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Abstract
The goal of distributed query optimization is to find the optimal strategy for the 

execution of a given query. The approaches in distributed query processing have mainly 

focused on the use of joins, semijoins, and filters. Semijoins have the advantage over joins 

in that there are no increases in data sizes. However, a semijoin needs more local 

processing such as projection and higher data transmission. To improve the distributed 

query processing, the filter-based approach is utilized. One of the limitations of this 

approach is collisions.

We investigate how collisions affect the performance of the algorithm and how 

performance can be improved given those collisions. Our proposed algorithm utilizes two 

sets of filters to reduce the collisions, so the performance has been improved when 

collisions exist.

Our proposed algorithm is evaluated objectively by comparison to a full reducer 

which is the algorithm that fully reduces all relations involved in a query by eliminating all 

non-participating tuples from the relations.

The results of the evaluation show that:

1. With a perfect hash function, on average, our algorithm eliminates 97.41% of 

the unneeded data and fully reduces the relations of over 70% of the queries.

2. Using a single set of filters with specific percentages o f collisions, on average, 

less than half of all queries are fully reduced by the algorithm. Therefore, the 

collisions substantially affects the performance..

3. Using two sets of filters, On average, our algorithm eliminates 95% of non- 

contributive tuples and achieves over 60% full reduction.

In conclusion, our improved algorithm utilizes the two sets of filters to reduce the 

effects of collisions substantially. Therefore, we improve the performance of our algorithm 

under the assumption of collisions which is the major problem in using Bloom filters 

during distributed query optimization.

iv
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Chapter 1 Introduction

A Distributed Database Management System (DDBMS) is a collection of 

computers, each at a different site, connected by some communication networks [I].

The database is distributed amongst all the sites which vary in size, function and 

complexity. Each site maintains a local database but can also participate in a global 

query. The advantages of a DDBMS is that data can easily be shared between sites, 

there is local control over local data and data replication ensures increased availability.

The major disadvantage is that queries requiring data from more than one site entail higher 

overheads due to an increase in message passing and data transfers.

The optimization of general queries in a DDBMS is an important area of research. 

The problem, which must be solved, is to select the best sequence of database operations 

which will process the query and keep costs to a minimum. Finding the optimal solution is 

NP-hard [2] and so the approach taken in the literature is to find heuristic algorithms 

which give efficient but perhaps sub-optimal solutions.

The main approaches include algorithms based on joins, semijoins and Bloom- 

filters. The approach joins have been discussed in references [5], [31], [32], and [33], The 

approach semijoins have been addressed in papers [7], [8], [9], [10], [I I], and [35]. The 

approach based on bloom filters have been discussed in paper: [16], [17], [18], [19], [20], 

[21], [24], and [26], Early work in the area concentrated on the use of joins. However, 

joins often require large amounts of data to be shipped between sites; as an operation, it 

has high complexity and frequently the use of a join can lead to higher data transmission 

costs. To solve these problems the semijoin was proposed and in most cases semijoin- 

based algorithms are very efficient. However, semijoins may entail more local processing 

and data transmission costs are still very high. Bloom-filters have been proposed as a 

method of executing semijoins at a much lower cost. In general, the use of Bloom filters 

greatly improves performance.

1
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However, there is still the problem that, due to collisions in the filters which are built using 

a hash function, some relations in the query may not be reduced to the full extent possible. 

This means that data transmission costs are higher than they need be.

In this thesis we investigate the effect of collisions on the performance of a filter- 

based algorithm. We do so with 3 sets of experiments. First, we conduct some 

experiments with a simulated perfect hash function, where no collisions are possible, and 

we evaluate the performance of our algorithm. Tnen we conduct experiments where we 

simulate varying collision percentages, from 1% to 60%. The results show the effect of 

collisions on the performance o f the algorithm. We found that for certain types o f queries 

the effect of the collisions was significant. To improve performance for these queries we 

propose the use of two sets of filters, where each set simulates a different hash function 

yielding different collisions. In our last set of experiments we investigate the use o f the 

two sets of filters and their effect of the performance of our algorithm.

The objective of our thesis is to investigate the hypothesis that the use of two sets 

o f filters, in a filter-based algorithm, can significant reduce the impact of collisions and 

improve the performance of the algorithm.

The thesis is structured as follows: Chapter 2 introduces some basic concepts and 

summarizes important research in this area. In Chapter 3 the algorithm is described and 

illustrated with a running example. Chapter 4 describes all of our experiments. The results 

are presented and discussed in Chapter 5. The thesis concludes with Chapter 6.

2
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Chapter 2 Background

Distributed query optimization involves operations on distributed databases. The 

goal o f distributed query processing is to minimize the cost of a distributed query. In this 

chapter, some definitions will be given and some representative approaches in the area of 

distributed query optimization will be presented. The approaches use joins, semijoins, and 

filters.

2.1 Definitions

Join is the operation which joins two tables together on the basis of common 

values in a common column. For example, given two relations, Rl and R2, with attribute 

A which exists in both relations, the join of R1 and R2 over A is performed by 

concatenating tuples of R1 with those of R2 where the attribute value for A is equal.

The semijoin is defined as follows: Given two relations, R1 and R2, with attribute 

A which exists in both relations, the semijoin of R2 by Rl over A is performed by 

projecting Rl over A to get R1[A], shipping R1[A] to the site of R2, and joining R1[A] 

with R2.

In the query processing in relational databases, a filter is a bit array which is 

encoded with the information contained in a joining attribute. This encoding is usually 

done by hashing.

Hashing is a technique for providing fast direct access to a specific stored record 

on the basis of a given value for some field. A collision occurs when two or more distinct 

records hash to the same address.

The cost model is used to predict the cost o f alternative execution plans for a 

query. There are two popular cost models: the total cost model and response time model 

[27]. The total cost model includes both the data transmission cost and the local 

processing cost. The response time cost model calculates the total execution time of the 

query from beginning to the calculation of the final result.
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2.2 Approach I: Joins

Join is one operation used in distributed query processing. It joins two tables 

together on the basis of common values in a common column.

The features of join:

- The join is an essential operation in a query which involves two or more 

relations.

- The join operation is easy to understand, so it is simple to write the query using 

joins.

- A join is a computationally expensive operation.

- A join may increase the size of relation. This means that the relation resulting 

from a join may be much larger than the relations before the join.

In figure 2-1, we show an example of a join. Given two relations Rl and R2, both 

containing joining attribute B, the join of Rl and R2 is performed by concatenating tuples 

of Rl and R2 where the value of attribute B is equal for both tuples. The join of Rl and 

R2 results in a larger relation in this case.

Efficient processing of joins is important in distributed database systems where 

network transmission costs determine the efficiency of a particular method. Inefficient 

processing of distributed queries not only increases task duration, but can also degrade 

performance of the entire system if network congestion develops. Distributed joins can be 

expensive operations due to expensive data transmission costs.

Distributed joins are particularly expensive because a joining relation located at a 

remote site may be transmitted to the join site. For joins in which only a small percentage 

of tuples at a remote site are needed, transmission of an entire relation is clearly a waste of 

network resources.

4
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Figure 2-1. The join of Rl and R2 over attribute B 

The representative algorithms which use joins are R* optimizer and the two-way

join.

R* optimizer:

The R* optimizer [32] is an iterative algorithm which uses a dynamic programming 

approach. The goal of the R* optimizer is to reduce the total cost of a query. Joining 

strategies of two relations are generated, followed by strategies of three relations, 

strategies of four relations, and so on. A decision is made by the optimizer on the join 

order o f the relations during its execution. The decision depends on the following factors 

[32]:

5
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- Access method. A decision is made on whether to perform an index scan or a 

sequential scan of the relation. The least costly cost of the two alternatives is 

taken.

- Join method. The optimizer decides whether it is more beneficial to perform a 

merge join or a nested loop join, and chooses the cheaper of the two join 

methods.

- Join site. A decision is made by the optimizer as to which relations to ship to 

perform a join of two relations located at different sites.

- Inner table transfer strategy. Given a join of an outer relation (the relation 

formed from previous joins) and an inner table (the next relation to be joined), if 

the inner relation has been chosen to be shipped to the site of the outer relation 

for joining, the cheapest method for transferring the inner relation must be 

chosen. The two candidate methods are to fetch individual tuples as necessary or 

to ship the entire relation to the site of the outer relation.

- Ordered result delivery to query site. Finally, the optimizer must choose between 

sorting the result or planning the query to produce a sorted result. Also, the 

optimizer must choose whether to plan a query which ends at the query site or to 

ship the final result to the query site.

The R* optimizer has exponential complexity, since it performs an enumeration of 

strategies. The limitations o f the performance evaluation are the restriction to two relation 

joins, the lack of evaluation using very large databases and no consideration of 

fragmentation.

Two-Way Joins:

The previous algorithm for processing distributed join queries did not consider 

fragmentation [33], The two-way join is used for joining two fragmented relations. The 

two general strategies in processing the two-way join Ri x  R2 are:

- Union the fragments of each relation, then join them.

- Join all fragments o f Ri with all fragments of R2 , then union the results.

6
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The qualification of fragment is a formulation of the properties common to all 

tuples in a fragment. By examining the qualifications of two fragments to be joined, some 

fragment joins can be eliminated from the execution strategy.

A four phase optimization framework for the two-way join is proposed by Chen 

and Li. The following summary is from [34]:

1. Join Graph Construction. A bipartite graph is used to represent the two-way 

join. The qualification of fragments is used to determine and remove empty fragment joins 

from the graph. The empty fragment joins are eliminated from the graph by removing the 

edge existing between them.

2. Join analysis Graph Construction. Using the join graph produced above, a join 

analysis graph is constructed. The weight corresponding to each vertex is a measure of the 

data transmission cost of the fragment or fragment join represented by the vertex. An 

algorithm is proposed which maps a join graph to a join analysis graph. When performing 

the mapping, the algorithm takes into consideration the data stored at the query site 

(which does not have to be transmitted) and other properties involved with performing 

fragment joins.

3. Determining a Minimum-Weight Vertex Cover. Given a join analysis graph, 

determining a minimum-weight vertex cover is analogous to determining a set of 

fragments and fragment joins such that the cost o f data transmission is minimal. The 

authors prove that the problem of determining a minimum-weight vertex cover is NP- 

Complete. Using certain properties of a join analysis graph, the authors show how the 

graph can be reduced in size before the application of an enumeration algorithm for 

determining the vertex cover. Also, the authors propose a heuristic algorithm for 

determining the minimum-weight vertex cover. This algorithm eliminates the need for 

performing enumeration.

4. Final Processing. After determining a minimum-weight vertex cover, an existing 

copy of each selected fragment is chosen from the network for transmission. The decision 

as to which copies to use depends on the load at each site. Also, the site o f each fragment

7
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join must be chosen. An algorithm is presented to handle this. After the choices of existing 

fragments and join locations are made, the fragment joints are transmitted to the query site 

and united to finish the join. It should be noted that an algorithm for performing a 

fragment-to-fragment semijoin is proposed and utilized to reduce fragments before they 

are transmitted. Refer to [34] for details.

The authors have proved that most algorithms in that paper have polynomial 

complexity.

The algorithms proposed by Ahn and Moon select a subset of fragments and 

fragments join results to ship that reduces the data communication cost. The two 

algorithms are summarized from [33]:

- Greedy Heuristic. Algorithm GH consists of three phases. In the first phase, the 

number of fragments to be considered is reduced by applying derived theorems. In the 

second phase, the fragments to be transmitted are chosen. It is an iterative phase which 

determines the fragment with the highest net benefit at each iteration. This phase 

terminates when the net benefit becomes zero. The third and final phase consists of adding 

to the transmission schedule the shipment of fragment joints which are not already located 

at the query site.

- Single Path heuristic. Algorithm SPH consists of three phases. In the first phase, 

the number of fragments to be considered is reduced by applying derived theorems. In the 

second phase, the fragments to be transmitted are chosen. In algorithm SPH, this is also an 

iterative process. The difference here is that all fragments are considered in the order 

given. Any fragments with a net benefit are scheduled for transmission. The third and final 

phase consists of adding to the transmission schedule the shipment of fragment joints 

which are not already located at the query site.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3 Approach II: Semijoins

Early research in distributed query processing used the join operator query 

optimization plan. However the join operator involves large relations to be shipped to 

other sites. To reduce the cost o f  transmission, the semijoin operation was introduced.

The semijoin can be explained by the following example. Given relations Rl and 

R2, and a join attributes B that exists in both relations, the semijoin of R2 by Rl over B is 

illustrated by Figure 2-2 and executed as follows:

1. Project Rl over B to get Rl[B]

2. Send Rl[B] over to the site of R2

3. Perform R1[B] x  R2

A B B C

1 j R2 J 2

2 j J 4

j 5 5 5

4 5 6 6

5 5 6 8

R1[B] j

5

B

R1[B] x  R2 3 2

3 4

5 5

Figure 2-2. The Semijoin of R2 by Rl over attribute B

The advantage of the semijoin is that it will either leave the relation as the same 

size or it will reduce its size. A join may result in relations which are larger than the 

original relations.

9
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The disadvantage of the semijoin is that it incurs more local processing costs since 

a projection must be performed each time a semijoin is executed.

Most work in distributed query processing using semijoins assumes the following 

three phases[27]:

1. Local processing. All relations involved in the query undergo selections and 

projections at the site where each resides.

2. Processing with semijoins. Following local processing, the relations undergo 

size reduction using semijoins.

3. Final processing. Following semijoin processing, the reduced relations are 

shipped to the query site to produce the final result.

The representative algorithms which use semijoins are the SDD-1 optimizer, the 

AHY algorithms, algorithm W, the two-way semijoin, and the one-shot algorithm.

SDD-1 Optimizer:

One of the first query optimization algorithms was for the SDD-1 (System for 

Distributed Database) [36], The goal of the SDD-1 strategy is to reduce the data 

transmission cost, which is the dominant cost factor for executing a distributed query.

SDD-1 Algorithm is based on a three phase mechanism to process a distributed

query.

1. In the initial processing phase, the appropriate selections and projections at the 

local sites are performed.

2. During the reduction phase, semijoins are used to reduce the size of the relations 

that do not satisfy the qualification of the query. The authors use a greedy algorithm which 

is iterative in nature. In each iteration, the most cost effective semijoin is chosen for 

execution until all semijoins have been considered. The query site is chosen in such a way 

that data transmissions are minimized.

3. In the final assembly phase, relations in the qualification component of the query 

are sent to a query site to produce the final join result.

10
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The main drawback [41] of the SDD-1 algorithm is that it has not recognized the 

fact that certain relations involved in previous executed semijoins are not needed for 

further processing and can therefore be discarded.

TheAHY Algorithms:

Apers, Hevner and Yao developed a collection of algorithms for minimizing the 

cost of distributed query processing. These algorithms are based on the semijoin and are 

referred to as Algorithm AHY [35], [34].

The algorithm AHY GENERAL promises the capability of optimizing general 

queries which contain more than one join attribute. Basically, Algorithm GENERAL first 

decomposes a general query into a collection of simple queries which are then processed 

by either Algorithm SERIAL (total cost version) or Algorithm PARALLEL (response 

time version). In each algorithm, semijoins are employed to reduce the size o f relations by 

deleting those tuples which will not contribute to the final join result.

The Algorithm PARALLEL begins with the initial feasible solution, which is the 

parallel transmission of all required relations to the query site without taking reduction 

into account. The Algorithm PARALLEL searches for cost beneficial transmissions by 

shipping small relations to larger relations in order to join them.

The Algorithm SERIAL is a strategy which consists of an ordered transmission of 

each relation to the site of the next relation, where the join or semijoin is performed before 

the relation is shipped to the next site. The relations are shipped in increasing order of size. 

This algorithm attempts to minimize data transfers by constructing a schedule of semijoins 

for each relation such that the cost of reducing and shipping the relation is as low as 

possible.

There are many assumptions in the algorithm. It does not consider network factors 

such as line congestion, communication delays, etc. These assumptions are not valid for a 

real distributed database system.

11
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Algorithm W:

The algorithm W proposed by Morrissey et al [42], [44], [43], [45] attempts to 

minimize the total amount of data transferred over the network during query processing. 

For each joining domain participating in the query, a reducer is created and used to reduce 

all relations. A reducer is a joining attribute constructed from the joining attributes which 

come from the same joining domain.

There are three steps in Algorithm W [42, 43, 44, 45]:

Step I : Establish schedules for the construction of reducers.

Step 2: Examine the effects o f  reducers and review the schedule of those not used.

Step 3: Execute the schedule.

Algorithm W produces semijoin strategies with polynomial complexity of O(mn), 

where m is the number of relations and n is the number of joining domains.

Two-Way Semijoin:

The two-way semijoin [46], [8] performs not only forward reductions as the 

semijoin, but also backward reduction which results in the reduction of both relations 

involved.

In [8], the authors propose a three phase processing of query using two-way 

semijoin program:

1. Forward Reduction and Local Processing. All forward semijoins are performed 

in conjunction with the initial local processing. All tuple connectors are generated during 

this process. A tuple connector is a representation of a relation, which consists of all 

joining attributes and some tuple identifier. Since tuple connectors only contain the 

information required for processing a query, they generally are smaller than their 

corresponding relation.

2. Backward reduction and collecting. The tuple connectors are joined to form the 

pipeline cache planner which is the relation consisting of tuple identifiers of all tuples 

required for the query. All joining attributes are projected out during this process.

12
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3. Pipeline Execution. The pipeline cache planner is used for retrieving the 

necessary tuples and generating the final result.

The two-way semijoin can be more effective than the semijoin in reducing relation 

sizes in distributed query processing.

One-Shot Algorithm:

In [47, 48], it is argued that traditional sequential semijoins have several 

drawbacks including the loss o f parallelism, processing overhead, loss of global semijoin 

optimization, and inaccurate semijoin reduction estimation. The authors propose a new 

algorithm called the one-shot semijoin.

The one-shot semijoin consists of three phases:

1. Projection phase. During this first phase, all joining attributes required for 

semijoins are obtained from the relations in parallel.

2. Transmission phase. In the second phase, the parallel transmission of all joining 

attributes occurs.

3. Reduction phase. Finally, all joining attributes are applied to their respective 

relations in parallel.

The advantages of this strategy include increased parallelism, no propagation of 

errors, reduced processing overhead, and the opportunity to apply global optimization to 

semijoins.

The algorithm presented uses hash tables for storing joining attributes, which 

allows for faster processing o f semijoins during the reduction phase. The strategy has the 

trade-off between hash table size and reduction effectiveness.
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2.4 Approach ED: Filters

Semijoins are good at reducing relation sizes, but there are some limitations such 

as extra local processing costs and higher data transmission costs. To resolve these 

problems, the filter-based approach has been employed. In the distributed query 

processing, a filter is a bit array which is encoded with the information about the values 

contained in an attribute. The filters are used to identify tuples which cannot belong to the 

result relation so that the amount of data transmission is reduced.

Due to the size of the filter, it is cheaper to ship a filter over network lines than to 

transmit a relation or a semijoin projection.

The disadvantage [27] of using filters is that collisions occur as a result of two or 

more attribute values hashing to the same address in the array. This results in tuples which 

are not required for the query being shipped to the final site because the attribute value 

accidentally passed the filter test.

The term “Bloom filter” comes from Bloom [51], A Bloom filter [3] is simply an 

array of bits which functions as a very compact representation of the values of a join 

attribute. The use of a Bloom filter can achieve the same result as a semijoin but at a much 

lower cost. The filter is constructed as follows:

1. First, construct an array and set all bits to zero.

2. Then, for each value of the join-attribute use a hash function. Hashing is the 

procedure of applying the hash function to a key or attribute value to produce 

an address in a data structure.

3. Finally, for each address produced, set the corresponding bit in the array to one.

The Bloom filter algorithm has lower local processing and data transmission costs. 

However, the problem is that collisions occur. A collision means that two different 

attribute values may be hashed into the same bit address. A consequence is that tuples that

14
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should be eliminated from the relation are not and hence we get larger relations and higher 

transmission costs.

The Bloom filter based algorithms are described as follows.

In [25], Tseng and Chen propose an algorithm based on hash semijoins. The 

purpose of this work is to minimize the cost of performing a semijoin. The 

implementation of this hash semijoin is summarized from [25] as foilows:

Given two relations Ri and Rj, with common joining attribute A:

1. Calculate the bit array size and initialize to zero.

2. For each join attribute value in Ri[A], use d hash functions to produce d 

addresses in the bit array and set the corresponding bits to I .

3. Ship the bit array to the site of Rj.

4. For each join attribute value in Rj[A], produce d addresses in the bit array using 

the same d hash functions. If all d addresses in the array are set to 1, the tuple is 

kept; otherwise, reject the tuple.

Morrissey and Ma [18] present Algorithm X which uses Bloom filters to reduce 

query response time. Algorithm X has been designed to process general queries of 

arbitrary size, and relies on no other relational operators in the process.

The basic idea of Algorithm X is to apply all filters to all relations, concurrently. 

The filter sizes are relatively small and therefore the cost is relatively low. Each relation is 

processed at most two times, once to construct the filters and once when the reducing 

filters are applied.

The description of Algorithm X from [18] is as follows.

Begin

Send all relevant filters to the relation R which is to be reduced.

Repeat

read a tuple T;

hash on all join-attribute values in R.

15
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if there is a hit in every filter,

then keep tuple as part of the reduced relation R,

else discard tuple;

read next tuple T;

Until all tuples have been processed.

End

Algorithm X clearly has a superior performance due to the fact that the semijoins 

are replaced with the use of filters which are cheaper to use. The application of all filters 

concurrently will not increase the response time and it will certainly decrease the local 

processing cost.

The disadvantage of Algorithm X is the assumption of a perfect hash function.

This is an unrealistic assumption.

Morrissey and Osborn [19] propose an algorithm for processing general queries 

which minimizes the cost of data transmissions. This algorithm uses reduction filters to 

achieve the same reduction benefits as a semijoin strategy but at a lower cost.

A reduction filter is a bit array which serves to concisely represent a common 

joining attribute. The reduction filter serves the same purpose as the semijoin, which is to 

filter out tuples which will not be part of the final result.

The figure 2-3 illustrates a reduction filter. Given two relations, RI and R2, both 

containing joining attribute b, the filtering takes place as follows. First, a filter is created 

for attribute b of Rl and is transmitted to the site of R2. The filter is a bit array. The bits 

are set to 1 if the attribute values are hashed to the corresponding addresses. In this 

example, the attribute b has values 3 and 5, so we set the third and fifth positions in filter b 

to 1. Second, the reduction filter is applied to R2 in the following manner. For each tuple 

in R2;

1. Hash on the value of attribute b.

2. Test for the presence of a 1 at the address produced.

3. If a 1 bit is found, keep the tuple for the final result.

16
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4. Otherwise, discard the tuple.

R1 1 3

2 3

j 5

4 5

5 5

R2 j 2

3 4

5 5

6 6

6 8

address

1

2

4

5

h(b) I  

filter b

reduced R2 j 2

3 4

5 5

Figure 2-3. The reduction of R2 by the reduction filter for attribute b

Due to their size, reduction filters are very inexpensive to transmit between sites 

compared to the attribute projections required for semijoins.

The limitation of this algorithm is the collisions which occur in the reduction filters. 

The results [27] of the experiments show that as the number of collisions increases the 

percentage of queries that achieve full reduction decreases. Full reduction means that all 

non-participating tuples of all relations involved in a query are eliminated by the algorithm.

17
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2.5 Conclusions

In this chapter, we discuss the different approaches for distributed query 

processing. The goal of the algorithms in this area is to minimize the cost of query 

processing in distributed databases. The previous research focuses on the three categories: 

joins, semijoins, and filters.

The join operator was utilized in the early work of this area. The join needs to ship 

large relations to other sites and has high computational complexity. To solve these 

problems, the semijoin is employed. Semijoins have the advantage over the joins that no 

increase in data sizes occurs from their use. However, a semijoin needs more local 

processing such as projection and higher data transmission costs than necessary. To 

improve the distributed query processing, the filter-based approach is utilized.

The filters have better performance such as relation size reduction and response 

time than others. Although the filter-based algorithm has lower local processing costs and 

less data transmission than semijoins, it suffers from collisions. This is one of the reasons 

why the use o f filters for processing distributed queries has not been widely accepted. In 

our research, we investigate how collisions affect the performance of the algorithm and 

how performance can be improved given that collisions occur.

18
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Chapter 3 The Algorithm

In this chapter, we present our algorithm. This algorithm uses Bloom filters to 

achieve the same reduction benefits as a semijoin strategy but at a lower cost.

3.1 Details of the Algorithm

The algorithm for processing each query consists of three phases:

1. The data structures are built according to the query. The data structures include 

an adjacency matrix, the adjacency list, the inverted list, a relation queue and a 

filter list.

2. We use the data structures built in phase 1 to construct filters and reduce the 

relations

3. The relation queue is used to decide which relations must be further processed.

The details of the three phases are given as follows.

Phase 1. The data structures are constructed:

1. We build the adjacency matrix using the name of relations and the 

names of joining attributes in the query.

2. The adjacency list is constructed from the adjacency matrix. The 

adjacency list contains the information such as the relation name, the 

indegree which is number of joining attributes for this relation, and the 

attribute name.

3. The inverted lists are built from the adjacency matrix. The inverted 

lists represent the attribute name and relevant relation names. The 

inverted lists are used to decide which relation should go back on the 

queue.

4. We build the relation queue which contains the relations which need 

to be further processed.
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5. We construct the filter list which is a simple list of filters already 

available.

Phase 2. We construct the reduction filters and reduce the relations with the filters 

using the data structures built in phase I . The iterative process of this 

phase is described below:

1. From the adjacency list, we select the relation with the lowest 

indegree. We will denote this relation as Ri.

2. We determine if reduction filters for any of the joining attributes exist, 

and apply them to Ri to reduce it further.

3. While processing Ri, construct new reduction filters for all joining 

attributes contained in Ri.

4. Determine which relations to place back on the queue. The 'filter rule’ 

states that a relation is placed on the queue if:

a. The reduction filters for any of its joining attributes have changed 

after being applied to Ri,

b. it is not Ri,

c. it is not already on the queue, and

d. it has been processed already.

5. We reduce the indegree of the relation in the adjacency list and mark 

this relation as processed.

6. Repeat steps 1 to 5 in this phase for all relations in the query.

Phase 3. The processing of the relation queue is described below:

1. We remove relation Ri from the front of the queue.

2. We apply all reduction filters for all joining attributes contained in Eli 

to reduce the relation further.

3. Determine which relations to place back on the queue. The same 

‘filter rule’ used for placing relations on the queue in Phase 2 is also 

used here.
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4. Repeat steps 1 to 3 in this phase until the relation queue is empty.

3.2 An Example of Using the Algorithm

We explain how the algorithm works in detail using the following example.

In this example, the query has five relations which must be joined. These five 

relations are shown in figure 3-1. The algorithm executes the query efficiently by using 

filters.

RI

R3

A B C R2 A D E F

1 2 4 1 2 4 j

2 2 5 2 2 5 5

.> j 6 J j 6 7

4 4 7 9

B D E R4 C G R5 F H

2 2 4 4 2 j 4

3 3 6 5 3 j 7

4 7 9 7 4 7 7

Figure 3-1. The five relations o f the example

Phase 1. We construct the data structures.

1. We build the adjacency matrix of figure 3-2 using the relation names 

and attribute names of these five relations. The columns are labeled by 

the attribute name. The rows are labeled by the relation names. Every 

cell o f the matrix is initialized to 0. The matrix cell is marked 1 if the 

relation has the joining attribute.
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A B C D E F G H

RI

R2

R3

R4

R5

1 1 1 0 0 0 0 0

1 0 0 1 I I 0 0

0 1 0 I I 0 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 I 0 I

Figure 3-2. The adjacency matrix

2. We construct the adjacency lists of figure 3-3 for each relation from 

adjacency matrix. The first node contains the relation name and the 

indegree of this relation. The rest of the nodes contain the relevant 

relation name and joining attribute name.

RI 3 — > R2 A — » R3 B — > R4 C

R2 4 — > RI A — > R3 D — > R3 E

R3 — > RI B R2 D — > R2 E

R4 I — > RI C

R5 1 - » R2 F

Figure 3-3. The adjacency lists

3. Build inverted lists of figure 3-4 from the adjacency matrix. The first 

node has the attribute name and the remaining nodes consist of the 

relation names which have this attribute. The attributes G and H are not 

joining attributes, so they are not in our inverted lists.

22
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A —» RI —» R2 

B —> RI —> R3 

C -> RI -> R4 

D —> R2 -> R3 

E —» R2 —» R3 

F -► R2 -> R5

Figure 3-4. The inverted lists

4. The relation queue consists of the relations which need further 

processed according to ‘filter rule’. This queue is built by adding a 

relation to it during query processing.

5. The filter list contains the filters which are already available.

Phase 2. We construct the reduction filters and reduce the relations with the filters 

using the data structures built in phase 1.

1. In the adjacency lists, R4 and R5 have the lowest indegree which is I. 

We select R4 and construct a filter for attribute C. We simulate a 

perfect hash function by setting bits 4, 5, and 7 in the filter, 

representing the corresponding attribute values 4, 5, and 7. This is 

illustrated by the figure 3-5.

After filter C is constructed, it is placed on the filter list. Nothing goes 

on the relation queue according to the ‘filter rule’.

The adjacency lists are updated. The indegrees of RI and R4 decrease 

by 1. The relation R4 is marked as processed.
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R4 C G h(value) —> address filter C

4 2 1 0

5 3 2 0

7 4 j 0

4 I

5 I

6 0

7 I

8 0

9 0

10 0

Figure 3-5. Step 1 of the example

2. We select R5 which has lowest indegree now. No filter for attribute F is 

available. We produce filter F by setting bits 3 and 7. Filter F is placed 

on the filter list.

Nothing goes on the relation queue according to the ‘filter rule’.

The adjacency lists are updated. The indegrees o f R5 and R2 decrease 

by 1. The R5 is marked as processed.

3. We select RI whose indegree is 2 now. The filter C is available. We 

reduce RI with filter C and produce filters for attribute A and B at 

the same time.

Reduced RI A B C

1 2 4

2 2 5
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We produce filter A by setting bits 1 and 2 as 1. We build filter B by 

setting bit 2. We insert filter A and B into filter list. The filter list 

contains filters C, F, A  and B.

The filter for C has changed. The inverted list and ‘filter rule’ are used 

to decide which relations go on the relation queue. R4 goes on the 

queue.

The adjacency lists are updated. The mdegrees of RI, R2 and R3 are 

decreased by 1. R4 has been processed, so its list is not changed.

RI is marked as processed.

4. We select R2 and check the filter list. The filter A and F are available, 

so R2 is reduced using filter A and F.

Reduced R2 A D E F

1 2  4 3

We build filter D by setting bit 2 and produce filter E by setting bit 4. 

The filters D and E are inserted to the filter list.

The filters E and F have changed, so RI and R5 go on the queue 

according to the inverted list and ‘filter rule’. The relation queue 

contains R4, RI, and R5.

The indegree of R3 decreases by 1.

R2 is marked as processed.

5. We select R3. All filters exist, so R3 is reduced with filters B, D, and E

Reduced R3 B D E

2 2 4

The filters have not changed, so no relation is added to the queue.
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R3 is marked as processed.

The five relations have been marked as processed now.

Phase 3. We process the relation queue which contains R4, RI, and R5.

1. We remove R4 from the queue and process it.

The filter C is available. We reduce R4 with filter C.

Filter C has not changed. Nothing goes on the queue.

2. We remove RI from the queue and process it.

All filters are available. We reduce RI with filters A, B, and C.

Reduced RI A B C

1 2 4

Filter C changes. R4 goes back on queue using the inverted list and 

the ‘filter rule’.

3. We remove R5 from the queue and process it.

The filter F exists. We reduce R5 with filter F.

Reduced R5 F H

3 4

3 7

The filter F does not change. Nothing goes on the queue.

4. The relation queue only has R4 now. 

we reduce R4 with filter C.
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Reduced R4 C G

4 2

The queue is empty now. The process stops.
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Chapter 4 Experiments

In this chapter, we present our experimental system and describe the experiments 

without collisions, experiments with collisions using a single set of filters and the 

experiments with collisions using two sets of filters for evaluating the algorithm.

4.1 Experimental System

The experimental system includes the query-relation generator, our Bloom filter 

algorithm, the full reducer, the analysis programs and the execution scripts.

The query-relation generator was programmed by the Database Research Group of 

the University of Windsor. Some details are given later in this chapter.

The Bloom filter algorithm has been described in chapter 3 and implemented in 

C++. We simulate a specific percentage of collisions for the values of joining attributes.

The full reducer is an algorithm that fully reduces all relations involved in a query 

by eliminating all non-participating tuples from the relations.

In our experiments we constructed 15,000 different queries and relations as input. 

The queries and relations vary in the number of relations, the number of joining attributes, 

the relation size, the domain size, the selectivity and the connectivity. In order to 

effectively evaluate our algorithm with such a large number of divers queries, we split the 

queries into runs, each run contains 100 queries.

The relations are reduced by our algorithm and the full reducer. We do the 

experiments under the assumption of a perfect hash function and a specific percentage of 

collisions. We analyze the results under different conditions using analysis programs.

The experiments are carried out using the execution scripts which contain a 

collection of commands in order to fulfill the tasks.
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4.1.1 Rationale of the Experiments

Most previously proposed algorithms have not been objectively evaluated. The 

performance of the heuristics have been evaluated by comparison with another heuristic.

In this way, it can not be determined how close an algorithm achieves full reduction for 

the relations. Some previously proposed algorithms have been evaluated theoretically by a 

time complexity analysis. However, a theoretical evaluation does not determine how the 

algorithm will perform with real queries.

To evaluate our algorithm objectively, we compare the performance of our 

algorithm with the performance of a full reducer. By this approach, our algorithm will be 

evaluated to determine how close it achieves full reduction under various conditions. This 

approach is objective, so it is better.

The major problem when using Bloom filters is collisions. In order to investigate 

how the collisions affect the performance of the algorithm, we first do some the 

experiments under the assumption of a perfect hash function. Then we repeat the 

experiments for the different percentages of collisions using a single set of filters and then 

using two sets filters. In this way, we can compare the results and make the conclusions.

4.1.2 Queries and Relations

The experimental system takes different queries and relations as input to evaluate 

our algorithm.

Each query consists of an arbitrary number of relations and an arbitrary number of 

joining attributes. We evaluate our algorithm by using different query types which are the 

combination of a relation count and an attribute count. For example, the query type 3-2 

represents a query with three relations and two joining attributes.

The relations vary in the size, the attribute domain size, the selectivity and the 

connectivity.

The relation size is the number of tuples in a relation.
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The attribute domain size is the total number of distinct attribute values available.

The selectivity is defined as the ratio o f distinct attribute values over the attribute 

domain size.

The connectivity is an approximate ratio of the number of joining attributes 

appearing in all relations of the query over the total number of possible join attributes that 

can appear in the query.

The queries and relations are generated by C programs which are described in [6J. 

The C programs are create_query.c and relbuilder.c. We discuss these two C programs 

which are needed by our experimental system below.

Program create_query.c: This program generates a query. The input includes the 

number of relations and the number of common join attributes. The output of this program 

consists of the file ‘dbstats’ which is the database statistics, file ‘Rel’ which is relation data 

and file ‘domains’ which is the domain size.

The file ‘dbstats’ contains the number of relations, the number of common joining 

attributes, the relation size, attribute size and the selectivity.

For each relation specified in the query, a ‘Rel’ file is produced and is used to 

generate relations. The figure 4-1 is an example of this file.

RelO

242 2 0 186 222 I 155 218

Figure 4-1. 1161' file for a relation

There are 8 numbers in this file. The first number ( 242 ) is the size of the relation. 

The second number ( 2 ) is the number of join attributes. The third number ( 0 ) represents 

attribute 0. The fourth number ( 186) is the size of attribute 0. The fifth number (222 ) is 

the domain size of attribute 0. Similarly, the attribute 1 has size 155 and domain size 218.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Program relbuilder.c: This program produces a relation based on the data 

generated in create_query.c. The input to relbuilder.c is a number of relations involved in 

the query. The output is a relation, which contains the required number of tuples, the 

number of joining attributes and the joining attribute labels.

4.1.3 Full Reducer

To evaluate the algorithm described in chapter 3 objectively, we need to compare 

the performance of our algorithm to a full reducer. For this reason, we have developed a 

full reducer program.

The full reducer program includes two steps.

Step 1. Join all relations required by the query to get the result. We use a nested 

loop join.

Step 2. Obtain the reduced relations by projecting the attributes of each relation 

from the joining result.

We explain how the full reducer works with following example. In this example we 

use the five relations given in figure 3-1.

First, we join the five relations.

RI x  R2: A B_____C D_____E_____E _

1 2 4 2

2 2 5 2

3 3 6
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RI x  R2 x  R3 A B C D E F

1 2 4 2 4 3

3 3 6 3 6 7

RI x  R2 x  R3 x  R4: B D

RI x  R2 x  R3 x  R4 x  R5 :

A B C D E F  G H  

1 2 4 2 4 3 2 4

1 2 4 2 4 3 2 7

Figure 4-2. Result of joining of five relations

Second we obtain the fully reduced relations by projecting the attributes of each 

relation from the result of joining the five relations which is in figure 4-2.

Fully reduced R I: A B C

1 2 4

Fully reduced R2: A D E F

1 2  4 3

Fully reduced R3: B D E

2 2 4
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Fully reduced R4: C_____G

4 2

Fully reduced R5: _F_____H_

3 4

3 7

Figure 4-3. Results of fully reduced relations

Notice that in each relation we only have contributive tuples, all non-contributive 

tuples have been eliminated. To evaluate our algorithm, we compare its reduced relations 

to the fully reduced relations for each query.

4.1.4 Analysis Programs

To evaluate the performance of our algorithm precisely, we have produced the 

analysis programs to collect results generated by our algorithm and the full reducer. The 

analysis programs calculate the average percentage of reduction achieved by our 

algorithm and the percentage of queries that achieve full reduction. The calculation of 

average reduction is based on the following formula.

average reduction (%) = [ ( total size - reduced size) / ( total size - full size ) ] * 100

In the formula above, the total size denotes the total size of all relations related to 

the query before reduction, the reduced size represents the size of the relations after 

reduction using the algorithm, the full size denotes the size of the relations after being fully 

reduced by the full reducer.

For example, given the following data:
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total size = 36 

reduced size = 18 

full size = 14

average reduction (%) = [ (36  - 18 ) / ( 36 - 14 ) ] * 100 = 81.8%

The full reduction (%) represents the number of queries which are fully reduced 

by the Bloom filter algorithm, this number of queries is out of 100 queries.

4.2 Experiments without Collisions

The experiments without collisions are carried out under the assumption of a 

perfect hash function. We simulate a perfect hash function by using the attribute values (all 

are integers) as the address. All attribute values hash to the addresses specified by the 

values with the perfect hash function. No collisions can occur with this method. For 

example, an attribute value of 8 will hash to address 8 in the Bloom filter.

The experiments without collisions will determine how well our algorithm 

performs under the assumption of a perfect hash function.

In the experiments, we split the queries into runs, each run containing 100 queries. 

Each relation in the query consists of 200 to 600 tuples. The attribute domain contains 

150 to 250 distinct values. The minimum selectivity is 0.5. The minimum connectivity is 

75%. (The selectivity and connectivity have been defined in section 4 .1.2 Queries and 

Relations).

4.3 Experiments with Collisions Using a Single Set of Filters

Because the Bloom filters are encoded using hash functions, collisions occur. A 

collision happens when two or more attribute values hash to the same address.

The purpose of the experiments with collisions is to determine how the collisions 

affect the performance of the algorithm.
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4.3.1 Simulating Collisions

In the experiments with collisions, the algorithm is evaluated at specific 

percentages of collisions: 1%, 5%, 10%, 20%, 30%, 40%, 50%, and 60%. The 

percentages of collisions are usually under 60% in the real world, so we simulate collision 

range from 1% to 60%.

To simulate the specific percentage of collisions, we use the following method. 

Given a relation which has a common joining attribute B, its active domain is determined. 

The active domain of common joining attribute B is the set of values taken from domain of 

B. We obtain the active domain of joining attribute B by projecting the relation over 

attribute B. If we simulate c% of collisions in active domain, we randomly select c% 

values in attribute B. These values will result in collisions in the filter. We call these values 

collision values. For each collision, its collision address is determined. The collision 

addresses are taken from set

{ active domain (B) - collisions }

To produce the c% collisions for all joining attributes related to the query, we apply this 

method to all joining attributes.

The following is an example of simulating the collisions. This example is illustrated 

in figure 4-4. Given a common joining attribute B, we have the active domain which has 

10 values { 5, 3, 4, 7, 2, 1, 6, 9, 10, 8 }. If we simulate 30% collisions, we randomly select 

three collisions out of the ten values in the active domain. Let us say the values 3, 1, and 

8 are chosen. The remaining values of active domain are { 5, 4, 7, 2, 6, 9, 10 }. Then, the 

collision addresses are selected from the remaining values o f the active domain. We set the 

bits corresponding to the remaining values to I in the Bloom filter. To guarantee the 

collisions occur, we hash the three collisions 3, 1, and 8 to the addresses of the remaining 

values. Then we get the collision addresses from the remaining values. Let us choose 4, 7,
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and 9 as collision addresses. Therefore, the collision 3 will hash to the collision address 4 

in the Bloom filter, the collision 1 will hash to the collision address 7, and the collision 8 

will hash to the collision address 9. The rest of the attribute values will hash to the 

addresses represented by the values.

active domain h(value) —» address Bloom filter collisions

5 1 0

© 2 1

4 .> 0

7 4 I <— ■*»

9 5 1

0 6 1

6 7 I <— 1

9 8 0

10 9 I <— 8

© 10 1

Figure 4-4. Simulating collisions

4.3.2 Problem Caused by Collisions

The major disadvantage of using Bloom filters is the collisions. The consequence 

of collisions is that tuples that should be eliminated from the relation are not and hence we 

get larger relations and higher costs.

The following example illustrates how the collisions affect the reduction of a 

relation using a Bloom filter. We have three relations RI, R2, and R3 in figure 4-5. They 

have the common joining attribute B. We will join these three relations by performing 

RI x  R2 tx R3.
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RI  A B R2 B C R 3 B D

1 2 1 2 1 3

2 4 j 4 2 5

j 5 4 5 5 8

o 8 6 / 6

8 9 8 9 7 4

Figure 4-5. Relations for illustration the effect o f collisions

To simulate 40% collisions, we randomly choose 40% values o f attribute B in R I. 

Let us say the values 2 and 8 are chosen as the collisions. The remaining values of the 

attribute B of RI are 4, 5 and 9, so the fourth, fifth, and ninth positions of filter B are set 

to 1. The filter B and the collisions are shown in figure 4-6.

RI A B h(value) -> address filter B collisions

2 

8

Figure 4-6. Collisions in Bloom filter B 
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We use filter B to reduce R2. We have value 4 in attribute B of R2 and the 

fourth position of the filter B is 1, we have value 8 in attribute B of R2 and 8 is one of the 

collisions, so we keep these two tuples in R2. We do not have values 5 and 9 in attribute 

B of R2, so we update fifth and ninth positions of filter B to 0. The reduced R2 and 

updated filter B are shown in figure 4-7.

Reduced R2 B C

4 5 

8 9

updated address 

-> I

2 

j

4

5

6

7

8

9

10

filter

0

0

0

I

0

0

0

0

0

0

B collisions 

2 

8

Figure 4-7. Reduced R2 and updated filter B

Next, we use filter B to reduce R3. In attribute B of R3, we have value 2. In 

figure 4-7, the value 2 is a collision value, so we keep this tuple. The tuple in R3 of figure 

4-8 should be eliminated if there is no collision since the attribute B of R2 does not have 

value 2. Therefore, we need ship the reduced R3 over the network to complete the query 

because of the collisions. This is the consequence of collisions which affect the 

performance o f the algorithm in reduction of relation. The attribute B in R3 does not have 

value 4, so we update the fourth position of filter B to 0. The reduced R3 and updated 

filter B are shown in figure 4-8.
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Reduced R3 B D updated address filter B collisions

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

Figure 4-8. Reduced R3 and updated filter B

4.4 Experiments with Collisions Using Two Sets of Filters

The experiments in this section are designed for evaluating the performance of our 

algorithm under a specific percentage collisions using two sets of filters. The experimental 

assumptions such as collision percentages, query types, and relation size are the same as in 

the previous sections. We introduce the use of two sets of filters in this section.

In our experiments, we notice that the performance of the Bloom filters on the 

queries with two joining attributes is worse than the others with more joining attributes. 

When a query contains few joining attributes, the filtering effect of the Bloom filters is 

hindered. This is illustrated by the following example.

In figure 4-9, given two relations R1 and R2, both contain joining attributes A and 

B. We will show the results produced by a full reducer and our algorithm.
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R1 A  B R2 A B

1 5 I 4

J 4 •> 5

5 2 5 6

6 6 6 2

2 1 2 1

Figure 4-9. Example relations 

By using full reducer, we first join these two relations and obtain the following

result:

_A____B_

2 I

The fully reduced R1 and R2 are:

R1 A B R2 A B

Figure 4-10. Fully reduced relations

Suppose the algorithm processes R1 first. The filters for attributes A and B in R1 

are created: A: 1, 2, 3, 5, 6 and B: 1,2, 4, 5, 6. When the filters for A and B are applied to 

R2, we have the following result:
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R2 A B

1 4

3 5

5 6

6 2

2 I

Figure 4-11. Non reduction of R2

No reduction has occurred in R2 as we see in figure 4-11. The reason why no 

reduction occurs in R2 is the following. For each tuple in R2, the attribute values for A 

and B are being hashed and set in each filter by two different tuples in Rl. For example, 

the first tuple in R2 has A equal to 1 and B equal to 4. Although no matching tuple exists 

in Rl, the first tuple in Rl contains A equal to 1 while the second tuple in Rl contains B 

equal to 4. Both of theses values will be hashed and set to 1 in their respective filters. 

When the first tuple of R2 is tested, it passes the filters because both of its attribute values 

hash to a 1 bit in their respective filters.

Although this hindrance in reduction affects queries with few joining attributes and 

relations, it does not appear to be a problem with the queries containing a higher number 

of joining attributes and relations. These results show a higher number of joining attributes 

decreases the chance of a tuple false passing ail necessary filters.

We will do some experiments on the query types 3-2, 4-2, 5-2, and 6-2.

4.4.1 Two Sets of Filters

From the previous section, we notice that collisions affect the performance of the 

algorithm. The collisions are the essential problem in using Bloom filters. Our goal is to 

reduce the collisions and have smaller relations to ship over the network to complete the 

given query. In this section we investigate how to reduce the collisions by using two sets 

of filters.
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We use two sets of filters, that is, two filters for each joining attribute. We need 

two hash functions for the two filters. Note that two hash functions would give two sets of 

collisions. We simulate the two sets o f  collisions based on specific percentage of 

collisions. In this way, we can analyze the results under specific percentage of collisions. 

We utilize the two sets of filters to filtrate the collisions. The two sets of collisions are 

randomly selected from active domain based on specific percentage of collisions. The two 

sets of collisions may have overlaps.

The two sets of filters filtrate the collisions. We have ‘rules for two sets of filters’ 

as follows:

The tuple should be kept if the value in this tuple is one of the following three

cases:

a. The value is in both sets of collisions.

b. The value is in one set of collisions and in one filter.

c. The value is not in any set of collisions, but in one filter.

In the following example, we explain how to build two sets of filters and how two 

sets of filters reduce the collisions. We use the same relations Rl, R2, and R3 in figure

4-5 of section 4.3.2 (Problem Caused by Collisions). These three relations have common 

joining attribute B.

To simulate 40% collisions for two sets of filters, we randomly choose 40% values 

of attribute B in Rl as our first set of collisions. Let us say the values 2 and 8 are chosen. 

The first filter is constructed by setting fourth, fifth, and ninth positions to 1. Similarly, we 

build the second set of collisions by selecting 40% values of attribute B in Rl. Let us say 

the values 4 and 9 are chosen. The second filter is constructed by setting second, fifth, and 

eighth positions to I. This is shown in figure 4-12.
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Rl

A B address first filter first collisions second filter second collisions

1 0 2 0 4

1 2 2 0 8 I 9

2 4 3 0 0

3 5 4 1 0

6 8 5 1 1

8 9 6 0 0

7 0 0

8 0 I

9 I 0

10 0 0

Figure 4-12 Two sets of filters

We reduce R2 using two sets of filters and the 'rules for two sets of filters’. We 

have value 4 in attribute B of R2 and the fourth position of the first filter is I so we keep 

this tuple. We have value 8 in attribute B of R2. In figure 4-12, the value 8 is one of the 

first collisions and the eighth position of second filter is 1, so we keep the tuple according 

to our ‘rules for two sets of filters’. We do not have value 5 and 9 in attribute B of R2, so 

we change fifth and ninth positions of the first filter from 1 to 0. We do not have value 2 

and 5 in attribute B of R2, so we update second and fifth positions o f the second filter 

from 1 to 0. The reduced R2 and updated two sets of filters are shown in figure 4-13.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reduced R2

B C address first filter first collisions second filter second collisions

1 0 2 0

2 0 8 0

3 0 0

4 I 0

5 0 0

6 0 0

7 0 0

8 0 1

9 0 0

10 0 0

Figure 4-13 Reduced R2 and updated filters

Next, we reduce R3 with the updated filters. In attribute B of R3, we have value

2. In figure 4-13, value 2 is a value of the first collisions, but the second positions o f first 

filter and second filter are 0. By the "rules of two sets of filters’, the tuple with value 2 in 

attribute B of R3 is reduced. The other tuples in R3 are also reduced because they are not 

in the filters and collisions. Therefore, we do not need to ship the R3 over the network to 

complete the query. In this way, we improve the performance of our algorithm using two 

sets of filters to reduce the collisions.
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Chapter 5 Results

In this chapter, we present the results which are divided into three groups. The 

result group one is for the results without collisions. The result group two is for the results 

with collisions using a single set of filters. The result group three is for the results with 

collisions using two sets of filters. We compare the results of these three groups to show 

that two sets of filters can reduce the number of collisions and improve the performance of 

the algorithm.

5.1 Results without Collisions

The main purpose of the experiments without collisions is to determine how well 

the algorithm performs under the assumption of a perfect hash function.

The figure 5-1 presents the results without collision.

Query Type Average Reduction ( % ) Full Reduction (%  )
3 - 2 93.44 50
4 - 2 97.12 68
5 - 2 99.29 88
6 - 2 99.79 90

Average of the Column 97.41 74

Figure 5-1. Results without collisions

In figure 5-1, the definition of query type is given in section 4.1.2 ( Queries and 

Relations ), the Average Reduction (%) and the Full Reduction (%) are described in 

section 4.1.4 ( Analysis Program), the results are based on the experimental assumption 

described in section 4.2 ( Experiments without Collisions ) and each data is the average 

result of 100 queries.

The results without collision show that the algorithm achieves substantial 

reductions in the sizes of the relations. This is shown in the second column of the table in
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figure 5-1. On average for this column, approximately 97.41% of all tuples not required 

for the final answer of the query are eliminated from the relations.

In the third column of the table in figure 5-1, the results of full reduction of query 

types 5-2 and 6-2 are good. They are 88% and 90% respectively.

Queries of types 3-2 and 4-2, in many cases, have substantially lower amounts of 

data reduction than queries of other types. Also, queries o f types 3-2 and 4-2 are the least 

likely to be tiilly reduced.

5.2 Results with Collisions Using a Single Set of Filters

The results without collisions show that, on average, the algorithm achieves 

significant reduction of unneeded data in query relations, and achieves an acceptable 

percentage of fully reduced queries. However, the experiments without collisions do not 

consider the effect of collisions on the performance of the algorithm, and the collisions are 

the major problem when using Bloom filters.

In this section, we present the results of the experiments under the specific 

percentages of collisions using a single set of filters. We compare the results in this section 

to the results without collisions in order to show the fact that the collisions affect the 

performance of the algorithm.

The results of the experiments are based on the assumptions described in section

4.3 ( Experiments with Collisions Using a Single Set of Filters ). We evaluate the 

algorithm under the assumption of collisions. We simulate the specific percentages of 

collisions at 1%, 5%, 10%, 20%, 30%, 40%, 50% and 60%.

In figure 5-2, we present the results o f average reduction (%) with collisions. Each 

data is the average result of 100 queries. The first row represents the specific percentages 

of collisions. We do the experiments on the query types 3-2, 4-2, 5-2, and 6-2. The last 

column is the average data of the different query types. The last row represents the 

average data of different percentages of collisions. The data at right bottom comer is the 

average result of all data.
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collision % 1 5 10 20 30 40 50 60 average
3 -2 89.27 86.65 87.56 87.10 84.44 78.52 80.39 70.12 83.59
4 -2 94.73 94.29 94.63 92.88 92.43 90.49 87.88 86.35 91.92
5 -2 97.65 97.22 98.58 97.80 96.53 96.06 93.57 92.23 96.42
6 -2 99.14 98.97 99.43 98.57 98.58 97.86 97.73 94.23 98.17

average 95.20 94.28 95.05 94.09 93.00 90.73 89.89 85.73 92.53

Figure 5-2. Results of average reduction (%) with collisions using a single set of filters

We analyze results of average reduction (%) with collisions in figure 5-2 as 

follows.

On average, 92.53% of all unneeded tuples are eliminated by the algorithm when 

the collision rate is in the range 1% to 60%. Therefore, on average, the algorithm gives 

substantial reductions in relation size.

For query types 3-2 and 4-2, the algorithm gives average percentages of reduction 

which are substantially lower than those o f the remaining query types.

In figure 5-3, we show the results of full reduction with collisions using a single set 

of filters. The results are based on the experimental assumptions described in section 4.3 ( 

Experiments with Collisions ) and each data is the results of 100 queries. The first row 

represents the specific percentages o f collisions. We also do the experiments on query 

types 3-2, 4-2, 5-2, and 6-2. The last column shows the average data of different query 

type. The last row represents the average data of different percentage of collisions. The 

data at right bottom comer is the average result of all data.

collision % 1 5 10 20 30 40 50 60 average
3 -2 26 19 19 18 19 17 21 13 21
4 -2 50 41 40 34 39 29 29 14 37
5 -2 70 66 58 47 43 44 40 30 54
6 - 2 80 66 52 46 41 36 32 25 52

average 57 48 42 36 35 32 31 21 41

Figure 5-3. Results of average percentages of full reduction with collisions using a
single set of filters
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The results in figure 5-3 show that the percentage of full reduction declines 

substantially when the percentage of collisions increases. On average, 41% of all queries 

are fully reduced by the algorithm when the collision rate is from 1% to 60%. In figure

5-1, the average full reduction is 74% under the assumption of perfect hash function. The 

full reduction decreases more than 30%. Therefore, the amount of collisions substantially 

affects the number of queries achieving full reduction.

In figure 5-3, we notice that query types 3-2 and 4-2 have percentages o f full 

reduction that are significantly lower than other query types.

5.3 Results with Collisions Using Two Sets of Filters

We have improved the algorithm by utilizing two sets of filters. The assumptions 

of the experiments are similar to the assumptions of the experiments with collisions. The 

assumptions are described in chapter 4 ( Experiments ).

In figure 5-4, we present the results o f evaluation of the algorithm using two sets 

of filters under the specific percentages of collisions. The results show the average 

reduction (%) with collisions. Each data in the table is the average results of 100 queries. 

The first row represents the specific percentages of collisions. We also do the experiments 

on query types 3-2, 4-2, 5-2, and 6-2. The last column contains the average data of 

different query types. The last row represents the average data of the different percentage 

of collisions. The data at right bottom comer is the average result of all data.

collision % 1 5 10 20 30 40 50 60 average
3 - 2 89.08 89.17 85.53 89.14 88.63 88.91 87.53 89.39 88.29
4 - 2 94.79 94.57 93.46 96.88 95.03 95.06 93.12 94.95 94.79
5 - 2 98.24 97.66 97.76 98.09 97.30 97.41 97.39 98.52 97.85
6 - 2 99.23 99.61 99.37 99.30 99.41 99.02 99.01 99.46 99.25
average 95.38 95.25 94.03 95.85 95.09 95.11 94.26 95.58 95.05

Figure 5-4. Results of average percentage reduction (%) with collisions for the
two sets of filters
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The results in figure 5-4 show us the following facts:

-  The different percentages of collisions do not affect the average reduction of 

relations using two sets of filters described in the previous section. We obtain 

this conclusion by comparing the data in each row.

~ The performance of the algorithm using two sets of filters is better than the 

performance of the algorithm using a single set of filters under the specific 

percentage of collisions. The average of all data is improved from 92.53% to 

95.05%. We obtain this conclusion by comparison the results in figure 5-4 to 

the results in figure 5-2. The results in figure 5-2 are the evaluation of the 

algorithm using a single set of filters

-  By using two sets of filters, for the query type 3-2, the average result of 

various percentage of collisions is improved from 83.50% to 88.29% and for 

the query type 4-2, the average result of various percentage of collisions is 

improved from 91.92% to 94.79%.

-  The average result of all data in figure 5-4 is 95.05%, only 2.36% lower than 

the results without collision in figure 5-1, the average reduction of different 

query types is 97.41% in that table. This means that the performance of our 

algorithm using two sets of filters is good under the assumption of collisions.

In figure 5-5, we show the results of full reduction for evaluation of the algorithm 

using two sets of filters under the specific percentage of collisions.

collision % 1 5 10 20 30 40 50 60 average
3 -2 47 41 31 46 42 34 34 30 38
4 - 2 59 54 54 61 57 55 45 53 55
5 -2 82 74 72 71 70 72 69 77 74
6 - 2 87 90 85 90 91 79 84 82 86

average 69 65 61 67 65 60 58 61 63

Figure 5-5. Results o f full reduction (%) with collisions for the two sets of filters
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The results in figure 5-5 tell us that

~ The different percentages of collisions do not affect the full reduction of 

relations much using two sets of filters. We obtain this conclusion by 

comparing the data in each row.

~ The performance of the algorithm using two sets filters is better than the 

performance of the algorithm using a single set of filters under the specific 

percentage of collisions. The average of all data is improved by 22%, from 41 

to 63%. We obtain this conclusion by comparison the results in figure 5-5 to 

the results in figure 5-3. The results in figure 5-3 are the evaluation of the 

algorithm using a single set of filters

-  For the query type 3-2, the average result of various percentage of collisions 

is improved from 21% to 38%. For the query type 4-2, the average 

result of various percentage of collisions is improved from 37% to 55%.
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Chapter 6 Conclusions

The optimization of general queries in a DDBMS is an important research area.

The problem is the selection of the best sequence of database operations to process the 

query and keep costs to a minimum. As finding the optimal solution is NP-hard, the 

approach is to develop heuristic algorithms which can produce near-optimal solutions.

The main approaches in the literature have been joins [5, 31, 32, 33], semijoins [7, 

8, 9, 10,11, 35] and filters [16, 17, 18, 19, 20, 21, 24, 26], In general, semijoin-based 

algorithms perform better than join-based algorithms. But the problem is that semijoins are 

still expensive. Filters have been proposed as a cheap way to implement semijoins. 

However, since Bloom filters are constructed using hash functions, collisions are a 

problem. Specifically, because of collisions some relations in a query may not be reduced 

to the full extent possible. This means that data transmission costs are higher than they 

need to be.

In this thesis we investigate the effect of collisions on a filter-based algorithm. Our 

hypothesis is that the use of two sets of filters, each with a different set of collisions, can 

reduce the effect of the collisions and improve the performance of the algorithm.

To investigate the effect of the collisions and test our hypothesis we conducted 

three sets of experiments:

1. We simulated a perfect hash function to evaluate the performance of the 

algorithm without collisions.

2. We simulated various percentages o f collisions to see the effect o f these 

collisions on the performance of the algorithm. For these experiments we used 

a single set of filters for each joining attribute.

3. We noted that certain types of queries were very badly affected by the 

collisions. So in our last set of experiments we simulated two separate hash 

functions, with possibly different sets of collisions, to investigate the effect of 

two sets o f filters on the performance of our algorithm.
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From our experiments we conclude the following:

1. Using a perfect hash function, the algorithm achieves substantial reduction in

the relations.

-  On average, approximately 97.41% of all tuples not required for the final 

answer of the query are eliminated from the relations.

-  The average tuil reduction of ail data is 74%.

-  We get better reduction when the query requires more relations.

2. With a single set of filters, collisions effect the performance of the algorithm.

-  The full reduction of the algorithm declines substantially when the 

percentage of collisions increases. On average, only 41% of all queries are 

fully reduced.

~ The query types 3-2 and 4-2 have low percentages of full reduction, 21% 

and 37% respectively.

3. Using two sets of filters, the performance of the algorithm is much better than

using a single set of filters under the assumption of collisions.

-  The average reduction o f all data is improved from 92.53% to 95.05%.

-  The average reduction of all data is 95.05% when collisions occur. This is 

only 2.36% lower than the result under perfect hash function.

~ The average full reduction of all data is improved by 22%, from 41% to 

63%.

~ The different percentages of collisions do not affect the reduction.
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