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.dimensionless €as and liquid velocities and monOGthanolamine

\ ¢
plot of oredicted Dressure grudients avninst those measured

‘ABSTRACT

Heaqurements of overall mass fransfer coefficients for

-

the chemical absorption of’ carbon dioyide into moroethﬂnol-

_ 4
amine solvtions have been made in slug and transition two~ | ot

'phase regimes 1n a 1/? in, ‘I.D, vertical tube, Efrect of

v

concentration on- the overall mass'transfer coefficient has
been studied A relatively new technique -for obtqining a8

Tree liquid ‘Samples from the test section was used and effec—

‘tive irterfecial areas snd £as fi1lm COLffiCientS have beer

- computed by makinﬂ use of a technique prooosed by vales,

Pressure droo Predictions: were made usinr a method Lro-

. Posed by Powley. A renime convtpnt was c*lculétcd and a

indicate & vVery good accuracy or the proposed method - A new

The results for the mass transfer exberiments npree in

[
[+}

order of mernitude ‘with those ohtained by weiland for a .
vertical oackeq tower. Contrarv to thé findings of Kahol,
the mass. transfer results contained ir this .study are in-
fluenoed. to a large degree. byrgravity. ' N\
' : : A ‘ : |

-
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I, INTROIUCTION .

’ . e .
Mass transfer to two-phase flowinhe systems is a commoh

' oecurrence’ in 1ndﬁsﬁr1a1 absorbers and strippers. The de-.
Q1rab111ty of such equanent is reflected by it% efﬂ}ciepcy
(degree of seoaration) and proceqs economics. Industrlal
use of a chemical absorbent usually depends on its recover-.
abllity. For this reason, monoethanolamlne‘(hereafter re-

N
; ferred to as hEA) has experienced widesnrpad use in the ab--

qorpfion of carbon dioxide vqs. 5he lack of design datq-"
however,vhas 1imited its use’ 1n nipelihe contactors.

) Chemical absorotion uslnn-MEA 1q a highly corpler topic
requirlng extensive knowledye of thermodynqmicq, chemical
Pineficg, and t\O phase hydrodynnmius - The complete pracess
‘may be deecrihed as diffusion of qolute gas -from the was bulk
through the 1iqu1d 1nterface to the reaction site, the re-_”
action Lof carbon dibxide wlth HEA. and the diffusion of re- -
actant products into the bulk of the liquid The measured
.resistance4of each Dhase wlll 1nd1cate the suitnbility of
the absorbent

To obtain a model for the overall mass transfer co-
efficlent based on the flow parameters and phyqico-chemical‘
constants, carbon dloxide corcentration has been llmited to
approximately 5% of the totalrpas flow, As a result there |

will be negligible temnerature change from one ehd of the

column to the other, Thus, the volumetric coefficient for



s

_MASS transfer ahd interfaclal areas ma& beAcalculated and
compared to* values charaoteristic of packéd towers., )

The advantares of Dipeline reactorslinclude low capl-"
: tal cost, high decree of agitation reflectinr high transfer
rhtes, ease of handling a wide cross-section of solutions |
inclqding slurries and‘foam,‘spd”low maintenance costgg A-
mong the disadvqntapes are 1ncluded hinb pumping costs for
the hiqh flow rates and long reacfor lenrths for increased

I [

contact time, - .

The objectio?'this study‘was'nrimarily to measure the
effects of conoentration and fluig velocities on the overqll

5 volumetric mass transfer coefficient Furthermore, through ,'
Pproper manioulation of the equafions- effective interfarial
.areas for mass transfer and individual film resistances were

also recorded Cf secondary imnbrtance was the prediction of

two-phase pPressnre drop in vertical oipes.

The system of interest- is 002 and AlT - flowing~cocurrent-

5 -

ly with a dilute aqueous - solution of MEA in a vertical 1/2- 1n.
I.D. tube, The rezions under 1nvestigation include both slug
and transition 7ones which are shown on the regime chart by

Wallis (l) in Figure 1. . S "\‘ R ,-\'
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'transfer in two-ohase flow. Host llterature to

- e I PBEVIOUS wonK KR

W ~ Many researchers hnve 1nvest1gated the concjﬁt of_mass“

ate concen-

¥

..trates on packed towers and horlzontal contactors,

’

Heuss et al (2) have studied the absorp lon -of ammonia

~in horizontal cocurrent gasaiiquld froth flow 1n a.l in, I D, -~

R
pipe. The amnonia absorotlon data iIndicated a gas-phase con-

trolled system with both the gas and 11qu1d coef 1clents
Showing increases in value as bubble dlameter decreased

Emmert and Pigford (3). conducted exoeriments on the absorp-

 tion of carbon dioxide in ‘aqueous solutions of HEA in a very 0

short wetted wall .column, The. observed results 1nd1cate that

L

_ with an lncrease in contact tlme the llquid coefficlient de~

creases and further plots rbveal negligible nonequlllbrium
at the interface- 1ndlcating that the influence of the reaction_“

rate is negligible. Brian et al. (h) have shown that th&

‘physical mass transfer coefflclent is increased substantlally

by the carbon dioxide-MEA chem1CQI absorptlon brocess., This
As presumablyodue to 1nterfacial turbulence which 18 driven
by surface tension gradients, Van Heuven and Beek (3) have
presented data for the physical absorptlon of oarbon dioxlde
,rrom a mlxture or carbon dioxide-nltrogen into water by using
gas . llfts of O. 48 and 0, 238 cm. I.D. and 0.5 and 1.0 m. long.
The experiments were ncr_ormed in the slug flow regime and

o

results 1nd1cate a predominant llquld phase resistance.
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Kéhoi.(G) has‘ooﬁducted chenical absorptloh.experlmehﬁs in a
vértlcal two;phase-systed of carbon dioxide-alr and sodlunm
hydroxide solutfoﬁ}. The overall volumetric coefficlent was
'renorted for a 1/2 in, I.D. plexiglass column. Interfacial
areas and gas fllm coefflclents vere calculated by uslng
'techniques develoned by Wales (7)., Recent studies, carried
out by Bradley and Andre (8). 1ndlcate the transient be-ﬁ
haviour of C02 - MEA systems when subjected to step and
?ulse changbs in feed rates, . The exe;rlmental equionent _H'
consisted of '3 in, I.D. glass column 10 ft, 1ong..backed to
a helght of 9, 25 ft. with 3/8 1n. x 3/8 "n. x 1/16 in. glass
Baschlg rings, Liquid feed. rate varied fronm 65.5 to 82 l 1b.
- male/ft.2 hr.. and gas feed rate varied from 9, 55 to 10. 01
1b. mole/ft,% hr. Cutlet’ composition response to poeit*

and negative step forcing of feed gas concentration indicates

_onset of steady state after &4 to 5 mln. -



III. THEORY: .. ..
] ) \.\\ R 7 )

A.  The Reaction Between Carbon Dioxide and MEA

, Chemical absorption of carhon dioxide 1n ‘aqueous solu-
tions of MEA has been studied widely and the reaction mecha-‘
_nlsm for the chemical combinatiqn of COg with MEA is well
knpwn (9) MEA 1s birunctional that 1s. the molecule has
' an -0H groub on one engd, whlch may react with COo to form
caqbonic acld, and a -NH2 group at the other €nd, which may
'react~with co, tc form carbamic acid. The reaction with. the
hydroxyl group takes place in' basic solution of pH greater ,'
- than 11, but since the pH of uncarhonated MEA solution is

)
less than 10 this reaction may be dlsregarded.

The overall reagtion is represented in’ equation 1.

Cop + 2H0-R-Nf12¢no-R-NBCQc‘ + HO-R-NH* -1-

&

r

The reaction Presumably occurs 1n two steps. First is, the :

direct attack of 002 on the prlmary amine to form carbamic

acid: o

€O, '+.Ho_R-»NH2'¢ HO-R-NHcoo- + Ht a2
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Hzo + HO-R-NHz = HO-R—NH3 + OH- -3~

- The hydrolysis 1on resulting from the hydrolysis reactlon
—

also reacts with coz forming bicarbonate and carbonate 1ons.

€05 '+ OH™ = HCO4~ " =4a-
HC03 . OH- ..f .COB—‘ + Hp0 : . ~4b-

v

Finally, carbonlc acid is formeq by the reaction of c02 with'

<

uater.:

c0_2 1 Hp0 = H2C03 ' T L5a

. According to Emmert and Pigford (3) the reaction 1nvo1-
ving the formation or: the carbamate 1s most important in in-
fluencing the absorptlon rate. The hydrolysis of the amine,

which involves only the transfer of a proton, o

1nstantaneously and consequently is not rate contro liné. K
. Pinsent et al (11) describes the hydrolysis d& COp as |
a very slow reaction with a ,rate constant of 0, 025 1./gm. mole
lesec. at 259 C.; therefore, havlngunegliglble»erfect on the
absorption rate. ' - -
Emmert and Pigford {3) have found that at total equili-
.brlum the rormatlon of the carbonate 1s favoured and when’
thts reaction is complete. the solution has g higher pH and

a lower bPartial pressure of ooz.

B. The Prediction of Mdss Transfer Coefficients

o % ‘ . |
To describe the unidirectional movement of COs from a -

'y



8.
. plane interface. ‘the Navier Stokes equations for mass transfer
may: be simplified to describe thls steady state process of

simultaneous diffusion accompanied by chemcial reaction in a

stagnant liquid. The mathematical equation 1s as follows:
Dd [ {_| k@oﬂﬁmﬂ ' -6

where ¢ + D = diffusivity of CO, in.the 1iquid phase .
‘ X ildistanoe from the interface
"k = reaction rate constant oetween COp

i and MEA in the .1iquid phase, ’

The neneral form of the concentraﬁion profiles for equation 6

is shown insFiqure 2a. _ _
The' assumption is now made ‘that [MEA] is large enough s0

that reaction with: 002 causeé\pegligible change in its value,

In effect this 1mplies a pseudo first order reaction: where-

by, the[:EE]becomes constant This situation is illustrated

-‘1n‘Figure 2b, All dissolved gas’ reacts in the film and the

reaction products are carried into the bulk of the liquid. ,

The mathematical description and boundary conditions fo} the

‘Pseudo first order reaction dre illustrated below:
S Dd] ﬂ k'E:OBJ | S e
. .

‘where '.=' kElE!ﬂ

ana  [of) =Poge  atx-o0 -y
[eog]

at x,=¢fi ' \
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The solutlon}gf equation 7 gives the concentration prorile

A\\ °f unreacted CO, in the liquid film;

whexe'

.The absorption

[coa/Eoéje = exp(-x(k'/n)il/z)‘ -8

=
1]

N =

rate 1s'by derinition: .

E:ozj (Dkl)l/z , : '-9_

(k)]

absorption rate per unit interfacial area,

fer coefficient is:

From equation 9 1t follows that the-liquid film mass - trans-

ki, = (Dkf)l/? " T -10-

~
<

From eouation 10 1t s evident that the absorption coelffi-

c;ent ky, is a runction only of the physico-chemical ' para-

méters of the system.

Under the . conditlon of absorption at low concentrations

of 002,

Dankwertz (12) has broposed the followinz criteria .

. 4=

for the gas undergoirg A pseudo first order reactiong

(Dkf)l/z/kLO'<3:1 + [ﬁEE} ‘ O wlle-
Z[EOE}E .
.kLOI

physical absorptlon liquid film co-~ =
efficlent |
the number of ﬁoles;of reagéntruhich
lreac s,(stoichiometrlpally) with' one

mole of CO,,
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Appendix I 111ustrates the valldity of the crlterlon at

polnts of 1nterest In the column.

\ '

C. The Overall lass Transfer Coeffictent and Determination
Jof Intertacial Areas

The two f1lm theory has provided the concept of. addition

orf 1nd1v1dua1 film resistances which act 1n serles, Equqtion

¥ 12 relates the 1nd1vidua1 transfer coefflpients to, the overall

'

-—coefflcient baseF on the gas slde.

1 = 1 + m. " - ~12-

" where -~ m = slope of the equilibrium eﬁrve_‘-'

e

ol
1l

effective interfacial area for mass
- ¥ .

_ transfer, ' .
L -

For diiutefsystems-“hy may be replaced By_Henry's Law Constant

- Al .
\\ﬁﬁ“ as In equation 13, T . '

r
L]

_}_ = 1 '+ ‘' H ‘ ..13.. -
KG.S._ kGOE EL-E

It is evident from equation 13 that by varying hydrodynamic

and physlco-chemical parameters. a plot of "1/K 2" vs,

'"H/k " may be made having a slope of "l/a" and an intercept

of "l/kG-B” Since the 1nterfacial afea is partially 1hf1uenced

by\liquid viscosity and surface tenslon, 1t71s assumed that
",these parameters do not effect the interfacial area as[:EE

1changes. This assumption becomes valid. Since the maximum

change in concentration is approximately 0,1 moles/litre,

! .

]
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D. Two-Phase Pressure ﬁrop in Vertical Flow

The pressure drop of a vertical two-phase system con-

slists of three components ' frictlonal‘1oss.;momentum'change.

-~ and change 1n elevation. . . - o . ’ y
. : - 1
i

= (dp/dz)p = (dp/dz)p + (dp/dZ)M + (dp/dz)n <14~

For turbulent-tﬁrbulent'fioﬁt Powley's correlatlon adonts the
concept of the.Lockhart~MartEhelli "X t" which. is defined as
the square root of the ratio of frlctional pressure drop of’

the liouié floring alone to that of the gas flowing alone.

‘_xtt = ( (dp/dz)tp/.(‘dp/d;)_up' )1/2 A l—]_.S-‘ ‘

The expression for the two-nhase frictlon pressure drop 1n

terms of ‘the slngle phase frlction pressure drop of the liquid

flowing alone is:

(dp/dz)qpp = (dp/dz)Lpﬂittz | -16~

and thtz‘is an empiricel function Of-xtt'

N T |
‘thtz =1+ 1 4+ A l/? + :QG 1/2 ~17-
/ o Xee® Xy (Bg o

and A is a coﬁstant characteristic of the flow regime.f For -
this system A = 0,76, . . )

The relationshlp for 11quid volune rraction in slug flow-
is given by Hallis (13) asy - o : .
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a - . 1/2
o : )
. _ RLS/;’\l = % (pF/PG -18a-
| e BT w3 TR0 2) T oone

e ‘
vhereggt = viQeM2as @002 " -18b-
| . ‘ |

Ip = vF-QFV‘?(dg(QF-Q@)'l/ 2 -18e-

w1fH equetlonﬂlﬁa the elevatlon Dressure drop may be calculated-

, -~
(dp/dz)E _QFRLS ¥ (1—RLS)Q | 19—

" With the agsumption of'homogeneous flow, momenfum pressyre
v e
drop can be evaluated by equdation 90

: . o : 2 _ : .
e (ap/az)y = o2y /1-P1n) . sl

E, Estimation of Physico-Chemical Parameters

- " Because of the large numbers of Daramneters involved in
'calculating mass transfer coefficlents. each parameter wlll

be dealt with separaiely.

&

l. Density Data

The density of MEA solutions at 1ow concentrations
doesn't vary signlflcantly from that of water, Therefbre; for
- all practical purposes. the density of Water at that temnera-
ture was taken: from the "CRC Handbook of Physlcs and Chemistrv"
(14) ‘and used in all calculations, . The denslty of Air - co,
gas mixture was obtained by using the 1deal gas law,

2, Viscoslty Data

" The Viscosity of water ae\Yarious temperatures was

7 , ' . . - -



L T

. - e . .
taken from the “"CRC Handbook of Physics and Chemistry“ (14)

To predicy the- diffusion coefficlent of 002 in

water the w11ke Chang correlation (16) was used

\
D= 7.4 x 10" me)l/z -21-
' ) _/“. .
. ‘-‘_‘-"‘—-ﬁ--_. '..
where AR, temperature in °K )

}
f
‘¥ = molecular volume of solute at the

”ndrmal bolling point ém.j/nﬁ. molé
X = Assoclation parameter equal to 2.6
for water. _
'ﬁ = molecularﬂﬁeight of solvent. - - o
A= viscésity of solution ép.
. : K
' Predicted uariatipns of reagent dlrfusivity with FEA con-

[+

centration was obtained from the data of Thomas and Furzer

| (15) " In describing the effecu of amine conoentratidn on the |

1
d*ffusivlty of CCp in solution, 1b~has beeh assumed that the
diffuslvlty,of CO2 is affected to the same extent by’ dmine
concentration as is the amine diffuslvity. This relation-

ship has been discussed by Dankwertz and Sharma (17).

Des - DAA - - . 22
Dc W DAW ¢ o : .

.-.‘“m...,.;a.‘.\'.--... .
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LS Physical Solubl]lty of Carbon Dioxide in MEA Solutlons

!
When considerinv Fas absorotron accomnanied by

'.chemical reacflon 1t is hot Dossible to measure the phyeical
_ solubillty of CO,., "However, Astarita (9) has ‘made use of the

avallable .datg for electrolytic solution to infer the solu-

bility 1in reactive media. Therefore; solubllity of 002 In
water containing various 1ohs, may be corrected by the
following equation:
dlogisfHe \ = nI -23a-
“1o{ieo) |
\
.h=h +n +n, * * -23b~
o ' : 2 ////e | ‘ . :
. I =21/2%ciz1 : "-23c~

| 3

|

vhere - _ ! He® solubili?& in water { litre atm./

gm, mble) '
I = loric strength of the sqlution
. h+.h_.hG = contributions to h of lons
and gas (1./gm. 1on)
Ci conceﬁtratlon of 1 1on,spec1ee
f‘ E ‘ -~ (gm. mole/1, )
| | Z1 = electric charge.

, Henry s Law Constant for water was_obtalned from the "Chemical

Engineers' Handbook" (18). The values of h, h_,_hc_were
obtained from’ Dankwert7 L12). ) ' : o

5. Reaction Rate Constant

- Pigure 13 represents the values of'reactipn'velocity

<
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- coristant as reported by Sharma (19). These Valueé were obe
talned from 11qu1d jet absorptlon data, and used‘in tﬁe work
of Brian et él (4) under pseudo first order reaction condi_
.tioné. The va]ues agree with those reported by Jensen,
Jorgensen, and Faurholt (20).

6. Ionization Data of MEA in Aqueous Solution

The hydrolysis'of MEA in aqueous media has been
studied by Bates and Pinching (21) Flgure 14 shows the cal-
'culated concentrationq of hydroxyl 1on and free amine in

solutions of various total aminhe strengths,

7. Physical Absorotion Liquid-Film‘roerficient

An average value kp (physical absorption 11quid-
film coefficient) was obtained from Wales (7). For the same

range of flow rates, kL has a mean value of 0, 026 cm./sec.



v, EXPERIHENTAL'APPARATUS AND PROCEDURE

!

A; Descrivtion of Apparatus

A flow chart of the equipment is shown In Figure 3. , The
vertiéal teet section, Flgure 4, was constructed of i/2" I,D.-
3/4n 0.D. clear plexlglass The first sampling tap is located
113 nioe‘diameters from the entrance tee to allow a stabllized,
fully develoned flow pattern, h

Two polyethylene tanks (each 200 gels. ) were Efed as
reservoire for MEA solutions. A 1/4 h, D. reciurocating bump
. was used to deli¥er the solution to the test section, - "The
liquid circuit vas constructed with 1/2¢ tyzon tubing, ra bv-
pass-valve, and a liould rotameter calibrated for water
.tﬁrcumhput .'

The sour gas - a. mixture of C05. in alr - was made by pass-
ing air from the laboratory. bressure line at 95 PeS. 1 g,
through a filter to a hlgh accuracy Brooks rotameter (cali-
brated to a 1% accuracy) and mixing it with CCo from a cy-
linder, The solute 28’ was heated followina ernnneion angd -

metered through a twin float Brooks rotameter which was cali-

zbrated with a wet test neter, - quw rateq of the individual

‘streams were controlled by needle valves located at the exit

end of the rotameters. To reduce fluctuqtions. flow chambers
_were connecteqd 1nto the circult ‘Pressure, temperature. and
humiqlity measurements were made at points indlcated by the .

diagram.' -
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At the exit end of the loop a, cyclone separator separated
~-the two-phase‘mixture- the gas phase .exiting through a e 1, D.
plastic tube to a fume hood, and the liguiad phase following a
l return line through a liquigd trao—to a drafn. A thermOMeter
was 1nsta11ed at the trap so tiat liquid temperatures could
be measured, .
. '\. | |
B. . Pressure Measurements- -

' K. .

Four U-type manometers'provided the necessary data on

pressure fequirements. Two manometers loaded with mercury,
;recorded the oressure values for the 1ndividua1 gas strecns
and two manometers loaoed with “neriam Red Cil® (S Go - 2,95)
- recorded pressure values in the column, Surze chambers and
caplllary tubes connected to. the test column manometer 11nes
helped to damnen oressure fluctuatlons. Alr purme was used

to balance column pressures with senarator nressures. Detalls
are shown in Figure 5. | | |

1

C. ‘Sampllnq Technique and Analysis

M

“ A - -

In order to evaluate the volumetric mass transfer CO—
efficient, the amount of reacted gas between uolnts 1n the
column must be known.; The degree of accuracy 1n calculatlng
this coefflcient depends on the sampling technlque. The:
technioue used, which is relatlvely new to mass transfer .
-.studies. was suggested by A. K Jagota to Kahol. (6} and used -
by the latter in the absorption studies ‘of Cop 1n aqueous

“
o .
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- solutions of sodium hydroxide. Figure 6 1llustrates the pro-

: a L
posed gravity separator type sampler and 1tsﬁappllcation to

a vertical system, For the bérticular flow_regime.it Offers

~both accuracy and reoroducibllity of results, In’ operation.

L

the purge air was turred on. to minlmize the amount of gas

entering the sampler, and when the liquid filled the samoler
up to the 1eve] of the coorectir" tube, the rotameper va}ve

wes ogened and the 11qu1d was?collected: in a 20-c.c.-pipet

.at a rate of 15 c.c./nin, Liquid flow rates rangling 10-20

c.c./min;-madednegllgible effect on the vaiua of Kﬁ-ﬁ _To
insure adeuracy o?,results, samnler collection laz time was
mlnimized by a continuous, flow through the rotameters, A
reproduciblility of 103 or-better 1n deternining KG-a vas
achleved. ' ‘ - .

The liquid samples obtained from the test section were
mixed with 4 mls of saturated BaCl? solution and ‘n~llowed to
stand for a minlmum of 2 hours. After the precipitation of
BaCOq the samples were filtered and titrated with a sfanerd

.

0.1 N HC1 solution using bromphenol_blue as the indlicator.

'The'endboiht could be deﬁermined within 0,05 ¢c.c, of titranf

Flrure 18 1llustrates the titration curve for an’ aqueous N
solutlon of MEA titrated with standard HCY, The vurpose of
the curve was only to choose the proper indicator for the
system, _ | ' .

L B

porgy

bD. Experimentnl Procedure

Each experimental run involved the taking of 90 samples

’
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- from Ehe_tesﬁ column, The outllineqd procedure was folloﬁed.

- l. Both reservoir tanks were quhed and loaded with an
MEA solution of similar strethh Tap water was hsed to. fil1
the tanks. Water samples were taken and ana1y7ed for hard-

ness and alkalinitv._

2. ‘The temnerature ang concentratlon of the solution

'was Tecorded, The desired value for the gas mlxture was set,

the purze alr valves were onened. and the solution was admitted

.to the test section.

3. Por-each set value of sour’ gas ‘and solution flow

)

rate, .6 samples were taken.from Phe column at 5 minute inter-
vals with the 11quid sampler valves set at 15'c c./min,’

C ol Pressure, temnerature and humidity measurements
| were made, The requlred time for the flow to become steady..

measured between 1 to 2 mirutes.

5. An 8 to 10 minute‘lnterva was allowed for steady

state after each chanze in set value and sanpling procedures
. ‘e.
~Here repested,
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V; EXPERIH?NTAL RESULTS AND DISCUSSION

‘ All experlmental results are. tabulated in Appendices I

and II. Por slmpllcity, it becomes convenient to breakdown .

the observed values and dlscuss them 1in the following parts:
pressure drop, overaﬂl mass transrer coefflcient inter—

facial areas, llquid .and gas .f11nm coefficients, and accuracy °

of results, =~ T : “'

A. Pressure Drop

- -

Pressure drop easurements were made for air and water,

The range of measurenento 1s indicated below:
| JF-092t02'10- |
JG v 0.42 to 1,22 _

'The predicted oressure gradients fyom" Powley's correlation
(22) are olotted amainst measured values in Figure 7, The_“f
"band 1ndicated by +((one standard devlatlon} 1ndicate3\a
measure or Precision, The regime constant for the systenm
was found to be 0,76 which agrees quite well with Powley s
| (22) value ‘of 0. 77 calculated ror horlzontal systems.

Figure 8 identiries the relatlonshlos between the Lock—
hart- Marteneln,@'mt and Wallis* (13) RLS as a f‘unctloﬂ of
the formers' xtt' Exoerimental data substantiates the fol-

lowlnq equatlonsz ‘ : _ ' ‘ :
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PRESSURE_ DROP CORRELATION . v
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FIG. 7 COMPARISON OF POWLEY'S MODEL WITH

MEASURED - VALUES A= 0:76 ,
CORRELATION COEFFICIENT =.0-98

'
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o 0.281 - | '
Rpg =' 0.192x,,0-281 -2h-

or Rpg = _ 0.488

-—??—~—-1I,- ‘ —25-
.}thtO.59

Turner (23) found equation 26 to be Valld when shear stresses

dominate the flow (ie. Jg >>2)

RL = 1 -26-7
P ‘
. 4
vwhere . : ' .. By = liquid volume fractlon

To observe the variation of liquid fraction Rrg and Ry, are _

~ recorded 1n Appendix I. of further interest was Rp, . (llquid
'fraction 1n the annular flow regime}. ' It can be seen that

in the slug Tlow regime RL overestimates liguid fraction by
aboroximstely 35%, The values of RLS aboroach that of- Ry
with movement towards the transition~annular boundarv. The -
low values recorded for qualdtj is a further indication of
the §1uq-transition regime where both gravitational and in-

ertial forces are slgniflcaq?.

B. Overall Nass-Transfer‘Coefficienf

Flgures 9 and 10 rebresent the mass transfer results
obtained for the Air-COZ-MEA system. Appendix I contalns"
‘the mass transfer data with criteria for Pseudo first order

_reaction. The eyperlmental range for the observed values .

»

‘ris glven below:- : )
. Ip" - 0.893 to 1,746
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®* .
Jg' - 0.510 to 1.337
bo -. 0,171 and 0, 25? gm, moles/lltre

The Everall mass transfer coefflcient was calculated

from the following equation. ;

Kg*8 = Qr,(by-bp) o e2p
- 32.0&' le. Ylm. V - j‘f T
. where Qr, = 1liquid flow rate Tt.3/hr.

bl = MEA concentration-at lower sample
‘polnt gm. melesfl." |
b, = dEA:concentration at ubpper sanple
polnt‘gm.zmolee/l. |
Pim. =‘log mean pressure In test section atnm,
. Yyp,- = log mean-mole‘fraction of CO, in
the gas phgse | .
v = volume-of test section ft,-
In order to obtain unbiased 1nferenc°s of the effects
~of the independent variables ‘on KG'a 8 regresslon model was
fltted to the data. The model being fitted was of the form
of the Taylor's qeries exbansion of l/K ‘8 a5 a function of
N .JG* and FR. B | -
where . . °  pp . H/(Dkbé)l/zj | - © _28-
and o t a by =(by+bs) /2.0 . =29-
A standard T.B.M, progran for multinle 11near regreseion.
"REGRE”. was used to fit the model to experlmental data.

The result is of the form shown 1n ‘equation 30.
. .

»_hkuf,’;ﬁ
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[

SR ag + ajPR - JF*(aZJG* - aBL - jG*(a#PR }‘ésjé*) =30~
< KG'a ) .. \ L “ | ‘ ;/ . .

-

- The values of the coefficients and computed “t" values are

-]

' 1ndicated below in table 1.

~

" TABLE 1:. REGRESSTON CCEFFICIENTS

e

COEFFICTENT . VALUE GF CGEFFICIENT COMPUTED "t" VALUE
% 0.6 . - —
a; © v o.onsy . 5.3
a, ’ -0.16777 , b -6.87°
as o - 0.17081. - - o . 7447 '
Ay : ~0.00972 e C 59

‘~' L4 - oot ’ " ‘\
ac . - 0.12909 S Y
| v ; .‘. %
. | |

A multlple regresslon correlation coefficlenﬁ of 0.984 was’
ob¥ ained. Table 2 in Apbendix IX summarlzes the analysis
of variance for éhc regresslon. The Tecorded values 1nd1cate
a 99% chance that the total variation in l/KG-a is explalned~
by~ the regression model; thus, Indicating a good flt

| The general trends in Figures 9 and 10 are identical
_ The renorted values or Kge2 range from 3. 3# - 6 63 lb.moles/
hr, rt 3atm for HEA concentratlons of .1?1 and 25? gm.moles/l
and CO, concentrations ranging ﬂrom h 6 to 5.3 percent by

volume., Neiland (2&) has reported values for KG-& ranging

from ? - 13 1b. moles/hr.ft 3atm. for ethylenediamlne concen-

» v

-

-

LY
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tfations'ranging frei 1.6-t0 4.2 gn, moles/litr?,and 002 partlal
pressures ranging from 0,02 to 0 03 atm.

Explanatlon for the observed varlation in’ KG-H can be
;made by considerlng the rezlme chart in’ Figure 1. When jG*_is
' approximately 1ese than 0 9 the flow is chaotic; that is,
there is a rlsing and falllng of the liquid-gne mixture in
the colunn, The flow pattern is nrimarily 1nf1uenced by
éramitys An increase in gas\rate in this rezlon will increase
the nuitbey of bubbles formeg (i.e.lncrease 1n turbulence)
The observed result 1s an 1ncrease in K 2 throuzh increased
1nterfac1a1 area. An increase in liquld rate, however. serves
"only to Jecelerate the whole system, Hhen this occurs, Zas—
/lliquld contact tinme decreaqes and a decreqqe in KG-a.is ob-

served,

When j becomes annrorimately zreater than 1 1, the

--flon becomes .stable, In this reglon. ere inertial forces
predomlnate. h,,-ﬂ 1ncreases with both ?b\and ig*. In the
tube the gas st:gqm pushes the bulk of the liouid to the wall
f:and causes entrainment of liquid dronlets. An increase in -
1iguid rate, increases the liquid 1ayer at the wall thereby. |
decreaelng avallable eross-sectional area for gas flow. ' As .
‘a result there 1s an increase in gas veloclty whlch 1n turn
1ncreases the level of entrainment . The overall effect_is

an 1ncrease 1n Kgeaas. o o _ _ o

'é

An lncrease in HEA'concentration qerve to decrease the
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Tor reactlon: The nct effect is an incredse in K;.a.

]

C. Interfacial Areas

s

EY

Figure 11 illustrates the effects of fluiad rates bn effec~
‘tive interfacial area. For the region \hvestigated, changes
in liquid rates caused no éffect on i terfacfal areas._ ‘From
Figure 1 7one would- suspect 2 decrease in interfacial area
with increasing 1iquid rate. since the move would be deeperR‘
into the slug flow rebime. From. this train of thought it §;§
can only be concluded that the slug—frotb transition 1line

has a much lower slooe than indicated in Figure 1
Al

‘, It is evident that effective interfecial area’ increases
,enormously as jﬁ becowes much sreater than one, wallis (13).

‘indicates that entrainment values ranging from 20% to 80% are

[

characteristic of this regime. Kahol (6) has recorded values

for the same flow regime which show definite-increases'in rqr

as a)function of'both'vG and vy, Weiland (2&) has measured

n

"a" in a countercurrent absorber, packed with 1/4v Raschig

rings. The values reoorted were apprroximately 60 rt. 1 for

11quid velocity of 0.02 rt./sec. and gas velocity 1.5 ft,/sec,

T individual Film Coefficients

»

At this stage 1t becones significant to point out that
ky shows negligible]increase as movement is madewfrom the slug
flow regime to the transition zone. . However, increfses of ap-
proximately 25% are observed as initial MEA concentration 'is

increased from 0. 1?2 to 0.257 gm. moles/litre. .The*very‘large

[
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decrease 1n=11qu1d £11m reslstance after jG becomes greater
than 1.1 can only be accounted for by large 1ncreases 1n ef-
fective 1nterfacial area, Mass transfer at this point be-
. comes’ entirely gas phase controlled -
Figure 12 1nd1cates the relationship between the Zas
phase volumetric coefrlcient as a function of JG and JF*;
For JG < 1 an 1ncrease in 3F r &t constant JG s causes g
reduction 1n contact time and the value of Kgs.a decreases.
For JG > 1.1 the reverse case holds truet that is, as JF
1ncreases kn.a increases. This effect can_tewexplainedjby
the_radt_that at constant jd*'the lower values for JF* will
-reach the transition zone at g faster rate than larger values:
The transitfon zone - intfoduces the annular regime. This ;»
regime is characterized by entrainment of liquid droplets
'travelling ‘essentlially at gas velocity., The net effect 1s
“large gas film boundary layers which dictate mass transfer

by diffusion only.

A

E. Accuracy of Results

’ a—

P

An approximate estimate of error in the calculated values-
" of averall mass transfer coeffiﬁgpnt resulting from uncertaln-
ties in the independent variables of equation 27 1s presented
here, Tgble 3 represents the uncertainty l}mits of the ex-

_perimental measurements.
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TABLE 3: UNCERTAINTY LIMITS IN VARIABLES

Qp t2g
{by-v,) T sz
Pim * 1% (estimated) -
3 Y1m Z 6%

¥

Tq? unéertalnty in Fhe overall mass transfer coeffi-'
clent, Eélcplated by the method of Holmah (25), is 1 8,14,
The experimental runs repeated at ‘random were/f’;nd to be
reproducible to wlthin f-10% The discrenency evident here
is only due to variation 1n rotameter -and manometer readings.

4

caused by instabilitiés In the two—phase flowing system,

‘o
av




. VI. CONCLUSIOYS. ‘
. Yo : fa

The chemicgl. absorption of 002 from air into MEA solu;
"tions has been studled Heasurements of the overall mass
transfer coefricient Ksea has been mdde in the sluv and
:transftion flow regimes.- The relative 1mportance of the
effects of flow rates and NEA concentratlons have been de;
termined and a model for the chemlcal absorption process has
" been pProposed. . 7

'The?gravitj type liquid samoler. a relatively new samp-
ling technique in mass transfer studies. has been evaluated
and found effective for the system Investigated. .

By assuming a pFeudo first order reaction model‘for the
absorption of 002. 1nterfacia1 ‘areas and gas fllm coeffi- -
cients have been pred;cted for the experimental range of
gas and 11qu1d rates. The results obtained in this study
~agree 1in order of magnitude with those of Weiland (24), which

suggests that large 1nit1a1 concentrations. of absorbent are

not necessary to obtain large transfer rates. ‘The trends

1nert1a1 forces are significant in ‘mass transfer in the slug—

transition regimes.

The ‘pPressure dfop studles made in. this study are 1n good
‘agreement with Powley S correlation’ which makes use of g

'regime constant, A new ‘method for estimation of liquid volume :

7

fraction based on Lockhart-Hartenelli parameters has been Pro-

¢
posed for vertical two-nhase Tlow,



MEA

PR

=)

)

X

R L T S PP

' NOMENCLATURE

V%
Monoethanolamﬂne (HO- CHZ-CHZ-NH ) )
Concentratioh of MEA gm.moles/litre
Defined by—equation 28
Diemeter of:tube Tt,

Diffusion deefficienf cm.z/eec.

"Distance from interface ft,

Average quality e 1
Association parameter equal to_2;6 for water

Lockhart-jlartenelii Parameter for turbulent-
turbulent flow defined by equation 15

Reaction rate constant 1./gm.mole sec, -
Pseudo rate constant sec;;l

Length between pvessure tans ft
StOichiometric factor

Liquid Tilm coefficient for physical absorption
cm,/sec, ) B I

Liquid fiim coefficient‘for chemical absorption
ft /hl". - i N . P,

Gas film.eoefficient fer mass transfer lb.moles/hr,
£t.2 atm. '

Effggtive interfacial area foremass transfer

Overall volumetgic mass transfer coefficient
1b.moles/hr, ft atm.

Absorntion rgte ber unit 1nterracia1 area
lb:moles/Tt,

Slope of equilibrium curve for COp-water systenm
l.atm. /gm, mole . L

-5



, M : Molecular'weight Of-solvent .0

Henry's Law constant for QO -water systém
l.atm,/gm. mole

-He

He Henry's Law constant for C02~NEA-system
l.atm. /gm.mole

| h+.h;,hG Contributions to h or ions and gas 1./gm. 1on

h Deflned by equation 23b
c) Concentration of 1 "ion specles gm.mole/i.

Z . Electric charge of 3 specles '.~ N

I ;gnic strength of solution. defined by cquationt

: >3 | ‘

T | 'Tempefatﬁre'ln %k . .

v Molecular volume of solute at thé normal boiling
-point em,3/gm.mole o -

v - Voliime of test scction rt.3

| ',4{ Viscoslty of solution cp.,

dp/dz - Pressure gradient lbf/ft‘BI

-(dp/dz)p Frictional pressure gradient lbp/Tt, 3 '

A | Flow regime conqtnnt '

Rp, Liquid volume fraction defined ty equation 26

Rig Liquid volume fraction for slug ‘flow regime
defined by equation 18a . ' -

RLAi Llquid volume rraction for annular flow rcgime
defined by Wallis (13) ‘

. Acceleration due to gravity. rt, /sec.2

g

Be Gravitational constant 32,2 1b. nft. /1bfsec.2
G Total mass flﬁiﬁibﬁlhgigzlih%_ | |
P Pressure atm. T - f" b

vi. Superficlal veiocity ft./hr.'
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' JF | Dimenslohless liqpid velocity as defined by
equation 18b .3 . ‘ :

JG* ?é:ensionless gas veloclty as defiﬁed'by-equatlon |
Q. Volumetric liquid flow ‘rate, ft.3/hr. ‘

Y ¥ole fraction of CO, in gas phase

. . L
ireek Symbq]s' - . l
. “
§. Critical dlstance from Interface which defires
liquia bulk ft.

C Density 1b /rt 3

6 . Standard deviation ‘

‘eltt Emplricgl function of xtt definég'by equation 17
'Suﬁscrints

0 Initial value 2 .

1 At lower sampling point o -

2 At upper sampl%pg point: | ;J .

o Aﬁerage baiue defined by equation 29

im., Log mean value ' . ) | -

e . Equilibrium value ]

T  Tota)

M Homentum ‘ >

E "Elevation o r

LP,L,F Liquid phase ©

GP,G Gas phase ] o

TPF _ Two;phase friction

Gin Gas phase at lower pressure tap .

1



in

Tout

CA

CW
. AA
AW

Lower Pressuie tap

fUpper‘pressuré tap

LY .
002 in MEA‘

_C02 in water

/ ' -
~ MEA in MEA -solution

MEA in waﬁer‘
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°l°7
o.07
0.09
0,09
C.11
0el1

0.42
0,82
OedS
0.45
0.48
0.48
0.52
0,52
"0.57
0.57
0.6}
0.61
Y]
0.48
6.52
0.52
0,56
0.56
0.6
0,61
0.67
0.67
"0.73
0.73

0.55

0.5s5
0.59
,0.59
0.65

0,65

0.70
0,70
0.77
0,77
0.83
0.83
0.61
0.61
0,67

0,67

0,73

0.73,

0,80
0,00

0.87

0,87
0.95
0.95
0.68
0,608
Q.74
0.74
0,82
0,81

0.49

0,89
0,98
0,97
1.06
1«00

"RL

0.31

.31

0.28
O.28
0.25
0,25

0,23

0.2
o.zl‘
0.21
0,20
0.20

" 0.358

0.35

0.31

0.3
0o.28
0.28
D.26
0.26
0,24
0,24
0.2y
0.23

0.38

0.38

.0.3a

0. 34

"0.31

0. 31

- De29

0,29
0.27
0,27
0. 25
0.25
[+ ]
0,41
0.37
0.37
0.34
0.3
0.31
G.31
0.29
c.29
.27
0.27
0.4
O.a8
0.39
0,39
0.36
°l36
0.33
0.3
0.31
0.31
0.29
0.29

RLS

C.24
0.2a
0.23
0.23
0,21

O.21

0,21

0.21

0.20
0.20
Q.20
0.20

0.26
0.26
0.2
0.24
0.23
0.23
0.22
0.22
0,21

0.21 .

0.20
%.20
0.28
.28
0.25
0.25
0.2
D.24
0.23
0.23
0,22
0,22
O.21

L 021

0.29

0.29

0.27
0.27
0.25
0.25
0.23
0,23
0.23
0.23
0022
0.22

0.31

0.31

0.28
0.20
0.26

0.26

0.24
0.24
0,23
0.23
0.22
0.22

RLA

‘0.28.

0.28

V.25
0,25

24
&\i‘
Q.22

0.22
0,20
0.20
0.18
os18
0,29
0.29

0.27.

0,27
0.25%
0.25
.23
0.23
0.22

Q.22

0.20
0,20
0.29
0.29
0.28
.28

. 04206

0.26
0.25
0,25
.23
0.23
0,22
.22
0.30

Q.30

0,28
0,28
.27
0.27
.26
o.zb
O.2a
0.2
0.23
0.23
0.30

"0.30

Q.29
0,29

O.28
Q.28
0,28

0.26

0,25
0.25
0.24
0,24

SUM OF RESIDUALS S QUARE; =0.063

ko

0.016
C.010
0.022
0.022
0,027
0.027
0,033
0,033

'0.039
- 0.039
. 0.0a5

C.045
0,012
0,012
0.017
0.017
0,021
0.021
0.026
0.026
0.030
0.030
0,035
0,038
0.010°
0.010
0,014
0.014a

- 04007

0.017
0.021
0.021
0,025
0.025
0.029
0.029
0,009
0.009
0.012

0.0t 2

0,015
9.015
0.018

.08 . .

0,021
0,021

0.025
0.02%

0.007
0.007
0.010
0,010
0,013
0.013
0.0106"
D.016
0,019
0.019

‘0.022

8,022
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o NOMANCLATURE FOHJ;OHPUTER OUTPUT
AIR Flowrate of gas stream S. C F. H )
. PCO2 _% CO5 in gas stream
QLC - Corrected 1iquid flowrate U.S.G.H.
JF*  Dimensionless liquid velocity -
JG# ' Pimensiénlgss gas\veloclty ' ‘ “. ““mhwhm; 
'PLM! : Log mean pressure 1n tegt section p.s.i:a.
Bl i Concentrationibf MEA at'lower test p01nt &m., moles/l
B2 Concentration of MEA at ubper test noint gn. meles/1,
EFF - Defined by left side of equation 11 '
CRIT : ‘Def;negﬁpy right side of equation 11
KGA " Kgea o F
PDM Heasured vressure grgdiént’f?. water/ft.
Xre Xgp
FL Opgg ,
PDF Frlctional Dressure g“adient ft wauer/ft
-PDE - - Elevational pressure gradient ft. water/ft,
PDA ‘Accelerational pressure gradient ft, water/ft, )
RL _ R, )
RLS R g
RLA Bpa
X Quality

PR © Defined by ?9uatlon 28
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TABLE 2: ANALYSIS
SOURCFE OF - DEGREES 0P . SuMY oF MEAN F'LVALUE
VARTATPIGH - FHF'EDC:H " SQUARES p SQUARES :
Attributane S
_to Regression 5 - 0.08888 0.01778 137,185
Deviation from .
Regression 22 0.,00285 0.00013
Total ' " 27 0.09173
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