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ABSTRACT

Corrosion processes produce elastic energy waves in the form of acoustic emission (AE). 

For corrosion in reinforced concrete structures, AE waves are emitted beginning with the 

depassivation of oxide layers of reinforcing steel, the initial stage of corrosion processes. 

This study examines the feasibility of using AE technique to detect corrosion through steel 

reinforcement, which has relatively lower attenuation than concrete. Comparison of 

coupling AE sensors on steel and on concrete was made. Accelerated corrosion regime 

and two-channel multifunctional AE equipment with piezoelectric sensors were employed 

for laboratory experiments. The detectable distance from corrosion source to sensor was 

estimated via the calculation of attenuation coefficient and particle surface displacement. 

The analysis of source location demonstrates that surface wave is the predominant AE 

wave propagating in rebars with one-inch diameter. Furthermore, an important 

experiment was performed to compare AE measurement with half-cell potential 

measurement. As a result, AE was proved to be a promising tool for corrosion detection 

in reinforced concrete structures.
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CHAPTER 1. INTRODUCTION

1.1 Background

Many reinforced concrete (RC) structures deteriorate due to the corrosion of the 

reinforcement. Structures exposed to chlorides, such as highway bridges and parking 

structures in cold regions with the use of de-icing salts, and marine structures are 

particularly vulnerable to corrosion attack.

In most cases, corrosion is detected once extensive deterioration has occurred, such as 

cracking, delaminations and reduction in the steel’s cross-section. “The corrosion of 

metals, especially steel, in concrete has received increasing attention in recent years 

because of its widespread occurrence in certain types of structures and the high cost of 

repairs” [ACI Committee 222, 1985].

The use of non-destructive monitoring in reinforced concrete structures is still very limited. 

Fortunately, the need and awareness of monitoring and assessment is being recognized by 

many organizations such as Departments of Transportation funding projects in USA, and 

in Canada the formation of a Canadian Centre of Excellence on Intelligent Sensing in 

Innovative Structures (ISIS).

In addition to the commonly used non-destructive methods, Acoustic Emission (AE) and 

ultrasonic measurements, such as Ultrasonic Pulse Velocity (UPV), Pulse-echo and

Introduction 1
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Impact-echo, have been employed to correlate material properties and detect the 

deterioration in reinforced concrete structures, e.g. the integrity testing of bridges in the 

Federal Lands Highway Program conducted by US Department of Transportation and 

Federal Highway Administration [Rosh, 2003].

1.2 Problem Statement

Non-destructive testing of the state of corrosion of a concrete structure is limited to several 

tests: visual inspection, chain drag sounding, half-cell potential mapping, sonic and 

radiographic methods.

• Visual inspection

Visual inspection uses direct or remote observation to obvious signs of corrosion, such as 

spalling, cracking and staining. This method provides detection only after significant 

corrosion has occurred, when large-scale repair or rehab is usually inevitable. The further 

test, core sampling, is destructive and requires repair of concrete.

• Chain drag sounding

In this method, the hollow sound indicates the occurrence of delamination between steel 

reinforcement and concrete. Like visual inspection, this method can only reflect the latter 

effect of corrosion causing deterioration.

• Half-cell potential mapping

Half-cell potential mapping, the most common electrochemical method, can be used to 

determine the probability o f corrosion at the time of the reading (ASTM C876). However, 

the measurement depends on the condition of concrete. Moisture level and the amount of

Introduction
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carbonation and salt concentration can affect the reading or give erroneous readings. 

Furthermore, half-cell potential measurement does not provide information on the rate of 

corrosion [Zdunek et al, 1995].

Ultrasonic methods in concrete have been limited to the following uses:

• Assess the uniformity and relative quality of concrete

• Indicate the presence of voids and cracks

• Estimate the severity of deterioration

• Measure the thickness or length of objects

Radiographic methods use X-ray or gamma rays and require extensive safety precautions. 

They are impractical to perform inspections for many in-service structures [Malhotra, 

1991]. The above methods are not capable of monitoring structures continuously and 

providing the early detection of corrosion. Acoustic emission may be the solution for 

these problems.

Acoustic Emission (AE) refers to generation of transient elastic waves during rapid release 

of energy from localized sources within a material. The source of these emissions, 

similar with a small seismic, is closely associated with the dislocation movement, plastic 

deformation, cracking, or matrix debonding [Carlos, 2003].

Research has been conducted and implemented in using AE to monitor the corrosion of the 

post-tensioned cables. A recent project in Virginia US to inspect all of the post-tensioned 

ducts in Virginia bridges was sponsored by Virginia Transportation Research Council

Introduction 3
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[Duke, 2002], The SoundPrint acoustic monitoring system, invented and developed in 

Canada, has used to detect and locate the breaks of post-tensioned cables in North America, 

UK, Germany and France since 1994. e.g. the monitoring of railway viaducts in 

Huntington, UK. The system detects acoustic waves with lower frequencies than that in 

common AE monitoring [Cullington, 1998].

Corrosion, especially pitting and exfoliation produce large amount of AE events [Geng, 

2001]. AE from a corrosion source in reinforced concrete is mostly caused by 

breakdown of passive oxide layer (the initiative), exfoliation of steel layers, debonding at 

the concrete-steel interface, cracking of concrete (Section 2.1.4). Debonding and 

cracking of concrete, caused by the built-up of corrosion products, are latter phenomena of 

corrosion processes. The elastic AE wave can travel through concrete or along the 

reinforcing steel, which acts as a waveguide [Idrissi, 2003].

Although the attenuation of AE in concrete has been a concern in the past, unique 

placement of AE sensors on the steel reinforcement and using the steel as the AE wave 

propagation medium should allow the onset of steel corrosion to be detected [Zdunek et al, 

1995],

1.3 Research Significance and Objectives

Corrosion of steel reinforcement is one of the most important causes of deterioration of 

reinforced concrete structures. The conventional NDT / NDE techniques both 

electrochemical and non-electrochemical methods are not capable of providing continuous

Introduction
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early detection of corrosion. AE technique offers a distinct advantage of AE that it 

allows for real-time monitoring in-service structures because AE results directly from the 

process of flaw growth [Shi et al, 2002]. It is possible that AE can be a promising 

technique for corrosion detection and intelligent sensing reinforced concrete structures, 

which can dramatically reduce the structural rehabilitation cost. At the initial research 

stage, the feasibility of this approaching is of critical importance.

The objectives of this study are to find answers of the following key issues regarding the 

feasibility of using AE technique to detect the initial stages of reinforcement corrosion.

• Can steel corrosion be “heard” by the AE sensors?

• Are the AE signals in reinforced concrete due to corrosion or other processes?

• Is it better to put the sensors on the steel or concrete?

• How far can we measure away from the corrosion source?

Introduction
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CHAPTER 2. LITERATURE REVIEW

Deterioration of reinforced concrete, caused by corrosion of the rebar, has become a 

widespread problem and is the major cause of failure of aging RC structures [Schiessel, 

1988]. Due to the increasing repair and rehabilitation cost of aging infrastructure, 

monitoring and detecting techniques of corrosion and structural integrity have become 

more and more important. To protect structures from deterioration, early damage 

detection is needed. The conventional measurements both electrochemical and 

non-electrochemical methods have their disadvantages and limitations.

Successful detecting and monitoring of the corrosion require an understanding of the cause 

and mechanism of the corrosion process. In Section 2.1, the mechanism of steel 

corrosion in concrete, the pitting corrosion, corrosion periods, corrosion processes that 

generate AE, and laboratory accelerated corrosion are reviewed. The measurements of 

corrosion in reinforced concrete, both electrochemical and non-electrochemical method, 

are briefly covered in Section 2.2 including their descriptions, advantages and limitations. 

In Section 2.3, ultrasonic NDT techniques and acoustic emission are reviewed. In order 

to understand how to detect the corrosion in reinforced concrete structures, wave 

propagation and instrumentation are reviewed in Section 2.4 and 2.5. Finally, Section 2.6 

concludes the importance of developing acoustic emission technique for corrosion 

detection in reinforced concrete structures.

Literature Review 6
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2.1 Corrosion of Steel in Concrete

2.1.1 Mechanism of corrosion of steel in reinforced concrete

Normal steel reinforcement is protected by passive dense oxide layer due to the high 

alkalinity of the surrounding concrete. When carbonation of cover and contamination 

with chlorides occurred, concrete is unable to maintain passivity and the corrosion process 

starts.

The basic anodic reaction is the dissolution of metal into metal ions, as follows:

Fe -► Fe2+ + 2e'

The basic cathodic reaction is:

*/2 0 2 + H20  + 2e‘ 20FT

The reaction products are various oxides and hydroxides of iron depending on the 

surrounding environment.

Fe2+ + 20FT —► Fe(OH)2

4Fe(OH)2 + 2H20  + 0 2 —► 4 Fe(OH)3 (ferric hydroxide, usually referred to rust) 

2Fe(OH)2 Fe2 O • n H20

The corrosion product has a greater volume than the original steel (Fig. 2.1) and this 

creates the pressure that causes debonding, cracking and subsequent spalling of the 

surrounding concrete.

Literature Review 7
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Fig. 2.1 Volumetric expansion of corrosion products [Brasunas, 1984]

The major corrosion types in reinforced concrete are macro-cell corrosion (general 

corrosion), micro-cell corrosion, pitting corrosion and low-potential active corrosion

Micro-cell corrosion takes place when O2 is available at cathode and concrete is 

conductive to allow ionic movement between cathode-anode couples (Fig. 2.2). A 

micro-cell is often associated with pitting corrosion.

Motet concrete
i d  B M c t r a ty *

Piwilw* Iron

Fig. 2.2 Micro-cell corrosion [Schiessl, 1988]

A macro-cell is referred to as general corrosion. Large area of steel are involved in this 

type of corrosion, and the corrosion rate is more uniform than micro-cell corrosion.

Literature Review 8
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When the supply of oxygen is insufficient to maintain passive layer in submerged or 

buried concrete, low-potential active corrosion occurs accompanied by evolution of H2 

causes hydrogen embrittlement of metal. Most corrosions of aluminum alloy are 

associated with this type of corrosion [Baboian, 1995].

For steel, the cathodic reaction is:

2 H20  + 2e —  H2 + 20H '

The anodic reaction is:

Fe —► Fe2+ + 2e

The corrosion types and rates or the states of passivisity and immunity depend on steel 

potential, oxygen availability, PH and chloride concentrations. Fig. 2.3 shows their 

relationships.

10 M Cl10 M C \ Fe3*S0 . 8 - C: Fc i*  \1
tO M Cl10 MCI

tif *0.4

10M C I
Oxygen

C o r r o s i o ^

"  i
Low

^  Corrosion \ x \Ĉomjsionvsx
£ “ 0 8

P a ss iv ityP a s s iv ity

CorrosionImmunityC o rro s io n
h fc o 2

Im m unity

12 1C 16 pH
12 14 16 pH

Fig. 2.3 Ordinary steel in concrete regarding corrosion rate, steel potential, 
oxygen availability and chloride concentrations [Sandberg, 1995]

The Potential-PH diagrams sometimes referred to Pourbaix Diagrams that indicate whether

Literature Review
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corrosion or passivation is thermodynamically possible. The steel potential in a given 

environment represents a balance of cathodic reactions, anodic reactions and any external 

current from metals connected to the steel [Sandberg, 1995],

2.1.2 Pitting corrosion and the effect of chloride

Most corrosion encountered in engineering practice is of a more localized type, rather than 

diffused general attack. The most common type of localized corrosion is pitting, in 

which small volumes of metal are removed by corrosion from certain areas on the surface 

to produce pits or craters. Pitting corrosion is driven by galvanic action between 

relatively large areas of passive steel acting as a cathode and a small anodic pit [Tonini, 

1980]. The visual differences between general attack and localized attack (pitting) are 

illustrated in Fig. 2.4.

i . General Attack

2 . jjQCAhjMMl A l i a s *
a. lo c a l i z e  Corrosion

b. Pitting

e~ Gr«v<o» Corrosion 
<t Poultice Corrosion 
*. Opposition Corrosion 
1 FitltormCorroaJon

3. Caivamc Attack
rtiitiWI
Metal

NiMMt

Fig. 2.4 Corrosion schematics [Brasunas, 1984]
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Pitting corrosion can be particularly severe in chloride environment, since chloride ions 

help dissolve irons, and then get recycled back into solution to maintain high chloride 

concentration.

The following equations demonstrate the recycling of chloride ions:

Dissolution of iron by chlorides: Fe + 2C1"—► FeCl2 +2e'

Dissolution of iron chloride by water: FeCl2 + 2H20 —► Fe(OH)2+2Cl'+2H"

Deposition of rust-ferric oxide and release of ions and back into solution:

6FeCl2 + 0 2+ 6H20  —  Fe30 4+12Cr+12H-

Chloride ions penetrate the oxide layer at certain position and establish a pit, where the PH 

is lower and the corrosion attack is severer. The low PH will keep the corrosion products 

in solution. The corrosion products, ferrous hydroxide and other solid corrosion products, 

will form in the regions that are rich in hydroxides and oxygen. Pitting corrosion is 

therefore very dangerous in practice, since the corrosion attack is concentrated to very 

small areas and since it may take place unnoticed from the outside. Since the corrosion 

products are soluble in the local acid pit, they can be accommodated without any spalling 

of the concrete cover [Sandberg, 1995].

2.1.3 Stages of corrosion

The state of corrosion of steel in concrete is function of time. It is divided to the 

initiation period and corrosion period, which consists of depassivation, propagation of 

corrosion, and final state. In the initiation period, environmental changes in concrete, 

such as penetrations of carbonation and chloride, gradually decrease and eventually

Literature Review 11
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terminate the passivity of steel. The corrosion period begins at the depassivation and 

propagates at a significant rate until the final state is reached [Schiessl, 1988].

Depassivation is a critical period of corrosion stages. It occurs when the passivation 

provided to the steel by the alkaline hydrated cement matrix is destroyed either locally or 

generally. Reduction of alkalinity and the presence of aggressive ions in sufficient 

concentration lead to the destruction of passivity [Schiessl, 1988]. In the high chloride 

concentration environment, chloride ions will penetrate the passive oxide layers and 

initiate active corrosion.

The oxide layers of steel reinforcement embedded in concrete are scale, passive film and 

iron oxide layer (Fig. 2.5). The scale formed by the hot-rolling process is approximately 

50 microns thick. The composition of scale is not very different from the oxide layer 

formed in alkaline solution. The oxide film on ordinary steel in alkaline environment is 

very thin, about 1-5E-3 microns thick. The composition of the oxide film mostly is Fe30 4  

and Fe20 3 ;but it depends on the chemical environment such as pH and oxygen. The iron 

oxide layer formed in old concrete is usually regarded “semi-passive” due to its 

inhomogeneity and ion permeability. The thickness of the oxide layer can be up to 

hundreds of microns and grows with time. Such a thick oxide layer is normally considered 

to have a less efficient passivation than ideal thin layers [Sandberg, 1995].

The depassivation period extends to propagation period when the corrosion products want 

to develop outward, accompanying with the breakdown of oxide layers. The propagation

Literature Review 12
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period extends from the form of corrosion products to the cracking and spalling of 

concrete cover or the local attack on the reinforcement becomes sufficiently severe to 

impair its load-carrying capacity. The final state is reached when damage due to cracking 

or spalling, the structural integrity, serviceability or appearance becomes unacceptable 

[Schiessl, 1988]

Steel

Scale

Fe
Fe-i-xO 70% 

Fe30 4 20% 
a Fe20 3 10%

-50 pm

Passive Fe30 4 + Fe20 3 film -10-50 A  (i-SE-3 p m )

oxide film no well defined micro structure
Iron Fe30 4 "Spinel"
oxide yFe20 3 -50-200 pm In old concrete

layer Fe(ll)(OH)2 growing with time

Fe(lll)OOH

Concrete ca(OH )2

Fig. 2.5 Initially separated iron oxide phases on ordinary steel in concrete [Sandberg, 1995]

2.1.4 Corrosion processes that create acoustic emission

Corrosion processes produce elastic energy wave in the form of acoustic emission. AE 

waves are theoretically emitted from the following corrosion processes (Fig. 2.6):

• Depassivation of oxide layers, described in previous section, is the initiator of AE

• Exfoliation of steel layers generates large amount of AE waves.

• Dissolution of metal can create AE waves, but it is debatable to sense these waves 

based on current technology [Geng, 2002].
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• Cracking and plastic deformation due to stress are also the sources of AE waves.

• Debonding at the interface between rebar and concrete when the expanding stress 

built-up by corrosion products.

• Microcracking of concrete may occurs with debonding when corrosion products 

formed on a corroding rebar push out the surrounding concrete.

Fig. 2.6 Schematic illustration of AE created by corrosion in RC structures 

2.1.5 Accelerated corrosion

Corrosion of steel in reinforced concrete is usually a very slow process. It may take years 

before the damage can be seen. For research purposes, corrosion in the laboratory is often 

accelerated in order to have manageable time frame for testing. According to the 

mechanism of corrosion, the following method is proved to be most effective.

Current is imposed to the sample and cathode to accelerate sample (anode) releasing 

electrons and cathode gaining electrons (Fig. 2.7).
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Fig. 2.7 Schematic sketch of accelerated corrosion cell

The accelerated corrosion requirements are

• Applying DC voltage usually is from 6 V to 12 V, the current in reinforced concrete 

usually is from 60mA to 120mA and the current in rebar alone usually is from 0.6 A to

1.1 A.

• Providing much larger surface area of cathode than that of anode, more than ten times

• Exposing specimens to high humidity environment i.e. wet-dry cycling, ponding.

• Supplying of sufficient chlorides by adding salt directly into the mixing water, or by 

ponding specimens in a chloride solution.

• Supplying of sufficient oxygen via wet-dry cycling

The research of accelerated corrosion conducted by University of Toronto for ISIS projects 

is taken as a reference [Lee, 1998].
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2.2 Testing / Measuring of Corrosion in RC Structures

2.2.1 Electrochemical methods

The electrochemical methods commonly used in corrosion detection are Half-cell Potential 

Mapping, Polarization Curve, Polarization Resistance, A.C. Impedance, Electrical 

Resistance Probe and Electrochemical Noise. Their descriptions, advantages and 

disadvantages are as follows: [References for the following are taken from Scchiessl, 1998; 

Coitis, 2002; Tonini, 1980].

• Half-cell potential mapping

Half-Cell Potential Mapping, first developed in 1950’s, is most common and convenient in 

use. It compares the electrode potential of the steel in concrete with that of a reference 

electrode, which usually is silver/silver chloride, copper / copper sulphate (CSE) or 

saturated calomel (SCE). The mechanism of half-cell potential is described in Section 

4.8. The advantages are inexpensive, simple to perform, whole structure quickly 

surveyed and straightforward data analysis. The limitations are: (i) limited information 

for potentials between -200 and -350mV CSE; (ii) no information on corrosion rate; and 

(iii) depends on the condition of concrete e.g. difficult to perform when contaminants 

present on or in concrete.

• Polarization curve (Tafel plot)

In this technique, there are three electrodes, a working electrode (steel under test), a 

counter electrode and a reference electrode. The potential applied to the embedded steel
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and the counter reference is at a level of several hundred millivolts. By finding corrosion 

current, the mass loss of steel can be determined and then the corrosion rate can also be 

determined assuming anodic area is known. The major advantage of polarization curves 

is that this technique gives information about the steel’s behavior at potentials rather than 

the immediate corrosion potential [Hansson, 1986], The major disadvantages of the 

polarization curve technique are: (i) it takes a long time to perform; and (ii) the 

polarization will change the environment at the steel-concrete interface, such a 

measurement will not accurately reflect the behavior of the steel in its natural surroundings 

and that the test cannot be regarded as non-destructive.

• Polarization resistance (Linear polarization)

This technique is similar to polarization curve, but with much small scan potential. The 

current vs. potential is linear. The advantages of this technique are rapid test, relatively 

inexpensive, simple to perform and corrosion rate determined. The limitations of the 

polarization resistance technique in general are: (i) area of steel under test must be known; 

(ii) IR drop; and (iii) the Tafel slopes are unknown or vary from time.

• A.C. impedance

In A.C. impedance measurement, an AC signal (typically, 10 to 20 mV) is applied to the 

steel-concrete system and the modulus of impedance and phase shift is considered over a 

range of frequencies (typically 100 kHz to 1 MHz). The advantages are that information 

relating to corrosion mechanism can be established and corrosion rate can be determined. 

The limitations of this technique are long test duration, difficult to measure corrosion rates,
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high equipment costs and complex data processing.

• Electrical Resistance Probe

This technique is based on electrical resistance measurements on thin steel sections 

embedded in the concrete. As the resistance of steel is inversely proportional to its 

diameter, when corrosion proceeds, the steel becomes thinner and its resistance shows a 

corresponding increase. The advantages of this technique are inexpensive, simple to 

perform, straightforward data analysis and corrosion rate determined. The limitations are 

that it is unsuitable for pitting, only provides information locally at probe position, and 

probe installation is preferable during construction.

• Electrochemical Noise

Small fluctuations in corrosion potential are related to the presence and nature of corrosion 

on the reinforcing steel surface. The major advantage of this technique is 

non-perturbative because no potential or current is applied to the steel. The 

disadvantages are long test duration, no quantitative results and high equipment cost etc. 

[Hansson, 1986].
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2.2.2 Non-electrochemical methods

• Visual Inspection and Microscopic Observation.

The visual or microscopic observation of concrete surface may provide approximate 

information about the severity of corrosion attack. But this information is not sufficient 

because it may lead to erroneous and subjective conclusions and usually must be 

completed with other tests e.g. core sampling. Furthermore, this method provides 

corrosion detection only after significant corrosion has occurred [Zdunek et al, 1995; 

Schiessl, 1988]

• Weight Loss

Weight loss can accurately quantify a corrosion attack. But it is only applicable to the 

laboratory.

• Infrared thermography

Infrared thermography has been used to measure the surface temperature of the concrete. 

As the concrete heats and cools during daily cycle, the delaminated areas interrupt the heat 

transformation and result a difference in surface temperature of concrete [Schiessl, 1988]. 

This method has less success and very low level of application.

• Radar

Ground Penetrating Radar (GPR), also called Short-pulse Radar, uses electromagnetic 

wave to access integrity and thickness of concrete and other structures. It is the
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electromagnetic analog of sonic methods. The GPR instrument consists of a recorder and 

a transmitting and receiving antenna. GPR is most commonly used for evaluating 

concrete or asphalt roadbed surface. For concrete structure, GPR can be used to map the 

rebar and tendons as well as locate voids underneath slabs. However, it is seldom used 

for corrosion detection [Malhotra, 1991].

• Radiography

This method involves producing high-energy X-ray or Gamma-ray beams to produce a 

high- resolution picture of the object. Radiography produces the high quality NDT 

imagine of the interior structure of concrete. It can locate rebar, post-tensioned cable and 

conduit. But this method requires extensive safety precautions and, therefore, is 

impractical for many in-service structures. The high initial cost and the immobility of the 

testing equipment have also been the main limitations [ACI Committee 224, 1993].

2.2.3 Summary

The foregoing methods are valuable for corrosion detection, but most of them have low 

level of real application in-situ due to their respective limitations. Table 2.1 shows that 

only half-cell potential and visual inspection got high level of application in real world.
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Table 2.1 Summary of the techniques used to study the corrosion of steel in concrete 

[Schiessl, 1988]

Techniques Actual Level of Application Indication on the 

Level of CorrosionIn Lab. On-site

Electro

chemical

Half-cell Potential High High Qualitative

Concrete Resistivity Medium Low Semi-qualitative

Reinforcement

Resistivity Low Low

Semi-qualitative

Polarization Resistance Medium Very low Qualitative

Impedance Low Very low Qualitative

Elect. Noise Very low Very low Semi-qualitative

Non-

Electro

chemical

Visual inspection High High Qualitative

Weight Loss Low — Qualitative

Infrared Thermograghy Very low Very low Qualitative

Radar Very low Very low Qualitative

Radiography Very low Low Qualitative

Several electrochemical methods are applicable to metal in solution, but the validity to 

determine the corrosion of steel embedded in concrete is uncertain [Mannning, 1986].

Limitations over both electrochemical and non-electrochemical methods are 

time-consuming, localized detection and unable to provide continuous detection. 

Methods using sonic technique are introduced in Section 2.3.
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2.3 NDT Methods in RC Using Sonic Technique

The oldest sonic methods for corrosion detection in RC can be traced to the use of hammer 

sounding and chain drag sounding. These two methods depend on experiences and only 

detect large size flaws. Ultrasonic techniques and acoustic emission technique use or 

detect sonic waves in the ultrasonic ranges.

2.3.1 Ultrasonic techniques

• Ultrasonic Pulse Velocity (UPV)

This technique involves measuring the travel time of ultrasonic pulses through material 

with a know thickness. It uses the relationship between the quality of concrete and the 

velocity of an ultrasonic pulse to predict the strength of early stage concrete. UPV is 

good for investigating the uniformity of concrete [Malhotra, 1991]. Voids honeycomb, 

cracks, and other damage to concrete can also be located.

This method has provided in-situ measurements of the severity and area of deterioration, 

and assessment of the condition of concrete structure. The equipment can produce 

ultrasonic waves that penetrate over 90 m of continuous concrete with the aid of amplifiers 

or up to 7.5 m without amplifiers [Rosh, 2003]. The major limitations of the method are 

the requirement of two-sided access of the tested object and the influence of steel 

reinforcement.
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• Impact-Echo (IE)

The IE tests are based on the reflection of compressional waves from the bottom of the 

structure member or from flaws. A stress pulse is introduced into the structure from a 

hammer or other impact instrument. An ultrasonic transducer on the surface of the 

structure receives the resulting stress waves. These stress waves travel several times 

between the surface and the voids or delaminations that may exist in the structure. The 

distance from the surface of the structure to the void or delamination can be determined by 

the pulse velocity in the material, and the observed resonant frequency, particularly in 

plate-like structures (e.g. pavements) where the void tends to be parallel to the structure 

surface. However, smaller cracks and discontinuities are more difficult to detect with this 

technique due to the relatively low frequencies involved [Landis et al, 1994].

• Spectral Analysis of Surface Waves (SASW)

This method is based on the propagation of mechanically induced surface waves; it utilizes 

a property of surface waves that the dispersion of the surface wave is a function of the 

material properties at different depths. The technique has been successfully applied to 

evaluation of airport runway pavements. Attempts have been made to adapt the 

technique to concrete structures [Landis et al, 1994]. In SASW analysis, a surface wave 

is generated on the structure using an impact source similar to that used in the impact-echo 

technique. Two in-line transducers a certain distance away from the source then measure 

the surface wave. The waveforms measured at each transducer can then be analyzed to
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determine the frequency-dependent dispersion of the surface wave. From the dispersion 

curve, the elastic profile for the structure can be estimated.

This method measures the layer thickness as well as stiffness, and requires only one-side 

access. However, it is only suitable for thin structures such as pavements and slabs. 

SASW does not isolate fundamental mode Rayleigh waves in determining the velocity 

dispersion curves. For investigations of reinforced concrete structures, the presence of 

rebar will probably influence the data [Rosh, 2003].

The above ultrasonic techniques are used for either assessing the uniformity, thickness and 

quality of concrete or indicating the presence of voids and cracks. But they are unable to 

measure reinforcement corrosion itself.

2.3.2 Acoustic emission

Acoustic Emission is unique over other sonic techniques because the stress waves are 

generated by the tested structure itself rather than an external source.

The AE technique is based on the detection of high frequency elastic waves emanating 

from the source by converting them into electrical signals. This is accomplished by 

directly coupling transducers (usually of piezoelectric type) on the surface of the structure 

under test to 'listen' to a wide range of events that may take place inside. The output of 

the sensors is amplified through a low-noise preamplifier, filtered to remove any 

extraneous noise and further processed by suitable electronics [Kishi et al, 2000].
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AE technique has been widely used in many industrial areas in recent decades. AE has 

been commercially available for forty years. The applications include detection or 

monitoring of structural integrity and micro-crack of concrete, crack of mine and rock, 

faults or leakage in pipeline and tanks, corrosion and stress corrosion, pressure vessels, 

aircraft, welding defect and fatigue damage [Ian, 1991; Williams, 1980].

The up-to-date research in AE technique of reinforced concrete is mostly limited to crack 

growth and location [Kishi et al, 2000; Malhotra, 1991], however, research of using AE for 

corrosion detection in concrete has been conducted by Northwestern University in 1995 

[Zdundek et al, 1995]. Idrissi H. et al did another research in 2003.

• AE monitoring corrosion in RC structures

The study of AE monitoring corrosion in concrete can be divided to three stages: AE 

source, wave propagation and AE instrumentation (Fig. 2.8). The AE source has been 

described in Section 2.1.4. Depassivation is supposed to be the first process that creates 

AE events. The wave propagation and AE instrumentation are presented in Section 2.4 

and Section 2.5.

Concrete I
■t? Wave Propagation

;ce

AE InstrumentAE scnso

Steel

Fig. 2.8 Schematic illustration of AE monitoring corrosion in RC structures

Literature Review 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The spectrum of AE for engineering practices is typically from 20 KHz to 1 MHz, 

sometimes up to 2MHz. Higher frequencies are limited by attenuation and low 

frequencies may be contaminated by noise. Fig. 2.9 shows how the frequencies met in 

AE signals compare with those used in ultrasonic NDT and other applications.

Structural dynamics Mechanical failures Ultrasonic NDT------------ :-----------►  ► m---------- ►

Rotor dynamics . ,. „ . .
^  ^  Acoustic Emission

Human audible sound

0.1 1Hz 10 100 1kHz 10k 100k 1MHz 10M

Macroscopic Intermediate Microscopic
defects size defects defects

Fig. 2.9 Spectra of AE and others [Williams, 1980]

• Advantages of AE technique

“One of the key advantage of AE over other nondestructive test methods is the fact that it 

detects signals in real-time that are emanating from the materials themselves” [Carlos, 

2003]. It is supposed that the major advantages of AE technique use for corrosion 

detection in reinforced concrete are: real-time monitoring structures; triggered by internal 

activity; detecting corrosion from its early stage; long-term and long-distance monitoring 

in-service structures under any weather condition; and detecting the position where the 

traditional techniques are unable or difficult to reach.
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2.4 Wave Transmission

To understand how acoustic waves travel in steel and concrete and what is the difference 

of waves traveling in these two media, the theory o f wave transmission has to be reviewed.

2.4.1 Wave theory

Acoustic emission fundamentals and wave equations

AE Sensor
V (t) \ R(t)

AE Source

Fig. 2.10 Schematic of AE source and Green’s function

A micro-crack (1-n) creates moment tensor at an AE source ( r \  t ’) with source function 

S(r’, t ’). The Green’s function is the appropriate transfer function for the medium to 

convolute the source tensor to obtain the displacement u(r, t) of point r at time t due to an 

impulse force applied at x ’ at time t’ [Scott, 1991; Vahaviolos, 1999].

The sensor output V(t) is function of u(r, t) by sensor’s response function R(t). Therefore,
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in a simplified way, the sensor output can be written as V(t) = S(t) * G(t) * R(t), and the 

displacement can be written as u(r, t) = S(t) * G(t), where S is the source function, G is the 

Green’s function, and R is sensor’s response function [Ian, 1991; Landis, 1995]. The 

Green’s function is related to the material properties of a wave propagation medium. The 

following 3-D wave equations present the mathematical expressions for the displacement 

convoluted by this function.

The one-dimensional wave equation (with no source term) is [Pain, 1999]:

d2u 1 d 2u , . ,. ,— -  = — —-  (Longitudinal wave)
dx c dt

The general solution, known as D'Alembert's solution, is

u {x ,t)  =  F (x  -  c t)  +  E (x  + c t)

For transverse wave, u(x, t) should be y(x, t). F(x-ct) represents forward solution and 
E(x+ct) backward.

The 3-D wave equation (with source term) is [Fitzpatrick, 2002]:

( v 2 w )“ = ^ / )

Where v2 is the Laplacian operator; c is the group velocity; Waves travel outwards from 

point where S(r’, t ’) is non-zero towards infinity.

Applying the Green’s function G(r, r ’; t, t ’), the transfer function for the medium to obtain 

the displacement u(r, t) that generated by a point impulse located at position r ’ and applied 

at time t ’, the wave equation can be written as:
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(V2 - \ ^ - ) G { r , r ' - , t , t ' )  = 5 { r - r ' ) 8 ( t - t ' )  
c ot

The solution of displacement at point r at time t is [Fitzpatrick, 2002]: 

u(r,t) = jjG(r,r';t,t')S(r',t ')d3r'dt'

The Green’s function is based on linear system assumption i.e. the elastic behavior of the 

medium. In other words, the Green’s function depends on the elastic properties of the 

material and the geometric relationship between the source and the sensor. Once the 

elastodynamic Green’s function is determined it can be used to evaluate the ultrasonic 

properties of the material [Landis, 1995]. Landis presented that the velocities of the P- 

and S-wave components can be directly estimated from a plot of Green’s function using 

the arrival times at the sensor. Theoretically, the attenuation can be evaluated by 

comparing the Green’s function of the actual material to that of a reference non-attenuative 

ideal material.

Wave modes

In solids, acoustic waves can propagate in four principal modes that are based on the way 

the particles oscillate. They can propagate as longitudinal waves, shear waves, surface 

waves, and in thin materials as plate waves [Pain, 1999; Dual, 2003].

In longitudinal waves (P-Wave), the oscillations occur in the longitudinal direction or the 

direction of wave propagation. Since compressional and dilatational forces are active in 

these waves, they are also called pressure or compressional waves. Group velocity for
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longitudinal wave in homogenous, isotropic and linearly elastic bulk solid is [Frederick,

1965]:

= I E( 1 -v )
p i p ( l  + v ) ( l -2 v )

Group velocity for long thin rod with diameter < 0. IA :

In transverse or shear wave (S-Wave), the particles oscillate transverse to the direction of

propagation. Shear waves require solid materials for effective propagation and, therefore,

are not effectively propagated in liquids or gases. Shear waves have lower speed than

longitudinal waves [Frederick, 1965].

_ [G _  \ E ( l - 2 v )  
s i P i p 2 ( i ~ v )

By comparison, transverse (S-) wave and longitudinal (P-) waves also have the following 

two major differences: (i) the Poisson’s ratio being always between 0 and 0.5 causes 

S-wave to travel at speed between 0-0.7 of the P-wave; and (ii) S-wave has a shorter 

wavelength than P-wave [Bedford, 1994].

Surface - Rayleigh waves travel the surface of a relative thick solid material within a depth

of one wavelength. The particle movement has an elliptical orbit.

_ 0.87 + 1.12v _ 0.87 + 1.12v [G _ 0.87 + 1.12v \e  ( I -2v)
1 + v 5 l + v i p  l + v i  p  2(1 -  v)
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The velocity of surface wave is similar with the velocity of transverse wave. It can be 

calculated from the above equations [Malhotra et al, 1991]. Surface wave -Love wave is 

possible in a thin layer of material lying on a substrate. The direction of vibration of the 

particles of the layer is parallel to the surface, but transverse to the direction of wave 

propagation.

• Lamb wave

Lamb waves (Plate waves) can propagate only in very thin metals. Lamb waves are the 

most commonly used plate waves in NDT. Lamb waves are a complex vibrational wave 

that travels through the entire thickness of a material. Lamb waves are essentially 

combined by longitudinal wave and transverse wave. Propagation of Lamb waves 

depends on density, elastic, and other material properties, and they are greatly influenced 

by the frequency and material thickness. With Lamb waves, a number of modes of 

particle vibration are possible, but the two most common are symmetrical and 

asymmetrical. The complex motion of the particles is similar to the elliptical orbits for 

surface waves [Kinsler, 1982]. The group velocity of Lamb wave depends on type and 

mode as shown in the following figure. S0, Si, S2 ... are symmetrical modes; A0, A h A2 ... 

are asymmetrical modes.
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Fig. 2.11 Velocity of propagation of lamb waves in steel to the multiplicity of modes 

[Ian, 1991]

• Summary

Table 2.2 summarizes the various wave mode presented in the above discussion.

Table 2.2 Summary of wave modes

Wave Types By name Particle Vibrations Solid medium
Longitudinal Pressure,

compressional
Parallel to wave direction Thickness larger 

than wave length
Transverse Shear Perpendicular to wave direction Thickness larger 

than wave length
Surface 
- Rayleigh

Elliptical orbit - symmetrical mode On the surface of a 
solid

Surface 
- Love

Parallel to plane layer, perpendicular to 
wave direction

A thin layer of 
material lying on a 
substrate

Plate Lamb

Sym. At surface: elliptical orbit 
At center: Similar to 
longitudinal wave.

Thickness is 
comparable to the 
wavelength

Asym. At surface: elliptical orbit 
At center: Similar to 
transverse wave.

Thickness is 
comparable to the 
wavelength
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Properties o f acoustic wave in solid

Wave propagation in isotropic solid materials is defined by the wavelength, the frequency, 

and the velocity. The wavelength is directly proportional to the velocity of the wave and 

inversely proportional to the frequency of the wave. This relationship is shown by the 

following equation: Wavelength (X) = Velocity (v) / Frequency (/)

Table 2.3 Acoustic properties for some common materials [Turner, 1991]

Material Young’s
Modulus

(N/m2)

Density

(kg/m3)

Wave
velocity

(m/s)

Characteristic
impedance

(Ns/m3)

Nickel 2.2 x  10” 8800 497Q 4.4 x  107
Steel 2.1 x  1011 7800 5200 4.1 x  107
Aluminium 6.9 x  1010 2720 5030 1.4 x 107
Glass 6 X IQ10 2400 5000 1.2 x  107
Concrete 3 X 1010 2400 3500 8.4 x  106
Lead 1.7 x 10l° 11400 1230 1.4 x  107
Hardwood 1 x 1010 600 4000 2.4 x 106
Nylon 2 x 109 1140 1320 1.5 x  106
Water 2.3 x 109 1000 1500 1.5 x  1G6
Mineral oil 1.6 x  109 800 1400 1.1 x 106
Air 1.4 x  105 1.2 340 407 ’

The velocities on Table 2.3 are group velocities for longitudinal waves. The relationship 

between the group velocities and the phase velocities can be simply grasped as phase 

velocity = d c ^ p  /dco, where c ^ p  is group velocity and co = 2t t x  frequency [Frederick, 

1965]. The velocity with which energy is propagated down the plate (the group velocity) 

may be calculated from phase velocity [Fitting, 1981]. Longitudinal wave travels at the
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highest speed of all modes. The speeds of waves with different modes in concrete and 

steel are listed in Table 2.4.

Acoustic Impedance, an important parameter, is defined as:

Z = pc

Where Z is acoustic impedance; c is wave velocity and p is density of medium

The important relationship is that the pressure and velocity are directly proportional to one 

each other for any waveform at any instant as following equation [Turner, 1991]:

du

Where p is the pressure.

Acoustic Intensity is defined as I = p2/2pc, where p is pressure and pc is acoustic 

impedance, or I = pc(u)£)2/2, where OJis frequency and £is the maximum amplitude of 

particle vibration [Frederick, 1965].

The energy distribution of corrosion AE source at the steel-concrete interface can be 

derived from the comparison of acoustic intensities of steel and concrete. In the source 

where AE wave is generated, the amplitude of the AE wave in concrete or in steel at the 

interface is assumed constant. Thus, the ratio of Isteei and I c o n c r e t e  is equal to the ratio of 

their acoustic impedances, which is approximately 5:1. As a result, steel reinforcement 

carries approximately 83% energy of an AE wave that generated at the steel-concrete 

interface from the corrosion source.
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Reflection, refraction and mode conversion

• Reflection and refraction

When an AE / ultrasonic wave passes through an interface between two materials at an 

oblique angle, and the materials have different indices of refraction, it produces both 

reflected and refracted waves. This also occurs with light. The reflection angle and 

incident wave angle are always equal. The angle of refraction follows Snell’s law:

sin d] sin ^

V  ~ V
y l \  y LZ

Where VL1 is the longitudinal wave velocity in material 1; VL2 is the longitudinal wave 

velocity in material 2. An important angle is Critical Angle of incidence Qcr. Over this 

angle, all of the wave energy is reflected back.

sin 6cr = —  
c2

Table 2.4 shows the critical angles of waves in steel surrounded by concrete. The 

velocities are given by NDT Resources Center website www.ndt-ed.org (accessed Oct. 20, 

2003). The critical angels are calculated from given velocities. Velocity in concrete 

3500 m/s is taken from Table 2.3.
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Table 2.4 The velocities and critical angles in steel and concrete

Wave Longitudinal wave Transverse
wave

Surface wave

Velocity in 4340 
steel (m/s)

5200 in bar or rod 

5850 in bulk

3280 3018

Velocity in 
concrete (m/s)

3500* 1440 1320

Critical angle 
(degree)

42.3 in bar 26.0 25.9

Wave energy reflection coefficient R can be written as:

^2  "I"

Where Z is the acoustic impedance. This equation applies when the direction of wave 

propagation is normal to the boundary. The sum of percentages of transmitted energy 

and reflected energy always equal to one.

• Mode Conversion

When sound travels in a solid material, one form of wave energy can be transformed into 

another form. For example, when a longitudinal wave hits an interface at an angle, some 

of the energy can cause particle movement in the transverse direction to start a shear 

(transverse) wave. Mode conversion occurs when a wave encounters an interface
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between materials of different acoustic impedance and the incident angle is not normal to 

the interface.

When a longitudinal wave is reflected inside the material, the reflected shear wave is 

reflected at a smaller angle than the reflected longitudinal wave due to the fact that the 

shear velocity is less than the longitudinal velocity within a given material.

Mode conversion leads to a complex interaction and multiplication of the number and type 

of waves within materials. This process causes difficulties in wave analysis and signal 

interpretation [Santamarina, 1994].

Attenuation

Attenuation refers to the decrease in signal amplitude or intensity as it travels through a 

medium. In idealized materials, signal amplitude is only reduced by the spreading of the 

wave. However, natural materials all cause energy loss that further weakens the signal 

[Cherrouf et al, 2000]. The causes of attenuation can be divided into two general 

categories: geometric attenuation, scattering and absorption attenuation.

• Geometric attenuation.

This category takes into account the size of source and propagation medium, the 

wavelength, and the presence or absence of the nearby reflecting surface [Frederick, 1965]. 

Geometric attenuation is not associated with energy losses, but energy redistribution. 

The reason is that energy in the wave-front remains constant but the front spreads over a 

large area until reach the surface of reflection. As the energy is converted to larger area,
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the amplitude must decrease. P-wave spreads over a spherical volume of space, the 

geometric attenuation is proportional to 1/radius. Surface wave travels more in a plane, 

the attenuation is proportional to 1/Vradium [Cascante, 1996].

• Scattering and absorption mechanism

Scattering of waves is a result of material inhomogeneity. The waves break-up through 

reflection at a very uneven surface or small discontinuities. Scatter also results from 

reflections from one or more point reflectors, e.g., a cluster of inclusions. In this case the 

energy is lost, not by random reflection but by dispersal over a large, expanding wave front. 

For material with inhomogeneities that are very small compared to the wavelength, the 

attenuation from scattering is negligible. However, attenuation increases approximately 

with the third power of the grain size. Scattering becomes significant as the size of 

inhomogeneity becomes 1/10 of the signal wavelength. Scattering produces a large 

number of echoes or false signals; the true signal may be lost. In the anisotropic material, 

the scattering may be so severe that the testing and data analysis are very difficult 

[Krautkramer, 1990].

Absorption is the component of ultrasonic wave attenuation resulting from conversion of 

ultrasonic energy into other forms of energy such as heat energy. This type of attenuation 

can be visualized as “braking” or resistance of particle oscillations. The concept also can 

explain why high frequency oscillations lose energy more quickly than slow oscillations 

[Krautkramer, 1990]. In general, the energy loss increases with increasing frequency, but 

a few are independent of the frequency [Frederick, 1965].
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• Attenuation coefficient

Attenuation coefficient of a decaying plane wave is expressed as [Blitz, 1964]:

A = A0e ^

In this expression A0 is the amplitude of the propagating wave at some location. The 

amplitude A is the reduced amplitude after the wave has traveled a distance Z from that 

initial location. The quantity a  is the attenuation coefficient of the wave traveling in the 

z-direction. The dimensions of a  are nepers/length, where a neper is a dimensionless 

quantity. The units of the attenuation value in nepers/length can be converted to 

decibels/length by dividing by 0.1151. Decibel is a more common unit when relating the 

amplitudes of two signals.

The equation of attenuation coefficient can be written as fiittp://www.ndt-ed.org. accessed 

Oct. 20, 2003]:

a  =  ̂ = [2.304 x log(Z/A0)] / Z nepers / m
Z x log(e)

Transfer to decibel scale by dividing by 0.1151: 

a  = [20 xlog( A/A0)]/Z d B / m

Or in power expression: 

a  = [10 x log (PSD/PSD 0)] / Z d B / m

Where Z is the distance from source to the point of measurement. PSD (Power Spectral 

Density) is presented in Section 2.5.2.
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2.4.2 The difference in travel between steel and concrete

The different attenuation nature of steel and concrete determines their characteristics as 

acoustic medium. As presented in previous section, the grain size and homogeneity of 

materials as well as the frequency are the most important factors that greatly influence the 

attenuation coefficient.

Attenuation - steel

The attenuation coefficient for steel bar has not been found, but two references for steel 

pipe leak AE were found. For AE waves in steel bar, one AE signal contains a series 

waves with a range of frequencies. In time domain, the attenuation coefficient is an 

average value over the frequency range.

Pipe attentuation

distance from source (m)

Fig. 2.12 Steel pipe attenuation of leakage AE

Attenuation coefficient of leak AE of steel pipe in Fig. 2.12 was obtained from Acoustic 

Emission Latin American Group (GLEA) of Comision Nacional de Energia Atomica 

(National Commission of Atomic Energy, Argentina). This figure was measured by two
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sensors with distance varied from 0 to 11 m [Acoustic Emission Reference Guide, 

http://www.cnea.gov.ar/cac/endve/elea/mateo/guide.htm. accessed Dec. 12, 2003]. The 

group velocity for this leakage AE was 3500 m/s. Some useful information can be learnt 

from this diagram: (i) near field is considered within one meter from source; (ii) 

attenuation coefficient is 7.5 dB/m at near field and 2 dB/m at far field (beyond lm); and 

(iii) the attenuation coefficient in this diagram is an average number over the spectrum of 

leak AE.

Elias Stepanka found that “the steel attenuation was nearly constant across the frequency 

range (50-600KHz)”. Another data shows steel pipe attenuation 18 decibels attenuation 

at a 3.658 m specimen with A0 Lamb wave mode [Park, 1995]. The attenuation in steel 

pipe is taken as a reference for the study of the attenuation in steel reinforcement.

The following shows the relationship between attenuation and steel grain size and 

frequency. When the wavelength is much larger than the mean grain diameter, the 

attenuation coefficient in the Rayleigh region can be written as [Bounda et al, 2003; 

Pandeyetal, 1996]:

a ( f )  = alf  + a2D if*

Where aps absorption constant; a2 is scattering constant; D is mean grain size and f  is 

frequency. If the inhomogeneity of steel is very small compared to the wavelength of 

ultrasonic / AE wave, the second part of the equation is not significant. The attenuation is 

proportional to the frequency.
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Attenuation - concrete vs. steel

Concrete is a composite heterogeneous material. Its particle and pore size range from 

nanometer to centimeter (inter-particle spacing between CSH sheets: 1-3 nm; coarse 

aggregate in size of cm). Reflection in concrete is very complicated phenomenon 

because of the varying moisture conditions, complex geometry of voids, aggregate, 

entrapped air and hydration products [Elias, 1998]. Only negligible part of a wave passes 

through the interface of an air-filled crack and concrete. Same crack filled with water 

would transfer about 10-25% of the wave energy [Galan, 1990]. Hardened concrete 

consists of very complex compounds, the various arrangements of hydration products e.g. 

CH crystals and CSH gel. The porosity of concrete greatly increases the energy loss of a 

wave. Thus, concrete has high attenuation from scattering and absorption.

In most reinforced concrete structures, concrete is bulk in volume compared with steel 

reinforcement. Reflections within the surface of steel reinforcement effectively reduce 

the energy loss of a wave in travel. Conversely the spreading of wave-front in concrete 

causes energy loss and, therefore, the wave amplitude decreases. So concrete has larger 

geometric attenuation than steel reinforcement in reinforced concrete structures.

In Elias’ research [1998], a relative value MAC (Modified Attenuation Coefficient) was 

used. It was based on the logarithm of the ratios between reference and output:

M A C  =  - \o g (V 0Ut!V ref)

MAC values are defined as positive by multiplying the result from logarithm by the 

negative one. From Fig. 2.13, the smallest attenuation difference between steel and

Literature Review 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



concrete is approximately 1.2 MAC unit (Steel and AAR-2 at 50kHz); in linear scale the 

attenuation of concrete is 15 times higher than that of steel.

<
2

2 - 
1 -
0

0 100 200 300 400

Frequency [kHz]

500 600

—-■».— siecl
  P-jQd
   P-60<t
 P-Wd
— e —  AAR-2 
—HI—  AAR-3

Fig. 2.13 Attenuation vs. Frequency -  steel and concrete [Elias, 1998]
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2.5 AE Instrumentation

AE systems vary from single-channel and purpose devices to complex multi-channel and 

multi-processing system. Fig. 2.14 shows a simplified multi-channel system. A typical 

AE system uses piezoelectric sensors coupled to the test object with a suitable coupling 

medium e.g. grease. The output of the sensors is amplified and filtered by pre-amplifiers 

and then sent to the AE processor via shielded coaxial cables. The processor further 

filters and amplifies the AE signals, processes the data, and displays the results. The 

results and data are recorded for instance analysis or transferred for post-test analysis via 

further signal processing [Carlos, 2003; Zdunek, et al, 1995].

A E  P r o c e s s o r

A E  S e n s o r  P r e a m p l i f ie r Display

(  liannel I

( himnei ?.

+  Hard Copy 
Outputs

Channel \ « Control 
Outputs

I'arame!; ;c

lipiU'.

Informational
Outputs
e.g. Networks

Fig. 2.14 Simplified block diagram of an AE system [Carlos, 2003]
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2.5.1 Sensors

The AE sensor is a very important component of an acoustic emission testing system. 

The first step in taking AE measurement is converting surface displacement into a signal, 

which can be amplified, digitized and stored. Most AE sensors are of the piezoelectric type 

due to their very high sensitivities and the ease of coupling [Gautschi, 2002], Presented 

here are sensitivity, structure, material, piezoelectric effect, characteristics, and selection of 

AE sensors, broadband and resonant sensors, calibration, sensors used for corrosion 

detection, and in addition the fiber optic sensors.

Sensitivity

Their limiting sensitivities of piezoelectric AE sensors are compared with laser 

interferometer and capacitor microphone on the following Table 2.6. High sensitivity of 

AE sensors enables the detection of the AE waves in very small magnitudes from 

corrosion activities.

Table 2.6 The limiting sensitivities of transducers [Ian, 1991; Matthews, 1983]

Type Limiting Sensitivity (m) 

[Matthews]

Limiting Sensitivity (m) 

[Ian]

Broadband Piezoelectric 10 '12 1 0 '12

Resonant Piezoelectric 1 0 '13 1 0 '13

Laser Interferometer lO-ii ~10-i2 io -10

Capacitor Microphone 10 '12 1 0 '11
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Structure o f piezoelectric AE sensors

The design of sensors varies from manufacturers, but the basic components are similar. 

They are piezoelectric element, wear plate, sometimes matching layer and backing 

material depending on the purpose (Fig. 2.15). Some sensors also come with a built-in 

amplifier or mounting bolt.

it
Wear plate

Fig. 2.15 Basic Setup of an AE Sensor rhttp://www.ndt.net/article/v07n09/05/05.htm. 
accessed July 14, 2003]

• Piezoelectric Element

The piezoelectric element is usually in shape of disk or cylinder with a thickness of a few 

mm. Similarly the diameter can be as small as 1mm, but usually is around 5mm. 

Basically there are three type of piezoelectric element (also called active element due to its 

electrical self-generation) for AE sensors: Disc element is most common in use and has 

good broadband characteristics. The thickness of the piezoelectric element is determined 

by the desired frequency of the transducer. The higher the frequency of the transducer, 

the thinner the piezoelectric element will be used. Sensor made by planar-concave 

element are said to have a constant linear sensitivity over an extended frequency range, but 

they are not in general use. The NBS conical sensor comprises a PZT element in form of
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a truncated cone. Conical sensor refers to the small aperture, high fidelity AE sensor.

• Matching layer, wear plate and backing material

To get as much energy out of the transducer as possible, an impedance matching is placed 

between the active element and the face of the transducer to keep waves that were 

reflected within the matching layer in phase when they exit the layer. The matching layer 

is made from a material that has acoustical impedance between the active element and 

steel. However, some transducers do not have matching layers.

Contact transducers also often incorporate a wear plate to protect the matching layer and 

active element from scratch and for electrical isolation.

The backing material is often made of epoxy mixed with high-density (e.g. tungsten) 

particles before curing. The purpose is to let the acoustic waves pass readily into this 

backing material with as little reflection as possible, and to absorb the wave’s energy by 

scattering the wave on the embedded particles. The backing material supporting the 

crystal has a great influence on damping characteristics of a sensor. For broadband-type 

sensors, the backing pad serves to load the piezoelectric element to make it less resonant 

and to obtain a wider frequency response of the sensor. But resonant transducers do not 

have backing material, or, in some special application, a backing material with impedance 

similar to that of the piezoelectric element is used to produce the most effective damping. 

Such a transducer (Resonant sensor) will have a narrow bandwidth resulting in higher 

sensitivity. The frequency noted on a sensor is the central or center frequency and
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depends primarily on the backing material. Highly damped sensors will respond to 

frequencies above and below the central frequency [Gautschi, 2002].

Materials o f  piezoelectric element

The active element of piezoelectric transducers used today is usually a piezoelectric 

ceramics. Prior to the piezoelectric ceramic, piezoelectric crystals made from quartz 

crystals and magnetostrictive materials were primarily used. Piezoelectric ceramics 

became the dominant material for transducers due to their good piezoelectric properties 

and their ease of manufacture into various shapes and sizes [Gautschi, 2002]. Materials 

of piezoelectric element are listed as follows:

• Naturally piezoelectric materials:

Quartz, tourmaline, Rochelle salt, lithium sulfate, lead niobate and artificially grown 

crystals of ammonium dihydrogen phosphate.

• Piezoelectric materials after special treatment (electrostrictive materials):

- Barium titanate

- Lead zirconate-titanate (PZT)

PZT4 & PZT5 are made by adding some amounts of various elements to PZT to 

improve their properties. Barium titanate and PZT5 are now the most commonly 

employed ceramic materials for making transducers.

• New materials- piezoelectric polymers:

PVF &PVF2, PVC, NYLON 11 and Co-polymer of PVDF and TrFE membrane 

Piezoelectric polymers have large piezo constant g. They are supposed respond to the 

input signal in high fidelity for wide range of frequency with high sensitivity.

Ferroelectric materials 
(Generally referred as “ceramic”)
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Piezoelectric effect

Piezoelectricity is understood as a linear electromechanical interaction between the 

mechanical and the electrical state in crystals. The direct piezoelectric effect occurs 

when a force is applied to a piezoelectric material producing an electrostatic charge, which 

can be amplified. The converse piezoelectric effect means that the piezoelectric material 

is deformed when an electric voltage is applied [Turner, 1991; Gautschi, 2002].

There are generally three types of piezoelectric effects: the longitudinal effect, the 

transverse effect and the shear effect. The type of piezoelectric effect is determined by 

the shape of piezoelectric element and cut orientation from a crystal (Fig. 2.16). The 

circular, ring-shaped or square plates are usually used for the longitudinal or the shear 

effect. In all piezoelectric elements cut for the longitudinal effect and in most elements 

cut for the shear effect, the faces on which the force is applied and the faces on which the 

output of electric charge appears are the same. In some materials and for special 

applications, it is also possible to collect the electric charge from faces other than the 

mechanically loaded ones [Gautschi, 2002].

Fig. 2.16 Piezoelectric effects and different cuts of quartz bar [Kistler’s catalog]

i
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Characteristics o f AE sensors

Sensitivity and bandwidth are two most important characteristics of AE sensors. The 

sensitivity o f piezoelectric sensors can reach values of up to lOOOV/pm (60dB, OdB ref. 

IV/'pm). A displacement of 0.1 pm generates 100 pVpk then and can be well 

distinguished from the electrical noise (about lOpVpk). For comparison, atomic radii are 

in the range of 150 pm. Displacements of 1/1000 of an atomic radius can produce 

well-distinguished AE signals!

Generally the bandwidths of AE transducers are between several KHz to 2 MHz. The 

resonant transducer has a narrow bandwidth. The broadband transducers gives more flat 

response over a wider or much wider frequency range. High fidelity transducer, which 

usually comes with a small aperture, has very flat response over the frequency range. In 

different parts of its operating bandwidth, an AE sensor may be sensitive to surface 

displacement, surface velocity, surface pressure and perhaps surface acceleration.

In some application, size is also important due to the tiny physical geometry of the object 

on which the transducer is placed.

Signal to noise ratio: AE sensor should be insensitive to low-frequency noise (inherent 

high-pass characteristic).

Electric and magnetic isolation: The wear plate provides ground isolation.

Low-impedance output provides magnetic isolation.
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Selection criteria

When selecting a transducer for a particular test one must first of all consider what is 

desired to measure on and the physical geometry of the object on which the transducer is 

placed. Generally the criteria are: (i) have a high sensitivity; (ii) have a wide and flat 

frequency response if the frequency analysis is necessary; (iii) out-of-plane, in-plane or 

combination for different purpose; (iv) have a good signal to noise ratio, be insensitive to 

low-frequency noise; (vi) be insensitive to electric and magnetic field; (vii) allow easy 

mounting, provide good, reproducible and stable coupling to the mounting face; and (viii) 

suitable size and durable [Dunegan, 2003].

Broadband and resonant sensors

The differences between broadband and resonant sensors are: (i) in sensor design, 

broadband sensors do not have backing material or the have a backing material with 

similar acoustic impedance with piezoelectric element; (ii) resonant sensors usually are in 

larger size than broadband ones; (iii) usually resonant sensor has greater sensitivity at its 

resonant frequency than broadband sensor, about 15-20 dB, but response at other 

frequencies is low compared with wideband sensor; and (iv) resonant sensor distorts the 

waveform in frequency range, so it is not suitable for testing whose primary objective is 

frequency analysis; (v) AE sensor sensitivity is also a function of sensor diameter. 

Generally, the larger the diameter of the sensor, the more sensitive it is. Resonant sensor 

always has larger diameter than broadband sensor; and (vi) for broadband sensor, research 

has shown that about a 1/4” diameter is the best size for maximizing sensitivity without 

distortion in the frequency range of interest [DW user’s manual, 1997].
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Sensor used fo r corrosion detection

The following Table 2.7 shows AE sensors used for corrosion detection in this project and 

other researches.

Table 2.7 A list of AE sensors used for corrosion detection

Sensor model Supplier Bandwidth

kHz

Application Project or 

Researcher

R100, B225, 

B1025

DW see Chapter 

3

Corrosion in R.C. This project

R15 PAC 100-500 Pitting corrosion in 

steel

Idrissi et al.

WD PAC Broadband Pitting corrosion in 

Aluminum alloy

Geng

SE25-P DECI Broadband Stress corrosion Nieuwenhove et al

B530 PAC Broadband Steel corrosion Landis et al

Calibration

Calibration gives us information of sensor’s response and characteristics. Traceability, 

repeatability and reliability are important features of calibration. Standard and 

convenient calibrations are presented as following [Esward, 2002; Vahaviolos, 1999; 

Sachse et al, 1991]. Standard calibration includes the NIST methods and the NSC 

(Nippon Steel Corporation) method. NIST (formerly NBS) - National Institute of 

Standard and Technology is the standard calibrations organization for AE sensors.

Literature Review 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• Primary Calibration (Absolute Calibration) of NIST standard calibration

Transient Surface Wave Calibration (Step-force sensor calibration) is the method favored 

by NIST and is outlined in the ASTM guide E l 106-86 (Primary calibration of AE sensors). 

It was first proposed by Breckenridge et al (1991). The testing procedure subjects the 

sensor to a surface wave similar to an actual AE event. This method uses a standard 

reference capacitance transducer or laser interferometry with a known step-force AE 

source on a steel transfer block (0.9m diameter, 0.43m long cylinder). The step-force is 

generated by the fracture of a glass capillary.

• Secondary Calibration (Face to Face Calibration) of NIST standard calibration

This method is also called White Noise Continuous Sweep (ASTM E976-84, Standard 

Guide for Determining the Reproducibility of AE Sensor Response). In this method, the 

sensor to be calibrated and a reference sensor (serving as working standard) are mounted 

in a symmetric arrangement on the same block and their outputs are compared when AE is 

induced by breaking a lead mine at a point equidistant of two sensors.

• The NSC (Nippon Steel Corporation) method - standard calibration

This technique is known as a reciprocity calibration. If two sensors, both reciprocal in 

nature are coupled to a common medium with a known Green’s function, the product of 

the source and the receiver sensitivities can be found from the driving current in the source 

and the output voltage at the receiver. Hatano et al (1998) took three reciprocal sensors 

and used them in all the possible pairs of transmitting and receiving sensors.
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• Convenient calibrations

The convenient calibration methods include pencil lead fracture, acoustic pressure and 

dropping elastic ball. Many researchers use pencil lead fracture method (Fig. 2.17).

Fig. 2.17 Calibration of pencil lead fracture [Sachse et al, 1991]

• Calibration curves

Generally calibration curves provided by AE sensor manufacturers can be divided to 

absolute calibration curves and relative calibration curves (Face-to-Face). There are three 

types of absolute calibration curves: displacement, velocity and pressure. Their units are 

as follows: Displacement calibration in unit V/pm; Velocity calibration in unit V/(m/s); 

Pressure calibration in unit V/pbar (lpbar = 0.1 N/m2).

In a pressure calibration, the sensor responses to continuous excitation, the sensitivity is 

characterized in term of pressure. The pressure calibration method is easy to reproduce 

and many standard test certificates are made by this method. These curves are useful for 

comparing sensor’s sensitivity before purchase. Since AE from corrosion source is 

transient elastic wave, the pressure measurement is not suitable. The displacement 

calibration is necessary for AE measurement. In addition, only a few manufactures
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provide velocity calibration curves. Although the pressure and velocity are directly 

proportional to one another for any waveform at any instant, the calibration curves of these 

two methods are different.

Face to face calibration curve is a relative method, which only shows relative sensor 

response in unit dB. This calibration employs one generator sensor and one receiver 

sensor. The signal generator sensor can be same as receiver or different. Two choices 

of testing configuration are available: sensor-to-sensor (no medium) and steel block [Elias, 

1998]. This curve is good for spectrum and energy analysis. One should note this 

method is different from face to face of NIST standard calibration. Digital Wave 

Corporation employs this calibration method. Calibration curves for sensors used in this 

project are shown in Appendix A.

Fiber optic sensors (FOS)

As the development of intelligent structures, fiber optic sensors have been used to monitor 

the strain, deformation, load distribution and temperature or environmental degradation of 

a structure. It is possible to use FOS for the detection of corrosion activities if it reaches 

desired sensitivity. FOS has been used to assess the corrosive expansion [Lee, 1998]. 

FOS measures tangential (in-plane) surface strains at ultrasonic frequencies by sensing the 

change in wavelength or phase of light traveling through the fiber. The sensitivity for a 

Fiber Bragg Grating sensor can be 1|J£[ISIS Canada, 1998]. A research group at the 

Georgia Tech University declared that they developed FOS with a higher sensitivity 

4xlO'10£[Shi et al, 2002].
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2.5.2 Signal processing

The study of signal processing is necessary for post-test analysis of AE signals.

Time domain analysis

Commonly used techniques of time domain analysis are ring-down counts (Fig. 2.18), 

peak-to-peak amplitude or peak amplitude, total sum (total amplitude), total energy, root 

mean square of amplitude and amplitude moment and energy moment [Mertins, 1999]

Rise time
Peak amplitude

First threshold 
crossing

Detection threshold

Time

Ring down count

Fig. 2.18 Time domain analysis
rhttp://www.ndt.net/article/az/ae/ringdowncount.htm. accessed Nov. 22, 2003]
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Fig. 2.19 Amplitude moment and energy moment analysis [Sachse, 1991]
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Total sum is the area under the waveform envelope. Total amplitude is adding the signal 

amplitude and total energy is adding the square of amplitudes. Usually adding the square

energy moment is shown in Fig. 2.19. Ian [1991] defined Root-Mean Square of 

amplitude as:

FFT and PSD analysis in frequency domain

It is necessary to analyze signals both in time and frequency domain. The smaller signals 

masked by the larger in the time domain, but both components of signal appear clearly

used. In general, any function that is “spiky” in one domain will appear spread out in 

another [Turner, 1991]. Fourier Transform (FT) is a continuous analytic integral. 

Discrete Fourier Transform (DFT) presents a signal by a set of discrete points. They are 

both derived from the basic Fourier series.

Fast Fourier Transform (FFT) is an efficient algorithm for evaluating the Discrete Fourier 

Transform (DFT). The algorithm, may in different variants, is the basis of most digital 

spectrum analysis. Fourier analysis breaks down a signal into constituent sinusoids of 

different frequencies. Another way to think of Fourier analysis is as a mathematical 

technique for transforming our view of the signal from time-based to frequency-based 

[Williams, 1999],
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• Expression of FFT

The functions X = fft(x) and x = ifft(X) implement the FFT transform and inverse 

transform pair. In Matlab Signal Processing Tool, the Fast Fourier Transform is 

expressed as:

M

Where

_  (-2  tt/ N )
CQn  — e  is an M h root of unity,

k=mAf, here m = 1, 2, 3,... N/2; letAf = 1 in the frequency plot, thus k = 1, 2, 3,... N/2.

• Signal processing in Matlab

The Discrete Fourier transform, or DFT, is the primary tool of digital signal processing. 

The foundation of the Signal Processing Toolbox is the Fast Fourier Transform (FFT), a 

method for computing the DFT with reduced execution time. Many of the toolbox 

functions (including z-domain frequency response, spectrum analysis, and some filter 

design and implementation functions) incorporate the FFT. MATLAB provides the 

functions fft and ifft to compute the discrete Fourier transform and its inverse, respectively. 

For the input sequence x and its transformed version X (the discrete-time Fourier 

transform at equally spaced frequencies around the unit circle), the two functions 

implement the relationships

• Choice of sampling parameters

A restriction on the use of the FFT is that it can only be used when N is a power of two, 

that is, when there are 256, 512, 1024, 2048, 4096 and so on data points [DW user’s
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manual, 1997]. In frequency domain, the FFT is sampled with N/2 real-valued time 

domain points since it can easily be implemented on a computer [Turner, 1991].

Time
■'■ v'..N points

Fig. 2.20 Parameters in time domain

T: length of signal recorded 

(Memory length);

N: no. of time domain points; 

At: time interval between points 

fs: sample frequency;

T= N / fs;

At= T/N = 1/(2 Fmax) = 1/ fs

Fmax: Maximum frequency

N/2: no. of frequency domain points

Af: frequency interval between points

Frequency" Af = 1/T = l/(NAt)

Fmax =Af x N/2  = fs / 2
N/2 points*

Fig. 2.21 Parameters in frequency domain
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.  PSD

Power Spectral Density (PSD) is one of the common representations in frequency domain. 

It expresses the energy carried by each frequency component of the signal. PSD is 

calculated as the vector sum of square of real part and imaginary part. Continuous 

Fourier Transform S ( f )  = jx(t)e 1 * d f  , due to the kernel of Fourier Transform 

e~'2̂ ' -  cos(27tft) -  y'sin(27z/i), can be written in the form S( f )  = a ( f )  -  j b ( f ) , where a(f) 

is the real part (Re) and -b(f) the imaginary part (Im) [Turner, 1991],

PSD = S 2( f )  = a2( f )  + j b 2( f )  or 

PSD = Re2 ( / )  + Im2 ( / )

For FFT, the unit of PSD is energy per unit of frequency interval in a linear scale. If the 

PSD compares with a reference PSD0; the energy can be expressed as decibels scale [Brook, 

1991]: PSD(dB) = 10 log(PSD/PSD0).

Literature Review
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2.6 Concluding Remarks on the Literature Review

Corrosion causing deterioration in reinforced concrete has become a multi-billion problem. 

Existing NDT test methods have their respective limitations. Most methods only detect 

the latter phenomena of corrosion when significant change in concrete-steel system 

appears e.g. cracking and spalling. Other disadvantages of these methods, such as 

time-consuming, depending on concrete condition, expense and immobility of equipment, 

localized detection, and difficult to perform etc. have also limited the applications of these 

methods in-situ.

Acoustic emission technique is theoretically expected to be capable of real-time, 24/7, 

whole-structure, automatically monitoring rather than artificially detecting corrosion from 

the commencement of corrosion period. Real-time and long-term health monitoring 

structures is the spirit of the intelligent structures that ISIS has been pursuing.

It is undoubted that AE has great merit for detecting corrosion in reinforced concrete 

structures. Although high attenuation nature of concrete has been a concern in the past, 

the placement of sensors on steel should be a solution.

The study of wave transmission and AE instrumentation in the foregoing two sections 

provides the theoretical foundation for the experimental programs.
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CHAPTER 3. EXPERIMENTAL SETUPS

This work uses sonic testing equipment and accelerated corrosion regime to examine the 

feasibility of detecting acoustic emission (AE) from corrosion sources through steel 

reinforcement. The specific objectives include:

• Detect AE from plain corrosion (only steel reinforcement)

• Detect AE from corrosion in reinforced concrete

• Prove corrosion causing AE by experimental setup and half-cell potential measurement

• Compare the measurements on steel vs. on concrete

• Estimate maximum detectable distance away from the corrosion source

• Determine the location of corrosion source

In this chapter, the experimental programs are presented for the above objectives. Prior 

to the experimental setups, the sonic testing equipment and accelerated corrosion regime 

are introduced.

3.1 Introduction of AE Equipment and DW Setting

The equipment used in this project is Digital Wave (DW) Active Testing System, 

manufactured by Digital Wave Corporation. This multifunctional equipment was 

designed primarily for testing of metals, but it is also suitable for fundamental testing of 

concrete. It has two different but relevant functions: Acoustic Emission (AE) testing and

Experimental Setups
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Ultrasonic Pulse Transmission (UPT) testing. Fracture Wave Detector (FWD) software is 

used in AE testing and Laminated Plate Wave Analyzer (LPWA) software in UPT testing.

3.1.1 General view of setup of AE testing system for this project

For AE testing, no signal generator is required to create ultrasonic signal. The typical 

configuration that is illustrated in Fig. 3.1 and Fig. 3.2 consists of piezoelectric sensors, 

pre-amplifiers, filter trigger module (FTM) and PC.

Monitor

Channel 2

Pre-Amnlifier
Channel 1 ^ A E  sensor

PC

Power Signal

Specimen

Fig. 3.1 Sketch of DW AE testing system

The hardware components for this two-channel AE testing system consists of:

1. Transducers (please see 2.2 ‘AE sensor’ for detailed information)

Broadband transducers B1025 (2 pieces)

Broadband transducers B225 (2 pieces)

Resonant transducers R100 (2 pieces)

2. PA2040 G/A Broadband preamplifiers (2 pieces)

3. DW- signal filter/amplification unit -  Filter Trigger Module (FTM) (1 piece)

4. Sonix STR*825 8-bit A/D board (1 piece)

Experimental Setups
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5. Parametric A/D board (1 piece)

6 . DWC-232 Serial Connector (2 pieces)

7. 6m preamplifier signal cable assembly with BNC connector (2 sets)

8 . 1.2m preamplifier signal cable assembly with BNC connector (2 pieces)

9. 0.9m Sensor cable assembly with micro dot / BNC connector (2 pieces)

10. Industrial computer: 133 MHz, 16M RAM, 2G HD, keyboard, mouse (1 set)

11. FWD96 Data acquisition and analysis software (1 set)

12. ViewSonic 17” color monitor (1 piece)

13. Electrical connection cable (4 pieces)

B1025 —* - p f

Sensors

Preamplifiers

Fig. 3.2 Picture of DW AE system
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3.1.2 Introduction of sensors, preamplifiers, FTM and connectors

Piezoelectric sensors used in this study are resonant sensors R100, broadband sensors 

B225 and B1025 (The manufacturer’s calibration curves and lab verification curves are list 

ed in Appendix A).

Broadband sensors B225

Frequency Bandwidth: 30 KHz - 300 KHz

Peak sensitivity 55 dB (dB ref 1 V/|Jm)

Central response at 225 KHz 

Dimension: 0.375”OD x 1.0”H

The B225 is relatively broadband and has a flat response with high sensitivity. It is 

suitable for testing that both high sensitivity and frequency analysis are required. The 

B225 provides additional sensitivity at low frequencies, which is useful when inspecting 

thick plates, highly attenuate specimens and far sources. The B225 is suitable to inspect 

concrete with high attenuation coefficient and to detect corrosion causing AE signals 

through long rebar.

Resonant sensors R100

Frequency bandwidth: 5 KHz -150 KHZ

Major output frequency: 20 and 75 KHZ

Central resonant frequency: 70 KHZ (Lab verification found second peak around 25KHZ) 

Dimension: 1.25”OD x 1.5”H
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R100 was designed with high sensitivity (Appendix A shows the calibration curves) and 

was developed for testing in which frequency content usually is not analyzed, since the 

resonance distorts the output over the frequency range. The sensor has very good 

repeatability and reliability. R100 is excellent for using on high attenuation materials or 

long distance measurement. The absolute calibration curve of R100 is not available. 

The absolute sensitivity at resonance frequency can be calculated by comparison with 

B225. The peak sensitivity of R100 is 16 dB higher than that of B225. Theoretically 

speaking, R100 should has peak sensitivity 71 dB (dB ref lV/pm). However, laboratory 

verification shows the real sensitivity is lower than this number. R100 and B225 have 

similar sensitivity. This can be explained by aperture effect.

Broadband sensors B1025 

Frequency Bandwidth: 50 KHz -2  MHz 

Peak sensitivity: 43 dB (dB ref 1 V/pm)

Dimension: 0.365”OD x 0.5”H

Active Element: 0.25” diameter low Q piezoelectric ceramic.

The output signal from the B1025 is typically between lOpV and lOmv. The B1025 is 

high fidelity piezoelectric sensor, which are designed specially for acoustic emission 

measurement. It has lower sensitivity (15-20 dB) than R100 and B225.

Preamplifiers

Each DW PA2040 G/A broadband preamplifier provides amplification -20, 0, 20, 40 dB.

Experimental Setups
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Filter Trigger Module (FTM)

FTM provides signal filter and max.42 dB signal amplification for both channels. The 

setting for both channels on each FTM as follows:

~ High Pass Filter 20 KHz (min. frequency)

~ Low Pass Filter 4000 KHz (max. frequency)

~ Threshold level 0.1 V

The high and low pass filters were set to keep unwanted signals out of expected frequency 

range. In this study, high pass was always set at 20KHz and low pass was 4000 KHz.

MicroDot / BNC connectors and connect cables

The sensor cable connects sensor and preamplifier with microdot and BNC connectors. It 

is usually less than 1.2 m. Co-axial cable connects preamplifier and FTM with BNC 

connectors. This cable can be up to hundreds meters.

3.1.3 Software FWD

The Fracture Wave Detector (FWD) system is designed for the acquisition and analysis of 

wideband AE signal waveform. Totally there are four modules in this software, Data 

acquisition module, Post-test Module, Material Analysis module and Location Module. 

Here only most important items are introduced; detailed information is shown in User 

Manual. Data acquisition parameters are configured in Acquisition Setup window, the 

left half of the screen is for waveform setups, and the right half is for definition of 

parametric for signals from other measurement devices, so we can omit the setting of right 

half part.

Experimental Setups
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D a t a  A c q u i s i t i o n

| Start ; Setup i Exit i_________________________ __

At i|u is it in ii  :'i-1ii|*
Setup Name:

WaveForms 

1 Digitization Rate: 

i Memory Length:

, Pre-Tiigger:

1.0 _
4096

0.000

..y

Z  MHz 

C Points

C ST

Parametrics 

Digitization Rate

parametric 1 [  

parametric 2  [  

parametric 3 

: parametric 4

r - M o d e -

1 channel
2 channel
3  channel
4 channel

5 channel
6 channel
7 channel
8 channel

Advanced...

II secon ds  
Name Unit/V

r- R a n g e---------------------------
.* 0-1 : ± .5 ±10

0-10 ±5

Parametric Display |G0 __| seconds

Parametric 1 Gate |o | volts

Ok Cancel

Event:

Setup  Name:

Time:

D ate1

ssRate: : 1.0 MHz -Sam pleSize: 4096 P ts i; Window: ' 4036 micro-s

Parametric? 0  Ch R ange 0 0 -1 0  V Pafametric 1 Sate: 0 V :

Fig. 3.3 Data acquisition setup

Sampling frequency (Digitization rate)

The suitable sampling frequency is determined by maximum frequency expected in 

frequency domain, required signal length and resolution both in time and frequency 

domain. Sampling frequencies fs in FWD are 0.5, 1,5, 12.5 and 25MHz. Therefore, the 

maximum frequencies Fmax will be 0.25, 0.5, 2.5, 6.25 and 12.5MHz (Fmax =0.5fs, 

explanation in Section 2.5.2).

Memory length

It is important that the Sampling Frequency and Memory Length together define the 

duration of time (Time Duration = Sampling Frequency / Memory Length). For example, 

in this study, the most often settings of these two parameters are 0.5 MHz and 4096 points 

(the number of points for FFT is constrained to be a power of two), the time duration of 

data capture is 8192 |js.
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Signal amplitude

The default value of computer output is 0 to 0.5 V and maximum output is 1 V. The 

signal amplitude was controlled by main amplifier unit (0-42 dB) in FTM and preamplifier 

(-20 to +40 dB); totally maximum amplification rate is 82 dB.

3.2 Experimental Programs

To examine the feasibility of use acoustic emission to detect the onset of corrosion in 

reinforced concrete, the following experimental programs were set up:

• Experiment-I: AE from plain corrosion

• Experiment-II: AE from reinforced concrete

• Experiment-Ill: Sensor on steel vs. on concrete

• Experiment-IV: Effect of distance

• Experiment-V: AE vs. Half-cell potential

Experiment-I and Experiment II examine whether steel corrosion can be “heard” by the 

AE sensors; Experiment-II and Experiment-V checked the AE signals in reinforced 

concrete were caused by corrosion or other processes; Experiment-Ill compared 

measurements of coupling sensors on the steel and on concrete; Experiment-IV estimated 

how far we can measure away from the corrosion source.
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Accelerated corrosion

Accelerated corrosion regime was utilized at Experiment-I to IV in this project. The 

corrosion was accelerated by the following methods:

• Imposed voltage to sample and cathode, 6 -12 V

• Sample was immersed to 2% - 3% NaCl solution

• The surface area of cathode was much larger than anode

• Sufficient oxygen supply, wet-dry cycling was used for reinforced concrete specimen 

Sensor-Specimen connection (Coupling)

Sensor-Specimen connection was very important to obtain expected signals. The contact 

surfaces of specimens were well polished. The coupling material was vacuum grease. 

Contact pressure was provided by sensor’s own weight or by clamps.

3.2.1 Experiment-I: AE from plain corrosion

In this experiment, samples were bare steel bars without casting into concrete. 

Accelerated corrosion was applied. The major targets were to see whether or not AE 

signal from corrosion can be detected by DW AE equipment, and to determine what kind 

of sensors are suitable for corrosion causing AE.

The cathode was copper plate with large surface area (totally about 0.5 m2) and was rolled 

to three layers. The specimen was supported by concrete block to get small submerging 

area (about 0.007 m2). Large difference of surface area caused the fast pitting corrosion. 

The experimental setups were shown in Fig. 3.4 and Table 3.1.
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Sensor to preamplifier
Electron movine directionCurrent direction

110VAC
— Samnle t Anodet

DC Supplier

Support blockCathode___
Copper plate

3% NaCl Solution

Fig. 3.4 Setup of Experiment-I

The DW settings were as follows: Sampling frequency was set at 0.5 MHz. Number of 

recorded points was 2048. Amplification setting was adjusted from 61dB to 49 dB, it was 

found that 49 dB was an optimum setting for R100 sensor.

Table 3.1 Samples and settings in Experiment-I

Sample Solution Applied current Sensor

l.Cold rolled Steel plate 

20 x 100 x 300mm

3% NaCl Solution 0.6A

0.7V

R100

2. Coated rebar 

with 2 notches 

D55mm x L300mm

3% NaCl Solution 0.6A-1.8V

to

0.8A-2.6V

R100

B1025(CH1)

B225(CH2)

3. Ordinary rebar 

D55mm x L300mm

3% NaCl Solution 0.9 A  

6.4V to 7.9V

R100
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3.2.2 Experiment-II: AE from reinforced concrete

This experiment examines whether the AE signals from corrosion in reinforced concrete can 

also be effectively detected.

Cathode Epoxy coat

Anode
2 inch Diameter Rebar

High-porosity
Concrete

Iron Net

Fig. 3.5 Specimen of Experiment-II

The accelerated corrosion mechanism was the same as Experiment-I. Wet-dry cycling was 

applied to introduce air into the cathode (Fig. 3.6). The specimen was designed as shown 

in Fig. 3.5. The cathode was an iron net that was cast into a concrete to let the corrosion 

occur at dry cycle. The high water to cement ratio of concrete mix design provided 

sufficient porosity to absorb water and entrap air in a fast rate. The solution was 2% NaCl 

solution and the applied current was 6V/9V- 0.07-1.5A.

The DW settings were as follows: Amplification setting was +49 dB. Sampling frequency 

was 0.5 MHz. Number of recorded points was 4096. Sensor used in this experiment was
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R100 from day 1 to the 29th day. From the 30th day to the 32nd day, broadband sensors 

B225 and B1025 were tried (the 30th & 31st day: R100 +B225; the 32nd day: R100/43 dB 

+ B1025 /70 dB).

Fig. 3.6 Testing in wet cycle of Experiment-II

During the over one month testing, another specimen from same batch as the one under 

accelerated corrosion was put in water (only water without salt and applied current) and 

under same wet-dry cycling. Sensor used for this specimen was R100 as well. Two 

specimens were under same conditions except one was corroding but the other one was not. 

The purpose of this setup was to see if the received AE signals were from corrosion sources 

or other processes.
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3.2.3 Experiment-Ill: Sensor on steel vs. on concrete

The goal of experiment was to see whether detection of corrosion causing AE through steel 

reinforcement had significant advantage comparing with detection on concrete.

Cathode 
(Iron net)Sensor

Concrete

■y —
Rebar

Container
for solution

Fig. 3.7 Setup of Experiment-Ill

The specimen was 150 x 150 x 600 mm concrete with 2 inches diameter steel bar. Two 

pieces of iron nets were cast into concrete as cathode (Fig. 3.7 & 3.8). Instead of 

applying wet-dry cycles, the 2% NaCl solution only covered half part of specimen that 

enabled another half part to entrap air. The applied current was 12~15 V / 0.32 ~ 0.42 A. 

Two 200 g weights were put on the top of two sensors to provide same contact pressures 

for both channels as shown in Fig. 3.8.

Channel 1: B225 sensor, on concrete, amplification setting +61 dB 

Channel 2: B225 sensor, on steel, amplification setting +49 dB 

Sample frequency: 1 MHz; Number of recorded points: 4096

Experimental Setups
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Fig. 3.8 Specimens before cast and testing in progress

3.2.4 Experiment-IV: Effect of distance

The goal of this experiment was to find how far we could measure away from the source 

and to determine the source location. The maximum distance between corrosion AE 

source and sensor can be calculated by attenuation coefficient in rebar. This experiment 

was applied to measure the attenuation coefficient of rebar toward AE waves. The setup 

was shown in Fig. 3.9 and Fig. 3.10.

to(-)

to (+)

Regular rebar

Container for solution

240mm 2760mm

Fig. 3.9 S etup of Experiment-IV
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Specimen diameter: 1 inch 

Specimen length: 3 m 

Solution: 3% Nacl solution 

Applied current: 10 V-1.02 A 

Transducers: 2 nos. of B225 

Amplification setting of Channel 1: +43 dB 

Amplification setting of Channel 2: +40 dB 

High pass filter: 20 kHz 

Low pass filter: 4000 kHz 

Sample frequency: 1.0 MHz 

Memory length: 4096 points

A notch was made at 240 mm from one end where the corrosion occurred. Except the 

notch, the part of rebar inside container was coated by epoxy material in order to let the 

corrosion occur at the position wanted. An U-clamp and a quick clamp (Fig. 3.11) were 

used to apply constant pressures on transducers to obtain maximum sensitivities.

Fig. 3.10 Picture of Experiment-IV

i
If
1StPftIHffe # 

§ !

1 i f

h

Fig. 3.11 U-clamp and quick-clamp
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Calibration of the two channels is very important step to precisely measure attenuation. It 

is very difficult to adjust exact same pressure on two sensors. Moreover, even if the 

applied pressures are the same on both channels, the lengths of signal cables, the 

sensitivities of the two sensors (same model) and amplifiers themselves also influence the 

signal output. In order to get accurate result of attenuation, the calibration has to be done.

The calibration process was as follows: after the sensors were fixed by U-clamps, the 

amplification rates were adjusted to relatively equal outputs of the two channels by breaking 

0.5mm-2H pencil lead at exact middle point between two sensors. In this experiment, the 

amplification rate of channel 1 was +43 dB and that of channel 2 was +40 dB. The 

calibration results are shown in Fig. 3.12. Both time domain and frequency domain show 

similar peak amplitude and PSD distribution from two channels. +/-3 dB was acceptable.

Channel 1 in time domain Channel 2 in time domain

Channel 2 in frequency domainChannel 1 in frequency domain

Fig. 3.12 Pencil lead breaking calibration for two channels
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The waveforms of pencil lead fracture directly on sensor surface were quite transient. 

However, since the facture was at the middle of a long rebar, signals received by sensors at 

both ends of rebar had undergone many times reflections and mode conversions, which 

caused waveforms in nearly continue type.

3.2.5 Experiment-V: AE vs. Half-cell potential

To bring convenience for reading, the introduction of half-cell potential corrosion 

measurement equipment and the setups were merged to next chapter experimental results 

and discussions (Section 4. 5).
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CHAPTER 4. RESULTS AND DISCUSSION

This chapter presents the results and discussion of the five experimental programs 

corresponding to the four key topics. From Section 4.1 to Section 4.5, the results and 

analysis of the following five experimental programs are presented respectively.

• Experiment-I: AE from plain corrosion

• Experiment-II: AE in reinforced concrete

• Experiment-Ill: Sensor on steel vs. on concrete

• Experiment-IV: Effect of distance

• Experiment-V: AE vs. Half-cell potential

The Section 4.6 summarizes the discussion of the following four key topics:

• Can steel corrosion be “heard” by the AE sensors?

Experiment-I & II provide the answer.

• Are the AE signals in reinforced concrete due to corrosion or other processes? 

Experiment-V & II examine it; Experiment-Ill & IV also can be evidences.

• Is it better to put the sensors on the steel or concrete?

Experiment-Ill compares the measurements of coupling on steel and on concrete.

• How far can we measure away from the corrosion source?

Experiment-IV gives data to estimate the detectable distance away from the source.

Experimental Results and Discussion
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4.1 Experiment-I: AE from Plain Corrosion

An accelerated corrosion regime was applied to obtain a corrosion source within a short 

time (first event arrival within 24 hours). Various currents were imposed to find a suitable 

voltage for producing AE. Since the major target of this experiment was to examine 

whether we can receive AE from corrosion activities, resonant sensors were used due to 

their high sensitivities and ease of coupling (certain contact pressure was provided by 

sensor’s own weight).

4.1.1 Experimental results

Table 4.1 List of AE events in Experiment-I

Sample Cold rolled 

steel plate

Epoxy coated rebar 

with notches

Ordinary rebar

Solution 3% NaCl 

solution

3% NaCl solution 3% NaCl solution

Applied 0.6 A 0.6 A - 1.8 V 0.9 A

current 0.7 V to 0.8 A -2 .6  V 6.4 V to 7.9 V

Duration 21 hrs 34 hrs 49 hrs 47 hrs

Sensor R100 R100 B1025 (CHI) 

B225 (CH2)

R100

Events 0 96 0 16

Comment Uniform

corrosion

Pitting

corrosion

No event due to 

contact pressure

Pitting corrosion

Experimental Results and Discussion
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AE Hits vs.Time (epoxy-coated rebar)

10 13 14 15 16 17 18 19 20 23 30 34

AE Hits vs.Time (ordinary rebar)

12 14 18 22 23 36 47

h o u r s

Fig. 4.1-a Hits vs. Time o f Exp. I

The experimental data shown in Table 4.1 and Fig. 4.1-a was obtained according to the time 

record at the bottom of Data Acquisition screen. Fig. 4.1-b shows the example.

|_ c ,„
. . .  . -

' ill* /-in  I    I ail

.t f .

Time record

Fig. 4 .1-b Data acquisition
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Generally the events increased with time from the first event, but it was not linear. The 

first event came earlier with higher voltage. Certain contact pressure to broadband sensor 

on testing was important to receive signals. Because the self-weights of broadband 

sensors were unable to provide enough contact pressure and the co-axial signal cable 

produced distortion forces that made the sensor lose contact with the specimen, no signal 

was received by broadband sensor in this experiment. However, from the latter 

experiments, broadband sensors are found to be suitable for corrosion AE testing. A Study 

of sensor’s sensitivity vs. contact pressure is shown in Appendix C. Prior to rebar, a cold 

rolled steel plate was used for a trial. Because only uniform corrosion occurred on the 

specimen, no AE event was received. Current AE equipment is not sensitive enough to 

detect very weak acoustic emission from uniform corrosion. The acoustic emission 

signals were successfully detected from specimens of epoxy-coated rebar and ordinary 

rebar, where pitting corrosion occurred with significant steel loss as shown in Fig. 4.2.

Epoxy-coated rebar Ordinary rebar

Fig. 4.2 Pictures of corroded specimens
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4.1.2 Analysis of the typical corrosion AE signal

Pitting corrosion in both epoxy-coated rebar and ordinary rebar generated lots of AE signals 

that were recorded. As the wave propagation in epoxy-coated rebar was different from 

that in ordinary rebar, the following analysis focused on the typical signal from ordinary 

rebar.

Time domain analysis

In time domain, peak amplitude and signal amplitude distribution are discussed as follows. 

The ring down counts will be discussed in Section 4.2 by comparing with Experiment-II.

sig1 (2048x1 real, Fs=0.5)
0.5 — |-------------- 1-------------------- 1-------------------- 1--------------------1--------------------1-------------------- 1--------------------r

n 5 ____________l--------------------1-------------------- 1--------------------1--------------------1-------------------- 1--------------------1-------------------- i—
' 0 500 1000 1500 2000 2500 3000 3500 4000

Time fJS

Fig. 4.3 Typical AE signal from regular rebar 

[Memory length: 2048points; Sample frequency: 0.5 MHz; Total amplification: 49 dB]

• The peak amplitude

The peak amplitude is 0.5 V where the amplification rate is 49 dB, so the sensor output is 

1.77 mV. Sensor output is only comparable for data obtained by same sensor or same

Experimental Results and Discussion
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model of sensor. But it is not comparable with data from other sensors. The surface 

displacement of particle at the sensor-specimen interface is the parameter that associates 

with the nature of wave propagation. The detailed calculation process is presented in 

section 4.4. The sensitivity of R100 sensor is 42 dB (dB ref lV/micrometer) at 70 kHz 

(the resonance frequency) by comparing with B225 sensor. Therefore, the surface 

displacement is 1.4 xlO"11 m (Equations in Section 4.4.1).

• Amplitude distribution

The waveform in Fig. 4.3 is not very transient. In fact, the corrosion causing AE should be 

more transient. The reason is the sensor position was 30cm away from the bottom of the 

specimen, and therefore the sensor received not only the original AE signal but also the 

repeated waves due to wave reflections and mode conversion during wave propagation. It 

took approximately 350 microseconds to receive the first repeated signal that reflected from 

the bottom of specimen according the wave velocity and the length of specimen.

This phenomenon can be explained by comparison of the pencil lead fracture on the sensor 

surface directly and via steel block. Left figure of Fig. 4.4 shows direct fracture of pencil 

lead on the sensor’s surface. It is of quite transient type. The signal was not interfered 

with any reflection, which is the original signal of pencil lead fracture.

4 3 . 4  i- - - - - - - - - - - - - - - !- - - - - - - - - - - - - - - - :- - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - i—
o ‘Oj iox i ifion 'E m  o t  m i  m i  m i

Fig. 4.4 Comparison of pencil lead fracture on steel block and sensor’s surface
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However, when the original signal from pencil lead fracture travels through a steel block to 

sensor, the received signal looks like the right figure. As traveling distances of reflected 

waves are different, the arrival times are also different, which result in the waveform 

change. This phenomenon makes the received signals much more complex and brings a 

difficulty to signal processing, because every time the boundary conditions are not same.

Frequency domain analysis

Transferred by Fast Fourier Transform (FFT) at Matlab.

Sample frequency fs =0.5 MHz

Memory length of recorded signal in time domain (N) is 2048 points.

Thus, the number of frequency domain points (N/2) is 1024 

Maximum frequency Fmax =Af x N/2 = fs/2 =0.25 MHz 

The frequency interval between points Af = Fmax / (N/2) = 1/ fs 

(Fig. 2.20 & Fig. 2.21 in Section 2.5.2)

Frequency f M H / . )  Frequency ( M H z )

Fig. 4.5 PSD of typical signal in frequency domain (linear & decibel)
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The PSD can be expressed in linear scale (Fig. 4.5 left) or in decibels scale (Fig. 4.5 right) 

in Matlab’s Signal Processing Tool (SPTool). From the energy distribution we can find 

that the major energy is located at 40-70 KHz, and the peak PSD is at 70 KHz, which 

correctly reflects the characteristics of resonant sensor R100. The peak energy location is 

useful for calculating the absolute displacement of particle vibration at sensor-specimen 

interface, which has been done in time domain analysis. Since the resonant sensor distorts 

the frequency spectrum, more frequency domain analysis is not necessary.

4.1.3 Discussion

AE signals from corrosion sources were successfully received by DW’s AE testing system 

(totally 112 AE events). It is proved that the application of AE technique to corrosion 

detection is possible (further discussion in Section 4.6). It was observed that pitting 

corrosion could produce detectable AE, while general corrosion could not, which was in a 

uniform rate over the specimen surface. The energy released from uniform corrosion was 

not large enough to trigger the displacement of the sensor’s piezoelectric element. In other 

words, the vibration of particle of AE wave from uniform corrosion was below the sensor’s 

sensitivity limit (currently, 10' 13 m). The size of the breaking piece determines the energy 

release. In pitting corrosion, the size was of the unit mm, and in general corrosion it was 

of the unit 10'2 mm ~10"3 mm. We assume amplitude of particle vibration of AE wave is 

proportional to the size of steel breaking piece. The absolute displacement of particle 

vibration from pitting corrosion is in the order of 10 '11 m; if divided by 100, it will be 10'13 

m ~ 10 ' 14m for general corrosion, which is over the sensor’s limiting sensitivity at present.
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4.2 Experiment-II: AE in Reinforced Concrete

In this experiment, reinforced concrete specimens were under wet-dry cycling; cathode iron 

nets were cast into samples to make corrosion continue both in dry and wet conditions. 

Specimens were submerged in 2% NaCl solution but no salt had been sprayed into the 

specimen. Applied currents were 6-9 V / 0.07-1.5 A. Resonant sensor R100 was 

employed at the major part of the experiment to get comparable result with plain corrosion. 

Then, the broadband sensors B225 and B1025 were used for detection. All these sensors 

received AE signals from corrosion sources.

4.2.1 Experimental results

AE Hits vs. Time
Concrete
cracked35 -- 

30 "

25 

20

15 -  

10 -

5 -- 

0 J
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

■  wet ■  dry day

Fig. 4.6 Hits vs. Time of Experiment-II

AE events were recorded during one month testing, as shown in Fig. 4.6. The first event 

came at the second day. For comparison, the first event in Experiment-I arrived within one

. II rl -J.h
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day. Concrete cracked after the emission of large numbers of AE events. The corroded 

specimen and steel reinforcement are shown in Fig. 4.7. The rust, steel loss and crack of 

concrete were clearly observed. Both wet and dry cycles produced AE events.

Fig. 4.7 Corroded specimen and steel reinforcement

4.2.2 Analysis of the typical signal

Most AE signals from this experiment are in the waveform shown in Fig. 4.8 (type-1):

V
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- 0.1 
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0 1000 2000 3000 4000 5000 6000 7000 8000

Time { J S

Fig. 4.8 Typical AE signal from Experiment-II (type-1)
[Memory length: 4096points; Sample frequency: 0.5 MHz; Total amplification: 49 dB]
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After FFT transform, the waveform in frequency domain is shown as Fig. 4.9. Sensitivity 

of R100 at 25 KHz is 31 dB (dB ref lV/micrometer), which is 2 dB lower than B225. 

Maximum displacement at sensor-specimen interface can be approximately calculated as: U 

=0.35 V / (10(31+49)/20V/um)=3.5 x 10"11 m. The peak amplitude is located at 25 kHz.

02
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0 1 4  

0 1 2  
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3.1 ' 0,16Frequency ( M i ! / )

Fig. 4.9 Typical signal in frequency domain

Compare the typical signals from Experiment-I and Experiment-II

At the first glance in time domain, the predominant repetitive waveforms in two experiments 

(Fig. 4.3 and Fig. 4.8) are different. However, the waveform in Fig. 4.3 actually consists of 

many repeated signals as explained in Fig. 4.4 by the fractures of pencil leads on the surface 

of sensor and on the steel block. If the original parts of signal in Fig. 4.3 (the first 350 

microsecond) and in Fig. 4.8 (the first 500 microsecond) are taken out, and a detection 

threshold 0.05 V is set to get rid of DC offset, the ring down counts of both signals are 32. 

This demonstrates the coherence of the two experiments in some extent. Signals in 

Experiment-I generally have larger amplitudes than signals in Experiment-II. At the same 

amplification setting 49 dB, some signals in Experiment-I exceeded the detection limit 0.5 V,
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but signals in Experiment-II kept in the limit. However, the peak amplitudes of signals in 

Experiment-I located at 75KHz, which is the resonance frequency of sensor R100. Resonant 

sensor has stronger response at resonance frequency. Tracking to the displacement of 

particle vibration at specimen’s surface, the results of two experiments are in same level. In 

the frequency domain, Exp.-I got peak energy at 75kHz and Exp.-II at 25 kHz. It seems 

quite confusing, however, the laboratory verification of R100 sensor shows that this type of 

sensor has a second peak response at 25 kHz.

Other types o f  signals in Experiment-II

Two other types of signals as shown in Fig. 4.10 occurred when concrete cracked. These 

signals are related with the concrete crack or debonding between steel and concrete.

sig33 (4096x1 real, F3=0,5)

0 iOUO 2000 3U00 4UU0 5000 6000 7000 8000
Time

siq13 (4006x1 reai,Fs= 0.5

4000 5000 6000 70000 1000 2000

Fig. 4.10 Signals related with concrete crack and debonding
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Concrete crack and debonding associate each other; it is difficult to distinguish which one 

caused the specific type of signal. Concrete cracking AE signals from other researchers are 

available, but they are not comparable because waveforms vary with different sensors used.

Another type of signals was received during concrete cracking (Fig. 4.11). They were 

considered as combination of two corrosion signals in the detection duration (8192 

microseconds), not related to concrete crack.

.4000 £.000 b>UOO 7000 8000

0  1000 2000 3000 4000 5000 6000 7000 6000
Time f J S

Fig. 4.11 Signal type-3 of Experiment-II
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4.2.3 Identification testing at Channel-2

When corrosion-AE testing was in progress (Channel 1), another specimen from same 

batch (Channel 2) was subject to same conditions: same model of sensors, wet-dry cycles 

amplification setting, coupling condition and data acquisition setup etc. The solution for 

Channel 2 was water and no current was applied (Fig. 4.12).

Channel 1

!■
Current

<=>

3% NaCl Solution

Channel 1

f t

Channel 2

■JSi

Water

I Channel 2

pteastaoHUi imtnti

' V*

Channel 1

Channel 2

i fIS

Fig. 4.12 Setup and result of identifying AE signals
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The specimen in Channel 1 corroded but specimen in Channel 2 not. Correspondingly, only 

Channel 1 received AE signals, Channel 2 not. Fig. 4.12 shows two example signals. This 

result can be evidence that AE signals were not from concrete expansion by wet-dry cycles 

and other interferences. Experiment-V compared the AE measurement to half-cell potential 

measurement and strongly proved that AE signals connected to corrosion activities tightly.

4.2.4 Discussion

In total, 177 AE events were recorded during one month testing. The first AE event came at 

the second day. Concrete cracked when large numbers of AE events occurred. Different 

waveforms were recorded during concrete cracking. AE events occurred at both wetting 

and drying cycles. The surface displacement of particle at sensor-specimen interface was 

also in the order of 10' 11 m (Equations in Section 4.4.1). At the end of experiment, 

broadband sensors were tried and recorded AE events. It indicated that broadband sensors 

were also suitable for corrosion detection. Most important contribution of this experiment 

was that corrosion causing AE signals in reinforced concrete were successfully recorded by 

AE system. The identifying test can be an evidence to prove the AE signals were emitted 

from corrosion sources. Experiment-V further proved this fact by comparing AE with 

half-cell potential measurement.
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4.3 Experiment-Ill: Sensor on Steel vs. on Concrete

Experiment-Ill examines whether measurement on steel is better than on concrete.

4.3.1 Results and analysis

In the experiment, one B225 sensor was put on concrete (Channel 1), another B225 sensor 

was put on steel (Channel 2). Sensor of Channell was 480 mm away from the center of 

corrosion source, and it was 650 mm for Channel 2. The amplification setting was +61dB 

for Channell, and +49 dB for Channel 2. Fig. 4.13 shows a pair of typical signals. The 

peak-to-peak amplitude of Channel 1 is 0.25 V, and it is 0.67 V at Channel 2. The 

difference of peak amplitudes between two channels is (61-49) + 201og(0.67/0.25) = 20 dB 

(i.e. 10 times).

. -  HMHH riV:
V i - . i  ■ : ■ : /.l! C o . .■;' • . ; . . VC, . V ' C1 -..

| Close Zoom r r r  Filler Smooth Zero txport Print Exit

Channel I

II ■ Channel 2

Fig. 4.13 Typical AE event of Experiment-III
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Table 4.2 Results o f  typical events from Experiment-Ill

Events 1 2 3 4 5 Average

Difference between 

two channels (dB)
20 19 20 17 18 18.8

More results of typical events are shown in Table 4.2. The average difference between two 

channels in peak-to-peak amplitude is 18.8 dB. Considering the effect of distance, the 

difference of amplitudes between two channels is: 18 .8+20  log(650/480) = 21.4 dB (12 

times), which means the amplitude of AE signal detected by sensor on steel is 12 times of 

that on concrete if the distances to the corrosion source are same. Alternatively, the 

maximum detectable distance by sensor on steel will be 12 times larger than on concrete.

4.3.2 Discussion

Concrete has much higher attenuation than steel due to its heterogeneous nature. The result 

of this experiment was an average number over the frequency range of corrosion AE. Elias 

[1998] compared the attenuation of ultrasonic wave in concrete with that in steel.

Steel 
• • • - P-3C)d 
. . _  p_60d

-O—  AAR-3 
■♦— AAR-5

Frequency [kHz]

Fig. 4.14 Attenuation vs. Frequency-all materials [Elias, 1998]
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She measured the MAC using single frequency ultrasonic wave from 50 KHz to 600 KHz. 

The MAC (Modified Attenuation Coefficient) was defined as MAC = -log (Vout /Vref). Fig. 

4.14 shows the differences of MAC between concrete and steel are minimum 1.2 at 50 KHz 

and max 6.5 at 600 KHz, and the number increases with increasing frequency. Steel has 

relatively constant attenuation coefficient over the frequency range 50-600 KHz. The 

Attenuation Coefficient (= 20 x MAC) of concrete is 24 dB (16 times) at 50 KHz or 130 dB 

(3160 times) at 600 KHz higher than that of steel. 50 KHz is located in the frequency range 

of corrosion causing AE. At 50 KHz, the attenuation of concrete is 24 decibels higher than 

steel. Elias’ result is coherent to the result of this experiment.
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4.4 Experiment-IV: Effect of Distance

This experiment estimates how far we can measure away from the source.

4.4.1 General process of estimating maximum detectable distance

Incident 
Corrosion AE

Point A Point B Sensor’s limiting 
sensitivity

L=2.52m

un detectable distanceMaxiim

Rebar

Attenuation
Coefficient

Max. Detectable Distance

Compare the outputs 
of two channels

Limiting Sensitivity of 
Sensor — u0

Total Decibels for Attenuation a

Max. Surface Displacement 
of corrosion AE — U,

Fig. 4.15 Flowchart of calculation of maximum detectable distance

As depicted in Fig. 4.15, the first step to determine the maximum measurable distance from 

corrosion source is to find the attenuation coefficient (dB/m) over the frequency range of 

interest. Secondly, the maximum surface displacement of particle vibration at contact 

surface has to be found from the corrosion causing AE signals. It is an absolute value,
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which reflects the intrinsic characteristics of an AE wave. Then, the maximum surface 

displacement is compared with limiting sensitivity of sensors to obtain the total decibels for 

attenuation. Finally, the maximum measurable distance is worked out by divided total 

decibels by attenuation coefficient.

Equations

• Simplified equations for estimating maximum detectable distance 

Attenuation coefficienta= (201og(Uj/ U2) )/Lc dB / m

or in power expression: a= (10 log(PSDi/PSD2) )/Lc dB / m 

Total decibels for attenuation A = 20 log(U,/U0) dB 

Max. detectable distance Lmax = A/a m 

Where

U0, Ujand U2 are displacements as shown in Fig. 4.15; PSD is Power Spectral Density; Lcis 

calculation length considering the effect of near field (1 m), Lc equals to 4.61 m in this 

experiment. Calibration correction for two channels should be considered in calculating the 

attenuation coefficient.

• Calculation of Surface Displacement UU = Apeak /1  o(n+R)/20 (m or pico-m)

Where Apeak is peak amplitude of signal output (V);

n is total amplification rate combining preamplifier and FTM (dB); 

s is sensor’s sensitivity at absolute displacement calibration (dB, dB ref. lv/ pm e.g. 40dB 

= 100V/ pm). The following figure shows the processes.
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Specimen

Fig. 4.16 Illustration for the calculation of surface displacement

Near field  and far field

Near field is considered within 1 m from AE source. The ratio of attenuation constant in 

near field to far field is 3.75:1 (GLEA, Leak AE of steel pipe). At near field, the wave 

energy loss quickly due to severer refraction and mode conversion. Wave propagation is 

relatively stable at far field (Fig. 4.17).

Corrosion Match position of Channel 1 Channel 2
AE source Point A Point B

mz ■ ;...........................      :.........................■

lm
Hear fidd Far fidd

Fig. 4.17 Assumption of near field and far field
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Calibration Correction (Cc) for outputs o f  sensors in both channels

In order to get accurate result of attenuation, the calibration was performed by fracture of 

pencil lead (0.5mm / 2H / 3mm long) at exact middle position between two sensors after 

certain pressure had been applied. The amplification settings were +43 dB for Channel 1 

and +40 dB for Channel 2. It was very difficult to adjust the outputs of two channels to an 

exact level, thus the waveform analysis of calibration data was necessary.

From time domain of calibration, the peak-to-peak amplitude of Channel 1 is 0.9 V and that 

of Channel 2 is 0.7 V. Therefore, the deference in decibels scale of peak-to-peak amplitude 

between two channels is 201og(0.9/0.7) = 2 dB, Channel 1 is 2dB higher than Channel 2. In 

the following calculation, total attenuation calculated in time domain should reduce 2 dB, the 

calibration correction. As a result, Cc = -2dB.
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4.4.2 Analysis of the typical events

As an example, Fig. 4.18 shows a pair of signals from a typical event.

Calculation o f attenuation coefficient in time domain

sigii (4096x1 real, Fs=1)
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Fig. 4.18 Typical AE event from Experiment-IV 

[Sensors:B225; Memory length 4096points; Sample frequency 1 MHz; Amplification:

Section 4.4.1]
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The peak-to-peak amplitude is 0.319 V at Channell and 0.074 V at Channel 2. The time 

duration of data capture is 4096 microseconds (4096 points /1  MHz) as shown in Fig. 4.18. 

From equations in Section 4.4.1, the attenuation coefficient is 2.3 dB/m.

Calculation o f attenuation coefficient in frequency domain

B a g a p g B M S 5 B Sl ^ ' a a g l ^ l | | j W g
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Fig. 4.19 Typical signals of Experiment-IV in frequency domain (decibels scale)

In frequency domain, signal envelopes of two channels in decibels scale were compared as 

Fig. 4.19, the attenuation of major components of signals (Channell: 15-32 KHz, 1st peak at 

15 KHz, 2nd peak at 25 KHZ; Channel 2: 15-37 KHz, peak 25 KHz) is 11 dB at 25 KHz.
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Taking 11 dB for calculation and considering the calibration correction -2  dB, the 

attenuation coefficient is 1.9 dB/m. More results are shown in Table 4.3.

Table 4.3 Attenuation coefficient of events

Typical Events 1 2 3 4 Average

Attenuation Coefficient-Time 2.3 2.1 3.2 3.6 2.8 dB/m

Attenuation Coefficient-Frequency* 1.9 1.7 2.6 3.1 2.3 dB/m

*Attenuation of major component 15-37 KHz in frequency domain

Calculation o f  total decibels fo r attenuation

The limiting sensitivity of AE commercial sensors Uo is lx 10'13m. Form time domain; 

peak amplitude is 0.168 V, for which the amplification setting was 43 dB. From absolute 

calibration of the B225 sensor, sensitivity at peak energy frequency (16-17 KHz) is 32 dB, 

dB ref 1 V/micrometer. The absolute displacement at point A (Match position of channel-1) 

for the typical event is Ui is 2.99 x 10'" m and the total decibels for attenuation Ain Table 

4.4 is calculated according to equations at Section 4.4.1.

Table 4.4 Summary of surface displacements U) and total decibels for attenuation A

Typical signals 

from

Experiment-I~III Experiment-IV typical events

I II III 1 2 3 4 Average

Ui (x 10'nm) 1.4 3.5 2.5 2.99 2.99 3.38 5.55 3.73

A(dB) Ui for reference Ui for calculation 51.4
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Only data in Experiment-IV was used, because the displacements measured in Experiment-I 

& II were in longitudinal directions, and the distance between sensor and corrosion sources 

in Experiment-Ill was different from Experiment-IV.

Calculation of maximum detectable distance

The maximum detectable distance Lmax in time domain is 17 m, based on the sensor’s 

limiting sensitivity 10'13 m. For the chosen major component in frequency domain, Lmax 

equals to 21 m. If the sensor’s sensitivity limit can be extent to 10"14 m, the total Decibels 

for Attenuation Awill be 71.4 dB, then, Lmax will be 24 m in time domain and 29 m for major 

component in frequency domain. The results are illustrated in Fig. 4.20. The major 

component in frequency domain refers to the component carries high energy with relatively 

low attenuation.

High attenuation components in frequency domain

General attenuation in time domain (2.8 dB/m)

Major component in frequency domain (2.3 dB/m)

Low attenuation components 
in frequency domain

Sensor’s sensitivity: 10'13m 
Sensor’s sensitivity: 10’14m

Fig. 4.20 Maximum detectable distance Ln
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4.4.3 Discussion

The results in Fig. 4.20 are subject to the following conditions: (i) rebar size or other 

geometrical factors of testing object; (ii) the assumption of near / far field and the ratio of 

attenuation coefficient; (iii) sensor’s limiting sensitivity; and (iv) material component of 

rebar, grain size and the homogeneity of grains.

For the overall frequency range in Fig. 4.19, the attenuation was not linear, even in some 

frequencies the PSD increased due to the slight difference of response between two sensors 

with same model, and the complicated mode conversion during wave propagation, which 

caused certain frequencies convert to other frequencies. The attenuation in 250-500 KHz 

was flat, and less significant than 10-250 KHz. This result was coherent with the result of 

Stepanka Elias, who found that “the steel attenuation was nearly constant across the 

frequency range (50 KHz to 600 KHz)” regarding the ultrasonic testing (details in Section 

4.3.2). The attenuation significantly increases with frequency in concrete and many 

common materials; steel attenuation is relatively flat, particularly in a short frequency range, 

although the attenuation mechanism in steel depends on frequency and the ratio of grain or 

particle size to wavelength.

Generally speaking, current commercial sensors with sensitivity 10'13 m can detect AE 

signals from about 20 m away from corrosion sources. Beyond that distance some AE 

signals still can be detected, but many vanished.
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4.4.4 Location of AE source

The location of corrosion can be one-dimensionally determined by comparing the first peak 

arrivals of signals from two channels as shown in Fig. 4.21 and Fig. 4.22.
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Fig. 4.21 First peak arrivals at two channels
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Because two sensors were located at two sides of source (Fig. 4.22), the time interval of 

wave propagation between two sensors should be 857 /j s , not 878 //s. When one sensor 

met the wave peak, another one met the valley.

Corrosion 
AE source

Channel 1
Point A0 ^

■

Match position of Channel 1 
Point A

Channel 2 
Point B

0.24m  
*. >

0.24mi AT.=  2.52m

L=3m

Fig. 4.22 Sketch for determining location

From wave propagation theory, the velocities are various with the materials and wave 

modes. Table 4.5 lists velocities given by NDT resources center [http://www.ndt-edu.org, 

accessed Oct. 20, 2003].

Table 4.5 Group velocities in steel and concrete

Wave Longitudinal wave Transverse wave Surface wave

Velocity in 

steel (m/s)

5900 in bulk 

5200 in rod or bar

3280 3018

Velocity in 
concrete (m/s)

3650 (3500) 1440 1320

The predominant wave mode in rebar is surface wave by comparing the wavelength (Table 

4.6) with rebar size. Thus, 3018 m/s is used to calculate the AE source location. The
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velocity 3018 m/s is an approximate number that varies with specimen size, chemical 

components, grain sizes, frequency and wave mode. The distance difference between two 

sensors to corrosion source: AL= 3018 m/s x 857xl0'6 s = 2.586 m, which is generally 

coherent with the real number is 2.52 m.

Table 4.6 Wavelength vs. Frequency

Wave Velocity Wavelength(mm) vs Frequency
25KHz 50KHz lOOKHz 150KHz 200KHz 250KHz 300KHz 400KHz 500KHz lOOOKHz

Longitudina 5200 208.0 104.0 52.0 34.7 26.0 20.8 17.3 13.0 10.4 5.2
Transverse 3280 131.2 65.6 32.8 21.9 16.4 13.1 10.9 8.2 6 .6 3 .3
Surface 3018 120.7 60.4 30.2 20. 1 15.1 12.1 10.1 7 .5 6 .0 3 .0

The source location is (L-AL)/2 from one end or (L+AL)/2 from another end. If two 

sensors are located on same side from source, AL equals to L. The location of corrosion 

source can’t be determined, but it can be estimated by attenuation and rearrangement of 

sensor’s positions.

In reverse, calculation of velocity can determine which wave mode is predominant in wave 

propagation. It can be proved that predominant mode of AE wave propagating in long 

rebar is Lamb wave. “The distance-attenuation characteristics of these waves, bulk waves 

tend to couple to Lamb waves and at great distances from source Lamb waves are likely to 

predominate” [Ian, 1991].
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4.5 Experiment-V: AE vs. Half-cell Potential

This special experiment aimed to further identify corrosion causing AE.

4.5.1 Introduction of CANNIN Half-cell equipment

The half-cell potential measurement is an electrochemical technique commonly used to 

assess the severity of corrosion in reinforced concrete structures. CANNIN is the 

corrosion-analyzing instrument made by Proceq, Switzerland. Swiss Federal Institute of 

Technology initiated CANNIN and has provided scientific support. CANNIN accurately 

measures corrosion potentials ranged from +270 mV to -950 mV. Measuring with rod 

electrode according to ASTM C876 is suitable for laboratory and field tests. A measuring 

surface of more than 4000 m2 can be managed with the large memory and the wheel 

electrode (Fig. 4.23).

Fig. 4.23 CANNIN half-cell equipment with rod and wheel electrodes

The mechanism of half-cell equipment is shown in Fig. 4.24.
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Fig. 4.24 Mechanism of half-cell with a CSE ref. electrode

4.5.2 Examination testing of Half-cell equipment

This testing was used to verify if the half-cell equipment could work properly.

Fig. 4.25 Examination test using corroded specimen of Experiment-Ill

The specimen for Experiment-Ill was used to examine the half-cell equipment. It was 

known that steel corrosion had obviously occurred in this specimen. Ten observing points

Experimental Results and Discussion
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were taken on the surface of specimen. Before salt solution was added, potentials at these 

points were: 75, 160, 110, 72, 270, 270, 270, 252, 136, 53 mV. After applying 12 V DC on 

the specimen for three hours, no current was applied, but some part of the specimen was 

immersed in 3% salt solution. After nine more hours, the potentials at 10 points dropped 

to -386, -56, -7, 2, -30, -142, -195, -274, -364, -349 mV respectively. During this period, 4 

AE events were received by AE detection system. The half-cell equipment worked stably 

and the potentials were generally coherent with AE. It was proved that the equipment 

worked well. However, it was observed that applied current greatly influenced the 

half-cell potentials. About two hours after termination of applying current, the potentials 

returned to normal level. Thus, no current will be applied to specimens in formal test.

4.5.3 Experimental setup

rw i  ■ I

S ’j j J J y V "  '  ■ J i ! '  i1 > 4 .its'.a!-

[;t P iDJf8Ss|

Fig. 4.26 AE vs. Potential testing in progress
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Two cylinder specimens were cast with same batch of Experiment-II six months ago (Oct. 

2003). Specimen A was put in 3% NaCl solution (Channel 1), specimen B was put in 

pure water (Channel 2). 3/4 height of specimen was immersed in solution or water.

No current was applied. Two R100 resonant AE sensors were put on the top of two 

specimens. The total amplification settings were 49 decibels for both channels. Sample 

frequency was 1 MHz and the memory length was 4096 points. The formal test had 

lasted for 100 hours. Half-cell potentials were measured every four hours in the daytime 

and 12 hours at night. Six measuring points were chosen at each specimen and every 

time measurements were made at same positions.

4.5.4 Results and discussion

Half-cell Potential (mV)

100

Time (hours)

*—A5

AE Events

Fig. 4.27 AE Event vs. Potential- Specimen A in 3% salt solution
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AE Events

Fig. 4.28 AE Event vs. Potential- Specimen B in water

As soon as the specimens were put in salt solution or water, the half-cell potentials of two 

specimens dropped to negative level quickly. Specimen A in salt solution was much 

faster than specimen B in water, but specimen B did drop too. This result demonstrated 

that corrosion had occurred in both specimens already! The specimens had been placed 

in lab more than six months. The laboratory environment at basement was a little moist 

and sometimes a little bit chemical-aggressive, it was normal that corrosion occurred in 

these specimens. This was good for comparing AE events with half-cell potentials 

without imposing current.

The testing results shown in Fig. 4.27 and Fig. 4.28 demonstrated general coherence with 

half-cell potential measurement standard ASTM C876 (CSE) in Table 4.7. Specimen A in 

salt solution: most AE events emitted when the potentials were below -350 mV.
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Table 4.7 ASTM  C876 (CSE)

Measured Potential Risk of Corrosion

<-350mV 90%

-200mV to -350mV 50%

>-200mV 10%

Specimen B in water: only two events were received at beginning when the potential 

sharply dropped below -200mv. After that, the lowest potentials were around -200 mV, 

no AE event was received. The result is consistent with standard ASTM C876: above 

-200 mV the risk of corrosion is 10%. If detecting the corrosion for a very long time, it is 

possible that some AE signals will be received, but not definitely. The half-cell potentials 

of Specimen A in salt solution were much lower than Specimen B in water, and Specimen A 

consistently emitted much more events than Specimen B. Visual inspection also showed 

corrosion in Specimen A was much severer than Specimen B as Fig. 4.29.

'  ^  .( 0  f t  : '

B

Fig. 4.29 Specimens before testing (left) and after testing (right)

As a result, it is proved that AE technique can effectively indicate the corrosion activities in 

reinforced concrete.
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4.6 Summarized Discussion

1. Can steel corrosion be “heard” by the AE sensors?

The results of Experiment-I in Section 4. land Experiment-II in Section 4.2 give the exciting 

answer that steel corrosion can be “heard” by AE sensors both in plain corrosion and in 

reinforced concrete.

The localized corrosion produced strong AE signals. The displacements of particles at 

specimen’s surface, on which the sensors had been put, were in the order of 10'11 m. Both 

broadband sensors and resonant sensors were capable of detecting corrosion causing AE.

2. Are the AE signals in reinforced concrete due to corrosion or other processes?

The following evidences or reasons proved the received AE signals in corrosion tests were 

generated by corrosion activities, not noise or interferences e.g. from concrete expansion by 

wet-dry cycles.

• Experiment-V (Section 4.5)

A special experiment had been performed to compare the AE events with the half-cell 

potentials of corrosion activities. The coherent result showed that AE events exclusively 

connected to corrosion activities.

• Identification setting in Experiment-II (Section 4.2.3)

When Channel-1 was in corrosion testing progress, Channel-2 was set to subject to same 

conditions e.g. same wet-dry cycling, specimen from same batch, sensor with same model 

and same coupling material, but no accelerated corrosion regime was applied to Channel-2.
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The result was that only Channel-1 received signals but Channel-2 did not.

• Results of Experiment-Ill & IV (Section 4.3 & 4.4)

In these two experiments, the attenuation of AE waves in steel and in concrete was consistent 

with other researches regarding attenuation of ultrasonic waves in frequency range 

50-600KHz. In addition, Experiment-IV correctly located the corrosion position. Those 

results also strongly supported the fact that the AE signals received were from corrosion 

sources.

• Laboratory environment and the time of signal arrival

The lab was quiet, especially in the mid-night noise was usually unavailable in lab. But 

many AE signals arrived at mid-night during testing.

• Filter function of DW AE equipment

Firstly, the sensors were designed un-sensitive to low frequency noises. They only 

responded to direct-hit elastic vibration. It was tried that direct-hit on specimen by a small 

steel bar can cause AE signals, but hit on table or on the ground couldn’t. Secondly, the 

filter function of FTM unit o f DW system (Minimum high-pass: 20KHz) filtered most noises 

out. For reference, human audible sound is from 20Hz to 16-20 KHz.

• Numbers and wave from of signals

Large amount of signals were received, totally 112 AE signals in Experiment-I and 177 in 

Experiment-II. A lot of signals were in similar waveforms. This fact excluded the 

occasional external interference.

• The visible corrosion and steel loss occurred when large numbers of AE waves emitted
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3. Is it better to put the sensors on the steel or concrete?

Yes, it is better to put the sensors on steel than on concrete.

The results of Experiment-Ill (Section 4.3) indicated the amplitude of an AE signal 

received from sensor on steel was 21.4 dB (12 times) in average more than that from sensor 

on concrete. In other words, if the maximum detectable distance is 12 m for putting 

sensors on steel reinforcement, it will be 1 m for concrete. It is an approximate number, 

which depends on the concrete mix design, rebar size, and coupling of sensor etc. However, 

the number is persuasive.

4. How far can we measure away from the corrosion source?

From the analysis of Experiment-IV in Section 4.4, the maximum detectable distance away 

from the corrosion source is 17 m ~ 21 m for 10'13 m sensor’s limiting sensitivity and 24 m ~ 

29 m if the sensor’s sensitivity extends to 10'14m. The results were obtained both in time 

domain and in frequency domain. They are subject to the geometric conditions of specimen 

and the assumption of near field effect.

In addition, while the high-pass filter (20 KHz) of the DW’s AE equipment blocked off 

noises, it razed out part of an AE signal. The experimental results showed that spectra of 

corrosion AE were from 10 KHz (or lower) to 100 KHz. If equipment with lower high-pass 

filter is used, the detectable distance Lmax might greatly increase. In return, de-noising 

process should be required for post-test analysis.
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CHAPTER 5. CONLUSIONS AND RECOMMEDATIONS

5.1 Conclusions for the Four Key Questions

1. Can steel corrosion be “heard” by the AE sensors?

Yes, it can.

2. Are the AE signals in reinforced concrete due to corrosion or other processes?

The identification of AE signals was presented in Section 4.2, 4.5 and 4.6. The AE 

and half-cell potential measurements got coherent results for detecting corrosion in 

reinforced concrete specimens.

3. Is it better to put the sensors on the steel or concrete?

Yes, it is much better to put the sensor on steel.

4. How far can we measure away from the corrosion source?

The maximum detectable distance is expected to be 17 m - 21 m by using commercial 

piezoelectric sensors with limiting sensitivity 10'13m. These numbers are subject to 

conditions described in Section 4.4.3 and Section 4.6.
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5.2 Other Conclusions

1. In this study, the surface displacement at the very near field of specimen (within 30 cm 

from corrosion source) was measured in the order of 10'11 m for AE from localized 

corrosion of steel reinforcement.

2. The major part of energy (PSD) distribution of corrosion AE is less thanlOO kHz, 

particularly in the range of 15 - 40 kHz. No data was obtained below 10 kHz due to 

the high-pass filter function (20 kHz) of DW’s AE equipment.

3. The average attenuation coefficient of corrosion AE in one-inch diameter steel 

reinforcement is 2.3 - 2.8 dB/m at far field based on the assumption of near / far field. 

It was found that the predominant AE wave propagating in steel reinforcement was 

Lamb wave, which correctly located the corrosion source.

4. Both resonant and broadband sensors (out-of-plane) can be employed to detect 

corrosion AE for different purposes. Minimum contact pressure 29 kPa was observed 

to reach maximum output of broadband sensor B225. It was found that B225 and 

R100 had similar sensitivities due to the aperture effect. The optimum setting of total 

amplification was 40-49 dB for detecting corrosion AE by sensor B225 and R100.

5. Diffused general corrosion was not significant enough to trigger the response of 

sensors used in this work.
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5.3 Recommendations for Future Research

1. Distinguish corrosion AE from load-induced concrete crack AE and field noises by 

threshold of hearing, amplitude distribution, spectral range (energy distribution) and 

other waveform analysis tools.

2. Further study AE wave propagation and source characterization e.g. near field effect, 

“steel micro-cracks” and concrete micro-cracks caused by corrosion activities.

3. Find or develop optimum transducers with high sensitivity and flat response over the 

range of several kHz to 100 kHz, and AE equipment with lower high-pass limit and 

more advanced signal analysis software.

4. Conduct an in situ experiment to detect corrosion AE in a reinforced concrete structure.
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5.4 A Look of Real-time Monitoring Corrosion in RC Structures

110VAC or Mini Solar System

15V DC Power Supply

Concrete

Rebar

Corrosion
Source Sen sor

Co-axial Cable 
(can be over 100m)

Sensor with built-in preamplifier and 

coupling bolt is covered by buffer 

material.

Multi-channels' 
(can be hundreds)

Wireless Signals

Monitoring Terminal 
in Office

Data Collection 
and
Secondary
Amplification
Unit

Portable Data
Transfer
Equipment

Telecom
Cable
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Appendix A

Calibration Curves of Sensors R100, B225 and B1025

Manufacturer’s Calibration Curves 

R100:

Face-to-Face Calibration
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B225(continue<0:

Face-to-Face Calibration
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B1025:

Absolute Surface Wave Calibration
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B1025(continued):

F ace-to -F ace Calibration
a  -I----------------;—
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Laboratory Verification of R100 and B225

Verified by fracture of 0.5 mm 2H pencil lead
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Appendix B

Laboratory Comparison of Sensor B225 and R100

Setup

R100: Own weight 179.7 g; diameter 1.25”; contact surface area: 791 mm2 

B225: Own weight 8.7 g; diameter 0.375”; contact surface area: 71 mm2 

Channel 1-R100: applied load: own weight +500 g; contact pressure = 8.6 kPa

Amplified rate 20db; sample frequency 1 MHz.

Channel 2-B225: applied load: own weight +50 g; contact pressure = 8.3 kPa

Amplified rate 20 dB; sample frequency 1 MHz.

Two channels were regarded as having same contact pressure. As shown in the following 

picture, two sensors were arranged at the positions with same distances to the center where 

the pencil lead was broken.

I
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Results

Time domain 

Channel 1-R100

s ig io  (4096x1 rea l, F s= 1 )
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The sensitivity gap between R100 and B225 = 201og(0.584/0.736) = -2 dB 

B225 has slightly higher sensitivity than R100.
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B225 has 4 dB higher Peak PSD than R100. At 70 KHz, B225 and R100 are regarded as 

the same (R100: -5.8dB; B225: -6.0 dB). Generally, sensor R100 and B225 have close 

sensitivities over the frequency range 20 to 500 KHz.
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Appendix C

A Study of Sensor’s Sensitivity vs. Contact Pressure

The study of effect of contact pressure was done by pencil lead (0.5 mm, 2H) fracture at 

the exact middle position between two B225 sensors, which have very close sensitivities.

The contact pressure was provided by standard weights 0 g, 50 g, 100 g, 200 g, 500 g and 

1 kg. B225 has own weight 8.7 g, the diameter 0.375”, and contact surface area 71 mm2. 

Amplification rates of both channels are 20 dB.

The result shows the maximum output of sensor starts at the contact pressure 29 kPa (+200 

g) as the following figure:

Peak-to-peak Amplitude vs.Contact Pressure
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