
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Dynamic multi-resource monitoring for predictive job scheduling. Dynamic multi-resource monitoring for predictive job scheduling.

Lun Liu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Liu, Lun, "Dynamic multi-resource monitoring for predictive job scheduling." (2005). Electronic Theses and
Dissertations. 1797.
https://scholar.uwindsor.ca/etd/1797

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1797?utm_source=scholar.uwindsor.ca%2Fetd%2F1797&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Dynamic Multi-Resource Monitoring for Predictive Job

Scheduling

by

Lun Liu

A Thesis
Submitted to the Faculty of Graduate Studied and Research

Through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2005

© 2005 Lun Liu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09803-1
Our file Notre reference
ISBN: 0-494-09803-1

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ o y H ' 1L
Abstract

Standard job schedulers rely on either the user’s estimation, or a few

approaches that use performance databases to keep information about job

runtimes to predict future runs. Co-scheduling for improved resource utilization,

however, requires more detailed information as regards behavior on multiple

resources to make predictions about slowdowns. Thus, information about

communication, I/O, and computation at application level is needed but hard to

estimate by the user. Furthermore, dynamic adaptive resource allocation

requires information about the different processes on different machine nodes.

We present an intelligent monitoring tool, ScoPro, which provides such

information. To make monitoring more feasible, ScoPro harnesses the

dynamic instrument techniques, which postpone insertion of instrumentation

code until the application is executing. To keep intrusion low, we limit

monitoring to short test phases.

Tests demonstrated that ScoPro can monitor certain function groups (such

as I/O and communications) from multiple parallel applications simultaneously,

and collect metrics such as computation time per loop, application-level

communication time and communication/calculation ratio, communication

volumes, and applications’ progresses during a short test phase with minor

hinting from user. The comparing test shows application-level metrics acquired

within a few iteration steps is acceptable close to the results through the whole

application. Our test also shows that relating the progress data of

co-scheduled job can lead to a more accurate running time prediction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

I feel happy to take this opportunity to thank those people who had
helped me significantly during the whole process of my graduate study,
and towards the completion of my thesis.

First, I would like to give my deep appreciation to my supervisor, Dr.
Sodan. The work could not be accomplished without her extensive
guidance and persistence.

Secondly, I would like to thank all my friends and colleagues, who shared
with me their precious time to discuss academic issues, provide useful
suggestions, and worthwhile experiences during the research.

Thirdly, I would like to give my special thanks to brothers and their
families, for all kinds of help they have given to me.

I am also very grateful to the committee members, for their valuable
advices and revision.

Thanks, my mom and dad, for the persistent and deep love to me. This
paper is dedicated to them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IV

Abstract

Table of Contents

Acknowledgement... iv

1. Introduction...1

2. Background review..2

2.1 The monitoring of parallel computation system... 2

1). To provide information for dynamic resource/task match (scheduling/check

pointing)... 2

2). Performance alarm and fault tolerance... 2

3). Adapt application behavior to improve performance...3

4). Online and offline performance analysis and visualization..................................... 3

5). Improve accuracy of prediction of parallel applications.. 4

2.2 The parallel application monitoring.. 4

2.3 The dynamic instrumentation of application...5

2.4 The Dyninst_API..6

2.5 Other tools using dyninst_API.. 8

3. The motivation of our approach...9

4. Our goals... 10

5. The functionality and extension of ScoPro... 11

5.1 The main extension of ScoPro to Dynaprof...12

5.2 Main difference from Paradyn.. 13

6. The environment and implementation of ScoPro...14

7. API of ScoPro... 18

8. What ScoPro can provide.. 19

8.1 Instrument communication volume and calculation/communication ratio..........19

8.2 The estimation of system-level communication time from metrics acquired by

ScoPro... 21

1). The difference between the application-level metrics and system-level metrics

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

2). The estimation of system-level communication tim e ... 22

3). The issue for estimation of bandwidth for data-transfer from the application level

timing result and communication volume acquired by ScoPro...................................... 23

8.3 Acquire application run time/waiting time... 25

8.4 Acquiring the heterogeneity characteristics where parallel applications run.... 26

8.5 Instrument the progress of whole applications..26

9. Overhead analysis...27

10. Experimental result acquired by ScoPro..28

10.1 The test for overhead of ScoPro.. 29

10.2 Test for the accuracy of wall-time data produced by ScoPro............................ 31

10.3 The test of calculation / communication ratio for blocking and non-blocking

routines.. 32

10.4 The test of communication volume using ScoPro..33

10.5 Acquiring heterogeneity characteristic by monitoring symmetric parallel NAS

benchmark.. 34

10.6 Test result for progress of multiple parallel applications and making prediction

using historic d a ta ... 38

11. Conclusion and Future work...41

12. Reference..44

13. Annex...47

13.1 Interface definition.. 47

13.2 Description of structures in ScoPro.. 48

13.3 Description of data package sent from sensors to the controller........................52

13.4 Data structure for measured data of each job.. 53

13.5 How to invoke the tool..54

VITA AUCTORIS...57

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

Metacomputing is a high performance computational platform, formed by

combining various computing resources together through a network. In

searching ways to provide instant and accurate application monitoring data for

the scheduler of cluster (the homogeneous structured meta-computing system)

while keeping monitoring overhead low and under control, we present a tool,

ScoPro, which harnesses dynamic instrument technique for parallel

application monitoring, which can dynamically insert and remove instrument

code while the parallel application is running. When application is running in

un-instrumented mode, there is almost no overhead asserted.

Upon the instrument components, we build a mechanism which effectively

collects and relates datum from multiple parallel applications.

Providing effective data for the scheduler is another focus of us, we use

more flexible ways to dynamically instrument data of parallel applications. The

data provided by ScoPro is able to reveal the following:

• Application level Communication / calculation ratio of the parallel

application.

• Dynamically insert/remove the instrumentation code.

• Heterogeneous nodes characteristics where the parallel applications

are running.

• Intrinsic behaviors of parallel applications including the communication

volumes.

• The progresses of whole applications in certain environment.

• The related information of multi-applications for more accurate running

time prediction of co-scheduling jobs.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Background review

2.1 The monitoring of parallel computation system

High efficient meta-computing systems rely on accurate and instant

information of both parallel applications and their running environment

gathered through resource monitoring systems and application monitoring

systems. The resource monitoring systems can provide fluctuating status of

various resources of the system including CPU, memory, IO and network links

etc. The application monitoring systems instrument the status of the running

parallel applications, acquiring the quantity and efficiency of using these

resources.

In general, the main purposes of resource and application monitoring

include the following:

1). To provide information for dynamic resource/task match
(scheduling/check pointing)

Any meta-computing system must include a scheduler, either human or

automatic, the goal of which is to select the most-appropriate resources, such as

hosts, network links, disk storage, etc. that are going to be used by an

application. The scheduler must choose dynamically the best resources

according to resource characteristics at the moment. Because resource

monitoring can dynamically provide information about the variation of the

performance of grid resources, it became essential for the schedulers.

As stated in [12], “Dynamically Forecasting Network Performance Using the

initial scheduling results using the NWS are promising”

2). Performance alarm and fault tolerance

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some resource monitoring systems such as NWSALARM [11] have a

pre-set performance threshold. When hardware fails or large performance

degradation happens in a heterogeneous grid computing environments, the

resource monitoring system can inform other grid components or the user to

take corrective actions.

In some other more advanced implementations such as those studied in [13],

they use fuzzy logic to analyze a set of the datum acquired by contract monitors

and determine if the contract of performance is violated.

3). Adapt application behavior to improve performance

In a cluster and grid environment, not only are the characteristic resources’

demands of applications very variable, but also the resource performance fluctuates

significantly. Some monitoring systems, by monitoring these two aspects

simultaneously, can dynamically choose the access pattern to the resources through

an actuator, improving the performance of parallel applications. Such an example is

Pablo [9], in which Dr. Reed and Vetter first introduced the concept of “resource policy

actuator”

4). Online and offline performance analysis and visualization

The monitored data, acquired by the sensor or probe, can be collected by an agent

and sent to the client side, so that the user can conduct an analysis of the

performance. For example, he can find the bottleneck of grid environment in running

the applications. The data collected then can be visualized in real time or can be

visualized in a post-mortem way.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5). Improve accuracy of prediction of parallel applications

The parallel applications are sensitive to the performance of the

computation and communication resources to a greater or lesser extent, as

studied in papers [1] and [16]. The execution time of an application can be more

accurately predicted, by dynamically monitoring the performance of resources

accessed by it.

2.2 The parallel application monitoring

While a resource monitoring system is critical for large heterogeneous

meta-computing system to provide real-time resource information, parallel

application monitoring is also very important, mainly for the following two

reasons:

Knowing the characteristics of the application helps the scheduler to find

the more efficient resource for this application.

Parallel application is not a passive object in a meta-computing system; it

also actively affects the status of resources and other parallel applications.

A common way to implement application performance monitoring is by

inserting a piece of instrumentation code into specified places of the source

code of the applications either manually or automatically before compilation

(e.g. [8]).

There are four kinds of performance instrumentation techniques of parallel

application: timing, sampling, counting, and event tracing, which will be briefly

described below.

Timing means the measurement of aggregate execution time. Timing can

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reveal the approximate performance bottleneck, but cannot tell the exact time

of it and the component responsible for it. To implement a timing facility, one

needs only low latency access to a clock whose resolution is high compared to

the elapsed time of events being measured.

Counting records the number of times an event occurs but not when and

where. Having the total time and count, one can accurately calculate the

average execution times. Counting is efficient, low intrusive, and produces

very limited amount of data.

Sampling is accomplished by periodically observing the system state and

incrementing the counter corresponding to the observed state. An example of

sampling [2] is using the timer interrupt service routine (ISR) that logs the

instruction pointer of the interrupted instruction. The distribution of the

instruction pointers indicates where the program spends most of its time.

The event tracing is the most intrusive method because it generates a

detailed record of each event occurred. The information acquired by event

tracing can include the following:

1. What action occurred.

2. The time when the event occurred.

3. The location of where the event occurred.

4. Any additional data that defines the event circumstances.

2.3 The dynamic instrumentation of application

The normal cycle of developing a program is to edit source code, compile it,

and then execute the generated binary. Dynamic instrumentation can modify

the generated executable and redirect the execution from certain points to

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

code snippet generated by third party. Thus, there is no requirement for users

to submit source code to accomplish it.

In dynamic instrumentation, the program that finds the inserting point in the

application’s image and modifies it is called mutator; the application to be

instrumented, of which the executable image is to be modified, is called

mutatee.

The two primary abstractions are points and snippets. A point is a location

in a program where instrumentation can be inserted. A snippet is a

representation of a bit of executable code to be inserted into a program at a

point. Snippet usually includes simple operations that change the value of a

counter or a timer. Because this feature of the dynamic instrumentation, it is

language independent but could be platform dependent.

A typical procedure of the dynamic instrumentation is listed in the

following:

• Load the image of executable into the buffer and stop the

application.

• Find the instrument points.

• Generate the instrument code and insert the instrument code.

• Run the application.

2.4 The Dyninst_API

The dyninst_api [14] is a set of Application Program Interfaces (API)

developed by Dr. Bryan Buck of University of Maryland for implementing

dynamic instrumentation under Linux, Solaris and WinNT environments.

The unique feature of this interface is that it makes it possible to insert and

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

change instrumentation in a running program. This differs from other

post-linker instrumentation tools that permit code to be inserted into a binary

before it starts to execute.

Using Dyninst_API, a mutator must create a single instance of the class

BPatch. This object is used to access functions and information that are global

to the library.

The first thing a mutator needs to do is to identify the application process to

be modified by specifying the executable file name and process id. If the

application has not yet started, it must provide executable file name and the

arguments of the applications.

Once the application thread has been created, the mutator defines the

snippet to be inserted and the points where they should be inserted.

Bpatchjmage class stands for the image of the program, which could be

acquired from the instance of Bpatch.

After the acquiring the image handle of the program, the next step will be

to find the point in the image where the snippet could be inserted.

The points in dyninst_API could be entry points, exit points, call-site entry

points and call-site exit point of functions, basic running block and even outer

loops in the mutatee. However, finding points of functions of is the easiest way

because there is a function name associated with certain points. So the list

matching the search results will be largely narrowed down. In any case, it will

return a list of matching points.

After acquiring the matching points, the next step is to generate the snippet

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using dyninst_API. Although statements in snippet can be generated one by

one using Dyninst_API, it is highly complicated and of low efficiency in this way.

A more acceptable way is to generate a piece of code in a function and

compile it into a shared library. At the run time, a mutator can dynamically find

the function contained inside the shared library prepared previously, and insert

a function-call statement to this function as a snippet into the mutatee.

After inserting the snippet, the mutator can start running the mutatee.

Dyninst_API also support some other functions, including the stop/restart of

the running process, listening of the termination of mutatee etc.

2.5 Other tools using dyninst_API

2.5.1 Introduction to Paradyn

Paradyn [4] is a performance measurement tool for parallel and distributed

programs. Paradyn uses several novel technologies so that it scales to

long-running programs (hours or days) and large (thousand nodes) systems,

and automates much of the search for performance bottlenecks. It can provide

precise performance data down to the procedure and statement level.

In addition, Paradyn provides a tool for the automatic isolation of

performance bottlenecks and an open visualization interface, which is

implemented with a W3 search model trying to answer three separate

questions: why is the application performing poorly, where is the bottleneck,

and when does the problem occur.

In addition, several performance visualizations are provided.

In Paradyn, monitoring data can be constantly and periodically transferred

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to a visualizer in real time. Periodic sampling of these structures provides

accurate information about the time varying performance of an application

without requiring the large amount of data needed by full tracing.

2.5.2 Introduction of Dynaprof

The most well known application monitoring tools using dyninst_API is

paradyn. However, our work is based on another tool, Dynaprof [5, 6]. It is

developed by Dr. Mucci of University of Tennessee, regarded as “A portable

tool to dynamically instrument serial and parallel programs for the purpose of

performance analysis.”

Dynaprof provides a simple and intuitive command line interface like GDB.

It also provides visualizers using java/Swing GUI. Instrumentation of Dynaprof

is done through the run-time insertion of function calls to specially developed

performance probes.

Dynaprof provides 3 kinds of sensors, including the CPU counter sensor,

the wallclock sensor, and the specified sensor for coupling the probes and the

visualizers. The wallclock sensor records the total execution time of a specified

function and count the number of times a measured function is called.

However, the instrumentation data Dynaprof is saved to a local file only

after the parallel application (mutatee) finishes. So strictly it is a post-mortem

analysis tool.

3. The motivation of our approach

Current dynamic instrumentation tools mainly focus on performance

trouble-shooting of single parallel application. Other cluster/meta-computing

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application monitoring tools [9] [29] have been introduced in other papers;

however, they did not harness dynamic instrumentation method.

Moreover, there are several obvious advantages of dynamic

instrumentation:

• No source code modification; dynamic instrumentation makes this

more realizable and furthermore, the user can keep the privacy of

their source code.

• Can dynamically instrument and un-instrument the monitoring code;

there is no overhead asserted to the application when it is running

in the un-instrument mode, which also enables us to shortly

measure several loops and predict the remainder.

Because of the advantages of dynamic instrumentation, we believe it is

feasible to apply the dynamic instrumentation method for parallel applications

monitoring. Our work focuses on verifying this feasibility and on doing some

initial studies on what kind of useful information could be acquired and

provided to the scheduler for the purpose of better resources’ utilization, which

we will give a detailed description about this in the later chapters.

4. Our goals

Firstly ScoPro should be able to simultaneously monitor multiple parallel

applications using dynamic instrumentation and acquire the resource related

characteristics of parallel applications through the dynamic instrumentation,

and provide the acquired information to other modules for the purpose of

resource usage optimization.

Secondly the data acquired by ScoPro should be able to demonstrate the

following:

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Application-level Communication/calculation ratio of parallel

application.

• The characteristics of heterogeneous nodes where the parallel

applications are running.

• Intrinsic behaviors of parallel applications including the communication

volumes.

• The progresses of the whole applications in certain environments.

• The related information of multi-applications for more accurate running

time prediction of co-scheduling jobs

• Intrinsic behaviors of parallel applications including the communication

volumes.

The monitoring data should be acquired by shortly inserted and triggered

measurement using dynamic instrumentation, and we should verify the

effectiveness of the data in better resource-task allocation and better

prediction of resource usage (how long and the intensity) in our work.

5. The functionality and extension of ScoPro

While Paradyn and Dynaprof are mainly performance bottleneck shooting

tools for parallel applications, we hope to harness dynamic instrumentation for

monitoring the resource access behavior of all the parallel applications in

meta-computing system.

Because of this different orientation with Dynaprof and Paradyn, ScoPro

provides a mechanism to instrument multiple applications at the same time,

more methods to reduce or control overhead, more flexible ways to instrument

in acquiring resource access behavior of parallel application.

In monitoring the resource accessing behavior, we are more concerned

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the capability of ScoPro in comparing the difference of different processes

of the same application, in comparing different applications running in the

same environments, and in comparing the performance data of a parallel

application with its historic data running in a different context.

5.1 The main extension of ScoPro to Dynaprof

The main functionality extension of ScoPro to the Dynaprof includes the
following:

1) Can dynamically instrument and un-instrument the parallel application;

when in the un-instrument mode, there is no overhead asserted.

2) The measurement can be triggered by certain external events (e.g. the

arrival of a certain new job which may affect remarkably the running

environments).

3) Can monitor multiple parallel applications at the same time. Data from

different parallel application are collected and combined by the controller,

being enabled to monitor and analyze data from different nodes and different

applications.

4) Can implement some complex logic, i.e. the measurement could be

triggered to start or stop when one function is called a certain number of times.

5) Can acquire absolute timestamp value of function calls.

6) Can acquire the parameter values of the monitored function calls.

7) Can support mpich [18] applications running on ch_gm devices, which

have higher performance for communication compared with ch_p4.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8) Overhead can be controlled by several ways: monitoring can be

stopped and started in a more flexible and controlled way. We can set a

time-limits and number-of-calls limit option as a condition for start and stop

measurements.

9) The monitor application is running in event blocking wait status, instead

of using a poll (provided by dyninstAPI) to respond the end of mutatee or other

events.

10) Use shared memory to buffer monitoring date. And the data is

transferred after parallel application switch from instrumented mode to

un-instrumented mode.

11) The complex instrumentation condition enables us to instrument data

right within the loop, i.e. start at the beginning of the loops and end at the

beginning the loops also, which enable us to take the measurements of one or

several whole loops without approximation.

However, Dynaprof currently supports instrumentation of hardware counter

that provides very useful CPU related metrics from the monitored applications,

which we have not yet integrated into our work.

5.2 Main difference from Paradyn

1) Paradyn is a performance analysis tool, targeting the monitoring of one

application and finding the performance bottleneck of a specified parallel

application while ScoPro is a performance-monitoring tool, providing the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resource related performance information of multiple parallel applications.

2) Monitored data of ScoPro is packaged and transferred when the

monitored application switches to run in un-instrumented mode. (Experiment in

[27] shows that monitoring-and-forwarding is much more expensive than the

batching-and-forwarding in which the data is first buffered at the local site and

data transfer happens less frequently).

3) ScoPro has more ways to reduce or control overhead, more flexible

ways to instrument in acquiring resource access behavior of parallel

applications as stated in 4.1.

6. The environment and implementation of ScoPro

6.1 The Overall Tool Environment for ScoPro

:Map î4n:cqntr<)!£ec

heterogeneous node groups

Figure 1. The Context of our monitoring environment with job scheduler, dynamic directory, and

adaptation control. Copied from [30].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As we explained in chapter 4, we envision employment of ScoPro to obtain

detailed application characteristics for the purpose of optimization of resource

usage. The architecture of overall environment for ScoPro is shown in Fig1,

The job scheduler will perform adaptive space allocation [21] and/or

coscheduling with approaches like LOMARC [22]. The dynamic directory [23]

will maintain the data extracted by monitoring as long as the job is in the

system. Long-term information about program runs will be stored in the

database, permitting historical evaluation.

6.2 The implementation of ScoPro

As shown in Fig2, ScoPro, a centric structured dynamic monitoring system,

can simultaneously monitor multiple parallel applications, each of which can

have multiple processes running on different sites (nodes).

MPI ch_gm application other ch jgm applications

eventseventsevents Share
memory

Share
memory

Share
memory

Scheduler/user database

mutatee

Clients interface

mutatee mutatee

dynaprofdynaprofdynaprof

Data-server/JOB SERVER/ Synchronizer

Fig2. The diagram of ScoPro

First, the scheduler (could be a user) sends a request to start a monitored

parallel application by calling the client interface. The client interface will

forward the request to the controller (Data-server/job-server/synchronizer) with

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

related information including a list of measured functions, a list of nodes, the

information of monitored application, and the user’s setting about

measurement etc.

Note: To implement this step we did minor modifications for “mpirun”, a

start command for MPI [18] jobs, making it also accept a job ID as a parameter.

An example of calling this script file would be “mpirun -np 4 -jb

2004121000007 dynaprof” from the client interface. The dynaprof(sensor) will

contact the controller, getting the other information buffered in the session

related to this job.

The controller, after acquiring the information, will create a job session and

a job id with it, and send the id of this job back to the client interface.

The client interface, after acquiring the job-id, will start the parallel

application. If it is an mpi-ch_gm application, it will start the MPI ch_gm

daemon with dynaprof as a parameter in remote execution mode. The MPI

ch_gm daemon will start dynaprof on different nodes with the MPI application

name as a parameter and other related information as environment variable

including the job id and the ch_gm magic id.

The started Dynaprof will finish the following steps one by one:

1). Set up communication with the controller and acquire the list of

instrumented function description.

2). Claim a certain size of shared memory according to the number of

measured metrics and other requirements.

3). Load the application executable in stopped status (mpi application

stopped at the end of Mpijnit).

4). Make synchronization through controller to make sure every node has

successfully initialized (including MPI initialization).

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5). Find the instrumented point and insert instrumented code according to

the list of measured functions. Generate the snippets and insert into both entry

and exit point of instrumented functions.

6). Run one time code in the mutatee’s space, including the following task,

attaching shared memory, setting monitoring global variables etc.

7). Execute the mutatee.

After mutatee is running, the dynaprof will wait for two events: signal from

mutatee, time out event.

When parallel application is running in monitored mode, it will save the

monitoring data directly into shared memory. The monitoring data includes the

following: the time total/detailed time spent in running different functions, the

absolute time for entry of functions, the communication/IO volume, and

number of calls of a certain function in a certain period of time etc.

If certain conditions defined by the user become true (the times a certain

function is called reaches a predefined value), the mutatee will send a signal to

dynaprof. Dynaprof will then stop the mutatee and remove the instrument code

from the parallel application and continue the processes. From this moment on,

the parallel application will run in un-instrumented mode.

Once the parallel application switches to run in un-instrumented mode, the

Dynaprof will package the data saved in shared memory and transfer the data

to the controller, which will then save the data to the database. Dynaprof will

then block and wait for 3 events, including the finishing of application, the

instrument request from the controller, and the timeout event.

The application can switch back to instrumented mode again whenever

necessary. When the user sends a request to the controller for instrumentation,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the controller will send a signal to the corresponding Dynaprof process. The

Dynaprof will stop the running process and insert the instrumented code into

the application. The instrumented function list could differ each time when

instrumentation starts, but must be a subset of initial instrumented function list,

because we do not re-calculate the shared memory size once it is declared.

The controller in ScoPro provides three services, as shown in the following:

1) Listening for requests from users (via the user interface) for starting a

job, or measuring. Once a job is created, a session related with that job

will be buffered at the server side. On receiving a measuring request, it

will forward this request to the corresponding process.

2) Provide synchronization service for different processes to ensure every

process has properly initiated.

3) Data-collection service, the data from the dynaprof will be collected and

combined with the information in the session of this job, and saved to

the database as an integrated set of datum.

Note: If the job has no contact to the controller/server in a reasonable
time, its session of this job will be removed.

7. API of ScoPro

The client interface of ScoPro provides 2 interfaces.

The First interface, called “MpiJobStart”, starts an mpi job and

instrumentation. There are four parameters included in this parameter:

1) MpiJobDesc: description of job and measurement, including executable

name, path, running nodes number, location.

2) Confirmstruct: A monitoring handle for this job, including whether this job

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is successfully started, a unique job id related to this job.

3) ifblocking: indicate if this function will return immediately once job is

created or return after the monitored data has been acquired.

4) metricHeader: include the max time period to instrument, maximum

number of measured functions, max number of calls recorded. Start condition

to take the measurements.

5) metricList: a list of metric description, each of metric description include

function name, library name, which parameter to be summed, whether to

acquire detailed value of instrumentation etc.

The second interface, “mpi_measure”, starts a measurement when the job

is running in un-instrumented mode, and contains the following 2 parameters:

1) Description of this measurement: including the Jobid (which job to be

instrumented), measuring time, which subset to be instrument in the initialized

list, the event triggering this measurements etc.

2) Indicate if this function will return immediately once the instrument

request is sent to the application or return after the monitored data has been

acquired.

8. What ScoPro can provide

8.1 Instrument communication volume and calculation/communication
ratio

Many parallel applications, especially the simulation applications, are

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

featured by having an iteration to control the progress. Examples are particle

simulation application and GEOFEM [3]; each step of the iterations in these

applications stands for a certain time stamp. There are calculations and

communications within each time-step (or iteration). As a performance

benchmark, all packages of NAS benchmark have a main iteration also.

If the application uses blocking function calls to communicate, by testing

one or just several iterations and recording the time in calculation and

communications inside the iteration, we can predict communication/

calculation ratio of the whole application because the application shows similar

characteristics in each iteration.

However, to accurately mark the start of each step in the main iteration, we

need to insert a function call into the source code with a specified name

(Support of loop instrumentation and intelligent targeting of main iteration will

be a future extension of ScoPro. Currently, dyninst_API [28] supports the

searching and instrument outer-loop within a specified function).

The following codes show how easy it is to insert such functions into a

FORTRAN application. The definition of “measuremark” is saved in

“measuremark.f “ provided by ScoPro, and a user can employ it by linking this

file. Thus, the only part to be modified in the source code is to insert “call

marksuremark” statement once at the entry of main iteration.

User Loop condition

{

call measuremark()

user code

}

the definition of measuremark

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subroutine measuremark()

! implicit logical (a-z)

return

end subroutine measuremark

By measuring the absolute time of the function which is specially inserted

into the start of the loop, we can get the time elapsed for finishing one or

several loops. Assuming t1 is the first absolute time the function is called and

t2 is the last absolute time the function is called, the C is the number of times

the functions is called, Tc is the application level communication time we

calculated before. The communication/calculation ratio would be:

Tc/(t2-t1-Tc)

8.2 The estimation of system-level communication time from metrics

acquired by ScoPro

1). The difference between the application-level metrics and system-level

metrics.

ScoPro can acquire application-level metrics by measuring the time

elapsed for MPI routines, which essentially indicates the impact of

communication to the overall performance of tested applications instead of the

actual time of data transfer, which are to be instrumented at system level.

For both blocking and non-blocking communication routines, the results

from application level measurement could be very different from the system

level results. The blocking routines that communicate each other might initiate

at different times due to an unbalanced workload or environment, the

communication routines called earlier will have to wait until all other routines

are started also. Thus, the time elapsed for communicating functions will

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

include both waiting time and the time for transferring the data.

The non-blocking function returns immediately after letting the system

level to accomplish the data transfer. Usually the application will have to

synchronize at a later point to ensure the message is delivered. In one case, if

the communication has not yet finished, the synchronization function will block

wait. But otherwise, if synchronization happens after the communication

finished, it is impossible to acquire the actual communication time.

However, the application level communication time measured for parallel

application using non-blocking function calls is meaningful because it tells the

extent to which the performance of application is affected by communication.

2). The estimation of system-level communication time

ScoPro can catch the parameter value of the communication function call.

In MPICH for example, every function in MPICH (collective or point to point)

will ultimately call one of the MPID_Sendcontig, MPIDJSendcontig,

MPID_Recvcontig, MPIDJRecvcontig, the third parameter of these functions

indicates the transfer size. By catching and accumulating these values,

we can know how much data was transferred. Assuming we know the

bandwidth of each link between the processors involved in calculation, this

information, together with the knowledge of the bandwidth of each link, enable

us to estimate how much communication time is spent at system level.

According to logPC model [1] (a model that extends the LogP [15] and

LogGP [7] models to account for the impact of network contention), the time for

transferring a message is equal to the following:

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T=Ost + L + (B -1) * G. (1)

Here Ost is the time for the sender to initiate the message, L is the average

time for the message header to travel through the network, B is the message

length (in bytes) and G is the network “Gap” (in cycles per byte).

Because ScoPro can acquire how much data was transferred for each link ,

(e.g. nodel to node3), we will be able to estimate what percentage of time was

spent for transferring in any specified link using this model, assuming we know

the bandwidth of each link.

Also, by instrument and adding the communication volumes of different

applications running on the same node, we can get the total communication

load of that node, which is useful information for load balancing.

3). The issue for estimation of bandwidth for data-transfer from the

application level timing result and communication volume acquired by ScoPro

Although, in the ideal blocking point-to-point communication situation, the

relationship between time for the MPI function call and the data size to be

transferred matches the logGP model. However, in the case of dealing with

real applications, we are currently unable to give a common formula that

makes an exact relation between the time elapsed for blocking MPI

communication functions and the data volume transferred. Through our

analysis, we found the following difficulties that need to be solved:

• The optimizations in MPI communications: collective MPI functions take

different implementation approaches to maximize the performance

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depending on the number of nodes related and the message size to be

transferred.

• When MpLsend /Mpi_recv pair start at different time, if the message to be

involved is larger than the available buffer(16k or set by user in mpich), the

function that start earlier will have to be blocked until the corresponding

function starts also. While for smaller messages, the mpi_send will send

the data to the buffer directly instead of waiting for the corresponding

receiving function.

However, in order to accurately get the absolute communication bandwidth

from the elapsed time of MPI collective communication call, it is necessary to

build a set of knowledgebase, each of which corresponds exclusively to one

specified communication function and take the number of nodes involved, the

message size into consideration (However this functionality is not yet

implemented by ScoPro, but could be a future extension). The following figures

show the test results tested by [25] on a Cray T3E-512, indicating the

relationship for function MPI_Alltoall (MPLScatter at right side’s Figure)

between communication bandwidth, number of processors(nodes) and

message size.

ALLTOALL SC ATTER
1 0 0 0 6 0

I/I£ 10000 £
Z

I

3n
z
<E«

16 1 6 6
NUMBER OF PROCESSORS

1 6 6 6

9 1 6 2 4 ’

i—i

ii-

<rm

10
NUMBER OF PR O CESSORS!

1 i e o
PROCESSORS

1 000

Figure 3: Bandwidth in MB/s for varying numbers of processors for an MPI_alltoall (left)

operation and MPI_Scatter (right) operation. Three different message sizes are used, tested by

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[25].

8.3 Acquire application run time/waiting time

Also, Application processes switch between CPU usage (busy) and

non-usage (idle) phases during normal execution. ScoPro can acquire

application busy-time/idle-time ratio in certain processes of the parallel

application running on different nodes by measuring the blocking 10 functions,

communication functions and some other functions (e.g. sleep) in a certain

period of time, which is meaningful to evaluate the calculation performance

change due to the sharing of CPU resources.

In other words, the historic monitoring data of parallel applications which

run without sharing CPU resources can be used to evaluate the performance

potential when 2 different applications are co-scheduled. According to [16],

when two applications share the same CPU, the “busytime” is the total of the

busy time of the 2 applications; the “idletime” is the total of their idle time. In

cases of “busytime” being less than “idletime”, there will be no increase in the

execution time. In cases of “busytime” greater then “idletime”, the increase of

the execution time is given in formula 2. Depending on this, the scheduler can

assign application resources more reasonably and optimize the efficiency of

CPU resource usage.

(busytime-idletime) / (busytime-i- idletime) (2)

However, for parallel application, idletime is a variable which may be

affected by the running progress of other nodes, CPU capability and

communication link bandwidth, communication volume of other application etc.

Thus, it is hard to make accurate predictions using this formula, but this

information is useful for scheduling decision making.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.4 Acquiring the heterogeneity characteristics where parallel

applications run

Some parallel applications are symmetric, i.e. each process of such a

parallel application have same amount of calculation workload. By measuring

different processes of such kinds of applications, we can compare the

capability of different nodes.

Parallel applications are characterized by intermittently synchronizing each

other after a period of calculation. Nodes with more time to synchronize

indicate that they are running faster, therefore they either have more

calculation power or less workload to do than other nodes. If we are monitoring

a symmetric parallel application, we can conclude the reason is the former one.

If we have known that the environment is homogeneous, then the reason must

be the latter one.

On the other hand, nodes that consistently have more synchronized

communication time indicate the communication speed is affecting the running

speed of application. In other words, we should avoid assigning 2 applications

for which the running speed is largely affected by the communication. Such

cases apply for both synchronous and asynchronous communications.

8.5 Instrument the progress of whole applications

Application monitoring data can be used to predict the performance of

parallel application.

ScoPro can instrument the number of times a certain function is called in a

certain time and the time spent when a certain function is called for certain

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

times. As a result, we can measure progress of a certain application running

on different environments. We will know whether this application relatively runs

faster or slower by monitoring the application in short period time and

comparing the monitored data with its history record, also we could predict the

running time of the whole process by using these data.

Related work is Prophesy [26], which emphasizes automatic performance

analysis and modeling process, and use that model to predict the performance

of the application under different system configuration. ScoPro, using dynamic

instrumentation, can be applied to that infrastructure also. However, in the test

we describe in 10.6, we use the time per iteration, a simplified but

comprehensive indication of performance, to evaluate and predict the

performance of parallel applications. Our extension also includes analysis of

the relationship of multiple co-scheduled parallel applications in the context of

co-scheduling approach [19], which provides better possibilities for resource

utilization but also involve potential competition on resources, leading to

slowdowns per individual application.

9. Overhead analysis

Overhead is unavoidable for any instrumentation systems. However,

ScoPro uses several methods to control and reduce the overhead as shown in

the following:

1). M easurem ent is taken only for a short period of time. In most other

times there is almost no overhead asserted.

2). There is a maximum limit for the times of instrument code being called.

When this limit is reached, the process will remove the instrumented code, run

in un-instrumented mode.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3). Monitored data is transferred by dynaprof after application switch to run

in un-instrumented mode.

4). Dynaprof blocking waits for events instead of using a poll for listening

for the state change of mutatee.

5). Decease the data transfer size by buffering the job-related information

at the server-side.

The main extra running time include:

Number of switch * (running time of remove instrumentation code +

running time of insert instrumenting code) + instrumenting code time * times of

function calls + slowndown factor.

The slowdown factor is because of the CPU activity of dynaprof when

parallel application is running, but it is very small.

Other overhead includes the memory, network overhead, which is also

ignorable, because data is summarized in ScoPro before transfer or saved to

shared memory.

10. Experimental result acquired by ScoPro

We tested ScoPro on the Horus cluster which has 1 master node with 4

CPUs and 16 processing nodes. Each node of processing nodes from

node1-node14 has one 2.0 GHz Xeon CPU while node 15-16 use 2.4 GHz

CPU. For the coscheduling, we employ the fact that 2 applications can be run

simultaneously (without process/thread switches) on a hyperthreaded CPU.

This means we apply a special form of coscheduling that does not need any

process switches [22]. Considering that the applications run simultaneously,

they also issue communication simultaneously. The cluster has a Myrinet

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interconnect, 512 Mbyte memory per node, and 512 Kbyte cache per CPU. We

have used MPICH 1.2.5 with ch_gm device, i.e. MPICH-GM.

As test programs we have used a simple self-written particle simulation on

a partitioned mesh with a 5-point stencil. The program uses nearest-neighbor

communication (up to 4 sends and receives per iteration step, depending on

the number of nodes employed and the position of the partition in the overall

mesh). This program is very regular and loosely synchronous. The program is

also very fine-grain, i.e. each iteration(simulation) step takes very short time.

We have implemented both a blocking and a nonblocking version, with the

latter having the potential to hide the communication latency.

Furthermore, we are using several of the NAS [17] benchmarks, Class B,

including the Fast Fourier Transform (FT) benchmark, LU Decomposition (LU)

Benchmark, Integer Sort (IS) Benchmark, Embarrassingly Parallel (EP)

Benchmark, and Conjugate Gradient (CG) Benchmark. Each of these

packages has different communication characteristics. LU package has only

blocking point-to-point communication. FT package employs collective all-to-all

communication, CG has a mixture of blocking and non-blocking

communication, and EP is embarrassingly parallel. IS employs integer

operations only whereas the other benchmarks involve floats. This is important

for coscheduling on the hyperthreaded CPU as the two threads share the CPU

resources.

10.1 The test for overhead of ScoPro

As we stated before the CPU overhead is mainly composed of the time to

dynamically insert/remove instrumentation and the running time of measuring

function call.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have first measured the basic overhead introduced by profiling, which

is implemented by measuring the extra running time of mutatee caused by

profiling activity and dividing this value by number of times the measured

functions is called.

The test result shows that the overhead for sampling is between 0.385

psec and 0.5 psec per monitored function call, depending on the complexity of

the action taken. This overhead is low enough to potentially monitor a full

application run if it is important to get detailed information of the overall

program execution. The overhead is high enough to make it worthwhile to

dynamically instrument and un-instrument the code if monitor information from

short time windows is sufficient, especially considering that our goal is to

monitor production-level code that may run for hours or days.

Our test result shows that dynamic instrumentation (placing the

instrumentation) takes in the range of 0.22 sec, and un-instrumentation takes a

similar amount of time. This was measured on 16 nodes for the blocking

particle simulation.

The time is dependent on the number of nodes involved because the

monitor processes have to be activated. The time, to a lesser extent, is also

dependent on the number of functions to be monitored. The fact that

distributed processes have to be activated leads to some skew in the reaction

time which by itself accounts for approximately 0.15 sec out of the 0.22 sec. An

important consequence of the skew is that the actual collection of monitor data

should be delayed to start several iteration steps after the instrumentation has

been inserted.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The overhead of dynamic removal and insertion of measuring-code is

measured by time-stamping the start and end of it. The skew, however, is

due to the different respond time from the controller to mutators(dynaprof) in

various nodes plus the respond time when the mutator manipulates the

mutatee, which we acquired by measuring the extra running time of the few

iteration steps right before and after the time when dynamic removal or

insertion of instrument code happens. A future possible extension is to use

more efficient method to notify the mutator instead of using the expensive “rsh”

call that we currently use.

10.2 Test for the accuracy of wall-time data produced by ScoPro

Application-level communication time stands for the impact of

communication to the overall performance of applications as we stated in 8.2.

To verify the correctness of this metrics acquired by ScoPro, we compared the

results with the equivalent metrics acquired by MPI_Wtime [18] functions

which were manually inserted into the source code of the tested applications.

particle simulation,
40,000 iterations Nnodes T1 program ĉompute

TAcomm
real

°/° Tcomm
real

%Tcomnl

measured by
ScoPro

% Tcomm
error

particle simulation,
blocking

4 125.90 107.63 18.27 14.51% 14.12% 2.7%
16 38.10 23.65 14.45 37.90% 38.60% 1.9%

particle simulation,
nonblocking

4 125.75 107.56 18.18 14.45% 14.12% 2.3%
16 40.43 23.85 16.58 41.00% 40.07% 2.3%

FT
4 115.40 84.56 30.47 26.49% 25.87% 2.3%
16 28.19 7.81 20.38 27.69% 28.23% 1.9%

Tablet. Accuracy for measuring the full program run, using a simple particle simulation

and the NAS benchmark FT. Tprogram is overall runtime, Tcompute is computation time, Tcomm is

communication time, % T comm is percentage of communication time, Nnodes the number of nodes

employed.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The tested applications include the FT NAS benchmark, blocking particle

simulation and non-blocking particle simulation.

As demonstrated in the tab le l, the accuracy errors are within the range of

3%.

Note: The reason for the communication time for the non-blocking version

being higher is due to the fact that this version of MPICH does not actually

exploit the latency hiding options but issues the communication with the wait

instruction.

10.3 The test of calculation / communication ratio for blocking and

non-blocking routines

The calculation/communication ratio tests include blocking and

non-blocking particle simulation test case and NAS benchmark. Because both

blocking simulation tested application and non-blocking simulation tested

application have much shorter running time for each iteration and larger

iteration numbers, we measured 100 iterations and 10 iterations respectively

and compared the results with the results acquired by measuring the whole

applications. Due to the issue of the skew, the measured data was begun to be

recorded 500 iterations after the start of dynamic instrumentation. For NAS

benchmark, the iteration for each is much longer and the whole application has

much less iterations. Thus, we compare the test result of measuring 10

iterations and 5 iterations with the result of measuring the whole application.

And measurement data for applications of NAS packages began to be

recorded from 2 iterations after the start of dynamic insertion.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application

(Niter)
Nnodes Tprogram % Tcomm,

measured
for full
program

partial /o Tcomm,
measured /
% error

partial % T comta,

measured /
% error vs. full

% Tcomm
error vs.
real

100 iterations 10 iterations 100 iterations
Particle
simulation,
blocking
(40,000)

4 126.3 sec 14.12% 13.76% / 2.6% 14.68%/4.0% 5.3%
16 38.6 sec 38.60% 39.03% /1.1% 40.2%/4.9% 3.0%

Particle
simulation,
nonblocking
(40,000)

4 126.8 sec 14.12% 13.69% / 3.0% 14.98%/6.1% 5.3%
16 39.8 sec 40.07% 39.7% / 0.9% 40.72%/1.6% 3.2%

10 iterations 5 iterations 10 iterations
LU
(250)

4 577.2 sec 1.95% 1.98%/ 1.5% 1.87%/4.0%
16 142.2 sec 14.16% 14.95%/5.5% 15.00% / 5.8%

FT
(20)

4 115.4 sec 25.80% 25.40% /1.6% 24.88% / 3.9% 6.2%
16 27.41 sec 28.23% 28.53% /1.1% 27.90% /1.2% 3.0%

CG
(75)

4 131.0 sec 7.02% 6.78%/ 3.4% 6.76%/ 3.6%
16 37.2 sec 22.47% 23.18% /3.2% 21.70% /3.3%

IS
(80)

4 54.5 sec 48.94% 47.50% / 3.0% 47.30% / 3.2%
16 18.0 sec 49.10% 47.23% / 3.8% 47.17% / 3.9%

Table2. Dynamic monitoring of a window of iterations, using a simple partical simulation

and several NAS benchmarks. Tprogram is overall runtime, TcompU,e is computation time, TCOmm is

communication time, % Tcomin is percentage of communication time, N„„des the number of nodes

employed, and Ni,er the overall number of iterations in the program.

The test results in table 2 verify our proposal that we can predict the

application level calculation / communication ratio by measuring a window of

only a small number of iterations.

10.4 The test of communication volume using ScoPro

To verify that ScoPro can correctly acquire the communication volumes

in/out of any nodes involved in the application; we used the 16 nodes particle

simulation application as the test case. In ScoPro, this metrics is actually

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

acquired by summarizing the communication volumes of all the links relating to

the corresponding node.

25000 -1

20000

S 15000

£ 10000

5000

nodes

1 /L_N
N----V

2 A___N
M-----V

3
'J V

A

1C 1C 1C t
5 4__l\

\|— y 6 A-----N
\-----1/

7 A-----K
i — v 8

It i t It It
8

/t__h
Nl----V 9 \ — V 10

A-----^
\f— V 12

1C It 1C 1C
13 14 /— K

Si-----/ 15 A__N
N-----V 16

Fig4a. Fig4b.

Fig4a(right): The dataflow of particle simulation for 16 nodes.

Fig4b(Ieft): The data volume sent/received by M P I functions of each node.

In the particle simulation application each nodes will communicate with its

neighbors as we stated before. For 16 nodes test case, Fig4a shows how each

node will communicate with its neighbors. Node2, for example, will

communicate with nodel, node3 and node6. Because the amount of data each

node exchanges with one of its neighbor is the same, the communication

volume sent by each node should be proportional to the number of neighbors it

has. The test result demonstrated in Fig4b that exactly matches this proportion

verifies the correctness of the data monitored.

10.5 Acquiring heterogeneity characteristic by monitoring symmetric

parallel NAS benchmark

Both FT package of NAS benchmark and particle simulation application

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are symmetric parallel applications which can be used to verify our claim

stated in 8.3. First, we made a comparing test by putting the FT application

running on 4 nodes (nodes 1,2,3,4 at 2.0Ghz) which have the same running

speed; then we put the same application running on 4 nodes, two nodes

(nodes15,16 at 2.4GHZ) of which are faster than another two (nodes1,2 at

2.0Ghz). In the latter test, result (in table 3 and right column of table 4a) shows

that the faster nodes take much more time to finish blocking synchronous

communication calls, while in the former test (results in left column of table 4a)

each node generally spends the same amount of time in blocking synchronous

communication calls.

Nnodes Tconun avg. per iteration on
2 Ghz nodes

Tcomm avg. per iteration on
2.4 Ghz nodes

FT 4 1.47 sec 2.22 sec
8 0.69 sec 1.02 sec

Particle simulation,
blocking

4 0.45 msec 1.39 msec
8 0.69 msec 1.33 msec

Table 3. Communication imbalances (indicating workload imbalance) measured with

ScoPro. The data is based on dynamic monitoring of 10 iteration steps. T Comm is communication

times, Nnodes is number of nodes.

We use the same method to test FT on 8 nodes and the simple blocking

particle simulation application, and the result (in table 3, table 4a and table 4b)

further verified our claim. Thus, we can conclude that for symmetric parallel

application, the time spent on blocking MPI functions can reflect the

heterogeneity of the nodes running the application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 nodes test running on nodel-4 (all 2Ghz) 4 nodes test running on nodel-2(2Ghz), and

15-16(2.4Ghz)

ft hetergenity test(4 nodes)

2.5

2

0.5

0
nodel node2 node3

n o d e id

node4

ft lierogenity test (4nodes)

2.5

2 -1
m

B j|| m
« 1*5-
o ini
$ 1 j — HI 1(111

0.5 n

nodel node2 node15 node16
node id

particle simulation

1.6
1.4 P

1.2 j -
fc 1 |~
1 a8rI 0.6 4“

0.4 - U

0.2 -

0 . □ .UQ.D
nodel node2 node3 node4

nod e id

particle simulation

1.6-p-
1.4 4-
1.2

i 1 L
1 08 ^ ! 0.6

0.4 l-
0.2 ■

0 i- n .
node l node2 node15 n o d e l6

n o d e id

Table 4.a Environment heterogeneity test for 4 node case, x-axis: blocking communication

time per iteration, y-axis: node id

8 nodes heterogeneity test running on nodel-8(all

2Ghz)

8 nodes heterogeneity test running on

nodel-6(2Ghz), and 15-16(2.4Ghz)

ft heterogenity test

1.2

0.8

0.6 +
0 .4 -

0.2

n o d e id

ft heterogenity test

1.2 -r

1 - 1
0.8 -

0.6 m
■

0.4

0.2

0

/ / / / / / / /
n o d e id

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

particle simulation heterogenity test

node id

particle simulation heterogenity test

node id

Table 4b. Environment heterogeneity test for 8 node case, x-axis: blocking communication

time per iteration, y-axis: node id

In the following test, we monitored a constantly synchronized parallel

application, for which the workload is imbalanced. To implement this test, we

deliberately modify the blocking particle simulation application by making the

calculation workload of node3 and node4 doubled (i.e. twice as much as in

nodel and node2).

The test result in table 5 is consistent to our expectation that the

synchronous communication time in nodel and 2, where the workload is

comparatively lighter, is much more than in node3 and 4, demonstrating that

by monitoring the synchronous communication functions, we are able to

acquire the information of workload imbalance among processes of parallel

application.

Nodel Node2 Node3 Nodes4

Synchronous Communication
time(msec/ iteration)

2.970 2.981 0.423 0.436

Total time(msec/ iteration) 5.681 5.681 5.681 5.682

Table 5. Test of calculation workload of imbalanced application (a modified version of

blocking particle simulation).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.6 Test result for progress of multiple parallel applications and

making prediction using historic data

We first dynamically instrument the progress of the 2 parallel applications

which are co-scheduled into the same set of resources, and then we compare

this result with the historic progress data of the same application that is run

without being co-scheduled. The calculated slowdown will be ratio of

progress value of co-scheduled application vs. the progress value of the same

application without being co-scheduled.

The combinations of co-scheduled applications we use to test include NAS

benchmark IS, EP combination and NAS benchmark IS, FT combination. The

following table shows the slowdown value we calculated through the

instrument data comparing with the real slowdown the applications. To achieve

an accurate result, the recording of test data was delayed for 2 iterations. The

measurement of co-scheduling of IS and FT is omitted, because for this size,

they exceed the available memory per node. Otherwise, we test 4, 8, and 16

nodes. The test result shows that the accuracy of slowdown of monitoring data

is kept within the range of 2.5%.

Application E1'nodes Si real Si measured by
ScoPro /
% error

SI real SI measured by
ScoPro /
% error

run with IS run with IS run with EP run with EP
IS 4 1.14 1.13/1.2%

8 1.10 1.10/0.0%
16 1.11 1.10/0.9%

EP 4 1.14 1.13/0.6%
8 1.14 1.17/2.5%

16 1.14 1.15/0.9%

run with IS run with IS run with FT run with FT
IS 8 1.44 1.42/2.0%

16 1.33 1.33/0.4%

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FT 8 1.74 1.71 /1 .8%

16 1.71 1.73/1.5%

Table 6. Measurement of slowdowns. Si is slowdown, Nnodes is number of nodes.

When two parallel applications are co-scheduled together, one of the

applications could finish earlier. If we consider the effect of total the running

time of the application which finished earlier in predicting the total running time

of the application which finished at a later time, we are able to acquire a more

accurate expected running time of this application. Because ScoPro can

monitor multiple parallel applications simultaneously and relate the information

together, it could provide the necessary data to accomplish this.

Assuming parallel applications A and B are co-scheduled into the same set

of resources. According to the data instrumented and history record, we can

first predict the application using ScoPro which will finish earlier as we have

done in the previous test. Assuming B will finish earlier, Tb is the predicted time

of the application B. Assuming A was run previously solely in an environment

with an observed Tai, we instrument a slow-down of Sa when 2 applications

are run together, Tr is the predicted running time of application A after

application B ends. Pa is the percentage finished of job A when job B finishes.

So we have the following equations:

Tb/(Tai*Sa) = Pa (3)

Tr/Tai=1-Pa (4)

Tr=Tai-Tb/Sa (5)

Ta=Tr+Tb = T a i+ T b -T b /S a (6)

From the equations (3) (4), we can get equation (5) then (6). Using

equation (6), we predict running the time application A and compare our result

with the real observed result.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To demonstrate the effectiveness of our method, we compared the result

from formula (6) with the result which has not used the information of another

co-scheduled application. This compared method is calculated through

formula (7), and it does not take Tb into account. Similar to what we stated

previously, Ta1 is the observed running time which Application A runs without

co-scheduling, Sa is the instrumented slowdown when 2 applications were run

together.

Ta= Tai / Sa (7)

The following tables (table7a, 7b) show the test result using formula (6) in

comparing the result using formula (7). Because the original IS package is too

short to get an accurate test value, we enlarged the iteration number of IS to

80 when used as application B. When IS was tested as application A, in order

to make IS running longer than EP and FT, we enlarged its iteration number to

320.

Tal(sec) Sa(sec) Tb(sec) Ta(6)(sec)/

error(%)

Ta(7)(sec)/

error(%)

Treal

(sec)

IS(A)/EP (B)4nodes 226.22 1.12 148.00 242.5/1.4% 254.16/3.4% 245.77

IS(A)/EP (B) 8nodes 123.46 1.13 75.85 132.24/0.6% 139.6/4.9% 133.00

IS(A)/EP (B) 16nodes 74.26 1.08 38.00 76.95/1.3% 79.92/2.4% 78.01

IS(B)/EP(A) 4nodes 130.85 1.11 67.8 137.56/0.6% 145.24/6.2% 136.71

IS(B)/EP (A) 8nodes 65.43 1.15 36.22 70.09/3.7% 75.25/3.4% 72.8

IS(B)/EP (A) 16nodes 32.91 1.23 21.66 37.06/3.6% 40.71/5.8% 38.45

Table 7a: Execution time prediction test result of Co-scheduled jobs: IS and EP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tal(sec) Sa(sec) Tb(sec) Ta(6)(sec)/

error(%)

Ta(7)(sec)/

error(%)

Treal

(sec)

IS(A)/FT(B) 16 nodes 74.13 1.31 56.00 87.50/1.0% 97.38/10.7% 88.46

IS(A)/FT(B) 8 nodes 123.36 1.40 104.83 153.18/1.1% 172.40/13.8% 151.41

IS(B)/FT(A) 16 nodes 32.36 1.75 26.23 43.62/0.0% 56.60/29.8% 43.59

IS(B)/FT(A) 8 nodes 61.42 1.71 47.48 81.03/0.4% 104.6/28.6% 81.36

Table 7b: Execution time prediction test result of Co-scheduled jobs: IS and FT

From the test result, we can conclude that the approach that uses the

monitored information of the other co-scheduled application in predicting the

execution time has more stable prediction accuracy. In fact the accuracy of this

method gets better as the run-time of the applications are longer, while most of

the real parallel applications tend to run for much longer period than the

application we tested. The test result without relating the information of the

other co-scheduled application generally has the same accuracy when the

slowdown is low, but it becomes much worse when the slowdown performance

get higher.

11. Conclusion and Future work

We have presented a tool—ScoPro, which can dynamically monitor

multiple parallel applications. ScoPro is based on Dynaprof and Dyninst_API

and can dynamically instrument and un-instrument the binary image of

executing applications.

The ScoPro tool can be applied to check application characteristics such

as the fraction of time spent in communication or I/O and to check slowdown

under coscheduling. Most importantly, it can collect data from monitoring only

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

short time windows instead of a full program execution. This enables extraction

of performance data from applications with little intrusion and makes the tool

applicable to realistic job scheduling environments. We have shown that the

error introduced by monitoring is small and that monitoring of small windows of

iterations is feasible.

Moreover, ScoPro is able to acquire some intrinsic and static behaviors of

parallel application including the communication size in/out of a specific node

(process), the communication load on a specific link (e.g. nodel to node3),

and average message size. This characteristic provides important information

for load-balancing and its usage can be potentially expanded for acquiring

other application behaviors including 10 and memory allocation.

ScoPro is also applicable to checking progress of processes of parallel

applications, which enable us to acquire the information of resources’

heterogenity where the processes run.

By relating the monitored information of multiple parallel applications

acquired ScoPro, we are able to make a more accurate run-time prediction of

co-scheduled job.

The future work around ScoPro includes the following:

1. Automate the dynamic insertion of indicating function into main loops

of the parallel applications.

2. Integrate other sensors into ScoPro including hardware counter (e.g.

PAPI sensor [24]) to acquire more metrics (e.g.FLOPS).

3. Expand usage of ScoPro for monitoring the performance of 10/

Memory functions.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Apply ScoPro for performance prediction and monitoring for more

complicated structured parallel application.

5. Considering the actual resource times by either estimating (from

detailed communication traffic and parameter sizes) the actual time spent on

the resource or directly extracting this time by monitoring lower-level libraries

such as GM.

6. Improve the scalability of ScoPro by allowing multiple controllers to

exist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

12. Reference

[1] Csaba Andras Moritz, Matthew I. Frank, “LoGPC: modeling network contention in

message-passing programs”, Joint International Conference on Measurement and Modeling of

Computer Systems. Proceedings of the 1998 ACM SIGMETRICS joint international

conference on Measurement and modeling of computer systems.

[2] Michael Golm, Christian Wawersich, Joerg Baumann, Meik Felser, and Juergen

Kleinoeder, “Understanding the Performance of the Java Operating System JX using

Visualization Techniques”, Workshop on Software Visualization, OOPSLA 2001, Tampa, FL,

October 15, 2001.

[3] Hiroaki Matsui (RIST), Hiroshi Okuda (University of Tokyo), “Thermal Convection

Analysis in a Rotating Shell by Parallel FEM - Development of a Thermal-Hydraulic Subsystem

of GeoFEM “, The 2nd ACES (APEC Cooperation for Earthquake Simulation) Workshop",

October 15-20, 2000, Tokyo and Hakone, Japan.”

[4] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth, R.

Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, Tia Newhall, "The Paradyn Parallel

Performance Measurement Tool", IEEE Computer 28, 11, (November 1995): 37-46. Special

issue on performance evaluation tools for parallel and distributed computer systems.

[5] Mucci, P., Dongarra, J., Kufrin, R., Moore, S., Song, F., Wolf, F. "Automating the

Large-Scale Collection and Analysis of Performance," In Proceedings of the 5th LCI

International Conference on Linux Clusters: The HPC Revolution, Austin, Texas, May 18-20,
2004.

[6] Philip J. Mucci, “Dynaprof Users Guide” ,

http://www.cs.utk.edu/~mucci/dynaprof/dynaprof.html.

[7] A. Alexandrov, M. Jonescu, K.E. Schauser, and C. Scheiman, LogGP:

Incorporating Long Messages into the LogP Model, Proc. SPAA '95, July 1995.

[8] Jerry C. Yan Performance Tuning with AIMS — An Automated Instrumentation and

Monitoring System for Multicomputers, Proc. 27th Hawaii International Conference on System
Sciences, Wailea, Hawaii, January 1994.

[9] Jeffrey Vetter, D. A. Reed Real-time Performance Monitoring, Adaptive Control, and

Interactive Steering of Computational G rids, International Journal of High Performance

Computing Applications 14(4): 357-366. 2000.

[10] D. A. Reed: Performance Instrumentation Techniques for Parallel Systems. L.

Donatiello and R. Nelson (eds), Models and Techniques for Performance Evaluation of

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.utk.edu/~mucci/dynaprof/dynaprof.html

Computer and Communications Systems, Springer-Verlag, LNCS, 1993, pp. 463-490.

[11] Chandra Krintz, Rich Wolski “NwsAlarm: A Tool for Accurately Detecting Resource

Performance Degradation (2000)’’ CCGRID'01, May, 2001.

[12] R. Wolski, “Dynamically Forecasting Network Performance Using the Network” ,

Weather ServiceJournal of Cluster Computing, Vol. 1, No. 1,1998, pp. 119-132.

[13] F.Vraalsen R.Aydt, C.Mendes D. A. Reed, “Performance Contracts: Predicting

and Monitoring Grid Application Behavior” Proceedings of the 2nd Int’l. Workshop on Grid

Computing, November 2001.

[14] Bryan Buck, Jeffrey K. Hollingsworth,” An API for Runtime Code Patching (2000)” ,

The International Journal of High Performance Computing Applications.

[15] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos,R. Subramonian,

and T. von Eicken, “LogP: Towards a RealisticModel of Parallel Computation”, Proc. Fourth

ACM SIGPLAN Symp. Principles and Practices of Parallel Programming, May 1993.

[16] Shreenivasa Venkataramaiah, Jaspal Subhlok, “Performance Prediction for Simple

CPU and Network Sharing", LACSI Symposium 2002, Santa Fe, New Mexico, October 2002.

[17] Bailey, D.H.; Barszcz, E.; Dagum, L.; Simon, H.D.; NAS parallel benchmark results

Parallel & Distributed Technology: Systems & Applications, IEEE [see also IEEE

Concurrency], Volume: 1 , Issue: 1 , Feb. 1993

Pages:43 - 51

[18] MPICH-GM. Information available at http://www.myrinet.com. Retrieved 2004.

[19] MPI: A message passing interface standard. International Journal of

Supercomputing Applications, 8(3/4), 1994.

[20] Angela C. Sodan. Loosely Coordinated Coscheduling in the Context of Other

Dynamic Approaches for Job Scheduling—A Survey. Concurrency&Computation:

Practice&Experience. Accepted for publication.

[21] Angela C. Sodan and Lin Han. ATOP— Space and Time Adaptation for Parallel and

Grid Applications via Flexible Data Partitioning. 3rd ACM/IFIP/USENIX Workshop on Reflective

and Adaptive Middleware, Toronto, Oct. 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.myrinet.com

[22] Angela C. Sodan and Lei Lan. LOMARC— Lookahead Matchmaking in

Multi-Resource Coscheduling. JSSPP (Workshop on Job Scheduling Strategies for Parallel

Processing), New York / USA, June 2004, to appear in Springer.

[23] Angela Sodan and Xuemin Huang. SCOJO— Share-Based Job Coscheduling with

Integrated Dynamic Resource Directory in Support of Grid Scheduling. Int. Symposium on

High Performance Computing Systems (HPCS), Sherbrooke, Canada, May 2003, pp.

213-221.

[24] Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D. "Using PAPI for

Hardware Performance Monitoring on Linux Systems," Conference on Linux Clusters: The

HPC Revolution, Linux Clusters Institute, Urbana, Illinois, June 25-27, 2001.

[25] Michael Resch, Holger Berger, Thomas Boenisch Dirk Sihling, High Performance

Computing Center Stuttgart, “Performance of MPI on a Cray T3E-512”, Third European

CRAY-SGI MPP Workshop, Paris (France), Sept. 11 and 12,1997

[26] Valerie Taylor, X. Wu, X. Li, J. Geisler, Z.Lan, M. Hereld, I. Judson, and R. Stevens,

“Prophesy: Automating the Modeling process,” in proceedings of 3rd International workshop on

Grid computing, Baltimore, 2002

[27] Abdul Waheed, Diane T. Rover, Jeffrey K. Hollingsworth , “Modeling, evaluation, and

testing of paradyn instrumentation system”, Proceedings of the 1996 ACM/IEEE conference

on Supercomputing, 1996 , Pittsburgh, Pennsylvania, United States

[28] “DyninstAPI Programmer’s Guide” , Release 4.1 April 2004, httD://www.dvninst.ora

[29] Brian Tierney, William Johnston, Brian Cowley, Gary Hoo, Chris Brooks, Dan Gunter,

‘The NetLogger Methodology for High Performance Distributed Systems Performance

Analysis “,ln Proceedings of the Seventh IEEE International Symposium on High Performance

Distributed Computing (HPDC 7), pages 260--267,1998.

[30] Angela C. Sodan, Lun Liu, “Dynamic Multi-Resource Monitoring for Predictive Job

Scheduling with ScoPro” , Technical Report 05-002, University of Windsor, Computer Science,

February 2005.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dvninst.ora

13. Annex

13.1 Interface definition

The definition of interfaces provided by ScoPro is given in the following.

When the user (e.g. the scheduler) is calling these interfaces, these interfaces

will forward the request to the controller, which start the measuring of an

application. The definition of structures used by the client interfaces is

described in chapter 13.2.

1) MpiJobStart:

#include “metcollect.h”

int MpiJobStart (MpiJobDesc* nipiPtr, int ifBlocking, MetricDesc* m_list,

confirmStruct* cfm)

IN mpiPtr: A pointer to mpiJobDesc, which include description of job

and measurement, executable name, path, running nodes number, location.

IN ifBlocking: Indicate if this function will return immediately once job is

created or return after the monitored data has been acquired.

IN m jis t: A list of metric description.

OUT cfm: returned handle to this job.

Return value: indicate whether the job is successfully created

2) mpiMeasure:

#include “metcollect.h”

int mpiMeasure(MeasureRequest *m_req,int ifBlocking)

IN m_req: including the Jobid (which job to instrument), measuring time,

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which subset to be instrument in the initialized list, the event triggering this

measurements etc.

IN ifBlocking: Indicate if this function will return immediately or return

after the monitored data has been acquired.

13.2 Description of structures in ScoPro

All the structures used by ScoPro are defined in files “metcollect.h” or

“metricstr.h”. All the structures used by the interfaces of ScoPro are defined

and described in the following tables.

1. struct metricHdr: settings controlling the measurement of aspecified

job.

Variables Descriptions

Int measuretime The maximum time that the measuring will take place

Int metricNum How many metrics will be measured.

Int detailNum How many detail trace record will be generated

Int datasize; The size of memory to be generated, calculated by API,

no need to be set by user.

Int combinationCode Controlling will subset of function group will be

measured

Int nodesNum; The number of process of monitored parallel application

Int m_times; The number of iterations , in which the recording and

measuring happens.

Int start; The start number of iteration, where the recording of

data begins

Int longwait Whether the application will be monitored all the time

when the application kept running(true/false)

2. struct metricDesc : the description of one detailed measured function
Variables Descriptions

bool recorddetail; Whether record the trace data or not for this function.

Int num_para1; First parameter of function to be recorded(-1 if not used)

Int num_para2; Second parameter of function to be accumulated,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recorded (-1 if not used)

char functionName[30]; The name of this function

char libName[30]; The name of the library containing this function

Int combinationCode The group number relating to this metrics

3. struct socketHdr: the header of data package
Variables Descriptions

char kind; ‘S’ for synchronized request, ‘C’ for sending monitored

data

char jobld[10]; The job id for the monitored application

Int memsize; The size of data package followed

Int np; The process id of parallel application starting from 0

Int batchld; The batch id of data package.

4. struct mpiJobDesc : description of a job

Variables Descriptions

char kind; ‘C’ create a job

struct metricHdr

m_header
Description of measurement related to this job

long long starttime The start time of this job

Int np Number of processes

char

executableName[30]

The executable name of this job

char

executablepath[30]

The path of the executable of this job

char

machinefilename[30]

Name of machine file

char

machinefilepath[30]

The path of machine file

5. struct joblnfo: contains simplified information for a specified job
Variables Descriptions

char

executableName[30]

The executable name of the tested application

Char Date[11]; The date when the application is run

int nodeNumber How many processes for this job

6. struct nodeSession: information for a specified process

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Variables Descriptions

int sockfd; The connection number for this process

int processld; The process id

Char nodeName[30]; The name of the node running this process

struct confirmStruct the handle to access a specified job
Variables Descriptions

int jobld A unique id related to this job

Int slotNumber Fast access number of this job, automatic generated.

8. struct measureRequest: description for the restarted measure

request.

Variables Descriptions

char kind ‘M’ for make a measurement request.

confirmStruct jhandle The handle of this job

Int combinationCode The subset of measured functions

Int eventld; The event id triggering this measurement

struct BatchHdr: Description for this batch of data
Variables Descriptions

int batchld The ID number for this batch of data, starting from 0.

int datasize The size of data in byte for this batch of data

int eventld The event id trigger this batch of data

0. struct wallclock_metric_data_t: Monitored data for one specified

unction

Variables Descriptions

Long long current The most recent walltime when the function is called

Long long total The total amount of time the monitored function

consumes

Long calls The total times the monitored function is called

Long long min The walltime when the function is called for the first time

after the record of monitored data begins

Long long max The walltime when the function is called for the last time

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

before the record of monitored data ends

Long long para_sum The sum of the values of a specified parameter of the

monitored function

11. Struct Linkdata: contain the the total communication volume sending

from the monitored process to another process
Variables Descriptions

Long long abso The total communication volume sending from the

monitored process to another process

12. Stuct detail_data_t: The tracing record for the monitored functions

Variables Descriptions

long long abso The wall time when the function is called

long long current Indicate how long this function is called

Int paral The value of the first parameter when the function is

called

Int para2 The value of the second parameter when the function is

called

13. wallclock_data_hdr_t: contain information of measurement settings

where both mutator and mutatee can access.
Variables Descriptions

Struct batchhdr

batchinfo

Header information for current batch

Int Combinationcode Indicate the subset of current monitored functions

Int pid The process id of monitored process

Int nodeid The id of this node

Int nodenum The number of processes belongs to the monitored

application

Int finished Indicate whether the current process has been finished

Int measuring Indicate whether the record of data is switched on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13.3 Description of data package sent from sensors to the controller

The data package sent from sensors to the controller is composed of the

components listed in the following table. The order of the components in the

data package is the same as the listed order in the table.

Sub component Number of components included in the package

Socket_hdr 1

wallclock_data_hdr_t 1

wallclock_data_t Number of instrumented functions

Linkdata Number of processes

detail_data_t Number of tracing records * number of traced functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

13.4 Data structure for measured data of each job

The following Figure shows the file format of monitored data saved in the

persistent storage. ScoPro will generate a separate file whenever a parallel

application is started and monitored.

Name Quantity
Jobjnfo 1

Name Quantity
nodeSession Number of

processes

Name Quantity
metricHdr 1

Name Quantity
metricDesc Number of

measured functions

Name Quantity
Batch data Number of

measured batch

Name Quantity
batchHdr 1

Name Quantity
Node data Number of

processes

Name Quantity
wallclock_data_t Number of measured

functions

Name Quantity
Linkdata Number of measured

functions * number of nodes

Name Quantity
detail_data_t Number of measured

functions * number of trace
data for each function

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13.5 How to invoke the tool

1. Set up the running environment

1) Set files “.bashrc” and “.bash_profile” to include the path of
dyninst_API and the libraries of Dynaprof probes.

DYNINSTAPI_RT_LIB=/home/shared/dyninstAPI-v4.1.1/i386-unknown-linux2.4/lib/libdyn
instAPI_RT.so. 1
DYNAPROF_PROBEDIR=/home/shared/usr/lib
LD_LIBRARY_PATH=/home/shared/usr/lib: $LD_LIBRARY_PATH

2) Copy “/home/liu/mpich*/ch_gm/bin/mpirun.ch_gm1.pl” to a public
accessible path, and make sure the interface (“mpijobstart”) can access
this file

3) Traditional editing of the machine file of MPI.

2. Declarations and settings call the interface

1) In the source code to call the interface, include the following 2 header
files.
#include "metCollect.h"
#include "probes/metricstr.h"

2) Declare the following variables in your source code.
MpiJobDesc myJob;
confirmStruct cfm;
metricDesc metList[8]; // larger than the maximum functions to be monitored

3) Set connection to the controller
set_connection("horus.newcs.uwindsor.ca");

4) Set of functions to be monitored
■ Set function name:

strcpy(metList[0].functionName,"measuremark_");
// other functions

■ Set function library
strcpy(metList[0].libName,"DEFAULTJ^ODULE");
// other functions

■ Set whether generate trace record or not
metList[0] ,recorddetail=true;
// other functions

■ Set combinationcode(which subset of functions to be monitored)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

metList[0] .combinationCode=0;
metList[1] .combinationCode= 1;
// other functions

■ set 1st parameter to be monitored
metList[0].num_j>aral=-1; // -1 stand for ignore, +2 for mpLisendcontig
// other functions

■ set 2nd parameter to be monitored
metList[0].num_para2=-l; I I -1 stand for ignore, +6 for mpi_isendcontig

5) Set job descriptions, for example

strcpy(myJob.machinefilename, "mfile"); // machine file name
strcpy(myJob.executableName,"/home/liu/ft.B.4"); //excutable name, path
myJob.kind-C';
myJob.np=4; // the # of processes of this parallel application

6) Set the properties of measurement which is common to all the
functions, for example

7)

myJob.m_header.m_times=3; // How many calls to be monitored, 0 to be ignore
myJob.m_header.idletime=50; // How long in second the monitoring will last
myJob.m_header.detailNum=20; // The trace records to be generated
myJob.m_header.metricNum=4; // The maximum functions to be monitored
myJob.m_header.start=0; // The begin of recording data (depending on the

// 1st functions in the function list)
myJob.m_header.longwait=false; // whether the monitoring will stopped once it

// begins
Add calls to the interface, for example
MpiJobStart(&myJob,true,metList,cfm);

8) Add following statement for restarted Measurement

Request m_req;
m_req.jobId=cfm.jobId;
m_req.slotNumber=cfin.slotNumber;
m_req.kind='M';
m_req.combinationCode= 1;
m_req.eventld=2;

sleep(SOME_SECONDS)

mpiMeasure(&m_req,true);

// Declare an instance of measuring request
// Part of the handle for this job
// Part of the handle for this job

// Determine the subset of monitored functions
// The event ID for this triggering this
// measurement
// Make sure the last batch of application is
// finished
// Call the interface

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Compile the source code of user invocation.

4. If the server is not running, run the server by initiate the following
command:

/$Homedirectory/dynaserver 0 (or other start number)

5. Run the client executable

6. The generated file name is “currentdate”+joblD+”.plog” (e.g.
20050415000010.plog)

7. Read the file by issuing the following command:

logreader “the name of the generated plog file.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITAAUCTORIS

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

Lun Liu

Beijing, China

1967

Xi’an University of Electronic Science and

Technology, 1986-1990 B.Sc.

University of Windsor, Windsor, Ontario

2002-2005 M.Sc.

WORKING EXPERIENCE: No. 14 Research Institute of China CALT

Academy

1990-1996, Associate Engineer

Beijing Branch, IBM Ltd., China

1997-2000, System Analyst

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Dynamic multi-resource monitoring for predictive job scheduling.
	Recommended Citation

	tmp.1614811234.pdf.gWUTS

