki and Patankar [26] and Shyy et al [27] investigated solutions for the flow equations 

on curvilinear grids. Karki and Patankar [26] developed a finite volume scheme for a 

generalized nonorthogonal coordinate system with a staggered grid. They selected the 

physical covariant velocity components to be the dependent variables in the momentum

8
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equations and coupled velocity and pressure by using the SIMPLER algorithm. Shyy et al 

[27] developed a similar finite volume scheme where coupling is effected using the 

SIMPLE algorithm. Reggio and Camarero [28] solved the equations in an arbitrary 

domain using a non-staggered grid. Peric [29] analyzed the effect of reducing the 

computational stencil obtained in curvilinear domains, from a 9-point computational 

stencil in a two-dimensional case to 5 or 7 points.

The finite volume method is relatively easy to implement in rectangular domains because 

the fluxes across cell faces can be calculated with very little effort. The main advantage 

of the finite volume method is that it can be used on an unstructured mesh. However, all 

finite volume formulations require flux calculations, and it is difficult to calculate the 

fluxes across irregular faces of the mesh. Also, the finite volume approach requires more 

approximations of the original flow equations. In particular, the approximation of 

integrals over a control volume is not required in a finite difference formulation. It may 

also be difficult to apply the boundary conditions on irregular boundaries.

1.4 Differencing Schemes

Beyond the pressure-velocity coupling, another source of differences among various 

algorithms for segregated solution techniques is in the treatment of the derivatives of the 

convective terms. The diffusion term contains second order derivatives, and the second 

order central differencing scheme is most appropriate to discretize this term. However, 

because convection has an inseparable connection with diffusion, the diffusion and 

convection terms should be handled as one unit. The discretization of the convection- 

diffusion terms is one of the major difficulties in numerical solutions of the governing 

equations for fluid flow and heat transfer.

9
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Many discretization schemes for convection-diffusion equations have been proposed and 

studied. In this chapter, only a few main schemes are reviewed. A natural idea for 

discretization of the convection and diffusion terms is to use the second order central 

difference scheme for both. However, the numerical results will be unrealistic if  any 

coefficient in the discretized equation is negative, and the other coefficients are positive. 

It is well-known that the second order central difference scheme is prone to oscillations if 

the cell Reynolds number exceeds 2. According to Shyy et al [30], this generally accepted 

critical cell Reynolds number for the central difference scheme may not be a reliable 

indicator of the performance of this scheme. Oscillations in the solution, which are 

expected while using this scheme for high cell Reynolds numbers, may not occur.

One proposed remedy for the difficulty encountered with the second order central 

difference scheme is to apply a first order upwind difference scheme. The basic idea of 

this scheme is that the discretization of the diffusion term is left unchanged, but the 

convection term is discretized based on the assumption that the value of the dependent 

variable at the nodal point of interest depends on the value of the dependent variable at 

the point on the upwind side of the cell face only [21]. One of this scheme's shortcomings 

is that its truncation error order is relatively low, i.e., of first order. The diffusion term is 

calculated from a linear profile and thus overestimates diffusion at high Peclet numbers 

(ratio of the strengths of convection and diffusion). The hybrid scheme has been put 

forward to overcome these difficulties. This scheme combines the merits of the central 

difference scheme and the first order upwind scheme, and avoids their defects [15]. It is 

identical with the central difference scheme for the Peclet number range between -2 and

10
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2. Outside this range it reduces to the first order upwind scheme in which the diffusion is 

set equal to zero.

Methods for testing a differencing scheme should be mentioned here. Usually, in order to 

test a scheme, a steady one-dimensional situation is considered in which only the 

convection and diffusion terms are present. The governing equation reduces to a second 

order ordinary differential equation, which has an exact solution provided the boundary 

conditions at the two ends of the domain (interval) are given. It has been found that the 

departure of the hybrid scheme from the exact solution in the one-dimensional case is 

rather large at Peclet number of ±2. Also, it is premature to set the diffusion effects 

equal to zero as soon as the absolute value of the cell Reynolds number exceeds 2. A 

better approximation to the exact solution is given by the power-law scheme. It is more 

complicated than the hybrid scheme, but is not particularly expensive to compute. The 

hybrid scheme and the power-law scheme are now widely used in solving practical 

problems of fluid flow and heat transfer. In some cases, even the first order upwind 

scheme behaves not too badly if the grid is fine enough. As a matter of fact, the scheme 

closest to the exact solution for the one-dimensional case is the exponential scheme. 

When it is used for the steady one-dimensional problem, this scheme is guaranteed to 

produce the exact solution for any number of grid points. Nevertheless, this scheme is not 

widely used because (1) exponential functions are expensive to compute, and (2) the 

scheme will not produce the exact solutions for two- or three-dimensional situations, 

equations with non-zero sources, etc. The extra expense of computing exponentials does 

not seem to be justified and the exponential scheme behaves well only for a constant 

source term. For non-constant source terms, Wong and Raithby [31] proposed a

11
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correction to the exponential scheme, referred to as the Locally Analytic Differencing 

Scheme (LOADS). Although the expressions for the LOADS are more complex, the error 

from the source terms is reduced and the accuracy of the results is greatly improved. 

Another alternative to the first order upwind differencing scheme is to use a second order 

upwind differencing scheme. Unlike the first order upwind scheme, the value in the 

second order upwind scheme at a node depends on the values at two upstream nodes 

rather than just the value at one node. This scheme can be shown to have second order 

accuracy. The Skew Upstream Differencing Scheme (SUDS) [32] and the quadratic 

upstream differencing scheme (its full name is Quadratic Upwind Interpolation of 

Convective Kinematics, or QUICK) [33] have been suggested as alternates to the first 

order differencing scheme. In the SUDS, either the first order upwind differencing or the 

hybrid scheme is used, but it is applied along the skewed streamline passing through the 

cell face (interface). Thus, upwinding is used in a vector sense rather than along the 

resolved flow directions. The SUDS is useful when both convection and diffusion are 

primarily responsible for the spatial distribution of the dependent variable. In the QUICK 

scheme, instead of using linear interpolation for the convection terms as used in standard 

one-sided differencing schemes, a three-point upstream weighted quadratic interpolation 

is used. This scheme has the desirable property of high accuracy (third order spatial 

truncation error) and is based on a conservative control volume integral formulation. 

However, the QUICK scheme has also been found to be less stable than the upwind and 

hybrid schemes because it can occasionally generate both negative and positive influence 

coefficients. Pollard and Siu [34] developed a new form of the QUICK scheme called 

QUICKER (QUICK Extended and Revised). In the QUICKER scheme, the influence

12
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coefficients are rearranged in such a way that they are always positive and the source 

terms are revised to avoid the negative value of the denominator in the discretized 

equation.

Although they have several attractive properties, both the QUICK and QUICKER 

schemes produce unphysical overshoots and a few oscillations for highly convective 

simulation of step profiles. To overcome this difficulty, Leonard [35] proposed the 

SHARP (Simple High-Accuracy Resolution Program) scheme which is based on an 

explicit, conservative, control volume flux formulation. In the SHARP scheme, the 

convective flux is modified by expressing the normalized convective flux value on a 

control volume face as a function of the normalized adjacent upstream node value. This 

results in a non-linear functional relationship between the normalized variables, whereas 

standard methods are all linear in this sense.

1.5 Present Work

1.5.1 Introduction

In CFD, finite difference methods begin with the differential equation form of the Navier- 

Stokes equations, while an integral form is used for finite volume methods. Nevertheless, 

these two approaches exhibit some common features. For example, both methods 

ultimately lead to a set of finite difference equations and, for both methods, there is no 

explicit equation for pressure. Generally speaking, the two methods depart from one 

another in the procedures devised to couple the velocity and pressure. Also, since this is 

purely a finite difference formulation, numerical approximation of fluxes is not required, 

thereby removing the difficulty of calculating fluxes associated with finite volume 

formulations. This is especially advantageous when the flow domain is non-rectangular

13
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and fluxes must be calculated across highly skewed cell faces. Furthermore, an 

approximation for integrals and derivatives is needed in the finite volume method, while 

in the proposed method only an approximation for derivatives is needed.

The proposed method is a fundamental new approach to solving the incompressible 

Navier-Stokes equations that relies on the basic concepts of finite differences.

1.5.2 Objectives of the Present Work

This thesis proposes a new numerical method for solving the two-dimensional, steady, 

incompressible, laminar, viscous flow equations on a staggered grid. The primary 

objective of this study is to develop and implement the proposed procedure so as to 

establish confidence in its ability to calculate a wide range of fluid flows, rather than 

attempting to solve a few complicated individual flow problems. In this thesis, no 

attempt will be made to achieve high accuracy, or to optimize the solution algorithm.

1.5.3 Organization of the Present Work

In Chapter II, the flow equations are derived on a Cartesian mesh, the velocity-pressure 

coupling is explained and the pressure correction equation is analyzed. In Chapter III 

three benchmark applications are considered. In Chapter IV, the equations and procedure 

are formulated on a general nonorthogonal curvilinear mesh and in Chapter V the method 

is applied to three flow problems to validate the suitability of the proposed method.

14
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CHAPTER II

DISCRETIZED FLOW EQUATIONS ON A STAGGERED CARTESIAN GRID

2.1 Introduction

The Navier-Stokes equations for two-dimensional, steady, incompressible, viscous flow 

in terms of Cartesian coordinates, in the non-conservative dimensional form, are

where u and v are velocity components in the x and y  directions respectively, p  is the 

pressure, p  is the constant density and v  is the viscosity.

The system of equations (2.1) and (2.2) is classified as elliptic, and the unknowns in these 

equations are velocity and pressure. The numerical solution of this set of equations is 

hindered by the fact that there is no direct link for the pressure between the continuity and 

momentum equations. To establish a connection some mathematical manipulations must 

be introduced. Generally speaking, for finite difference formulations, two procedures 

have been developed for this purpose. The first is to derive a Poisson equation for 

pressure. This is achieved by differentiating the w-momentum equation with respect to x, 

the v-momentum with respect to y  and summing the results. However, the continuity 

equation is still not explicitly satisfied if  a primitive variable formulation is retained, and 

some additional numerical “tricks” are usually introduced to ensure conservation of mass

[11]. A serious disadvantageous of this approach is that pressure outside the domain is

u + v = 0x  y (2 .1)

1

(2 .2)
1
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needed to calculate pressure one grid line off the boundaries. However, in general, no 

physical specification of pressure exists. Boundary conditions for pressure employed in 

numerical simulations are usually Neumann-type, obtained from the momentum 

equations. The second approach is the introduction of artificial compressibility into the 

continuity equation, as suggested by Chorin [12]. He modified the continuity equation by 

introducing a time-dependent term. The continuity equation becomes

dp 1 f  du dv^
• + -------------- +  —

dx dy
=  0

dt T

where T is the artificial compressibility of the fluid. Using the “equation of state”, the

compressibility can be related to a pseudo-speed of sound and to artificial density by the

1 n Prelations T = —  and a = — .
a p

Thus, in Chorin’s approach, the steady incompressible Navier-Stokes equations are 

expressed in a pseudo-transient non-dimensional form as

dp 2 —  + a 
dt

^du 3vA 
dx dy

=  0

* + ^ (v 2 + p )+ S (“v)- S (v" +v '’ )

where Re is the Reynolds number, defined as .
v

In Chorin’s procedure, an artificial viscosity (damping terms) must be added to the 

discretized equations to overcome any possible instability in the solution.
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Another way to deal with pressure is to express the Navier-Stokes equations in terms of 

the vorticity and streamfunction. In this formulation, the system is composed of the 

vorticity transport equation and the streamfunction equation. One of the advantages of 

this formulation is that the pressure term does not appear explicitly in either of the 

equations. Therefore, the system of equations is solved to provide the velocity field. If the 

pressure field is required as well, then the Poisson equation for the pressure is 

subsequently solved. A major disadvantage of this formulation is the specification of the 

boundary conditions on the vorticity, due to the lack of physical boundary conditions for 

vorticity. Therefore, numerical boundary conditions for the vorticity must be derived. 

Moreover, it is awkward to define the streamfunctions for three-dimensional flows, and 

there are three components of vorticity, thus essentially limiting the analysis to two- 

dimensional flows.

In this thesis, the new methodology presented is finite difference based, but essentially 

takes advantage of the best features of the two well-established numerical formulations, 

the finite difference and finite volume methods. Weaknesses of the finite difference 

approach are removed by exploiting the strengths of the finite volume method. In 

particular, the problems associated with the determination of pressure in a finite 

difference approach are resolved by implementing a SIMPLE-type algorithm to handle 

the velocity-pressure coupling.

2.2 Finite Differencing on a Staggered Grid

Let us consider a two-dimensional rectangular domain such as that shown in Figure 2.1. 

The domain has been discretized using a regular Cartesian mesh. For the sake of clarity, 

let us assume that Ax and Ay are constant, i.e., the mesh is uniform in each of the x  andy
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directions. The derivatives of the dependent variables appearing in the partial differential 

equations are approximated by finite differences.

i = J 

j = J-i

N

Ay
T ~

i = 2 

i = i

\j+3

Ui-lj+2 )?■ ■ y+2

Vi-2j+l v.. y+l î+Sj+l

u-1' i-3j p:~ ....‘-2J
ti‘. .i-lj r:....y Ui+lj 'p n-i+2j

vy-i

TT ”7*l-l,j-2 'Py-2

w e ->E

i = 1 i = 2

Figure 2.1 Staggered grid arrangement

i = I-l i= I

A staggered grid is used to store the velocity components u and v and the pressure p. As 

indicated in Figure 2.1, the values of u and v are stored at the i - l j  and i,j+l locations 

respectively and p  is stored at i,j. The advantages of using the staggered grid over a non

staggered grid are twofold. First, the continuity equation can be written at node i j  with 

second order accurate central differences without interpolation of the relevant velocity 

components. Second, it prevents odd-even coupling or what is known as checkerboarding 

between the pressure field and the velocity fields [21].
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In this dissertation, the u-momentum equation is discretized at node i - l j ,  the v- 

momentum equation is discretized at ij+1, and the continuity equation is discretized at 

ij.

The first order backward difference of the x derivative, used in the convective terms of 

the flow equations, are given by

I u i - \ , j  U i - i , ju j  ~
X|M-/ 2 Ax

I V i , j +1 V i-2,j+lv I ~

XU’j+X 2 Ax

The second order central difference of the y derivative for the convective terms of the 

flow equations are given by

I U i-l,j+2 ~ U i - l , j - 2
U  ~ ---------    —y\i-u 4Ay

vy u+i 4 Ay

Note that the differences are carried out on locations where the variables are calculated 

and stored. For example, nx|;i , is approximated by u at i - l j  and i-3j instead of being

approximated using the value at i-2j since u is not stored there.

The diffusion terms in the momentum equations are represented using second order 

accurate central differences, given by

I _  Mi - 3 J  ~  +  U M , j
Ux* \ i - l J  ~  4 A x 2

I _  U i - \ J +2 ~  ̂ U i- \ ,J  +  U i- l . j - 2

U y y \ i - u  ~  4A y 2
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I Vi-2J+1 ~  2 v ,,J+\ + V t +2J +l 

V»U,J+1 ~ 4 Ax2

I _  v u + 3 - 2 v u + 1 + v u _ 1

4 Ay2

The pressure gradients are approximated by a second order accurate central difference

approximation using the locations where p  is defined. Since ^  and appear in the u-
ox ay

momentum and v-momentum respectively, we take

I P i , j ~  P i - 1 , j  

2 Ax

P i j -2 - P i j

P y k j + \  2  A y

2.3 Discretization of the Momentum Equations

2.3.1 Discretized Equations at Interior Nodes

The discrete u-and v-momentum equations at interior nodes may be written respectively

as

A A

a f U i - \ , j  + a i N U i - l , j + 2  + a T U i - \ , j - 2 + a W U i - 3 , j  + a T U M J  ~  P l  2 ’J P ‘ J

+ b f v IJ+3 + ^ tv)V_1 + b ? v t_2J« +b Vi.  o ; .1 ---

2 pda

P i j  - P i j + 2

(2.3)

E  *14-2,y+ 1  n, .Ip k y

where

U- , •
a ?  = ^ -  + v  

2 Ax
1 1

v2Ax2 2 Ay2 y

„ i n t  _  V ' - l  J
N 4 Ay 4 Ay
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int   V i~U j  V
Cl c

4 Ay 4Ay

b ,  _ _ MH i  V 
a w ~ 2 Ax 4 Ax

int _
zr —

E  A  A  24Ax

and

bml _  Uj.j+l (  1   
P 2Ax U a * 2 2Ay2 y

rmt

int

. vu +1 V

4Ay 4 Ay2

1 V

4Ay 4 Ay2

Ui,j+1 V

2Ax 4 Ax2

t V

£ 4Ax2 ■

The notation used here closely follows that traditionally used in finite volume 

formulations. For example, the sub-index in the coefficient a f  means that the 

coefficient is evaluated at the east neighbour of the w-node and “int” means at interior 

nodes, i.e., away from the boundaries. The same notation follows for the other 

coefficients. The caret above a variable indicates quantities that will be calculated at the 

previous iteration.

Because of the use of a staggered grid, the values of v in the i/-momentum equation and u 

in the v-momentum equation, appearing as coefficients of the convective derivatives, are
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not available at the desired points. Therefore, these velocities are computed to second 

order accuracy using the four surrounding grid points at which they are stored, i.e.

u\. ~ ■u,j+\
U i+Uj +  U i+ \J+2  +  U i - \ J  +  U i- \ , j+ 2

VIm ,-
V i J - 1 +  V i J +1 +  V i - 2 J - \  +  V i - 2 J + l

In general, the w-momentum and v-momentum equations may be written respectively as

_  'V'  ̂ P i - 2 , j  ~  P i jCtpUp — 2_jdnbUnb "* ry A
r i P  2Ax

(2‘4)
, 1 P i j  ~  P i J + 2

® P V P  “  l a  nb nb  o  *lb . P 2Ay 

Here, nb refers to the neighbours of the nodes where uP and vp are to be calculated. 

Table 2.1 shows the difference between the w-momentum equation coefficients at interior 

nodes using finite difference and finite volume formulations. It is interesting to note that, 

for the finite difference formulation

op = ~Yuanb’ 

while, for the finite volume formulation

aP = - T , anb +
U i J  U i - 2 J  +  V i - \ J + \  V i - \ J - 1

2Ax 2Ay

This property of the finite difference formulation, that ap = - ^ a nb, means that the

coefficient matrix is always diagonally dominant. Hence, iterative solution of the matrix 

equation will be stable. For the finite volume formulation, this feature only holds when 

the continuity equation is satisfied, in which case the term is the square bracket is 

identically zero.
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The difference between these coefficients arises from the fact that the upwind 

differencing in a finite volume formulation is different from that in the finite difference 

formulations.

Formulation

Finite Difference Finite Volume

Coefficient

2Ax2 2Ay 2Ax
+ v

2Ax2 2Ay2Ax
^ - U +1- V U_,

4Ax 2Ax

4Ax

4 Ay 4 Ay 4Ay 4 Ay

4 Ay 4 Ay

Table 2.1 Comparison of FD and FV coefficients of the w-momentum equation

2.3.2 Discretized Equations at the Boundaries

Special attention must be given to the way the equations are discretized at nodes adjacent 

to the boundaries. This special treatment is explained separately for each type of 

boundary commonly encountered in computational fluid dynamics simulations.
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2.3.2.1 Equations at a Wall Boundary

The derivatives in the w-and v-momentum equations may require special treatment at a 

wall boundary. The wall boundary could be an east, west, south or north boundary 

depending on the particular problem to be solved. Consider, for example, the case of a 

south wall boundary. The variable u is stored one node off that boundary, i.e., at y = 2 as 

shown in Figure 2.2. For this reason, to approximate derivatives of u in the y  direction, a 

central difference with unequally spaced grid points is used, where the convective term is 

approximated using a second order accurate expression and the diffusion term by using a 

first order accurate expression. Thus,

2Mi~ 1,4 12 + 4wm1
6 Ay2

du
6Ay

Then, the ^-momentum equation alongy = 2 will become

2pAx v3A_y2 3Ay J  '  1 ,1

where

 1— I--------:— hV  ---------- r -H T-
2 Ax 2 Ay ^2Ax Ay ,

i—1,4

6Ay 3Ay

2Ax 4Ax2

v
4Ax2 ‘
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Figure 2.2 Stencils for the w-momentum equation

The values of u in the last term on the right hand side of the discretized equations are 

known from prescribed wall boundary conditions on j  = 1. For example, if the south 

boundary is a stationary wall, then wM I = 0. If it is a moving wall, then wM, ^  0.

The v-momentum equation at the south boundary will be the same as for interior points,

i.e., equation (2.3), except that vi , is known from the boundary condition. None of the 

terms in the v-momentum equation requires special treatment.

Now, if the north boundary (j -  J) is a wall, a similar discussion as above follows for 

both the u and v equations, and the discretized u-momentum equation at i-\,J-\ becomes
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a P U i - \ , J - \  a S  U i - l , J - 3  "*■ a W U i - 3 , J - \  ^  a E  U i+ \ ,J - \
P i - 2 , J - \  P j , J - \  

2pAx
2v 2 v,_u

3 Ay 3Ay

where

N  U i - \ , J - 1 V / - l ,7 - l
= ------------------------------h V

/

2Ax 2Ay
1 1

2Ax2 Ay2

a V

6Ay  3Ay

2Ax 4 Ax

* Nb =-
v

4 Ax

Note here that J  is the maximum number of nodes in the y  direction.

A similar discussion follows if the west and east boundaries are walls, in which case the x 

derivatives receive special treatment.

2.3.2.2 Equations at an Inlet Boundary

The inlet boundary could be an east, west, south or north boundary. In the case of a west 

inlet boundary, v is stored one node off that boundary, i.e., at / = 2 as shown in Figure 

2.3. For this reason, a central difference with unequally spaced grid points will be used to 

approximate the derivative of v normal to the inlet boundary, with the convective term 

approximated by a second order accurate expression and the diffusion term by a first 

order accurate expression. Thus,

dx2

dv
dx

v4,,+i “ 3v2j+1 + 2 vuj+i

2,7+1

2,7+1

3Ax

4,7+1.+j + 3v2j+1 4 vUj.
■7+1

6Ax
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Then, for v-nodes adjacent to the west inlet boundary, the v-momentum equation can 

written as

UW, .  i u w . .  , u W . .  , l W „  _  P i j  P2, j+2  , 

bp 2,y'+l + bN V2J+3 bs V2J -1 bE VA,j+\ ~ 2/?Ay
■̂u 2,j+\ j 2 v   ̂
3Ax 3Ax2 vi,y+i

where

3Ax Ax 2Ay

W _ V2J+1 V

K  =

4Ay 4 Ay2

2̂,7+1 V

4Ay 4 Ay2

. W2,7+l V

6 Ax 3 Ax
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Figure 2.3 Stencils for the v-momentum equation 

The value of v] J+1 in the last term on the right hand side of the discretized equations is 

known from the given inlet boundary conditions.

The w-momentum equation at the west side will remain the same as in equation (2.3), 

except that the value of uX j is known.

A similar discussion as above follows if  the inlet is at the east, north or south boundary, 

where the velocity components are specified on these boundaries.

2.3.23 Equations at an Outlet Boundary

The outlet boundary could be an east, west, south or north boundary. However, for 

several of the examples considered in the present work, the east boundary is the outlet

boundary. The outlet boundary condition is taken as —  = 0, —  = 0 . In discretized form,
dx dx
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the outlet flow boundary condition on u, applied at the east boundary (/ = I), is 

approximated to first order by uhj = u,_2 j . Applying this condition, the discretized u- 

momentum equation at 1-2 j  will be

a P U I - 2 J  +  a N U I- 2 , j+ 2  +  a s  U [ - 2 , j ~ 2  ~ ^ a W U I - 4 , j
Pl-iJ Pl-lJ

2pAx

where

E  U I - 2 Ja t =  -  + v
P 2Ax

/ 1 1
4 Ax 2 Ay

E  V I - 2 J  V
a N  — 4 Ay 4 Ay

„ E  _  2 - 2 , j  Vas —
4Ay 4Ay

_ ui-2j V 
a w ~ 2Ax 4 Ax

In the case of the v-momentum equation, the same type of boundary condition applies, so 

that v/+lJ+1 = v,_x .+1. Applying this condition, the discretized v-momentum at I-1J+1 will

become

7 E  , 7  E  , u E  . uE P l - h j  P l - U j + 2bpvi-i,j+i + ̂ A'v/-i,y+3 + bs + bwVj_3 J+l —
2pAy

= -----—  + v
2Ax v  .<_iX2 2Ay2 j

, E  _  V I-1, j+1 V

N 4Ay 4Ay2

K = -
î-U+i v
4Ay 4Ay
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23.2.4 Equations at the West South and West North Corners

The discretized w-momentum equation developed at south and north boundaries can be 

used at these comers respectively, since no changes take place at the west boundary. The 

discretized v-momentum equation derived at the west boundary can be used at these 

comers, with velocities known at the south and north wall boundaries.

2.3.2.S Equations at the East South and East North Corners

The discretized w-momentum equation obtained at south and north boundaries can be 

used at these comers, with the central coefficient modified by applying the boundary 

condition at the east side. The discretized v-momentum equation used at the east side will 

be used at these comers, with velocities known at the south and north wall boundaries.

2.4 Discretization of the Continuity Equation

The continuity equation is discretized at the points i j  where the pressure is defined, as 

illustrated in Figure 2.4. The discrete continuity equation, using second order accurate 

approximations, is written as

(2.5)
2Ax 2Ay

which can also be written in the form

=  0 . (2.6)

The link between u, v and p  will be discussed in detail in the next section.
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Figure 2.4 Stencils for the continuity equation

2.4.1 Velocity-Pressure Coupling

SIMPLE (Semi-Implicit Method for Pressure Linked Equations) is a primitive variable 

based method widely used in finite volume algorithms for the incompressible Navier- 

Stokes equations [15]. The primary idea behind SIMPLE is to create a discrete equation 

for pressure (or alternatively, a related quantity called the pressure correction) from the 

discrete continuity equation. Since the continuity equation contains discrete velocities, 

some way is needed to relate these discrete velocities to the discrete pressure field. The 

SIMPLE algorithm uses the discrete momentum equations to derive this coupling.
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Let u* and v’be the discrete u and v fields resulting from a solution of the discrete u- and 

v-momentum equations. Let p* represent the discrete pressure field which is used in the

solution of the momentum equations. Thus, equations (2.3) can be written as

* *
* XT' * . 1 P i - 2 , j  ~  P i , }

w m  2 5 —

(2.7)
* *

a „* -  V  u   ̂ ~  7?,,J+2
i,j+ l  i,j+ l  /  i n b  n b  -  .I t  p  2Ay

If the pressure field/?* is only a guess or a prevailing iterate, the discrete u* and

v* obtained by solving the momentum equations will not, in general, satisfy the discrete 

continuity equation (2.5).

In the SIMPLE approach, a correction is proposed to the starred velocity field such that 

the corrected values satisfy equation (2.5), i.e., we write

u = u* +u
(2.S)

V =  V* +v

where u and v are corrections.

Correspondingly, the existing pressure field p* is corrected with

p  = p + p .  (2.9)

Subtracting equation (2.7) from equation (2.4), we obtain

U i 1 i Ui 1 / =  ^  Q nbUnbL u  »b nb p  2 A X

(2 .10)

b i J+l ViJ+l = H h nb V nb +  
nb

1 P i j  ~ P i J + 2 

p  2Ay
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Equations (2.10) represent the dependence of the velocity corrections u and v on the 

pressure correction p  . In effect, they tell us how the velocity field will respond when the 

pressure gradient is increased or decreased.

We now make a simplification, which is central to the SIMPLE method. Equations (2.10) 

are approximated as

bU+lVU* “

p  2Ax

1 P i j - P ' i j+2
p  2Ay

(2 .11)

So, equations (2.8) become

* , P i - 2 ,  j  P i j. = U., . + ----- ------- -
2pAxa,._1J

* p'ij-Pij+i
L j +i = v ,,y+1 +

(2 .12)

2pAybij+,

It is important to realize that because we are solving for the pressure correction rather 

than the pressure itself, the omission of the terms ^  anhunb and '^j anhvnb in deriving the
nb nb

pressure correction equation is of no consequence as far as the final converged results are 

concerned, since all of these terms become zero.

Now consider the discrete continuity equation. The starred velocities w* and v*, obtained 

by solving the momentum equations using the prevailing pressure field p*, do not satisfy 

the discrete continuity equation. Thus

2Ax 2Ay
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We require the corrected velocities, given by equations (2.12), to satisfy the continuity 

equation (2.5). Thus,

' UM J +
1 P i,j-P \+2J} L« [ 1 P h j - P ' i j }
^  I I  ~  O  A ____p  2AxaMJ I I ’ P 2Axai_lj

2Ax

vu +1 +■
1 Pi j -P .
jo 2Aybu

J +1 P  2Ayb}J_x

2Ay
=  0

Rearranging terms, we can write an equation for the pressure correction as

cTPiJ+ cTPi+2J+CwPi-2J +C7P,J+2 +CTP,J-2 =
int ' , _int

*  *  *  *  

U i - U j ~ U M J  V ,„ ,+1 “  V i J - \

2Ax 2Ay
(2.13)

where

c int =  - I + . 1
P  A . A  2 ' + •

4pAx aM J 4pAx a,_XJ 4pAy biJ+x 4pAy bUj_x

cmt = ■E - .2 .4pAxzaMj

_ int
°w  — ~A _4 24pAx a ^ j

cmt = —^ \r —
1

4pAy blJ+1

c T  = ■
4 p A y \ j _ x

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4.2 Pressure Correction Equation at the Boundaries

The discretized continuity equation at node i j  is given by

Um j  + ViJ+l = o . (2.5)
2 Ax 2Ay

Based on the specific boundary information, the pressure correction equation will have 

different forms on different boundaries.

Suppose, for example, that the velocity component v is known at the south and north 

boundaries and u is known at the west boundary.

2.4.2.1 Pressure Correction Equation at the West Boundary

Assuming u is known on the west boundary (i =1), the discretized continuity equation at 

i = 2 will be

U i J  | V 2,j+\  ~ V 2 J - 1  _  U \ J

2Ax 2Ay 2Ax

where the right hand side is known. Following the same procedure as in section 2.4.1, the

pressure correction equation for nodes adjacent to the west boundary becomes

* * *
W ' . int ' , int 1 . int '________ ^ 3 , j  ^ 2 , j+ l  ^ I J - l

C P  P l , j  +  C E  P 4 , j  +  C N  P 2 , j + 2  +  C S  P 2 J - 2  ~  n  0  .2Ax 2Ay

where

1
ApAx a^ j 4pAy b2 J+l 4pAyIb2j_] 

and all other coefficients are the same as defined at the interior nodes.
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2.4.2.2 Pressure Correction Equation at the South Boundary

The discretized continuity equation near the south wall boundary (i.e., at j  = 2) is written

as

U i+\,2 U i - 1,2  ̂ V i, 3 _  V i, 1

2Ax 2Ay 2Ay

In this case, the pressure correction equation will become

cs v + cinV  +cinV  +c'nt v  = U‘~1'2— -it?.’2  ^iLPi (,2 T .Fi+2,2 T ‘'W' Pi-2,2 T CJV Pi,4 „ * „ *2Ax 2Ay

where

1 1 1
CP — -----------  1------------ ;----------- H-

4/?Ax aitU ApAx aM>2 4/?Ay 6.3

and all other coefficients are the same as defined at the interior nodes.

2.4.2.3 Pressure Correction Equation at the North Boundary

The discretized continuity equation at a north wall boundary (i.e., at j  = J - l)  is written as

2Ax 2Ay 2Ay

Therefore, the pressure correction equation becomes

CpPiJ-l +Cf P l+2.J-l +Cw Pi-2,J-l + CT P u -3 = U‘̂ J~î +U~l2Ax 2Ay

where

cN =■c p
1 1

ApAx aM J_, ApAx aM y-1 ApAy bu _2 

and all other coefficients are the same as defined at the interior nodes.
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2.4.2.4 Pressure Correction Equation at the East Boundary

If the east boundary (i = I) is an outlet, the velocity is not known there, and is not 

corrected by means of pressure corrections. Hence, in the discretized pressure correction 

equation, the link to the outlet boundary side is suppressed by setting cE = 0 [21].

Therefore the pressure correction equation at the east boundary is given by

* * * 
int ' . int ' . . , int ' . int ’__________ ^ I -  2.J ^ I , j  ^  I - \ , j + \  ^

C P  P l - \ , j  +  C W P l - l J  +  C N  P l - \ , j + 2  +  C S  P l - \ , j - 2 — 2Ax 2Ay

where all coefficients are the same as those at the interior nodes.

2.5 Overall Solution Algorithm

The overall solution procedure is the following:

1. Guess the pressure field p* and initialize u and v.

2. Solve the discretized momentum equations (2.3) for u and v using the guessed value 

p*. Call these solutions the u and v* fields.

3. Solve the pressure correction equation (2.13).

4. Correct the pressure field using equation (2.9).

5. Evaluate u and v using equation (2.11).

6. Correct the velocity fields using equations (2.8).

7. Solve the momentum equations (2.3) for u and v, using the new pressure field, and the 

corrected velocities in the coefficients.

8. If the solution is converged, stop. Else go to step 3.

The system of discretized equations is solved by applying the TDMA (Tri-Diagonal 

Matrix Algorithm) [21]. This algorithm gives a direct non-iterative solution in the one

dimensional case. The TDMA is applied line by line to solve for u, v and p. In this case,
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the solution is iterative. The algorithm sweeps once from left to right across the grid to 

solve for u, v and p. Solutions obtained are then used as old solutions to sweep again, and 

this process continues until a converged solution is obtained.

2.6 Analysis of the Pressure Correction Equation

In order to determine the dominant error term of the finite difference equations obtained 

using the proposed method, analysis given by Hirt [36] can be used. In this method, the 

terms of the finite difference equations are expanded in a Taylor series in order to 

develop a continuum partial differential equation. The differential equation obtained is 

known as the modified partial differential equation.

The modified partial differential equation will be derived for pressure correction only, 

since the pressure correction equation obtained in this work is of a new form. The u and v 

equations will not be considered because their form is similar to ones found in the 

literature.

Consider the discretized continuity equation in Cartesian coordinates

This equation, as shown in Section 2.4.1, can be used to derive an equation for the 

pressure correction:

Now evaluate each term of equation (2.13) by expanding in a Taylor series about (i,j). 

For example, expansion of uMj gives

(2.5)
2Ax 2Ay

*  *  *  *

2  *
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After substituting all expanded terms into equation (2.13), the so-called modified partial 

differential equation can be written as

f  1 1 . Ax
 + --------- P x +  —

v a M j  a , - u )  Ay

l l

V b u +1 K h  j
P y  +A X

1 1

V a^ J  ai - u j

+ Ax
V  ' V + l

i a3-*
b , b i H

p'yy+o(Ax4 ,Ay3Ax)= -2pAx(u*x + v * ) - - ^ /? ^ - A x 3 (2.14)

— p —^-AxAy2 + o(Ax5,Ay4Ax). 
3 dy

Note that the coefficients in equation (2.14) can be expanded as follows:

1 4 Ax2

a M ,j »

1 _ 2 Ax2
a i-x,j v(l + f i 2)

1 + “ l-y. Ax
W + n

-i

2 uu2t e _ ^ Axi + 0 (Ax<)
v(\ + P 2) v 2(l + p 2J

(2.15)

1 2 Ax 2 uL ______________ l ,J

A,7+1 t>(l + P 2) V2 (l + p 2)'
■Ax3 +o(Ax4,Ax3Ay)

1 _ 4Ay2 + 4i>,,

K j - i  v  v

Ay2 +C>(&y4)

where P  = — .
Ay

Substituting equations (2.15) in (2.14), the modified partial differential equation becomes

-A x 2
v

r l + 2 £ 2^ 

v l  + /?2 ,
' 2  A 2Pxx+ ~Ay

( o j .  /?2 A2 + P

\ l + P  j
+̂_Ax(  3 + 2p 2 ^

v 1 + p 2 p x — Ay
V

r 2 + 3 p 2^ 
1 + p 2

2ii. . , , 2pu. .l,J a  2 . • 1>J■Ax +
t/ ;(l + /?2)2

2 - 4V,, 2 .
2 / 0 2 ^  ^ + ~ r -A y  Py

v 2(l + /?2) U
(2.16)
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— t * * \ 1- 2  p{UX+ V y ) - - P
a v
dx3

3 ..*

■Ax +
av
a/ -A / + o (ax3,Av3)

If we set Ax = Ay, then equation (2.16) becomes

2p(ux +v*y )+^(p 'x - p 'y )Ax+ | v y  - ~ r ( p ' x - p 'y ) + ^ r P y Ax2

1 ( 3 3  * 3 3  * Aa u a v
3x dy

Ax2 +C>(Ax3)= 0

(2.17)

The leading order terms in equation (2.17) are

2P(ul + v*)+ ̂ (p'x ~ Py )Ax + 0(Ax2, Ay2) = 0

Strictly speaking, this equation should not be referred to as the modified partial 

differential equation for p  , since there is no partial differential equation for pressure 

correction to compare it to. However, this first order equation for p  has some interesting 

features. The O(Ax) terms involving pressure correction on the left hand side will be zero 

when the solution converges since p  is zero at convergence, and the zeroth order terms 

are the divergence of velocity, so when the solution converges these terms become zero. 

Similar methods have been described in CFD textbooks, for example, Chung [37], 

Tannehill et al [38], Anderson [39], and Ferziger and Peric [40]. However, these methods 

are generally formulated for unsteady flows, and express the pressure correction in terms 

of the time derivative of velocity. In the notation of this thesis, Chung [37], for example,

proposed the correction wM . = At P i - 2  ~  P i i_jj ijj_ jkig correction is different from the one
p  2Ax

proposed in this thesis, i.e., ^ 1 2,J— . Following the same steps as above,
p  2ai_] jAx
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the finite difference equation for the pressure correction proposed by Chung [37] can be 

written in the form

' U M J  +
At P ij-P i+ ij

2Ax >u i - i j  +  '

At P i - 2 , j  P i , j  |

2Ax

2Ax

. , At P u  ~ P i , j+2} _ ] „ .  , At P i j - 2  ~ P i j

p  2Ayiv,y+i + 2Ay
= 0

2Ay

which leads to an equation similar to equation (2.13), but with different coefficients. The 

modified partial differential equation for this formulation can be written as

v y  =
At

au ov 
+

dx dy

This equation is a Poisson equation for the pressure correction, different from equation 

(2.17).
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CHAPTER III 

APPLICATIONS ON A CARTESIAN GRID

3.1 Introduction

In this chapter, the algorithm developed in Chapter 2 is applied to three well-established 

benchmark problems, namely, the developing flow in a rectangular duct, flow over a 

backward-facing step and flow in a lid-driven cavity. These problems are considered to 

be important validation test cases for any numerical model.

The developing flow in a rectangular duct is one of the few problems that have exact 

solution in the downstream region and moreover, it is a good test to check the algorithm 

for mass conservation. The backward-facing step is one of the most fundamental 

geometries causing flow separation. The fluid motion in a lid-driven cavity is an example 

of closed streamline problems that are of theoretical importance because they exhibit the 

primary features of a broad class of steady, separated flows. Despite its simple geometry, 

the lid-driven cavity flow retains a rich fluid flow physics manifested by multiple 

counter-rotating recirculating regions in the comers of the cavity depending on the 

Reynolds number.

3.2 Developing Flow in a Rectangular Duct

In general the problem of finding exact solutions of the Navier-Stokes equations presents 

significant and nearly insurmountable mathematical difficulties. However, it is possible 

to find exact solutions in certain particular cases. One of the simplest problems is that of 

parallel flow.
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A flow is called parallel if  only one velocity component is different from zero, so that all 

fluid particles move in one direction. If, in the two-dimensional flow equations, the 

velocity component v is taken to be zero everywhere, it follows from the continuity 

equation that

dx

Thus, for a parallel flow we have

u = u (y ),v  = 0. 

From the v-momentum equation it is clear that

All the convective terms vanish in the w-momentum equation. Hence

dp d 2u 
~dx~PV~ d / '

Since —  = 0 and u is a function of y  only, this equation implies that the pressure 
d y

gradient in the direction of flow is constant, say c.

This is the basis for the Poiseuille flow in a straight two-dimensional duct aligned with 

the x-axis. Considering a duct of width D, and imposing the boundary conditions u = 0

fory  = 0 andy  = D, the analytical solution isu = — —  y(D - y ).
2 p v

Now consider flow development in a straight two-dimensional channel. The length L of 

the channel is taken to be ten times the width D, and we take D=  1. At the entrance of the 

channel a uniform flow, u -  1, is specified as the inlet velocity profile. The transverse 

velocity is set equal to zero at the inlet. A parallel flow condition is specified at the outlet
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i.e. —  = 0. The no-slip condition is applied at the lower and upper walls. As the fluid
ox

enters the channel, the wall boundary conditions distort the uniform flow as boundary 

layers grow on the walls. The flow develops along the channel for some distance, referred 

to as the “development length”, until it becomes fully developed. At this point, the flow 

field is that described by Poiseuille flow.

3.2.1 Results and Discussion

The numerical model has been verified against alternative numerical predictions and the 

analytical solution which is formed at the outlet after the solution becomes fully 

developed. To implement the numerical method proposed in this work, a 201x41 

rectangular mesh is created. The predicted, fully developed streamwise velocity profile 

for Re = 50, is compared with the analytical solution. The agreement between the two is 

excellent, as seen in Figure 3.1.

1».

0.9- -

0 .8 - -

□  Exact Solution 

+ Present Method
0.7- -

0 .6 - -

Y 0.5- -

0.4- -

0.3- -

0 .2 - -

0 . 1- -

0.5

Figure 3.1 Fully developed velocity profile
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The centreline velocity as a function of the distance from the inlet is plotted in Figure 3.2. 

At this Re, the parabolic profile starts to form at about x = 2 , which agrees with the 

results of Schlichting [41]. The result obtained are more accurate than those obtained by 

Reggio and Camarero [28] where the parabolic profile starts further downstream, around 

x = 4. Reggio and Camarero’s method underpredicts the centreline velocity, even in the 

fully developed region. Their results are based on the finite volume method. This 

demonstrates the ability of the present method to conserve the mass flow. Numerical 

calculations show that the pressure becomes uniform in the transverse direction and the 

streamwise pressure gradient is constant once the fully developed region is reached.

1.45

1.35

□  Reggio and Camarero [28] 

+ Presort Method
u

1.05

Figure 3.2 Centreline velocity, Re = 50
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3.3 Flow over a Backward-facing Step

The backward-facing step is one of the most fundamental geometries causing flow 

separation and is an important validation test case for any numerical model. Much of the 

literature on separated flows over a backward-facing step deals with the turbulent regime. 

For turbulent flows, typical experimental studies such as those reported by Kim [42] and 

O’Malley et al [43] and numerical solutions presented by Hackman et al [44] found that 

reattachment occurs at a fixed position downstream of the step, irrespective of the 

Reynolds number. The distance was reported to be between five and eight step heights 

from the separation point.

In contrast, experiments conducted in the laminar regime reveal that the reattachment 

length is not constant, but increases with Reynolds number. Experiments in this regime 

have been carried out for various geometries. For example, Goldstein et al [45] 

considered laminar flow over a downstream facing step adjacent to a free stream. 

Thangam and Knight [46] studied flow through a duct with an expansion ratio (ratio of 

step height to channel height) of 0.75. In addition, computational predictions have been 

reported by numerous authors, including Ghoniem and Gagnon [47], Guj and Stella [48] 

and Barton [49].

At low Reynolds number the flow separates at the sharp comer of the step and then 

reattaches itself to the lower boundary further downstream, forming a single primary 

recirculating eddy. As discussed by Barton [49], the reattachment length increases almost 

linearly with Reynolds number, which is based on twice the step height and the average

( U 2h^\
velocity Re = —- —  , the slight non-linear trend being attributed to viscous drag along

V v  J

the upper boundary. This increase occurs up to a Reynolds number of approximately
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1200. A further increase in Reynolds number causes the velocity fluctuations to increase, 

indicating the beginning of transition to turbulent flow (Armaly et al [50]). However, at 

the higher Reynolds numbers in the laminar regime (400  < R e  < 1200), the adverse 

pressure gradient along the upper boundary is strong enough to promote a secondary 

recirculation zone attached to the upper wall, which causes a reduction in the growth of 

the lower eddy. At this value of Reynolds number, measurements and predictions start to 

deviate from each other. The deviations are explainable by the inherent three- 

dimensionality of the experimental flow for R e  > 400 (Armaly et al [50]).

3.3.1 Problem Specification and Boundary Conditions

The intention in this problem is to test the new approach described in Chapter 2 for 

solving the flow equations and predicting separation. For this reason, as shown in Figure 

3.3, the standard step geometry was simplified by excluding the channel upstream of the 

step. The flow is assumed to be fully developed when it reaches the step. The 

downstream channel was defined to have height 2h, with a step height and upstream inlet 

equal to h. In this work, we have taken 2h = 1. The length L from the step to the end of 

the calculation domain depends on Re. This length must be chosen to ensure that the 

reattachment length is independent of the length of the calculation domain.

The inlet condition is obtained from steady Poiseuille flow, given by the equation

d 2u c ,
— t- =  and v = 0 (3.1)
dy2 p v

where c = is the constant pressure gradient. 
dx

Integrating equation (3.1), and applying the no-slip conditions at the walls, u(y = 0.5) = 0 

and u(y = l) = 0, we get
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u = -^ — y ( \ .5 -  y )  — .
2 p v  4p v

(3.2)

The boundary conditions for the step geometry include the usual no-slip velocity

specification u = 0 and v = 0 for all solid surfaces as shown in Figure 3.3. The outflow

boundary condition is obtained by assuming the outflow is parallel to the x-axis, that is

du ,d v
—  = 0 and —-  = 0. 
dx ox

/  / /  / /  / /  / /  /  /  / / / / / / / / s  /  /  /  /  /  /  /  /  /  /  / / / s / s / /

u = u(y) 
v = 0

u = v =0 /K

\l/

ux=0  

v =0
X

2h

h 'u  = v = 0
u = v = 0

/  v  / / / / / / / / / / / /  /  / / / / / / / / / / / / / / / / / / / /  / / / /

Figure 3.3 Backward-facing step

3.3.2 Results and Discussion

The numerical model was validated against experimental and alternative numerical 

predictions of steady laminar flow past a backward-facing step. Results for Re -  50, 100, 

200, 400, 500 are compared with those obtained by Armaly et al [50], Barton [49], and 

Barber and Fonty [51]. The commercial computational fluid dynamics code CFD-ACE+ 

[52] results, based upon a primitive variable finite volume solution, are included to 

provide additional validation of the proposed method (Barber and Fonty [51]). FLUENT 

has also been used to validate the results. Table 3.1 shows the number of iterations for
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convergence, spatial step and mesh sizes used in the simulations for different Reynolds 

number. Table 3.2 gives a comparison of the reattachment lengths predicted by the 

present method with other numerical simulations and the experimental work of Armaly et 

al. [50]. Reattachment lengths obtained by using two different convergence criteria,

✓ \t i — u
\unew -  uold | < 10-8 and —  —  < 10”3 are identical, but are not very close to the

/  . Unew

results reported in the literature for Re < 200. The results showed in Table 3.1 are based 

on the criteria |unew - u old | < 10“9 for Re = 50, 100, 200 and |unew -  uold | < 10~8 for Re = 

400 and 500. These results agree very well with those found in the literature.

Re = 50 >3 II O o Re = 200 Re = 400 Re = 500

Mesh size IxJ 101x41 201x41 301x41 961x81 1201x81

Ay 0.025 0.025 0.025 0.0125 0.0125

Ax 0.025 0.025 0.025 0.0125 0.01

Iterations 1283 4028 9403 2750 3251

Table 3.1 Number of iterations, spatial step and mesh sizes
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Re
Armaly et al [50] 

Experimental

Barber & Fonty [51] 

Numerical

ACE-CFD [51] 

Numerical

Present Method 

Numerical

50 0.90 1 1 1

100 1.40 1.50 1.50 1.50

200 2.50 2.6 2.59 2.59

400 3.75 5.15 5.1 5.47

500 4.4 6.65 6.6 6.34

Table 3.2 Reattachment length as a function of Re

Figures 3.4 and 3.5 show the streamlines of Re = 50 and Re = 200.

To confirm that the results obtained are independent of grid resolution, the case of Re = 

100 is considered. In this case, the mesh size first considered is 201x41. Another mesh of 

twice the resolution (401x81) has also been used. The reattachment lengths and number 

of iterations obtained using these two meshes are almost identical.

1

Y 0.5

X

Figure 3.4 Streamlines for Re = 50 
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Y 0.5

7.52.5

Figure 3.5 Streamlines for Re = 200

Another case for Re = 50 was also considered to validate the present method. In this case, 

the expansion ratio E (ratio of step height to channel height) is 0.75, as illustrated in 

Figure 3.6. The number of iteration required for convergence on a 201x41 mesh with 

Ax = 0.025 and Ay = 0.025 is 5321. The reattachment length is 1.92. The reattachment 

reported by Thangam and Knight [46] for this case is 2.2.

1

0.5

1.25 2.5
X

Figure 3.6 Streamlines for Re = 50, E  = 0.75

Results obtained for Re = 200 are also compared in more detail to those obtained using 

FLUENT. The reattachment length obtained using FLUENT is 2.47. Figures 3.7 and 3.8 

show the u and v velocity, respectively, along the vertical line x  = 1.2, which lies in the 

recirculation zone (see Figure 3.5). Figure 3.9 shows the u velocity downstream of the 

reattachment point, atx  = 5.
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□  Fluent 

+  Present Method0.7

o.s

Y
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Figure 3.7 u velocity along the vertical line x = 1.2

0.9

0.8

0.7 □  Fluent 
+ Present Method

XY

0.4

0.3

0.2

0.1

- 0.1 -0.05

Figure 3.8 v velocity along the vertical line x = 1.2

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.9

0.8

0.7

0.6
□  Fluent 
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0.4

0.3

0.2

0.2 0 4 0.6

Figure 3.9 u velocity along the vertical line x  = 5

Pressure contours are compared in Figures 3.10 and 3.11, showing that the contours 

obtained by FLUENT and the present method are almost identical. Pressure has its 

minimum values at the inlet and outlet, and its maximum value at the middle of the 

channel.

Y

X

Figure 3.10 Pressure contours for Re — 200 using present method

X

Figure 3.11 Pressure contours for Re = 200 using FLUENT
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3.3.3 Multiblock Methodology

3.3.3.1 Multiblock Mesh Generation

A multiblock grid is a collection of structured grids that together fill the physical domain. 

Multiblock grid systems may be rectilinear or curvilinear. The idea behind multiblock 

mesh generation is that, instead of utilizing one global coordinate system, several local 

systems are constructed and connected together. The domain is subdivided into blocks 

and, within each block, a system is derived. The block subdivision provides the necessary 

flexibility to construct structured meshes for geometrically complex domains. The 

approach represents a highly effective compromise between a globally structured mesh 

and an unstructured mesh. In one limit, that of a single block, the global structured mesh 

is recovered, whilst in the other limit, a fully unstructured mesh of quadrilaterals is 

obtained. The only lack of flexibility inherent to this latter limit is that the cells or 

elements are quadrilaterals and are therefore not the lowest geometrical simplex, namely 

the triangle.

This concept in mesh generation is very powerful. The arrangements of blocks define 

how the local systems connect and the resulting connectivities between the local 

coordinate systems define the topology of the grid. Using curvilinear systems, it is 

possible to construct a wide range of mesh topologies for any given configuration. In 

particular, it is possible to construct ‘component adaptive’ mesh topologies to ensure that 

the mesh lines close to a component are appropriate to the geometrical shape of that 

component. This is an important aspect of the design and construction of high quality 

meshes.
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The multiblock curvilinear grid system concept is not restricted to any particular mesh 

point generation technique. The generation of points can be performed using the 

algebraic or the partial differential equation approach. The block structure is completely 

independent of any coordinates in the physical space. Each block has its own “local” 

coordinate system. This system is independent of those in the adjacent blocks. Hence to 

generate a mesh within a block it is only necessary to construct an algorithm which 

operates on a simple rectangular computational domain. With a suitable treatment of 

boundary points, the generation of the global mesh then involves a loop over all the 

blocks.

A desirable condition for block boundaries to satisfy is that, given two blocks which are 

adjacent and have a common edge in the block connectivity matrix, the grid lines in 

physical space, which correspond to points on the edge, must be continuous. Moreover, if 

a block boundary is adjacent to another block boundary, and the boundary points are 

fixed, then the resulting mesh will, in general, be discontinuous in gradients and higher 

derivatives across the boundary. However, slope continuity at block interfaces can be 

achieved. The transfinite interpolation method provides a mechanism by which slopes at 

boundaries can be specified. For elliptic grid generation systems, it is possible to 

manipulate the control functions so as to control the slopes at boundaries.

In this chapter, the present velocity-pressure coupling method is applied to the backward- 

facing step to test the suitability of the multiblock approach. Note here that this work 

deals with the solution of the flow equations on a multiblock mesh, rather than the details 

involved in creating the multiblock mesh.
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3.3.3.2 Multiblock Solution for Backward-facing Step

A multiblock mesh for a flow on a Cartesian grid can be illustrated by the two blocks 

shown in Figure 3.12. To illustrate the methodology and formulate the relevant equations, 

we have considered a horizontal interface between the two blocks, and specified its

location at j  = ~ ~ ~  ■ A vertical interface would be treated similarly. Due to the

staggered grid arrangement in each block, the w-momentum and continuity equations can 

be solved on each block as explained in Chapter 2. However, special treatment must be 

given to the v-momentum equation because the horizontal interface between the blocks is 

located where v is stored. So, in block 1, a relation should be found between v stored at

the interface, v /+l, and v at two grid lines south of the interface, i.e., v y_3. In block 2,
l~  l’~

the relation should be found between v at the interface, v y+1, and v at two grid lines
l , -

2

north of the interface, i.e., v ■/+5 '
2
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j = J  

j = J-l

j = (J+5)/2 

j = (J+3)/2 

j = (J+l)/2 

j = (J-l)/2 

j = (J-3)/2

j = 2 

j = l

V

; -----
V

f a " 1

----- ^

t  1u

- - - - - - - - - - -

' a ' " ' ...  “ F ............1u

V

Block 2

Blocks Interface

Block 1

Figure 3.12 Multiblock mesh

In block 1, the continuity equation discretized at which corresponds to the grid

line adjacent to the north boundary of block 1, is

u  i^zl v -2 il v  ■ J - 3
/+ ' 2 " ’ 2 .  +  . 1 2 -----l i _  =  0

2Ax 2Ay
(3.3)

This equation, written in the form

4y
Ax

/ \

u . . j - i  u . i
(-1,—  i+ i,—

V  2  2  7

+  V . y - 3  = V  
'• 2 2

(3.4)

gives the required relation for block 1. The v-momentum equation in block 1 at the north 

side (two grid lines south of the interface) becomes
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where

bN =■Up

U . J - 3 V . J - 3 f
I ,   I, -------- '

2 . + - ^  + V
2Ax 4Ay 2Ax 4Ay

. J-3
UN — 

—

b  =  —uw

V
4 Ay 4 Ay

(3.6)
\ J - 3 

' '  2 V
2Ax 4 Ax

bN =■U E
V

4 Ax

f \
Vi2±  If  \V ’’ 2

™, j-i — , j-iM,— i+i,—V 2 2 J4 Ay2 4Ay
V

Ay
Ax

A  similar discussion as above follows for block 2, where the relation between the v’s at 

the south side (two grid lines north of the interface) is given by

, (  \Ay
Ax '  • , J +i  j+ i,—V 2

— u
i- 1

y+3 
2 J

+  V . J+5  = V  y + 1 . (3.7)

Note here that the v-equation can be solved in either block first. If v is solved in block 2 

first, equation (3.7) is used to evaluate v at the interface. Now, with v known at the 

interface, block 1 can be treated as discussed in Chapter 2 where v is known at the north 

boundary (interface).

Flow over the backward-facing step for Re = 100 is considered using the multiblock 

approach. The flow domain has been divided into two blocks by the horizontal line
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emanating from the step comer. Results obtained are essentially identical to those 

obtained in the case of single block, as seen in Figures 3.14 and 3.15. To further validate 

the multiblock methodology, an inlet duct has also been added to the flow domain, as 

illustrated in Figure 3.13, and three blocks are created using horizontal and vertical lines 

emanating from the step comer. The parabolic inlet flow condition is now applied on the 

west boundary of block 3. As seen by comparing Figures 3.14, 3.15 and 3.16, the same 

solution is obtained for the cases of one, two or three blocks.

•

Block 3 Block 2
■

inlet duct

: Block I

Figure 3.13 Flow domain decomposed into three blocks
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1

0.5

0 1.5

Figure 3.14 Streamlines for Re = 100, one block

1

0.5

0 1.5

Figure 3.15 Streamlines for Re = 100, two blocks

1

0.5

-1.25 0 1.5X

Figure 3.16 Streamlines for Re = 100, three blocks 

3.4 Flow in a Square Cavity

The problem considered is the two-dimensional viscous flow in a cavity, in which an 

incompressible fluid is bounded by a square enclosure and the flow is driven by a 

uniform translation of the top. The fluid motion in this cavity is an example of closed 

streamline problems that are of theoretical importance because they exhibit the primary 

features of a broad class of flows, namely steady separated flows. Due to the simplicity of
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the cavity geometry, applying a numerical method on this flow problem, in terms of 

coding, is quite easy and straightforward. However, numerical methods for solving the 

flow equations are often tested and evaluated on cavity flows because of the complexity 

of the flow physics.

Despite its simple geometry, the driven cavity flow retains rich fluid flow physics 

manifested by multiple counter-rotating recirculating regions in the comers of the cavity 

depending on the Reynolds number. In the literature, different numerical approaches have 

been applied to the lid-driven cavity flow problem. Though this flow problem has been 

numerically studied extensively, still there are some points which are not agreed upon 

(Erturk et al [53]). For example, an interesting point among many studies is that different 

numerical formulations for the simulation of cavity flow yield about the same results for 

Re < 1,000, but results start to deviate from each other for larger Re. Another interesting 

point is that while some studies predict a periodic flow at high Reynolds numbers, others 

present steady solutions. Aydin and Fenner [54] have used a boundary element method 

formulation with central and upwind finite difference schemes for the convective terms. 

They have stated that their formulation loses its reliability for Reynolds numbers greater 

than 1,000. Grigoriev and Dargush [55] have presented a boundary element method 

solution with an improved penalty function technique using hexagonal subregions, 

discretizing the integral equation for each subregion as in the finite element method. They 

have used a non-uniform mesh of 5040 quadrilateral cells. Using this approach they were 

able to solve driven cavity flow up to Re = 5,000. Ghia et al [56] used the vorticity- 

streamfunction formulation to study the effectiveness of the coupled strongly implicit 

multigrid method in the determination of high Re fine mesh flow solutions. They
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presented numerical values for the velocity components along vertical and horizontal 

lines through the geometric centre of the cavity.

3.4.1 Problem Specification and Boundary Conditions

Lid-driven cavity flow is defined as steady incompressible flow in a rectangular domain 

whose top boundary moves with constant velocity in the plane of the cavity cross-section. 

Therefore, the flow movement inside the cavity is induced by the top wall of the cavity. 

The present simulation uses Cartesian coordinates with the origin located at the lower left 

comer and the top boundary moves from left to right. The fluid velocities on the left, 

right and bottom sides of the cavity are fixed at zero, while a uniform velocity u -  1 is 

applied along the top wall, as illustrated in Figure 3.17.

1 u = l v = 0

u  — 0 
Y v = 0

u  =  0
v = 0

u = v = 0
0 X 1

Figure 3.17 Lid-driven cavity
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3.4.2 Results and Discussion

Figures 3.18, 3.19 and 3.21 show plots of streamlines for Re = 100, 400 and 1000 

obtained using the present method. The flow structure is in excellent agreement with the 

work of Ghia et al [56], as illustrated by comparing the flow patterns in Figures 3.19 and 

3.20.

Y

X

Figure 3.18 Streamlines for Re =100

Y

X

Figure 3.19 Streamlines for Re = 400 using present method
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Figure 3.20 Streamlines for Re = 400, from Ghia et al [56]

Y

Figure 3.21 Streamlines for Re = 1000

The numerical solution for Reynolds number up to 1000 shows a large primary vortex 

and two secondary vortices in the lower comers, in agreement with results reported by 

Ghia et al [56] and many other researchers. These streamline plots give a clear picture of 

the overall flow pattern and the effect of Reynolds number on the structure of the steady 

recirculating eddies in the cavity. In addition to the primary centre vortex, a pair of
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counter-rotating eddies of much smaller strength develop in the lower comers of the 

cavity. For Re = 10, the centre of the primary vortex is located at the mid-width and about 

one third of the cavity depth from the top. As Re increases (Re = 100), the primary vortex 

centre moves toward the right and the vortex becomes increasing circular. Finally, this 

centre moves down towards the geometric centre of the cavity as the Re increases further. 

In the case of Re = 100, a 101x101 mesh was created and the results obtained agree very 

well with those obtained by Ghia et al [56]. A finer mesh, 201x201, was also used for this 

Re, but no significant change was noticed. The number of iteration needed to satisfy the

convergence criterion ^  -----—  <10~3 was 11130. In the case of Re = 400, a
/  Mnew

201x201 mesh was also used and the number of iteration required for convergence was 

16579. When Re = 1000, the solution failed to converge using the same criterion on the 

201x201 mesh. The flow equations in this case are solved on a 301x301 mesh with a 

different convergence criterion \unew - u old\ < 10^. Figures 3.22 and 3.23 show the u

velocity component along the vertical centreline for Re = 100 and 1000, respectively. 

Figures 3.24 and 3.25 show the v velocity component along the horizontal centreline for 

Reynolds numbers of 100 and 1000, respectively. The results for Re = 100 are in 

excellent agreement with those obtained by Ghia et al [56]. For Re = 1000, the u 

component agrees very well but the v component is not as good as those obtained for 

lower Re.
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Figure 3.22 u velocity along vertical line through geometric centre of cavity for Re -  100
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Figure 3.23 u velocity along vertical line through geometric centre of cavity for

Re =1000
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Figure 3.24 v velocity along horizontal line through geometric centre of cavity for
Re = 100
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Figure 3.25 v velocity along horizontal line through geometric centre of cavity for
Re = 1000
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Results obtained for Re = 400 are also compared to those obtained by using FLUENT. 

Figures 3.26 and 3.27 show the u velocity along the vertical line and v velocity along the 

horizontal line through the geometric centre of the cavity, respectively.

®
0.9

0.8

0.7

0.6
□  Fluent

Y
+ Present Method

0.4

0.2

0.1

-0.3 0.5

Figure 3.26 u velocity along vertical line through geometric centre of cavity for Re = 400
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Figure 3.27 v velocity along horizontal line through geometric centre of cavity for

Re = 400

Pressure contours are compared in Figures 3.28 and 3.29, showing that the contours are 

almost identical. Pressure has its maximum value at the right top comer of the cavity. The 

results for velocity and pressure obtained from the present method and from FLUENT are 

in very good agreement.
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X

Figure 3.28 Pressure contours from FLUENT, Re -  400

Y

x

Figure 3.29 Pressure contours from present method, Re = 400
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3.5 Conclusions

The proposed method has first been tested on a simple problem that has an exact solution 

in the downstream region, specifically flow in a straight duct. The results obtained for 

various Reynolds numbers are in excellent agreement with the exact solution and other 

numerical results in the fully developed region.

The two-dimensional lid-driven cavity flow and the flow over a backward-facing step at 

various Reynolds numbers have been simulated using the proposed method. Numerical 

results are compared with benchmark solutions, FLUENT simulations and experimental 

data.

In the case of the backward-facing step, predictions from the present numerical model 

have been compared against experimental data for low Reynolds number. In addition, 

computed reattachment lengths have been compared against alternative numerical 

predictions and experimental measurements. Reattachment length for various Re and the 

velocity components for Re = 200 across vertical lines in the separation region and 

downstream are compared to those obtained by FLUENT. The proposed method is found 

to give realistic flow predictions and the results are found to be in excellent agreement 

with the results published by Armaly et al [50], Barton [49], Barber and Fonty [51] and 

FLUENT.

For cavity flow, results for Reynolds number up to 1000 are reported. At higher Reynolds 

number the results differ among researchers depending on the methods and schemes used 

to solve the flow equations. FLUENT is also used for Re = 400 to compare pressure 

contours and velocities across centrelines. The results obtained are in excellent agreement 

with those reported in the literature and with FLUENT results.
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CHAPTER IV

DISCRETIZED FLOW EQUATIONS ON A STAGGERED CURVILINEAR GRID

4.1 Introduction

Analytical and numerical methods for the generation of body-fitted coordinate systems 

have been developed for the solution of flow problems on complex geometries. The most 

commonly used method for the generation of smooth grids is elliptic grid generation, 

where an elliptic system of partial differential equations in the form (for 2D)

£Xx + t y y = P(&l)
(4.1)

Vxx+JJyy=Q{^,v)

is solved. The "control functions" P  and Q can be fashioned to control the spacing and 

orientation of the coordinate lines. Several techniques have been developed concerning 

the selection of these control functions. Some of these methods are introduced below. 

Thompson et al [57] developed one of the most commonly used elliptic grid generation 

systems. They proposed expressions for P  and Q in terms of exponential functions. These 

functions contain several amplitude, decay and location parameters which can be adjusted 

to control the degree of clustering or repulsion from particular points or lines in the mesh 

system. Amplitude and decay factors must be timed to achieve good gridding. This is 

even more cumbersome when a multiblock approach is used since these parameters may 

have to be changed from one block to another. Steger and Sorenson [58] improved on the 

Thompson et al [57] formulation by imposing the additional requirement of orthogonality 

at a domain boundary. The constant amplitudes in the exponential functions are replaced 

by functions of one variable along a boundary. In addition to decay factors which have to
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be properly specified, P  and Q must be under-relaxed to achieve convergence. Thomas 

and Middlecoff [59] used a reformulated version of the grid generation equations, and 

assumed that the constant curves are straight as they leave the boundary. In this case 

the expressions for P  and Q can be determined iteratively from the boundary data and 

interpolation to the interior. Barron [60] solved the same system of equations with 

different control functions to enhance orthogonality of the mesh near the boundaries. In 

fact, with this method, only the boundary data and interpolation are required to determine 

P  and Q explicitly. This method is capable of generating high quality structured mesh 

systems at a relatively low cost. It is especially useful when multiblock grid generation is 

required since it imposes orthogonality at block interfaces, and it is straightforward and 

easy to implement. The only input required into the system is the boundary data for each 

block. Unlike most other schemes which attempt to ensure some degree of orthogonality, 

this method does not require user input of amplitude and decay factors, or additional 

relaxation parameters. The control functions are evaluated explicitly and non-iteratively 

from the boundary data, making the system completely automated. In this thesis, 

Barron’s approach [60] is followed to generate the meshes.

We note that equations (4.1) are not convenient to solve since they are expressed in the 

physical (x,y) domain. Thus, equations (4.1) are transformed to the computational 

domain, resulting in the elliptic system

(x2v + y 2n )xu  -  2(x^xn + y 4y n )xf,; + (xj + y \  )xm = - J 2 (Px^ + Qx„ )
(4.2)

ixl + y2n W - 2(xtxv+ y^v + (xe+ y\ K*= ~j l  + Gy*)
where J  is the transformation Jacobian.

These equations are solved to give
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x U = x ( ^ n TI j ) = x { i j )

y i, j = y ( ^ j )=y{Uj)  

where we have set A£ = A 77 = 1 so that £  = i and Pj = j .

The Navier-Stokes equations for the two-dimensional, steady, incompressible, viscous 

flow in terms of curvilinear coordinates {£,p), in the non-conservative dimensional form, 

are

L US + Vxu„ + f y t  + TJyvn = 0 (4.3)

( « £  + V # J  U4 +(uTJx +VTJy ) Un = ~ P ( +  v f e 2 + g )  U g + i v l  + t l 2y ) Um
• •

+ 2 ( ^ 77,  + ZyV, ) Ufr + (&* + %>y ) u( + fexc + *7 J  M J
(4.4)

( « &  +  < )  V; +  (uJJx +  v p y ) v r, = - ^ p s - T̂ - p n +  v f e  +  g ) +  (t i 2 x +  p ] ) v nn
P P

+ 2(^77, + ̂ ,77, ) + 4  ) V* + (vxx + Vyy ) V,]
(4.5)

where u and v are now the velocity components in the £ and 77 direction respectively, %x, 

£ , px and py are the metrics of transformation [61].

The momentum equations (4.4) and (4.5) form a system of second order partial 

differential equations which is elliptic in nature. The unknowns in these equations are 

velocity and pressure.

The metrics of the transformation appearing as coefficients in the flow equations (4.3)- 

(4.5) are given by
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These metrics are known quantities once the solution of the grid generation equations

(4.2) has been obtained.

4.2 Finite Differencing on a Curvilinear Staggered Grid

The values of the metrics of the transformation are required at each grid point. Since the 

step sizes in the computational domain are equally spaced (A£ = A77 = l), , xn, y^,

y n , X g , xm , y% , y nn, y ^  and x ^  can be easily computed by various finite difference

approximations. A second order central difference is used in this thesis to approximate 

these metrics at all interior nodes, i.e., at all interior w-nodes, v-nodes and p-nodes. At the 

nodes adjacent to the boundaries, forward or backward second order differencing is used 

depending on the location of the boundary nodes. These approximations at interior nodes 

are
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and similar expressions for derivatives of y.

4.3 Discretization of the Momentum Equations

A staggered grid is used to store the velocity components u and v and the pressure p. The 

velocity components u and v are stored at the i-l,j and i j +1 locations respectively and p  

is stored at i,j. The first order backward difference of the convective terms in equations

(4.4) and (4.5), in the £ direction, are given by

I Vi,j+l ~  Vi-2J+l

v4 , +1 2 •

Note that these differences are expressed in terms of nodes at which the particular 

variable is stored, which means that the spacing between w-nodes is 2 A £ .

The second order central difference of the convective terms in the Jj direction are given 

by
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The diffusion terms in the flow equations are represented using second order accurate 

central differences, given by

u U i - i , j  +  U i+\,j

i - l j  4

| _  V i - 2,j+\  2 v i, j+\  +  V i+2J+l

4

I U i - l , j +2 ~ 2 u i - l , j  + u i - l , j -2
U n „ \  ~ -------- - -----------------------------    —

| _ vu+3 - 2 v u+t + V/,y-i
w \ i j + i  4

In equation (4.4), convective-like terms involving and uv appear on the right hand

side. However, these arise due to the transformation of the diffusion terms. Therefore, 

these terms are central differenced instead of backward differenced, giving

uA ~ ---- ---------4

A similar discussion holds for the v,  and vn terms in the v-momentum equation (4.5). 

Therefore,

I V i+2 ,j+\  ~  V i - 2 ,j+\

t \ i j + 1 4

The mixed derivative of u and v are central differenced to give, respectively

I U i+ \ , j+2 ~ U i - i J +2 ~ U i+ l , j -2  +  U i - 3 , j - 2
U £ n \  ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -u-i’j 16

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The pressure gradients are approximated by second order accurate central differences 

using the locations where p  is defined. This gives

P i - 2 , j + 2  +  P i J +2 ~  P i - 2 , j - 2  - P i J - 2 

8

j +1

P j+2 , j +2  P i + 2 J  P i - 2 , j  P i - 2 ,  j+2

8

I P i j n . - P i j

p A u+r — 2— •

4.3.1 Discretized Equations at Interior Nodes

The discrete u- and v- momentum equations at interior nodes may be written respectively 

as

p .  .  . —  n .  .
int „ ,  * in t ■ in t i i ■**>./ , o i n t  ( a  o \

a P  i—\ , j  ^  a N  i—\J + 2  a S  i—\ , j —2 ^  a W U i - 3 , j  a E  U i+ l, j ~  h x  ^  ( 4 - 8 )
2  p

b?v iJ+l +b * \ j+ 3 + b?v tJ^  +b- tvi_2J+i +bTvMJ+1 =TJ} ^  PiJ+1 + 5 ‘nt (4.9)
2  p

where

V x ( P i - 2 J - 2  +  P i  J -2  ~  P i - 2 ,  j+2 ~  P i ,  j+2  )

8  p

, J & x + £ y n y \ *  ^
"*■ ■ \ Mi+l , y+2 U i-3 , j+2  W 1+1,7-2 U i - 3 , j - 2  )

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



s . = -
U p  1+2J+2 +  P i + 2 . j  P i - 2 , j  P i - 2  J+2 )

8 p

+ v {Pi+2,j+2 ^i -2, j+2 ^ i +2 , j - \  ^ i - 2 , j -

d p * =  —  H - ------—  +  V

/  2 2 \  
n l  + V y + v

a N  ~
V x U i - i , j  , P y V i - l , j v r v l + n 2ŷ

V  4  y
— v P x x + P y y

P x U i-X,j P y Vi - l , j
- V

r v l + n 2? + v ' P x x  +  P y y  '

*w - V
r g + ? \  ^

+ v £xx + £yy

a f  = ~ V
4v y

rxc

Z,'nt _bp —%xUj,j+\ | €yVj,j+1 | ^
/  2 2 ^  

Px +T?v

\
+ v

I .int _  P  x U i,j+\ P  y Vi,j+\bN = -----:----+ ----- ;---- -L>^ P x + P ^  

V  4  y
-V x̂x +^>,

^ in t  _  P x U i , j +1 P y V i , j+ 1 ^
/  2 2 \  

*7x +  P y
+  V

P x x + P y y

4

V

+  t>

X X yy
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The hat over p, u and v means that these quantities are evaluated at the previous iteration. 

Because of the use of a staggered grid, the values of the v-velocity in the w-momentum 

equation and the u- velocity in the v-momentum equation, appearing as coefficients of the 

convective derivatives, are not available at the desired points. These velocities were 

computed using the four surrounding grid points, i.e.

« . . .
U i+\. j  +  U i+l, j+2 +  +  U i-], j+2

Vi J - 1 +vu + 1 +vt_2J_l +vl_2J+l

4.3.2 Discretized Equations at the Boundaries

The problems considered in Chapter 5, solved using curvilinear coordinates, involve an 

inlet flow or wall jet at the west boundary, outlet flow at the east boundary, stationary 

wall at the south boundary and symmetry at the north boundary. The discussions 

regarding velocities presented in Chapter 2 are valid here, except for the north boundary 

which was previously identified as a wall. It is important to note that the w-and v- 

momentum equations have an extra term involving pressure, incorporated into the source

terms Su and Sv, due to the transformation. Therefore, special attention must be given to 

approximate these pressure gradients.

4.3.2.1 Equations at the South Boundary

The pressure gradients —  and appear in the source terms for the u- and v-
drj dg

momentum equations, respectively. Various schemes can be applied to evaluate these 

pressure gradients at near-boundary nodes, for example, the projection method [62]. In
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this thesis, a one-sided difference is used to approximate the term —  for the u-
drj

momentum equation at nodes adjacent to the south boundary, i.e., j  = 2 nodes. Therefore, 

we take

dp_
dij

P i - 2 , 4 +  P i , 4 ~ P i , 2 - P i - 2,2

i - 1,2

The u-momentum equation along/ = 2 becomes

S  , S  S S  £  P i - 2 , 2  — P i , 2 , p i
a P ^ i - l , 2  ^ ~ a N U i - l , 4 + a w U i - 3,2 a E U i+\,2 ~  h r  +  & .

where

2 p

s: =_  V x ( P i , 2  +  P i - 2 , 2  - P i - 2 , 4  ~ P i , 4 )

4  p

+ v
12

(ui+14 m;_3 4 + 4m(._31 4 u m x  )

+ u,
( - 1,1 (7 - + o

= - y 1 ( ^  + p j + —f l (fy +V y)+v(vl +V2y)+v - V
( P r r + V y y \

2
V I 2 J

=    +    V
\

- v

S  _  ^ x & i - 1,2 Y Y '- 1 , 2
_ 1/ + i> + i>

aE = - v _ . ( L + ^ )  . . ( & x + & y '
4

- v - v
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f )n
The pressure gradient —  in the v-momentum equation does not need special treatment,

so the v-momentum equation at this boundary is the same as at the interior points, except 

that the velocity components at this boundary are known.

4.3.2.2 Equations at the North Boundary

As previously mentioned, the boundary condition applied at the north boundary of the

physical domain is the flow symmetry boundary condition, i.e. —  = 0 and v = 0. Since
dy

this north boundary is also a flow symmetry boundary in the computational domain, this

condition becomes —  = 0 and v = 0 along j  = J. A  one-sided difference is used to 
dtj

approximate the term — . Therefore, we take 
dtj

dp_
drj

P i , J - \  +  P i - 2 , J - \  P i -2 ,J -2  Pi , J- 2

i - \ ,J - \

where /  is the maximum number of nodes in the Tj direction. The u-momentum equation 

alongy = / - I  becomes

a P U i- \,J - \  ^  G S Ui - \ ,J - 2 + a w Ui-2 ,J -i + a /7 U j+\,J-\ ~  £
P  i-2,J-\  P i

2  p
i,J- 1 + S N

where

N _ r! x  {.Pi,J-2 P i -2 ,J -2  P i - 2 , J - \  P i , J - \  )s: =

+ v
r L n x +%yny ^

12

4 p

{pi -2, j~2 ~  Ui+\ j - 2  )

a p  ~  Ui-\ ,J-\
L + ! L  
2 6 +  v i - \ , j -1

•’y  | <y

v 2 6 y
+ v + v - V
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lNlw
J-1 - V + t;

/

4
V  / I 4 J V

^ n x + ^yny ^
1 2

a NE = - v / £  +  £ 2 1 J L +  ) . ( L v x +  L n  ^* ?y
4v

- V xx ? yy

v ~ 4 _  y
- V y  ' y

12

as =■ W j f i i - \ , J - l  r! y V i - \ , J - \ - V ' n l  + n l 3

3  y
+  V Vxx+Vxx I yy

v 6 y

The v-momentum equation at this boundary is the same as at the interior nodes, except

that v = 0 at this boundary (j -  J) and u is calculated from uu  = uiJ_l .

4.3.2.3 Equations at the West Boundary

In the source term of the v-momentum equation, a forward difference is used to

approximate the term — . Therefore, we use

dp Paj+2 +Paj -  P l . j  ~ P l , j+2

2 J + 1

The v-momentum equation along i = 2 becomes

b > w  + * > > ,,,  = % E M Z b ± L  + s :

where

s:  = G y ( p 4 . j + 2 +  P a j  - P 2J  ~  P i  J +2 )

4 p

+ v ' Z j l x + tyV y '  

v 12 y
( v 4 J + 3 -  4v|,7+3 +  4viJ-l)

+ VW+1 y(f,2 +£)-f (#„ + O +f #A>, +§6 ^
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_  €x**2, j+l  , ^ y ^ 2 , j + lb;  = -  —  +
P 2 2

+ v r vl  + v ] A

hw _ n xu2J+x nyv2J+l
N  ~  A  A

m + m
4

- V

+ « ( £ + £ ) - »

Zjix+Zvn

yy

r - 2 ' - 2 '  f
V

Tl x x + T lxx I yy

b W _  V x H j + l  ^ V2 . , +1 v ( * l + n 2y'
4 4

&

V

+  V
ZxVx +{yTly + v Vxx+Vyy

- V
( L + U

3
V / I 6  J

The w-momentum equation at the west side will be the same as at interior points, except 

that the velocity components at that boundary are known.

4.3.2.4 Equations at the East Boundary

dp
In the v-momentum equation, a backward difference is used to approximate the term

a#

and the boundary condition = 0 is applied at i = I  in the discrete form v/+1 +1 = v,_x +1
dg

Therefore, we take

dp_ P l - l J+2  +  P l - \ , j  P 1-3 J+2 P / - 1 J

and the v-momentum equation along i  = 7-1 becomes

bp v/~y+i + bNv!_] j+3 + bs v7_ , + bwVj_3 j+1 —T)_  „  P l - l j  P I—XJ+2
2 p

+ S

where
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s b. = -V
_  £ y [ P l - \ , j + 2  +  P l - l J  P 1-3 , j + 2  P 1-3, j  )

4 p

& x + Z / t y \ .  ^
0  I v / - 1 . / + 3  V I - 3 , j+ 3  V I - l , j - \  +  V/ - 3 , y - l j+  V

^ E  _  ^ A - 1 J + 1  j 4 y ^ I - l , j + l
+  V

f £ + £ l ( L + f y y ) + v
/  2 2 A m+f j y- V

4V 1  4  j 2\  /

U E  _  r! x U I~ \ , j+ \  , V y V I - l J +l _  
°JV _ - ■*" ^

/  ? 2 \  
' V X+Vy - v V^+Vyy

V  /

L E  P x U I - \ , j + \  rt y y I  ~ \, j+ \bv = ----------------------- ------ - V

/  2 2 \  
P x + V y

4
V  /

+ v Vxx+Vyy

K = ~ 4v y
+ v

In the case of the w-momentum equation, the same boundary condition = 0 is

applied, represented in discrete form as u,_2j = uLj . Applying this condition, the 

discretized ^-momentum equation along the line i = 1-2 becomes

a P U I - 2 , j  a N U I - 2 , j+ 2  J r C l S  U I - 2 , j - 2  Q W U I - 4 , j  ~  4 x
P , - 3 J  ~  P 7- 1J  

2 p
+sl

where

S ‘  =
V x  ^ P 1-3 , j - 2  "I" P l - \ , j - 2  P 1 -3 , j+2 P l - \ , j + 2  )

+  V
(  ZxVx+ZyVy

8  p

[U 1 -2 , j+ 2 U 1-4 , j+ 2 U 1 -2 , j - 2  U 1 -4 , j - 2  )
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ap =_  € x U I - 2 J  | € y V I - 2 , j  | 

2 2

/  2 2 \  
l l  + t + v

V

-D

£  _  W x U I - 2 J  W y V I - 2 J

4
+ -

/" 2 , 2 A
'*7,+*7, - u 'Vxx+Vyy'

a s ~
V x U I - 2 J  rl y V I - 2 J

4 4
- V

f  1 2 \
( Vx+Vy^ + v

77 +77/  xx * yy

a w ~ - V
( £2 , £ l \  f  K , £  \

7xt *yy' £ + 6 + v

4.3.2.5 Equations at the West South and West North Corners

The discretized ^-momentum equation derived for nodes adjacent to the south and north 

boundaries can be used at these comers respectively, since no changes take place at the 

west boundary other than that u is known. The discretized v-momentum equation derived 

for nodes adjacent to the west boundary can be used at these comers, with velocities 

known at the south and north boundaries.

4.3.2.6 Equations at the East South and East North Corners

The discretized w-momentum equation at south and north boundaries can be used at these 

comers by modifying the central coefficient (i.e., ap) according to the boundary

condition applied at the east side. The v-momentum equation used at the east boundary 

can be used at these comers, with velocities known at the south and north boundaries.

In general, the w-momentum and v-momentum equations may be written respectively as

V 1 , bjt P i - 2 , j  P i , j  , Aa- , u , = /  a ,u , H— ------- - — + Si-l,j i-l,j /  > nb nb ' ^ u
nb P  ^

(4.11)

bIJ+lVU+l = Y j bnbVnb +
nb

V y  P U + 2 ~  P i  J  

P  2

+ S„
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Here, nb refers to the neighbours of the nodes where uiA j and v; .+1 are to be calculated.

4.4 Discretization of the Continuity Equation

The discrete continuity equation at the i j  location may be written as

e  u M , j  ~  U i - \ , j  v i , j +1 — v i , j -1 -  I e  „

& -------2 -------- % ----- 2 ------- = ~ ̂  «

where the derivatives on the right hand side are evaluated from previous iterations and 

are approximated by values where u and v are stored, i.e.,

I _  2 ^i -1. 7' +2 _  U j + \ j - 2  ~  & i - l  J - 2

” \ u  8

V i+2J+1 ~*~V i + 2 J - l  ~ V i - 2 J + l  ~ V i - 2 J - lVA = ----------------------------------------- .
*1 u  8

4.4.1 Velocity-Pressure Coupling

Let u* and v*be the discrete u and v fields resulting from a solution of the discrete w-and 

v-momentum equations, corresponding to an approximate pressure field p* . Thus, from 

equations (4.11),

C  * *
* V 1  * . P i - 2 ,  j  ~~ P i ,  j  . o *c i t U i — s a Uu u H—*------------------H 5t - 1,7 / - l , ;  /  i nb nb ~

nb p  L

(4.12)
* *

1 * V " 1 L * . P i , j + 2 ~  P i J  , o *
^ i j + l  V iJ + \  =  +    +  S V ■

nb P  ^

As in the Cartesian formulation, a correction is proposed to the starred velocity field

u = u* +u
(4.13)

V  =  V  +  V .

Correspondingly, we correct the existing pressure field p* with

p  = p + p .  (4.14)
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using equations (4.13) and (4.14), and subtracting equations (4.12) from equations (4.11) 
we obtain

E , bx P i - 2 , j  P i J  , 
a  , u  h H— -   — +  S

nb nb ~ u
nb P  1

U ' V 1 U ' I P i , j ~ P i , j +2 ,
ij+\l,/+i = + o + •

nb P  £

As in the SIMPLE algorithm, we approximate equations (4.15) as

(4.15)

& A -2,; 
P  2

P y  P i J  ~  P i J ,  2

P  2

So, equations (4.13) are now

(4.16)

P i - 2 ,  j  ~ P i , J  

2 p a,-ij

L j +1 =  Vi J +l + P y
P i J  ~  P i J , 2

2 pbK
7+1

(4.17)

We now consider the discrete continuity equation. The starred velocities w*andv , 

obtained by solving the momentum equations using the prevailing pressure field />*, do 

not satisfy the discrete continuity equation. Thus we require the corrected velocities, 

given by equations (4.17), to satisfy the continuity equation. Therefore,

' U i , l J  +

£

£  P i J  ~  P „ 2 j  1 [  *
- 7 —^--------
P  2 a M . j  {

P i - 2 J  ~  P i J  }  

P  2 a i - l J

' Vi J+1 +
P y  P i J  P l\y+2

+  ;7v
P  2 fy y+1

P y  P i Ji j~2 P  i j  |

P  26,
= - P X“, \i j -ZyV{ 1>J
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Rearranging terms, we may write an equation for the pressure correction as:

* * *  *

r i n t  n ' + r i n t  n  +  r i n t  n  + r i n l  r i  + r i n t n '  -  £  U ‘ ~ l j  U M J  v i j + 1 v t , j - 1  . y i m
C P  P i J  +  E  P i + 2 J  +  C W  P i - 2 , j  +  C N  P i J + 2  S  P i J - 2  ~  b x  ^  T1  y  +  O p

where

S ?  = ~VX
U i+\J+2 J r U i - \ J + 2  U i + \ J - 2  U i—\ J —2

/
V i+2J+\ V i + 2 J - l  V i-2 J+ 1  V i - 2 J - l  

8

e r = ^ £ _ + ^ _ + _ ! ? L + .
4paMJ 4pai_lJ 4pbjJ+] 4pbij_l

c w ~ '

4Pai+U

£
4pai_lJ

cmt = -C N
%

4Pbjjj +1

c ,nt =  -  cs
4  Phj-i

4.4.2 Pressure Correction Equation at the Boundaries

Suppose the velocity component v is known at the south and north boundaries and u is 

known at the west boundary (inlet). Based on this information, the pressure correction 

equation will take different forms on different boundaries.

4.4.2.1 Pressure Correction Equation at the West Boundary

The velocity components are known at the inlet. Therefore, the pressure correction 

equation along i = 2  will become

* * #

r w  n  + r i n ‘ r > '  4 -  r i n i  n  +  r i n l  n  — E  U l ’j  U i , i  n  V z ^ + 1  , c Wc p  P i j  +  c e  P a j  +  c n  P 2J +2 +  c s  P 2J - 2  ~  0  'Ay »  +  Op
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where

s:=-n> U 2,j+2 U \, j+2 U i , j - 2  U \ , j - 2

- I
V 4 J +1 + V 4 J - i  +  V 2,j+\ +  V 2 , j - i

£  % *ly
C p = — — —  +  — — - —  +  ■ J

4pa3J 4pb2 j+x 4pb2J_x ’

and other coefficients are the same as defined at the interior nodes.

4.4.2.2 Pressure Correction Equation at the South Boundary

At the south wall (j = 1) the velocity components are equal to zero. 

Therefore, the pressure correction equation along y = 2 becomes

C p P i , 2  +  C E  Pi+2,2  +  C W P i - 2 , 2  +  C N  P i ,4 — £ x
U i - \ ,  2 U i+\,2 V ,  ,  -  „

- l y - f  + V

where

S  =  - 7 ]p  IX
U i+1,2 +  1,2 U i - \ A  J r U i+1,4 V /+2,3 V /' -2,3

4 /» w ,2

All other coefficients are the same as defined at the interior nodes.

4.4.2.3 Pressure Correction Equation at the North Boundary

At the north boundary the flow symmetry boundary condition is used and the v 

component of velocity is equal to zero.

Therefore, the pressure correction equation along y = J - 1 will be

_ A T _ ’ , , J n t  , J n t  J  _ £  U i - \ , J - \  U i+ l ,J - 1 , ^  V i , J - 2 , p N
C P  P i , J - \  "*■ C E  P i + 2 , J —\ C W P i - 2 , J - \  +  C S  P i , J - i  ~  S x  0  ^ y  P

where
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All other coefficients are the same as defined at the interior nodes.

4.4.2.4 Pressure Correction Equation at the East Boundary

The velocity at the outlet is not corrected by means of pressure corrections. Hence in the 

discretized pressure correction equation the link to the outlet boundary side is suppressed 

by settingcE = 0 . Therefore the equation along the griuline i = I-l adjacent to the east 

boundary is given by

*  *  *

J _ g  U I - 2 , j ~ U l , j  „  V z - j j + i  - V / - 1 J - 1  ,
CP P l - \ , j  ~̂~CW P l - i . j  N P l - h j + 2  P ry Vy ■ ry P

where 

S E = —rjp  • X

and all the coefficients are the same as those at the interior nodes. 

The solution algorithm is the same as in Chapter 2, Section 2.5.

/  A. "N
U I . j+ 2  ^  U I - 2 , j+ 2  ~  U l , j - 2 _  U I - 2 , j - 2 ( +v,_xj - 1 V l - 3 J + \  V l - 3 J - 1

o
o

V

O
O

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER V 

APPLICATIONS ON A CURVILINEAR GRID

5.1 Introduction

In this chapter, the algorithm developed in Chapter 2 and extended to curvilinear domains 

in Chapter 4 is applied to three test problems, namely, flow over a backward-facing step, 

flow in a complex channel, and flow over a scour hole.

Each of the problems considered here is of great interest, the first two being important 

validation test cases for any numerical model. Although flow over a backward-facing 

step was simulated in Chapter 3, it is simulated again in this chapter on a rectangular 

mesh with clustering along the bottom wall. The complex channel is one of the most 

fundamental curvilinear domains in which flow separation can occur [63]. The scour hole 

problem is considered as an initial test case for investigating the suitability of the present 

method in simulating flow patterns generated by a water jet impinging on deformable 

sand beds.

5.2 The Backward-facing Step Flow with a Clustered Mesh

The problem specification considered in this section is exactly the same as in Chapter 3. 

The flow is simulated on a mesh where clustering is imposed close to the lower wall 

boundary as illustrated in Figure 5.1. This problem is considered here to further validate 

the results obtained in Chapter 3, since more grid points are taken at the region of 

interest, where reattachment and recirculation take place. It also serves as a simple check 

on the equations derived in Chapter 4. The case considered is for Re = 200. The results, 

as shown in Figures 5.2 and 5.3, are identical to those obtained on a Cartesian mesh with
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no clustering. This implies that the mesh size taken in Chapter 3 is good enough to 

accurately capture the reattachment length and the recirculation zone.
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Figure 5.1 Clustered mesh for backward-facing step flow

1

0.5

2.5 7.5
X

Figure 5.2 Streamlines for Re = 200, no clustering

Y
0.5

2.5 7.5
X

Figure 5.3 Streamlines for Re = 200, with clustering
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5.3 Flow in a Complex Channel

In 1982, the International Association for Hydraulic Research (IAHR) Working Group on 

Refined Modeling of Flows devoted the fifth IAHR meeting to the specific subject of 

assessing the capabilities of various numerical simulation methods to deal with laminar 

flows in complex geometries. Here, complex geometry refers to a flow domain that does 

not coincide with the coordinate axes in some simple coordinate system such as Cartesian 

or polar.

A single, well defined comparison problem, namely the laminar flow in a channel with 

smooth expansion, suggested by the work of Roache [64] on the scaling of Reynolds 

number in weakly separated channel flows, was chosen by the IAHR group for testing 

various numerical methods. The purpose of the test problem was to evaluate the 

capabilities of various Navier-Stokes solvers and to highlight difficulties in the modeling 

of complex geometries. A comparison and discussion of the solutions obtained by the 

participants was reported by Napolitano and Orlandi [65]. This problem has been chosen 

to test the present solver described in Chapter 4.

5.3.1 Problem Specification and Boundary Conditions

The geometry proposed by Roache [64] is a diverging channel with length depending on 

the Reynolds number Re, i.e., the length of the channel is scaled proportionally to Re so 

that the channel becomes longer and straighter as Re increases, as shown in Figure 5.4. 

For Re » 1 ,  quasi-self-similar flow conditions and solutions can be obtained, as 

discussed by Roache [64].
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Symmetry line

Inlet

Outlet

Wall

Figure 5.4 Complex channel

Re/3

For the IAHR workshop, flows were computed for Re = 10 and Re = 100. Re = 10 was 

chosen because of its highly distorted geometry. Re = 100 was chosen to assess the 

dependence of the convergence rate on Re.

The lower boundary of the channel is considered as a wall and is given analytically by

y  = y, ( 4 =  ^[tanh(2- 3 0 ^ - ) - tanh(2)]. 0 < * < ^ .
2 Re 3

The upper boundary, which is taken to be a symmetry line, is located aty = 1.

The inlet boundary conditions are given in terms of the Cartesian velocity components u, 

v as

u = 3 

v = 0

f y2 ̂
/ " TV z .

for x = 0 , 0 < y < l .
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A parallel flow is assumed for the outflow boundary condition, that is —  = 0 and
dx

dv—  = 0 . The origin of the physical coordinates (jc,y) is on the lower wall at the inflow 
dx

boundary, where the channel half-height has been normalized to 1. The maximum inflow 

velocity is w(0,l) = 1.5, and the length of the channel is Re/3.

The domain as described above is not a rectangular one, so a transformation from the 

physical domain to a computational domain is employed, and the flow calculation is 

performed in the computational domain. Elliptic grid generation is used to obtain a 

staggered grid system in the computational (<̂ ,77) plane.

The lower and upper boundaries in the computational domain are given by tj = 1 and 

rj = M  respectively, 1 < £ < N  where N  is the maximum number of nodes in the £ 

direction and M is the maximum number of nodes in the T) direction. The inlet and outlet 

boundaries are given by ^ = 1 and £ = N  respectively, 1<TJ < M  . A typical grid (in the 

physical domain) is shown in Figure 5.5.
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Y

X

Figure 5.5 Clustered mesh for the complex channel 

5.3.2 Results and Discussion

In the absence of an exact reference solution, the results obtained by Cliffe et al [63] have 

been taken as the benchmark, as recommended by Napolitano and Orlandi [65]. Cliffe et 

al used a finite element method in primitive variables, a Newton-Raphson linearization 

scheme and the frontal solution method for the resulting linear system. The results are 

also compared to Carson [66] who used a velocity-vorticity approach in streamfunction 

coordinates to solve this problem.

Because of the known difficulties with the outlet boundary condition, several runs for 

different outlet lengths were performed in the present work. For Re -  10 the first run used 

exactly the same domain as defined above. In this case the flow was still developing at 

the given outlet, so the specified outlet boundary condition, which is appropriate to fully 

developed flow, is not strictly applicable. This issue was also reported by Cliffe et al [63]. 

To avoid this problem another run was taken, in which the outlet boundary was extended.
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The length of the lower and upper boundary were taken to be Re instead of Re/3 and a 

mesh of size 201x101 was used, with clustering at the lower boundary. In this case the 

separation zone and the reattachment length were captured correctly, as shown in Figure 

5.6. The predicted reattachment length is 1.82 and the reattachment length obtained by 

Cliffe et al [63] was 1.76. The convergence criterion was taken to be |uold - u new| < 10“6

and the number of iteration required was 11669. The circulation zone obtained by using 

FLUENT is shown in Figure 5.7. The circulation zones obtained by FLUENT and the 

proposed method are almost identical. The vorticity was also evaluated at the lower wall

using 0) = —  -  — , which in the curvilinear coordinates is reduced to 
d x d y

(O = 07/ 0V 

dx drj
drj du 
dy drj

Derivatives normal to the wall were evaluated using one-sided difference approximation 

of second order.

1

0

Figure 5.6 Streamlines for Re = 10 using present method
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....... ..-X 10

Figure 5.7 Streamlines for Re = 10 using FLUENT

Figure 5.8 shows the vorticity at the wall using the proposed method compared to those 

found by Cliffe et al [63] and Carson [66]. Figure 5.9 shows pressure at the wall using the 

proposed method compared to those found by Cliffe et al [63] and Rostagi [67]. The 

nature of the imposed inlet velocity profile generates a discontinuity in vorticity on the 

channel wall at the inlet. This discontinuity affects the pressure close to the inlet, and 

Cliffe et al [63] have made an adjustment for this discontinuity. Runs were carried out for 

several different mesh sizes. A smaller number of nodes could not capture the circulation 

zone, even though the ‘solution’ behaved nicely. For less nodes, a length of Re/3 allowed 

the ‘solution’ to converge, but the circulation zone could not be captured.

Napolitano and Orlandi [65] reported in their paper that some of the researchers involved 

in the fifth meeting of the IAHR failed to obtain separation in the case of Re = 100. 

Others reported large average percentage errors of vorticity, which is primarily due to 

inaccurate results in calculating the separation length. Carson [66] in his work also failed 

to obtain converged solution at Re = 100. Di Carlo et al [68] obtained a recirculation 

region. In their work, they used second order differencing to discretize the convective 

terms. In this present method, the solution converged but the circulation region could not 

be captured even on a refined mesh, as shown in Figure 5.10. FLUENT also failed in
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capturing the recirculation zone. This problem could not be avoided by using a more 

refined mesh. Possibly, it could be solved by using other differencing such as second 

order upwind, or a hybrid scheme.

2 .5

□  C liffe  et al [6 3 ]
2 - -

A  C a rso n  [66]
+  P resen t M e th o d

1 . 5 - -

vortic ity

Figure 5.8 Vorticity along the lower wall, Re — 10
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A Rostagi [67]

+ Present Method
- 0.01

- 0.02

-0.03

-0.05 -  

-0.06 = - /

2.5
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Figure 5.9 Pressure along the lower wall, Re = 10

33.33

Figure 5.10 Streamlines for Re = 100 using present method
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5.4 Flow in a Scour Hole

5.4.1 Problem Specification and Boundary Conditions

Bey [69] performed experiments in a 2.5 m long and 0.5 m high channel with a wall jet of

2.5 mm width. Figure 5.11 shows the channel shape after the scour hole has developed. 

For the simulation in this thesis, the lower boundary of the channel is considered as a 

wall, where u = v = 0 , and is created based on the (x,y) locations provided by Bey [69]. 

The upper boundary, which is taken to be symmetry plane, is located at y  = 0.5. The inlet 

boundary conditions are given in terms of the Cartesian velocity components u, v as

u = 0l
} for x = 0, 0.0125 < y <  0.5 

v = 0J

« = 0.0015]
\ for jc = 0, -0.0125 < y  <0.0125 (jet).

v = 0

symmetry line

0.5

wall
outlet

inlet (jet)
wall

X

Figure 5.11 Schematic of developed scour hole in a channel
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This velocity profile corresponds to Re= —  = 25, where h is the jet height. The flow at
v

9v
the outlet boundary is assumed to be a parallel flow, that is —  = 0 and —  = 0.

ox dx

Since the domain is not rectangular, a transformation from the physical domain to a 

rectangular domain is used, and the calculation is carried out in the computational 

domain.

The lower and upper boundaries in the computational domain are now given by rj = 1 and 

rj = M  respectively, \ <% <N  where N  is the maximum number of nodes in the E, 

direction. The inlet and outlet boundaries are given by E, = 1 and % = N  respectively, 

1 <rj < M  where M  is the maximum number of nodes in the 1) direction.

5.4.2 Results and Discussion

The expected flow pattern for the scour hole is shown in Figure 5.12, taken from Li [70]. 

The experimental results of Bey [69] are shown in Figure 5.13. It should be pointed out 

that Bey’s [69] results correspond to a turbulent flow at Reynolds number of 25,000 and, 

in the experimental setup, the upper surface is a free surface which is allowed to deform. 

The results obtained in this thesis, with a nondeformable upper surface and Re = 25, are 

shown in Figure 5.14. It is expected that a large vortex will develop above the hole and a 

separation zone will occur where the dune meets the initial bed level. The results 

obtained in this thesis agree very well with this expectation.
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Figure 5.12 Velocity field, Li [70] (experimental)

Figure 5.13 Velocity field, Bey [69] (experimental)
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Figure 5.14 Velocity field, present method 

5.4.3 Multiblock Solution for the Scour Hole Flow Problem

The development of a multiblock methodology for a non-rectangular physical domain is 

similar to that described in Section 3.3.3.2 for a Cartesian mesh. The computational 

domain is divided into two blocks as shown in Figure 5.15. The difference here originates 

from the continuity equation which, in discretized form, is given by

U j +] j  U i - l , j  V i , j+ l V i , j - 1 ^  -  | £  -  I

— +tl> 2 = ■ ''* " 4  L  - (5.1)

In block 1, the continuity equation is discretized at U"  ̂> which corresponds to the grid 

line adjacent to the north boundary, as

u  j - i  u . , j - ii-i- V . j+\  - V . J - 3

+  Tlv
2 _ (5.2)
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j= J

j = J - l

j = (J+5)/2 

j = (J+3)/2 

j = (J+l)/2 

j= (J -l) /2  

j = (J-3)/2

j = 2 

j = l

V

------ ------- ___ ____\ t -----V

u

______ }

)?

{____ ___
V

u

----- -) - - - - -

ti"".. P 1u

V

B lock  2

B lock s Interface

B lock  1

Figure 5.15 Multiblock mesh

Therefore, the relation between v stored at the interface and v at two grid lines south of 

the interface is

■V y +i = V  y _ 3 +

'• 2 2 'ly J -1
u . J -1 u . J -11-1,  1+1, 

V 2 2 J

■ ( n A + L v . ) (5.3)
j -i

In block 2, the relation between v at the interface and v at two grid lines north of the 

interface is

V . J +1 =V  y+5 -
2 ‘'2 J +3 

'  2

\

W . , ./+3 M , , J + 3i—l,  i+1,----
V 2 2 7 , J +3 

2

The v-momentum equation at the north boundary in block 1 becomes

(5.4)
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-AT
, J - 3 
" 2

+ b J - 7 +  V ._2 J - 3  +  b E V .+2 J - 3
’ 2 ' ’ 2 ' ’ 2

^.y-5
'■Vy

. J - 1
’ 2

2/7
+ 5, (5.5)

where

= M J - 3  
2 V

L + ! L
2 4

+ v J - 3
k  + l l
2 4

+ v VX+Vy + v - V Vtt+lyy

V x U . J - 3  V y V . J -  3

bN =■us - V
f  2 2 A( nl + v ] ' + v 'Hxx + 7 l v

UN — 
b w

3 ^ y ^ ; y-3 ( p 2 j _P2 \  f £  <£  ASxr£ + g
4

+ i>

** =-*>
^<f2 +<f2>) r  +<f ^^  xx ?yy- V (5.6)

/

#>
s;v = -

P  +  /> ,_ 5 ~ P . , J - 5
1+2,-----  i+2 ,------  ( -2 ,------  i -2 ,-----

V 2 2 2 2 ;

8 p

+ v r Zxnx + L v v v A
V . J y \  - V  /+1 - V  ,_7 + V

i+2,-----  i -2 ,-----  i+2,------  i -2 ,------
J \  2 2 2 2 y

_2_

r i y

t f x U . J - 3
’ ’ 2

Tl y V . J ±

+ --------- — - D|

/  2 , 2 \  nx - V f Vxx+fJyy)

V

/  7
*1

V V 2
M / + 3 + M  y+3 H  5 U . , J - 5

1+1,-------- 1 -1 ,-------- 1+1,------------  I—1 ,-

£
2 V

\

v  ,+1 + V  ,_3  - V  ,+ l - V .  1-3
i+2,-----  i+2,------ i - 2 ,-----  i - 2 , ------

V 2 2 2 2 7

A
2 , y - i  ~  ^  . j - ii+ l,  i—1,-----v 2 2 yy
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Once v is known in block 1, equation (5.3) can be used to evaluate v at the interface. 

Block 2 can then be treated as discussed in Chapter 4 where v is known at the south 

boundary (interface).

This multiblock methodology has been applied to simulate the flow over the scour hole 

described in Section 5.4.1. Results obtained are almost identical to those obtained in the 

case of a single block, as shown in Figure 5.16.

X

Figure 5.16 Velocity field, two blocks

5.5 Conclusions

In this chapter, the proposed method has been tested on three problems on a curvilinear 

mesh. Flow over a backward-facing step with a clustered mesh, flow in a complex 

channel, and the flow in a scour hole.

The results obtained for Re = 200 for a flow over a backward-facing step on a clustered 

mesh are identical to those obtained in Chapter 3.

The flow in a complex channel for Re = 10 and 100 is simulated using the proposed 

method. Numerical results are compared with benchmark solutions and FLUENT
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solutions. In the case of Re = 10, the proposed method is found to give realistic flow 

predictions and the results found for pressure and vorticity along the lower wall are in 

very good agreement with the results presented by Cliffe et al [63] and Carson [66]. In 

the case of Re = 100, the circulation zone could not be captured even though the solution 

was stable and converged. FLUENT, Carson [66], and some researchers involved in the 

fifth meeting of the IAHR also failed to capture the circulation zone.

For the scour hole problem, the flow is simulated for Re = 25. The flow pattern (vortex 

above the scour hole and the separation zone where the dune meets the initial bed level) 

obtained is consistent with experimental observations reported in literature, see Bey [69] 

and Li [70].
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This thesis presents a new numerical method for solving the two-dimensional, steady, 

incompressible, laminar viscous flow equations on a staggered grid. The proposed 

methodology is finite difference based, but essentially takes advantage of the best 

features of two well-established numerical formulations, the finite difference and finite 

volume methods. One of the major weaknesses of the finite difference approach, the 

difficulty in computing the pressure field, has been removed by exploiting the strengths 

of the finite volume method. In particular, the issue of velocity-pressure coupling is dealt 

with in the proposed finite difference formulation by developing a pressure correction 

equation in a manner similar to the SIMPLE approach commonly used in finite volume 

formulations. However, since this is purely a finite difference formulation, numerical 

approximation of fluxes is not required. Results obtained from the present method are 

based on the first order upwind scheme for the convective terms, but the methodology 

can easily be modified to accommodate higher order differencing schemes. For first order 

upwinding, an interesting feature is that the influence matrix obtained from the 

discretized equations is diagonally dominant which upon inversion gives stable numerical 

results. In the finite volume formulation, diagonal dominance is only guaranteed at final 

convergence.

This method is first tested on a simple problem that has an exact solution in part of the 

flow domain, developing flow in a duct. The results are in excellent agreement with the
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exact solution in the fully developed region and with other numerical results in the 

developing region.

The two-dimensional lid-driven cavity flow and the flow over a backward facing-step 

with various Reynolds number are simulated using the proposed method. Numerical 

results are compared with the benchmark solutions and the experimental data when 

available. Moreover, some of the results are also compared to simulations using 

FLUENT. For the cavity flow, the simulations are conducted for Re = 100, 400, and 

1000. The results for the velocity and pressure along the geometric centrelines are 

presented and show good agreement with published data. For the flow over a backward- 

facing step, the reattachment length predicted by the proposed method is in excellent 

agreement with the experimental and numerical data given by other researchers. The 

results were obtained for Re = 50, 100, 200, 400 and 500. It is also found that pressure 

contours obtained by this method are identical to those obtained by FLUENT.

The generality of the method is also tested by simulating fluid flows on curvilinear grids. 

The numerical results of three different fluid flows, flow over a backward-facing step, a 

scour hole problem and flow in a complex channel, are presented using the proposed 

numerical procedure. The numerical results are compared with the benchmark solutions 

and experimental results. FLUENT was also used to verify the results for flow in the 

complex channel.

To test the suitability of the proposed method in highly irregular flow domains, flow over 

a backward-facing step and flow in the scour hole channel are also simulated using a 

multiblock grid. The results obtained are identical to the case of single block.
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6.2 Recommendations for Future Research

In this thesis, the convective terms are discretized using the first order upwind 

differencing scheme. To obtain more accurate results, it is recommended that a higher 

order upwind differencing scheme or any other scheme, like hybrid or exponential, be 

implemented.

One of the main achievements of this work has been to demonstrate the ability of the 

proposed method to simulate steady, two-dimensional, laminar incompressible flows. 

However, there is nothing inherent in the procedure that limits its applicability to these 

flows. A systematic plan should be developed to extend this new approach to unsteady 

flows, turbulent flows, three-dimensional flows, multiphase flows, etc.
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