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i

Abstract

The difficulty is to know what problems to combine together, ... Why 

should not all our estimation problem# be lumped together on one grand 

melee.

George Barnard (1962)

Microarray technology has become an im portant tool for simultaneously obtaining 

quantitative measurements for the expression of thousands of genes presented in a 

biological sample. A m ajor concern with microarray experiments is that they have 

little replication. The variance estimates obtained from an individual gene may be 

very imprecise, and therefore the inferences reached may not be trustworthy due to  the 

weak variance estimate. An appealing idea for improving inferences from microarray 

experiments would be combining information across genes.

In this dissertation, the estimation problem of variance components in various 

contexts is investigated. In particular, we consider the following problems:

• Multi-sample analysis of population variances;

• Simultaneous estimation of variances when some uncertain prior information 

(UPI) about the param eter is available;

• The estimation of variance components in meta-analysis with random effects.

In chapter two, we consider the large-sample inference of population variance and 

investigate its statistical properties in a multi-sample set up when random samples are
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drawn from arbitrary populations. Asymptotic statistical procedures are developed 

for testing the homogeneity of these variances and an interval estimation based on 

combined data from various sources is proposed. An extensive sampling experiment is 

conducted to investigate the performance of the suggested methods over a wide range 

of models including skewed distributions. The problem of kurtosis estimation aris

ing from inferences about variance param eter is also discussed extensively; improved 

estimators of population kurtosis are proposed.

In chapters three and four, we develop some alternative estimation strategies based 

on pretest (Bancroft (1944)) and James-Stein (James and Stein (1961)) principles 

when the information regarding the homogeneity of all the variances may not be 

precise. Asymptotic properties of the pre-test and shrinkage estim ators are discussed 

and compared to the maximum likelihood estim ator and the pooled estimator. It is 

demonstrated that the positive part James-Stein estimator utilizes the sample and 

non-sample information in a superior way relative to the ordinary shrinkage estimator. 

Two shrinkage-type optimal weight combination estimators are derived from finite 

samples under the quadratic and the entropy loss functions. Simulation study shows 

that our estimators are superior to  other combination estimators.

In chapter five, we deal with the estimation of the variance components in meta- 

analysis with random effects. James-Stein type estimators are proposed and their 

risk is simulated and compared to  some existing estimators. The simulation study 

shows that, our shrinkage estimators are minimax and admissible with respect to  the 

base estimator.
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Chapter 1

Introduction and Literature  

R eview

1.1 Estimation of Variance in Microarray Analy

sis

The development of microarray technology has revolutionized the study of molec

ular biology and become a standard tool in genomics research. Instead of working on 

a gene-by-gene basis, microarray technology allows scientists to simultaneously view 

the expression of thousands of genes from an experimental sample. Due to the cost, it 

is common th a t thousands of genes are measured with a small number of replications 

(Lonnstedt and Speed (2002), Kendziorski et al. (2003)). As a consequence, we are 

faced with a “large k, small n “ paradigm, where k is the total number of genes and 

n  is the number of replications for each gene.

1
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The variance estimates obtained from individual genes are unreliable due to the

relatively small number of replications. Consequently, the commonly used statistical 

methods such as t-test or F-test for detecting differentially expressed genes based on

the gene specific variance estimates have low power (Cui and Churchill (2003) and

Baldi and Long (2001)).

However, measures of thousands of genes are readily available in a microarray 

experiment. Borrowing strength and combining data across genes seems to be an 

appealing idea. M am- approaches to improving the variance estimation initiated 

from this thought have been developed in the past a few years.

Assuming the dependence between the average intensity and the variance' of the 

intensity differences. Kamb and Ramaswami (2001) suggested a simple difference- 

averaging m ethod by averaging a neighborhood of genes whose expression levels are 

close to one another. Their method enables determination of variances as a func

tion of signal intensities by using information over the entire da ta  set. However, 

in their simple average method, all the genes within a window are treated  equally. 

Huang and Pan (2002) improved upon this idea and proposed a weighted average 

method, where the weights depend on the Euclidean distance between the observa

tions. Jain et al. (2003) and Comander et al. (2004) proposed local-pooled estimation 

procedures th a t pooled the variances of genes with similar intensities. Their methods 

effectively identify significant differential expression patterns with a small number of 

replicated arrays. Baldi and Long (2001) initiated a regularized t-test replacing the 

usual variance estim ate with a hierarchical Bayes estimator. Lonnstedt and Speed 

(2002) brought forth an empirical Bayes approach th a t combines information across
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genes. Kendziorski et al. (2003) extended the empirical Bayes method using hierar

chical gamma-gamma and lognormal-normal models. The SAM t-test developed by 

Tusher et al. (2001) added a small constant to the gene-specific variance estim ate in 

order to stabilize the small variance estimates for the purpose of eliminating some 

false positives associated with low values of variance.

Cui et al. (2005) proposed a James-Stein type shrinkage estim ator of variance and 

used it to construct an F-like test statistic. It is favorable compared to  other F-like 

statistics based on the gene-based estim ator or the simple pooled estim ator across all 

k genes in terms of power, false positive rate, and robustness. This shrinkage type 

estimation of variance has drawn increasing attention in the application of microarray 

analysis (Fan and Ren (2006). Allison et al. (2006) and Leek et al. (2006)). However, 

so far. the research has concentrated on the applications, but little is known about 

the theoretical properties of various shrinkage variance estimators.

1.2 The History of Shrinkage Estimation

The history of shrinkage estimation spanned from the famous Stein’s paradox dis

covered by Charles Stein in 1956. Professor Stephen Stigler stated in his 1988 Neyman 

Memorial Lecture,“One of the most provocative results in mathematical statistics of  

the past 35 years is the phenomenon known variously as Stein’s paradox, shrinkage 

estimation, or the James-Stein e s t i m a t o r (Stigler (1990)). Stein (1956) and James 

and Stein (1961) discovered th a t in three or more dimensions, the ordinary maxi

mum likelihood estim ator (MLE) of the vector of means of a m ultivariate normal
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distribution is inadmissible. In its simplest form, the situation is this: a collection 

of independent measurements A 'i, X 2- .... X k is available, each normally distributed 

with mean and variance 1. The 9 i s are fixed unknown parameters which are not 

necessarily related to one another, and it is desired to estimate all the 0 ,'s with a 

composite loss function
k

L(O,0) = '52(0i -0 i)2, ( 1. 1)
7=1

where 9 = (9 i , .... 6 k)' and 6  = (01:.... 9k)'■ The performance of the joint estim ator 6  

is to be judged by the risk function,

R (0 ,0 )  = E e[L(0,d)}.  (1.2)

The startling discovery of Stein was that the obvious or “ordinary" estim ator 9{- — A', 

is inadmissible if k > 3; in fact, for k > 3 any estim ator of the form

§' S = (L3)

has a uniformly smaller risk for all where S 2 =  and c is any constant

with 0 < c < 2(k — 2). (The best choice of c is k — 2.)

A consequence of the above finding is the following counterintuitive result : when 

three or more unrelated param eters are estimated, the total risk can be reduced by 

using a combined estim ator such as the James-Stein estimator; whereas when each 

param eter is estimated separatefy, the ordinary maximum likelihood estim ator is ad

missible. This paradox has caused some to sarcastically ask whether, in order to 

estimate the speed of light, one should jointly estimate tea consumption in Taiwan 

and hog weight in M ontana. The response is th a t the James-Stein estim ator always

improves upon the total risk, i.e., the sum of the expected losses of each component.
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Therefore, the total risk in measuring light speed, tea consumption and hog weight 

would improve by using the James-Stein estimator. However, any particular com

ponent (such as the speed of light) would improve for some param eter values, and 

deteriorate for others.

Because 0 f s may be considered as a weighted average of 0 and X*, it has been 

described as “shrinking" the ordinary estim ator ff- - X,  toward 0  despite the fact 

that if S 2 < c. it “shrinks past” 0.

In a practical application of the James-Stein estimator, all of the savings will

a JS
disappear if any of the |0,| are very large. In th a t case. S 2 will be large and 6  -

* 0  ̂JS
(] -  ^ )  X  will be close to the MLE 0 — X . 6  shrinks X  toward the origin, 

reaping the savings depending on the origin being well chosen for the problem at 

hand. As a result, in the estimation of the speed of light, borrowing information from 

tea consumption and hog weight will probably not give us much of an advantage.

Of course we can choose any origin we want by subtracting an arbitrary constant 

from the data; or we can let the data choose the origin for us by shrinking toward a 

central value for the k observed values x, . Efron and Morris (1973) used an Empirical 

Bayes approach and devised a variant of the original James-Stein estimator, which 

shrinks X,  toward Ah These estimators are of the form

=  X + ( i - ± . ' ) ( X i - X ) ,  (1.4)

where S ' 2 — Y!i=i(Xi — X ) 2, and c is any constant with 0 < c <  2(k — 3). The 

optimal value of c is k  — 3. These estimators dominate the ordinary estim ator as long 

as k > 4. The dimension of the param eter space is reduced from k to k  — 1, which is 

reflected in the use of the constant k  — 3 instead of k  — 2.
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Since the discovery of the Stein's phenomenon, much research has been doin' and 

numerous papers focusing on the shrinkage estimation of location param eters have' 

been published (Casella and Hwang (1986), Ahmed and Saleh (1993) and Ahmed 

and Saleh (1999)). On the contrary, little can be found on the shrinkage estimation 

of a scale param eter. Stein (1964) proved the inadmissibility of the usual variance 

estimator with unknown mean even though he sta ted , “1 find it hard to take the 

problem of estimating a 2 with quadratic loss function very seriously."' in the same 

paper. However, Brown (1968) and then Brewster and Zidek (1974) took the problem 

seriously and improved upon Stein's result for point estimation. Kubokawa (1994) 

took a unified approach to improving the point and interval estimation of variance. 

Yet all of this research is concerned with a single variance, which is not applicable to 

microarray data analysis. Some research has been devoted to the shrinkage estimation 

of a covariance m atrix (Sinha and Ghosh (1987), Kubokawa and Srivastava (2003)). 

However, all of these methods required n > k to ensure non-singularity of the sample 

covariance matrix.

In this thesis, we propose new optimal shrinkage estimators of variances that bor

row strength across genes. Interestingly, our Stein-type shrinkage estimators naturally 

arise from a pure shrinkage estimation via the preliminary test estimation principle.

In statistical literature, preliminary test estimation was introduced by Bancroft 

(1944) to  estim ate the param eters of a model when it is suspected th a t some “uncer

tain prior information” on the param eter of interest is available. The m ethod involves 

a statistical test of the “uncertain prior information” based on an appropriate statistic 

and a decision on whether the model based sample estimate or the prior information
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bused estim ate of the model param eters should be taken.

To this end. let us consider the estimation of a vector of any unknown param eters

8  — (ffi...Of,.)' when a priori, for example. 0 —  0° =  (0 j. .... 0°)' is suspected. This

natural origin 0 ° could be any sort of a priori information about 0 . In many applied 

problems, usually the experimenter has some idea about the value of param eter 0  

based on past experiences or acquaintance with the problem under consideration. It 

is reasonable, then, to move the “ordinary", “classical" or “benchmark" estimator, 8 ,  

of 8  close to 0°. Let us define a linear shrinkage estim ator (L S E ) as

b (SR) =  d - n ( 0 - 0 ° ) ,  7T <E ( 0 , 1 ) ,  (1 . 5)

where ~ is the degree of trust in the prior information. The value of 7t 6  [0,1]

may be assigned by the experimenter according to her/his belief in the prior values 

0". Ahmed (1992), Ahmed and Krzanowski (2004), Bickel and Doksum (2001) and 

others pointed out tha t such an estim ator yields smaller mean squared error (M S E ) 

when a priori information is correct or nearly correct, however, at the expense of 

poorer performance in the rest of the param eter space. We will dem onstrate tha t 

0 (5 /2) has a smaller M S E  than 0 near the restriction, th a t is, 0 =  0°. However, 

0 (5 /2) becomes considerably biased and inefficient when the restriction may not be 

judiciously justified. Thus, the performance of this shrinkage procedure depends upon 

the correctness of the uncertain prior information (U P I ). The above insight leads to 

the pretest estimation when the hypothesis information is rather suspicious and it is 

useful to construct a compromised estim ator by performing a preliminary test on the 

H 0. Therefore, one may obtain an improved preliminary test estim ator as a convex 

combinations of 0 and 0 (5 /2) via a test-statistic for testing H 0  to achieve a bounded
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quadratic risk. As such, when the prior information is rather suspicious, it may be 

desirable to construct an improved preliminary test estim ator (1 P T E ) denoted by 

9(iPT)- which incorporates a preliminary test, on 9 -- 9°. Thus, the estim ator 8  or 

0 (SR) is selected depending upon the outcome of the preliminary test. If the prior 

information is tenable, one may use 0 (SR)\ otherwise 9 will be chosen.

Naturally, the improved preliminary test, estimator is defined as

0(ipt)  =  0 — ^ (9  — &o)I{T < Cn , a ) • (1.6)

where T  is a suitable test statistic for the null hypothesis H 0  : 9 = 8 °. cn n is the 

critical value, i.e., the (1 — a) x 100% percentile, of T  under the null hypothesis, and 

1(A) is the indicator function of a set A.  If we substitute it = 1 in the above relation, 

then we obtain

9 (PT) = 8 - ( 9 - 9 ° ) I ( T < c n,Q). (1.7)

The estim ator 9(pr) is known as the classical preliminary test estim ator ( P T E ) ,  due 

to Bancroft (1944). Essentially, we have replaced n, a fixed constant, in equation 

(1.5) by a dichotomous random quantity, I ( T  < c„)Q), to obtain a preliminary test 

estimator. In return, we achieve an estim ator with a bounded risk.

In recent literatures, a useful discussion about preliminary testing can be found 

in Giles and Giles (1993), Magnus (1999), Ohanti (1999), Reif and Vlcek (2002), 

and Khan and Ahmed (2003). Nevertheless, it is im portant to remark th a t fypr) 

performs better than 9 in some part of the param eter space. The use of 0(pt) may, 

however, be limited due to the large size of the preliminary test. The estimators 

based on the pretest method are sensitive to the departure from H 0  and may not be
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useful for all 0. The performance of the preliminary test estim ator depends upon 

the correctness of the hypothesized information. To overcome this shortcoming, we 

propose James-Stein type estimators (Stein (1956)). which combine the sample and 

non-sample information in a more superior wav than the preceding estimators.

Following Ahmed and Saleh (1993). the James-Stein type shrinkage estimator 

(JSE)  is defined by

e {j S) = 0 - { ( k - 3 ) T - 1 } { 0 - 0 %  k >  4. (1.8)

Interestingly, the above suggested estim ator is simply obtained by replacing the di- 

chotomous quantity (indicator function) in (1.7) by a continuous quantity ((k — 

3)T~] ). Hence, the suggested shrinkage estim ator arises in a natural way. The 

proposed James-Stein type estim ator provides a uniform improvement over 0. It 

is, however, not a convex combination of 0° and 0. Also, the proposed estim ator 

may not remain non-negative. To avoid this odd behavior of 0(js),  we truncate 0(js),  

leading to a convex combination of 9 and 9 which is called positive part James-Stein 

estimator(PJSE).  The PJSE is defined as follows:

8 (PP) = 8 - { k - 3 ) T - 1 { 9 - 9 0) -  (1.9)

{ 1  -  (k -  3 )T _1} / ( r  < k -  3)(0 -  8 °), k > 4.

We shall examine the asymptotic properties of the proposed estimators using the 

following weighted quadratic loss function:

L (0 .,0 ) =  n ( 0 , - 0 ) 'Q ( 0 „ - 0 ) ,  (1-10)

where 0* is an appropriate estim ator of 0 and Q is a given positive semi-definite 

matrix. Assume that G(y) =  lim ^oo  P { i/n (0»  — 0) <  y}. Then we define the
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asymptotic distributional quadratic risk (ADQR)  by

ADQR(0.,0) = J  / • • • / y 'QydG(y)  =  trace(QQ*),  (1.11)

where Q* =  f  /■■ ■ /  yy 'dG(y) .

Further, we consider the following contiguous sequence of alternatives to establish 

the needed asymptotic results:

A
Ki„) : 6  = 6 n. where =  0 o -\— A is a real fixed vector. (1-12)

V n '

Note that A =  0 implies 6 „ = 0 o.

Furthermore, we also compare the risks of suggested estimators under entropy loss 

functions. Simulation shows tha t our estimators perform well when sample sizes are 

small.

1.3 M eta-analysis in M icroarray Studies

On the one hand, most of the microarray studies have small to m oderate sample 

sizes, and thus have low statistical power to detect significant relationships between 

gene expression levels and outcomes of interest; on the other hand, the increasing 

availability and m aturity  of DNA microarray technology has led to  an explosion of 

cancer profiling studies. One will not be surprised tha t a number of research groups 

perform similar studies on the same subject under alike conditions. In this case, 

another type of combination of data, i.e., pooling data  across multiple studies often 

improves the power for detecting new relationships. However, this type of pooling 

is complicated by the fact th a t the technologies used to isolate, purify, label and
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measure RNA are so diverse th a t the gene expression measurements from different 

microarray platforms are not directly comparable. Nevertheless, the literature of mi

croarray and other medical researches has become so massive, and the requirements 

of many scientific journals have made all expression data related to the publication 

of research available to general public. Due to the ease of access to these data, it is 

considered to Ire profitable to overcome the many hurdles when incorporating gene 

expression data from multiple sources. To extract maximum value from accumulat

ing mass of publicly available gene expression data, methods are needed to evaluate, 

integrate, and inter validate multiple data sets. Some successful methods for mining 

information from disparate data sets prove th a t it is worth the effort. Troyanskaya et 

al. (2003) introduced a MAGIC (Multisource Association of Genes by Integration of 

Clusters) system, which applied a Bayesian framework for combining heterogeneous 

data sources for gene function prediction. Johnson et al. (2007) proposed param etric 

and nonparametric empirical Baves approaches for adjusting the so-called batch ef

fects from different studies. In some studies, instead of combining separate da ta  sets 

and performing analysis on the unified data, one may skip the raw data  and com

bine the analytic results from multiple studies. In general, these techniques for the 

aggregation and synthesis of prior research are called “Research sythesis" or “Meta

analysis” .

Meta-analysis aims to compare and combine estimates of effect across related 

studies. Suppose th a t a param eter 8  of interest can be estimated from k independent 

sets of data. 8  might be a mean, a difference of means, a factorial contrast, a log odds 

ratio, etc. which is often termed as an overall effect or effect size in meta-analysis.
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The k sets might correspond to  k independent studies by different investigators. Let 

be the estimates, assumed for the moment normally distributed around 0  

with known variances i q . .... v^- calculated from the internal variability within the 

separate sets of data. If these assumptions are a reasonable basis for the analysis, the 

“best" combined estim ate of 6  is

*'= (L13)

which is called a weighted mean of the t / s.

A number of assumptions are made in (1.13). The principal one is that the 

param eter 6  is indeed the same for all sets of data. This is a fixed effect model. It is 

an im portant general principle tha t before merging information from different sources, 

mutual consistency should be checked. A y 2 test with the following test statistic will 

serve this purpose:

Q =  <L14)

Suppose th a t (1-14) shows th a t the separate estimates tj  differ by more than 

they should under the assumption of homogeneity, and a specific explanation of the 

variation in 0  is absent, it may be taken as random, i.e., we may take a representation

0j = e + Sj, (1.15)

where 5j are independent random variables normally distributed with zero mean and 

variance r 2. This is equivalent to assuming to be independently normally

distributed around 0 with variances tq +  r 2, ..., c*. -+- t 2. It is unrealistic to  assume 

that V, and r 2 are known. The within study variances v, may be estimated by the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Introduction and literature review 13

methods mentioned in sections 1.1 and 1.2. Regarding the estimation of the among

st udy variance r 2. many approaches have been proposed over the years. DerSimonian 

and Laird (1986) proposed a m ethod of moments estimator (MM); Hedges (1983) 

suggested a variance-component type estimator(VC); Sidik and Jonkman (2005) pro

posed a simple heterogeneity variance estim ator (SH). All of these estimators are 

simple to compute. In contrast, the maximum likelihood estimator (ML) by Hardy 

and Thompson (1996). the approximate restricted maximum likelihood estimator 

(REML) by Morris (1983). and the empirical Bayes estimator (EB) by Morris (1983) 

are more computational intensive and require iterative solutions.

We construct shrinkage estimators based on the existing estimators. Our simula

tion study shows that our shrinkage estimators improve upon the base estimators in 

terms of risk under quadratic and entropy loss functions.

1.4 O utline of the Thesis

This thesis is composed of six chapters.

Chapter 1 provides an overview of the problems th a t are considered for research 

in this investigation as well as the literature survey.

In chapter 2 , we consider the large-sample inference of population variance and 

investigate its statistical properties in a multi-sample set up when random samples 

are drawn from arbitrary populations. Further, asymptotic statistical procedures 

are developed for testing the homogeneity of these variances. The interval estimation 

based on combined data  from various sources is also proposed. An extensive sampling
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experiment is conducted to investigate the performance of the suggested m ethods over 

a wide range of data sampling designs such as symmetric and skewed distributions. 

We tackle the inference problem for variance in a multi-sample situation without 

the stringent normality assumption. Our contribution is to study point estimation, 

interval estimation and testing procedures of the population variance param eters 

when samples are drawn from k > 1 arbitrary populations. We provide a total 

inferential package for the problem at hand. The problem of kurtosis estimation 

arisen from inferences about variance param eter is also discussed extensively in this 

chapter.

Chapter 3 develops some alternative estimation strategies when the information 

regarding the homogeneity of all the variances may not be precise. Assuming that 

homogeneity holds, it is advantageous to combine the data  to estim ate the common 

parameter. However, the combined estim ator becomes inconsistent when the equality 

of the hypothesis does not hold. In this situation, estimators based on pretest (Ban

croft (1944)) and the James-Stein (James and Stein (1961)) principles are proposed. 

Asymptotic properties of the shrinkage estimator, positive-part and pretest estima

tors are discussed and compared with the standard and combined estimators. It is 

demonstrated tha t the positive part estim ator utilizes the sample and non-sample in

formation in a superior way relative to  the ordinary shrinkage estimator. A simulation 

study is performed for finite samples, and the result shows th a t a m oderate sample 

size may be sufficient to utilize the same dominance picture in practical situations.

In chapter 4, we study the risks of a class of linear weighted combination estimators 

of variance based on finite samples. Two optimal weight combination estim ators under
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quadratic loss function are proposed. An application of the estimation strategies in 

the microarray study is included in this chapter.

In chapter 5, we deal with the estimation of the variance components in meta- 

analysis with random effects. Some existing methods are reviewed and the risks 

are compared. Shrinkage estimators are proposed based on the risk comparison. A 

simulation study shows that our shrinkage estimators outperform the base estimator. 

Further, they behave more robustly with respect to other estimators under study in 

the sense that they dominate other estimators in most of the param eter space.

Finally, in chapter 6 . some general conclusions and directions for the future re

search are offered.
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Chapter 2 

M ulti-Sam ple A nalysis of 

Population  Variances and K urtosis  

E stim ation

2.1 Introduction

In this chapter, we consider the large-sample inference of population variance and 

investigate its statistical properties in a multi-sample set up when random samples 

are drawn from arbitrary populations. Further, asymptotic statistical procedures 

are developed for testing the homogeneity of these variances. The interval estimation 

based on combined data from various sources is also proposed. An extensive sampling 

experiment is conducted to investigate the performance of the suggested m ethods over 

a wide range of data  sampling designs such as symmetric and skewed distributions. 

We tackle the inference problem for variance in a multi-sample situation without

16
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the stringent normality assumption. Our contribution is to study point estimation, 

interval estimation and testing procedures of the population variance param eters 

when samples are drawn from k > 1 arbitrary populations.

The structure of this chapter is as follows. In Section 2. we present the preliminary 

notations and basic assumptions. Section 3 deals with the testing problem for the 

equality of several variances. A variance stabilizing transform ation is introduced 

and the testing problems are revisited in Section 4. In Section 5. we investigate 

the properties of power functions of all the proposed tests. The interval estimation 

problem is tackled in section 6 . In Section 7 the problem of kurt.osis estimation arising 

from hypothesis testing is discussed extensively. The results of a simulation study 

on the proposed asymptotic procedures are reported in section 8 . The purpose of 

the simulation study is to  evaluate the properties of the proposed methods for small, 

moderate and large samples from normal and non-normal populations. To illustrate 

our method, an example is given in section 9. The concluding remarks are presented 

in the last section.

2.2 Prelim inaries and Large Sample R esults

In this section, we establish large sample results for inference purposes.

As usual, our starting point is a basic random experiment with an underlying 

sample space Q and a probability measure P.  Let Y  be a real-valued random vari

able for the experiment with mean p and variance a 2. However, we are interested 

in a multi-sample situation. Suppose tha t k (greater than 1 ) similar and indepen
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dent experiments have been completed. Let Yd, Lj'2 , • • • T m 4: ? =  L 2 ., • • • , k, be k 

inde])endent samples from underlying populations having a distribution with mean 

param eter p,. and variance param eter of. Let pi, and of be the estimators of /x, and 

o? respectively, where

^  Yjy  °>2 =  n . _  i  “  Pi f -
j =1 ' j= i

Assume th a t the fourth moment, p4i, exists, then

n)/2{fn -  m)  - ^ A f ( 0 , o f ) : n / 2(crf -  a?) p4, -  a?), (2 .1 )

where the notation — means convergence in distribution. Further, the asymptotic 

variance can be written in the following canonical form,

/K  -  °? =  (7 * -  l)o? (2 .2 )

where 7 * =  Pa/a?  and is called the kurtosis  of the distribution.

Further, if we assume that the populations are normal then

ri)n {Pi -  Pi) - 5- ^ ( 0 , 0 ?), n]/ 2 (a? -  cr2) - ^ A f ( 0 , 2 a?)

Now we turn  to the main objective of this investigation. Let us define the param 

eter vector <72 =  (of, of, • • • , o f) ' which is estimated by a 2 =  (of, o f , • • • , o f)'. In the 

following section, we consider a large-sample testing problem for the variances.

2.3 H ypothesis Testing

In this section, we conduct some statistical hypothesis testing problems for the 

population variances. For the simple null versus global alternative, le t’s suppose it is
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2 y

desired to test the following hypothesis

H 0  : a 2 =  a \ ,  where a \  -  (<r?0, a |OI ■■■ , <rfco, 

against the global alternative

H„:cr 2  + a \ .

It is natural to propose the following test statistic for the null hypothesis, which is 

defined bv normalized distance of a 2  from a 2\

T , = n { * 2 - o 20 ) ' T ; \ o 2 - * 20),

where n = E l i  n,, and

■n-1  rH r» t v  ' Wl.n ^ k . vT] = i l l ,  i ll  — Diag
. (7i ~  l ) CTi 0 ' ’ (7jt “  iW o ,

where ^  and 7 *. i — 1. • • • , k, is a consistent estimator of 7 *. Estim ation of

7 * will be discussed in detail in section 2.7. Here, we assume th a t Zimt,_oc(‘Wn) =  

Uj (0 < Ui < 1) is fixed for i =  l , - - -  .A:. When the null hypothesis is true, the 

large sample distribution of Ti converges to a central y 2 distribution with k degrees 

of freedom. Hence, the upper o-level critical value of T\ may be approximated by the 

(1 -  a)th  percentile of the central \ 2  distribution with k degrees of freedom. Finally, 

from a practitioner’s point of view we present the above test statistic in the following 

scalar form which is easily computable:

r . - E

'2  2 \  2 Ui / 0 7  -  of  '

7* -  1 V <?:7fo
(2.3)

t=1

A more interesting hypothesis would be whether the variation of underlying pop

ulations, as measured by the of, can be regarded as homogeneous across studies, i.e.,
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to test o\  = o\  — • • • =  er2. where of denotes the population variance in study i. 

Thus, the hypotheses are

Ho : o\  — a\  — ■ ■ ■ — of. = a 2 (unknown) vs Hn : of  ^  of,

for at least one pair of (?', h) (2.4)

where (/. h) £ (1 . 2 . ■ ■ • .k),  and i ^  h.

In sequel, for the sake of brevity we assume homogeneity of the kurtosis, i.e.. 

=  7 * = . . .  =  7 *. = 7 * (unknown) and the remaining discussion follows. We define 

the estim ate of the common variance

1
a2{R) = - ^ - r i n i a l  + n 2 a\  +  h n ka2k). (2.5)

71 —  rC

We propose the following test statistic for the null hypothesis (2.4), which is defined 

by the normalized distance of <r2 from a 2R  ̂ and is given by

T2 — n { a 2  — b 2Rj lfc)/f 2 (o-2 — (2-6)

where 1*. is a unit vector. f 2 =  -p-,— ^}s.i \-2. f i 2 =  Diag (uJi,n-, • • • andwo?) lna(R)>

'l’(R) is the pooled estim ator of the common kurtosis parameter, 7 *, and is given by 

7(r) =  ^ ( n i7i +  n 2l 2 +  f nklD-  (2.7)

Since, 7 ^  and a 2R  ̂ are consistent estimators of 7 * and a2, then for large n, it is 

appropriate to  approximate the distribution of T 2 by a \ 2 distribution with degrees 

of freedom (k — 1). Thus, an approximate test of H 0  is obtained by referring T 2 to 

the tables of the chi-square distribution with (k  — 1) degrees of freedom. We may 

rewrite the proposed test statistic in the following computationally attractive form:

t, = £
Tl j  I  ° i  a ( R )  \

i= 1
2

'f(R) L V a {R)
(2 .8 )
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Recall th a t the asymptotic distribution of n J 2{of  — erf} depends on two unknown 

parameters erf and the kurtosis 7 *. We present a variance stabilizing transform ation 

so tha t asymptotic variance will not depend on the param eter of  itself.

2.4 Variance Stabilizing Transformation

The asymptotic distribution of the quantity n j 2{bf  — of}  follows a normal dis

tribution with mean 0 and variance (7 * — l ) (o f )2. Since the asymptotic variance 

depends on unknown param eters of.  the question is whether we could find a suitable 

transform ation of of  for which the asymptotic variance does not depend 011 the un

known param eter of.  To obtain a variance-stabilizing transformation we must define 

a function g[bf] such tha t n / 2 {g[bf] — g[of]} - 5-* N(0,af) .  where at is independent 

of of.  In the following, we show th a t this may be achieved by taking a natural log 

transformation.

T heorem  2.4 .1 . For large n n 1/ 2 [log[bf] — log[of)} —̂ .V ( 0, (7 * — 1)).

The following lemma known as the Delta method is used for the proof of the theorem.

Lem m a 2.4 .2 . (Lehmann (1999)) Let 9,- be an estimator of the parameter Oj. Suppose 

that n j 2 {9i — #;} —g-> J\f(0.of) and let g be a continuous function such that g'{9i) 

exists and g'(6 i) ^  0. Then it follows that n 1/,2 {<?(0i) — g{9i)}/oig'(9i) 0,1).

Proof of the Theorem: Letting g(x)  =  log(x), we have g'(x) — x - 1  and g'{o2 i) —

^ - ^ 0 .  Thus, by the above lemma the result of the theorem follows.

Again, we consider two classes of testing problems for arbitrary populations:
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(i) simple null versus global alternative, and

(ii) test for homogeneity.

First, consider

Hu ■ <r2 = o \  vs. H 0 :cr2 ^  o 20. 

Based on the log transformation, we have

T3 =  n (log\&2] -  log[cr20 } ) ' t 3  ’ (log[&2] -  log[cr20}) , (2.9)

where

(2 ,o ,

i= 1

( 2 . 11 )

Alternatively. T3 can be written as

k

When the null hypothesis is true, the large sample distribution of T?> converges to  a 

central y 2 distribution with k degrees of freedom. Hence, the upper a-level critical 

value of T:j may be approximated by central y 2 distribution with k degrees of freedom. 

Next, let

H 0  \ a 2 — al  — ■ ■ ■ = ul  and H a : a 2  ^  a% for at least one pair of i ^  h. 

Then a reasonable test statistic is

T4 — n [log[a2] -  log[afR)\ l k)' f  4 1 (log\cr2] -  log[a2(R)\ l k) , (2.12)

where

* —l CI2
r 4 =  —  rr , f22 =  Diag (wyn, ■ • • , u>k,n) ■

w (R) M
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The above test statistic may be written as follows:

T4 = Y 1  v  i  ( l ° 9 [ ^ i 2 ] ~ l ° 9 [ ° 2 (R ) } ) 2  ■. . 0/ D\ Ji=i L V )
(2.13)

Since 7 ^  is a consistent estim ator of the common param eter 7 *, for large 1 1 it is 

appropriate to approximate the distribution of T4 by the chi-squared distribution with 

degrees of freedom k — 1 .

In the following section, we study the power of our proposed tests.

It is im portant to note tha t for a fixed alternative hypothesis, the power of all four 

tests statistics proposed earlier will converge to 1 as n —> oc. Thus, to study the 

asymptotic power properties of Ti (I — 1 ,2 ,3 ,4 ), we confine ourselves to  a sequence 

of local alternatives { K n}. When <r2 is the param eter of interest, such a sequence 

may be specified by

local alternatives as well.

T h e o re m  2 .5 .1 . Under the local alternatives in (2.14), if  n i / n  —> (0 < u < 1)

as Hi —> 0 0 , then

2.5 A Power Study

(2.14)

where 8  is a vector of fixed real numbers. Evidently, cr2 approaches cr2 at a rate 

proportional to n -1/2. Stochastic convergence of a 2  to cr2 ensures convergence under

n 1/ 2 {<r2 -  a 2} -g-» Me(S,  Ih ),

n ll 2 { a 2 - a 2R)l k} ^  Afk(J 8 , T 2
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n 1/2 {log[tt 2] -  log[a20}} Afk{6 : r 3),

n 1 /2 {log{&2] -  log[a2n)} lk} T4),

where

r =  Dm ( w  -  v t f o ) 2 ' > * - i ) K 20n
iag V W ] ’ U) k  )

r 2 =  - ( 7 * -  i)(CT2)2na:l j '- J  =  i  +  i i 'n 2,

r 3 =  Diag ~  ^ • . —k ~  — "j , 

r 4 =  (7 * -

Therefore, each T j . j  = 1.2, 3.4 has asymptotically a noncentral chi-square distri

bution with non-centrality param eters A;, where

Ai =  S ' T ^ S ,

a 2 -  ( j a y r ^ J S ) ,

A3 =  <5TgM,

A 4 = ( j a y r ^ J t f )

Hence, calculation for the power of the test statistic can be done by using noncentral 

chi-square distribution.

2 . 6  I n t e r v a l  E s t i m a t i o n

In this section, we propose interval estimation procedures for a 2. Note that, 

P r  | log[&• ] -  za / 2  -  l°9\ai) ^  lo9\°l\  +  *a/2  J
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converges to 1 — a as n  —> oc. This, in turn, implies tha t

, \ l / 2  /

l o 9 [ ° T \ - Zo f 2  [  A t -  )  ^  2 ^  io fl[* ? ] +  2a / 2  (  "A —  )= V ’ /  <  cr, <  e \ ’ /Pr  < e V ”> /  < (Ti < e

converges to 1 — a . So. the probability' th a t the random interval

] /2 . , \>/2\
^ 0S[ct,2]-^o io9 [CT2] + 2o

. e 7  V J j  (2.15)

or
(  _2„ f c V /2 , Q
I oje  7  V -  J . d, e 7  v J j . (2.16)

includes the unknown population variance of is 1 — a , and serves as an asymptotic

100(1 — q )%  confidence interval for erf.

On the other hand,

Pr( " ' - 2» (2L̂ 7i ) - ° f + z i  O f r )  (217)

converges to  1 — o  as n, —> oo. Thus,

1 ± Z a l l L - ± X /2\ o t  (2.18)
2 n7-

represents an asymptotic 1 0 0 ( 1  -  a)%  confidence interval for of based on the original 

data.

If the null hypothesis of homogeneity of the variances is not rejected, then it may 

be of interest to obtain a 1 0 0 ( 1  — a)%  confidence interval about the common value 

of cr2. A 100(1 — a)% confidence interval about o 2 may be obtained by using the 

combined data. Noting tha t

2
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converges to  1 — q as n —> oc, we have

< ^ < e

converges to 1 — a . This means th a t

( /-* _i \V2 / _j \ !/2  ̂
Jo9l t fn)}-z% ( ^ 7 7 —  J  e ' 0 9 [ * f n ) ] + 2 §  ( - L V — j (2.19)

serves as an asymptotic 1 0 0 ( 1  — a)% confidence interval for the common variance

param eter a 2.

For original data, as n —> oc.
1/2

P r { ° ( R ) ~ z f   )  ^CR) -  ^  -  ^t«) +    ) ^tft) t’ (2-20)n

converges to 1 — o. The endpoints of an asymptotic 100(1 -  a)% confidence interval 

for the common variance cr2 are given by

(M Dn

We realize th a t the asymptotic variance of the limiting distribution is a function of the 

kurtosis of the distribution. Thus, a better estimation of the kurtosis would become 

an im portant task. In the following section, several estimators are studied and a new 

bias corrected estim ator of kurtosis is proposed.

2.7 E stim ation o f K urtosis

Over the years, many estimators of the population kurtosis have been proposed 

in the reviewed literature (Fisher (1929), Hogg (1972), Balanda and MacGillivray 

(1988), Moors (1988), An and Ahmed (2007), among others).
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2.7.1 Prelim inaries and Background

The population kurtosis param eter is traditionally defined as the standardized 

fourth population moment about the mean (provided it exists),

E ( X  -  p Y  p 4 

7 =  ( E ( X  -  „)’ )* =  <2'22)

Alternatively,

7  =  7 * — 3 (2.23)

is often used so th a t the normal distribution has a kurtosis of zero.

Let X 4, X 2. ■■■: X n be a random sample of size n from an arbitrary population,

then a commonly used consistent estim ator of 7  is given by

n Y , { x i - x Y  _ J2 x i l00As
7  =  E 7 ,  -  1 ’

Note tha t the above estim ator is not unbiased. Indeed, the bias and variance of the

estimator depend on the underlying population distribution. For example, Cramer

(1946) gave the following results for normal distributions:

Bias(  7 ) =  —6 / (n  +  1), (2.25)

24n(n — 2)(n — 3)
VaT( l)  =  [n +  l ) 2(n +  3)(n + t j  P '26)

Another frequently used estim ator of 7  is defined as

^  =  t + ^  +  (2‘27)(n — 2)(n — 3)

It has been proved th a t y u is unbiased for normal distributions. We refer to Fisher 

(1929), Kendall et al. (1987), Joanes and Gill (1998) and others.
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Note that A;u has been adapted by various computing packages, such as SAS, 

SPSS, and S-Plus. For example, SAS PROC MEAN gives y u . On the other hand, 

using B1ASKUR option in CALIS procedure yields 7 .

In contrast, the kurtosis measure adapted by M1N1TAB is defined by

(7 +  3 ) - 3 .  (2.28)

Joanes and Gill (1998) showed th a t for normal distributions,

Bias{yM) =  3
(n — l ) 3

3 — ---- '~7 ~7 - (2-29)n  -f 1_n2(n +  1 )_

It is seen from expressions (2.27) and (2.28) that:

V a r { " ' V )  ~  { (n I  2 x 1 - 3 ) }  V a r { ‘ , )  ~  ( '  +  t t )  V'“rW )’ (2 30)

V a r ( y M) =  ^ Var( 7 ) ~  ^ 1 -----^ Var( 7 ). (2.31)

Hence, in general,

Var( 7 M) < Var( 7 ) < V a r ( y u ). (2.32)

However, in order to provide a fair comparison we use the M S E  criterion. For a

normal population,

M S E { 7 ) <  M S E { 7 M) < M S E ( y u ).

Thus, 7 , available in SAS and S-Plus, has the smallest M S E ,  more importantly, when 

sample size is small. In this case the performance of the unbiased estim ator y u is the 

worst due to the large m agnitude of the variance. Interestingly, this estim ator is also 

adapted by SAS, SPSS and S-Plus.
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This comparison gives some insight and forms a basis for introducing some new 

estimators, particularly when sample size is small or moderate. We propose two new 

improved estimators in the following Section.

2.7.2 P roposed  E stim ation  Strategies

Since both 7  and y M are biased estimators with lower variance compared to A,u . 

correcting the bias given in (2.25) and (2.29) yields two new estimators as follows:

Consequentially, for normal data, -Vvi and y N 2  are both unbiased estimators of 7 .

Now let Ei, E 2, E-i, E 4, and E b denote the estimators 7 , y u , , y Nl, and y N2,

respectively. It is a straightforward m atter to derive tha t when underlying population 

distribution is normal,

M S E { E b) < M S E { E 4) < M S E { E i )  < M S E { E 3) < M S E { E 2), (2.40)

y Ni = 7  +  6 / (n  +  1 ) (2.33)

and

(2.34)

M S E ( E i )
24n3 -  84n2 +  432n +  540 

(n +  l ) 2(n +  3)(n +  5)
(2.35)

M S E { E 2)
24n (n  -  l ) 2

(2.36)

M S E ( E 4)

M S E { E Z)

(n — 2)(n — 3)(n +  3)(n +  5)'
24(n — l ) 4(n — 2)(n — 3) 9[(n -  l ) 3 -  n2(n +  l ) ] 2

n3(n +  l ) 2(n +  3)(n +  5) n4(n +  l ) 2

24 n(n — 2 )(n — 3)

(2.37)

(2.38)

M S E { E 5)

(n  +  l ) 2(n +  3)(n +  5)' 
24(n — l ) 4(n — 2)(n — 3) 
n3(n +  l ) 2(n +  3)(n +  5)

(2.39)

It can be shown th a t for all n > 3,
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Figure 2.1: Bias and M S E  of the kurtosis estimators for normal distributions. E\, E2, E 3 , 
Ei,  and E 5 denote the estimators 7 , 1 U, 7 M, y N1, and y N2, respectively.

keeping in mind th a t E4 and E r, are the proposed estimators. Hence, the two proposed 

estimators are superior to  the existing estimators in term s of M S E  for normal data.

Figure 2.1 is a visualization of the bias and M S E  comparison of the five estimators 

when sample size n  varies. The graphical analysis reveals tha t both E\  and E 3 un

derestimate the population kurtosis and the negative bias is substantially large when 

n  is small. The magnitude of bias decreases as sample size n  increases and eventually 

becomes negligible. The estimators E 2, E A, and E 5 are all unbiased. Furthermore, 

the graph clearly indicates th a t our estimators E 4  and E 5 have significantly smaller 

M S E , especially when n  is small, and hence are superior to  the existing estimators.

In order to  quantify the relative efficiencies of the estimators, we define the effi

ciency of the estimators relative to  E 2 by

R E ‘ =  m SsEe(e -Y where 3 =  1>3>4' 5' <2 4 1 >

The R E s  are calculated for selected sample sizes and listed in Table 2.1. It can
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Table 2.1: The relative efficiency of the kurtosis estimators

n £ £ 1 £ £ 3 £ £ 4 £ £ 5

5 3.200 1.307 16.00 39.01
1 0 2.053 1.274 3.125 4.763
2 0 1.490 1.271 1.700 2.087
30 1.314 1.215 1.414 1.619
40 1.230 1.173 1.293 1.431
50 1.181 1.144 1.227 1.330

1 0 0 1.088 1.076 1.106 1.152

be observed that when n  is small, our estimators £ 4  and £ 5  are highly efficient 

compared to the others. For example, when n — 5, £ £ 4  and £ £ 5  are 16.00 and 

39.01, respectively. In passing, we would like to remark here th a t as the sample 

size increases, the M S E  difference among all the estimators becomes smaller and 

eventually negligible.

In summary, all indicators show that our estimators are more advantageous com

pared to the existing ones adapted by various software packages when data  are from 

normal population. However, data  can arise from non-normal populations. In the 

following section, we will look at their relative performance when data  come from an 

arbitrary population through simulation studies.

2.7.3 A  Sim ulation Stu dy  o f  K urtosis

In this section we showcase a Monte Carlo simulation study to  investigate the 

performance of various estimators for some sampling designs. Moreover, an empirical 

bias-corrected estim ator for skewed and heavy-tailed data  is proposed.

The bias and M S E  of the kurtosis estimators are now simulated for contam inated
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normal, heavy-tailed, and skewed data, each based on 5000 Monte-Carlo simulations. 

The results are presented in Figures 2.2 to 2.7.

C o n ta m in a te d  N o rm a l D a ta  The probability density function (pdf) of a mix

ture of k normal random variable X  is defined by

k

/ (* )  =  Pj: °])- (2-42)
i=t

where, for j  =  1 , . . . ,  k.

2 1 /  (X — f l j )2 \

0i{™ ’°*) = 7 ^ i e x p V ~ W ~ )

is the pdf of a normal random variable with mean pj  and variance a 2, and

k

o < P j <  1, =  1.
j=1

The population kurtosis of this distribution is given in Wang (2000) as follows:

k

7* =  ^4 +  6 (/ij  -  p ) 2o 2 +  (Pj  -  p ) %
3 = 1

where p  =  Y^j=\PjPi  an<i ° 2 — Yl^=iPj(aj +  Pj) ~  I1'2 are the mean and variance of 

the m ixture distribution respectively.

R e su lt  2 .7 .1 . For a mixture of two normal random variables, i f  p\  =  p 2 , then

» =  3(pi<7i +  P2 O2 )
7  {Pi° 2  + P2 ^ ) 2 '

Note that minimum occurs when either p\ =  0 or I, with the minimum value equal
2 2

to 3. Further, it is maximized when m =  3 and » 2  =  t X i  > and the maximum
2 0 - y ~ T U 2

value is |(^£- +  ^  +  2 ).

Thus, in our simulation study, we considered mixtures of two normal distributions 

with the following param eter configurations:
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Configuration 1. pi = p2, Ct l & 2  =  1/2, n = 20, 0 <  p\ < 1;

Configuration 2. = p 2, o \ / o 2 = 1/3, n = 20, 0 <  p\ < 1;

Configuration 3. p\ — p 2, 0 \ / o 2 =  1/2, n — 50, 0 <  p\ < 1;

Configuration 4. p\ = p 2, o i j o 2  — 1/3, n = 50, 0 <  pi < 1.

Figure 2.2 (a)-(d) exhibits the bias comparison of the five estimators. The values 

of the population kurtosis together with the Monte-Carlo means of the five estimators 

for above four param eter configurations are presented in the figure. The graphs show 

that when <J\/o2  is fixed, the population kurtosis 7 * starts from 3 as pi - 0. increases 

with the increasing of the weight p i: reaches its maximum value as pj =  +  a*).

and decreases back to  3 when p\ — 1. For example, kurtosis takes its maximum 

value at p\ =  0.8 when 0 \ / o 2 = 0.5. This agrees with Result 2.7.1. It is observed as 

well th a t all estimators underestim ate the population kurtosis in the entire param eter 

space. Regarding the m agnitude of the simulated bias {SB),  the graph reveals that

S B { y u ) < S B { y m ) < S B { y m ) < SB{y )  < S B { y M). (2.43)

The bias decreases as the sample size increases. When o \ j o 2 —> 1, the distribution 

becomes normal. Conversely, when o i / a 2 moves away from 1, the performance of the 

estimators become very poor around the maximum value of the kurtosis.

The simulated mean squared error { S M S E )  of  the estimators is given in Figure 

2.3. The S M S E  increases dramatically as 0 \ / a 2 moves away from 1. Increasing 

sample size n  improves the estimation, yet not good enough to  get an acceptable
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(c) n=20, sigma1/sigma2=1/3
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Figure 2.2: Bias comparison of the kurtosis estimators for a mixture of two normal popu
lations. Ei,  f?2 , E ‘i, E,\, Ers, and theory represent the expected values of the estimators 7 , 
fyÛ  -yM̂  .yvi^ an(j theoretical value 7 , respectively. The bias is measured by the 
distance between the mean of the estimator and the theoretical value.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Multi-Sample Analysis o f Population Variances 35

(a) rr=20, sigma1/sigma2=1/2 (b) n=50, sigma1/sigma2=1/2
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Figure 2.3: M S E  of the kurtosis estimators for mixtures of two normal populations. E\,  
E2, Es, E 4 , and E$ represent 7 , 7 17, 7 M, 7>N1, and *fN2, respectively.

performance. However, comparing the S M S E  of the five estimators, we notice th a t 

7 ^ 2 and 7 ^  perform relatively better.

H e a v y -ta ile d  D a ta  Samples of sizes 20 and 50 are generated from Student-t 

distributions with degrees of freedom v  ranging from 5 to  25. The S B  of the five 

estimators for the t  distribution is presented in Figure 2.4. P art (a) is based on 

samples of size 20 and part (b) is based on samples of size 50. It is observed th a t for 

fixed sample size, the bias of all five estimators is considerably large when the degrees 

of freedom is small (say <  6 ). The bias decreases and approaches 0 as v —> 0 0 . W hen 

sample size is small, substantial bias difference is observed among the five estimators.
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a. n = 20 b. n = 50
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Figure 2.4: Bias of the kurtosis estimators for Student-t distributions. E\, E 2 , E 3 , E 4 , and 
E 5 represent 7 , 7 ^, 7 M, 7 N1, and 7 JV2, respectively.
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Figure 2.5: M S E  of the kurtosis estimators for Student-t distributions, v  is the degrees 
of freedom which ranges from 5 to 30. E\, E 2 , E 3 , E4 , and E$ represent 7 , 7 ^, 7 M, 7 W1, 
and 7 ^ 2, respectively.

Figures indicate th a t 7 ^, j /NI, and j N 2  have the smallest bias, whereas 7  and 7 M 

have the largest bias. Interestingly, this pattern  is the same as th a t for normal data. 

Comparing figure 2.4 (a) and (b), we observe th a t for large degrees of freedom the 

amount of bias is negligible for both sample sizes.

Figure 2.5 presents a comparison on the S M S E  of the five estimators. It demonstrates 

th a t for a fixed sample size n, the S M S E  of all estimators are very large (around 30 

compared to  less than  2 in normal case) when the degrees of freedom is small, i.e., 5.
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This is due to the large deviation of the student-t from normal distribution when r  is 

small, which causes huge negative bias (around -5). It is not surprising that has 

the smallest M S E  followed by y N2 and y Nl when v is small because of their relatively 

small bias compared to  and y. The S M S E  of all estimators drops dramatically 

when v increases; intexestingly, the order of the five M S E s  changes in favor of our 

estimators. For example, the following relation is observed for both sample sizes 20 

and 50 when v >  6 :

S M S E ( y m ) < S M S E { y m ) < S M S E ( y u ) < S M S E ( y )  < S M S E ( y M). (2.44)

Hence, y N2 and dominate the existing estimators for the said condition, i.e.. 

when v is not too small. Generally speaking, there is no clear cut winner in this case. 

Incidentally, for a large sample, say 50 and so the performance of all the estimators 

is similar.

Skew ed D a ta  To simulate skewed data, 5000 samples of sizes 20 and 50 are

randomly taken from y 2 distributions with degrees of freedom 1 to  40 in each case.

Figures 2.6 and 2.7 compare the S B  and S M S E  of the five estimators based on

sample sizes 20 and 50, respectively. The graphical analysis is similar to th a t of

Student-t distribution. Figure 2.6 shows th a t all five estimators underestim ate the 

population kurtosis in the entire param eter space. The following relation in term s of 

bias is observed.

SB{  f )  < S B { y m ) < SB {  y m ) < SB{  7 ) < SB{  y M). (2.45)

Seemingly, the magnitude of bias is tremendous when the data  is highly skewed. 

However, it reduces rapidly as the degree of freedom v increases. The graph shows
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a. n = 20 b. n * 50
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Figure 2.6: Bias of the kurtosis estimators for y2 distributions. The degrees of freedom u 
ranges from 1 to 40. E\, E 2 , E 3 , E 4 , and F 5 represent 7 , j u , 7 M, j N1, and j N2, respectively.

th a t larger sample size improves the estimation, yet, huge bias is observed when v is 

small.

Figure 2.7 shows the behavior of the S M S E  of the estimators. For small v,

S M S E { f )  < SM SE (-y N1) < S M S E t f " 2) < S M S E {  7 ) <  S M S E (  y M). (2.46)

On the other hand, as v increases, the domination of bias diminishes, resulting 

in the change of the order in the above relation. For example, when n  = 20, the 

following relation is observed for v > 1 0 :

S M S E { ^ m ) <  S M S E { j N1) < S M S E ( yM) <  S M S E { 7 ) <  S M S E ( j u ) (2.47)

A similar but slower change for larger sample size is detected as well. Again, the 

proposed estimators j N2 and 7 W1 outperform the existing estimators under reasonable 

conditions. However, no one can claim to be the winner for a general case.

In summary, based on the bias and M S E  behavior of the estimators, the proposed 

estimators AjN1 and 7"V2 outshine the other estimators for normal as well as non

normal populations in many situations. The simulation study reveals th a t in general,
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a. n * 2 0  b. n = 50
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Figure 2.7: M S E  of the kurtosis estimators for x'2 distributions. The bottom two plots 
use enlarged vertical scale in order to have a better view when the degrees of freedom v is 
large. E\,  £ 2 , £ 3 , £ 4 , and £ 5  represent 7 , , 7 M, *fN1, and 7 W2, respectively.
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our estimators perform better than the existing ones adapted by various software 

packages such as SAS, S-Plus, SPSS, and MINITAB in terms of bias and M S E .  

Noting that all estimators are biased for non-normal populations and the bias and 

M S E  are substantially high when the distribution is far away from normal, a bias 

correction for these estimators is necessary in order to achieve a better performance 

and hence better inferences.

An Em pirical B ias-corrected  E stim ator  for N on-norm al D istr ib u tion s

Noticing that all five estimators are biased for non-normal populations, and bias 

is inflated in a range of the param eter space, it seems to be an appealing idea to 

construct a bias-corrected estimator. Since the variance is negligible compared to 

Bias2, we suggest to employ a bias-reduction technique based on our proposed best 

performing estim ator y N2.

Recall that, for t and chi-squared distributions, the bias depends on the sample 

size as well as the degrees of freedom. Examining the scatter plots in Figure 2.8(a) 

and (b), with 7  as X  axis and mean(yN2) as Y  axis respectively, we see smooth 

quadratic curves for both distributions. Hence, a new bias-corrected estim ator may 

be constructed in the following form:

= + (2-48)

The values of the coefficients (3\ and /32 for n =  20, 30, and 50 are computed and 

listed in Table 2.2.

Based on the bias-correction in equation (2.48) and Table 2.2, a simulation ex

periment is conducted to inspect the bias and M S E  of the estimators. The result
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Figure 2.8: y N2 vs 7  scatter plot

shows tha t these estimators effectively reduced the bias to a negligible level; however, 

extremely large variance was introduced due to the quadratic form, resulting in in

flated M S E .  A similar correction was applied to the other four estimators, and the 

performance of these bias-corrected estimators were similar. This form of correction 

is not ideal.

Since the uncorrected estimators perform reasonably well when the degrees of 

freedom is not very small (say >  10 for t  distribution and >  5 for y 2 distribution), 

it might be more practical to consider a correction only when the degrees of freedom 

is very small (i.e., < 10 for t  distribution and <  5 for y 2 distribution). Note th a t in 

Figure 2.8, when the degrees of freedom is small (corresponding to large kurtosis), the 

relationship between 7  and 7  can be well approximated by a linear equation; thus, 

a simple linear regression model without independent variable ( yN2)2 may be fitted. 

Our simulation found th a t the variance of this fitted estim ator is greater than  the 

original biased estimator, however it is not inflated too much. The result is not shown
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Table 2.2: The coefficients in 7 A3

f-distribution ^ -d is tribu tion
11 0i 02 0i 02

2 0 0.6453 6.2886 2.8691 0.3435
30 0.6290 2.9618 2.0371 0.1852
50 0.6430 1.4809 1.5310 0.0968

here.

For the mixture of two normal distributions, the bias of the estimation depends 

on the shift (/q -  /j2), the scale a \ j a 2, the weights p\  and p 2-, as well as the sample 

size n. It is verv difficult to obtain a general equation to correct the bias. Luckily, 

such a correction is not needed in many situations, which will be discussed in the 

next section.

2.7.4 A n A pplication  in th e  E stim ation  o f  Coefficient o f  Vari
ation

The coefficient of variation 9 =  ^ is a descriptive measure of relative dispersion 

tha t can be found in virtually all introductory statistics text books. It is commonly 

used in medical and biological sciences as a very useful measure of relative variability 

of the data. A commonly used consistent estim ator of 9 is defined by 9 — | ,  where 

s is the usual sample standard deviation and x  is the sample mean. Ahmed (2002) 

showed that

Vn(0 — 9) A/r(0, r 2), where r 2 =  94 — 9 +  ^02(7 +  2). (2.49)

It is seen tha t the variance param eter r 2 is not stable in the sense th a t it is a function 

of 9 and 7 . A variance stabilizing transform ation can be obtained to get rid of 9\
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however, it will be still a function of 7 . To this end, a consistent estim ator of r 2 is 

given by

where /r3. b . and 7  are suitable estimators of p3, o , and 7  respectively. Hence, an 

asymptotic (1  — a) 1 0 0 % confidence interval for 6 can be calculated by

( 0  -  za/ 2 \ Z t 2/ti, 0 + z0/2y / f 2/n) ,  (2.50)

where. za/2 is the upper a /2  percentile of the standard normal distribution. 

I l lu s tr a t iv e  E x a m p le s

E x a m p le  1: Point Estimation (large sample) The Hong Kong Medical Technology 

Association has conducted the Quality Assurance Programme for medical laboratories 

in Hong Kong since 1989. See Fung and Tsing (1998). The aim of the programme is 

to promote the quality and standards of medical laboratory technology. Coefficient 

of variation is commonly presented in the Annual Report of the programme. In the 

specialty of haematology and serology, two whole blood samples (one normal and the 

other abnormal) were sent to participants for measurement of Hb, RBC, MCV, Hct, 

WBC and Platelet in each survey. The data collected from the third survey of 1996 

are

14.0, 14.0, 14.2, 14.2, 14.3, 14.3, 14.3, 14.4, 14.5, 14.5, 14.5, 14.5, 14.5, 14.6, 14.6,

14.6, 14.6, 14.6, 14.6, 14.6, 14.6, 14.7, 14.7, 14.7, 14.7, 14.7, 14.7, 14.7, 14.7, 14.7,

14.7, 14.7, 14.7, 14.7, 14.7, 14.8, 14.8, 14.8, 14.8, 14.8, 14.8, 14.8, 14.8, 14.8, 14.8,

14.8, 14.9, 14.9, 14.9, 14.9, 14.9, 14.9, 14.9, 14.9, 14.9, 14.9, 14.9, 15.0, 15.0, 15.0,

15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.1, 15.1, 15.3, 17.3
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For this sample data. 6 — 0.0265, and

= 22.29. *,u = 23.99. = 21.61, y m  =  22.37, y N2 = 21.77.

Conseciuentially. the corresponding asymptotic variance estimates are:

(fif. f 22. t2. r42. fi2) -  (0.004200, 0.004497, 0.004079, 0.004214, 0.004107).

Seemingly, f AI gives the smallest variance estimation. However, the actual r 2 is 

unknown; hence, a conclusion cannot be drawn as to which estim ate is better. Nev

ertheless. we observed in our simulation study in section 2.7.3 tha t all five estimators 

seem to underestim ate the true kurtosis parameter.

Clearly, the data came from a non-normal population, perhaps due to an outlier. 

Fung and Tsing (1998) pointed out th a t 17.3 is an outlier in this data  set. Recalculat

ing the above statistics after removing this outlier, the following results are obtained:

B =  0.01717 and

7  =  0.8131, 7 17 =  0.9607, 7 M =  0.7079, y m  =  0.8953, -y* 2 =  0.8706.

The small values of the kurtosis estimates indicate th a t the data  resemble normal 

distribution fairly well after the removal of the outlier. Further, the variance estimates 

are:

(fi2, t22, f | ,  f 42, fi52) =  (.0002116, .0002225, .0002038, .0002176, .0002158).

In an effort to get a clear picture for the relative performance of various estimators 

in this example, the bias and the standard error (SE) of fi2 to fif are computed using
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Table 2.3: Performance of f  based on different 7

full data set outlier removed
estimator bias(x 1 0 ' 3) S E { x  10“ 3) RE b ia s (x l0  6) S E { x  10-5) RE

T2 -1.635 1.779 0.986 -9.583 4.773 1.107
-1.455 1.907 1 -0.598 5.122 1

r i -1.711 1.7317 0.9727 -17.077 4.642 1.073
Fa2 -1.620 1.779 0.995 -3.525 4.773 1.145
n -1.682 1.731 0.988 -5.081 4.642 1 .2 0 0

a bootstrap technique. Furthermore, the efficiency of the estimators relative to f |  is 

estimated accordingly. The result is listed in Table 2.3.

Table 2.3 reveals th a t the bias and SE are relatively small without the outlier as 

compared to tha t of the full data set. This makes sense since the data  approximately 

follows a normal distribution after removing the outlier. However, the data is highly 

skewed when the outlier exists. Thus, the bias of the estimates is inflated (from 10- 6  

to 1CT3) as a result of the deviation from normality. The standard error of the variance 

estimates is exploded as well due to the outlier. Inspecting the relative efficiencies, 

we find th a t the variance estimates f |  and r f  based on our kurtosis estimators £/m  

and 7 ‘V2 perform the best when the outlier is removed. In contrast, in the presence 

of an outlier, the performance of all the estimators is comparable with f 2, f |  and 

f |  slightly better than the other two. Keeping in mind th a t n — 73 is a reasonably 

large sample size, as a result, the difference among the performance of the estimators 

is not very significant. More importantly, these observations are consistent with our 

theoretical and simulation studies.

E x a m p le  2: Interval Estim ation (small sample) O tt and Longnecker describe a
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study where percent potency reduction is measured in a random sample of 2 0  pesticide 

containers that have been stored at room tem perature for six months, see Douglas 

(2006). The sample data are 0.2, 0.5, 1.1, 1.4, 1.8, 2.3. 2.5, 2.7, 3.5, 4.4, 4.6, 5.4, 5.4, 

5.7. 5.8. 5.9. 6.0. 6 .6 . 7.1. 7.9. Here

§ = s / x  =  0.5777, ~,m  = -0.9511, y N2 = -0.8584.

Consequently. f 2 (A7l) =  0.2279 and f 2(N2)  =  0.2356. Thus, 95% confidence intervals 

for 9 based on q A'] and y V2 are (0.3685, 0.7869) and (0.3650 , 0.7904 ) respectively. A 

95% bootstrap-! interval and a bootstrap percentile interval were also computed based 

on 500 x 500 re-samples and 5000 re-samples, respectively. The bootstrap confidence 

intervals are (0.3205. 0.7560) and (0.3823, 0.7842), respectively. These intervals are 

comparable and all shorter than the one given in Douglas (2006). However, Dou

glas (2006) is estimating the coefficient of quartile variation by removing 50% of the 

observations from the original da ta  set.

We summarize this section as follows:

We have compared the performance of several kurtosis measures adapted by SAS, 

SPSS, S-Plus, Minitab, and other statistical packages. We have proposed several new 

measures of kurtosis. It has been dem onstrated both analytically and numerically 

th a t our proposed estimators outperform the existing estimators for normal popula

tion based on the M S E  criterion. Moreover, an extensive simulation study has been 

conducted for non-normal populations. Results indicate tha t the proposed estima

tors are superior to the existing ones in many practical situations. Bearing this in 

mind, all the estimators substantially underestim ate kurtosis param eter when under
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lying population distribution is highly skewed or heavy tailed. In order to correct 

the bias, empirical formulas are provided for Student-t and Chi-squared distribu

tions. However, empirical estimates are subject to extra variation introduced and 

result in inflated M S E .  Perhaps, some re-sampling methods such as bootstrap  and 

jackknife may be considered to reduce the bias as well as keeping a relatively lower 

variance. Example 2 showed th a t all estimators are very sensitive to outliers, some 

non-parametric estimators tha t are more robust may be developed.

2.8 Simulation Studies for Variances

Now we return to the main problem of this chapter and provide some simulation 

results for variances.

The main purpose of this simulation is to examine the quality of statistical in

ferences based on large-sample methodology in moderate sample situations under 

various scenarios. The developed theoretical aspects of the test statistic and interval 

estimation in previous sections are now examined through the Monte Carlo simula

tion. In the simulation study, we consider some of the frequently encountered models 

in practice. The simulation study is performed using normal (symmetric), S tudent’s t 

(heavy tailed), chi squared (skewed), and mixture of normal (contaminated) distribu

tions. Representatives of skewed and heavy tailed distributions were chosen because 

they frequently occur in practice and are particularly troublesome. A m ixture of 

normal distributions is studied since it has provided an extremely flexible m ethod of 

modelling a wide variety of random phenomena in economics, sociology, and medical 

science, and has received increasing attention in many fields. Further, these specific
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distributions were considered for their ease of  generation and m athematical m anipu

lation.

All simulations were run in S-plus.

2.8.1 Sim ulation Study 1: Test Statistics

D istr ib u tion  o f th e  te s t  s ta tistics

First, a simulation study was carried out to assess the distribution of the test 

statistics for testing the homogeneity of several variances. We consider the test statis

tics T2 and T4 given in relations (2.8) and (2.13), respectively. For the given sample 

sizes and fixed k. random samples were generated from a normal, a S tudent’s t, a 

chi-squared and a mixture of two normal distributions. In each case, 5000 samples 

were randomly generated. Normal random samples were generated with mean 0 and 

standard deviation 1, Student t random samples were drawn with degrees of freedom 

6 , the chi-squared distributed samples were obtained for 4 degrees of freedom, and 

the mixture of normal distributions was composed of 90% N ( 0, l 2) and 10% N ( 0, 22).

In each case, both test statistics T2 and T4 were computed based on 5000 repli

cations. The results are presented in Figures 2.9 and 2.10. For the Student-t and 

chi-squared samples, the test statistics were computed based on two different kurtosis 

estimators: one is A/u as defined in equation (2.27), and the other is based on the 

bias corrected estimator given in Table 2.2 (labeled with “BC” in the graphs). Figure 

2.9 compares the distribution of the test statistic T2 which is computed from original 

data with the theoretical asymptotic distribution Xpt-ip an(i figure 2 . 1 0  compares 

tha t of T4 which is computed from transformed data with xfk-i)- These figures are
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Figure 2.9: Distribution of the test statistic I 2 (original data). The test statistics with 
“BC” were calculated based on bias corrected estimate of kurtosis in table 2 .2 , and the rest 
were based on 7 %

based on four different population distributions, two different estimators of kurtosis 

and different combinations of k and n. In the figures, a solid line represents the the

oretical asymptotic distribution of the test statistic, i.e., x fk- ip  dotted and dashed 

lines portray the simulated sampling distributions of the test statistic T2 or TA based 

on the samples of size 30 or 50, as marked in the graphs, from N ( 0,1), f(6), Xu) and 

the m ixture of 90% N ( 0, l 2) and 10% yV(0,22) data, respectively.

The graphical analysis reveals th a t the distributions of the test statistics T2 and T4
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Figure 2.10: Distribution of the test statistic T4 (transformed data). The test statistics 
with “BC” were calculated based on bias corrected estimate of kurtosis in table 2.2, and 
the rest were based on j u .
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are reasonably approximated by a chi-squared distribution with a respective degree 

of freedom for a moderate sample size n and not too large number k, of samples for 

all four population distributions. For example, when k — 4, the distribution of the 

right tails, which is our major concern, of the T2 and T4 resemble xfk-i)  V('1V W('H

for n  as small as 30. When k increases, T2 and T4 deviate from Xpt-i) significantly,

especially for <(6 ) and x 2 (4)- A larger sample size is required in order to get a better 

approximation. The simulation shows tha t in general, T2 and T4 resemble 2 very 

well for normal and mixture of normal populations even for k as large as 1 0  and n 

as small as 30. The bias correction to the kurtosis estimator significantly improves 

the x 2 approximation for t and y 2 population, especially on the right tails, for both 

original data  and transformed data and for all combinations of k and n. Interestingly. 

T2 and T4 resemble Xp,_i) surprisingly well for the mixture of normal distributions 

even though y u is used to estimate 7  without any bias correction. It leads us to 

conclude tha t a bias correction is not necessary for the mixture of normal case in our 

procedure. The figures also demonstrate th a t the effect of the variance stabilizing 

transform ation is not very significant in this case.

Pow er S im ulation

A simulation to study the power of the above tests was carried out as well. We 

considered the case when k=4 for each of normal, Student-t, chi-squared and m ixture 

of two normal populations. The null hypothesis of interest is

u  . ^ 2  _  2 _  Jl _  Jl
c j q  • —  ® 2  —  ^ 3  —
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In order to simulate the power, let

A E
l\  2

a (R)

where <7 ^  is the menu of of. A serves as a measure of deviation of the true status 

of the param eter from the null hypothesis. In the simulation, random samples were 

taken from populations with different variances to vary the value of A. Powers were 

calculated for different A and selected sample sizes 20 and 50. In order to make a 

comparison of our tests with the established methods, we included Levene’s test, the 

most popularly used test for homogeneity of variance when the populations are not 

normal, in our simulation as well.

Levene’s test (Levene (I960)) is used to test the homogeneity of variance when 

normality is violated. Let be the j th measurement in the i th group, where i = 

1 , . . . .  A' and j  = 1 . . . . .  n, . The Levene test statistic is defined as:

w  = lA'-fc) Ef.i”<(a.-02 
<* -!) E L  £?„.<*« -  h f

where N  is the total sample size, 2 y can have one of the following three definitions:

1 . = |yij — Vi. | , where yt, is the mean of the i th group.

2 . Zij — |jjij — yi,|, where is the median of the ith  group.

3. z^  =  |y^  — y'i | , where y[ is the 10% trimmed mean of the ith  group.

2 ,. are the group means of the 2 ^ and 2 . is the overall mean of the ztj.

The three choices for defining ztj  determine the robustness and power of Levene’s 

test. Levene’s original paper only proposed using the mean. Brown and Forsythe 

(1974) extended the Levene’s test to  use either the median or the trimmed mean 

in addition to the mean. Simulation studies indicated th a t using trimmed mean
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Table 2.4: Power simulation of the tests based on T2 and T4 for normal samples 
(a =  0.05)

t 2 t 4 Levene test
A n= 2 0 n=50 n= 2 0 n=50 n= 2 0 n=50
0

0.333
0.500
0.600
0.778

0.055
0.402
0.788
0.940
0.999

0.063
0.822
0.995

1

1

0.072
0.478
0.848
0.962

1

0.069
0.845
0.996

1

1

0.053
0.332
0.719
0.907
0.998

0.054
0.767
0.988

1

1

performed best when the underlying data  followed a Cauchy distribution and the 

median performed the best when the underlying data followed x 4 distribution. Using 

the mean provided the best power for symmetric, moderate-tailed distributions.

The Levene’s test rejects the hypothesis tha t the variances are equal if

U7 > F(atk-l,N-k)

where iqa.k-ijv-fc) is the upper critical value of the F distribution with k — 1 and 

N  — k degrees of freedom at a significant level of a.

The results of the power simulation are presented in Tables 2.4 to 2.7. The kurtosis 

estimate is based on 7 ^  unless otherwise stated.

Table 2.4 shows the power of the three tests when the population distribution is 

normal. Keeping the level of significance at 0.05, we calculated the powers of the 

three tests, T2, T4. and W . for sample sizes n=20 and 50 when A =  0, 0.333, 0.5, 0.6, 

and 0.778 respectively. The simulation shows tha t the test T4 based on transformed 

data provides the highest power among the three when the alternative hypothesis is 

true, however, with a cost of higher probability of type one error (0.072 and 0.069)
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Table 2.5: Power simulation of the tests based on T2 and T4 for Student-t samples 
(o =  0.05)________________________________________________________________

t 2 t 4 Levene test
A n= 2 0 n=50 n= 2 0 n=50 n= 2 0 II O

0

0.143
0.333
0.500

.072(.055) 

. 148( .072) 

.304(.138) 

.459( .178)

.063(.047) 

.171 (.089) 
0.523(.315) 
,786(.390)

.083(.066)

.180(.092)

.344(.158)

.508(.205)

.074(.058)
,182(.103)
,546(.324)
,812(.424)

.055

.073

.127

.195

.059

.085

.262

.442
The numbers in parentheses are based on bias corrected kurtosis estimates in Table 2.2. 

Table 2.6: Power simulation of the tests based on T2 and T4 for y 2 samples (a  — 0.05)
t 2 t 4 Levene test

A n= 2 0 n=50 n = 2 0 n=50 n = 2 0 n=50
0 .098(.061) .100(.066) .121(.076) .121 (.077) .041 .045

0.333 .308( .118) .459(.326) .476(.235) ,544(.414) .248 .624
0.500 .450(.196) ,808(.672) .662(.393) .875(.777) .559 .971
0.600 .592(.316) .934(.851) .787(.627) ,966(.920) .776 .999
0.778 .863(.500) .984(.904) .963(.838) .998(.982) .986 1

The numbers in parentheses are based on bias corrected kurtosis estimates in Table 2.2.

compared to the nominal value 0.05. Therefore, we might have to correct the a  level 

and recalculate the corrected power. On the other hand, T2 and Levene’s tests behave 

reasonably well; T2 has a slightly higher power than Levene’s when the alternative is 

true. It is also observed th a t the power of the tests increases as sample size n and 

the deviation, A, from the null hypothesis increases.

The case of t-distribution is shown in table 2.5. It can be seen th a t bias correction 

improves the behavior of the test statistics T2 and T4 when the null hypothesis is true. 

Both of our tests have a higher power than Levene’s when the population distribution 

is t.

Table 2.6 shows the result when the population distribution is chi-squared (skewed). 

As for t  distribution, we can see th a t the bias correction improves the behavior of
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Table 2.7: Power simulation of the tests based on T2 and T4 for samples from a 
m ixture of two normal populations (o =  0.05)

t 2 t 4 Levene test
A n = 2 0 n=50 n—20 n=50 n = 2 0 n=50
0

0.333
0.500
0.600
0.778

0.101(0.055)
0.346(0.258)
0.614(0.517)
0.767(0.667)
0.949(0.908)

0.081(0.046)
0.634(0.531)
0.937(0.893)
0.989(0.977)

1 (1 )

0.121(0.070)
0.435(0.346)
0.712(0.631)
0.856(0.788)
0.984(0.971)

0.088(0.051)
0.684(0.600)
0.956(0.926)
0.994(0.988)

1 (1 )

0.059
0.256
0.480
0.638
0.891

0.051
0.602
0.911
0.981

1

The numbers in parentheses are based on bias corrected kurtosis estimates in Table 2.2.

the test statistics T2 and T4 when the null hypothesis is true, but with lower power 

when the alternative is true. For this skewed distribution, Levene’s test outperforms 

both of T2 and T4.

The power comparison of the three test statistics for the mixture of two normal 

populations is displayed in Table 2.7. Previous simulation shows th a t the right tail 

distribution of T4 and T2 resembles x(k) better than x(k-i) un(ler the null hypothesis. 

Therefore, a power simulation using both X(ka) an<̂  X(k-ia) as critical values was 

conducted. The numbers in parentheses are based on x\ka)- Simulation shows that 

the power of T4 increases the fastest, followed by T2 in the second place, and Levene’s 

test with the lowest power for mixture of normal population. It can be observed tha t 

our tests are much more powerful than  Levene’s test when sample size n  is small. 

When x 2(k) applied, the size of the tests T2 and T4 are closer to the nominal a  level 

0.05 than tha t when x f k - 1) Is use<T The power of T2 and T4 are slightly lowered when 

using k degrees of freedom, still significantly higher than  Levene’s test. As sample size 

n increases, the power of all three tests increases, and the difference among the three 

tests becomes smaller. The kurtosis estimation here is based on y u . The power based
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on the theoretical kurtosis was also simulated; no difference was observed between 

using and q. which confirms our previous conclusion that no bias correction is 

needed for our purpose.

2.8.2 Sim ulation Study 2: Interval E stim ation

In this section, we present the result of our simulation study conducted to assess 

the performance of our interval estimation procedures proposed in Section 2.6. The 

coverage probability and the average mean width of the interval are reported using 

the single sample and combined k-sample data. The simulated intervals were com

puted in two situations. In one case, the true value of kurtosis was used and in the 

other situation, the kurtosis was estimated from the simulated data. All the kurtosis 

estimation is based on y u defined in 2.27 unless otherwise stated. The percentage of 

simulated confidence intervals tha t contained the true index value was determined. In 

addition, an average length of simulated intervals was calculated based on 5000 repli

cations. The simulation study was performed on four different distributions: normal, 

student t. chi-squared and the m ixture of two norma] distributions.

For the intervals based on combined data  we considered only the case for k = 4 

with equal sample sizes. The observed coverage probability and the mean width of 

the generated confidence intervals using relations (2.16), (2.18), (2.19), and (2.21) are 

presented in Tables 2.8 to 2.13.

Tables 2.8 and 2.9 record the coverage probability and average width for the single 

and combined data, respectively, sampled from a normal population.

By examining the values in Table 2.8, it can be stated that the empirical coverage
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Table 2.8: Coverage probability and mean width for uncombined normal sample data

W ithout Transformation W ith Log Transformation
Normal Sample Coverage Mean Coverage Mean
Distribution Size Probability W idth Probability W idth
when true 1 0 0 0.94 1 .1 1 0.94 1 .1 2

value of 70 0.93 1.32 0.94 1.34
7 * is used 50 0.93 1.56 0.94 1.60

30 0.92 2.04 0.93 2 .1 2

2 0 0.89 2.49 0.93 2.63
when 1 0 0 0.93 1 .1 0 0.93 1 .1 2

7 * is 70 0.92 1.31 0.93 1.34
estimated 50 0.92 1.55 0.93 1.59

30 0.90 1.99 0.92 2.08
2 0 0 .8 8 2.43 0.90 2.56

probability is not very far from the nominal value (0.95) for a m oderate sample 

size (>  70). We observe tha t the variance stabilizing transform ation dram atically 

improves the performance of the confidence intervals, especially when the samples are 

small. As expected from the theory, the average width of the simulated confidence 

intervals decreases as n  increases for all intervals (tending to validate the simulation).

The combined data  provides a better result, as was expected. As seen in Table 2.9, 

the combined data  produces shorter confidence intervals and more accurate coverage 

probability than the uncombined one does. The average mean width is reduced by 

50% as compared to th a t of uncombined data. The effect of the transform ation is 

visible, even though not as significant as for uncombined data.

For t distribution with 6  degrees of freedom, the simulation was also conducted 

at various sample sizes and the results are presented in Tables 2.10 and 2.11. The 

numbers in parentheses are based on bias corrected estimate of kurtosis in Table 2.2.
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Table 2.9: Coverage probability and mean width for combined normal samples data

Wi t hout Tra nsform at ion W ith Log Transformation
Normal Sample Coverage Mean Coverage Mean
Distribution Size Probability W idth Probability W idth
When true 4 x 100 0.95 0.55 0.95 0.55
value of 4 x 70 0.94 0 .6 6 0.95 0 .6 6

is used 4 x 50 0.94 0.78 0.95 0.78
4 x 30 0.95 1 .0 2 0.95 1 .0 2

4 x 20 0.93 1.24 0.95 1.26
when 4 x 100 0.95 0.55 0.95 0.55
V  is 4 x 70 0.95 0 .6 6 0.95 0 .6 6

estimated 4 x 50 0.94 0.78 0.95 0.78
4 x 30 0.93 1 .0 1 0.94 1 .0 1

4 x 20 0.92 1 .2 2 0.94 1.25

Table 2.10: Coverage probability and mean width based on uncombined sample data  
from t(> distribution_________________________________________________________

W ithout Transformation W ith Log Transformation
student-t, Sample Coverage Mean Coverage Mean
(df= 6 ) Size Probability W idth Probability W idth
when true 1 0 0 0.95 1.32 0.96 1.35
value of 70 0.95 1.59 0.97 1.65
7 * is used 50 0.93 1.87 0.96 1.97

30 0.93 2.40 0.96 2.67
2 0 0.91 2.94 0.96 3.47

when 1 0 0 0.88(.90) 1.15(1.24) .90(.91) 1.19(1.28)
7 * is 70 0.88(.89) 1.33(1.49) ,90(.91) 1.41(1.57)
estimated 50 0 .8 6 (.8 8 ) 1.53(1.60) .89(.91) 1.65(1.88)

30 0.84(.88) 1.93(2.54) .86(.91) 2.12(2.63)
2 0 0.82(.87) 2.28(3.27) .86(.93) 2.57(3.56)

The higher probability “0.93” in the last row is probably due to sampling error.
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Table 2.11: Coverage probability and mean width based on combined samples data 
from tg distribution_________________________________________________________

W ithout Transformation W ith Log Transformation
Student-t Sample Coverage Mean Coverage Mean
(df= 6 ) Size Probability W idth Probability W idth
when true 4 x 100 0.95 0.65 0.96 0 .6 6

value of 4 x 70 0.95 0.78 0.96 0.79
7 * is used 4 x 50 0.95 0.93 0.96 0.94

4 x 30 0.95 1 .2 0 0.97 1.23
4 x 20 0.94 1.47 0.96 1.52

when 4 x 100 ,92(.93) 0.57(0.65) .92(.94) 0.58(0.66)
7 * is 4 x 70 .91(.92) 0.67(0.78) .92(.94) 0.67(0.79)
estimated 4 x 50 .90(.92) 0.77(0.93) .91 (.93) 0.78(0.95)

4 x 30 .88(.91) 0.95(1.19) .90(.93) 0.97(1.24)
4 x 20 .87(.90) 1.13(1.48) .87(.92) 1.16(1.53)

The numbers in parentheses are based on bias corrected kurtosis estimates in Table 2.2.

It is seen that the empirical coverage probability is reasonably close to  the nominal 

value (0.95) for a sample size as small as 20 when the true values of the kurtosis are 

used. However, when the kurtosis is estimated from sample data, properly applying 

the proposed interval estimation methodologies requires a much bigger sample size, 

especially for uncombined data. The result shows th a t combining the data, applying 

variance stabilizing transform ation, and correcting the bias all significantly improve 

the estimation. Further, confidence intervals based on the combined data  produce 

shorter confidence intervals than  th a t of unconstrained intervals. The average mean 

width is reduced by 50%.

Now, we consider a skewed distribution: a chi-squared distribution for simulation 

purposes. Tables 2.12 and 2.13 record the proportion of the coverage and average 

width of confidence intervals, respectively, based on single sample and combined data  

for a chi squared process with degrees of freedom 4. The numbers in parenthesis
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Table 2.12: Coverage probability and mean width based on single sample data from 
distribution

W ithout Transformation W ith Log Transformation
Chi Squared Sample Coverage Mean Coverage Mean
(df=4) Size Probability W idth Probability W idth
when true 1 0 0 0.94 7.02 0.95 7.19
value of 70 0.93 8.38 0.95 8.67
c * is used 50 0.92 9.81 0.96 10.5

30 0.90 12.7 0.96 14.2
2 0 0 .8 8 15.6 0.96 18.2

when 1 0 0 .89(.90) 6.47(7.08) .90(.92) 6.76(7.04)
'*  is 70 .87(.89) 7.79(8.14) .90(.92) 7.97(9.63)
estimated 50 ,84(.85) 8.66(9.27) .87 (-89) 9.39(10.1)

30 - - - -

2 0 - - - -
The num bers in parentheses are based on bias corrected kurtosis estim ates. The coverage 
probabilities in the last two rows are very low and om itted from the table.

were computed based on the bias-corrected estim ate of the kurtosis. The effect of 

combining, transformation and bias correction is clearly shown in the tables. Not 

surprisingly, the coverage probability is closer to the nominal value when using the 

bias-corrected estimate of kurtosis than  using the uncorrected estimate. Combining 

and transforming the data dramatically improve the performance of the confidence 

intervals. Note that desired nominal coverage level can be achieved even for samples 

of size 2 0  when the exact value of the kurtosis is used combined with transform ation.

Finally, the mixture of two normal distributions is considered. The confidence 

intervals for the population variance were simulated using our large sample approx

imation in Section 2.6 for a mixture of 90% JV(0.12) and 10% N (0 ,2 2) population 

and the results are shown in Tables 2.14 and 2.15. It is observed tha t when the 

true values of the kurtosis and variance stabilization transform ation are used, the
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Table 2.13: Coverage probability and mean width based on combined samples data 
from X(4) distribution

W ithout Transformation W ith Log Transformation
Chi Squared Sample Coverage Mean Coverage Mean
(df=4) Size Probability W idth Probability W idth
when true 4 x 100 0.94 3.49 0.95 3.53
value of 4 x 70 0.94 4.16 0.95 4.24
7 * is used 4 x 50 0.95 4.94 0.95 5.03

4 x 30 0.94 6.40 0.95 6.61
4 x 20 0.92 7.82 0.95 8.19

when 4 x 100 ,93(.95) 3.24(3.70) .93(.94) 3.28(3.51)
7 * is 4 x 70 .91(.93) 3.77(4.18) .91 (-94) 3.88(4.23)
estimated 4 x 50 .90(.92) 4.40(4.91) .91 (.93) 4.53(5.08)

4 x 30 .89(.91) 5.43(6.31) .89( .91) 5.54 (6.46)
4 x 20 .85(.88) 6.38(7.66) .86(.89) 6.54 (7.98)

coverage probabilities are nearly identical to the nominal value 0.95 for both single 

sample and combined data  for any sample sizes (as low as 20 in our study range). A 

bigger sample size is required to  achieve such a good approximation without the log 

transformation. W hen the kurtosis is estimated, the approximation performs more 

poorly, especially when the data  is not combined. Increasing sample size, combin

ing samples, and transforming the data all considerably improve the performance of 

the approximation. However, a better estimation for population kurtosis seems more 

im portant here.

Note th a t for t and chi-squared distributions, the bias-correction notably improves 

the coverage probability, but a t the expense of a wider confidence interval. This is 

due to the extra variation introduced by estimating the bias. The quadratic form in 

the bias correction is disadvantageous since it inflates the standard error. It is also
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Table 2.14: Coverage probability and mean width based on uncombined sample data 
from a m ixture of normal distribution

W ithout Transformation W ith Log Transformation
Normal Sample Coverage Mean Coverage Mean
Mixture Size Probability W idth Probability W idth
when true 1 0 0 0.94 0.95 0.95 0.97
value of 70 0.94 1.134 0.95 1.16

is used 50 0.93 1.33 0.95 1.40
30 0.92 1.72 0.95 1 .8 6

2 0 0.90 2 .1 0 0.95 2.32
when 1 0 0 0.90 0.90 0.93 0.93

is 70 0.90 1.07 0.91 1.09
estimated 50 0.87 1 .2 2 0.91 1.30

30 0.85 1.54 0.89 1.67
2 0 0.83 1.84 0 .8 8 2 .0 2

Table 2.15: Coverage probability and mean width based on combined data from a 
mixture of normal distribution

W ithout Transformation W ith Log Transformation
Normal Sample Coverage Mean Coverage Mean
M ixture Size Probability W idth Probability W idth
When true 4 x 100 0.95 0.47 0.95 0.47
value of 4 x 70 0.94 0.56 0.95 0.57
7 * is used 4 x 50 0.95 0.67 0.95 0.67

4 x 30 0.94 0 .8 6 0.95 0 .8 8

4 x 20 0.94 1.05 0.95 1.08
when 4 x 100 0.92 0.45 0.94 0.45
7 * is 4 x 70 0.92 0.53 0.92 0.53
estimated 4 x 50 0.91 0.61 0.92 0.62

4 x 30 0.90 0.77 0.91 0.78
4 x 20 0 .8 8 0.91 0.90 0.93
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observed th a t the width of the intervals based on the estimate is consistently shorter 

than tha t based on the true kurtosis for the same sample size. This is due to the fact 

that the estim ator has a negative bias which means the estimate of kurtosis is smaller 

than the true value in general. Meanwhile the width of the confidence interval depends 

on the standard error of the estimator, which is an increasing function of kurtosis (see 

Equation (2.2)). Thus, an underestimated kurtosis will result in a shorter confidence 

interval. The width of the intervals across four distributions is not comparable here 

since the variance param eters are different (2, 1.5, 8 , and 1.3 respectively). The 

kurtosis exists for t distribution with at least 5 degrees of freedom, which produces 

the maximum variance 5/3. In order to have a variance as low as this, the chi-squared 

distribution is required to have a maximum degree of freedom 5/6, which is not very 

reasonable.

In this subsection, the large sample approach of interval estimation for a single 

population variance proposed in Section 2.6 is simulated for normal, Student t. chi- 

squared, and a mixture of two normal distributions. The study reveals th a t a good 

estimation of kurtosis is very im portant to improve the convergence of the prob

abilities to (1 — a ), i.e., to achieve the nominal coverage probability. A variance 

stabilizing transform ation significantly speeds up the convergence as well. Combin

ing sample data  when the null hypothesis is true improves the estimation due to  the 

rising of the sample size. If a good estimation of kurtosis is achieved, our approach 

of interval estimation for population variance is very appealing when the population 

is not normal.

Finally, the simulation study provides some guidelines on the use of the proposed
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Tahir 2.16: Four measurements on three species of Iris (in centimeters)

Iris setosa Iris versicolor Iris virginica
Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal

length width length width length width length width length width length width
5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9

asymptotic method when parent populations are not normal. A numerical example 

based 011 the published Iris data set will be given to illustrate how the proposed 

procedures are applied in the next section.

2.9 A pplication to the Iris D ata

The Iris data set (Anderson (2003)). partially shown in table 2.16, involves four 

measurements (Sepal length, sepal width, petal length, and petal width) on three 

species (Iris setosa. Iris versicolor, and Iris virginica) of iris. The sample size is 

3 x 50.

T esting  P rob lem

Suppose we are interested in testing the homogeneity of the variance of sepal width 

for the three species. The hypotheses would be

H q : of = of =  of against Ha : o f  ^  o f  for at least one i ^  h. (2.51)

To test this null hypothesis, we may apply either T2 in (2.8) or T4 in (2.13) as the 

test statistic.
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Based on the sample data. b\  =  0.1437. b\  =  0.0985, and <rf =  0.1040. The' 

pooled estim ator of the common variance b ^  =  (cr21 +  cr22 +  <t 23 ) /3  =  0.1154. To 

calculate 7 * .  we will apply the formula given in (2.20). y * 1 — 3.9547, y *2 =  2.G338. 

and 7 * 3  =  3.7061. The pooled estimator of the common kurtosis is 7 *(/j) =  3.4315.

Now substituting the numbers into (2.8) and (2.13) we have T2 — 1.8799 and 

T4 = 1.729. T2 and T4 have asymptotically xf2) distribution. The p-values for these 

two statistics are 0.3906 and 0.4213 respectively. We fail to reject the null hypothesis 

according to both test statistics at the significant level o =  0.05.

Applying Shapiro-W ilk’s test for normality to the three samples results in p-values 

0.2715, 0.338 and 0.1809 respectively. Therefore theses samples can be considered 

drawn from normal populations. B artle tt’s test is applied and the corresponding p- 

value is 0.3517. Levene’s test statistic is also calculated, resulting a p-value 0.5527. 

The fact that the p-values of our test statistics are in between B artle tt’s and Lev

ene’s test confirms tha t B artle tt’s test is the most sensitive when populations are 

normal, our tests follow closely in the second and third place, while Levene’s is most 

conservative.

Interval E stim ation

Using the confidence interval formula based on transformed d a ta  in relation (2.16), 

the 95% asymptotic confidence intervals for o \ ,o \  and o\  are computed, respectively 

as follows:

(0.089, 0.231), (0.0691, 0.1403), (0.0659, 0.1641).

Applying (2.18) based on original data, the 95% confidence intervals for o \ ,o \
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and a., are respectively calculated as follows:

(0.0752. 0.2122). (0.0636, 0.1334), (0.0566, 0.1514),

From the calculation, it can be seen that the width of the intervals based on 

transformed data and based on original data are comparable, no significant difference 

is observed. However, it can be observed that the intervals based on transformed data 

are shifted rightward comparing to those based on original data.

Since the test showed that the samples are from normal populations, a (1—a)100% 

confidence interval for of can be calculated by ((n — 1 )s2 /Xq/2 > (71 — l ) s2/x  1- 0 /2 ): 

which produces the following 95% confidence intervals for of, of. and a 2 respectively:

(0.100. 0.223), (0.0687, 0.1529), (0.0726, 0.1615)

These intervals are very close to our intervals based on transform ed data, which 

confirms that our procedure is very reasonable.

Assuming th a t the null hypothesis in (2.51) is true, applying (2.19) and (2.21), 

the 95% confidence intervals based on transformed and based on original da ta  for 

the common variance are (0.0899,0.1481) and (0.0866,0.1442) respectively. Again, 

the width of the two intervals are very close. Comparing the width of the confidence 

intervals for the common variance and the individual variances, we find th a t the width 

from combined data is shorter than th a t from uncombined data, by approximately 

1 / \ / k .

In this section we applied the proposed methods (estimation and test of hypothe

sis) to the Iris data. The suggested techniques can be easily implemented and inter

preted in a classical probability setting for a wide class of process populations. Hence,
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the current study further strengthened the usefulness and applications of &2 beyond 

the normal data.

2.10 Concluding Remarks and Further Research

In this chapter a contribution is made regarding the inference about variance in a 

multi-sample setting for arbitrary populations. We developed asymptotic tests and 

asymptotic interval estimation procedures and hence provided a total inferential pack

age. The statistical properties of the proposed inference procedures were investigated 

analytically and numerically. Our estimation methods are easy to understand, simple 

to implement, and have good behavior in finite-sample examples. A numerical exam

ple based on a real data set demonstrates how to implement and use the proposed 

methodologies. The simulation study supports our theoretical findings. It is rein

forced th a t a much larger sample should be taken if the parent population is skewed. 

In many situations the appropriate values of n far exceeded the folklore values of 25 

or 30 suitable in the case of asymptotic results associated with t distribution. In this 

case, instead of using x i  8 5  the critical value of the test, we could employ a bootstrap  

resampling method, and use the empirical percentile. This could possibly improve 

the inference. Research on the statistical implications of these and other estimators 

is ongoing.

The combined estim ator outperforms the estimator based on single data. How

ever, the performance of combined estim ator is superior only when the hypothesis of 

homogeneity of the param eters is true (nearly true). If the opposite holds, then the 

&(R) becomes very poor and the analysis based on using d 2R  ̂ will be misleading and
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inconsistent . In the next chapter, we deal with this critical issue and propose various 

estimation strategies for estimating cr2 when the information regarding the equality 

of variances is rather imprecise.

The kurtosis param eter estimation is embedded in many statistical estimation 

problems and applications. The estimation of kurtosis param eter is studied exten

sively in this chapter. We have compared the performance of several kurtosis measures 

adapted by SAS. SPSS. S-Plus, Minitab. and other statistical packages. We have pro

posed several new measures of kurtosis. It has been demonstrated both analytically 

and numerically that our proposed estimators outperform the existing estimators for 

normal population based on the M S E  criterion. Moreover, an extensive simulation 

study has been conducted for non-normal populations. The result indicates that the 

proposed estimators are superior to the existing ones in many practical situations. 

Bearing this in mind, all the estimators substantially underestim ate kurtosis param e

ter when underlying population distribution is highly skewed or heavy tailed. In order 

to correct the bias, empirical formulas are provided for student-t and chi-squared dis

tributions. However, empirical estimates are subject to  extra variation introduced 

and result in inflated M S E .  Perhaps, some re-sampling m ethods such as bootstrap 

and jackknife may be considered to reduce the bias as well as keeping a relatively 

lower variance.
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Chapter 3

Sim ultaneous E stim ation  of  
Variance under Im precise  
Inform ation

3.1 Introduction

In Chapter 2. we mentioned tha t the superior performance of the pooled estim ator 

depends on the equality assumption of all the variances. In this chapter, we develop 

some alternative estimation strategies when the information regarding the homogene

ity of all the variances may not be precise. Again, assuming th a t homogeneity holds, 

it is advantageous to combine the data to  estimate the common param eter. However, 

the combined estim ator becomes inconsistent when the equality of the hypothesis does 

not hold. In this situation, estimators based on pretest (Bancroft (1944)) and the 

James-Stein (James and Stein (1961)) principles are proposed. Asymptotic proper

ties of the shrinkage, positive-part and pretest estimators are discussed and compared 

with the standard and combined estimators. It is demonstrated th a t the positive part 

estimator utilizes the sample and non-sample information in a superior way relative 

to the ordinary shrinkage estimator.

69
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The use of imprecise information (11) is well established and documented in the 

inference based on the conditional specification arena of statistical procedure. Such in

formation is usually incorporated into classical models. More generally, this m ethod

ology abounds in a wide range of statistical applications as evidenced by the research 

publications and applications of such procedures. In this chapter, we consider the 

estimation of the the population variances in the presence of 11.

Professor Efron in R S S  News of January, 1995 wrote:

The empirical Bayes/'James-Stein category was the entry in my list least 

affected by computer developments. It is ripe for a computer-intensive 

treatment that brings the substantial benefits of James-Stein estimation 

to bear■ on complicated, realistic problem,s. A side benefit may be at least 

a partial reconciliation between frequentist and Bayesian perspectives as 

they apply to statistical practice.

It may be worth mentioning tha t this is one of the two areas Professor Efron pre

dicted for continuing research for the early 21st century. Shrinkage and likelihood- 

based m ethods continue to play vital roles in statistical inference. These methods 

provide extremely useful techniques for combining data  from various sources, and 

recent asymptotic theory has advanced our understanding of the fundamental role of 

the likelihood function for much the same purpose. Scientific inference is the process 

of reasoning from observed data  back to its underlying mechanism. The two great 

schools of statistical inference, Bayesian and frequentist, have competed over the past 

two centuries, often bitterl}', for scientific supremacy. Shrinkage/Empirical Bayes, a
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novel hybrid, appeared in the 1950s. showing promise of immense possible gains in 

inferential accuracy. Nevertheless, it has languished in the statistics literature, with 

its gains viewed as suspicious and even paradoxical by Bayesians and frequentists 

alike. New scientific technology, exemplified by gene microarrays, has suddenly re

vived interest in these methods (Cui et, ol. (2005). Ibrahim et al. (2002) and references 

therein).

As in chapter 2. the simult aneous estimation of population variances is considered 

in a multi-sample situation. We assume here th a t Fn, Y»2 , ■ ■ ■ , Yin, (i — 1. 2. • • ■ . k) is 

a random sample of size n, taken from the i-th arbitrary population. Let the mean 

param eter vector pt = {pi,P 2 , ••• , Pk)' and the covariance structure £  — 

where I is an identity matrix. If /x, and ct2 are unknown, then the unrestricted 

estimator of (/Zj,of) is (/x,-,a2), where

j  n, 1 n ,

Pi =  — Y " Vij and ct2 =  — -  pi}2- (3.1)
rij Tii z—'

3 =  1 3=1

Further, there is the possibility th a t o\  =  o\  =  • • • =  a\. The assumption of the 

equality of variation is common in many experiments. In this chapter, we consider the 

problem of simultaneous estimation of <r2 under this situation. Pre-test and Stein- 

type estimators are considered to be best suited to the situation. Both methods 

combine the sample and non-sample information via a test statistic for testing the 

homogeneity hypothesis.

In the present investigation, we propose several estimators by combining the sam

ple and imprecise information which is given by

H 0 : o \  = o\ — ■ ■ ■ = ct2 =  er2 (unknown). (3.2)
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Tho estim ator of cr2 given in (3.1) is usually used in the case when there is no infor

mation available on the vector param eter of interest ct2. However, in the situations 

where we have some information on the space of the param eter of interest, it is ad

vantageous to use this additional information together with the sample information 

in tin' hope of obtaining improved estimators, and we intend to  explore the same.

A plan of this chapter is as follows. In Section 3.2. several improved estimation 

strategies are proposed; the expressions for bias and risk (under quadratic loss func

tion) of the estimators and discussion on the risk behavior of the proposed estimators 

are contained in this section. The numerical risk analysis under a special quadratic 

loss function is performed in Section 3.3. Furthermore, a simulation study of risk 

under quadratic and entropy loss functions for finite samples is presented in Section 

3.4. Throughout this chapter, the boldface symbols represent vectors/m atrices.

3.2 Estim ation Strategies Under Im precise Infor
m ation

We will propose several estimation strategies of cr2 which incorporate both the 

non-sample and sample information.

For the full model, the separate or unrestricted estimator (UE) of cr2 =  (ct2, • • • , ct2) 

is defined as

where c t 2 , i =  1, ■ • • , k, is the maximum likelihood estim ator of of.

L em m a 3.2 .1 . Let u n,i = r i i / n  and assume the fourth moment of  Y* exists. I f  
b>n,i Ui as n i then

n 1/2{(72 -  ct2} - ^ M k(0, T), (3.4)
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where T is the covariance m,atrix of a 2. and

(3.5)

where w'j is a constant between 0 and 1. and j* is the kurtosis of the ith group, as 
defined in chapter 2, i =  1, • • • , k.

However, it may be fruitful to use the information at hand to obtain improved 

estimates of a 2. The information given in (3.2) may be explicitly incorporated into 

the estimation process by modifying the param eter space. In this situation, the new 

(restricted) param eter space is a subspace of the original one (reduced in dimension). 

Statistically speaking, the reduction in dimensionality provides efficient param eter 

estimates. However, in the case of an incorrect restriction, opposite conclusions will 

hold. We plan to  investigate such characteristics for the estimation problem at hand.

3.2.1 R estr ic ted  E stim ator

Under the restriction in (3.2), we propose pooled/combined/restricted estimator 

(RE)  of cr2. defined by

r (*) =  (7 * - l ) ( a 2)2D  JJ', J =  I + 1 1 'D ,  D  =  Diag{wlt„, ■ ■ • ,wfc>„) (3.8)

(3-6)

L em m a 3 .2 .2 . Under the usual regularity conditions and the restriction in (3.2), if  
Ui/n —> u (0 < cji<n < 1) as ni —> oo, then

n 1/2{<x2 -  * 2r)} I W ,  (3.7)(3.7)

where

The proof th a t <r2̂  is more efficient than  a 2 under the restriction in (3.2) is 

relatively simple, since the difference between the covariance matrices of a 2 and
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is a positive semi-definite matrix. Thus, the pooled estim ator ot\r ) is more

^  2
asymptotically efficient (or. at least, no less efficient) than the usual estim ator cr 

when the restriction is true (or the information is precise). However, an interesting 

and more challenging question is what happens when the restriction is not correct (or 

the information is imprecise). Intuitively, the restricted estimators will, in general, 

be biased.

Having said that < r^  is biased when the constraint in (3.2) fails to hold, it is still 

of interest to find how well it performs in the entire param eter space induced by the 

restriction. We shall define our loss function and use the risk measure in order to 

have a fair comparison.

We are mainly interested in estimating the unknown param eter vector cr2 by means 

of an estim ator cr2. A loss function L(cr2,cr2) will show the loss incurred by making 

a wrong decision about cr2 using the estim ator cr2. For a given positive semi-definite 

m atrix Q, consider the quadratic loss

L(cr2, cr2) =  n(cr2 -  cr2)'Q(cr2 -  cr2). (3.9)

Then the risk of cr2 is defined by the expected loss: 

f?(cr2, cr2) =  E \L (o 2, cr2)] =  ntrace[Q {£(cr2 -  cr2)(cr2 -  cr2)'}] =  trace(Q fi), (3.10)

where f l  = n{E(crl — cr2)(cr2 — cr2)'} =  dispersion m atrix of n1/2(cr2 — cr2).

Further, cr2 is an inadmissible estim ator of cr2 if there exists an alternative esti

m ator cr2 such tha t

•R(cr2,cr2) < R { a l , a 2) (3.11)
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for all cr2. and with strict inequality for some cr2. We also say th a t cr2 dominates cr2. 

If instead of (3.11) holding for every n, we have

lim i?(cr2, cr2) <  lim f?(cr2 ,cr2) (3.12)
r?—►oc n —* oo

for all cr2 with strict inequality holding for some cr2, then cr2 is termed an asymptot

ically inadmissible estim ator of cr2.

In a large sample set-up, for fixed alternative, <r2/fj will have an unbounded risk, 

which is stated more formally in the following theorem.

T h e o re m  3 .2 .3 . For large n. if  a 2 / / 0. then cr2K] will have unbounded asymptotic 
risk.

We outline the proof as follows:

Considering a 2(Ry, for any cr2 ^  H 0.

<7 2fi) — cr2 7  ̂ 0 , and

n ( ^ 2{R) ~  a2) '{ ^ 2(R) ~  ° '2) -* °°: 35 n  oo-

Hence, the risk of &\r ), for any cr2 ^  H q. approaches +oo.

The finding of the theorem tells us th a t in a large-sample situation and under 

fixed alternative there is not much to do. In an effort to obtain some interesting and 

meaningful results, we shall therefore restrict ourselves to contiguous alternatives. 

More specifically, we consider a sequence K(n) of contiguous (or local) alternatives 

defined by

Q
K(n) : cr2,^ =  cr2 -I— where cr20 =  cr2 lfc, 0 is a real fixed vector. (3.13)

"V Ti

Note tha t 0 =  0 implies cr2 =  c 2 l k. so (3.2) is a particular case of {K(n)}.
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First, we introduce the asymptotic distribution function (ADF) of yjn{cr\ — a 2) 

under A’(„) by:

G(y) =  lim P {v fn {a \  -  <r2) <  y \ K (n)}. (3.14)
71— *OC

Then we define the asymptotic distributional quadratic risk (ADQR)  by

A D Q R f a l . a 2) = j  J  ■ ■ ■ J  y 'Q ydG (y) =  trace(QQ*). (3.15)

where Q* = / / ■■■ f  yy 'dG (y)  is the dispersion m atrix obtained from G.

We may be able to compute the asymptotic risk by replacing Q* with the limit of 

the actual dispersion matrix of 7)!/2(er); -  cr2). i.e.. F2. However, this may require extra 

regularity conditions to suit the problem in hand. This point has been explained in 

various other contexts by Sen (1984) and others.

In the same vein, we define the asymptotic distributional bias (A D B ) of an esti

m ator a 2 of cr2 as

A D B (al , cr2) = f  [  ■ ■ ■ [  yd,G{y) =  lim E[n1/2{crl -  a 2)}. (3.16)
J  J  J  n-*°°

In order to  present a clear-cut picture of various bias functions, we transform  the bias

functions in scalar form by defining the Quadratic Bias (QB) of a 2 as

QB(cxl) = [B(<T2)}>T - i [ B ( a %  (3.17)

where B(cr2) =  ADB(<r2).

Now, we consider the computation of biases and risk of the estim ator under the 

local alternatives A(n).

T h e o re m  3 .2 .4 . Under K(n) and the usual regularity conditions,

A D B (d-2, cr2) = 0 ,
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Q B(& 2, a 2) = 0 ,
A D Q R { a 2, a 2) =  trace(QT).

Note th a t <r2 is asymptotically an unbiased estimator and its ADQR is a constant, 

with the value of trace(Q T). Obviously, a 2 does not use the information given in 

(3.2).

T h e o re m  3.2 .5 . Under K(n) and the usual regularity conditions,

ADB((T2fl). a 2) = - 0 * ,

Q B {a \R), a 2) = 0 ,

A D Q R ( a 2Rycr2) — trace(QT) — trace( Q C) +  0*.,

where 6 * =  J 6, Gk = 0*'Q 0‘ , 0  =  0 * 1 ^ 0 * , C =  T  -  t 21 1 ' , t 2 =  (1 -  o ‘ ) ^ -

It is easy to see th a t the magnitude of the quadratic bias of cr\R) increases without 

a bound and tends to oo as 0  —> oc. Moreover, the bias does not vanish as the 

sample gets larger. The ADQR of o’fR') has similar characteristics. The ADQR of 

a 2 is constant (independent of 0 )  with the value trace(Q T), while the risk of &2R  ̂

becomes unbounded as the hypothesis error grows. Furthermore, we note tha t

A D Q R { o 2Ry cr2) < A D Q R ( a 2] a 2) if 0 fc < trace(Q C ).

Thus, ct2R} dominates a 2 in the interval [0. trace(Q C )). Clearly, when 0*, moves 

away from the origin and beyond the value of trace(Q C ), the ADQR of d-2̂  in

creases without a bound. The ADQR of the linear combination estim ator has similar 

characteristics.
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3.2.2 Linear C om bination E stim ator

The linear combination estimator (LCE) or linear shrinkage estimator (LSE) of a 2 

may be defined as

° \ sr ) = ° 2 ~  7r(®'2 _  ° \ r ))- t tG (0 .1 ) : (3.18)

where ~ is a constant, and may be regarded as the degree of trust in the null hy

pothesis. If 7r =  1 then we obtain the R E .  Clearly, o-fsrt) a convex combination 

of a 2 and a 2R  ̂ through a given value of it G (0,1). Like cr2Ry  the LCE cr2SR̂  has 

a smaller ciuadratic risk than <t2 in an interval near the null hypothesis a t the ex

pense of poorer performance in the rest of the param eter space. Indeed, its risk 

becomes unbounded as the hypothesis error grows. The following theorem provides 

some asymptotic results.

T h e o re m  3 .2 .6 . Under Kp,) and the usual regularity conditions, the ADB, QB, and 
ADQR of the LSE  are

ADB(<7 2(SR),CT2) =  -7T0*,

QB{cr\SR),(T2) = tt20 ,

AD Q R(ty \SRy, cr2) ~  trace{QT) — 7t(2 — 7t)frace(QC) +  it2@k-

Thus, o-2s r ) also has no control on its quadratic bias since 0  G [0, oo). However, 

the bias of 6-2Sr ) approaches to infinity slower than th a t of o-2̂ ,  depending on the 

value of 7r. The ADQR behavior of S 2SR) has similar characteristics as th a t of cr2Ry 

The value of 7r controls the magnitude of ADQR of o-2SRy  in this sense a 2SR  ̂ is a 

better choice than a 2R  ̂ alone. Further, it is seen tha t &2SR) dominates <x2 in a wider 

interval than cr2Rj does, so cr2SR) has an edge over cr2R] in this sense.

In summary, if the information is precise in the sense th a t the hypothesis error 

is negligible, then the pooled estim ator is superior to a 2 and d2R  ̂ and &2Sr) offer
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a substantial gain over &2. Alternatively, if the information is imprecise, i.e.. the 

hypothesis error is substantial, then as expected, a 2 performs better than the pooled 

estimators. More importantly, one seldom knows whether the information is imprecise 

or not.

The above insight leads to preliminary test estimation when the hypothesis in

formation is rather uncertain and it is useful to  construct a compromised estim ator 

by performing a preliminary test on the given information in the form of the null 

hypothesis.

3.2.3 P relim inary  T est E stim ator

The preliminary test estimator (PTE)  can be readily obtained by replacing tt. a 

fixed number in (3.18), by a binary random quantity. Therefore, PT E  of cr2 is defined 

by

**(PT) ~  ^  ~  ~  -^n,a); (3.19)

where 1(A) is an indicator function of a set A  and A„)Q is the the upper o-level critical 

value of A. Further, from chapter 2,

A =  n(&2 -  a 2R)y C ( & 2 -  a \ R)), (3.20)

where f , /  =  9 ? , P 2 =  Diag(w1)Tl, • • • ,u;*,,„), f 2 =  (1 -  7 * ) ( ^ R))2. Thus,

when the null hypothesis is true, the large sample distribution of A converges in 

distribution to a central y 2 distribution with (k — 1) degrees of freedom. Hence, the 

upper a-level critical value of A defined by AnjCl may be approximated by (1 — 0)100*^ 

percentile of the central y 2 distribution with (k — 1) degrees of freedom.
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In turn, an estimator with a good control on its ADQR function is achieved. In

deed. the preliminary test estimators are obtained as convex combinations of unrestricted  

and combined estimators via a test-statistic. A. for testing H0 in (3.2). Meanwhile, a 

bounded quadratic risk is achieved.

The biases and risk o f &2PT) under the local alternatives are given in the following 

theorem:

T h e o re m  3.2 .7 . Let ; 0 )  be the noncentral chi-squared distribution function
with non-centrality parameter 0  and degrees of freedom k, then under K(n) and the 
regularity conditions.

A B B ( a 2PT)) = - 0 ’W x t

Q B {a \PT)) =  e[#fc+i(xU0;e)]2,
A D Q R (& 2PTy cr2) — trace{QT) — trace(Q C )^ fc+i ( x |_ l o; 0 )  +

0 , { 2 T , +1( x t n o ; 0 )  -  ' W x L i , * ; © ) } -

Proof. By definition,

A D B ( f f L ) )  =  lira ̂ /nE[cr2(PT) -  cr2n]
v / n-+oc  v ’

= lim y/nE\a-2 -  (a 2 -  a 2(R)) l {A  <  \ 2„,J  -  ° i ln—*oc
= lim VnE[(ar2 -  (r2 n) l { A  > x l , a) + {&\r) ~  <  x l , a) 1

n —+oc

= lim E[y/n{&fR) -  a 2 n) l {A  <  x l , a)}
n —*oc ' 1

= -0**fc+1(xLi,<,;©)•
The last step is by Stein’s identities given by Judge and Bock (1978).
The proof of Q B ( a 2PTj) =  0[\kfc+i (xI-gM  ©)]2 follows immediately from the result 
of ADB(CT(pr )) above.
Similarly,

A D Q R { a 2(PTy (T2) — lim nE\(& 2(PTs cr2n) Q(cr2,PT\ a \)}( PT) '  ) — " -£M t c r (P T ) ~  ° n )

r2(R) — <j2n)'Q,{^2(R)lim nE\{cr2(R) -  <j2n)'Q(&2R) -  <r2n)]I(A < x l , a)
n —*oc v ' v }

trace(Q T) -  tra c e (Q C )^ fc+1(Xfc_i,a; ©) 

+ 0 f c { 2 ’5'fe+ i(Xfc- i .Q; 0 ) -  ^fc+3(Xfe_i,a; © ) } •

□
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Useful discussions on some of the implications of the pretest and shrinkage1 esti

mators in param etric theory are given in Bancroft (1944). Efron and Morris (1975). 

Judge and Bock (1978). Stigler (1990), Ahmed (2002), and Ahmed et al. (2006) among 

others. For some asymptotic results on the subject we refer to Ahmed et al. (2001). 

Ahmed (2002), Ahmed (2005), and An et al. (2006). It is im portant to remark tha t 

g 2(PT) performs better than a 1 in some part of the param eter space. Further, the use 

of cr\pT) may, however, be limited due to the large size of the preliminary test.

Recall th a t ^ \ s r ) provides a wider range than a 2̂  does in which it dominates a 2. 

Thus, it is logical to replace by cr2SfCi in (3.19) to obtain an improved preliminary 

test estimator.

3.2.4 Im proved P relim inary Test E stim ator

We obtain the improved preliminary test estimator (1PTE) by multiplying the ran

dom quantity /(A  < A„jQ) by a fixed (tt) number to improve upon both ct“\s r ) and 

<T(PT)- Indeed, the process is natural.

&\sp ) = ~  t t (a 2 — A < Xna). (3.21)

Ahmed (1992) dem onstrated th a t tr^sp) significantly improves upon o’\PT) in the size 

of the test, and dominates a 2 for a large portion of the param eter space. However, 

&Jp t ) is more efficient than tr^sp) near restriction. There is no clear-cut winner 

in the entire param eter space. Meanwhile, g ŝp ) and involve the test statistic

A which adjusts the estim ator for any empirical departure from the null hypothesis. 

For large values of A, both estimators yield a 2, while for small values of A their 

performance is different. Indeed, a 2 and ar2̂PT  ̂ may be considered as special cases of
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o for ft — 0. o(gp*) — d" and for it — 1. o^gp^ — &{PT)~

T h e o re m  3 .2 .8 . Let \1c(.t ; 0 )  be the noncentral chi-squared distribution function  
with non-centrality parameter 0  and degrees of freedom k, then under K(n) and the 
? egularity conditions.

a b b ( o 2(SP]) =  - i t d ^ k+1( x l - ha , e ) :

Q B ( a \ sp) ) = 7 T 2 0 [ ^ * . + 1 ( X f c _ l , a ; @ ) ] 2 - 

A D Q R { d \ SP). o 2) = f?'ace(Qr) -  it{2 -  i t ) t race{QC)^k+1{ x l - i , a i ©) +

0 fc{ 2 ^ , + 1 ( x L i , o ; © )  -  " ( 2  -  7 r ) ^ +3( x L i , o ;  © ) } •

Proof. The pi'oof follows the same arguments as in Theorem 3.2.7. □

For 77 =  1. we obtain the biases and ADQR of o 2PT) given in Theorem 3.2.7.

Clearly B ( o 2SPj) =  i tB ( o 2PTj) < F?(<t2p t ) ) for 77 € (0,1). Hence, o-fsp) ^ as 

asymptotically less bias than th a t of &2PTp depending upon the value of 77. One may 

also view 77 as a bias reduction factor in the preliminary test estimation.

It is im portant to note tha t the ADQR of o 2SP) is bounded in 0  and it begins with 

an initial value of [trace(QT) — trace(QC)7r(2 — 7r)\lT+i ( x l - lj0; 0)]- Hence the ADQR 

of o 2PTj is also a bounded function of the non-centrality param eter ©. Further, as the 

value of 0  deviates from the null hypothesis the ADQR of erfsp) increases, exceeds 

the ADQR of a 2 and achievs a maximum value; then the ADQR of cf2SP) decreases 

and approaches the ADQR of a 2. The risk function of <t2PT) also follows a similar 

pattern.

Comparing the risk of cr2SP  ̂ with the risk of <x2 we note that 

A D Q R ( o 2SPy.cr2) < A D Q R ( o 2,cr2) if

trace(QC)(2 -  Trj'f't+^xLi.a;0 )
"* -  2*fc+1(xLi,Q;©) -  (2 -  7t ) v k+3(x2_ ha, e y
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Thus. g \s p ) dominates <r2 for some values of 0 . On the other hand,

AD QR{& 2(pt): a 2) < ADQR(cr2: a 2) if

e*<

' (P T ) '

trace(QC)̂ /H-i(Xfc-i,Q;e)

Hence. the performance of &2SP) is better than a 2 in a larger portion of param 

eter space compared to &1PT\ for it G (0,1). The fact tha t (ffSP\ dominates a 2

2* fc+ i(x L i,o ;© )-* * + 3 (x L i,o -© )' 
r2
r (SP)

’(PT) for VI t  \V.1). J.J1C littii m at u (sp)

in the interval [0, trace(Q C )(2 -  Tt)/it~1) and <j2p t ) performs better than  a 2 when 

0  € [0, trace(Q C )) shows the superiority of cr\Sp) over ar\PTy 

Next we will compare <x2Sp) with cr\py

A D Q R ( a 2SPy a 2) ^   ̂ ^

AD QR{& 2R), ct2) ~

trace(QC){l -  t t (2 -  7r)q>fc+1(xj[.1[a; 0 ) }

~ k  -  i - 2 7 r ^ fc+1( x L i !a; e ) +  7r(2 - 7r)^fc+3(xLi,o;0 ) ’
2 A 9Hence, ct̂ s p ) superior to c r ^  if

(  trace(Q C ){ l -  tt(2 -  7r)^fc+1(x L i,a l Q)} A

" * G ^  1 -  27r^*,+1 (Xfc_i,o: Q) +  tt(2 -  vr)^fc+3(x L i,Qi 0 ) ’ ° ° )  ’

and <x2̂  will perform better than g [s p ) outside this interval. Consequently, we con

clude th a t none of the estimators is asymptotically superior, since the risk functions 

of the estimators are crossing each other in the param eter space.

Finally, we compare o 2sP) and or\pr) and determine the conditions under which 

tt2sp) outperforms er\PTy  First, we consider the case when H 0 is true. In this situa

tion,

A D Q R { a 2(SPy. a 2) -  AD QR{& 2PT};cr2) =  trac:e(Q C)(l -  ir)2fyk+i { x l - y o \0 )-
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Since the right hand side of the above expression is a positive quantity, cr2PT  ̂ has a 

smaller risk than &fSp) d °es under Htl. However, the picture is somewhat different 

when the hypothesis deviates from the true value of the parameters. Since

A D Q m & 2{SP): Q) -  AD Q R(& 2p t ) : ct2) =  trace(Q C )(l -  tt)2**+3(xL i,o ; ©)

- 0 *  {2(1 -  7T)*fc+1( x U Q; © ) - ( ! -  *)2* k +a(xl-is>; ©)} , (3.22)

the risk of &2SP) larger than tha t of cr2PTj in the neighborhood of the null

hypothesis, which may be negligible for larger values of it. On the other hand, as null 

hypothesis deviates from the true value of the parameters, the difference in (3.22) 

becomes negative and a 2SP  ̂ dominates <72PT) in the remaining param eter space. For 

a given 7r. let 0 ^  be a point in the param eter space at which the risk of &lsp) an<  ̂

&(PT) intersects. Then, for 0  G (0, ©*,„], o-'fpT) performs better than  &2(SPy  while 

for 0*. G (©fr„,oc), <725p) dominates cr2ppy  Further, for large values of 7r (close to 

1). the difference between a \PT) and <y2SPj may not be significant on the interval 

(0, 0 /tJ . Nonetheless, o 2pT) and crfsp) share a common asymptotic property th a t as 

hypothesis error grows and tends to oo, their risks converge to  a common limit, i.e., 

to the ADQR of <r2.

A 2 ^  ^  „  2
Thus, in light of the above discussion, none of the four estimators <j (PTy cr . O(r ) 

and crfsp) is asymptotically superior than the others.

The estimators based on the preliminary test m ethod are sensitive to  departure 

from Ho and may not be useful for all cr2, and neither crfspj nor ct2PT) perform uni

formly better than <x2. The performance of the est imators depends on the correctness 

of the information regarding the homogeneity of the parameters. This is somewhat
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not helpful from practical point of view due to the fact th a t the information regarding 

param eters is generally imprecise in real life situations.

To overcome this shortcoming, we propose an estim ator using the optimal weight 

for combining the data and non-data information. The proposed estim ator combines 

the sample and non-sample information in a superior way than the preceding estima

tors. Further, it resembles the Stein-type estimator (Stein, 1956).

3.2 .5  Jam es-S te in  T yp e E stim ator

For 7t =  ̂  in (3.18) we obtain a James-Stein type estimator, where c is so-called

the shrinkage constant and 0 < c < 2(k — 3), and A is as defined in (3.20). Hence, a

James-Stein estimator (JSE) of a 2 is defined by

**\j s ) — ~  — <t(/i)); 0 < c <  2(k — 3). (3.23)

The proposed Stein type estim ator dominates a 2. It is, however, not a convex com

bination of &2Rj and a 2. Hence, the proposed estimator cr\js) maY not remain non- 

negative. This feature can be seen easily by rewriting the above relation as

° \ j s ) — ° 2(R) + j l  A ~ } ~ (3-24)

Here we used the optimal value of c, which is k — 3, for the current estimation 

problem. To avoid the over-shrinking inherent in Sr\js)- a truncation is made leading 

to a convex combination of a 2 and o-̂ ,  which is called positive rule James-Stein 

estimator (PJSE).
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3.2.6 P ositive  R ule Jam es-S tein  E stim ator

The positive-rule James-Stein estim ator may be defined as follows:

&\pp) = ^ \ r ) +  1 1 ^  |  ( ^ 2 ~  ^ I r )): (3.25)

where U+ = vmx(O.U). Further. <r2PP  ̂ may also be written as:

0 2pp) ~  &\ js ) ~  ^ H h  — k ~  3)(o- — o’(fl))- (3.26)

T h e o re m  3.2 .9 . I f  cr2 ^  H0 then cr\js) an(l vfpp)  have the same finite risk as that 
Of or2.

Proof. We outline the proof as follows. By investigating the behavior of <y2js)i we 
note that

y/Ti{&2{JS)- & 2)'QV7 i {&2(j s ) - a 2) = { k - 2 , ) 2A~2{ ^ { a 2 -  a 2(R))'Qy/n{cr2 -  a 2(K))}

< (k — 3)2{n(<72 — o w )'Q (ct2 — <X(fi))}

{c/w ( Q ^ -1 )}2.

where chmax(-) is the largest eigenvalues of (•). Also, under H0, we have cr\js) — &2r )- 
Further, for a 2 g  H 0.

E { A ~ 1I ( A > 0)} —> 0 as n —> oc.

In other words, cffjs) and <r2 become asymptotically risk equivalent for every cr2 not 
in H0. A  similar analysis holds for < T ( p p ) .  □

Now we will investigate the ADQR under the local alternatives defined in (3.13) 

and compare the respective performance of the proposed estimators.

We present the expressions for the biases and ADQRs of the estimators in the 

following theorem.

T heorem  3.2 .10.

ADB(<72pp)) -  -0 *  [tffc+1 (k -  3; 0 )  +  £{x*+i (© K tx ln  (©) >  (* -  3)]}] 

Q B ( * 2JS)) = (k — 3)20[£'(Xfc+1(0))]2,
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Q B ( * \ PP)) =  e { * k+i ( k - 3 : e )  + E { x -kl l (Q)i[xl+t ( e ) > ( k - m } 2

ADQR{&Ij S), cr2) =  tmct(QT)  + Qk(k -  3)(k +  l)£(Xfc+3(®)) “

(k -  3) trace(QC){2E(X-kl , m  -  (k -  3)E(XkU m ) :  
AD Q R (& 2PPycr2) =  R ( a 2JSy cr2) -  trace(QC)

E{{ 1 -  (k -  3)Xf +1 (Q)}2 I[X2 k+,(Q) < (k -  3)]] +

© ,[£ [2{1 -  (k -  3 ) x ^ ( 0 ) } H x l +1 (0)  < (k -  3)]] -  
£[{1 -  (k -  3)X; 2 +3 (Q)}2 1 [X 2 +s(Q) < (k -  3)]]].

Proof. The proof follows the same arguments as in Theorem 3.2.7. □

The quadratic bias of cr2JS) starts from 0 at 0  =  0, increases to a maximum value, 

then decreases towards 0. since E{Xf 2 (Q)) is a decreasing log-convex function of 0 . 

The behavior of a-2PP) is similar to however, the bias curve of <rfPP) remains

below the curve of cr'fJS) for all values of 0 .

We now turn  to investigate the comparative statistical properties of the shrinkage- 

type estimators. First we compare it with a 2 when the null hypothesis is true.

A D Q R { a 2 -,a2 ) - A D Q R { a \ JSy a 2) =  trace(Q C )(fc-3 )£ ;{2x i^ 1 ( 0 ) - ( f e - 3 ) x ^ ,( 0 ) }

is a positive quantity. Hence, we conclude tha t the Stein-type estim ator dominates 

a 2  when the null hypothesis is true. Also, the maximum risk gain of ct\js) over is 

achieved at the null hypothesis.

Now, we characterize a class of positive semi-definite matrices by

D , tra c e (Q r)  ^  k + 1

Q \ Q 1 chmax(QT) ~  2 j  (3'27)

In order to provide a meaningful comparison of the various estimators, we state  

the following theorem .
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C o u ra n t T h e o re m  If C and D are two positive semi-definite matrices with D  

nonsingular. both of order (q x q). and x is a column vector of order (q x 1 ), then

x 'C x
dlm in fC D '1) <  — — < c/tmax(C D _1) 

x 'D x

where chmin(-) and r//max(-) are the smallest and largest eigenvalues of (■) respectively.

We note that the above lower and upper bounds are equal to the infimum and 

supremum. respectively, of the ratio for x  ^  0. Also, for D  =  I, the ratio is 

known as Rayleigh quotient for m atrix C.

As a consequence of the above Courant theorem, we have

chimv(QT)  < < chmax(Qr), for 9* ^  0 and Q € Q D.
u 1 u

Thus, under the class of matrices defined in relation (3.27) we conclude th a t A D Q R  

(g’Ijs)- 0’2) <  A D Q R ( & 2 : cr2) for all 9*. where strict inequality holds for some 9*. 

ft clearly indicates the asymptotic inadmissibility of cr2 relative to  cr\js) under local 

alternatives. The risk of cr\js) begins with an initial value of 3 and increases mono- 

tonically towards trace(Q T) as hypothesis error moves away from 0. The risk of 6 ‘jjs) 

is uniformly smaller than a 2. where the upper limit is attained when ||0*|| —> oc. The 

result is valid as long as the expectation exists, and the expectation in the expression 

of A D Q R ( & 2J S y  <T2) in theorem (3.2.10) exists whenever k >  4.

We now wish to compare cr'fjs) and &2r) under H 0. We have

k — 3
A D Q R { a r 2J S yi cr2) -  A D Q R ( & 2R y  cr2) =  trace(Q C ) -  - — -tra c e (Q r)  >  0. (3.28)

rC — J.

Therefore, the ADQR of cr2R  ̂ is smaller than the ADQR of v ĵ s ) when the null 

hypothesis is true. Alternatively, as 9* departs from the null vector, 0fc increases and

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



simultaneous estimation of variance under imprecise information 89

E ( x k+i(®)) decreases, so 0 2j$) has smaller ADQR than ct\r)- Generally speaking . 

(7 2{ j S) does not perform better than ct2r) in a small neighborhood of the null hypothesis 

and ct^js) dominates &2R  ̂ in the rest of the param eter space. Hence, under local 

alternatives neither of cr2js) and cr2R) is asymptotically better than  the other.

Next, we compare v f j s )  and &2Sp) under Hq.

A D Q R (& 2JSy cr2) — ADQRl&^gp), cr2)

= trace(Q C ) |t t ( 2  -  v r ) ^  °) “  } >  °-

whenever

7r < 1 ~ \ 1 ~ n — and 1.«; ° ) < 7I— n '  (3'29^y (fe -  i)^fr+i(xlb-1,a;0) (k - 1)

otherwise cf2js) has a smaller risk. For it = 1 we get comparison for ct2PT) versus 

crfjs)- In general. Under H 0, when (3.29) holds, we may order the dominance of the

o O 0 0 9
estimators as: y  &(PT) y  0 (sp) ^  ^(JS) ^  ■ where the notation >- stands

for dominance. However, the dominance picture changes to o2Rj >- crfjs) y  &(PT) y  

&2SP) y  cr2, whenever (3.29) fails to hold. Thus, (3.29) specifies a range of values of ir 

and q for which <y\gP] dominates o \ JSy  The picture changes as 0* moves away from 

the null vector. The ADQR of cr\jS) and cr2SP) intersect a t Qk — 0 fcir Q if the condition

(3.29) is satisfied, otherwise there is no intersecting point in the param eter space. If 

@k € [0, ©*„,„), then a \ SP) y  o \ JS) while for @k G (6 ^ , 0 0 ), cr2(JS) y  &2(SP). If

(3.29) is not satisfied then cr2js) or\sp) f°r e  [0? °°)- In f&ct, the ADQR of &\js) 

always lies below this asymptotic value. Also, we note th a t the application of cr\jS) is 

constrained by the requirement th a t k > 4. If k < 4, then ct2sp j may be the sensible 

choice for estimating the param eter vector cr2.
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Filially, we wish to compare the risk performance of cr\PP) and &(js)- ^ 'e  may 

conclude from theorem (3.2.10) that

AD Q R (& 2PPycr2) 

ADQR{ct 2u s ) . * 21
< 1. for all 0 .

' ( j sy

with strict inequality for some 0 . Therefore. R 2Pp) asymptotically dominates or\js) 

under local alternatives. Consequently. cr\PP) >■ o fjs) <̂ 2- The dominance pattern  

of afpp) relative to o-^sp) is similar to tha t of ( j \ js ) t0 g\sp)  and hence is not discussed 

here to save space.

3.3 Num erical A D Q R  A nalysis

It is noted tha t the risk of all the estimators depend on the matrices Q and I \  

In order to facilitate numerical computation of the ADQR functions, we consider the 

particular case Q =  T -1 and obtain the value of risk expressions on a computer. W ith 

this substitution in theorems (3.2.4). (3.2.6). (3.2.8). and (3.2.10), the risks, denoted 

by ADQRi,  / =  ! , ••• , 5 for simplicity, are given in the following corollary:

C orollary 3 .3 .1 . Let Q =  T then the A D Q R  of &2, ct̂ s r )’ **f sp )> &Ij s )> an(  ̂
crfpp) are

A D Q R \  — k

A D Q R 2 =  k — 7T (2 — Tt)(k — 1) + 7t20  
A D Q R 3 =  k - n ( 2 - n ) ( k - l ) V k+1( x l - ha,Q)  +

0{27r^fc+i(x^_ijQ; ©) ~ * { 2 ~  ^ k + s i x t - p a -©)},
A D Q R i  =  k +  Q { k - Z ) { k  +  l ) E { x l U { Q ) ) ~

(k -  l ) ( k -  3){2E U f U Q ) )  - ( k -  3 ) E ( x f U ® ) ) } ,
A D Q R 5 = i24 - ( f c - l ) ^ [ { l - ( f e - 3 ) X f c + 1(0)}2/[Xfc+i(e)<(fc-3)]] + 

e [ 2 E[{i  - ( k -  S)x -kl i ( e ) } i [ x l +1 ( e )  <  (fc -  3)]] -  
E[{ 1 -  (k -  3)x^ 3(0)}2/[xL 3(0) < (k -  3)]]],

respectively.
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We have plotted A D Q R i  to A D Q R 5 versus 0  for tt — 0.5 under different values 

of a for k = 4 and 10 in figures 3.1 to 3.2. The expectations in the ADQRs was 

calculated using Maple9.5, and the rest of the computation was carried out in S- 

plus. In order to have a fair comparison for different k  values, a correction is done 

by dividing the risks by k. Delta in the figure corresponds to Q/k .  The graphs 

exhibit th a t all the estimators dominate o 1 at and near the origin(or for small values 

of 0)only. More importantly. cr\PP) and cr\js) outshine o 1 for all the values of 0 . 

Interestingly, <725P) dominates <7(PP) and &\js) f°r a range of a  and for small values 

of 0  when k  is small, say k =  4. However, when k  increases, say k = 10. &2SP) l()ses 

all the advantages, and dominated by cr\pp) and R\js)  in the whole param eter space. 

Similar trends are observed for the relative performance of <72PP) and cr\js) compared 

to <t2(sr)- The graphical analysis shows tha t increasing k  enhances the dominance 

of <r2PP) and &\js) to th e other estimators. Further, <J2PP) dominates ar\js) in the 

whole param eter space, and the improvement by using the positive part of the &{js) 

is very significant when Delta is small. More importantly, the components of <r2PP) 

has the same sign as th a t of a 1. We notice th a t all the estimators have maximum 

risk reduction as compared to a 1 a t 0  =  0.

Using the numerical risks, we define the notion of Asymptotic Relative Efficiency 

(ARE)  of an estimator, cr*. compared to  another estim ator a \  by

\-n-pi i  2 \ A D Q R { a l )
A R B I * .  ■ * . )  -  A D Q „ w y  <3-30>

A value of A R E  greater than  1 indicates the degree of superiority of <r* over a \ .  

Thus, the asymptotic efficiency of the various proposed estimators relative to  a 1. are
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(a) alpha=0.01 (b) alpha=0.05

1.5 20 2.5 3.005 1.00.0

(c) alpha=0.l0 (d) a1pha=0.20

1 5 2.0 2.5 3.00.0 0.5 1.0 302.0 2.50.0 0 5 1.0 1 5

(e) alpha=0.35 (f) alpha=0.50

1.6 2.0 2.5 3.00.0 0.5 1.0

Figure 3.1: AD Q R/k of the estimators at different a  level when k=4
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(a) alpha=0.01

1.6 20 2.6 3 000 05 .0
D e l t a

(c) alpha=0.10

2.6 3.00.0 0.5 1 5 2.01.0

D e l t a

(e) alpha=0.35

1.8 2.0 2.5 3.00.0 0.5 1.0

(b) alpha=0.05

1.6 2 6 300.0 0.5 1 0 2.0

D e l t a

(d) alpha=0.20

2.5 300.0 0.5 1.5 2.01.0
D e l t a

(f) alpha=0.50

2.62.0 3.00.0 0.5 1.0 1.5

Figure 3.2: A D Q R /k of the estimators a t different a  level when k = 10
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(a) alpha=0.01 (b) alpha=0.05

ARE1

ARE3
ARE4

(c) alpha=0.20

— ARE 3 
• - ARE4

o
< si

3 40 21

ARE1

ARE3

(d) alpha=0.50

ARE1

  ARE3
ARE4

Figure 3.3: ARE of the estimators for k = 4

given by

A R E v- \  = , v = 2 ,3 ,4 , 5.
A D Q R V~

Thus. A R E 1 .A R E 2 .A R E 3 , and A R E 4 are the efficiency of o-2Sr)- &lSp)- r f j s )  an(  ̂

respectively, relative to a 2. The A R E s  are plotted in figures 3.3 and 3.4. 

From a practitioner perspective, the most im portant question is:

W hat is th e  adequate value o f  sam ple size  n to app ly  th e  proposed  

m ethodology?

From a statistical perspective, the most im portant question is:
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(a) alpha=0.01

A R E !

(c) alpha=0.20

(b) alpha=0.05

©

ARE 3
o
n

tf>
cm’

p

O

2.5 3.01.0 1.5 2.00.0 0.5

(d) alpha=0.50

o

ARE1

ARE 4o

tn
cm

p

p

2.5 3.01.0 2.00.0 1.5

p

ARE1
ARE2

on
p
c s i

o

o

3.01.5 2.0 2.50.0 0.5 1.0

Figure 3.4: ARE of the estimators for k = 10
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D ocs th e  loss function (squared) used to  draw th e  inference m ake sense  

or folly?

hi the following section by means of simulation we answer these questions. We 

conduct two simulation experiments using quadratic and entropy loss functions, re

spectively.

3.4 Sim ulation R esults

The developed theoretical aspects of param eter estimation is examined in this sec

tion through Monte Carlo simulation under two loss functions. The main purpose of 

this simulation is to examine the quality of statistical inference based on large-sample 

methodology in moderate sample situations and to justify the use of quadratic loss 

function. The simulation study was conducted for two different population distri

butions - a normal distribution and a m ixture of two normal distributions. All the 

simulation was carried out using S-plus.

First, we introduce the notation of the simulated relative efficiency. The simulated 

relative efficiency (SRE)  of an estim ator a \  to another estim ator a l  is defined by

q R F I f T 2 . _2x =OrtihyCT^ . CT0J 2'\ ’
R\&*J

where R ( a l )  and R ( a l )  are the simulated risks of the estimator a l  and a l  respec

tively. Again, keep in mind th a t a value of S R E  greater than 1 indicates the degree 

of superiority of a l  over a \ .  Thus, the simulated efficiency of various proposed esti

m ators relative to a 2  is given by:

S R E v-! = ^ ,  v = 2 ,3 ,4, 5,
Rv
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where R^. i?2 , R's-, R 4 and R$ are the simulated risks of <r2. ct\s r )- **lsp)■ ^ \ j s ) an(l 

0 2(pp), respectively.

3.4.1 U nder Q uadratic Loss Function

In a /r-sample setup, the risk of an estimator <7 2 under the quadratic loss function, 

based on fixed sample sizes n,;, i — 1, ■ • • , k, is defined by

MSE(cr l )  = E { < T l - a * ) \ o l - a * )

The expectation is estim ated by the mean of 5000 Monte Carlo simulations.

N o rm a l p o p u la tio n  The samples of sizes 20 and 50 are taken from normal popu

lations with equal mean 0 and various variance erf. For simplicity, only the case with 

equal sample sizes is considered in our study. Based on simulated values of a 2 and 

o'luy. the test statistic A is computed first using (3.20); then crfsp)- ^I j s)  an<  ̂ ^\pp)  

are calculated accordingly. The distribution of the test statistic A has been simulated 

under the null hypothesis H 0  : o f  =  o \  =  ■■ • =  o f  in chapter 2, and the simulation 

shows th a t A can be reasonably approximated by x f k - 1) distribution for a m oderate 11. 

Therefore, the cut off points of distribution of the test-statistic is obtained. Further, 

we define the param eter A =  Y ^ = i ( a i ~  a \r ))2/ k ,  which is a measure of the distance 

between the null hypothesis and the true value of the parameters. It depends on the 

values of o f .

The efficiency of the various estimators is calculated based on 5, 000 simulations 

for different choices of k and a. Tables 3.1 to 3.5 and Figures 3.5 to 3.6 provide the 

estimated relative efficiency for the various estimates over a 2  when n =  20 and 50, 

k — 4 and 10, and a  = .05. Simulation studies show that maximum efficiency of
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(a) k=4 n=20 (b) k=4 n=50

SRE1
SRE2
SRE3
SRE4q

q

0.50.0 0.1 0.2 0.3 0.4

SRE1
SRE2
SRE3q

c

0.6 0.8 1.00.0 0.2 0.4

Figure 3.5: S R E  performance comparison for k — A.a — .05 and various n when population 
is normal. SRE\.  SRE-j. SREs,  and S R E 4 represent the simulated relative efficiency of 
& ■  ^"(sp )* 17(JS)  and ppp respectively.

(a) k=10 n=20 (b)k=10n=50

SRE3

CM

0.8 1.00.2 0.4 0.60.0

SRE4m

0.0 0.5 1.0 1.5 2.0

Figure 3.6: S R E  comparison for k = 10. a =  .05 and various n when population is normal. 
S R E \ ,  S R E ' 2 ■ S R E 3 . and S R E 4 represent the simulated relative efficiency of RfsR)- **fsP)■ 
cr'fjs) an6 &\pp ), respectively.
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all the estimators relative to & 2 occurred at A =  0. It is apparent from these tables 

tha t o-2SR) dominates the other three estimators near the null hypothesis. However, 

as A increases, the performance of g \ Sr) becomes the worst and hence it is not a 

desirable strategy. On the other hand, the performance of cr\sp) is 10SS sensitive for 

such departures, for instance, the relative efficiency achieves its maximum value at 

A =  0, drops as A increases, to below 1 and then tends to 1. Further, when k is 

small, the relative efficiency of &2SP  ̂ is higher than tha t of or\js) anc  ̂ vfpp)  near tbe 

null hypothesis. However, when k is large, &lSp) does not show any advantage over 

<72JS) and crfpp) on the entire param eter space. It is obvious tha t for larger value 

of A, O’fjs) and cr2Pp) are superior to all other estimators for all k  values. More 

importantly, or\js) ar*d ^\pp)  are superior to &2 for all the values of A. and cr2pp) 

dominates ln short, Tables 3.1 to 3.5 reveal th a t for A close to 0. all the

proposed estimators are highly efficient relative to <72; for larger values of A. the 

performance of the estimators is similar to the analysis of asym ptotic provided in 

section 3.3. The advantage of or\js) and o-fpp^ over other estimators is enlarged when 

k is large.

The simulation study also shows the effect of the sample size n  on the S R E .  It 

is observed th a t for a fixed value of k, decreasing n  will slow down the change of the 

S R E  with respect to A. For example, for k — 4, when =  50, R E \  decreases from 

2.273 to 0.740 as A increases from 0 to 0.5625; but when n,- =  20, S R E i  drops from 

about the same level (2.298) only to  1.262. Similar analysis applies to  other estimators 

too. This observation allows us to conclude th a t our proposed pre-test and shrinkage 

estimators have more advantages in a wider range over the unrestricted estim ator in
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Table 3.1: SRE of the estimators under quadratic loss with k = 4, a  — 0.05, ri; — 50 
when population is normal.

A S R E i s r e 2 SRE-s s r e 4

0.0000
0.1600
0.2500
0.5625

2.273
1.252
0.956
0.740

1.891
0.931
0.912
0.978

1.392
1.060
1.039
1.030

1.532
1.069
1.039
1.030

Table 3.2: SRE of the estimators under quadratic loss with k =  4, a  — 0.05, n, =  20 
when population is normal.

A SRE! s r e 2 SRE's s r e 4

0.0000
0.2500
0.5625
1.0000

2.298
1.481
1.262
1.092

1.846
1.002
0.918
0.920

1.359
1.094
1.063
1.051

1.522
1.108
1.067
1.053

terms of efficiency for small samples.

We have also assessed the performance of d jJS) and <r|lPP  ̂ relative to o-fsp) f°r 

larger size of the test, a. Tables 3.3 and 3.5 give us a rough idea how a  affects the 

performance of the estimators. It is observed th a t only R E 2 changes with the change 

of q which is sensible since alpha is only involved in the construction of er^sp)- ^  

seen th a t as a increases, &fsp) tends to  a 2.

Finally, based on our simulation study we find th a t the trend of the relative 

dominance of the various estimators for a fixed sample size n  is similar to the case of 

asymptotic, except th a t the curves are stretched out to the right when n is small.

M ix tu re  o f  n o rm a l p o p u la tio n s  The samples of sizes 20 and 50 are taken from 

a mixture population of two k-variate normal distributions, i.e., 90% N(0,1erf) and
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Table 3.3: SRE of the estimators under quadratic loss with k = 10. a  — 0.05. ti, — 50 
when population is normal.

A SR E i s r e 2 l S R E 3 s r e 4

0.0000
0.0625
0.2500
1.0000

3.096
2.238
1.065
0.652

2.474
1.385
0.990
1.000

3.393
1.787
1.188
1.104

4.340
1.865
1.188
1.104

Table 3.4: SRE of the estimators under quadratic loss with k  =  10. a  = 0.05. /q =  20 
when population is normal.

A S R E j s r e 2 s r e 3 s r e 4

0.0000
0.5625
1
4

3.065
1.451
1.264
0.939

2.376
0.981
0.993

1

3.268
1.294
1.235
1.150

4.137
1.294
1.235
1.150

Table 3.5: SRE of the estimators under quadratic loss with k = 10, a  — 0.20, n, =  50 
when population is normal.

A S R E i s r e 2 s r e 3 s r e 4

0.0000
0.0625
0.2500
1.000

3.082
2.240
1.063
0.654

1.767
1.136
0.999
1.000

3.323
1.771
1.192
1.104

4.359
1.852
1.192
1.104
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Figure 3.7: S R E  comparison for m ixture of normal distributions

10% N (0. Icr2), where cr2 = (of-,. • • • . c 2k), i = 1.2. Changing the values of cr\ and cr$ 

will change the covariance m atrix of the mixture k-variate distribution and eventually 

change the values of A. The simulation procedure is analogous to th a t for normal 

population. The simulated relative efficiencies are plotted in Figures 3.7 to 3.8.

The plots of simulated relative risk from mixture samples presented in Figures 

3.7 and 3.8 are very similar to  those in Figures 3.5 and 3.6 from normal samples. 

The maximum efficiency of all estimators relative to d 2  is achieved at A =  0; it 

decreases as A increases. arK-l ^fsp)  perform well when the null hypothesis is

true or nearly true; however, it gets worse as the true status departs from H o and the
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(a) alpha=0.05 (b) alpha=0.20
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Figure 3.8: S R E  comparison for mixture of normal distributions when a differs

S R E  becomes lower than 1. &\js) and &\pp)■, on the other hand, dominate cr'1 in the 

entire param eter space. The advantages of cr\js) and ^ 2Pp) over other estimators are 

especially extended when k is large.

3.4.2 U nder E ntropy Loss Function

Quadratic risk, or mean squared error(MSE) is a reasonable criterion when com

paring estimators of a location param eter, but may not be a good idea for scale 

parameters. One problem is th a t MSE penalizes equally for overestimation and un

derestimation which is fine in the location case. However, in the scale case, “0” is a 

natural lower bound, the estimation problem is not symmetric. Use of MSE tends 

to  be forgiving of underestimation. M aatta  and Casella (1990) used a scaled ver

sion of squared error loss - L(cr2 . a 2) =  ^ ( v 1  — <72)2. However, it does not solve the 

mentioned problem.

Stein (1964) found a loss function for which the usual unbiased estim ator of vari

ance a2 is best invariant. This loss function is called entropy loss function and defined
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as:

L E„(6.,9) = ° - - l - l n 9-  (3.31)

Note that L Ell(0.6) > 0 and attains the value 0 uniquely at 6  = 0. Also. Lev{ 6 i 6 ) 

is strictly convex in 6  and l i m L E„{6 .,6 ) = lim^_0 Lp„((?,6 ) =  oc. Gross under

estimation is penalized just as heavily as gross overestimation. Brown (1968) and 

Brown (1990) discussed a number of nice properties of L£„((). 0) when estimating a 

single scale parameter. Brown (1990) stated .“My own feeling is that the loss L En is 

the most, appropriate for general studies of estimation of scale parameters

In a k-sample situation, let £  be the covariance m atrix and £  be an estim ator of 

£ .  Then the entropy loss when estimating £  by £  is defined as:

L£„ (£ . £ )  =  f r ( £ £ -1) -  log d e t ( £ £ f  *) -  p. (3.32)

In our application, the entropy risk is then calculated by

R et, =  E { L En) =  E (3.33)

The relative efficiency of the estimators based on entropy risk is defined in the 

same way as in previous subsection, and denoted by R E E \  to R E E 4 for R'\sr)-. ^\sp)-  

cr\js) and &\pp) respectively. The simulation is carried out analogous to section 3.4.1. 

The sampling procedures from two different distributions (normal and m ixture of two 

normals) are as described previously.

The simulation result from normal populations is shown in tables 3.6 to 3.10 and 

figures 3.9 to 3.10.
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(a) k=4, n=20 (b) k=4, n=50
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Figure 3.9: SRE comparison under entropy loss for normal population

(a) alpha=0.05 (b) alpha=0.20
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Figure 3.10: SRE under entropy loss for normal population under different a
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Table 3.G: SRE of the estimators under entropy loss with k — 4, a  =  0.05, n, =  20 
when population is normal.__________________________________

A R E E i r e e 2 R E E S R E E i
0.0000
0.0625
0.2500
1.000

2.384
2.073
1.350
0.690

1.886
1.589
1.000
0.863

1.335
1.137
1.066 j

1.542
1.393
1.148
1.067

stands for a negative variance estim ate due to overshrinking.

Table 3.7: SRE of the estimators under entropy loss with k = 4, o  =  0.05. n, =  50 
for normal data. ________________________________________

A R E E j r e e 2 r e e 3 R E E a

0.0000
0.0625
0.2500
1.000

2.316
1.765
0.792
0.325

1.890
1.274
0.891
0.992

1.182
1.042
1.023

1.546
1.237
1.043
1.023

stands for a negative variance estim ate due to overshrinking.

The simulat ion shows that the relative efficiencies of the estimators are very similar 

under two different loss functions. The dominance relation among the estimators 

follow the same trend in both cases even though the curves of the risks versus A for 

individual estimators (not shown here) are very different under two loss functions. 

For instance, M  SE (& 2s r )̂ is linearly correlated to A, whereas Risk(trfsR)) v s■ ^  

is not a straight line under entropy loss function. However, these details seem not 

affect the efficiency of the estimators relative to b 2. Note that there are some missing 

values for the efficiency of b 2j s  ̂ when A =  0, this is because negative values of b^Js^ 

were calculated due to over shrinking in the simulation, causing undefined values of 

logarithmic. This, in general, cannot be avoided when A is small.

Tables 3.11 to 3.14 present the simulated relative efficiencies of the estimators 

under entropy loss function for m ixtures of normal distributions. The relative perfor-
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Table 3.8: SRE of the estimators under entropy loss with k = 10, a  = 0.05. n, — 50 
for normal data.

A R E E i r e e 2 r e e 3 R E E i

0.0000
0.0625
0.2500
1.000

3.122
2.235
0.843
0.333J

2.559
1.394
0.990
1.000

3.387
1.791
1.164
1.059

4 .435 
1.886 
1.164 
1.059

Table 3.9: SRE of the estimators under entropy loss with k = 10, a  — 0.05. iij — 20 
for normal data. ________________________________________

A R E E i R E E 2 r e e 3 R E E i

0.0000
0.0625
0.2500
1.000

3.192
2.756
1.557
0.749

2.482
1.889
1.037
0.988

2.380
1.417
1.173

4.413
2.688
1.430
1.173

stands for a negative variance estim ate due to overshrinking.

Table 3.10: SRE of the estimators under entropy loss with k = 10, a  = 0.20, n, =  50 
when population is normal.

A R E E i R E E 2 R E E ^ R E E i

0.0000
0.0625
0.2500
1.000

3.109
2.223
0.853
0.332

1.787
1.139
0.998
1.000

3.319
1.761
1.169
1.064

4.360
1.862
1.169
1.064

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



simultaneous estimation of variance under imprecise information 108

Table 3.11: SRE under entropy loss for mixture of normal data with k — 4, a  =  
0.05. ip = 20. ________________________________________

A R E E i r e e 2 R E E i r e e 4

0.0000 2.274 1.911 - 1.610
0.0625 1.984 1.688 - 1.519
0.3600 1.598 1.380 - 1.346
1.1025 1.291 1.155 - 1.215
1.4400 0.955 0.926 - 1.068

stands for a negative variance estimate due to overshrinking.

Table 3.12: SRE under entropy loss for mixture of normal data  with k = 4. a  = 
0.05. rii =  50. ________________________________________

A R E E i r e e 2 REE-s R E E i
0.0000
0.0625
0.3600
1.1025
1.4400

2.253
1.864
1.346
0.995
0.645

1.898
1.473
1.097
0.933
0.840 1.000_,

1.560
1.355
1.150
1.070
1.010

stands for a negative variance estim ate due to overshrinking.

mance of the estimators is very similar to th a t from normal population. The trend 

remains the same even when the sample size is as low as 20. An unusual phenomenon 

we observed in this simulation is th a t the observations in the column of R E E 3  are 

mostly missing. This is due to  the “over-shrinking” th a t caused some negative es

tim ates of the variance. This shows the importance of the improved positive-rule 

Stein-type estim ator from a different aspect.

3.5 Concluding N otes

Several estimation strategies for pooling data  are presented for estimating the pop

ulation variances and their risks are studied under different loss functions. It is 

concluded tha t the positive rule Stein-type estim ator dominates the usual shrinkage
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Table 3.13: SRE under entropy loss for mixture of normal samples with k = 10. 
a =  0.05, rii — 50. ________________________________________

A R E E i r e e 2 r e e 3 R E E 4

0.0000
0.0625
0.3600
1.1025
1.4400

3.052 
2.419 
1.677 
1.196 
0.751

2.385
1.626
1.138
0.999
0.965 1.021

4.201
2.220
1.423
1.187
1.022

stands for a negative variance estimate due to overshrinking.

Table 3.14: SRE under entropy loss for mixture of normal samples with k = 10. 
q =  0.05, rii — 20. ________________________________________

A R E E i r e e 2 r e e 3 R E E i
0.0000 3.114 2.452 - 4.419
0.0625 2.667 1.922 - 2.886
0.3600 2.117 1.463 - 1.909
1.1025 1.669 1.228 - 1.495
1.4400 1.191 1.026 - 1.167

stands for a negative variance estim ate due to overshrinking.

type estim ator and they both dominate the unrestricted estimator cr2  in term s of the 

asymptotic distributional quadratic risk we defined. On the other hand, the perfor

mance of restricted estim ator heavily depends on the quality of non-data information. 

The <7(js) has a disquieting feature tha t it may shrink beyond the hypothesis vec

tor. We have improved pf js)  by crfpp)- The positive-rule estim ator is particularly 

im portant to control the over-shrinking inherent in the shrinkage estimator. The 

performance of o 2Ry, &fsR) &\pt)  and ^\sp)  depends on the value of 0 ,  i.e., the cor

rectness of the null hypothesis. It is shown that the range in which cr\gp) dominates 

a 1 is wider than  the range in which P T E  dominates UE.

A risk simulation is conducted for finite samples under the usual quadratic loss 

and the entropy loss functions. The simulation result indicates tha t m oderate sample

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



simultaneous estimation of variance under imprecise information 110

.sizes are sufficient enough for the proposed estimators to follow the same dominance 

pattern (based on asymptotic risk) in practical situations. Though the estimators are 

proposed based on the quadratic risk, they perform similarly under the entropy loss 

function in terms of the relative efficiency. Finally, it should be noted tha t (ffjs) and 

&\pp ) can only be used for k > 3.
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Chapter 4

Sm all-Sam ple Risk A nalysis o f  
Variance E stim ation  w ith  
A pplication  in Differential G ene  
Expression

4.1 Introduction

Microarray technology has become an im portant tool for obtaining quantitative 

measurements for the expression of thousands of genes present in a biological sample 

simultaneously. DNA microarrays have been used to monitor changes in gene expres

sion during im portant biological processes (e.g.,cellular replication and the response 

to changes in the environment), and to study variation in gene expression across col

lections of related samples (e.g.,tumor samples from patients with cancer). In order 

to compare two types of cells (e.g., a cancer cell versus a normal cell), the DNA ma

terials are extracted from both cell types; one is labeled with fluorescence cy5(red) 

and the other with cy3(green). The microarray which provides a large-scale medium 

for matching known and unknown DNA segments based on base-pairing rules is then 

exposed to the m ixture of the two DNA samples for hybridization. W hen mRNA for

111
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a gene is more abundant in the cancer cell than in the normal cell, for example, the 

array spot corresponding to that gene will show a red color. Numerically, a vector of 

length G is reported, where G is the number of spots (genes) on the array, and each 

entry of the vector records the ratios (or log ratios) of the fluorescence intensities 

(cy5/cy3). When more than two types of cells are considered, the microarray data 

often takes the form of a Gxp matrix, where each column corresponds to a cell type 

(e.g.. lymphoma cell, leukemia cell, and normal cell) or a treatm ent, and each row 

corresponds to a gene. Thus, through the use of DNA microarrays, one can monitor 

.simultaneously the expression levels of thousands of genes in different types of cells. 

We refer to  Tusher et dl. (2001), Tibshirani et al. (2002), Cherepinsky et al. (2003) 

among others for a detailed discussion of the micro-array experiments. A m ajor sta

tistical task is to understand the structure of the data from such studies, and the first 

level of analysis requires determining whether observed differences in expression are 

significant or not. Numerous statistical m ethods have been developed to deal with 

this task in recent years. We refer to  Efron (2004), Efron et al. (2001), Ji et al. (2006), 

D atta  and D atta  (2005), Klebanov et al. (2006) and Cui et al. (2005) among others.

One commonly used approach in the current literature is the fold change approach, 

in which a gene is declared to have significantly changed if its average expression level 

varies by more than  a constant factor, typically 2, between the treatm ent and control 

conditions. This simple 2-fold rule is unlikely to yield optimal results because it 

neglects the random sampling variation.

Another approach is to use a t-test which is more precise in a statistical sense 

(Broberg (2003)). However, a problem with microarray experiments is th a t the repli
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cation numbers are usually very small, hence the variance estimates obtained from an 

individual gene may be very imprecise, and therefore the inferences reached may not 

be trustworthy due to the weak variance estimates. Baldi and Long (2001) proposed 

a regularized t-test replacing the usual variance estimate with a hierarchical Bayes 

estimator which compares favorably with simple t-test or fold m ethods in term s of 

consistency. The SAM t-test proposed by Tusher et al. (2001) adds a small constant 

to  the gene-specific variance estimate in order to stabilize the small variances. The 

idea is to eliminate some false positives associated with low values of variance. The 

technique is described in detail by Chu et al. (n.d.). Cui et al. (2005) proposed a 

James-Stein type estim ator and used it to construct an F-like test statistic. It is fa

vorable compared to other F-like statistics which are based on a gene-based estim ator 

or a pooled estim ator across all G genes in terms of power, false positive rate, and 

robustness.

In chapter 3, we have constructed several estimators of population variance vector 

a 2 based on pretest and shrinkage rules. These estimators, basically, are all weighted 

combinations of two estimators - the unrestricted estimator, <r2, and the pooled es

tim ator d’fpy The asymptotic distributional quadratic risk (ADQR) of the proposed 

estimators were obtained and the risks of the estimators were simulated for finite 

samples under quadratic and entropy loss functions. The simulation study showed 

that the James-Stein type estimators dominate others in a wide range of param eter 

space; it especially showed substantial advantages when the number of samples k 

was large and n  was small. In this chapter, we study the risks of these combination 

estimators for finite samples. Two optimal weight estimators are proposed under the
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quadratic loss function in section 4.2; some theoretical results are obtained in sec

tion 4.3 and the simulation study is included in section 4.4. An application of the 

estimation strategies in the microarray study is included in the last section.

4.2 Two Optimal W eight Com bination Estim ators

respectively. Some weighted combinations of these two estimators have been studied. 

The optimal weights for the two components will be estimated under some assump

tions in this section.

4.2.1 T he O W C E stim ator B ased  on th e  Original D a ta

W ithout any distributional assumption, we have tha t

(OW CE)

In chapter 3 , we have defined the unrestricted estimator, o 1. and the restricted 

estimator of rr2 =  (<r2 ■ • • , a 2) , as

<72 ~ (4.1)

and

cr\R) ~  (cr2 +  7, $ ) , (4.2)
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where 7  is a (k x 1 ) bias vector and ’i ' and 5> are positive-semi-definite covariance 

matrices. We also define

cot:
<72 m s

.  a (R) .
S' $

(4.3)

Our objective is to find the optimal weight for the combination of the two estimators 

with smaller quadratic risk than the estim ator a 2. Following the idea of Judge and 

M ittelhammer (2004), we define a new estimator

21 „.\ Q& 2  +  (1 -  a)&2Rya  l a (4.4)

The quadratic risk of <x2 (a) is given by 

M S E ( a 2 (a)) =  E [ ( a ( a 2 - a 2) +  ( l - a ) ( a 2( R ) - a 2) y  

(q(<j2 -  a 2) +  (1 -  a){&\R) -  cr2))]

=  a 2fr(S&) +  (1 -  a ) 2 [ tr($ )  +  7 ^ ]  +  2 a (l -  a )f r (E ) . (4.5)

To minimize M S E (c r 2 (a)). let

d M S E { & 2 {a))
da

=  0 . (4.6)

Solving (4.6) yields the first-order necessary condition for a:

f r ( ’J') — t r ( £ )
a* — 1  —

7 ' 7  +  tr(' if)  +  t r ( &)  — 2  fr(E ) 
7 ' 7  +  <r($) — tr{Y>)

(4.7)
7 ' 7  +  t r (^f )  +  t r ( &)  — 2 f r (£ )

Since d 2 M S E (c r 2 ( a ) ) /d a 2 > 0, the optimal weight combination estim ator <r2 (a*) =  

a*a 2 -f (1 — a*)&2Rj is superior to the unrestricted estim ator under quadratic loss.
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When the null hypothesis in (3.2) is true. 7  =  0  and o* = 0; the optimal estim ator

would be d’(R)-

Assuming normality and independence, we have

-=i_ 0 0 ••• 0«1 —1

$  =
0 0 712 “"I

0 0 0 n k -  ] J

and

(4.8)

7=1

where 1 -̂xk is a kxk matrix with all elements 1 .

o \ / n \  — 1 • • • a \ f n \  — 1

2 o \ / n 2 - l  ••• o \ l n2 -  1

S =  k

o4k/ n k -  1 ••• oHnk -  1
\ /  Arxfc

When the sample sizes are all equal, the above expressions are simplified to

(4.9)

(4.10)

*
n — 1

crj 0 0

0 0 0

0

0

oi

\

(4.11)

and

(4.12)
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and

Note that

£  =
On

k(n — 1)

<?k kxk

(4.13)

m 2 -  t U Y t * 2 -  * U ) ]  = m 2 -  * 2) v  -  *

+ E [ { 0 2r) ~  — ° ’2)] ~  2£,[ ( a ^  -  cr2)'(er2 <r2)]

=  fr(<J>) +  [tr(3>) +  7 77 ] -  2 t r ( £ ) . (4.14)

Thus, (ct — — o-(R)) is an unbiased estimator of the denominator term  in 

the q* expression (4.7). Regarding the numerator term.

tr('Sf) — f r ( £ )
(n — 1 )k

Since a 2 is an unbiased estimator of a 2, we define an estimator of the optimal weight 

a* in the form

a *  =  1 -

( &  — R ) ) ' ( & 2 ) ) '

(4.15)

yielding the corresponding optimal weight combination estimator

2 (k -  1)(&2Y&2
cr2(a*) a 2 +

2(k — 1)(&2)'&2 
( n -  l)k\\cr2 -  &2{r)\\2 1 yU{R)-  1  -

{a 2  - a 2). (4.16)

This is a James-Stein type estimator; however, it is not a convex combination of 

the two estimators. In order to keep the weights in [0,1] and avoid overshrinking,
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it is necessary to take the positive part of the weight. Thus, we obtain the positive 

James-Stein type estimator,

/  2(k -  1)(<72)'<72 ^ +
<72(d ’ ) + =  o \ R) -  1 (*<« -  ^ (4.17)

{R)'

where for any number u, u+ denotes m ax  (a, 0).

4.2 .2  A n OW C E stim ator B ased on L og-transform ed D a ta

In section 4.2.1 we have defined an OWC estim ator of the variance vector. Since 

the covariance matrix of the estim ator depends on the the param eter itself, we have 

to replace the parameter cr2 by its unbiased estim ator cr2 in the estimation of the 

optimal weight a(*). However, a log-transformation to the param eters will overcome 

this problem.

Let
( \

Tl

\ T k J

Ino 2 ^

Ino 2

\  ln° l  )

We assume normality and independence, and consider equal sample size case only 

for m athematical simplicity. Then s 2  ~  of • \ H v .  where x l  is a chi-squared random 

variable with u degrees of freedom. Thus, Ins2 ~  Ino2  +  In*-.  Let

E  In X m.

and

Var(ln X V.
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Then

and

E{lnsf)  = Ino? +  m,

Var(lns?) = V.

m and V depend only on the degrees of freedom u — n — 1. and can be evaluated 

numerically through integration. Using a second order Taylor Expansion.

y 2
In —  

v

m
1
V

V  «  Var  ( ^ ( x l  -  V) ~  ^ ( x l  ~

=  -^Varixl )  +  Var[{xl -  v)2]

2 1 / 2n
"  v + ^ 4 ~ fi2) 

2 2 12 
— -  d----2 -̂---3 '

1
4 ^

(4822 +  12222 -  4Z/2)

The values of m and V and their second order approximations for some selected v  are 

listed in Table 4.1. Thus, we define an unbiased estimator of the param eter r  in the 

following form:

T =

(  „  \

Tl

T2

\ T k  j

lns\  — m

y lns\  — m

(4.18)
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and a pooled estimator

(  . \  
T(R)

T(R)
' (R)

Ins2  — to

Ins2  — to

y T(r ) y y I n s 2 -  to j

~  ( r  +  7, <&)

where Ins2 — ’̂ Trijlns2 /n.  

Define

cov
T V  E

.  f  W  .
E ' $

Then

T' =  C o v ( f )  = VI*,

3> =  C ov{t (R)) =  ^ 1 * 1 '* ,

S  -

M * )  -  kV, 

tr(&) = V/k .

M E )  =  V.

Analogous to section 4.2.1, we define the weighted combination estim ator

t (o ) =  a f  +  (1 -  a)T (fl).

The optimal weight, under the quadratic loss, is given by

( k - l ) V
Q =  1 —

T — T (/? )
| 2 ‘

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

for r

(4.24)

(4.25)
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Table 4.1: The values of m  and V  for selected degrees of freedom

V —rn i

V
V 1  +  JL +  1 1

V  ^  ,A ^  1,3

1 1.270 1.000 4.935 16.00
2 0.577 0.500 1.645 3.000
3 0.369 0.333 0.935 1.333
4 0.270 0.250 0.645 0.812
5 0.213 0.200 0.490 0.576
6 0.176 0.167 0.395 0.444
7 0.150 0.143 0.330 0.362
8 0.130 0.125 0.284 0.305
9 0.115 0.111 0.249 0.263
10 0.103 0.100 0.221 0.232
15 0.068 0.067 0.143 0.146
20 0.051 0.050 0.105 0.106
30 0.034 0.033 0.069 0.069
40 0.025 0.025 0.051 0.051
50 0.020 0.020 0.041 0.041

The corresponding OWC estim ator is

( fc -  1)1/
?(&*) — t  +

T — T(R)\
(f (R ) -  f )

=  t { R )  -  (1
(k ~  1)V

(4.26)
lT -  T b?)l

Again, to avoid over-shrinking, we take the positive part of the weight to  obtain a 

convex combination, defined by

(fc -  1)V
(AT = r (R) -  (1 T ( R ) - T ) . (4.27)

\ r - r (R)r

Transforming back to the original scale and correcting the bias result in the regular 

and positive-part James-Stein estimators for <r2 based on log-transformed

( f c - l ) V
& ( a  )Tr =  e ■ exp t (R) -  ( 1 - T — T (R) I

(4.28)
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<r2 (o*)t t = ( ”‘ -exp
(k -  1)V

1 - — ----------: -------- — I ( t ( r ) - t ) (4.29)
\\t  ~  t (R)I

w here t is a bias corrector, and for any vector V . ea;p[V] means taking the expo

nential of each element. If we substitute (4.18) and (4.19) into (4.28). and let

( k - l ) V
a —

then each component of cr2 (o*)Tr in (4.28) can be expressed in the following form:

Tr

f k

1

1 /k' (1 a)

(«?)" (4.30)

which is a weighted geometric mean of the unrestricted estimator and the “geomet

rically pooled" estimator. (4.29) is very similar to  the estimator given by Cui et al 

(2005).

( k -  3)1/
v s + ) = ( n ^ ) 1!G I c m exp 1 -

E ( M us 2i) -  /n (^sD)2
( ln(vsl )  -  ln(ys?))

(4.31)

with one m ajor difference. We have (k — 1), while they use (k — 3) in the weight 

component. The approaches by which the two estimators are constructed are totally 

different. Their (k -  3) is associated with the degrees of freedom of the test statistic, 

while our approach is a pure optimization process unrelated to any test statistic. We 

did estimate the denominator term  in (4.7) with its unbiased estimator; however, 

it does not make much sense to subtract the number of param eters estimated from 

(k -  1) in the context th a t degrees of freedom is not present. Further, the simulation 

in section 4.4 shows that our estim ator in (4.29) has lower risk than th a t in (4.31).
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4.3 Risk Study of the Estim ators

The objective of this section is to assess the performance of various estimators 

using squared error loss and entropy loss functions. All the results in this section are 

subject to normality and independence assumptions.

4.3.1 U nder th e  Q uadratic Loss Function

When estimating cr2 using some estim ator <x2(»), the quadratic loss is

L(<r2w ) = (<r2w -  <r2)'(<r2w -  cr2). (4.32)

The risk of <r2p) is

R{cr2{„)) =  £((<r2(») -  <72) V 2(„) -  cr2)).

Since a 2 ~  F(<r2. Diag(2c^/ (n — 1)), where F  is some kind of k-variate probability 

distribution. It is straight forward to derive tha t

= =  (433)

We should note tha t the quadratic risk of this unrestricted estim ator is not a constant, 

i.e., it depends on the param eter cr2.

It is also easy to see tha t

*(*?«)) = (cr2 -  tr2fl)) V  -  a \ R)) + ^  _ 2

It is obvious th a t when the null hypothesis in (3.2) is true, the first term  on the

t\r ))right hand side of equation (4.34) is zero. Thus, /?(<j?m) is much smaller than R(cr2)
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in the niicroarrav data analysis where k is usually thousands. However, when the

null hypothesis is not true. R { o 2(K)) is potentially larger than R ( 6 ,&2), and it is

unbounded.

Comparing the right hand side of (4.33) and (4.34). it is straight forward to prove 

the following theorem.

T h e o re m  4 .3 .1 . when — cr2^ ) ' (c r 2 -  cr2̂ )  < ^ [ ^ 1 +2 a \ R ) h a s  smaller
quadratic risk than a 2.

When ii < 3 and k > 2. the inequality in theorem 4.3.1 always holds. Conse

quently. we obtain the following corollary:

C o ro lla ry  4 .3 .2 . When n < 3 and k >  2, a 2̂  has smaller quadratic risk than cr2.

The risk of the OWLC estim ator <r2 ( a * )  is

R ( a 2 ( o * ) )  =  E[{(t2 {o*) -  a 2 Y { a 2 { a * )  -  a 2 )]

= E [ (o2(R) -  (1 -  a ) ( f f ^ } -  a 2) -  (T2 ) '{a\R) -  (1 -  a){a\R) -  a 2) -  a 2)}.,

where
_  2 (k — 1)(<t2)'(T2

{n -  \ )k \ \a 2 -  a \ R)\\2'

The risk is a highty nonlinear function of the data; it can be estimated by a bootstrap 

technique or the first-order asymptotic technique suggested by Judge and M ittelham- 

mer (2004).

4.3 .2  U nder E ntropy Loss Function

As discussed in chapter 3. entropy risk is considered as a more reasonable measure 

when comparing estimators of a scale param eter. When estimating cr2 by a 2, the
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entropy loss is defined as

L { o 2) = 1 — In— . (4.35)

It can be shown that under the entropy loss function, the risk

* ( * 2) -

a 2

=  ~ k E  In

= —k[ip(v/2) -  l n ( v / 2)], (4.36)

where x l  is a chi-squared random variable with v degrees of freedom, and 

is the digamma function. Here, v =  n  — 1. Therefore, the entropy risk of the 

unrestricted estim ator is a constant independent of the param eter cr2. Selected values 

of the expectation in (4.36) is given in table 4.1. By using the second order Taylor 

expansion,

Under the entropy loss defined in (4.35), the risk of crfm is

R(<t2(R)) ~  X]

Under the null hypothesis,

? ;= i

E
’(R) — 1 In-

a,(R) (4.37)

(R)
R ( o'(R)) ~  —k E  I In

=  —k E  In

k
nk  — 1

where v2  =  nk  — 1

(4.38)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Small samples risk analysis of variance estimation with application 126

It is easy to  see th a t R ( a ( n)) is much smaller than R(tr 2) when the null hypothesis 

is true.

The entropy risks of the proposed shrinkage type estimators are quite complicated. 

Therefore, we conduct a simulation study and present it in section 4.4.

4.4 Sim ulation R esults

In order to  compare the performance of the various estimators, an extensive sim

ulation study was conducted for k ranging from 4 to  1000 and n  ranging from 2 to 

20 under quadratic and entropy loss functions based on the E.Coli da ta  provided by 

Arfin et al. (2000). Eight estimators were studied in our simulation. However, the 

issue of risk comparison of the pretest estimators and the Stein-type estimators was 

addressed in chapter 3 and the Stein-type estimators are preferred over the pretest 

estimators. Thus, we only exhibit the comparison among the pooled, the two OWC 

estimators proposed in section 4.2, and the Stein-type estimator proposed by Cui 

et al. (2005). Although the OWC estimators were derived based on the normality 

assumption, we still would like to  know how they perform when the data  are from a 

non-normal population. Therefore, the data  were sampled from non-normal as well 

as normal distributions. The non-normal distributions are represented by mixtures 

of two normal populations in this study.

In the simulation, the efficiencies of the RE, OWC1 (from original data), OWC2 

(from log-transformed data) and Cui’s estimators relative to the unrestricted esti

m ator are computed for values of A ranging from 0 to  2. The simulation result for 

selected combinations of k and n  is presented in Figures 4.1 to  4.5.
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Figure 4.1: Relative efficiency of the proposed estimators under quadratic loss for 
normal da ta  when k = 4 and 10.
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Figure 4.2: Relative efficiency of the proposed estimators under quadratic loss for normal 
data when k = 100. The plots on the right are a closer look of the plots on the left.
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Figure 4.3: Relative efficiency of the proposed estimators under entropy loss (normal 
data) for k  =  4 and 10, and n =  4 and 10.
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Figure 4.4: RE comparison under entropy and quadratic losses (normal data). The top 
two plots are under entropy loss, and the bottom two plots are under quadratic loss.
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Figure 4.5: Relative efficiency of the estimators under quadratic loss for a m ixture of 
normal data.
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Figures 4.1 to 4.2 show the relative efficiencies of the estimators under quadratic 

loss when data are sampled from normal populations. It is observed that when n=2 

&^J}j dominates the unrestricted estim ator (with R E  > 1) within the entire studied 

range of the parameter. This result agrees with Theorem 4.3.1. When n is moderate, 

the RE of 0RE decreases rapidly and turns lower than 1 as A increases, on the other 

hand, the RE of the other three estim ators all approach, but stay well above 1. The 

two OWC estimators perform better than Cui's estimator in general. The advantage 

is substantia] when A is small. As k increases, the difference between Cui's estim ator 

and the OWLC2 disappears.

Figure 4.3 demonstrates the relative efficiencies when using entropy loss function, 

while Figure 4.4 presents a side by side comparison under two different loss functions 

for k =  10 and n = 4 and 10. The top plots are the cases using entropy loss, whereas 

the bottom  ones represent quadratic loss. An im portant observation is th a t the RE 

of OWC1 estimator becomes lower than 1 as A increases. Hence, it does not retain 

the property of a Stein-type estim ator under entropy loss function. The RE of OWC2 

and Cui's estimator both maintain above 1 within the range of our study.

Figure 4.5 shows the relative efficiencies under quadratic loss when the data  are 

sampled from mixtures of two normal populations for selected k  and n. Simulation 

results show th a t all the estimators are highly efficient relative to 9U within the 

experimental range of the E.Coli data. Further, the OWC estimators are more efficient 

than Cui's estimator.
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4.5 Concluding N otes

Two optimal weighted combination estimators are proposed based on assumptions 

of normality and independence under the quadratic loss function in the context of 

finite samples. The risks of these estimators are studied and compared to the es

tim ator given by Cui et al. (2005). The simulation shows th a t all three estimators 

resemble the Stein-type estim ator and keep the nice properties, e.g., dominating the 

unrestricted estimator, under quadratic loss functions. Some theoretical results are 

obtained. When the entropy loss function is used, these estimators have lower risks 

compared to the unrestricted estimator in a wide range of param eter space, but do 

not dominate in the entire param eter space. The performance of the OWC estimators 

and Cui's estim ator are similar when k  is large. However, when k is small, OWCE1 

and OWCE2 have smaller risks compared to Cui’s estimator near the null hypothesis; 

Cui’s estim ator becomes better when A increases.

Keeping in mind tha t normality and independence may not hold in microarray 

data, we simulated the risks and relative efficiencies when data  were sampled from 

non-normal populations. The simulation shows tha t the relative efficiency is robust 

to the violation of normality assumption. The risk performance of the estimators 

in the dependent case was not studied. However, our approach can be extended to 

correlated data; we relegate this pursue for future work.
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Chapter 5

E stim ation  of the Variance 
C om ponents for M eta-A nalysis  
w ith R andom  Effects

5.1 Introduction

Meta-analvsis is defined as the statistical analysis of a collection of analytic results 

for the purpose of integrating the finding. Such analysis are becoming increasingly 

popular in medical research where information on efficacy of a treatm ent is available 

from a number of clinical studies with similar treatm ent protocols and in microarray 

data analysis where many research groups study the same subject under very similar 

conditions. If considered separately, any one study may be either too small or too 

limited in scope to come to unequivocal or generalizable conclusions about the effect 

of treatm ent. Combining the findings across such studies represents an attractive 

alternative to strengthen the evidence about the treatm ent efficacy.

Meta-analvsis provides an objective way of combining information from separate 

studies looking at the same question and has been applied most often to treatm ent 

effects in randomized clinical trials. For example, consider k  randomized trials com-

134
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paring a new medication with placebo, in which each trial's treatm ent effect is esti

mated in terms of a difference in means of a quantitative variable, or. for a binary 

outcome, in terms of the log odds ratio. Standard meta-analvsis methods for pro

viding an overall estimate of the treatm ent effect rely on certain assumptions (Hardy 

and Thompson (1996)). The fixed effect model is based on homogeneity of treatm ent 

effects across all k  studies included in the meta-analysis. In other words it must be 

assumed th a t the estimated treatm ent effect 9i has a common mean 9 and individual 

variance of  for each study i = 1..... A. The treatm ent effect 9 can then simply be 

estimated as a weighted average of the individual study estimates, that is

where wt is the weight given to study i and generally taken to be the reciprocal of 

the variance of  for study i. In practice, of  must be estimated. The estimation of of  

in a fixed effect model is considered in the previous chapters.

However, in practical medical researches or microarray experiments, homogeneity 

is rare due to the nature of the studies and the many variables involved. Hence a 

degree of statistical heterogeneity might be anticipated. As a result, the assump

tion underlying the fixed effect model does not hold. A formal test of statistical 

homogeneity can be performed using the test statistic

k
(5.2)

i= 1

which has approximately a x l - i  distribution under the null hypothesis

H0 : 9, = 9, 9, 9 (5.3)
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The random effects model provides a way of incorporating heterogeneity into the 

estimate by including a between-study component of variance r 2.

Consider k independent studies, with effect measure variables V) and true study 

specific effects for i =  1..... k. The random effects model is given by

T, — 6 j +  £, and 9j = 0  + 5j, i =  1. • • • . k,

where £, and 6 j are assumed to be independent and normally distributed with e, ~  

.V(O.of) and 5, ~  .V (0 .r2). Hence the marginal distribution of Y, is N ( 6 , a f  + r 2). 

Here of is the within-study variance and r 2 is the across-study variance. Both <r2 and 

r 2 are unknown fixed values. The generally accepted practice in meta-analysis is to 

use the estimated values of these variances.

In the previous chapters, we proposed several shrinkage type estimators for the 

within variance of. In this chapter we will focus on the estimation of the between 

variance r 2. The statistical properties of the proposed estimators will be investigated 

via an extensive Monte Carlo simulation.

5.2 Risk Study of the E xisting Estim ators

Over the years many estimators of r 2 have been proposed in the reviewed litera

ture. The method of moments estim ator (MM) by DerSimonian and Laird (1986), the 

variance-component type estimator(VC) by Hedges (1983), the simple heterogeneity 

variance estim ator (SH) by Sidik and Jonkman (2005), the maximum likelihood esti

m ator (ML) by Hardy and Thompson (1996), the approximate restricted maximum 

likelihood estimator (REML) by Morris (1983), and the empirical Bayes estim ator 

(EB) by Morris (1983) are the most popular ones among others.
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The MM estim ator is given by

4  =  m ax I ~ 9 E  ) > <5-4)
E E  M v i  -  #)2 -  (fc - 1)

where 6  =  E ,E  E*=i and uy =  1 /o f .

The VC estim ator is given by

f f c  =  m ax  j  0, E E  ^ ( y , -  -  y f  -  y  d ,2j  ,
i=l i=1

rliere y =  E i= i Note tha t r f c  is also a method of moments estimator.

The SH estim ator is given by

1 k
f sH = T r r r  ^  E -  -  E 2> (5,0^

?=i

rhere v, -  r,- +  1, f, = 6 2 /  f e E E  -  y ) 2 / k ) ,  and 0f. =  £ ffc=] d, W E , = j  V '•

The ML estim ator can be calculated by iterating the equation

(5.7)ML — max
E  L ^ U u - e f - d A )  

o. —  1 J
E k  - 2

, = 1 Wi

where 6  - E E  ^tVi /  E E  and =  VO?2 +  m̂ l )■

Similarly, the R.EML estim ator is computed using the iterative equation

Treml  — max  <
E E  ™i2 { (k / ( k ~  ^Xl/i -  ^)2 -  E  j

0. ------------- -— r j  1 } , (5-8)
E,;=i «>,■

with a),- =  l / ( o f  +  t 2Reml)-

An EB estim ator f%B can be computed using the same iterative equation given 

for the REML estimator, except replacing iff with Wi.

Among the above six estimators, the MM, VC and SH estimators are simple to 

compute. On the other hand, the ML, REML, and EB estimators are more compu

tational intensive, and require iterative solutions.
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5.2.1 S im ulation  S tu d y  o f th e  R isks

Wo performed simulation studies to compare the risks of the MM, VC, SH, and 

ML estimators under quadratic and entropy loss functions. Since the REML and EB 

estimators are similar to the ML estimator, we did not include these two estimators 

in our simulation.

The simulation study is based on the meta-analvsis data from nine studies on 

preventing pre-eclampsia using diuretics (Collins et a,I. (1985), Thompson and Pocock 

(1991). Sidik and Jonkman (2006)). The design of the simulation is similar to tha t 

discussed in Sidik and Jonkman (2006). The measure of the effect size is log odds 

ratio. The true overall effect 8  was set at -0.5 because the estimated overall log 

odds ratio for the diuretics trials in the studies is approximately -0.5. We chose four 

different meta-analvsis sample sizes, k =  10,20,30, and 50. For each sample size k. 

we considered six values of r 2 ranging from 0 to 3. For each combination for k  and r 2, 

we generated 10.000 2x2 tables. Specifically, we first generated 8 , from N ( 8 . t 2) for 

i =  1, ■ ■ • . k. For a given k. equal sample sizes n, for the control and treatm ent groups 

were randomly chosen from the integers 20 - 1000 since in most of the diuretics trials 

the sample sizes for the control and treatm ent groups are similar and roughly within 

the above range. Next, we generated the responses for the control groups based on 

a binomial (ni ,p iC) distribution for i — 1, • • • ,k.  where the true binomial probability 

PiC was randomly selected from a uniform distribution on the interval from 0.02 to 

0.5 (following the range of the observed proportions for the control groups in the 

studies). The responses x iT for the treatm ent groups were generated from a Binomial 

(fkiPiT) distribution with piT = picexp{ 8 i}/(1  — ptc  +  PicGxp{8 i}) for * =  1, • • • , k.
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Using this method, which maintains the true within-studv log odds ratio for the ith 

study at 0 ,-, we generated k 2x2 tables with the cell counts (x,c, n,- -  x , c ■ x lT. itj -  Xjr) 

for the ith table. This was replicated for 10.000 times for each combination of k  and 

r 2. For each replicate, the sample log odds ratios y,, i = 1. ■ • • ,k ,  were computed. 

The estimated within-studv variances of were calculated by the asymptotic formula:

d2 = l / {ri ipiT{ 1 -  Pit)) + l / { n i p iC{l -  Pi.c))• (5-9)

Finally, the quadratic and entropy risks of the MM. VC. SH, and ML estimators were 

computed in the same m anner described in chapters 3 and 4 for each combination of 

k and t 2 . In the simulation of the entropy risk, the minimum value of r 2 was 0.1. 

since a value of zero for the param eter would make the entropy loss undefined. In 

addition, the efficiency of each estim ator relative to the VC estim ator was calculated 

and presented in columns 2 to 4 of Tables 5.1 to 5.8.

Tables 5.1 to 5.4 exhibit the relative efficiencies under the quadratic loss, and 

Tables 5.5 to 5.8 show the relative efficiencies of the variance estimators under the 

entropy loss function. The simulation showed th a t when the random effect variance 

r 2 is small, the efficiencies of the MM and ML estimators both are substantially 

higher than th a t of the VC estimator. As r 2 increases, the relative efficiencies of MM 

and ML estimators decrease rapidly and become lower than 1 at some value of r 2. 

This observation allows us to conclude th a t when r 2 is small, the f \ 1M and t^ l have 

lower risks, and therefore are better choices to estim ate r 2; when r 2 is large, TyC 

is better in term s of risk. The change of the relative efficiency of the SH estim ator 

is less significant and does not strictly follow this pattern  under quadratic loss for 

k =  20, 30, 50. The RE of fgH is lower than 1 when r 2 =  0, jum ps up above 1 when
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r* increases to 0.1. and decreases to near 1 as r 2  continues to increase. When the

entropy loss function is employed in the simulation, we did not observe any RE of

t£jj lower than 1 since the value of r 2 started  from 0.1 instead of 0.

5.3 Jam es-Stein T ype Estim ators

Noticing the change of the efficiencies of f \ iM and relative to f 2, c  with re

spect to t 2 motivates us to propose James-Stein type estimators tha t shrink the VC 

estimator toward either the MM or the ML estimators:

Tjsi — tIi m  +  ~Q~ )  ^ C ~  (5.10)

TjS2 = TML +  )  ^ '2/C _  (5-11)

where Q = ~ ®)2- as given in (5.2). 0,- =  y,-, 6  — J 2 iwi y i / 'H i w’-. anc*

Wj = 1 /o f. Q is the sum of squares of the treatm ent effects about the mean where 

the ?th square is weighted by the reciprocal of the estimated variance. Under the null 

hypothesis:

H 0  : r 2 =  0, (5.12)

Q follows asymptotically a y 2 distribution with A' — 1 degrees of freedom. Thus, when

each study has a large sample size, Q may be used to test the null hypothesis in

(5.12). Ideally, f 2si and t 2 S 2  both dominate TyC in the entire param eter space.

5.3.1 R isk  S im ulation

Simulation study was conducted to compare the risks of these two James-Stein 

estimators with other estimators. The efficiencies of these estimators relative to the
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Table 5.1: Simulated RE of f \ jM . f j w. and fj^L relative to f y C under quadratic loss 
for k  =  10

T 2 T 2t m m f 2' S H f 2
t m l

T 2Ts m f 2t SR2

0.0 34.08 1.94 69.89 3.69 4.22
0.1 6.38 1.85 4.85 1.39 1.35
0.5 2.11 1.27 1.76 1.07 1.04
1.0 0.97 1.14 1.26 1.04 1.02
2.0 0.24 1.06 0.94 1.04 1.01
3.0 0.13 1.06 0.91 1.04 1.01

VC estim ator were computed and listed in the last two columns of Tables 5.1 to 5.8. 

The comparison can also be visualized by Figures 5.1 and 5.2.

The simulation results show th a t and perform similarly in terms of 

risk. Under the quadratic loss function, when the null hypothesis is true, both f j wi 

and fg R 2  are highly efficient compared to f  2-c . For instance, when k = 20, R E sm  = 

3.37, R E s r 2 — 4.43. fg R 2  is more efficient than  f j fil since the efficiency of r 2̂  is much 

higher than tha t of t \am at r 2 =  0. As r 2 increases, the efficiencies of the James-Stein 

type estimators decrease and approach 1 as expected. The relative performance of 

the estimators is similar when the entropy loss function is employed except th a t the 

risk is not defined when r 2 =  0 and thus not observed.

5.4 Conclusion and Discussion

The risks of MM, VC, SH, and ML estimators for the random effect variance com

ponent t 2 in meta-analysis were studied. Simulation showed th a t the efficiencies of 

these estimators change differently when the true value of r 2 changes. In general, the 

SH estim ator is slightly more efficient than the VC estim ator when Ho is not true.
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Table 5.2: Simulated RE of t 2m m , fgH. and f \ iL relative to f y C under quadratic loss 
for k = 20

r 2 T 2 T 2r SH f 2t m l f 2t s r \ r 2
t SR2

0.0 14.52 0.64 30.77 3.37 4.43
0.1 3.79 1.33 2.63 1.41 1.29
0.5 1.07 1.18 1.61 1.11 1.04
1.0 0.44 1.14 1.48 1.08 1.02
2.0 0.19 1.11 1.42 1.07 1.01
3.0 0.10 1.09 1.36 1.07 1.01

Table 5.3: Simulated RE of f f 1M. fgH, and f f iL relative to f y C under quadratic loss 
for k = 30

T 2 f 2t m m T 2r SH f 2t m l T 2Ts m T2SR2

0.0 9.09 0.42 17.45 3.73 5.42
0.1 3.64 1.34 3.03 1.33 1.26
0.5 2.09 1.26 1.73 1.10 1.04
1.0 0.53 1.20 1.53 1.08 1.02
2.0 0.09 1.12 1.29 1.08 1.01
3.0 0.04 1.06 0.96 1.05 1.01

Table 5.4: Simulated RE of Tm M, t$h , and t^ l relative to f y C under quadratic loss 
for k — 50

T 2 T 2t m m T 2t s h r 2t M L T 2SRI T 2
t SR2

0.0 29.57 0.54 61.64 8.36 11.83
0.1 4.94 1.25 4.08 1.42 1.36
0.5 3.08 1.19 1.70 1.08 1.03
1.0 0.79 1.17 1.40 1.05 1.02
2.0 0.10 1.08 1.04 1.02 1.01
3.0 0.04 1.03 0.77 1.00 1.00
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Table 5.5: Simulated RE of f ^ M. f j w. and relative to f y C under entropy loss for 
k  =  10

T 2 T2 T2t s h T2
t m l

T2~ SR  1 T2t SR2

0.1 3.11 2.61 2.57 1.32 1.26
0.5 1.61 1.29 1.41 1.05 1.03
1.0 0.73 1.13 1.03 1.02 1.01
2.0 0.17 1.05 0.81 1.02 1.01
3.0 0.08 1.04 0.76 1.02 1.01

Table 5.6: Simulated RE of TgH. and t^ l relative to f y C under entropy loss for 
k =  20

T 2 f 2t m m T2~SH T2r M L f 2t SR1 T2~SR2

0.1 2.76 2.04 2.11 1.42 1.31
0.5 0.77 1.20 1.40 1.08 1.03
1.0 0.32 1.13 1.30 1.06 1.02
2.0 0.13 1.10 1.25 1.05 1.01
3.0 0.07 1.09 1.22 1.06 1.01

Table 5.7: Simulated RE of fg H, and f l iL relative to  f y C under entropy loss for 
k = 30

r 2 T2 Ts h
T2
t m l f 2"t s r \ t ‘sR2

0.1 3.39 1.72 2.63 1.38 1.27
0.5 1.66 1.25 1.50 1.08 1.03
1.0 0.41 1.18 1.31 1.06 1.02
2.0 0.08 1.12 1.20 1.06 1.01
3.0 0.03 1.07 0.97 1.05 1.01
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Table 5.8: Simulated RE of r | fjU, f | H, and t 2m, relative to  t 2c under entropy loss for 
A; =  50

T 2 T 2r MM f 2ts h f 2'ML f 2 " 'Ts m T 2SR2
0.1 5.31 1.75 4.20 1.52 1.43
0.5 2.80 1.24 1.62 1.08 1.03
1.0 0.69 1.18 1.32 1.04 1.01
2.0 0.09 1.08 0.99 1.01 1.00
3.0 0.03 1.03 0.75 1.00 1.00

k=10

MM

o

o

1.5 2.5 3.00.0 0.5 1.0 2.0

t2

k=20

SH

o

o

3.01.0 2.0 2.50.0 0.5 1.5

T2

k=50

o

o

1.0 2.0 2.5 3.00.0 0.5 1.5

o

o

0.5 1.0 1.5 2.5 3.00.0 2.0

Figure 5.1: RE comparison under quadratic loss
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k=10

<0

in

CM

O

0.0 0.5 1.0 1.5 2.52.0 3.0

k=30

CO

CO

o

0.0 0.5 1.0 1.5 2.0 2.5 3.0

k=20

CO

CM

o

0.0 0.5 1.0 2.0 3.01 2.5

k=50

CD

CO

o

0.0 0.5 1.0 2.0 3.01.5 2.5

Figure 5.2: RE comparison under entropy loss
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On the contrary, the MM and ML estimators have substantially higher efficiencies 

when H{) is true or nearly true. As r 2 increases, the efficiencies of t 2̂ w and 

decrease and eventually become lower than that of f 2/ c . Based on this observation, 

we constructed two James-Stein type estimators f j S] and f j S2 which dominate t y C 

in the range of our simulation study. The simulation showed that our estimators out

perform f y C. Further, they behave more robustly with respect to other estimators 

under study in the sense tha t they dominate other estimators in most of the param 

eter space. Therefore we highly recommend to apply our proposed James-Stein type 

estimators in statistical inferences.
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Chapter 6 

Conclusions and Future Research

This thesis concentrates on problems related to variance estimation in various con

texts. First of all. asymptotic tests and asymptotic interval estimation procedures 

about variance are developed for arbitrary populations. The kurtosis estimation prob

lem embedded in the variance estimation procedures is studied extensively and two 

novel estimators of kurtosis are proposed. These estimators are improved upon the 

existing estimators in term s of risk. In the case of simultaneous estimation of k 

population variances, several estimation strategies based on pretest and James-Stein 

principles are developed and their risks are studied. In the finite-sample context, 

two optimal weight combination estimators (OWCE) are derived based on original 

data and log transformed data, respectively. The OWCEs resemble the James-Stein 

type estim ator and dominate the unrestricted estimator. Further, two shrinkage type 

estimators of the variance components in meta-analysis with random effects are also 

suggested. Simulation shows th a t our shrinkage estimators perform better than  the 

base estimators.

In chapter two, we developed asymptotic tests and asymptotic interval estimation 

procedures for population variances and hence provided a wide inferential package.

147
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The statistical properties of the proposed inference procedures were investigated ana

lytically and numerically. The simulation study corroborates our theoretical findings. 

It is reinforced that a much larger sample should be taken if the parent population 

is skewed. In many situations, the minimum values of n. in order to use the asymp

totic results, far exceeded the folklore values of 25 or 30. In this case, employing 

a bootstrap or perm utation test may be a better idea. Research on the statistical 

implications of these and other estimators is ongoing.

The kurtosis param eter estimation is embedded in many statistical estimation 

problems and applications. The estimation of kurtosis param eter is studied exten

sively in this chapter. We have compared the performance of several kurtosis mea

sures adapted by SAS. SPSS. S-Plus. M initab. and other statistical packages. We 

have proposed several new measures of kurtosis. It has been both analytically and 

numerically demonstrated tha t our proposed estimators outperform the existing es

tim ators for normal population based on the M S E  criterion. Moreover, an extensive 

simulation study has been conducted for non-normal populations. The result indi

cates th a t the proposed estimators are superior to the existing ones in many practical 

situations. Bearing this in mind, all the estimators substantially underestim ate kur

tosis param eter when underlying population distribution is highly skewed or heavy 

tailed. In order to correct the bias, empirical formulas are provided for student-t and 

chi-squared distributions. However, empirical estimates are subject to extra variation 

introduced and result in inflated M S E .  Perhaps, some re-sampling methods such as 

bootstrap and .Jackknife may be considered to reduce the bias as well as keeping a 

relatively lower variance. Non-parainetric techniques can also be considered in order
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to develop more robust estimators.

In chapter three, several estimation strategies for pooling data are presented for 

estimating the population variances and their risks are studied under different loss 

functions. It is concluded tha t positive rule Stein-type estimator dominates the usual 

shrinkage type estim ator and they both dominate the unrestricted estim ator dr2 in 

terms of the asymptotic distributional quadratic risk we defined. On the other hand, 

the performance of the restricted estim ator heavily depends on the quality of 11011- 

data information. The James-Stein type estimator ^ f js )  has a disquieting feature 

that it may shrink beyond the hypothesis vector. We have improved r f j s )  by the 

positive-rule estim ator dr2PPy  The positive-rule estim ator is particularly important 

to control the over-shrinking inherent in the shrinkage estimator. The performance 

of d 2Ry. g 2(sr) o’fpT) and ^Isp)  depends upon the correctness of the null hypothesis. 

It is shown th a t the range in which d 2SP  ̂ dominates <r2 is wider than the range in 

which P T E  dominates UE.

A risk simulation is conducted for finite samples under the usual quadratic loss 

and the entropy loss functions. The simulation result indicates th a t m oderate sample 

sizes are sufficient for the estimators to follow the same dominance pattern  (based on 

asymptotic risk) in practical situations. Though the estimators are proposed based 

on the quadratic risk, they perform similarly under the entropy loss function in terms 

of the relative efficiency.

In chapter four, two novel optimal weight combination estim ators are derived 

based on assumptions of normality and independence under quadratic loss function 

in the finite-sample context. The risks of these estimators are studied and compared
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to shrinkage estimator proposed by Cui et al. (2005). All three estimators resemble 

the Stein-type estim ator and keep the nice properties under quadratic loss functions. 

When the entropy loss function is used, these estimators have lower risks compared 

to the unrestricted estimator in a wide range of the param eter space, but do not 

dominate in the entire param eter space. The performance of the OWC estimators 

and Cui's estimator are similar when the number of samples k is large. However, 

when k  is small, the OWCEs have smaller risks compared to Cui's estim ator near the 

null hypothesis; Cui's estimator becomes better when the param eter vector moves 

away from the null hypothesis. Keeping in mind th a t normality and independence 

may not hold in microarray data, we simulated the risks and relative efficiencies when 

data were sampled from a non-normal population. Simulation shows tha t the relative 

efficiency is robust to the violation of normality assumption. The risk performance 

of the estimators in the dependent case was not studied. However, our approach is 

extendable to correlated data, and we relegate this pursue for future work.

In chapter five, the risks of some existing estimators for the variance component 

r 2 in meta-analysis with random effects were studied. Simulation showed th a t the 

efficiencies of these estimators change differently when the true value of the random 

effect changes. Two James-Stein type estimators are proposed and their risk is sim

ulated and compared to some existing estimators. The simulation study shows tha t 

our shrinkage estimators outperform the base estimators. Further, they behave more 

robustly with respect to other estimators under study in the sense th a t they dominate 

other estimators in most of the param eter space. However, the base estimators, and 

hence the shrinkage type estimators tha t we discuss here require relatively large sam-
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pie sizes, whereas mam' microarray experiments are conducted using small sample 

size. Therefore methods that perform better in small sample cases, such as empirical 

Bayes estimation, may be considered in future studies.

Throughout this dissertation, we combine information across the samples only via 

variances. However, more strength can be borrowed by pooling the means as well. 

This may provide a further improved estimation strategy. Our pooled estim ator is 

the simple arithm etic mean of the k individual estimators. Alternatively, we may 

consider using geometric mean or weighted mean. In the simultaneous estimation of 

k independent variances, our shrinkage type estimators shrink the classical estimators 

toward a unique common variance estimator. In the application to microarray data 

where thousands of param eters are to be estimated simultaneously, we may consider 

shrinking the gene specific variance estim ator toward a locally pooled estim ator within 

a neighborhood of genes.

The least absolute shrinkage and selection operator (LASSO) (Tibshirani (1996)) 

estimation procedure, originally proposed for param eter selection in linear regression 

models, has become popular model selection procedures and found its application 

in the microarray data  analysis recently (Gui and Li (2005), Segal et al. (2003)). 

It is considered to be an efficient way to solve the difficulty associated with the 

estimation in high dimension and low sample size setting. It has been used in the genes 

selection procedure. Ahmed et al. (2007) proposed an absolute penalty estimation 

(APE) m ethod by extending the LASSO for partially linear models. They compared 

the APE estim ator with the shrinkage and pretest estimators and found each had 

better performance on different part of the param eter space. Applying LASSO in the
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mieroarray analysis will be a continuation of our research.
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