
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2011

Gaussian Mixture Model based Spatial Information
Concept for Image Segmentation
Thanh Nguyen
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Nguyen, Thanh, "Gaussian Mixture Model based Spatial Information Concept for Image Segmentation" (2011). Electronic Theses and
Dissertations. Paper 438.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/438?utm_source=scholar.uwindsor.ca%2Fetd%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Gaussian Mixture Model based Spatial

Information Concept for Image Segmentation

by

Thanh Minh Nguyen

A Dissertation
Submitted to the Faculty of Graduate Studies
through Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy at the
University of Windsor

Windsor, Ontario, Canada

2011

c© 2011 Thanh Minh Nguyen



Author’s Declaration of

Originality

I hereby declare that I am the sole author of this thesis. I certify that, to the

best of my knowledge, my thesis does not infringe upon anyone’s copyright nor

violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, pub-

lished or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copy-

righted material that surpasses the bounds of fair dealing within the meaning

of the Canada Copyright Act, I certify that I have obtained a written permis-

sion from the copyright owner(s) to include such material(s) in my thesis and

have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revi-

sions, as approved by my thesis committee and the Graduate Studies office,

and that this thesis has not been submitted for a higher degree to any other

University or Institution.

iii



Abstract

Segmentation of images has found widespread applications in image recogni-

tion systems. Over the last two decades, there has been a growing research in-

terest in model-based technique. In this technique, standard Gaussian mixture

model (GMM) is a well-known method for image segmentation. The model

assumes a common prior distribution, which independently generates the pixel

labels. In addition, the spatial relationship between neighboring pixels is not

taken into account of the standard GMM. For this reason, its segmentation

result is sensitive to noise. To reduce the sensitivity of the segmented result

with respect to noise, Markov Random Field (MRF) models provide a power-

ful way to account for spatial dependencies between image pixels. However,

their main drawback is that they are computationally expensive to implement.

Based on these considerations, in the first part of this thesis (Chapter

4), we propose an extension of the standard GMM for image segmentation,

which utilizes a novel approach to incorporate the spatial relationships be-

tween neighboring pixels into the standard GMM. The proposed model is easy

to implement and compared with the existing MRF models, requires lesser

number of parameters. We also propose a new method to estimate the model
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parameters in order to minimize the higher bound on the data negative log-

likelihood, based on the gradient method. Experimental results obtained on

noisy synthetic and real world grayscale images demonstrate the robustness,

accuracy and effectiveness of the proposed model in image segmentation.

In the final part of this thesis (Chapter 5), another way to incorporate

spatial information between the neighboring pixels into the GMM based on

MRF is proposed. In comparison to other mixture models that are complex

and computationally expensive, the proposed method is robust and fast to

implement. In mixture models based on MRF, the M-step of the EM algorithm

cannot be directly applied to the prior distribution for maximization of the log-

likelihood with respect to the corresponding parameters. Compared with these

models, our proposed method directly applies the EM algorithm to optimize

the parameters, which makes it much simpler. Finally, our approach is used

to segment many images with excellent results.
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Chapter 1

Introduction

1.1 General Introduction

In order to analyse the content of an image, it is often useful to construct a

simpler representation of multiple segments. And the process to partition an

image into non-overlapping regions that humans can easily separate is called

image segmentation. In an image, various features can be used for segmen-

tation process. These might be colour information that is used to create his-

tograms, or information about the pixels that indicate boundaries or texture

information.

Segmentation is an important step of low level vision. An accurately

segmented image provides detailed information about the objects present in

an image and their respective boundaries. There are many applications of seg-

mentation. For example, in a vision guided tool tracker system [1], [2], [3], the

robot needs to track the appropriate components in automotive manufacturing
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environments, thereby increasing the productivity and profitability of automo-

tive manufacturing enterprises and the global competitiveness. In the field of

medical imaging [4], [5], [6], [7], segmentation plays an important role. Accu-

rate medical image segmentation provides additional information that helps to

prepare treatment scheme and to evaluate therapeutic effect. The applications

of segmentation vary from the detection of synthetic aperture radar images [8],

[9], video analysis [10], to magnetic resonance imaging (MRI) [11], and object

detection [12], [13], [14] etc. In all these areas, the quality of the segmented

output affects on the quality of the final output largely. However, automated

segmentation [15] is still a very challenging research topic, due to overlapping

intensities and low contrast in images, as well as noise perturbation.

Many previous works have been proposed for image segmentation, in

particular by the method of threshold [16], [17], [18]. However, thresholding

is significantly susceptible to low resolution, low contrast and signal to noise

ratio. As for some part of the image, high intensity variation may correspond

to edges of interest, while the other part may require high low variation. The

selection of the threshold is very crucial. A bad choice of threshold [19] leads

to a poor quality of the segmentation. Adaptive thresholding [20], [21], [22]

often is taken as a solution to this. However, it cannot eliminate the problem

of threshold selection [23].

In order to avoid the above-mentioned disadvantages, an artificial neural

network [24], [25], [26] is applied for image segmentation. In [27], the authors

clustered feature vectors extracted from an image using a neural network which
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minimized the distance between the feature vectors. Although this approach

worked well in the examples shown, it led to sub-optimal image segmentation.

This is because the pixels in general are spatially correlated and the approach

presented in this method did not incorporate any spatial information.

Many algorithms have been developed for image segmentation including

graph-based methods [28], [29], mean shift based methods [30], [31], histogram-

based methods [32], multi-scale segmentation [33], and clustering methods [34],

[35], [36]. In clustering methods, K-means [37], [86] and fuzzy c-means [38] are

two well-known methods that have been widely used for segmenting an image

due to their simplicity and ease of implementation. However, one of their main

drawbacks [39]–[42] is that these two methods ignore the spatial constraints

in an image.

During the last decades, much attention has been given to model-based

techniques [43], [44], [45], [100]–[105] to model the uncertainty in a probabilis-

tic manner. In model-based techniques, standard Gaussian mixture model

(GMM) [46]–[49] is a well-known method. It is a flexible and powerful sta-

tistical modeling tool for multivariate data. Many researchers have used it to

study a number of key problems in the area of image segmentation [50], [51].

In standard GMM, each pixel xi is considered to be a random variable whose

possibility density function Φ(xi|Θj) is a Gaussian function. The model as-

sumes a common prior distribution πj, which independently generates the pixel

labels. In order to estimate the model parameters, expectation maximization

(EM) algorithm [52]–[57] is employed to maximize the log-likelihood of the
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given data set. The main advantage of the standard GMM is that it is easy

to implement and requires a small number of parameters. The log-likelihood

function that is used to estimate the parameters is inherently simple. How-

ever, one of the main drawbacks of this model is that the prior distribution

πj has no dependence on the pixel index i. One of the other problems is that

the spatial relationships between the neighboring pixels are not taken into its

account [58]. Although the standard GMM is a well known and simple method

for image segmentation, its segmentation result is thus sensitive to noise, vary-

ing illumination and other environmental factors such as wind, rain or camera

shaking.

In order to reduce the segmentation sensitivity to noise, mixture models

with Markov random field (MRF) have been employed for pixel labels [59], [62],

[63], [64], [66]. The most important distinction is that in standard GMM, a

common prior distribution πj for all pixels xi is evaluated, whereas, in these

approaches, the prior distribution πij varies for every pixel xi corresponding to

each label Ωj and depends on the neighboring pixels and their corresponding

parameters [67]. This prior distribution πij is a probability. Although these

approaches can lead to an improved segmentation quality, they lack enough

robustness with respect to noise. In addition, the computational cost of the

MRF based methods remains quite high.

To incorporate the spatial relationships in a given image, several re-

searchers have suggested the GMM model based on MRF [58], [68], [69], [70],

[71], [72], [73], where an MRF models the joint distribution of the priors of each

4



pixel label, instead of the joint distribution of the pixel labels as in [59], [63],

[64], [66]. These models work well for noisy image segmentation; however,

in order to accurately evaluate the influence of the neighboring pixel labels

during the learning step, the algorithm becomes complex and computationally

expensive. In order to maximize the log-likelihood with respect to the param-

eters in [58], [72], [73], the M-step of EM algorithm [58], [72] cannot be applied

directly to the prior distribution πij. Therefore, various approximations have

been introduced in order to tackle this problem. For example, the MAP algo-

rithm in [58] cannot evaluate the prior distribution πij in a closed form, and

thus the gradient projection algorithm was proposed to implement the M-step.

In [72], [73], another method based on a closed form update equation was used

to implement the M-step, and estimate the parameters. As compared to stan-

dard GMM based methods, the computational cost of these methods remains

high. However, in addition to increased complexity, the final segmented image

lacks adequate robustness to noise.

Based on these considerations, in the first part of this thesis, we pro-

pose an extension of the standard GMM [82], [83] for image segmentation,

which utilizes a novel approach to incorporate the spatial relationships between

neighboring pixels into the standard GMM. The proposed model is similar to

the standard GMM and thus easy to implement, with the main difference that

the prior distribution of each label Ωj is different for each pixel xi and depends

on its neighboring pixels. A new way to properly account for the relationship

of neighboring pixels is introduced. In addition, the proposed method does not
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require as many parameters as compared to the models based on MRF. To es-

timate the unknown parameters of the pixel’s prior distributions, as well as

the parameters of the distribution itself, instead of using the EM algorithm,

we use the gradient method to minimize a higher bound on the data nega-

tive log-likelihood. The proposed method has been applied for segmenting

synthetic and real world grayscale images. The performance of the proposed

model is compared with other methods based on standard GMM and MRF

models, there by demonstrating its robustness, accuracy and effectiveness.

In the final part of this thesis, a new mixture model for image segmen-

tation [84] is presented, which differs from the above methods in the follow-

ing manner. Firstly, our proposed method incorporates spatial relationships

amongst neighboring pixels in a simpler metric based on MRF. Therefore, the

proposed method is fast and easy to implement, compared with other mixture

models that are complex and computationally expensive. Generally, in above-

mentioned models based MRF, the M-step of the EM algorithm cannot be

directly applied for the maximization of the log-likelihood with respect to the

parameters. In our proposed method, we can directly apply the EM algorithm

to optimize the parameters, which makes it simpler. Finally, the proposed

model is quite robust with respect to noise, more accurate and effective as

compared to other GMM based methods.
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1.2 Thesis Overview

In the Chapter 2, the first group of model-based techniques is described begin-

ning with the using of standard GMM to solve the fully unsupervised segmen-

tation problem. The advantages and disadvantages of the standard GMM are

then discussed. Next, in order to estimate the parameters of the model, vari-

ous techniques based on maximizing their likelihood are described, beginning

with the EM algorithm, then continuing with the gradient-based optimization

techniques. The criteria evaluation for unsupervised segmentation algorithms

is addressed before concluding with some observations regarding the relevance

of the reviewed literature to the direction of research presented in our thesis.

In Chapter 3, we describe the second group of model-based techniques

for unsupervised segmentation. In order to take into account the spatial cor-

relation between the neighboring pixels and reduce the sensitivity of the seg-

mentation result with respect to noise, the mixture models presented here is

based on the MRF for modeling and processing image data. In the second

group of model-based techniques, the mixture models based on MRF can be

divided into two types. In the first type, mixture models with MRF have been

employed for pixel labels. In order to take into account the spatial correlation,

an MRF model in the second type is used to model the joint distribution of the

priors of each pixel label, instead of the joint distribution of the pixel labels as

in first type. For each type of mixture models in this chapter, the limitations

and advantages are also described. Moreover, the main differences between

the first and the second group of model-based techniques are discussed. The
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most important distinction is that in standard GMM of the first group, a com-

mon prior distribution for all pixels is evaluated, whereas, in the approaches

of the second group, the prior distribution varies for every pixel corresponding

to each label and depends on the neighboring pixels and their corresponding

parameters.

Chapter 4 presents new unsupervised segmentation algorithms [82], [83].

In this chapter, we propose an extension of the standard GMM for image

segmentation, which utilizes a novel approach to incorporate the spatial rela-

tionships between neighboring pixels into the standard GMM. The proposed

model is easy to implement and compared with MRF models, requires fewer

parameters. We also propose a new method to estimate the model parameters

in order to minimize the higher bound on the data negative log-likelihood,

based on the gradient method. Results are presented before conclusions are

drawn.

Chapter 5 describes a new way to incorporate spatial information be-

tween the neighboring pixels into the GMM based on MRF [84]. In comparison

to other mixture models that are complex and computationally expensive, the

proposed method is fast and easy to implement. In mixture models based on

MRF, the M-step of the EM algorithm cannot be directly applied to the prior

distribution for maximization of the log-likelihood with respect to the cor-

responding parameters. Compared with these models, our proposed method

directly applies the EM algorithm to optimize the parameters, which makes it

much simpler. Finally, experimental results obtained by employing the pro-
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posed method on many synthetic and real-world grayscale and colored images

demonstrate its robustness, accuracy and effectiveness, as compared with other

mixture models.

Chapter 6 concludes the thesis with suggestions for further work.
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Chapter 2

Standard Finite Mixture Model

for Image Segmentation

2.1 Probability Distributions

2.1.1 The Gaussian Distribution

In probability theory, one of the most important distributions for continuous

variables is Gaussian distribution. It is historically called the law of errors

and is considered the most popular probability distribution in practice, and

is used throughout statistics. For the case of a single real-valued variable x,

the Gaussian distribution has its own mean µ and standard deviation σ and

is defined by:

Φ(x|Θ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(2.1)
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Where Θ = {µ, σ}. The graph of the Gaussian distribution [80] is shown in

Figure 2.1.

Figure 2.1: Plot of the Gaussian distribution showing the mean µ and standard
deviation σ.

As shown in Eq.(2.1), we see that the Gaussian distribution satisfies the

two requirements for a valid probability density.

Φ(x|Θ) > 0 (2.2)

And,
∞∫

−∞

Φ(x|Θ)dx = 1 (2.3)

Within the Gaussian distribution defined by Eq.(2.1), the average value of x

is

E [x] =

∞∫
−∞

Φ(x|Θ)xdx = µ (2.4)

And the variance of x is given by

var
[
x2
]

= E
[
x2
]
− E[x]2 =

∞∫
−∞

Φ(x|Θ)x2dx− µ2 = σ2 (2.5)
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For the case of a D-dimensional vector x, each Gaussian distribution Φ(x|Θ)

can be written in the form:

Φ(x|Θ) =
1

(2π)D/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.6)

where Θ = (µ,Σ). The D-dimensional vector µ is the mean, the DxD matrix

Σ is the covariance, and |Σ| denotes the determinant of Σ.

2.1.2 The Student’s-t distribution

Student’s-t distribution is a continuous probability distribution that is heavily

tailed than Gaussian. Hence, it is more prone to producing values that fall far

from its mean. Student’s-t distribution plays an important role in a number of

widely used statistical analysis and is used to estimate the mean of a normally

distributed population in situations where the sample size is small. It has

proven to be quite effective for image segmentation [106].

Student’s-t distribution is symmetric and bell-shaped, like the normal

distribution, meaning that it has its own parameters Θj = {µ,Λ, v} with mean

µ, precision (inverse covariance) Λ and degree of freedom v. For the case of a

D-dimensional vector x, it has the probability density function.

S(x|Θ) =
Γ(v/2 +D/2)|Λ|1/2

Γ(v/2)(vπ)D/2

(
1 +

∆2

v

)−(v+D)/2

(2.7)

where, Γ(·) is the Gamma function [80]:

Γ(y) =

∞∫
0

ty−1e−tdt (2.8)
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and, ∆2 is the squared Mahalanobis distance from pixel x to mean µ.

∆2 = (x− µ)TΛ(x− µ) (2.9)

The degree of freedom v is illustrated in Figure 2.2. For the particular case

of v = 1, the Student’s-t distribution reduces to the Cauchy distribution [80],

while in the limit v → ∞ the Student’s-t distribution becomes a Gaussian

with mean µ and precision Λ. Eq.(2.7) is the multivariate form of Student’s-t

Figure 2.2: Plot of Student’s-t distribution for µ = 0 and Λ = 1 for various
values of v. The limit v → ∞ corresponds to a Gaussian distribution with
mean µ and precision Λ.

distribution and satisfies the following properties

E [x] =

∞∫
−∞

S(x|Θ)xdx = µ (2.10)

And the variance of x is given by

var
[
x2
]

= E
[
x2
]
− E[x]2 =

∞∫
−∞

S(x|Θ)x2dx− µ2 =
v

v − 2
Λ−1 (2.11)
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2.2 Maximum likelihood for the Gaussian

Let xi denote an observation. Given a data set X = (x1, x2, ..., xN) in which

the observations xi are assumed to be drawn independently from a Gaussian

distribution, we can estimate the parameters of the Gaussian distribution by

maximum likelihood [80]. The log-likelihood function is given by

L(Θ|X) =
ND

2
log(2π)− N

2
log |Σ| − 1

2

N∑
i=1

(xi − µ)2

σ2
(2.12)

where Θ = {µ, σ}. After some manipulation, we see that the likelihood func-

tion depends on the data set only through the two quantities

N∑
i=1

xi and
N∑
i=1

x2
i (2.13)

The next objective is to optimize the parameter set Θ = {µ, σ} in order to

maximize the log-likelihood function in Eq.(2.12). Let us now consider the

derivation of the function L(Θ|X) with the means µ, we have:

∂L(Θ|X)

∂µ
=

N∑
i=1

xi − µ
σ2

(2.14)

and setting this derivative to zero, we obtain the solution for the maximum

likelihood estimate of the mean at the (t+1) step. The mean of the observed

set of data points is given by

µ(t+1) =
1

N

N∑
i=1

xi (2.15)

The maximization of log-likelihood function L(Θ|X) in Eq.(2.12) with respect

to σ is rather more involved. Setting the derivative of the function in Eq.(2.12)
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with σ at the (t+1) iteration step, we have:

∂L(Θ|X)

∂σ
=

N∑
i=1

(
− 1

σ
+

(xi − µ)2

σ3

)
(2.16)

The solution of ∂L(Θ|X)/∂σ = 0 yields the minimizer of σ at the (t+1) step.

The result is as expected and takes the form

[σ2](t+1) =
1

N

N∑
i=1

(xi − µ(t+1))
2

(2.17)

Note that the solution for µ(t+1) in Eq.(2.15) does not depend on σ(t+1), and

so we can first evaluate µ(t+1) and then use this to evaluate σ(t+1). If we

evaluate the expectations of the maximum likelihood solutions under the true

distribution in Eq.(2.15) and Eq.(2.17), we obtain the following results

E
[
µ(t+1)

]
= µ (2.18)

and,

E
[
[σ2]

(t+1)
]

=
N − 1

N
σ2 (2.19)

As shown in Eq.(2.18), the expectation of the maximum likelihood estimate

for the mean is equal to the true mean. However, the maximum likelihood

estimate for the covariance has an expectation that is less than the true value.

We can correct this bias by defining a different estimator [σ̃2](t+1) given by

[σ̃2](t+1) =
1

N − 1

N∑
i=1

(xi − µ(t+1))
2

(2.20)

From Eq.(2.19) and (2.20), the expectation of [σ̃2](t+1) is equal to σ2.
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2.3 Standard Finite Mixture Model

2.3.1 Gaussian Mixture Model

Over the last few years, much attention has been given to the standard GMM.

An advantage of the standard GMM is that it requires a small amount of pa-

rameters for learning. Another advantage is that these parameters can be effi-

ciently estimated by adopting the EM algorithm to maximize the log-likelihood

function.

Let xi; i=1,2,...,N ; denote the observation at the i-th pixel of an image.

Labels are denoted by Ω1,Ω1,...,ΩK . Consider the problem of estimating the

posterior probability of xi belonging to label Ωj. If we assume that xi is

drawn independently from the distribution, then the standard GMM [46], [75]

assumes that the density function at an observation xi is given by:

f(xi|Π,Θ) =
K∑
j=1

πjΦ(xi|Θj) (2.21)

The graphical representation of a Gaussian mixture model for a set of N

pixel xi is shown in Figure 2.3. Where Π = {π1, π2, ..., πK}, and πj is the

prior distribution of the pixel xi belonging to the label Ωj, which satisfies the

constraints:

0 ≤ πj ≤ 1 and
K∑
j=1

πj = 1 (2.22)

Each Gaussian distribution Φ(xi|Θj) is called a component of the mix-

ture. For the case of a single real-valued variable xi, the Gaussian distribution
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Figure 2.3: The graphical representation of a Gaussian mixture model for a
set of N pixel xi.

has its own mean µj and covariance σj and is defined by:

Φ(xi|Θj) =
1√

2πσ2
j

exp

(
−(xi − µj)2

2σ2
j

)
(2.23)

where Θj = {µj, σj}. The observation xi in Eq.(2.21) is modeled as statistically

independent. And the joint conditional density [58], [80] of the data set X =

(x1, x2, ..., xN) can be modeled as:

p(X|Π,Θ) =
N∏
i=1

f(xi|Π,Θ) =
N∏
i=1

[
K∑
j=1

πjΦ(xi|Θj)

]
(2.24)

Given the joint conditional density from Eq.(2.24), the log-likelihood

function of the standard GMM [80] is given by:

L(Θ,Π|X) =
N∑
i=1

log

{
K∑
j=1

πjΦ(xi|Θj)

}
(2.25)

Where Θ = {Θj}; j=1,2,...,K. As can be seen from the likelihood function in
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Figure 2.4: Synthetic image, (a): original image, (128x128 image) (b): Cor-
rupted original image with Gaussian noise (0 mean, 0.02 variance), (c): stan-
dard GMM.

Figure 2.5: Real world image (321x481 image resolution), (a): original image,
(b): Corrupted original image with Gaussian noise (0 mean, 0.02 variance),
(c): standard GMM

Eq.(2.25), one of the biggest advantages of the standard GMM is that it has

a simple form, and requires a small number of parameters.

However, the main drawback is that we cannot assign the same weight

for every pixel belonging to the label Ωj, as the pixels in the image vary in

their intensity values and locations. Another limitation of the standard GMM

is that the pixel xi is considered to be an independent sample. Therefore,

it does not take into account the spatial correlation between the neighboring

pixels in the decision process. Segmentation is extremely sensitive to noise

and illumination. The original image in Figure 2.4(a) is corrupted with a

Gaussian noise (0 mean, 0.02 variance). The objective is to segment the image
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in Figure 2.4(b) into four labels. Figure 2.4(c) show the segmentation results

for standard GMM. We can see that some details are lost in the segmented

image. Another image from the Berkeleys image segmentation dataset [98], as

shown in Figure 2.5(a), is used in next experiment. The image shown in Figure

2.5(b) is derived from the original image by corrupting it with Gaussian noise

(0 mean, 0.02 variance). The objective is to segment the noisy image into two

labels. As can be seen, the segmentation accuracy of standard GMM method,

along the object boundaries is quite poor.

2.3.2 Student’s-t Mixture Model

To improve the robustness of the algorithm to outliers, Student’s-t distribu-

tion has been used. The main advantage of the Student’s-t distribution is

that it is heavily tailed than Gaussian, and hence finite mixture model of the

longertailed multivariate Student’s-t distribution provides a much more robust

approach to the standard GMM. It has proven to be quite effective for image

segmentation [106]. In order to partition an image consisting of N pixels into

K labels, standard Student’s-t mixture model (SMM) assumes that each pixel

xi is independent of the label Ωj. The density function at a pixel xi is given

by:

f(xi|Π,Θ) =
K∑
j=1

πjS(xi|Θj) (2.26)

where, Π = {πj}; j=(1,2,...,K); is the set of prior distributions modeling

the probability that pixel xi is in label Ωj, which satisfies the constraints in

Eq.(2.22).
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Each Student’s-t distribution S(xi|Θj), called a component of the mix-

ture, has its own parameters Θj = {µj,Λj, vj}. The Student’s-t distribution

S(xi|Θj) is given by:

S(xi|Θj) =
Γ(vj/2 +D/2)|Λj|1/2

Γ(vj/2)(vjπ)D/2

(
1 +

∆2
j

vj

)−(vj+D)/2

(2.27)

where, Γ(·) is the Gamma function. And, ∆2 is the squared Mahalanobis

distance from pixel xi to mean µj.

∆2 = (xi − µj)TΛj(xi − µj) (2.28)

The joint conditional density of the data set X = (x1, x2, ..., xN) is mod-

eled as:

p(X|Π,Θ) =
N∏
i=1

f(xi|Π,Θ) =
N∏
i=1

K∑
j=1

πjS(xi|Θj) (2.29)

Then, the log-likelihood function of the standard SMM is given by the following

identity:

L(Θ,Π|X) = log p(X|Π,Θ) =
N∑
i=1

log

{
K∑
j=1

πjS(xi|Θj)

}
(2.30)

Unfortunately, there is no closed form solution for maximizing the log-likelihood

under a Student’s-t distribution. To overcome this problem, the Student’s-t

distribution in previous SMM models [80] is represented as an infinite mixture

of scaled Gaussians. In particular, we can write the Student’s-t distribution

in the form.

S(xi|Θj) =

∞∫
0

Φ(xi|µj, ujΛj)G(uj|vj/2, vj/2)duj (2.31)
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where, Φ(xi|µj, ujΛj) denotes the Gaussian distribution, and G(uj|vj/2, vj/2)

is the Gamma distribution. As apparent, the representation of the Student’s-t

distribution as an infinite mixture of scaled Gaussians in Eq.(2.31) will corre-

spond to an increase in complexity.

As shown from the log-likelihood function in Eq.(2.30), the pixel xi

in SMM is regarded as the same as xi in GMM. Each pixel xi is considered

independent of its neighbors. The spatial correlation between the neighboring

pixels is not taken into account in the decision process. Moreover, the prior

distribution πj does not depend on the pixel index and has the same value for

all pixels.

Figure 2.6: Synthetic image, (a): original image, (128x128 image) (b): Cor-
rupted original image with Gaussian noise (0 mean, 0. 005 variance), (c):
standard GMM, (c): standard SMM.

In Figure 2.6, we illustrate the performances of the standard GMM and

SMM for image segmentation. An image of size 128x128 with four labels,

as shown in Figure 2.6(a), is used in this example. Each square box in this

image has a size of 64x64 pixel and has the same luminance value [0, 1/3,

2/3, 1]. The segmentation results of standard GMM, and standard SMM are

shown Figure 2.6(c)–(d), respectively. In this example, compared with GMM
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method, the standard SMM demonstrates a higher degree of robustness with

respect to noise. However, as we see in Figure 2.6(d), the effect of noise on

the result of standard SMM is still very high.

2.4 The Expectation Maximization (EM) Al-

gorithm

2.4.1 EM Algorithm for the Gaussian Mixture Model

In order to maximize the likelihood function given in Eq.(2.25), we need to

determine the parameters of the GMM. Various techniques [48], [76] have been

previously developed to determine these parameters, based on maximizing

their likelihood L(Θ,Π|X) in Eq.(2.25), for a given data set. In [46], the well-

known EM algorithm is used to approximate the maximum likelihood.

Let us begin by setting the derivatives of L(Θ,Π|X) in Eq.(2.25) with

respect to the means µj of the Gaussian components to zero. We obtain

∂L(Θ,Π|X)

∂µj
= −

N∑
i=1

πjΦ(xi|Θj)
K∑
l=1

πlΦ(xi|Θl)︸ ︷︷ ︸
zij

xi − µj
σ2
j

= 0 (2.32)

where we have made use of the form Eq.(2.23) for the Gaussian distribution.

Note that the posterior probabilities zij appear naturally on the right-hand

side:

z
(t)
ij =

π
(t)
j Φ(xi|Θ(t)

j )
K∑
l=1

π
(t)
l Φ(xi|Θ(t)

l )

(2.33)
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where t indicates the iteration step. The solution of ∂L(Θ,Π|X)/∂µj = 0

yields the minimum of µj at the (t+1) iteration step:

µ
(t+1)
j =

N∑
i=1

z
(t)
ij xi

N∑
i=1

z
(t)
ij

(2.34)

If we set the derivative of L(Θ,Π|X) in Eq.(2.25) with respect to σj, and follow

a similar line of reasoning, we obtain

[σ2
j ]

(t+1) =

N∑
i=1

z
(t)
ij (xi − µ(t+1)

j )
2

N∑
i=1

z
(t)
ij

(2.35)

Finally, we maximize L(Θ,Π|X) with respect to the prior distribution πj. Here

we must take account of the constraint in Eq.(2.22), which requires the prior

distribution πj to sum to one. This can be achieved by using a Lagrange

multiplier η and maximizing the following quantity:

∂

∂πj

[
L(Θ,Π|X)− η

(
K∑
j=1

πj − 1

)]
= 0 (2.36)

which gives
N∑
i=1

Φ(xi|Θj)
K∑
l=1

πlΦ(xi|Θl)

− η = 0 (2.37)

If we now multiply both sides by πj and use the constraint in Eq.(2.22), we

find η = N . Using this to eliminate η and rearranging we obtain

π
(t+1)
j =

1

N

N∑
i=1

z
(t)
ij (2.38)

We summarize the EM algorithm for Gaussian mixture model below:

Step 1: Initialize the parameters Ξ = {Θ,Π} = {µj, σj, πj}: the means µj,
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Figure 2.7: EM algorithm for the mixture of gaussians, (a): The original
2D point set with the initial condition, (b): Result of GMM with this initial
condition.

covariance values σj and prior distributions πj.

Step 2 (E-step): Evaluate the values zij in Eq.(2.33) using the current pa-

rameter values.

Step 3 (M-step): Re-estimate the parameters Ξ = {Θ,Π} = {µj, σj, πj}.

+ Update the means µj by using Eq.(2.34).

+ Update covariance values σj by using Eq.(2.35).

+ Update prior distributions πj by using Eq.(2.38).

Step 4: Evaluate the log-likelihood L(Θ,Π|X) in Eq.(2.25) and check the con-

vergence of either the log-likelihood function, or the parameter values. If the

convergence criterion is not satisfied, then go to step 2.

After optimizing the parameters of the GMM and determining the posterior

probability zij, Eq.(2.33) is used to assign labels to each pixel in the image.

The performance of EM algorithm for Gaussian mixture model is shown in

Figure 2.7. In this example, four hundred simulated points are generated from
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four multivariate Gaussian distributions. Each component has one hundred

data points. In Figure 2.7(a), we show the initial condition for EM algorithm.

As shown in Figure 2.7(b), GMM is likely to successfully classify the data

points.

2.4.2 Relation between EM and K-means

According to the K-means [86], each pixel xi in an image belongs to just one

label. It is based on the minimization of the following objective function:

H =
N∑
i=1

K∑
j=1

rij||xi − µj||2 (2.39)

The objective function in Eq.(2.39) represents the sum of the squares of the

distances of each pixel to its assigned vector µj. The binary indicator variable

rij is expressed as

rij =


1 if j = arg min

k
||xi − µk||2

0 otherwise
(2.40)

The binary indicator variable rij in Eq.(2.40) describes which of the K labels

the pixel xi is assigned to. So that if data point xi is assigned to label Ωj

then rij=1, and rij=0 for j 6= k. In Eq.(2.39), the term ||xi − µj||2 expresses

the similarity between the data and the mean. The optimum is reached when

the mean µj of the lable Ωj is found such that the objective function H in

Eq.(2.39) is minimized.

Now consider the optimization of the µj with the rij held fixed. The

objective function H is a quadratic function of µj. The gradient of the function
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H with respect to parameters µj is given by:

∂H

∂µj
= −2

N∑
i=1

rij(xi − µj) (2.41)

The solution of ∂H/∂µj = 0 yields the minimum of µj at the (t+1) iteration

step:

µj =

N∑
i=1

rijxi

N∑
i=1

rij

(2.42)

As an illustration in Eq.(2.42), we can see that one of the main advantages

of K-means method is that it is very simple and easy to implement. Many

researchers have used it in studying a number of key problems in image seg-

mentation. However, from the objective function in Eq.(2.39), the pixel xi in

K-means is considered an independent sample, and thus this method does not

take into account the spatial correlation between the neighboring pixels in the

decision process. For that reason, the segmentation result of this method is

very sensitive to noise.

Comparing the mathematical expressions of K-means with the EM al-

gorithm for Gaussian mixtures, we see that there is a close similarity [79],

[80]. As shown in Eq.(2.34), the EM algorithm makes a soft assignment based

on the posterior probabilities zij. Whereas the K-means algorithm performs

a hard assignment of data points to clusters based on the binary indicator

variables rij, in which each data point is associated uniquely with just one

label as shown in Eq.(2.42). In fact, we see that the K-means algorithm can

be derived as a particular limit of EM for Gaussian mixture as follows.
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Consider a Gaussian mixture in which the covariance matrices of the

mixture components are given by εI, where I is the identity matrix

Φ(xi|Θj) =
1√
2πε

exp

(
−||xi − µj||

2

2ε

)
(2.43)

Applying the EM algorithm in subsection 2.4.1, the posterior probabilities zij

for a particular data point xi, are given by

zij =
πj exp{−||xi − µj||2/2ε}
K∑
l=1

πl exp{−||xi − µl||2/2ε}
(2.44)

If we consider the limit ε → 0, we see that zij → rij, where rij is defined

by Eq.(2.40). And the EM estimation equation for the mean µj, given by

Eq.(2.34), then reduces to the K-means result in Eq.(2.42). Note that the

K-means algorithm only estimates the means but not the covariances of the

labels. Finally, in the limit ε → 0, the expected complete data log-likelihood

[80], is given by

E [L(Θ,Π|X)]→ 1

2

N∑
i=1

K∑
j=1

rij||xi − µj||2 + const (2.45)

From Eq.(2.45), we observe that K-means is a special case of the EM algorithm

for Gaussian mixtures.

2.5 Gradient-Based Optimization Techniques

In order to estimate the parameters of a Gaussian mixture model, we will con-

sider another technique based on the gradient method [79] in this subsection.
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First of all, the prior probabilities πj corresponding to the label Ωj are chosen:

πj =
exp(γj)
K∑
k=1

exp(γk)

(2.46)

The transformation given by Eq.(2.46) is called the softmax function, or nor-

malized exponential, and ensures that, for −∞ ≤ γj ≤ ∞, the constraints in

Eq.(2.22) are satisfied as required for probabilities.

Given the density function in Eq.(2.21) and the prior probabilities πj in

Eq.(2.46), we need to optimize the parameter set Ξ = {Θ,Π} = {µj, σj, γj} in

order to maximize the log-likelihood function in Eq.(2.25). Since the logarithm

is a monotonically increasing function, it is more convenient to consider the

negative logarithm of the likelihood function [80], [82], [83] as an error function:

J(Θ,Π|X) = −L(Θ,Π|X) = −
N∑
i=1

log

{
K∑
j=1

πjΦ(xi|Θj)

}
(2.47)

Applying the complete data [79], [80], [82], [83], minimizing the negative log-

likelihood function in Eq.(2.47), is equivalent to minimizing the error function

E(Ξ(t)|Ξ(t+1)):

E(Ξ(t)|Ξ(t+1)) = −
N∑
i=1

K∑
j=1

z
(t)
ij log

{
π
(t+1)
ij Φ(xi|Θ(t+1)

j )
}

(2.48)

where

z
(t)
ij =

π
(t)
j Φ(xi|Θ(t)

j )
K∑
l=1

π
(t)
l Φ(xi|Θ(t)

l )

is the posterior probability at the iteration of the current step as shown in

Eq.(2.33).
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To minimize this error function, we apply the gradient descent algorithm

[79] to adjust the parameters Ξ = {Θ,Π} = {µj, σj, γj}. The change in the

parameters is then given by:

Ξnew = Ξold − η∇E (Ξold) (2.49)

where, ∇E(Ξ) = (∂E/∂µj, ∂E/∂σj, ∂E/∂γj), η is the learning rate and its

value is sufficiently small. The gradient of this error function E(Ξ) with respect

to parameters µj is given by:

∂E

∂µj
= −

N∑
i=1

z
(t)
ij

xi − µj
σ2
j

(2.50)

Similarly, the derivative of E(Ξ) with respect to σj is given by

∂E

∂σj
= −

N∑
i=1

z
(t)
ij

(
− 1

σj
+

(xi − µj)2

σ3
j

)
(2.51)

The derivative of E(Ξ) with respect to γj is expressed as:

∂E

∂γj
= −

N∑
i=1

(
z
(t)
ij − π

(t)
j

)
(2.52)

We summarize the gradient-based optimization techniques for Gaussian mix-

ture model below:

Step 1: Initialize the parameters Ξ = {µj, σj, γj}: the means µj, covariance

values σj and the value of γj.

Step 2: Evaluate the values zij in Eq.(2.33) using the current parameter val-

ues.

Step 3: Re-estimate the parameters Ξ = {µj, σj, γj} by using Eq.(2.49).

Step 4: Evaluate the log-likelihood L(Θ,Π|X) in Eq.(2.25) and check the con-

vergence of either the log-likelihood function, or the parameter values. If the

convergence criterion is not satisfied, then go to step 2.

29



2.6 Image Segmentation Evaluation

Once the parameter-learning phase is complete, in order to assign labels to

each pixel, the posterior probability zij is used. For each pixel xi, given the

posterior probability zij for all labels, in order to segment an image consisting

of N pixels into K labels, a determination is made, whereby the pixelxi is

assigned to the label with the largest posterior probability:

xi ∈ Ωj : IF zij ≥ zik; j, k = 1, 2, ..., K (2.53)

In order to evaluate the segmentation performance quantitatively, the misclas-

sification ratio (MCR) [91] is employed:

MCR =
number of misclassfied pixels

total number ofpixels
× 100 (2.54)

The value of MCR is in the [0–100] range, where lower values indicate better

segmentation results.

Another technique to obtain an objective performance evaluation is to

adopt the probabilistic rand (PR) index [93]. For each image, the multiple

ground truths are available and are denoted as G = {G1, G2, ..., GM}. The

segmentation map under evaluation is denoted as Geval. The PR index is

given by:

PR(G,Geval) =
2

M(M − 1)

∑
i

∑
j>i

[cijpij + (1− cij)(1− pij)] (2.55)

where M is the number of image pixels. pij is the ground truth probability

that pixels i and j belong to the same segment. If pixels i and j belong to

the same segment in Geval, the value of cij is one. Otherwise, its value is zero.
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The PR index takes a value in the interval [0–1]. A score of zero indicates a

bad segmentation where every pixel pair in the test image has the opposite

relationship as every pair in the ground truth segmentation. Otherwise, a

score of one indicates a good result where every pixel pair in the test image

has the same relationship as every pair in the ground truth segmentation.

In order to quantify the overlap between the segmented image and the

ground truth for the label Ωj, the Dice similarity coefficient [94] is used:

Dicej =
2V j

ab

(V j
a + V j

b )
× 100 (2.56)

Where, V j
ab denotes the number of pixels that are assigned to label Ωj by both

the segmented image and ground truth. The number of pixels assigned to

Ωj by the segmented image and the ground truth are denoted by V j
a and V j

b ,

respectively. The Dice index attains the value in the [0–100] range, where

higher values indicate better segmentation results.

2.7 Conclusions

In this chapter, various criteria evaluations for unsupervised segmentation al-

gorithms are addressed. Besides that, the standard GMM for image segmen-

tation is presented. This mixture model is a well-known method that has

been widely used as a tool for image segmentation. Its success is attributed

to the fact that the model parameters can be efficiently estimated by adopt-

ing various techniques such as EM algorithm, or gradient-based optimization

techniques. Other advantages are its simplicity and ease of implementation.
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However, the major disadvantage of GMM is that the model assumes that

each pixel is independent of its neighbors. It is well known that pixels in an

image are similar in some sense and cannot be classified consistently based on

feature attributes alone. Thus, the segmentation result of GMM is extremely

sensitive to noise.
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Chapter 3

Gaussian Mixture Model based

Markov Random Field

3.1 Introduction

As mentioned in Chapter 2, a major shortcoming of standard GMM is that it

does not take into account the spatial dependencies in the image. Moreover,

it does not use the prior knowledge that adjacent pixels most likely belong to

the same cluster. In this family of model-based techniques, prior probabilities

[82] of label membership are considered constant for every pixel of an image.

Thus, the performance of these methods is too sensitive to noise and image

contrast levels.

A possible approach to overcome this problem is to impose spatial

smoothness constraints to incorporate the spatial relationships between neigh-

boring pixels [59], [60], [61]. Several mixture models based on MRF for pixel
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labels are proposed in [59]–[64], [89], [90]. According to these approaches, prior

probabilities are based on MRF to capture spatial information. The primary

advantage of this family of mixture models is that it incorporates spatial infor-

mation. Hence, it improves segmentation results, particularly when an image

is corrupted by high levels of noise.

Another family of mixture models based on MRF for pixel label priors

have been successfully applied to image segmentation [58], [72]–[74], [100].

Instead of imposing the smoothness constraint on the pixel label as in the above

category, however, these methods aim to impose the smoothness constraint on

the contextual mixing proportions. Their primary disadvantage, however, lies

in its additional training complexity. The M-step of the EM algorithm in [72]–

[74] cannot evaluate the prior distribution in a closed form, which therefore

corresponds to an increase in the algorithm’s complexity. In [58] the gradient

projection step was proposed to implement the M-step. Another reparatory

projection step based on a closed form update equation was introduced [72] to

guarantee that the prior probabilities are positive and sum to one.

3.2 Gaussian Mixture Model based MRF for

the Pixel Labels

3.2.1 Markov Random Field Theory

Markov random field (MRF) is a probability theory that provides a stochastic

mathematical framework for analyzing the spatial constraint in an image. Let
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S, S = (1, 2, ..., N), index a discrete set of N sites (pixels). And L, L =

(1, 2, ..., K) is a set of label. For every site i ∈ S, we consider a finite space Zi

of states zi, such as Zi = (zi, zi ∈ L). The space of the configurations of the

state values of the considered sites set is denoted by the product space.

Z =
N∏
i=1

Zi (3.1)

Then, the p(Z) is a random field, if the following condition is satisfied

p(Z) > 0, Z ∈ Z (3.2)

Now, let us denote the neighborhood of site i as Ni, i /∈ Ni and i ∈ Nj ⇔

j ∈ Ni. The neighborhood system on S is defined as N = (Ni, i ∈ S).

Then, the previously considered random field p(Z) is an MRF with respect to

a neighborhood system N [91], [92] if and only if

p(zi|zS−{i}) = p(zi|zNi
) (3.3)

Hammersley-Clifford theorem is proposed in [95], [96] to establish the equiv-

alence of MRF and Gibbs random field. According to this theorem, a Gibbs

distribution is equivalently characterized by a MRF and vice versa. Thus, an

MRF given in Eq.(3.3) is rewritten as:

p(Z|β) = W−1 exp (−U(Z|β)) (3.4)

where, W is a normalizing constant called the partition function

W (β) =
∑
z∈Z

exp(−U(Z|β)) (3.5)
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and U(Z|β) is an energy function. This energy function is a sum of clique

potentials over all possible cliques of the form.

U(Z|β) =
∑
c∈C

Vc(Z|β) (3.6)

Vc stands for the clique potential associated with the clique c. And C is a

label of subsets of the sites that contains sites that are all neighbors, and are

known as cliques. β is a parameter of the clique potentials known as the inverse

supercritical temperature. The computation of the termW in Eq.(3.5) involves

all possible realizations Z of the MRF which is hardly ever feasible, in terms

of computational requirements. To overcome this problem, an approximation

of the likelihood in Eq.(3.4) is the pseudo-likelihood introduced by Besag [97]

and defined as

p(Z|β) =
N∏
j=1

p(zi|zNi
; β) (3.7)

where, each term in the product is to compute

p(zi|zNi
; β) =

exp (−
∑

ci Vc(Z|β))∑
zi

exp (−
∑

ci Vc(Z|β))
(3.8)

The probability distribution in Eq.(3.8) is used to obtain estimates of a Markov

random field parameters.

3.2.2 Hidden Markov models

Let us consider the problem of segmenting an image with N pixels, X =

(x1, x2, ..., xN), into K labels. In this model, the observations X are condition-

ally independent given Z. According to the GMM based MRF for the pixel
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label [59], [63], [64], [65], the density function at an observation xi is given by:

f(xi|Π,Θ) =
K∑
j=1

πijΦ(xi|Θj) (3.9)

and the prior distributions πij are defined by:

πij = p(zi|zNi
; β) (3.10)

where, the prior πij is different for each pixel i and depends on the neighbors

of the pixel. For more details, please refer to [64], [89]. Thus far, the problem

has focused on how to estimate the parameters to maximize the following

log-likelihood function:

L(Θ,Π|X) =
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
(3.11)

The iterative EM algorithm for estimating the parameters of the component

densities is applied to estimate the parameters. The conditional expectation

values zij of the hidden variables is computed as follows:

z
(t)
ij =

π
(t)
ij Φ(xi|Θ(t)

j )
K∑
k=1

π
(t)
ik Φ(xi|Θ(t)

k )

(3.12)

The estimates of the means µj and covariance matrices Σj yield:

µ
(t+1)
j =

N∑
i=1

z
(t)
ij xi

N∑
i=1

z
(t)
ij

(3.13)

and,

Σ
(t+1)
j =

N∑
i=1

z
(t)
ij (xi − µj)(xi − µj)T

N∑
i=1

z
(t)
ij

(3.14)
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Finally, the estimate of the inverse temperature parameter β yields

β(t+1) = arg max
β

N∑
i=1

K∑
j=1

z
(t)
ij log p(zi = j|z(t)N i

; β) (3.15)

Figure 3.1: Synthetic image, (a): original image, (b): Corrupted original image
with Gaussian noise (0 mean, 0.05 variance), (c): standard GMM, (d): SIMF
[63].

From the log-likelihood function in Eq.(3.11), we can see that the main

advantage of the GMM based MRF for the pixel labels is that it incorporates

spatial dependencies between pixels. Compared to the standard GMM, this

approach works well in noisy image segmentation. A synthetic image, shown

in Figure 3.1(a), was used to test the effectiveness of this model. The objective

is to segment the image into two labels. The image shown in Figure 3.1(b) is

made from the original image by corrupting with Gaussian noise. In Figure

3.1(c) and Figure 3.1(d), we present the segmentation results obtained by

employing standard GMM and SIMF [63] methods, respectively. As can be

easily seen, the effect of noise on the performance of the SIMF is much less as

compared to the standard GMM.
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3.3 Gaussian Mixture Model based MRF for

the Priors of the Pixel Labels

In order to reduce the sensitivity of the segmentation result with respect to

noise, several researchers have suggested modifications to incorporate the local

spatial interactions between the neighboring pixels. In the models in [58], [72]–

[74]. the pixel label priors are treated as random variables forming an MRF

have been presented in. In [58], the authors proposed a spatially variant finite

mixture model (SVFMM) for image segmentation. The model assumes that

the density function at an observation xi is given by:

f(xi|Π,Θ) =
K∑
j=1

πijΦ(xi|Θj) (3.16)

where the Gaussian distribution Φ(xi|Θj) is the same as Eq.(2.23). The prior

distribution πij of the pixel xi belonging to the label Ωj should satisfy the

following constraints:

0 ≤ πij ≤ 1 and
K∑
j=1

πij = 1 (3.17)

Note that the observation xi in Eq.(3.16) is modeled as statistically inde-

pendent of the label Ωj. The joint conditional density [72] of the data set

X = (x1, x2, ..., xN) can be modeled as:

p(X|Π,Θ) =
N∏
i=1

f(xi|Π,Θ) =
N∏
i=1

[
K∑
j=1

πijΦ(xi|Θj)

]
(3.18)

Since the observation xi is considered to be independent given the pixel label,

the spatial correlation between the neighboring pixels is not taken into account.
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As a result, the segmented image is sensitive to noise, varying illumination

and other environmental factors such as wind, rain or camera movements. To

overcome this problem, MRF distribution [99] is applied to incorporate the

spatial correlation amongst label values:

p(Π) = W−1 exp

{
− 1

T
U(Π)

}
(3.19)

where, W is a normalizing constant, T is a temperature constant. And U(Π)

is the smoothing prior. The posterior probability density function given by

Bayes’ rules can be written as:

p(Π,Θ|X) ∝ p(X|Π,Θ)p(Π) (3.20)

By incorporating Eq.(3.20), the log-likelihood function can be derived as:

L(Π,Θ|X) = log (p(Π,Θ|X))

=
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
+ log p(Π)

=
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
− logW − 1

T
U(Π)

(3.21)

Depending on the type of energy U(Π) selected, we can have different kinds

of models. In SVFMM method in [58], the value of T is set to one (T=1), and

the Gibbs function for the priors p(Π) is given by:

p(Π) =
1

Z
exp (−U(Π)) ; where : U(Π) = β

N∑
i=1

K∑
j=1

∑
m∈Ni

(πij − πmj)2 (3.22)
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where, Π is the parameter set; Π = {πij}; i=1,2,...,N ; j=1,2,...,K. And β is a

scalar. The log-likelihood function (ignore the constant) is given by:

L(Π,Θ|X) =
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
+ log p(Π)

=
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
− β

N∑
i=1

K∑
j=1

∑
m∈Ni

(πij − πmj)2

(3.23)

Compared to the log-likelihood function of the standard GMM in Eq.(2.25),

the log-likelihood function in Eq.(3.23) is quite complex. In order to maximize

this likelihood with respect to the parameters Ξ = {Θ,Π} = (µj,Σj, πij), an

iterative EM algorithm is adopted. Application of the complete data condition

in [58], maximizing the log-likelihood function L(Π,Θ|X) in Eq.(3.23) will lead

to an increase in the value of the objective function H(Π,Θ|X).

H(Π,Θ|X) =
N∑
i=1

K∑
j=1

z
(t)
ij {log πij + log Φ(xi|Θj)} − β

N∑
i=1

K∑
j=1

∑
m∈Ni

(πij − πmj)2

(3.24)

where the conditional expectation values zij of the hidden variables can be

computed as follows:

z
(t)
ij =

π
(t)
ij Φ(xi|Θ(t)

j )
K∑
k=1

π
(t)
ik Φ(xi|Θ(t)

k )

(3.25)

Let us now consider the derivation of the function H(Π,Θ|X) with the means

µj at the (t+1) iteration step. We have:

∂H

∂µj
=

N∑
i=1

z
(t)
ij

[
−1

2
(2Σ−1j µj − 2Σ−1j xi)

]
(3.26)
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The solution of ∂J/∂µj = 0 yields the minimizer of µj at the (t+1) step:

µ
(t+1)
j =

N∑
i=1

z
(t)
ij xi

N∑
i=1

z
(t)
ij

(3.27)

Thus, setting the derivative of the function in Eq.(3.24) with respect to Σ−1j

at the (t+1) iteration step we have:

∂H

∂Σ−1j
=

N∑
i=1

z
(t)
ij

[
1

2
Σj −

1

2
(xi − µj)(xi − µj)T

]
(3.28)

and, equating it to zero yields:

Σ
(t+1)
j =

N∑
i=1

z
(t)
ij (xi − µj)(xi − µj)T

N∑
i=1

z
(t)
ij

(3.29)

However, due to the complexity of the log-likelihood function in Eq.(3.23), the

M-step of EM algorithm cannot evaluate the prior distribution πij in a closed

form. In order to maximize objective function H(Π,Θ|X) with respect πij

[58], [72], we set its derivative equal to zero and obtain the following quadratic

expression:

4βNi

(
π
(t+1)
ij

)2
− 4βπ

(t+1)
ij

∑
m∈Ni

πmj − z(t)ij = 0 (3.30)

where Ni stands for the set of neighbors falling in a window around the pixel

xi. The above equation has two roots:

π
(t+1)
ij =

∑
m∈Ni

πmj ±

√( ∑
m∈Ni

πmj

)2

+ Ni

β
z
(t)
ij

2Ni

(3.31)

We select the root with the positive sign + since it yields πij ≥ 0. The above

equation provides a straightforward update for the values of label parameters
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πij of each pixel i at the M-step of every EM iteration. However, note that the

prior distribution πij should satisfy the constraints in Eq.(3.17). Therefore,

the algorithm becomes even more computationally complex. In [58], [72], [73],

a large amount of computational power is utilized to solve the constrained

optimization problem of the prior distribution πij.

To illustrate the computational cost of this approach, an image (245x245

image resolution) with three labels as shown in Figure 3.2(a) is used. The im-

age shown in Figure 3.2(b) is made from the original image by corrupting with

Gaussian noise. All methods are initialized with the same initial condition

and are performed on a PC (Core i3 with 4GB RAM) until convergence by

using MATLAB in the Windows environment. As shown in Figure 3.2(d), al-

though, SVFMM [72] demonstrates a higher degree of robustness with respect

to noise, it is still low in terms of the speed. Note that SVFMM takes 246.1

seconds to segment this image. Compared to SVFMM, standard GMM is fast

(5.5 seconds). However, the segmentation accuracy of standard GMM is quite

poor as shown in Figure 3.2(c).

Figure 3.2: Synthetic image, (a): original image, (b): Corrupted original image
with Gaussian noise (0 mean, 0.01 variance), (c): standard GMM (time =
5.5s), (d): SVFMM [72] (time = 246.1s).

43



Another limitation of this model, as mentioned in [58], is that it requires

a greater number of parameters compared to the standard GMM. In order to

segment an image consisting of N pixels into K labels, we have to deal with

Kx(2+N) parameters (K parameters of µj, K parameters of Σj and NK

parameters of πij). This implies that the larger the image, the more the

number of parameters that we have to estimate.

3.4 Conclusions

In this chapter, mixture models based on the Markov random fields are pre-

sented. Compared with the standards GMM, the major difference is that

instead of using the common prior distribution πj for all pixels, the prior dis-

tribution πij of the mixture models based on the Markov random fields are

different for each pixel and depends on the neighbors of the pixel of interest

and the corresponding parameters. The spatial relationship between neigh-

boring pixels is taken into account. Although the effect of noise on the final

segmentation result is reduced, these mixture models lack enough robustness

with respect to noise. Besides that, they are too complex, and require a large

number of parameters compared to the standard GMM.
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Chapter 4

An Extension of the Standard

Mixture Model for Image

Segmentation

4.1 Introduction

The key concept in the field of image segmentation is the imposing of spa-

tial smoothness. Indeed, methods that do not utilize smoothing for image

segmentation, such as standard GMM, standard SMM, K-means lead to very

poor results. In the standard GMM method, it can be easily seen that the

spatial relationship between neighboring pixels is not taken into account. For

this reason, although the standard GMM is a well known and simple method

for image segmentation, its segmentation result is sensitive to noise, varying

illumination and other environmental factors such as wind, rain or camera
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shaking.

In this chapter, we propose a new model based on the standard GMM

that applies to the image classification problem. Our approach differs from

those discussed above by the following statements. Firstly, a unique approach

accounting for the relationship amongst neighboring pixels is presented. The

proposed model is quite similar to the standard GMM and thus, is easy to

implement. Secondly, compared to the standard GMM, the main difference

in the proposed method is that the prior distribution πij of each label Ωj is

different for each pixel xi and depends on its neighboring pixels. Thirdly,

compared to the models based on MRF, the proposed model is simple and

requires fewer parameters.

The rest of this chapter is organized as follows. In section 4.2, we

describe the details of the proposed algorithm. Learning algorithms for the

proposed system are presented in section 4.3. In section 4.4, we present the

experimental results and conclude with a discussion in section 4.5.

4.2 Proposed Method

First, we define a function that represents the weight of each i-th pixel for

each label Ωj.

ξj(xi) = exp

(
−(xi − cj)2

2b2j

)
(4.1)

where cj and bj; j=1,2,...,K; are parameters whose optimal values can be

obtained by utilizing the methodology presented in the following section. For

the neighborhood Ni of the i-th pixel, the weight function for each label Ωj is
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defined as:

ϑj(xi) =

[∑
m∈N i

exp

(
−(xm − cj)2

2b2j

)]α
(4.2)

where, α is a parameter, and Ni is the neighborhood of the i-th pixel (a

5x5 window is used in this method). Next, we propose a novel approach to

incorporate the spatial relationships between neighboring pixels into the prior

probability distribution πij. This prior distribution has different values for

each pixel corresponding to each label Ωj in the image, given by:

πij =
ϑj(xi)
K∑
k=1

ϑk(xi)

(4.3)

The prior probability πij in Eq.(4.3) is computed subject to the constraints

0 ≤ πij ≤ 1 and
∑K

j=1 πij = 1. The density function at an observation xi is

given by:

f(xi|Π,Θ) =
K∑
j=1

πijΦ(xi|Θj) (4.4)

The log-likelihood function is given by:

L(Θ,Π|X) =
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
(4.5)

When πij = πcj; ∀i, c = 1, 2, ..., N ; the log-likelihood function L(Θ,Π|X) in

Eq.(4.5) is the same as that given in Eq.(2.25). Therefore, the standard GMM

is a special case of the proposed method. Now, if we compare the log-likelihood

function of the proposed method in Eq.(4.5) with the log-likelihood function

in Eq.(3.11), we can see that it is very similar to the Gaussian mixture model

based MRF for the pixel labels in Section 3.2 with two main differences. First,

while the above-mentioned methods introduce a mean-field approximation of
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the MRF for πij, we propose a new way to incorporate the spatial relation-

ships between neighboring pixels into the prior distribution πij, as shown in

Eq.(4.3). Considering the formulae in Eq.(4.2) and Eq.(4.3), it can be easily

seen that the prior distribution πij in the proposed method acts like a mean

filter. For that reason, the image segmentation result obtained by employing

the proposed method is robust with respect to noise. We also propose a new

method to estimate the model parameters in order to minimize the higher

bound on the data negative log-likelihood [83], [82], [7], [77], [78], based on

the gradient method that offers a closed form M-step, with computational

complexity similar to that of the M-step for Gaussian mixture model.

The next objective is to optimize the parameter set Ξ = {Θ,Π} =

{µj, σj, cj, bj, α} to maximize the log-likelihood function in Eq.(4.5). Since

the logarithm is a monotonically increasing function, it is more convenient to

consider the negative logarithm of the likelihood function [79], [80] as an error

function:

J(Θ,Π|X) = −L(Θ,Π|X) = −
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
(4.6)

Applying the complete data in [46], with proper replacements for old parameter

(at t iteration step) values with the new ones (at t+1 iteration step) in Eq.(4.6),

the change in the error function can be expressed as:

J(Θ(t+1),Π(t+1)|X)−J(Θ(t),Π(t)|X) = −
N∑
i=1

log


K∑
j=1

π
(t+1)
ij Φ(xi|Θ(t+1)

j )

K∑
k=1

π
(t)
ik Φ(xi|Θ(t)

k )

×
z
(t)
ij

z
(t)
ij


(4.7)
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Note, that z
(t)
ij , as shown in Eq.(2.33), always satisfies the conditions: z

(t)
ij ≥ 0

and
∑K

j=1 z
(t)
ij = 1. We can now apply the Jensen’s inequality [81] which states

that, given a set of numbers λj ≥ 0 and
∑K

j=1 λj = 1, we have:

log

(
K∑
j=1

λjyj

)
≥

K∑
j=1

λj log (yj) (4.8)

From Eq.(4.8), the change in error function in Eq.(4.7) is given by:

J(Θ(t+1),Π(t+1)|X)−J(Θ(t),Π(t)|X) ≤ −
N∑
i=1

K∑
j=1

z
(t)
ij log


π
(t+1)
ij Φ(xi|Θ(t+1)

j )

z
(t)
ij

K∑
k=1

π
(t)
ik Φ(xi|Θ(t+1)

k )


(4.9)

Thus, we have to minimize the log-likelihood function with respect to the new

parameters (at the t+1 iteration step). Therefore, we can drop the terms that

depend only on the old parameters (at the t iteration step). The change in

the error function can be written in the form:

E(Θ(t),Π(t)|Θ(t+1),Π(t+1)) = −
N∑
i=1

K∑
j=1

z
(t)
ij log

{
π
(t+1)
ij Φ(xi|Θ(t+1)

j )
}

(4.10)

The E in Eq.(4.10) can be regarded as an error function. Therefore, max-

imizing the likelihood L in Eq.(4.5) is then equivalent to minimizing E in

Eq.(4.10). The minimization of the error function E with respect to the pa-

rameters Ξ = {Θ,Π} = {µj, σj, cj, bj, α}; j=1,2,...,K; will be discussed in

detail in the next part. In order to assign labels to each pixel, the posterior

probability zij is used:

zij =
πijΦ(xi|Θj)

K∑
k=1

πikΦ(xi|Θk)

(4.11)
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After labeling each pixel using Eq.(4.11), a simple competitive selection is

carried out for each pixel, in order to remove the remaining noise. If the i-th

pixel belongs to label j; j=1,2,...,K; and all its neighborhood pixels Ni belong

to the label k, k 6= j and k=1,2,...,K, then the i-th pixel is set to the label

k. It is worth noticing that we only use one type of selection criteria in this

method: if all the neighbors of a given pixel are assigned to a specific label, the

considered pixel is also assigned to the same label. The effect of this simple

competitive selection employed in the proposed method is shown in the section

containing the experimental results.

4.3 Parameter Learning

Thus far, the discussion has focused on probability estimation used to deter-

mine the label Ωj to which the pixel xi should be assigned. To generalize

the posterior probability zij, we need to adjust the parameters Ξ = {Θ,Π} =

(µj, σj, cj, bj, α); j=1,2,...,K; to minimize the error function E in Eq.(4.10),

corresponding to maximizing log-likelihood function L in Eq.(4.5). Note, that

the total number of parameters required for the proposed method is only 4K+1

(K parameters of µj, K parameters of σj, K parameters of cj, K parameters

of bj and 1 parameter of α), which is less than the number of parameters in

the models based on MRF mentioned in the section 3.3.

In this part, instead of utilizing EM algorithm, we employ the gradient

method [82], [83], [79], [80] for adjusting the parameters to minimize the error

function E. The proposed algorithm can be summarized as follows:
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Step 1: Initialize the parameters Ξ by the following sub-steps:

+ Use K-means to initialize the mean µj, and covariance σj. Then, select

cj = µj, and bj = σj. In this method, the initial value of α is set to 14.

+ While t ≤ T , (T=5 in this method), repeat the following sub-steps:

- Calculate the Gaussian distribution Φ(xi|Θ(t)
j ) from Eq.(2.23) and the

prior probability distribution π
(t)
ij from Eq.(4.3). Next, calculate the

posterior probability z
(t)
ij , given in Eq.(4.11):

z
(t)
ij =

π
(t)
ij Φ(xi|Θ(t)

j )
K∑
k=1

π
(t)
ik Φ(xi|Θ(t)

k )

- Update the parameters µj and σj using Eq.(2.34) and (2.35):

µ
(t+1)
j =

N∑
i=1

z
(t)
ij xi

N∑
i=1

z
(t)
ij

; [σ2
j ]

(t+1) =

N∑
i=1

z
(t)
ij (xi − µ(t+1)

j )
2

N∑
i=1

z
(t)
ij

- Set cj = µj, and bj = σj.

- Increase t by 1.

After finishing Step 1, we obtain the initial values of the parameters Ξ(t) =

(µj, σj, cj, bj, α).

Step 2: Evaluate z
(t)
ij given by Eq.(4.11):

z
(t)
ij =

π
(t)
ij Φ(xi|Θ(t)

j )
K∑
k=1

π
(t)
ik Φ(xi|Θ(t)

k )
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where, Φ(t)(xi|Θj) and π
(t)
ij are calculated from Eq.(2.23) and Eq.(4.3), respec-

tively.

Step 3: Update parameters Ξ = {Θ,Π} = (µj, σj, cj, bj, α) to obtain the new

parameters Θ(t+1), which can then be calculated and updated by using the

gradient method [82], [83], [85].

Ξ(t+1) = Ξ(t) − η∇E
(
Ξ(t)
)

(4.12)

where, ∇E
(
Ξ(t)
)

= [∂E/∂µj, ∂E/∂σj, ∂E/∂cj, ∂E/∂bj, ∂E/∂α]. Details of

the formulae ∂E/∂µj, ∂E/∂σj, ∂E/∂cj, ∂E/∂bj and ∂E/∂α used to update

the parameters µj, σj, cj, bj and α are given in the Appendix A. η is the

learning rate and its value is sufficiently small. In this method, we have selected

η = 10−5.

Step 4: Check for convergence of either the negative log-likelihood function,

or the parameter values. If the convergence criterion is not satisfied, then set

Ξ(t) = Ξ(t+1), and return to step 2.

4.4 Experiments

In this section, the performance of the proposed algorithm is compared to

the K-means [86], standard GMM [75], SVFMM [72], neighborhood expecta-

tion maximization (NEM) [48], [87], iterated conditional model (ICM) [88],

mode field (MODEF), SIMF, MEANF [63] and [64], fast generalized fuzzy
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c-means (FGFCM) [35], and hidden markov random field based fuzzy c-means

(HMRF-FCM) [89]. The source code for the SVFMM algorithm can be down-

loaded from http://www.cs.uoi.gr/∼kblekas/sw/MAPsegmentation.html. Pa-

rameter β in SVFMM algorithms is assigned a value of 0.1. This method was

implemented in the MATLAB environment. For the NEM, ICM, MODEF,

SIMF and MEANF methods, we used a software implementation developed

by the authors [63], [64] (for the Windows environment) publicly available

at http://spacem3.gforge.inria.fr/. Standard GMM, SVFMM, NEM, ICM,

MODEF, SIMF and MEANF methods are initialized by the K-means algo-

rithm similar to the initialization of the proposed algorithm. SVFMM meth-

ods use a first order neighborhood system, while ICM, MODEF , SIMF and

MEANF methods use a second order (8-neighbor) neighborhood system. For

these methods, the standard isotropic Potts model is used and the temperature

value β is heuristically optimized. For the FGFCM method, we have selected

λs=3 and λg=6. The optimally selected value of the fuzziness parameter λ in

the HMRF-FCM is set to five. These methods were run until convergence of

the iteration steps.

To test the robustness of the proposed method, different types of noise

with varying levels have been introduced to each image. The proposed method

was implemented and tested on synthetic and real-world images. For the

synthetic images, to compare the results obtained, the misclassification ratio

(MCR) [91], as shown in Eq.(2.27), has been used, which is the number of

misclassified pixels divided by the total number of pixels. For natural real-
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world images, we employ the probabilistic rand (PR) index [93], as shown in

Eq.(2.28), to compare the results of these methods. The proposed method

was implemented and tested on a PC (Pentium 4, running at 3 GHz with 1GB

of RAM) in MATLAB compiled visual C environment. The algorithms were

tested using synthetic and real-world images.

4.4.1 Synthetic Images

Figure 4.1: The first experiment (128x128 image resolution), (a): original
image, (b): Corrupted original image with Gaussian noise (0 mean, 0.05
variance), (c): K-means (MCR = 17.315%), (d): standard GMM (MCR =
33.982%), (e): SVFMM (MCR = 13.671%), (f): NEM (MCR = 17.034%), (g)
ICM (MCR = 9.605%), (h): MODEF (MCR = 7.781%), (i): SIMF (MCR =
7.725%), (k): MEANF (MCR = 7.721%), (l) HMRF-FCM (MCR = 0.823%),
(m): The proposed method (MCR = 0.653%).

In the first experiment, a synthetic image (128x128 image resolution)

similar to the one used in [91], as shown in Figure 4.1(a), was used to compare

the performance of the proposed algorithm with others. The image has three

labels (K=3) with luminance values [0, 0.5, 1]. The image shown in Figure

4.1(b) is obtained by corrupting the original image with Gaussian noise (0
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Table 4.1: Comparison of the proposed method with other methods in term
of MCR (%), for the first experiment.

Methods Gaussian noise (0 mean, var)
var=0.02 var=0.03 var=0.04 var=0.05

K-means 5.212 9.985 13.721 17.315
Standard GMM 29.974 31.332 32.445 33.982

SVFMM 4.168 7.385 10.546 13.671
NEM 3.584 10.101 15.130 17.034
ICM 0.385 1.025 2.386 9.605

MODEF 0.598 1.837 3.757 7.781
SIMF 0.586 1.831 3.661 7.725

MEANF 0.585 1.800 3.659 7.721
HMRF-FCM 0.177 0.391 0.493 0.823

The proposed method 0.122 0.290 0.415 0.653

mean, 0.05 variance). Figure 4.1(c) presents the segmentation result obtained

by employing K-means algorithm. This result is used in the initialization step

for all the remaining methods. From Figure 4.1(d) to Figure 4.1(l), we present

the segmentation results obtained by employing standard GMM, SVFMM,

NEM, ICM, MODEF, SIMF, MEANF and HMRF-FCM, respectively. As

can be seen, the accuracy of the standard GMM method is poor compared

to SVFMM in Figure 4.1(e). However, the SVFMM method requires a large

number of parameters in the process of estimation (K(2+N)= 49158 param-

eters in this example). In Figure 4.1(l), the HMRF-FCM algorithm reduces

the effect of noise significantly and can segment the image well. However, the

proposed method in Figure 4.1(m) can segment the image with a better result.

The results obtained with varying levels of noise are presented in Table 4.1.

As can be seen, the proposed method has a lower MCR compared with the
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other methods.

Figure 4.2: The second experiment (128x128 image resolution), (a): original
image, (b): Corrupted original image with mixed noise ( salt and pepper noise
(0.03%) + Gaussian noise (0 mean, 0.01 variance)), (c): K-means (MCR =
24.609%), (d): standard GMM (MCR = 40.209%), (e): SVFMM (MCR =
22.338%), (f): ICM (MCR = 22.001%), (g): MODEF (MCR = 12.744%),
(h): SIMF (MCR = 13.307%), (i): MEANF (MCR = 12.200%), (k) FGFCM
(MCR = 5.562%), (l) HMRF-FCM (MCR = 3.692%), (m): The proposed
method (MCR = 2.789%).

Figure 4.2(a) shows the synthetic image (128x128 image resolution)

which consists of four labels (K=4) with luminance values [0, 1/3, 2/3, 1],

used in the second experiment. The image shown in Figure 4.2(b) is obtained

by corrupting the original image with mixed noise. First corrupting the original

image with salt & pepper noise (noise=0.03), and then adding Gaussian noise

(0 mean, 0.01 variance). Figure 4.2(d)–(l), we present the segmentation results

of standard GMM, SVFMM, ICM, MODEF, SIMF MEANF, FGFCM and

HMRF-FCM, respectively. Amongst these methods, FGFCM and HMRF-

FCM classify the image with the lowest MCR. However, as compared with the

other methods, the segmentation result obtained by employing the proposed
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Table 4.2: Comparison of the proposed method with other methods in term
of MCR (%), for the second experiment.

Mixed Noise: Salt
Gaussian noise & Pepper Noise (sp)

Methods (0 mean, var) + Gaussian Noise
Methods (0 mean, var)

var=0.01 var=0.03 sp=0.03 sp=0.03
var=0.01 var=0.03

K-means 7.489 22.845 9.565 24.609
Standard GMM 27.624 37.634 29.290 40.209

SVFMM 4.687 19.860 6.347 22.338
ICM 0.463 17.126 3.118 22.001

MODEF 0.512 5.120 3.088 12.744
SIMF 0.511 4.235 3.125 13.307

MEANF 0.494 4.095 3.082 12.200
FGFCM 0.262 2.777 0.676 5.562

HMRF-FCM 0.225 2.032 0.643 3.692
Proposed method 0.189 1.007 0.469 2.789

method, as shown in Figure 4.2(l), demonstrates a higher degree of robustness

with respect to the given level of noise. Note that the initialization for all

algorithms was carried out by using K-means algorithm as shown in Figure

4.2(c). Table 4.2 contains the results obtained for all methods, for varying

levels of noise. As can be easily seen, the proposed method outperforms other

methods, with a lower MCR.

In the third experiment, an image with four labels (K=4) with lumi-

nance values [0, 1/3, 2/3, 1] as shown in Figure 4.3(a) was used to test the

effect of simple competitive selection used in the proposed method. We also

added this selection step to MODEF method to determine its effect on the

result. The image shown in Figure 4.3(b) is obtained by corrupting the orig-

57



inal image with Gaussian noise (0 mean, 0.03 variance). The results for the

MODEF method, and the proposed method, without and with the simple

competitive selection are shown in Figure 4.3(c), Figure 4.3(d), Figure 4.3(e)

and Figure 4.3(f), respectively. It can be easily seen that even though by em-

ploying simple competitive selection, there is a slight decrease in the MCR for

both MODEF and the proposed methods, its main effect is mostly qualitative

in nature. Thus, the significant quantitative difference between the MCRs for

both these methods can be attributed to the higher degree of robustness of

the proposed method with respect to noise.

Figure 4.3: Affect of the simple competitive selection, (a): original image, (b):
Corrupted original image with Gaussian noise (0 mean, 0.03 variance), (c):
MODEF (MCR = 3.512%), (d): MODEF with the simple competitive selec-
tion (MCR = 3.117%), (e): proposed method without the simple competitive
selection (MCR = 0.199%), (f): proposed method with the simple competitive
selection (MCR = 0.197%).

4.4.2 Natural Images

Analysis of real-world outdoor scenes is a challenging problem for image seg-

mentation. It is quite hard to come up with a good model for objects such

as flowers, trees, birds etc. In this set of experiments, we compare the perfor-

mance of various algorithms on real world images obtained from the Berkeley’s
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Figure 4.4: Images from the Berkeleys grayscale image segmentation dataset,
(a): 135069, (b): 124084, (c): 58060, (d): 353013 with Gaussian noise (0
mean, 0.001 variance), (e): 239007, (f): 46076, (g): 15088 with Gaussian
noise (0 mean, 0.005 variance), (h): 374067 with Gaussian noise (0 mean, 0.01
variance), (i): 302003 with Gaussian noise (0 mean, 0.01 variance).

image segmentation dataset [98]. This set of grayscale images includes nat-

ural Images along with their ground truth segmentation results provided by

human subjects. PR index, previously introduced in [93], was used to obtain

the performance evaluation results in this subsection. It contains values that

are between 0 and 1, with values closer to 1 indicating a good result.

In the first experiment, a set of real world grayscale images with and

without artificial noise were used to evaluate the performance of the pro-

posed method against K-means, standard GMM, MODEF, SIMF, MEANF,

FGFCM, HMRF-FCM methods. Table 4.3 contains the cumulative results

obtained for all methods, for the given set of real world images. As can be eas-

ily seen, on average, the proposed method outperforms other methods with a
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Figure 4.5: Image segmentation results obtained by employing the proposed
method, (a): 135069, (b): 124084, (c): 58060, (d): 353013 with Gaussian noise
(0 mean, 0.001 variance), (e): 239007, (f): 46076, (g): 15088 with Gaussian
noise (0 mean, 0.005 variance), (h): 374067 with Gaussian noise (0 mean, 0.01
variance), (i): 302003 with Gaussian noise (0 mean, 0.01 variance).

higher PR. Figure 4.5 presents the segmentation results obtained by employing

the proposed method for the given set of images shown in Figure 4.4.

In the second experiment, we tried to segment the real-world grayscale

image (481x321) as shown in Figure 4.6(a) into four labels (K=4): “tree”,

“near mountain”, “far mountain”, “sky”. Images in Figure 4.6(b), Figure

4.6(c), Figure 4.6(e) and Figure 4.6(h) show the result obtained by using the

K-means, standard GMM, ICM and FGFCM methods. As can be seen, the

accuracy of segmentation for these methods is quite poor. The sharp edge

between the “near mountain” and the “far mountain”, and between the “far

mountain” and the “sky” is lost because of noise. Extraction accuracies of the

SVFMM, MODEF and MEANF methods are shown in Figure 4.6(d), Figure
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Table 4.3: Comparison of image segmentation results on Berkeley’s grayscale
image segmentation dataset: Probabilistic Rand (PR) Index.

Image Noise lab Sta. SIMF MEA FGF HMRF Our
(var) els GMM NF CM -FCM method

135069 - 2 0.982 0.983 0.983 0.549 0.984 0.985
124084 - 3 0.499 0.514 0.513 0.521 0.526 0.558
69020 - 3 0.486 0.555 0.556 0.554 0.559 0.605
12003 - 3 0.515 0.614 0.615 0.605 0.618 0.623
58060 - 3 0.568 0.618 0.611 0.571 0.615 0.622
239007 - 3 0.652 0.662 0.660 0.655 0.668 0.671
46076 - 4 0.812 0.826 0.824 0.807 0.826 0.828
55067 - 3 0.843 0.881 0.881 0.879 0.888 0.891
353013 0.001 3 0.680 0.736 0.722 0.687 0.740 0.742
310007 0.005 7 0.628 0.765 0.764 0.648 0.776 0.784
61060 0.005 3 0.586 0.678 0.682 0.632 0.679 0.681
15088 0.005 3 0.844 0.860 0.867 0.844 0.869 0.871
24063 0.005 3 0.765 0.815 0.818 0.796 0.815 0.826
374067 0.01 4 0.646 0.706 0.704 0.673 0.705 0.708
302003 0.01 3 0.686 0.718 0.717 0.710 0.715 0.727
Mean - - 0.679 0.729 0.728 0.675 0.732 0.741

4.6(f) and Figure 4.6(g). In the left hand side of the results, looking closely

in the “tree” area, it can be seen that there is a small portion of pixels that

have been misclassified. HMRF-FCM methods in Figure 4.6(i) can produce

a better segmentation. The sharp edge between mountains is clearly defined,

and there was no missing region as in the MEANF method. However, the

proposed method in Figure 4.6(k), can better classify with more detail along

the sharp edge between “near mountain” and “far mountain”, as compared

with HMRF-FCM methods.

In order to further test the accuracy and determine the efficiency of the
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Figure 4.6: Grayscale image segmentation (55067), (a): original image, (b):
K-means (PR = 0.879), (c): standard GMM (PR = 0.843), (d): SVFMM (PR
= 0.882), (e): ICM (PR = 0.880), (f): MODEF (PR = 0.882), (g): MEANF
(PR = 0.881), (h): FGFCM (PR = 0.879), (i): HMRF-FCM (PR = 0.887),
(k): The proposed method (PR = 0.891).

proposed algorithm, another real word grayscale image was used. The image

shown in Figure 4.7(b) is obtained by corrupting the original image in Fig-

ure 4.7(a) with Gaussian noise (0 mean, 0.005 variance). Figure 4.7(c)–(k),

present the segmentation results obtained by employing K-means, standard

GMM, SVFMM, MODEF, MEANF, FGFCM, HMRF-FCM and the proposed

method, respectively. From visual inspection of the results, K-means, stan-

dard GMM, SVFMM methods are unable to segment the image successfully.

FGFCM method demonstrates a better performance compared to the stan-

dard GMM method. However, the effect of noise on the final segmented image

is still quite high. MODEF, MEANF, HMRF-FCM algorithms can produce

a better segmentation. However, compared with these algorithms, the effect

of noise in the top right hand side of the final segmented image, obtained by

employing the proposed method is far less. Moreover, we also notice that the

details of the balcony are better preserved by the proposed method compared
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with MODEF, MEANF, HMRF-FCM methods.

Figure 4.7: Noisy grayscale image segmentation (24063), (a): original image,
(b): corrupted original image with Gaussian noise (0 mean, 0.005 variance),
(c): K-means (PR = 0.778), (d): standard GMM (PR = 0.765), (e): SVFMM
(PR = 0.787), (f): MODEF (PR = 0.814), (g): MEANF (PR = 0.818), (h):
FGFCM (PR = 0.796), (i): HMRF-FCM (PR = 0.815), (k): The proposed
method (PR = 0.826).

In the final experiment, a real world image (481x321 image resolution),

as shown in Figure 4.8(a), is used for evaluating the computational cost. The

objective is to segment this image into two labels (K=2). The K-means

method was implemented in Visual C environment. For the GMM, ICM,

MODEF, SIMF, MEANF methods, we used the software implementation de-

veloped by the authors [7], [14] (for Windows environment, C++ Language)

publicly available at http://spacem3.gforge.inria.fr/. The proposed method

was implemented in MATLAB compiled visual C environment. All exper-

iments were performed on a PC (Pentium 4, running at 3 GHz with 1GB

of RAM). These methods were run until convergence. The segmentation re-

sults obtained by employing K-means, standard GMM, ICM, MODEF, SIMF,

MEANF and the proposed method are shown in Figure 9(b)–(h), respectively.
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Once more, the proposed method demonstrates robustness with respect to

noise, yielding a better segmentation result. K-means is the quickest method

taking 0.7 seconds, while the slowest is MEANF taking 445 seconds. The

proposed method takes 61 seconds and converges after 8 iterations, as shown

in Figure 4.9. However, as shown Figure 4.8, the proposed method performs

quite well in segmenting the image into two labels.

Figure 4.8: Computational cost (in seconds) comparison, (a): original image,
(b): K-means (0.7 sec), (c): standard GMM (36 sec), (d): ICM (169 sec), (e):
MODEF (390 sec), (f): SIMF (432 sec), (g): MEANF (445 sec), (h): The
proposed method (61 sec).

Figure 4.9: Minimization Progress of the negative log-likelihood function of
the proposed algorithm, for the final experiment.
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4.5 Conclusions

In this chapter, we have presented an extension of the standard GMM for

grayscale image segmentation. We have proposed a novel approach to incor-

porate the spatial relationships between neighboring pixels into the standard

GMM model. Differing from the standard GMM, the prior distribution in the

proposed model is different for each pixel and depends on the neighbors of

the pixel and their corresponding parameters. The proposed model is easy to

implement and requires fewer parameters compared to the models based on

MRF. We have presented a new way to estimate the unknown parameters of

the proposed model, based on the gradient method. The proposed method

has been tested with many noisy synthetic and real world images, thereby

demonstrating the excellent performance of the proposed model in segmenting

the grayscale images.
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Chapter 5

Fast and Robust Spatially

Constrained Gaussian Mixture

Model for Image Segmentation

5.1 Introduction

In this chapter, a new mixture model for image segmentation is presented. We

propose a new way to incorporate spatial information between the neighboring

pixels into the Gaussian mixture model (GMM) based on Markov random field

(MRF). In comparison to other mixture models that are complex and com-

putationally expensive, the proposed method is fast and easy to implement.

In mixture models based on MRF, the M-step of the expectation maximiza-

tion (EM) algorithm cannot be directly applied to the prior distribution πij

for maximization of the log-likelihood with respect to the corresponding pa-
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rameters. Compared with these models, our proposed method directly applies

the EM algorithm to optimize the parameters, which makes it much simpler.

Finally, experimental results obtained by employing the proposed method on

many synthetic and real-world grayscale and colored images demonstrate its

robustness, accuracy and effectiveness, as compared with other mixture mod-

els.

In order to partition an image consisting of N pixels into K labels,

GMM [58] assumes that each observation xi is considered independent of the

label Ωj. The density function f(xi|Π,Θ) at an observation xi in Eq.(3.16) is

rewritten by:

f(xi|Π,Θ) =
K∑
j=1

πijΦ(xi|Θj)

where Π = {πij}; i=1,2,...,N ; j=1,2,...,K; is the set of prior distributions mod-

eling the probability that pixel xi is in label Ωj, which satisfies the constraints

in Eq.(3.17). And, Φ(xi|Θj) is the Gaussian distribution, called a component

of the mixture.

For the case of a D-dimensional vector xi, each Gaussian distribution

Φ(xi|Θj) in Eq.(2.6) can be written in the form:

Φ(xi|Θj) =
1

(2π)D/2
1

|Σj|1/2
exp

{
−1

2
(xi − µj)TΣ−1j (xi − µj)

}
(5.1)

where Θ = {Θj} and Θj = {µj,Σj}; i=1,2,...,N . The D-dimensional vec-

tor µj is the mean, the DxD matrix Σj is the covariance, and |Σj| denotes

the determinant of Σj. Note that the observation xi is modeled as statisti-

cally independent, the joint conditional density in Eq.(3.18) of the data set
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X = (x1, x2, ..., xN) can be modeled as:

p(X|Π,Θ) =
N∏
i=1

f(xi|Π,Θ) =
N∏
i=1

K∑
j=1

πijΦ(xi|Θj)

Since the observation xi is considered to be independent given the pixel la-

bel, the spatial correlation between the neighboring pixels is not taken into

account. As a result, the segmented image is sensitive to noise. To over-

come this problem, MRF distribution [99], as shown in Eq.(3.19), is applied

to incorporate the spatial correlation amongst label values:

p(Π) = W−1 exp

{
− 1

T
U(Π)

}
By using the Eq.(3.21), the log-likelihood function can be derived as:

L(Θ,Π|X) = log (p(Π,Θ|X))

=
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
+ log p(Π)

=
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
− logW − 1

T
U(Π)

Depending on the type of energy U(Π), we can have different kinds of mod-

els. In the Bayesian auto-logistic model [99], the function U(Π) is chosen to

incorporate the spatial correlation, as shown:

U(Π) =
N∑
i=1

K∑
j=1

αijπij +
N∑
i=1

K∑
j=1

∑
m∈Ni

βijmπijπmj (5.2)

where αij and βijm form the parameter set. Although this model involves

many parameters, its segmentation is not sufficiently robust to noise.

Other mixture models based on MRF for pixel labeling have been suc-

cessfully applied to image segmentation [58], [72], [73], [100] and different ways

68



are adopted to select the energy U(Π). In [58], U(Π) is given by:

U(Π) = β

N∑
i=1

∑
m∈Ni

K∑
j=1

(πij − πmj)2 (5.3)

while, in another MRF model based method [72], U(Π) is given by:

U(Π) = β
N∑
i=1

∑
m∈Ni

1 +

(
K∑
j=1

(πij − πmj)2
)−1−1 (5.4)

where, β in Eq.(5.3) and Eq.(5.4) represent a constant value.

In [73], spatial information is taken into account, and U(Π) is given as:

U(Π) =
N∑
i=1

K∑
j=1

S∑
s=1

1

2
log β2

js −
1

2

( ∑
m∈∂i

(πij − πmj)
)2

β2
js

 (5.5)

where, S is the total number of the considered directions. In the general case,

S is equal to four (S=4: horizontal, vertical and 2 diagonal directions). βjs in

Eq.(5.5) is a variable parameter.

As shown in Eq.(5.3), Eq.(5.4), and Eq.(5.5), the incorporation of lo-

cal information adds complexity. In order to maximize the likelihood with

respect to the parameters Π and Θ, an iterative EM algorithm can be ap-

plied. However, due to the complexity of the log-likelihood function, the M-

step of EM algorithm cannot be applied directly to the prior distribution πij.

Note, that the prior distribution πij should satisfy the constraints in Eq.(3.17).

Thus, the resulting algorithms are computationally complex and utilize large

amounts of computational power to solve the constrained optimization prob-

lem of the prior distribution πij. For details regarding the maximization of the

log-likelihood function, we refer the readers to [58], [72], [73], [100].
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5.2 Proposed Method

Various mixture models differ based on the way they derive the strength of the

smoothing prior U(Π). In [99], given in Eq.(5.2), the smoothing prior U(Π)

has a simple form, thus, it is easy to optimize the parameter set {Π,Θ} to

maximize the log-likelihood function. However, one of its main drawbacks is

that the segmentation result is not robust to noise. Models in [58], [72], [73]

represented by Eq.(5.3)–(5.5), make use of a complex smoothing prior. Their

primary disadvantage lies in its additional training complexity. The M-step of

the EM algorithm cannot be applied directly to the prior distribution, which

therefore corresponds to an increase in the algorithms’ complexity. In order

to overcome these disadvantages, we introduce a novel factor Gij defined as:

G
(t)
ij = exp

[
β

2Ni

∑
m∈Ni

(z
(t)
mj + π

(t)
mj)

]
(5.6)

where, zmj is the posterior probability. β is the temperature value that controls

the smoothing prior. In this method, it has been set to 12 (β =12). ∂i is the

neighborhood of the i-th pixel, including itself. A square window of size 5x5 is

used in this method. Ni is the number of neighboring pixels around the pixel

xi in this window. By taking a closer look at Eq.(5.6), it can be visualized

that the factor Gij in the proposed method acts as a mean filter. The goal

is to simply replace each pixel value with the average value of its neighbors,

including itself. The main advantage of Gij is the ease of implementation,

and incorporation of the spatial relationships amongst neighboring pixels in a

simpler metric.
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Next, we propose a novel approach to incorporate the spatial informa-

tion into the smoothing prior. The new smoothing prior U(Π) is given by:

U(Π) = −
N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij (5.7)

where, t indicates the iteration step. The MRF distribution p(Π) is given by:

p(Π) = W−1 exp

{
1

T

N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij

}
(5.8)

Given the MRF distribution p(Π), the log-likelihood function is written in the

form.

L(Θ,Π|X) =
N∑
i=1

log

{
K∑
j=1

πijΦ(xi|Θj)

}
− logW +

1

T

N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij

(5.9)

Application of the complete data condition in [46], [58], maximizing the log-

likelihood function L(Θ,Π|X) in Eq.(5.9) will lead to an increase in the value

of the objective function H(Θ,Π|X).

H(Θ,Π|X) =
N∑
i=1

K∑
j=1

z
(t)
ij

{
log π

(t+1)
ij + log Φ(xi|Θ(t+1)

j )
}

− logW +
1

T

N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij

(5.10)

The conditional expectation values zij of the hidden variables, as shown in

Eq.(2.33), is rewritten as follows:

z
(t)
ij =

π
(t)
ij Φ(xi|Θ(t)

j )
K∑
k=1

π
(t)
ik Φ(xi|Θ(t)

k )

The next objective is to optimize the parameter set {Π,Θ} in order to max-

imize the objective function H(Θ,Π|X) in Eq.(5.10). Similar to the MRF
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based methods [58], [72], [73], [100], W and T in Eq.(5.10) are set equal to one

(W=1, T=1). From Eq.(5.10), the new objective function is given by:

H(Θ,Π|X) =
N∑
i=1

K∑
j=1

z
(t)
ij

{
log π

(t+1)
ij + log Φ(xi|Θ(t+1)

j )
}

+
N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij

(5.11)

From Eq.(5.1), the function in Eq.(5.11) can be rewritten as:

H(Θ,Π|X) =
N∑
i=1

K∑
j=1

z
(t)
ij

{
log π

(t+1)
ij − D

2
log(2π)− 1

2
log |Σ(t+1)

j |
}

+
N∑
i=1

K∑
j=1

z
(t)
ij

{
−1

2
(xi − µ(t+1)

j )
T

Σ
−1(t+1)
j (xi − µ(t+1)

j )

}
+

N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij

(5.12)

To maximize this function, the EM algorithm [52], [56] is applied. Let us now

consider the derivation of the function H(Θ,Π|X) with the means µj at the

(t+1) iteration step. We have:

∂H

∂µ
(t+1)
j

=
N∑
i=1

z
(t)
ij

[
−1

2
(2Σ

−1(t+1)
j µ

(t+1)
j − 2Σ

−1(t+1)
j xi)

]
(5.13)

The solution of ∂H/∂µj = 0 yields the minimizer of µj at the (t+1) step:

µ
(t+1)
j =

N∑
i=1

z
(t)
ij xi

N∑
i=1

z
(t)
ij

(5.14)

Thus, setting the derivative of the function H(Θ,Π|X) in Eq.(5.11) with re-

spect to Σ−1j at the (t+1) iteration step we have:

∂H

∂Σ
−1(t+1)
j

=
N∑
i=1

z
(t)
ij

[
1

2
Σ

(t+1)
j − 1

2
(xi − µ(t+1)

j )(xi − µ(t+1)
j )

T
]

(5.15)
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and, equating it to zero yields:

Σ
(t+1)
j =

N∑
i=1

z
(t)
ij (xi − µ(t+1)

j )(xi − µ(t+1)
j )

T

N∑
i=1

z
(t)
ij

(5.16)

An important consideration is that the prior distribution should satisfy the

constraints in Eq.(3.17). In order to enforce these constraints, we use the

Lagrange’s multiplier ηi for each data point:

∂

∂π
(t+1)
ij

[
H −

N∑
i=1

ηi

(
K∑
j=1

π
(t+1)
ij − 1

)]
= 0 (5.17)

Eq.(5.17) can be rewritten in the following form:

z
(t)
ij

π
(t+1)
ij

+
G

(t)
ij

π
(t+1)
ij

− ηi = 0 (5.18)

The constraint
∑K

j=1 πij = 1 enables the Lagrange multiplier ηi to satisfy the

following condition:

ηi = 1 +
K∑
j=1

G
(t)
ij (5.19)

The necessary condition for determining the prior distribution πij at the (t+1)

iteration step becomes:

π
(t+1)
ij =

z
(t)
ij +G

(t)
ij

K∑
k=1

(
z
(t)
ik +G

(t)
ik

) (5.20)

So far, the discussion has focused on estimating {Π,Θ} of the model, in order

to assign a label Ωj to the pixel xi. The various steps of the proposed mixture

model incorporating spatial information based on MRF can be summarized as

follows:
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Step 1: Initialize the parameters {Π,Θ}: the means µj, covariance values Σj

and prior distributions πij.

Step 2 (E-step):

+ Evaluate the values zij in Eq.(2.33) using the current pa-

rameter values.

+ Update the factor Gij by using Eq.(5.6).

Step 3 (M-step): Re-estimate the parameters {Π,Θ}.

+ Update the means µj by using Eq.(5.14).

+ Update covariance values Σj by using Eq.(5.16).

+ Update prior distributions πij by using Eq.(5.20).

Step 4: Evaluate the log-likelihood in Eq.(5.9) and check the convergence of

either the log-likelihood function, or the parameter values. If the convergence

criterion is not satisfied, then go to step 2.

Once the parameter-learning phase is complete, every pixel xi is assigned to

the label with the largest posterior probability zij by using Eq.(2.53). In the

next section, we will demonstrate the robustness, accuracy and effectiveness

of the proposed model, as compared with other GMM based approaches.

5.3 Experiments

In this section, the performance of the proposed algorithm is compared with

algorithms based on the K-means algorithm, standard GMM, and mixture

models based on MRF such as ICM, SIMF and MEANF. We also compare the

results with SVFMM, and the class-adaptive spatially variant finite mixture
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model (CA-SVFMM) [73]. For ICM, SIMF and MEANF methods, a standard

isotropic Potts model with a second order (8-neighbor) neighborhood system is

utilized, where the temperature value β is automatically optimized. All these

methods were run until convergence. Parameter β in SVFMM algorithms

is manually set a value of 0.1 based on user experience. This method was

implemented in the MATLAB environment. The proposed method was im-

plemented and tested on both synthetic and real-world images. For synthetic

images, in order to compare the results obtained, MCR has been used, which

is given by the number of misclassified pixels divided by the total number of

pixels. All these methods were implemented and tested on a PC (Pentium 4,

running at 3 GHz with 1GB of RAM).

5.3.1 Segmentation of Synthetic Images

In the first experiment, a synthetic image (128x128 image resolution) as shown

in Figure 5.1(a), was used to compare the performance of the proposed algo-

rithm with others. The image has four labels with luminance values [0, 1/3,

2/3, 1]. The image shown in Figure 5.1(b) was obtained by corrupting the orig-

inal image with Gaussian noise (0 mean, 0.03 variance). Figure 5.1(c) presents

the segmentation result obtained by employing the K-means algorithm, which

is used during the initialization step for all the remaining methods. In Fig-

ure 5.1(d) to Figure 5.1(i), we present the segmentation results obtained by

employing standard GMM, SVFMM, CA-SVFMM, ICM, SIMF and MEANF

methods respectively. Under given conditions the segmentation accuracy of
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the standard GMM method is quite poor. SIMF (MCR = 3.83%) in Fig-

ure 5.1(h) and MEANF (MCR = 3.55%) in Figure 5.1(i) demonstrate better

classification, and segment the image well. However, the proposed method in

Figure 5.1(j) segments the image better with the lowest MCR = 1.13%.

Figure 5.1: The first experiment (128x128 image resolution), (a): original
image, (b): Corrupted original image with Gaussian noise (0 mean, 0.03 vari-
ance), (c): K-means, (d): Standard GMM (MCR = 41.67%), (e): SVFMM
(MCR = 23.28%), (f): CA–SVFMM (MCR = 20.29%), (g): ICM (MCR =
20.23%), (h): SIMF (MCR = 3.83%), (i) MEANF (MCR = 3.55%), (j): Pro-
posed method (MCR = 1.13%).

Table 5.1: Computational cost (in seconds) comparison for the synthetic image
in the first experiment.

Methods Sta. SV CA–S ICM SIMF MEA our
GMM FMM VFMM NF method

Time (sec) 3.2 80.3 218.1 85.4 163.2 121.8 4.9
MCR (%) 41.67 23.28 20.29 20.23 3.83 3.55 1.13

Moreover, due to the inherent simplicity of the proposed algorithm, it

has low computational cost. In this experiment, for ICM, SIMF and MEANF
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Figure 5.2: Maximization progress of the log-likelihood of the proposed method
of the first experiment.

methods, we used the software implementation (for Linux environment, C++

Language) publicly available at http://mistis.inrialpes.fr/software/SEMMS.

html. The source code for the SVFMM algorithm written in MATLAB en-

vironment can be downloaded from http://www.cs.uoi.gr/∼kblekas/sw/MAP

segmentation.html. Standard GMM, CA-SVFMM and the proposed method

were implemented using MATLAB in the Windows environment. All exper-

iments were performed on a PC (Pentium 4, running at 3 GHz with 1GB of

RAM) until convergence. Table 5.1 lists the computation time and the mis-

classification ratio for each of the aforementioned methods. As shown in Table

5.1, standard GMM takes the least amount of time for segmentation, while

the slowest one is CA-SVFMM. Although the proposed method comes second

(convergence after 4.9 seconds and 50 iterations, as shown in Figure 5.2) in

terms of the speed, it has the lowest MCR, and demonstrates a higher degree

of robustness with respect to noise.
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Figure 5.3: The second experiment (128x128 image resolution), (a): original
image, (b): Corrupted original image with Gaussian noise (0 mean, 0.05 vari-
ance), (c): K-means, (d): Standard GMM (MCR = 35.02%), (e): SVFMM
(MCR = 12.01%), (f): CA–SVFMM (MCR = 11.16%), (g): ICM (MCR =
7.65%), (h): SIMF (MCR = 5.65%), (i) MEANF (MCR = 5.94%), (j): Pro-
posed method (MCR = 1.05%).

In Figure 5.3, we show the segmentation results of a synthetic image

corrupted by Gaussian noise. The original image with luminance values [0, 0.5,

1] is shown in Figure 5.3(a). The image in Figure 5.3(b) is obtained by adding

Gaussian noise (0 mean, 0.05 variance) to the original image. Figure 5.3(d)

to Figure 5.3(i), show the segmentation results for standard GMM, SVFMM,

CA-SVFMM, ICM, SIMF, MEANF and the proposed method, respectively.

Amongst these methods, the proposed method demonstrates a higher degree of

robustness to a specified noise level. All algorithms were initialized using the

K-means algorithm, as shown in Figure 5.3(c). Results in Table 5.2 confirm

that the proposed method is quite fast with the lowest MCR.

The effect of varying noise level on the performance of different methods
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Table 5.2: Computational cost (in seconds) comparison for the synthetic image
in the second experiment.

Methods Sta. SV CA–S ICM SIMF MEA our
GMM FMM VFMM NF method

Time (sec) 1.2 117.1 147.1 78.3 108.2 97.7 3.1
MCR (%) 35.02 12.01 11.16 7.65 5.65 5.94 1.05

Table 5.3: Comparison of the proposed method with other methods in term of
MCR (%), for the third experiment, in the presence of varying levels of noise.

Mixed Noise:
Gaussian Noise Salt & Pepper Noise

Methods (0 mean, var) (sp) + Gaussian
Noise (0 mean, var)

var=0.03 var=0.05 sp=0.01, sp=0.02,
var=0.03 var=0.05

Standard GMM 30.31 37.20 31.23 38.22
SVFMM 18.11 25.56 18.88 28.40

CA-SVFMM 17.73 25.49 18.25 28.58
ICM 5.90 27.32 11.65 29.88
SIMF 2.86 19.35 8.16 22.03

MEANF 2.70 17.65 7.14 21.94
Proposed method 0.21 0.36 0.35 0.42

is evaluated in the third experiment. A synthetic image with luminance values

[0, 1/3, 2/3, 1] from Figure 5.4(a) is used. This orginal image is corrupted

with varying levels of noise. The goal is to segment the corrupted image into

four lables. The results are presented in Table 5.3. ICM method works well

when an image is corrupted by low level of noise. However, the segmentation

results are poor when the noise level is increased. The effect of noise on the

performance of SIMF and MEANF methods is much less when we compared to
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Figure 5.4: The third experiment (128x128 image resolution), (a): original
image, (b): Corrupted original image with Gaussian noise (0 mean, 0.03 vari-
ance), (c): K-means, (d): Standard GMM (MCR = 30.31%), (e): SVFMM
(MCR = 18.11%), (f): CA-SVFMM (MCR = 17.73%), (g): ICM (MCR =
5.90%), (h): SIMF (MCR = 2.86%), (i) MEANF (MCR = 2.70%), (j): Pro-
posed method (MCR = 0.21%).

ICM. However, comparing to the proposed method, both SIMF and MEANF

lose most of the sharpness and details in the segmented image as shown in

Figure 5.4. In order to further test the accuracy of the proposed algorithm.

The original image is corrupted with varying levels of mixed noise. Firstly,

the original image is corrupted with salt & pepper noise, and later Gaussian

noise is added. As shown in Table 5.3, the proposed method demonstrates a

higher degree of robustness with respect to the given noise level.

In order to further test the accuracy of the proposed methods in Chapter

4 and Chapter 5, we generated a different image that contains two labels with

luminance values (0, 1). In this experiment, the original image in Figure

5.5(a) is corrupted with a Gaussian noise (0 mean, 0.1 variance). Figure
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Figure 5.5: The fourth experiment (256x256 image resolution), (a): original
image, (b): Corrupted original image with Gaussian noise (0 mean, 0.1 vari-
ance), (c): Proposed method in Chapter 4 (MCR = 0.10%, time = 8.9s), (j):
Proposed method in Chapter 4 (MCR = 0.22%, time = 3.7s).

5.5(c)-(d) show the segmentation the proposed methods in Chapter 4 and

Chapter 5, respectively. We can see that the accuracy obtained by employing

the proposed method in Chapter 4 (MCR=0.10%) is lower compared to the

proposed method in Chapter 5. However, our method in Chapter 4 has high

computational cost (8.9 seconds). As shown in Figure 5.5(d), the proposed

method in Chapter 5 takes only 3.7 seconds.

5.3.2 Segmentation of Grayscale Natural Images

A real-world grayscale image from the Berkeley’s image segmentation dataset

[98] was used to compare the proposed algorithm with other algorithms. The

objective is to segment the image into two labels: “buffalo” and “water”. The

main difficulty in this experiment is that the effect of noise on the label “water”

is high. Figure 5.6(c) to Figure 5.6(g) show the results obtained by implement-

ing SVFMM, CA-SVFMM, SIMF, MEANF, and the proposed method. The

initialization for all these algorithms was carried out by using the standard

GMM algorithm, as shown in Figure 5.6(b). As can be seen, the segmenta-
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tion accuracy of SVFMM, CA-SVFMM, SIMF, MEANF methods, along the

object boundaries is quite poor. In this experiment, only the proposed was

successfully able to segment the image into “buffalo” and “water” regions. The

maximization progress of the log-likelihood of the proposed methodis shown

in Figure 5.6(h).

Figure 5.6: Grayscale natural image segmentation (80099), (a): original im-
age, (b): Standard GMM, (c): SVFMM, (d): CA–SVFMM, (e): SIMF,
(f) MEANF, (g): Proposed method, (h): Maximization progress of the log-
likelihood of the proposed method of this experiment.

Another real world grayscale image is used to test the efficiency and

effectiveness of our proposed algorithm. We observe that the effect of noise in

the bottom left-hand side of this image is high. The objective is to segment

the original image, as shown in Figure 5.7(a), into two labels. As can be seen

from the results in Figure 5.7, Standard GMM, SVFMM, CA-SVFMM, SIMF,

MEANF could not successfully segment this image, and there is a high degree

of misclassification. Compared with these methods, the proposed method, as

shown in Figure 5.7(g), successfully segments the image.
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Figure 5.7: Grayscale natural image segmentation (86016), (a): original im-
age, (b): Standard GMM, (c): SVFMM, (d): CA–SVFMM, (e): SIMF,
(f) MEANF, (g): Proposed method, (h): Maximization progress of the log-
likelihood of the proposed method.

A grayscale real-world image, shown in Figure 5.8(a), was segmented it

into three labels: “road”, “grass”, and “tree”. A low segmentation accuracy is

obtained with standard GMM, as shown in Figure 5.8(b). This result is used

as the initialization step for all the remaining methods. SVFMM and SIMF

methods in Figure 5.8(c) and Figure 5.8(d) can produce a better segmentation,

even though the effect of noise remains quite high. Compared with these

methods, we find that the proposed method, shown in Figure 5.8(f) successfully

segment all objects, and the effect of noise on the final segmented image is quite

low.

5.3.3 Segmentation of Colored Images

In Figure 5.9, we show the segmentation results of a real-world color image.

The orginal image, as shown in Figure 5.9(a), was used for segmentation into
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Figure 5.8: Grayscale natural image segmentation (374067), (a): original im-
age, (b): Standard GMM, (c): SVFMM, (d): SIMF, (e): Proposed method.

three labels: “snow”, “sky”, and “others”. The initialization for all algorithms

was carried out by using the standard GMM as shown in Figure 5.9(b). Extrac-

tion accuracies of the SVFMM, CA-SVFMM, SIMF and MEANF methods are

shown in Figure 5.9(c) to Figure 5.9(f). As shown in Figure 5.9, the segmenta-

tion accuracy for SIMF and MEANF methods is quite poor. CA-SVFMM can

produce a better segmentation; however, the edge between the “snow” and the

“sky” is lost. A closer inspection of the “sky” area indicates that a small por-

tion of pixels have been misclassified. The proposed method in Figure 5.9(g),

can better classify with more detail along the sharp edge between “snow” and

the “sky”, as compared with the CA-SVFMM method. Figure 5.9(h) shows

the maximization progress of the log-likelihood of the proposed method in this

experiment.

In order to further test the accuracy of the proposed algorithm, another

real word color image is used. The image shown in Figure 5.10(b) is obtained

by corrupting the original image in Figure 5.10(a) with Gaussian noise (0

mean, 0.0015 variance). The objective is to segment the image into three la-
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Figure 5.9: Color image segmentation (310007), (a): original image, (b): Stan-
dard GMM, (c): SVFMM, (d): CA–SVFMM, (e): SIMF, (f) MEANF, (g):
Proposed method, (h): Maximization progress of the log-likelihood of the pro-
posed method.

bels. Figure 5.10(c) presents the segmentation results obtained by employing

the standard GMM method. The segmented image is used to initialize the

remaining methods. A visual inspection of the results indicate that SVFMM

in Figure 5.10(d), CA-SVFMM in Figure 5.10(e), ICM in Figure 5.10(f), and

MEANF in Figure 5.10(g) are unable to segment the image successfully. The

effect of noise on the final segmented image is highly noticeable. These meth-

ods lose much of the image sharpness and salient details in and around the

“hands” and “legs” region of the girl in the image. Compared with these al-

gorithms, the proposed method leads to a smoother segmentation. The effect

of noise on the final segmented image, obtained by employing the proposed

method is far less.

A set of real world color images are used to evaluate the performance

of the proposed method against SVFMM, CA-SVFMM, ICM, SIMF, MEANF
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Figure 5.10: Color image segmentation (388016), (a): original image, (b):
Corrupted original image with Gaussian noise (0 mean, 0.0015 variance), (c):
Standard GMM, (d): SVFMM, (e): CA–SVFMM, (f): ICM, (g) MEANF, (h):
Proposed method.

methods. Table 5.4 contains the cumulative results obtained for all methods,

for the given set of real world images. As can be easily seen, on average, the

proposed method outperforms other methods with a higher PR. Figure 5.6

shows some of the other real-world images used for segmentation by employing

SVFMM, MEANF and the proposed method, respectively. The first row shows

the original images, followed by the corresponding segmented images in the

second, third, and the last row. Figure 5.11 clearly indicates that our proposed

method achieves a better segmentation accuracy.
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Table 5.4: Comparison of image segmentation results on Berkeley’s color image
segmentation dataset: Probabilistic Rand (PR) Index.

Image lab SVFMM CA- ICM SIMF MEANF Proposed
els SVFMM method

86000 4 0.811 0.814 0.794 0.773 0.785 0.825
101085 2 0.598 0.600 0.572 0.566 0.569 0.603
100080 5 0.802 0.801 0.778 0.768 0.767 0.811
105053 2 0.778 0.782 0.756 0.650 0.689 0.817
241004 5 0.839 0.841 0.838 0.841 0.842 0.841
175043 2 0.800 0.801 0.798 0.713 0.722 0.802
374067 4 0.815 0.814 0.801 0.781 0.783 0.818
24063 3 0.840 0.839 0.838 0.839 0.839 0.841
106025 4 0.832 0.833 0.824 0.796 0.803 0.844
147091 3 0.813 0.815 0.770 0.773 0.775 0.824
277095 3 0.811 0.812 0.773 0.637 0.690 0.814
113009 3 0.671 0.670 0.645 0.614 0.622 0.676
296007 3 0.839 0.840 0.841 0.832 0.841 0.841
189080 4 0.861 0.862 0.814 0.805 0.807 0.867
38092 4 0.871 0.873 0.820 0.820 0.817 0.879
41004 3 0.908 0.909 0.891 0.848 0.872 0.917
Mean - 0.806 0.807 0.785 0.754 0.764 0.814

5.4 Conclusions

We have presented a new mixture model for image segmentation that incor-

porates the spatial relationships based on MRF. Compared with other MRF

based mixture models, our proposed method directly applies the EM algorithm

to optimize the parameters, making it simple, fast, and easy to implement. The

proposed method has been tested with many synthetic and real world grayscale

and colored images, thereby demonstrating the excellent performance in noisy

conditions, as compared to other mixture model based approaches.
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Figure 5.11: (first row): original image, (second row): SVFMM, (third row):
MEANF, (last row): Proposed method.
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Chapter 6

Conclusions

6.1 Summary of Main Contributions

In this thesis, new fully unsupervised image segmentation algorithms based on

mixture model with spatial neighborhood relationships have been described.

The proposed methods have been tested with both synthetic and real images,

and have been shown to be robust with respect to noise, efficient with respect

to the number of parameters used, and sufficiently accurate with respect to

the classification results.

A review of the various model-based techniques used to achieve segmen-

tation is described. In Chapter 2, the first group of model-based techniques

is described, beginning with the using of standard GMM to solve the un-

supervised segmentation problem. The advantages and disadvantages of the

standard GMM are then discussed. In order to estimate the parameters of

the model, various techniques on maximizing their likelihood are described,
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beginning with the EM algorithm, then continuing with the gradient-based

optimization techniques.

The second group of model-based techniques for unsupervised segmen-

tation is described in Chapter 3. These methods are based on the MRF to

take into account the spatial correlation between the neighboring pixels and

to reduce the sensitivity of the segmentation result with respect to noise. In

this chapter, two types of models based on MRF are presented. In the first

type, mixture models with MRF have been employed for pixel labels. In or-

der to take into account the spatial correlation, an MRF model in the second

type is used to model the joint distribution of the priors of each pixel label,

instead of the joint distribution of the pixel labels as in first type. The main

differences between the first and the second group of model-based techniques

are also discussed in this chapter.

In Chapter 4, we propose an extension of the standard GMM for image

segmentation, which utilizes a novel approach to incorporate the spatial rela-

tionships between neighboring pixels into the standard GMM. The proposed

model is easy to implement and compared with the existing MRF models,

requires a fewer parameters. We also propose a new method to estimate the

model parameters in order to minimize the higher bound on the data negative

log-likelihood, based on the gradient method. Experimental results obtained

on noisy synthetic and real world grayscale images demonstrate the robust-

ness, accuracy and effectiveness of the proposed model in image segmentation,

as compared to other methods based on standard GMM and MRF models.
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In Chapter 5, another way to incorporate spatial information between

the neighboring pixels into the GMM based on MRF is proposed. In compari-

son to other mixture models that are complex and computationally expensive,

the proposed method is robust and fast to implement. In mixture models

based on MRF, the M-step of the EM algorithm cannot be directly applied to

the prior distribution πij for maximization of the log-likelihood with respect

to the corresponding parameters. Compared with these models, our proposed

method directly applies the EM algorithm to optimize the parameters, which

makes it much simpler. Finally, our approach is used to segment many syn-

thetic and real-world grayscale and colored images with excellent results.

6.2 Future Directions

Several extensions are possible for future work. In this thesis, the number

of labels (K) is currently set by the user based on prior knowledge. This is

an open question and remains the subject of current research. One possible

improvement on the current models is to investigate the ways to automatically

optimize this parameter.

Another limitation is that a constant β is used throughout the image

and for every label. A constant value of β reduces the impact of noise in

homogeneous tissues but negatively affects segmentation along the border of

two tissues. In the highly noisy image, it can erase the detail of the boundary

of two tissues. One possible solution to overcome this problem is to use a

different value of β throughout the image.
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Another possible extension of this work is to study the use of non-linear

smoothing filter to improve the quality of image segmentation. In the context

of this thesis, one of the simplest linear filters is used. Our spatial process is

based on the mean smoothing filter, where we replace each pixel value in an

image with the average value of its neighbors.

Recently, to improve the robustness of the algorithm to outliers, finite

Student’s-t mixture model (SMM) has been proposed. The main advantage of

the Student’s-t distribution is that it is heavily tailed than Gaussian, and hence

finite mixture model of the longertailed multivariate Student’s-t distribution

provides a much more robust approach to the GMM. It has proven to be

quite effective for image segmentation. However, in the existing SMM, the

prior distribution does not depend on the pixel index and has the same value

for all pixels. Moreover, it does not take into account the spatial constraints

in an image. Additionally, in order to estimate the model parameters by

adopting the EM algorithm, the Student’s-t distribution in the previous SMM

is represented as an infinite mixture of scaled Gaussians, which corresponds

to an increase in the algorithms’ complexity. A combination between finite

Student’s-t mixture model with our methods to develop a new model could be

considered in future work.

Segmentation of medical images such as computed tomography and

magnetic resonance imaging is an important diagnostic imaging technique.

Accurate segmentation of these images offers an opportunity to provide more

information about the objects and their boundaries for clinical investigation.

92



However, fully automatic segmentation of medical images into a number of

non-overlapping regions i.e., gray matter, white matter, cerebrospinal fluid,

and background is difficult because they are frequently corrupted by high levels

of noise, and poor contrast along boundaries. The proposed models could be

applied for segmenting medical images in the future.
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Appendix A

We apply the gradient descent technique to update the parameters Ξ = {Θ,Π} =

(µj, σj, cj, bj, α), j=(1,2,...,K). The error function in Eq.(4.10) can be re-

written as:

E(Θ(t),Π(t)|Θ(t+1),Π(t+1)) = −
N∑
i=1

K∑
j=1

z
(t)
ij {log πij + log Φ(xi|Θj)} (A.1)

where

πij =

[∑
m∈N i

exp

(
−(xm − cj)2

2b2j

)]α/ K∑
k=1

[∑
m∈N i

exp

(
−(xm − ck)2

2b2k

)]α
and

Φ(xi|Θj) =
1√

2πσ2
j

exp

(
−(xi − µj)2

2σ2
j

)

as shown in Eq.(4.3) and Eq.(2.23), respectively. The derivative of E with

respect to µj is given by:

∂E

∂µj
= −

N∑
i=1

z
(t)
ij

xi − µj
σ2
j

(A.2)

and similarly, the derivative of E with respect to σj, is given by:

∂E

∂σj
= −

N∑
i=1

z
(t)
ij

(
− 1

σj
+

(xi − µj)2

σ3
j

)
(A.3)
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The derivative of E with respect to cj can be expressed as:

∂E

∂cj
= −

N∑
i=1

z
(t)
ij


α
∑

m∈N i

(xm−cj)
b2j
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(
− (xm−cj)2

2b2j

)
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(
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2b2j

)
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+
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ik
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α
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(A.4)

Now, considering the derivative of the term E with respect to bj, we have:

∂E
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= −
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(A.5)

The derivative of E with respect to α is given by:
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