
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1999

Reduction of collisions in Bloom filters during distributed query Reduction of collisions in Bloom filters during distributed query

optimization. optimization.

Yan Liang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Liang, Yan, "Reduction of collisions in Bloom filters during distributed query optimization." (1999).
Electronic Theses and Dissertations. 3291.
https://scholar.uwindsor.ca/etd/3291

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3291&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3291?utm_source=scholar.uwindsor.ca%2Fetd%2F3291&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bieedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9” black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reduction of Collisions in Bloom Filters

during Distributed Query Optimization

by

Yan Liang

A Thesis

Submitted to the College of Graduate Studies and Research

through the School of Computer Science in Partial

Fulfillment o f the Requirements for the

Degree o f Master of Science at the

University of Windsor

Windsor, Ontario, Canada

1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your Me Votre reference

Our Me Notre reference

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-52744-1

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Yan Liang 1999
© All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVED BY:

data ^Idt&CAejLj
Dr. J. Morrissey, School of Computer Science

Principal Advisor

Dr. C. Ezeife, School of Computer Science

Department Reader

Dr. K. Fung, Department of Mathematics and Statistics

Outside Department Reader

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract
The goal of distributed query optimization is to find the optimal strategy for the

execution of a given query. The approaches in distributed query processing have mainly

focused on the use of joins, semijoins, and filters. Semijoins have the advantage over joins

in that there are no increases in data sizes. However, a semijoin needs more local

processing such as projection and higher data transmission. To improve the distributed

query processing, the filter-based approach is utilized. One of the limitations of this

approach is collisions.

We investigate how collisions affect the performance of the algorithm and how

performance can be improved given those collisions. Our proposed algorithm utilizes two

sets of filters to reduce the collisions, so the performance has been improved when

collisions exist.

Our proposed algorithm is evaluated objectively by comparison to a full reducer

which is the algorithm that fully reduces all relations involved in a query by eliminating all

non-participating tuples from the relations.

The results of the evaluation show that:

1. With a perfect hash function, on average, our algorithm eliminates 97.41% of

the unneeded data and fully reduces the relations of over 70% of the queries.

2. Using a single set of filters with specific percentages o f collisions, on average,

less than half of all queries are fully reduced by the algorithm. Therefore, the

collisions substantially affects the performance..

3. Using two sets of filters, On average, our algorithm eliminates 95% of non-

contributive tuples and achieves over 60% full reduction.

In conclusion, our improved algorithm utilizes the two sets of filters to reduce the

effects of collisions substantially. Therefore, we improve the performance of our algorithm

under the assumption of collisions which is the major problem in using Bloom filters

during distributed query optimization.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to my mother, my son and my husband.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

This work could not have been accomplished without the help of so many people.

First, I would like to thank Dr. Morrissey for the ideas of the algorithm, the using

of two sets o f filters, and a lots o f her precious time for the consultation on this work.

Thanks Dr. Ezeife and Dr. Fung for their comments on my thesis.

Secondly, I would like to thank my family for their support. My son, Cheng Zhou,

brought me the joy and took good care o f himself, so I could work very hard on this

thesis. My husband, Lenong Zhou, drove far from home for his work in order to let me

stay near the university, so I could easily discuss the problems with my supervisor and do

the survey.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract-- iv

Acknowledgments-- vi

List of Figure --- ix

Chapter I Introduction-- I

Chapter 2 Background-- 3

2.1 Definitions--- 3

2.2 Approach I: Joins---4

2.3 Approach II: Semijoins--- 9

2.4 Approach III: Filters--- 14

2.5 Conclusions--- 18

Chapter 3 The Algorithm--- 19

3.1 Details of the Algorithm-- 19

3.2 An Example of Using the Algorithm-- 21

Chapter 4 Experiments---28

4.1 Experimental System--28

4.1.1 Rationale of the Experiments--- 29

4.1.2 Queries and Relations-- 29

4.1.3 Full Reducer--31

4.1.4 Analysis Programs-- 3 3

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Experiments without Collisions--34

4.3 Experiments with Collisions Using a Single Set of Filters--------------------------- 34

4.3.1 Simulating Collisions-- 35

4.3.2 Problem Caused by Collisions--36

4.4 Experiments with Collisions Using Two Sets of Filters-------------------------------39

4.4.1 Two Sets of Filters-- 41

Chapter 5 Results-- 45

5.1 Results without Collisions--- -—45

5.2 Results with Collisions Using a Single Set of Filters--------------------------------- -46

5.3 Results with Collisions Using Two Sets of Filters--------------------------------------48

Chapter 6 Conclusions--- 51

Bibliography--- 53

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2-1. The join of R1 and R2 over attribute B .. 5

Figure 2-2. The Semijoin o f R2 by R1 over attribute B.. 9

Figure 2-3. The reduction of R2 by the reduction filter for attribute b................................ 17

Figure 3-1. The five relations of the example.. 21

Figure 3-2. The adjacency matrix...22

Figure 3-3. The adjacency lists... 22

Figure 3-4. The inverted lists... 23

Figure 3-5. Step I of the example..24

Figure 4-1. 'Rel' file for a relation...30

Figure 4-2. Result of joining of five relations.. 32

Figure 4-3. Results o f fully reduced relations.. 33

Figure 4-4. Simulating collisions..36

Figure 4-5. Relations for illustration the effect of collisions.. 37

Figure 4-6. Collisions in Bloom filter B .. 37

Figure 4-7. Reduced R2 and updated filter B ... 38

Figure 4-8. Reduced R3 and updated filter B ... 39

Figure 4-9. Example relations.. 40

Figure 4-10. Fully reduced relations...40

Figure 4-11. Non reduction of R 2..41

Figure 4-12 Two sets of filters.. 43

Figure 4-13 Reduced R2 and updated filters.. 44

Figure 5-1. Results without collisions... 45

Figure 5-2. Results of average reduction (%) with collisions using a single set of filters. 47

Figure 5-3. Results of average percentages of full reduction with collisions using a

single set of filters.. 47

Figure 5-4. Results of average percentage reduction (%) with collisions for two sets of

fibers.. 48

Figure 5-5. Results of full reduction (%) with collisions for the tow sets of filters......... 49

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction

A Distributed Database Management System (DDBMS) is a collection of

computers, each at a different site, connected by some communication networks [I].

The database is distributed amongst all the sites which vary in size, function and

complexity. Each site maintains a local database but can also participate in a global

query. The advantages of a DDBMS is that data can easily be shared between sites,

there is local control over local data and data replication ensures increased availability.

The major disadvantage is that queries requiring data from more than one site entail higher

overheads due to an increase in message passing and data transfers.

The optimization of general queries in a DDBMS is an important area of research.

The problem, which must be solved, is to select the best sequence of database operations

which will process the query and keep costs to a minimum. Finding the optimal solution is

NP-hard [2] and so the approach taken in the literature is to find heuristic algorithms

which give efficient but perhaps sub-optimal solutions.

The main approaches include algorithms based on joins, semijoins and Bloom-

filters. The approach joins have been discussed in references [5], [31], [32], and [33], The

approach semijoins have been addressed in papers [7], [8], [9], [10], [I I], and [35]. The

approach based on bloom filters have been discussed in paper: [16], [17], [18], [19], [20],

[21], [24], and [26], Early work in the area concentrated on the use of joins. However,

joins often require large amounts of data to be shipped between sites; as an operation, it

has high complexity and frequently the use of a join can lead to higher data transmission

costs. To solve these problems the semijoin was proposed and in most cases semijoin-

based algorithms are very efficient. However, semijoins may entail more local processing

and data transmission costs are still very high. Bloom-filters have been proposed as a

method of executing semijoins at a much lower cost. In general, the use of Bloom filters

greatly improves performance.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, there is still the problem that, due to collisions in the filters which are built using

a hash function, some relations in the query may not be reduced to the full extent possible.

This means that data transmission costs are higher than they need be.

In this thesis we investigate the effect of collisions on the performance of a filter-

based algorithm. We do so with 3 sets of experiments. First, we conduct some

experiments with a simulated perfect hash function, where no collisions are possible, and

we evaluate the performance of our algorithm. Tnen we conduct experiments where we

simulate varying collision percentages, from 1% to 60%. The results show the effect of

collisions on the performance o f the algorithm. We found that for certain types o f queries

the effect of the collisions was significant. To improve performance for these queries we

propose the use of two sets of filters, where each set simulates a different hash function

yielding different collisions. In our last set of experiments we investigate the use o f the

two sets of filters and their effect of the performance of our algorithm.

The objective of our thesis is to investigate the hypothesis that the use of two sets

o f filters, in a filter-based algorithm, can significant reduce the impact of collisions and

improve the performance of the algorithm.

The thesis is structured as follows: Chapter 2 introduces some basic concepts and

summarizes important research in this area. In Chapter 3 the algorithm is described and

illustrated with a running example. Chapter 4 describes all of our experiments. The results

are presented and discussed in Chapter 5. The thesis concludes with Chapter 6.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Background

Distributed query optimization involves operations on distributed databases. The

goal o f distributed query processing is to minimize the cost of a distributed query. In this

chapter, some definitions will be given and some representative approaches in the area of

distributed query optimization will be presented. The approaches use joins, semijoins, and

filters.

2.1 Definitions

Join is the operation which joins two tables together on the basis of common

values in a common column. For example, given two relations, Rl and R2, with attribute

A which exists in both relations, the join of R1 and R2 over A is performed by

concatenating tuples of R1 with those of R2 where the attribute value for A is equal.

The semijoin is defined as follows: Given two relations, R1 and R2, with attribute

A which exists in both relations, the semijoin of R2 by Rl over A is performed by

projecting Rl over A to get R1[A], shipping R1[A] to the site of R2, and joining R1[A]

with R2.

In the query processing in relational databases, a filter is a bit array which is

encoded with the information contained in a joining attribute. This encoding is usually

done by hashing.

Hashing is a technique for providing fast direct access to a specific stored record

on the basis of a given value for some field. A collision occurs when two or more distinct

records hash to the same address.

The cost model is used to predict the cost o f alternative execution plans for a

query. There are two popular cost models: the total cost model and response time model

[27]. The total cost model includes both the data transmission cost and the local

processing cost. The response time cost model calculates the total execution time of the

query from beginning to the calculation of the final result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Approach I: Joins

Join is one operation used in distributed query processing. It joins two tables

together on the basis of common values in a common column.

The features of join:

- The join is an essential operation in a query which involves two or more

relations.

- The join operation is easy to understand, so it is simple to write the query using

joins.

- A join is a computationally expensive operation.

- A join may increase the size of relation. This means that the relation resulting

from a join may be much larger than the relations before the join.

In figure 2-1, we show an example of a join. Given two relations Rl and R2, both

containing joining attribute B, the join of Rl and R2 is performed by concatenating tuples

of Rl and R2 where the value of attribute B is equal for both tuples. The join of Rl and

R2 results in a larger relation in this case.

Efficient processing of joins is important in distributed database systems where

network transmission costs determine the efficiency of a particular method. Inefficient

processing of distributed queries not only increases task duration, but can also degrade

performance of the entire system if network congestion develops. Distributed joins can be

expensive operations due to expensive data transmission costs.

Distributed joins are particularly expensive because a joining relation located at a

remote site may be transmitted to the join site. For joins in which only a small percentage

of tuples at a remote site are needed, transmission of an entire relation is clearly a waste of

network resources.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rl

B

1 3

2 3

5

4 5

5 5

B

R2 3 2
•<> 4

5 5

6 6

6 00

Rl x R2

A B C

1 3 2

1 nJ 4

2 3 2

2 j 4

5 5

4 5 5

5 5 5

Figure 2-1. The join of Rl and R2 over attribute B

The representative algorithms which use joins are R* optimizer and the two-way

join.

R* optimizer:

The R* optimizer [32] is an iterative algorithm which uses a dynamic programming

approach. The goal of the R* optimizer is to reduce the total cost of a query. Joining

strategies of two relations are generated, followed by strategies of three relations,

strategies of four relations, and so on. A decision is made by the optimizer on the join

order o f the relations during its execution. The decision depends on the following factors

[32]:

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Access method. A decision is made on whether to perform an index scan or a

sequential scan of the relation. The least costly cost of the two alternatives is

taken.

- Join method. The optimizer decides whether it is more beneficial to perform a

merge join or a nested loop join, and chooses the cheaper of the two join

methods.

- Join site. A decision is made by the optimizer as to which relations to ship to

perform a join of two relations located at different sites.

- Inner table transfer strategy. Given a join of an outer relation (the relation

formed from previous joins) and an inner table (the next relation to be joined), if

the inner relation has been chosen to be shipped to the site of the outer relation

for joining, the cheapest method for transferring the inner relation must be

chosen. The two candidate methods are to fetch individual tuples as necessary or

to ship the entire relation to the site of the outer relation.

- Ordered result delivery to query site. Finally, the optimizer must choose between

sorting the result or planning the query to produce a sorted result. Also, the

optimizer must choose whether to plan a query which ends at the query site or to

ship the final result to the query site.

The R* optimizer has exponential complexity, since it performs an enumeration of

strategies. The limitations o f the performance evaluation are the restriction to two relation

joins, the lack of evaluation using very large databases and no consideration of

fragmentation.

Two-Way Joins:

The previous algorithm for processing distributed join queries did not consider

fragmentation [33], The two-way join is used for joining two fragmented relations. The

two general strategies in processing the two-way join Ri x R2 are:

- Union the fragments of each relation, then join them.

- Join all fragments o f Ri with all fragments of R2 , then union the results.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The qualification of fragment is a formulation of the properties common to all

tuples in a fragment. By examining the qualifications of two fragments to be joined, some

fragment joins can be eliminated from the execution strategy.

A four phase optimization framework for the two-way join is proposed by Chen

and Li. The following summary is from [34]:

1. Join Graph Construction. A bipartite graph is used to represent the two-way

join. The qualification of fragments is used to determine and remove empty fragment joins

from the graph. The empty fragment joins are eliminated from the graph by removing the

edge existing between them.

2. Join analysis Graph Construction. Using the join graph produced above, a join

analysis graph is constructed. The weight corresponding to each vertex is a measure of the

data transmission cost of the fragment or fragment join represented by the vertex. An

algorithm is proposed which maps a join graph to a join analysis graph. When performing

the mapping, the algorithm takes into consideration the data stored at the query site

(which does not have to be transmitted) and other properties involved with performing

fragment joins.

3. Determining a Minimum-Weight Vertex Cover. Given a join analysis graph,

determining a minimum-weight vertex cover is analogous to determining a set of

fragments and fragment joins such that the cost o f data transmission is minimal. The

authors prove that the problem of determining a minimum-weight vertex cover is NP-

Complete. Using certain properties of a join analysis graph, the authors show how the

graph can be reduced in size before the application of an enumeration algorithm for

determining the vertex cover. Also, the authors propose a heuristic algorithm for

determining the minimum-weight vertex cover. This algorithm eliminates the need for

performing enumeration.

4. Final Processing. After determining a minimum-weight vertex cover, an existing

copy of each selected fragment is chosen from the network for transmission. The decision

as to which copies to use depends on the load at each site. Also, the site o f each fragment

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

join must be chosen. An algorithm is presented to handle this. After the choices of existing

fragments and join locations are made, the fragment joints are transmitted to the query site

and united to finish the join. It should be noted that an algorithm for performing a

fragment-to-fragment semijoin is proposed and utilized to reduce fragments before they

are transmitted. Refer to [34] for details.

The authors have proved that most algorithms in that paper have polynomial

complexity.

The algorithms proposed by Ahn and Moon select a subset of fragments and

fragments join results to ship that reduces the data communication cost. The two

algorithms are summarized from [33]:

- Greedy Heuristic. Algorithm GH consists of three phases. In the first phase, the

number of fragments to be considered is reduced by applying derived theorems. In the

second phase, the fragments to be transmitted are chosen. It is an iterative phase which

determines the fragment with the highest net benefit at each iteration. This phase

terminates when the net benefit becomes zero. The third and final phase consists of adding

to the transmission schedule the shipment of fragment joints which are not already located

at the query site.

- Single Path heuristic. Algorithm SPH consists of three phases. In the first phase,

the number of fragments to be considered is reduced by applying derived theorems. In the

second phase, the fragments to be transmitted are chosen. In algorithm SPH, this is also an

iterative process. The difference here is that all fragments are considered in the order

given. Any fragments with a net benefit are scheduled for transmission. The third and final

phase consists of adding to the transmission schedule the shipment of fragment joints

which are not already located at the query site.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Approach II: Semijoins

Early research in distributed query processing used the join operator query

optimization plan. However the join operator involves large relations to be shipped to

other sites. To reduce the cost o f transmission, the semijoin operation was introduced.

The semijoin can be explained by the following example. Given relations Rl and

R2, and a join attributes B that exists in both relations, the semijoin of R2 by Rl over B is

illustrated by Figure 2-2 and executed as follows:

1. Project Rl over B to get Rl[B]

2. Send Rl[B] over to the site of R2

3. Perform R1[B] x R2

A B B C

1 j R2 J 2

2 j J 4

j 5 5 5

4 5 6 6

5 5 6 8

R1[B] j

5

B

R1[B] x R2 3 2

3 4

5 5

Figure 2-2. The Semijoin of R2 by Rl over attribute B

The advantage of the semijoin is that it will either leave the relation as the same

size or it will reduce its size. A join may result in relations which are larger than the

original relations.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The disadvantage of the semijoin is that it incurs more local processing costs since

a projection must be performed each time a semijoin is executed.

Most work in distributed query processing using semijoins assumes the following

three phases[27]:

1. Local processing. All relations involved in the query undergo selections and

projections at the site where each resides.

2. Processing with semijoins. Following local processing, the relations undergo

size reduction using semijoins.

3. Final processing. Following semijoin processing, the reduced relations are

shipped to the query site to produce the final result.

The representative algorithms which use semijoins are the SDD-1 optimizer, the

AHY algorithms, algorithm W, the two-way semijoin, and the one-shot algorithm.

SDD-1 Optimizer:

One of the first query optimization algorithms was for the SDD-1 (System for

Distributed Database) [36], The goal of the SDD-1 strategy is to reduce the data

transmission cost, which is the dominant cost factor for executing a distributed query.

SDD-1 Algorithm is based on a three phase mechanism to process a distributed

query.

1. In the initial processing phase, the appropriate selections and projections at the

local sites are performed.

2. During the reduction phase, semijoins are used to reduce the size of the relations

that do not satisfy the qualification of the query. The authors use a greedy algorithm which

is iterative in nature. In each iteration, the most cost effective semijoin is chosen for

execution until all semijoins have been considered. The query site is chosen in such a way

that data transmissions are minimized.

3. In the final assembly phase, relations in the qualification component of the query

are sent to a query site to produce the final join result.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The main drawback [41] of the SDD-1 algorithm is that it has not recognized the

fact that certain relations involved in previous executed semijoins are not needed for

further processing and can therefore be discarded.

TheAHY Algorithms:

Apers, Hevner and Yao developed a collection of algorithms for minimizing the

cost of distributed query processing. These algorithms are based on the semijoin and are

referred to as Algorithm AHY [35], [34].

The algorithm AHY GENERAL promises the capability of optimizing general

queries which contain more than one join attribute. Basically, Algorithm GENERAL first

decomposes a general query into a collection of simple queries which are then processed

by either Algorithm SERIAL (total cost version) or Algorithm PARALLEL (response

time version). In each algorithm, semijoins are employed to reduce the size o f relations by

deleting those tuples which will not contribute to the final join result.

The Algorithm PARALLEL begins with the initial feasible solution, which is the

parallel transmission of all required relations to the query site without taking reduction

into account. The Algorithm PARALLEL searches for cost beneficial transmissions by

shipping small relations to larger relations in order to join them.

The Algorithm SERIAL is a strategy which consists of an ordered transmission of

each relation to the site of the next relation, where the join or semijoin is performed before

the relation is shipped to the next site. The relations are shipped in increasing order of size.

This algorithm attempts to minimize data transfers by constructing a schedule of semijoins

for each relation such that the cost of reducing and shipping the relation is as low as

possible.

There are many assumptions in the algorithm. It does not consider network factors

such as line congestion, communication delays, etc. These assumptions are not valid for a

real distributed database system.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm W:

The algorithm W proposed by Morrissey et al [42], [44], [43], [45] attempts to

minimize the total amount of data transferred over the network during query processing.

For each joining domain participating in the query, a reducer is created and used to reduce

all relations. A reducer is a joining attribute constructed from the joining attributes which

come from the same joining domain.

There are three steps in Algorithm W [42, 43, 44, 45]:

Step I : Establish schedules for the construction of reducers.

Step 2: Examine the effects o f reducers and review the schedule of those not used.

Step 3: Execute the schedule.

Algorithm W produces semijoin strategies with polynomial complexity of O(mn),

where m is the number of relations and n is the number of joining domains.

Two-Way Semijoin:

The two-way semijoin [46], [8] performs not only forward reductions as the

semijoin, but also backward reduction which results in the reduction of both relations

involved.

In [8], the authors propose a three phase processing of query using two-way

semijoin program:

1. Forward Reduction and Local Processing. All forward semijoins are performed

in conjunction with the initial local processing. All tuple connectors are generated during

this process. A tuple connector is a representation of a relation, which consists of all

joining attributes and some tuple identifier. Since tuple connectors only contain the

information required for processing a query, they generally are smaller than their

corresponding relation.

2. Backward reduction and collecting. The tuple connectors are joined to form the

pipeline cache planner which is the relation consisting of tuple identifiers of all tuples

required for the query. All joining attributes are projected out during this process.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Pipeline Execution. The pipeline cache planner is used for retrieving the

necessary tuples and generating the final result.

The two-way semijoin can be more effective than the semijoin in reducing relation

sizes in distributed query processing.

One-Shot Algorithm:

In [47, 48], it is argued that traditional sequential semijoins have several

drawbacks including the loss o f parallelism, processing overhead, loss of global semijoin

optimization, and inaccurate semijoin reduction estimation. The authors propose a new

algorithm called the one-shot semijoin.

The one-shot semijoin consists of three phases:

1. Projection phase. During this first phase, all joining attributes required for

semijoins are obtained from the relations in parallel.

2. Transmission phase. In the second phase, the parallel transmission of all joining

attributes occurs.

3. Reduction phase. Finally, all joining attributes are applied to their respective

relations in parallel.

The advantages of this strategy include increased parallelism, no propagation of

errors, reduced processing overhead, and the opportunity to apply global optimization to

semijoins.

The algorithm presented uses hash tables for storing joining attributes, which

allows for faster processing o f semijoins during the reduction phase. The strategy has the

trade-off between hash table size and reduction effectiveness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Approach ED: Filters

Semijoins are good at reducing relation sizes, but there are some limitations such

as extra local processing costs and higher data transmission costs. To resolve these

problems, the filter-based approach has been employed. In the distributed query

processing, a filter is a bit array which is encoded with the information about the values

contained in an attribute. The filters are used to identify tuples which cannot belong to the

result relation so that the amount of data transmission is reduced.

Due to the size of the filter, it is cheaper to ship a filter over network lines than to

transmit a relation or a semijoin projection.

The disadvantage [27] of using filters is that collisions occur as a result of two or

more attribute values hashing to the same address in the array. This results in tuples which

are not required for the query being shipped to the final site because the attribute value

accidentally passed the filter test.

The term “Bloom filter” comes from Bloom [51], A Bloom filter [3] is simply an

array of bits which functions as a very compact representation of the values of a join

attribute. The use of a Bloom filter can achieve the same result as a semijoin but at a much

lower cost. The filter is constructed as follows:

1. First, construct an array and set all bits to zero.

2. Then, for each value of the join-attribute use a hash function. Hashing is the

procedure of applying the hash function to a key or attribute value to produce

an address in a data structure.

3. Finally, for each address produced, set the corresponding bit in the array to one.

The Bloom filter algorithm has lower local processing and data transmission costs.

However, the problem is that collisions occur. A collision means that two different

attribute values may be hashed into the same bit address. A consequence is that tuples that

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should be eliminated from the relation are not and hence we get larger relations and higher

transmission costs.

The Bloom filter based algorithms are described as follows.

In [25], Tseng and Chen propose an algorithm based on hash semijoins. The

purpose of this work is to minimize the cost of performing a semijoin. The

implementation of this hash semijoin is summarized from [25] as foilows:

Given two relations Ri and Rj, with common joining attribute A:

1. Calculate the bit array size and initialize to zero.

2. For each join attribute value in Ri[A], use d hash functions to produce d

addresses in the bit array and set the corresponding bits to I .

3. Ship the bit array to the site of Rj.

4. For each join attribute value in Rj[A], produce d addresses in the bit array using

the same d hash functions. If all d addresses in the array are set to 1, the tuple is

kept; otherwise, reject the tuple.

Morrissey and Ma [18] present Algorithm X which uses Bloom filters to reduce

query response time. Algorithm X has been designed to process general queries of

arbitrary size, and relies on no other relational operators in the process.

The basic idea of Algorithm X is to apply all filters to all relations, concurrently.

The filter sizes are relatively small and therefore the cost is relatively low. Each relation is

processed at most two times, once to construct the filters and once when the reducing

filters are applied.

The description of Algorithm X from [18] is as follows.

Begin

Send all relevant filters to the relation R which is to be reduced.

Repeat

read a tuple T;

hash on all join-attribute values in R.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if there is a hit in every filter,

then keep tuple as part of the reduced relation R,

else discard tuple;

read next tuple T;

Until all tuples have been processed.

End

Algorithm X clearly has a superior performance due to the fact that the semijoins

are replaced with the use of filters which are cheaper to use. The application of all filters

concurrently will not increase the response time and it will certainly decrease the local

processing cost.

The disadvantage of Algorithm X is the assumption of a perfect hash function.

This is an unrealistic assumption.

Morrissey and Osborn [19] propose an algorithm for processing general queries

which minimizes the cost of data transmissions. This algorithm uses reduction filters to

achieve the same reduction benefits as a semijoin strategy but at a lower cost.

A reduction filter is a bit array which serves to concisely represent a common

joining attribute. The reduction filter serves the same purpose as the semijoin, which is to

filter out tuples which will not be part of the final result.

The figure 2-3 illustrates a reduction filter. Given two relations, RI and R2, both

containing joining attribute b, the filtering takes place as follows. First, a filter is created

for attribute b of Rl and is transmitted to the site of R2. The filter is a bit array. The bits

are set to 1 if the attribute values are hashed to the corresponding addresses. In this

example, the attribute b has values 3 and 5, so we set the third and fifth positions in filter b

to 1. Second, the reduction filter is applied to R2 in the following manner. For each tuple

in R2;

1. Hash on the value of attribute b.

2. Test for the presence of a 1 at the address produced.

3. If a 1 bit is found, keep the tuple for the final result.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Otherwise, discard the tuple.

R1 1 3

2 3

j 5

4 5

5 5

R2 j 2

3 4

5 5

6 6

6 8

address

1

2

4

5

h(b) I

filter b

reduced R2 j 2

3 4

5 5

Figure 2-3. The reduction of R2 by the reduction filter for attribute b

Due to their size, reduction filters are very inexpensive to transmit between sites

compared to the attribute projections required for semijoins.

The limitation of this algorithm is the collisions which occur in the reduction filters.

The results [27] of the experiments show that as the number of collisions increases the

percentage of queries that achieve full reduction decreases. Full reduction means that all

non-participating tuples of all relations involved in a query are eliminated by the algorithm.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Conclusions

In this chapter, we discuss the different approaches for distributed query

processing. The goal of the algorithms in this area is to minimize the cost of query

processing in distributed databases. The previous research focuses on the three categories:

joins, semijoins, and filters.

The join operator was utilized in the early work of this area. The join needs to ship

large relations to other sites and has high computational complexity. To solve these

problems, the semijoin is employed. Semijoins have the advantage over the joins that no

increase in data sizes occurs from their use. However, a semijoin needs more local

processing such as projection and higher data transmission costs than necessary. To

improve the distributed query processing, the filter-based approach is utilized.

The filters have better performance such as relation size reduction and response

time than others. Although the filter-based algorithm has lower local processing costs and

less data transmission than semijoins, it suffers from collisions. This is one of the reasons

why the use o f filters for processing distributed queries has not been widely accepted. In

our research, we investigate how collisions affect the performance of the algorithm and

how performance can be improved given that collisions occur.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 The Algorithm

In this chapter, we present our algorithm. This algorithm uses Bloom filters to

achieve the same reduction benefits as a semijoin strategy but at a lower cost.

3.1 Details of the Algorithm

The algorithm for processing each query consists of three phases:

1. The data structures are built according to the query. The data structures include

an adjacency matrix, the adjacency list, the inverted list, a relation queue and a

filter list.

2. We use the data structures built in phase 1 to construct filters and reduce the

relations

3. The relation queue is used to decide which relations must be further processed.

The details of the three phases are given as follows.

Phase 1. The data structures are constructed:

1. We build the adjacency matrix using the name of relations and the

names of joining attributes in the query.

2. The adjacency list is constructed from the adjacency matrix. The

adjacency list contains the information such as the relation name, the

indegree which is number of joining attributes for this relation, and the

attribute name.

3. The inverted lists are built from the adjacency matrix. The inverted

lists represent the attribute name and relevant relation names. The

inverted lists are used to decide which relation should go back on the

queue.

4. We build the relation queue which contains the relations which need

to be further processed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. We construct the filter list which is a simple list of filters already

available.

Phase 2. We construct the reduction filters and reduce the relations with the filters

using the data structures built in phase I . The iterative process of this

phase is described below:

1. From the adjacency list, we select the relation with the lowest

indegree. We will denote this relation as Ri.

2. We determine if reduction filters for any of the joining attributes exist,

and apply them to Ri to reduce it further.

3. While processing Ri, construct new reduction filters for all joining

attributes contained in Ri.

4. Determine which relations to place back on the queue. The 'filter rule’

states that a relation is placed on the queue if:

a. The reduction filters for any of its joining attributes have changed

after being applied to Ri,

b. it is not Ri,

c. it is not already on the queue, and

d. it has been processed already.

5. We reduce the indegree of the relation in the adjacency list and mark

this relation as processed.

6. Repeat steps 1 to 5 in this phase for all relations in the query.

Phase 3. The processing of the relation queue is described below:

1. We remove relation Ri from the front of the queue.

2. We apply all reduction filters for all joining attributes contained in Eli

to reduce the relation further.

3. Determine which relations to place back on the queue. The same

‘filter rule’ used for placing relations on the queue in Phase 2 is also

used here.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Repeat steps 1 to 3 in this phase until the relation queue is empty.

3.2 An Example of Using the Algorithm

We explain how the algorithm works in detail using the following example.

In this example, the query has five relations which must be joined. These five

relations are shown in figure 3-1. The algorithm executes the query efficiently by using

filters.

RI

R3

A B C R2 A D E F

1 2 4 1 2 4 j

2 2 5 2 2 5 5

.> j 6 J j 6 7

4 4 7 9

B D E R4 C G R5 F H

2 2 4 4 2 j 4

3 3 6 5 3 j 7

4 7 9 7 4 7 7

Figure 3-1. The five relations o f the example

Phase 1. We construct the data structures.

1. We build the adjacency matrix of figure 3-2 using the relation names

and attribute names of these five relations. The columns are labeled by

the attribute name. The rows are labeled by the relation names. Every

cell o f the matrix is initialized to 0. The matrix cell is marked 1 if the

relation has the joining attribute.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A B C D E F G H

RI

R2

R3

R4

R5

1 1 1 0 0 0 0 0

1 0 0 1 I I 0 0

0 1 0 I I 0 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 I 0 I

Figure 3-2. The adjacency matrix

2. We construct the adjacency lists of figure 3-3 for each relation from

adjacency matrix. The first node contains the relation name and the

indegree of this relation. The rest of the nodes contain the relevant

relation name and joining attribute name.

RI 3 — > R2 A — » R3 B — > R4 C

R2 4 — > RI A — > R3 D — > R3 E

R3 — > RI B R2 D — > R2 E

R4 I — > RI C

R5 1 - » R2 F

Figure 3-3. The adjacency lists

3. Build inverted lists of figure 3-4 from the adjacency matrix. The first

node has the attribute name and the remaining nodes consist of the

relation names which have this attribute. The attributes G and H are not

joining attributes, so they are not in our inverted lists.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A —» RI —» R2

B —> RI —> R3

C -> RI -> R4

D —> R2 -> R3

E —» R2 —» R3

F -► R2 -> R5

Figure 3-4. The inverted lists

4. The relation queue consists of the relations which need further

processed according to ‘filter rule’. This queue is built by adding a

relation to it during query processing.

5. The filter list contains the filters which are already available.

Phase 2. We construct the reduction filters and reduce the relations with the filters

using the data structures built in phase 1.

1. In the adjacency lists, R4 and R5 have the lowest indegree which is I.

We select R4 and construct a filter for attribute C. We simulate a

perfect hash function by setting bits 4, 5, and 7 in the filter,

representing the corresponding attribute values 4, 5, and 7. This is

illustrated by the figure 3-5.

After filter C is constructed, it is placed on the filter list. Nothing goes

on the relation queue according to the ‘filter rule’.

The adjacency lists are updated. The indegrees of RI and R4 decrease

by 1. The relation R4 is marked as processed.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R4 C G h(value) —> address filter C

4 2 1 0

5 3 2 0

7 4 j 0

4 I

5 I

6 0

7 I

8 0

9 0

10 0

Figure 3-5. Step 1 of the example

2. We select R5 which has lowest indegree now. No filter for attribute F is

available. We produce filter F by setting bits 3 and 7. Filter F is placed

on the filter list.

Nothing goes on the relation queue according to the ‘filter rule’.

The adjacency lists are updated. The indegrees o f R5 and R2 decrease

by 1. The R5 is marked as processed.

3. We select RI whose indegree is 2 now. The filter C is available. We

reduce RI with filter C and produce filters for attribute A and B at

the same time.

Reduced RI A B C

1 2 4

2 2 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We produce filter A by setting bits 1 and 2 as 1. We build filter B by

setting bit 2. We insert filter A and B into filter list. The filter list

contains filters C, F, A and B.

The filter for C has changed. The inverted list and ‘filter rule’ are used

to decide which relations go on the relation queue. R4 goes on the

queue.

The adjacency lists are updated. The mdegrees of RI, R2 and R3 are

decreased by 1. R4 has been processed, so its list is not changed.

RI is marked as processed.

4. We select R2 and check the filter list. The filter A and F are available,

so R2 is reduced using filter A and F.

Reduced R2 A D E F

1 2 4 3

We build filter D by setting bit 2 and produce filter E by setting bit 4.

The filters D and E are inserted to the filter list.

The filters E and F have changed, so RI and R5 go on the queue

according to the inverted list and ‘filter rule’. The relation queue

contains R4, RI, and R5.

The indegree of R3 decreases by 1.

R2 is marked as processed.

5. We select R3. All filters exist, so R3 is reduced with filters B, D, and E

Reduced R3 B D E

2 2 4

The filters have not changed, so no relation is added to the queue.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R3 is marked as processed.

The five relations have been marked as processed now.

Phase 3. We process the relation queue which contains R4, RI, and R5.

1. We remove R4 from the queue and process it.

The filter C is available. We reduce R4 with filter C.

Filter C has not changed. Nothing goes on the queue.

2. We remove RI from the queue and process it.

All filters are available. We reduce RI with filters A, B, and C.

Reduced RI A B C

1 2 4

Filter C changes. R4 goes back on queue using the inverted list and

the ‘filter rule’.

3. We remove R5 from the queue and process it.

The filter F exists. We reduce R5 with filter F.

Reduced R5 F H

3 4

3 7

The filter F does not change. Nothing goes on the queue.

4. The relation queue only has R4 now.

we reduce R4 with filter C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reduced R4 C G

4 2

The queue is empty now. The process stops.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 Experiments

In this chapter, we present our experimental system and describe the experiments

without collisions, experiments with collisions using a single set of filters and the

experiments with collisions using two sets of filters for evaluating the algorithm.

4.1 Experimental System

The experimental system includes the query-relation generator, our Bloom filter

algorithm, the full reducer, the analysis programs and the execution scripts.

The query-relation generator was programmed by the Database Research Group of

the University of Windsor. Some details are given later in this chapter.

The Bloom filter algorithm has been described in chapter 3 and implemented in

C++. We simulate a specific percentage of collisions for the values of joining attributes.

The full reducer is an algorithm that fully reduces all relations involved in a query

by eliminating all non-participating tuples from the relations.

In our experiments we constructed 15,000 different queries and relations as input.

The queries and relations vary in the number of relations, the number of joining attributes,

the relation size, the domain size, the selectivity and the connectivity. In order to

effectively evaluate our algorithm with such a large number of divers queries, we split the

queries into runs, each run contains 100 queries.

The relations are reduced by our algorithm and the full reducer. We do the

experiments under the assumption of a perfect hash function and a specific percentage of

collisions. We analyze the results under different conditions using analysis programs.

The experiments are carried out using the execution scripts which contain a

collection of commands in order to fulfill the tasks.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1 Rationale of the Experiments

Most previously proposed algorithms have not been objectively evaluated. The

performance of the heuristics have been evaluated by comparison with another heuristic.

In this way, it can not be determined how close an algorithm achieves full reduction for

the relations. Some previously proposed algorithms have been evaluated theoretically by a

time complexity analysis. However, a theoretical evaluation does not determine how the

algorithm will perform with real queries.

To evaluate our algorithm objectively, we compare the performance of our

algorithm with the performance of a full reducer. By this approach, our algorithm will be

evaluated to determine how close it achieves full reduction under various conditions. This

approach is objective, so it is better.

The major problem when using Bloom filters is collisions. In order to investigate

how the collisions affect the performance of the algorithm, we first do some the

experiments under the assumption of a perfect hash function. Then we repeat the

experiments for the different percentages of collisions using a single set of filters and then

using two sets filters. In this way, we can compare the results and make the conclusions.

4.1.2 Queries and Relations

The experimental system takes different queries and relations as input to evaluate

our algorithm.

Each query consists of an arbitrary number of relations and an arbitrary number of

joining attributes. We evaluate our algorithm by using different query types which are the

combination of a relation count and an attribute count. For example, the query type 3-2

represents a query with three relations and two joining attributes.

The relations vary in the size, the attribute domain size, the selectivity and the

connectivity.

The relation size is the number of tuples in a relation.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The attribute domain size is the total number of distinct attribute values available.

The selectivity is defined as the ratio o f distinct attribute values over the attribute

domain size.

The connectivity is an approximate ratio of the number of joining attributes

appearing in all relations of the query over the total number of possible join attributes that

can appear in the query.

The queries and relations are generated by C programs which are described in [6J.

The C programs are create_query.c and relbuilder.c. We discuss these two C programs

which are needed by our experimental system below.

Program create_query.c: This program generates a query. The input includes the

number of relations and the number of common join attributes. The output of this program

consists of the file ‘dbstats’ which is the database statistics, file ‘Rel’ which is relation data

and file ‘domains’ which is the domain size.

The file ‘dbstats’ contains the number of relations, the number of common joining

attributes, the relation size, attribute size and the selectivity.

For each relation specified in the query, a ‘Rel’ file is produced and is used to

generate relations. The figure 4-1 is an example of this file.

RelO

242 2 0 186 222 I 155 218

Figure 4-1. 1161' file for a relation

There are 8 numbers in this file. The first number (242) is the size of the relation.

The second number (2) is the number of join attributes. The third number (0) represents

attribute 0. The fourth number (186) is the size of attribute 0. The fifth number (222) is

the domain size of attribute 0. Similarly, the attribute 1 has size 155 and domain size 218.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program relbuilder.c: This program produces a relation based on the data

generated in create_query.c. The input to relbuilder.c is a number of relations involved in

the query. The output is a relation, which contains the required number of tuples, the

number of joining attributes and the joining attribute labels.

4.1.3 Full Reducer

To evaluate the algorithm described in chapter 3 objectively, we need to compare

the performance of our algorithm to a full reducer. For this reason, we have developed a

full reducer program.

The full reducer program includes two steps.

Step 1. Join all relations required by the query to get the result. We use a nested

loop join.

Step 2. Obtain the reduced relations by projecting the attributes of each relation

from the joining result.

We explain how the full reducer works with following example. In this example we

use the five relations given in figure 3-1.

First, we join the five relations.

RI x R2: A B_____C D_____E_____E _

1 2 4 2

2 2 5 2

3 3 6

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RI x R2 x R3 A B C D E F

1 2 4 2 4 3

3 3 6 3 6 7

RI x R2 x R3 x R4: B D

RI x R2 x R3 x R4 x R5 :

A B C D E F G H

1 2 4 2 4 3 2 4

1 2 4 2 4 3 2 7

Figure 4-2. Result of joining of five relations

Second we obtain the fully reduced relations by projecting the attributes of each

relation from the result of joining the five relations which is in figure 4-2.

Fully reduced R I: A B C

1 2 4

Fully reduced R2: A D E F

1 2 4 3

Fully reduced R3: B D E

2 2 4

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fully reduced R4: C_____G

4 2

Fully reduced R5: _F_____H_

3 4

3 7

Figure 4-3. Results of fully reduced relations

Notice that in each relation we only have contributive tuples, all non-contributive

tuples have been eliminated. To evaluate our algorithm, we compare its reduced relations

to the fully reduced relations for each query.

4.1.4 Analysis Programs

To evaluate the performance of our algorithm precisely, we have produced the

analysis programs to collect results generated by our algorithm and the full reducer. The

analysis programs calculate the average percentage of reduction achieved by our

algorithm and the percentage of queries that achieve full reduction. The calculation of

average reduction is based on the following formula.

average reduction (%) = [(total size - reduced size) / (total size - full size)] * 100

In the formula above, the total size denotes the total size of all relations related to

the query before reduction, the reduced size represents the size of the relations after

reduction using the algorithm, the full size denotes the size of the relations after being fully

reduced by the full reducer.

For example, given the following data:

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

total size = 36

reduced size = 18

full size = 14

average reduction (%) = [(36 - 18) / (36 - 14)] * 100 = 81.8%

The full reduction (%) represents the number of queries which are fully reduced

by the Bloom filter algorithm, this number of queries is out of 100 queries.

4.2 Experiments without Collisions

The experiments without collisions are carried out under the assumption of a

perfect hash function. We simulate a perfect hash function by using the attribute values (all

are integers) as the address. All attribute values hash to the addresses specified by the

values with the perfect hash function. No collisions can occur with this method. For

example, an attribute value of 8 will hash to address 8 in the Bloom filter.

The experiments without collisions will determine how well our algorithm

performs under the assumption of a perfect hash function.

In the experiments, we split the queries into runs, each run containing 100 queries.

Each relation in the query consists of 200 to 600 tuples. The attribute domain contains

150 to 250 distinct values. The minimum selectivity is 0.5. The minimum connectivity is

75%. (The selectivity and connectivity have been defined in section 4 .1.2 Queries and

Relations).

4.3 Experiments with Collisions Using a Single Set of Filters

Because the Bloom filters are encoded using hash functions, collisions occur. A

collision happens when two or more attribute values hash to the same address.

The purpose of the experiments with collisions is to determine how the collisions

affect the performance of the algorithm.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.1 Simulating Collisions

In the experiments with collisions, the algorithm is evaluated at specific

percentages of collisions: 1%, 5%, 10%, 20%, 30%, 40%, 50%, and 60%. The

percentages of collisions are usually under 60% in the real world, so we simulate collision

range from 1% to 60%.

To simulate the specific percentage of collisions, we use the following method.

Given a relation which has a common joining attribute B, its active domain is determined.

The active domain of common joining attribute B is the set of values taken from domain of

B. We obtain the active domain of joining attribute B by projecting the relation over

attribute B. If we simulate c% of collisions in active domain, we randomly select c%

values in attribute B. These values will result in collisions in the filter. We call these values

collision values. For each collision, its collision address is determined. The collision

addresses are taken from set

{ active domain (B) - collisions }

To produce the c% collisions for all joining attributes related to the query, we apply this

method to all joining attributes.

The following is an example of simulating the collisions. This example is illustrated

in figure 4-4. Given a common joining attribute B, we have the active domain which has

10 values { 5, 3, 4, 7, 2, 1, 6, 9, 10, 8 }. If we simulate 30% collisions, we randomly select

three collisions out of the ten values in the active domain. Let us say the values 3, 1, and

8 are chosen. The remaining values of active domain are { 5, 4, 7, 2, 6, 9, 10 }. Then, the

collision addresses are selected from the remaining values o f the active domain. We set the

bits corresponding to the remaining values to I in the Bloom filter. To guarantee the

collisions occur, we hash the three collisions 3, 1, and 8 to the addresses of the remaining

values. Then we get the collision addresses from the remaining values. Let us choose 4, 7,

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and 9 as collision addresses. Therefore, the collision 3 will hash to the collision address 4

in the Bloom filter, the collision 1 will hash to the collision address 7, and the collision 8

will hash to the collision address 9. The rest of the attribute values will hash to the

addresses represented by the values.

active domain h(value) —» address Bloom filter collisions

5 1 0

© 2 1

4 .> 0

7 4 I <— ■*»

9 5 1

0 6 1

6 7 I <— 1

9 8 0

10 9 I <— 8

© 10 1

Figure 4-4. Simulating collisions

4.3.2 Problem Caused by Collisions

The major disadvantage of using Bloom filters is the collisions. The consequence

of collisions is that tuples that should be eliminated from the relation are not and hence we

get larger relations and higher costs.

The following example illustrates how the collisions affect the reduction of a

relation using a Bloom filter. We have three relations RI, R2, and R3 in figure 4-5. They

have the common joining attribute B. We will join these three relations by performing

RI x R2 tx R3.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RI A B R2 B C R 3 B D

1 2 1 2 1 3

2 4 j 4 2 5

j 5 4 5 5 8

o 8 6 / 6

8 9 8 9 7 4

Figure 4-5. Relations for illustration the effect o f collisions

To simulate 40% collisions, we randomly choose 40% values o f attribute B in R I.

Let us say the values 2 and 8 are chosen as the collisions. The remaining values of the

attribute B of RI are 4, 5 and 9, so the fourth, fifth, and ninth positions of filter B are set

to 1. The filter B and the collisions are shown in figure 4-6.

RI A B h(value) -> address filter B collisions

2

8

Figure 4-6. Collisions in Bloom filter B

37

1 0

I @ 2 0

2 4 .> 0

3 5 4 1

6 © 5 1

8 9 6 0

7 0

8 0

9 1

10 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We use filter B to reduce R2. We have value 4 in attribute B of R2 and the

fourth position of the filter B is 1, we have value 8 in attribute B of R2 and 8 is one of the

collisions, so we keep these two tuples in R2. We do not have values 5 and 9 in attribute

B of R2, so we update fifth and ninth positions of filter B to 0. The reduced R2 and

updated filter B are shown in figure 4-7.

Reduced R2 B C

4 5

8 9

updated address

-> I

2

j

4

5

6

7

8

9

10

filter

0

0

0

I

0

0

0

0

0

0

B collisions

2

8

Figure 4-7. Reduced R2 and updated filter B

Next, we use filter B to reduce R3. In attribute B of R3, we have value 2. In

figure 4-7, the value 2 is a collision value, so we keep this tuple. The tuple in R3 of figure

4-8 should be eliminated if there is no collision since the attribute B of R2 does not have

value 2. Therefore, we need ship the reduced R3 over the network to complete the query

because of the collisions. This is the consequence of collisions which affect the

performance o f the algorithm in reduction of relation. The attribute B in R3 does not have

value 4, so we update the fourth position of filter B to 0. The reduced R3 and updated

filter B are shown in figure 4-8.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reduced R3 B D updated address filter B collisions

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

Figure 4-8. Reduced R3 and updated filter B

4.4 Experiments with Collisions Using Two Sets of Filters

The experiments in this section are designed for evaluating the performance of our

algorithm under a specific percentage collisions using two sets of filters. The experimental

assumptions such as collision percentages, query types, and relation size are the same as in

the previous sections. We introduce the use of two sets of filters in this section.

In our experiments, we notice that the performance of the Bloom filters on the

queries with two joining attributes is worse than the others with more joining attributes.

When a query contains few joining attributes, the filtering effect of the Bloom filters is

hindered. This is illustrated by the following example.

In figure 4-9, given two relations R1 and R2, both contain joining attributes A and

B. We will show the results produced by a full reducer and our algorithm.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R1 A B R2 A B

1 5 I 4

J 4 •> 5

5 2 5 6

6 6 6 2

2 1 2 1

Figure 4-9. Example relations

By using full reducer, we first join these two relations and obtain the following

result:

_A____B_

2 I

The fully reduced R1 and R2 are:

R1 A B R2 A B

Figure 4-10. Fully reduced relations

Suppose the algorithm processes R1 first. The filters for attributes A and B in R1

are created: A: 1, 2, 3, 5, 6 and B: 1,2, 4, 5, 6. When the filters for A and B are applied to

R2, we have the following result:

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R2 A B

1 4

3 5

5 6

6 2

2 I

Figure 4-11. Non reduction of R2

No reduction has occurred in R2 as we see in figure 4-11. The reason why no

reduction occurs in R2 is the following. For each tuple in R2, the attribute values for A

and B are being hashed and set in each filter by two different tuples in Rl. For example,

the first tuple in R2 has A equal to 1 and B equal to 4. Although no matching tuple exists

in Rl, the first tuple in Rl contains A equal to 1 while the second tuple in Rl contains B

equal to 4. Both of theses values will be hashed and set to 1 in their respective filters.

When the first tuple of R2 is tested, it passes the filters because both of its attribute values

hash to a 1 bit in their respective filters.

Although this hindrance in reduction affects queries with few joining attributes and

relations, it does not appear to be a problem with the queries containing a higher number

of joining attributes and relations. These results show a higher number of joining attributes

decreases the chance of a tuple false passing ail necessary filters.

We will do some experiments on the query types 3-2, 4-2, 5-2, and 6-2.

4.4.1 Two Sets of Filters

From the previous section, we notice that collisions affect the performance of the

algorithm. The collisions are the essential problem in using Bloom filters. Our goal is to

reduce the collisions and have smaller relations to ship over the network to complete the

given query. In this section we investigate how to reduce the collisions by using two sets

of filters.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We use two sets of filters, that is, two filters for each joining attribute. We need

two hash functions for the two filters. Note that two hash functions would give two sets of

collisions. We simulate the two sets o f collisions based on specific percentage of

collisions. In this way, we can analyze the results under specific percentage of collisions.

We utilize the two sets of filters to filtrate the collisions. The two sets of collisions are

randomly selected from active domain based on specific percentage of collisions. The two

sets of collisions may have overlaps.

The two sets of filters filtrate the collisions. We have ‘rules for two sets of filters’

as follows:

The tuple should be kept if the value in this tuple is one of the following three

cases:

a. The value is in both sets of collisions.

b. The value is in one set of collisions and in one filter.

c. The value is not in any set of collisions, but in one filter.

In the following example, we explain how to build two sets of filters and how two

sets of filters reduce the collisions. We use the same relations Rl, R2, and R3 in figure

4-5 of section 4.3.2 (Problem Caused by Collisions). These three relations have common

joining attribute B.

To simulate 40% collisions for two sets of filters, we randomly choose 40% values

of attribute B in Rl as our first set of collisions. Let us say the values 2 and 8 are chosen.

The first filter is constructed by setting fourth, fifth, and ninth positions to 1. Similarly, we

build the second set of collisions by selecting 40% values of attribute B in Rl. Let us say

the values 4 and 9 are chosen. The second filter is constructed by setting second, fifth, and

eighth positions to I. This is shown in figure 4-12.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rl

A B address first filter first collisions second filter second collisions

1 0 2 0 4

1 2 2 0 8 I 9

2 4 3 0 0

3 5 4 1 0

6 8 5 1 1

8 9 6 0 0

7 0 0

8 0 I

9 I 0

10 0 0

Figure 4-12 Two sets of filters

We reduce R2 using two sets of filters and the 'rules for two sets of filters’. We

have value 4 in attribute B of R2 and the fourth position of the first filter is I so we keep

this tuple. We have value 8 in attribute B of R2. In figure 4-12, the value 8 is one of the

first collisions and the eighth position of second filter is 1, so we keep the tuple according

to our ‘rules for two sets of filters’. We do not have value 5 and 9 in attribute B of R2, so

we change fifth and ninth positions of the first filter from 1 to 0. We do not have value 2

and 5 in attribute B of R2, so we update second and fifth positions o f the second filter

from 1 to 0. The reduced R2 and updated two sets of filters are shown in figure 4-13.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reduced R2

B C address first filter first collisions second filter second collisions

1 0 2 0

2 0 8 0

3 0 0

4 I 0

5 0 0

6 0 0

7 0 0

8 0 1

9 0 0

10 0 0

Figure 4-13 Reduced R2 and updated filters

Next, we reduce R3 with the updated filters. In attribute B of R3, we have value

2. In figure 4-13, value 2 is a value of the first collisions, but the second positions o f first

filter and second filter are 0. By the "rules of two sets of filters’, the tuple with value 2 in

attribute B of R3 is reduced. The other tuples in R3 are also reduced because they are not

in the filters and collisions. Therefore, we do not need to ship the R3 over the network to

complete the query. In this way, we improve the performance of our algorithm using two

sets of filters to reduce the collisions.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 Results

In this chapter, we present the results which are divided into three groups. The

result group one is for the results without collisions. The result group two is for the results

with collisions using a single set of filters. The result group three is for the results with

collisions using two sets of filters. We compare the results of these three groups to show

that two sets of filters can reduce the number of collisions and improve the performance of

the algorithm.

5.1 Results without Collisions

The main purpose of the experiments without collisions is to determine how well

the algorithm performs under the assumption of a perfect hash function.

The figure 5-1 presents the results without collision.

Query Type Average Reduction (%) Full Reduction (%)
3 - 2 93.44 50
4 - 2 97.12 68
5 - 2 99.29 88
6 - 2 99.79 90

Average of the Column 97.41 74

Figure 5-1. Results without collisions

In figure 5-1, the definition of query type is given in section 4.1.2 (Queries and

Relations), the Average Reduction (%) and the Full Reduction (%) are described in

section 4.1.4 (Analysis Program), the results are based on the experimental assumption

described in section 4.2 (Experiments without Collisions) and each data is the average

result of 100 queries.

The results without collision show that the algorithm achieves substantial

reductions in the sizes of the relations. This is shown in the second column of the table in

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

figure 5-1. On average for this column, approximately 97.41% of all tuples not required

for the final answer of the query are eliminated from the relations.

In the third column of the table in figure 5-1, the results of full reduction of query

types 5-2 and 6-2 are good. They are 88% and 90% respectively.

Queries of types 3-2 and 4-2, in many cases, have substantially lower amounts of

data reduction than queries of other types. Also, queries o f types 3-2 and 4-2 are the least

likely to be tiilly reduced.

5.2 Results with Collisions Using a Single Set of Filters

The results without collisions show that, on average, the algorithm achieves

significant reduction of unneeded data in query relations, and achieves an acceptable

percentage of fully reduced queries. However, the experiments without collisions do not

consider the effect of collisions on the performance of the algorithm, and the collisions are

the major problem when using Bloom filters.

In this section, we present the results of the experiments under the specific

percentages of collisions using a single set of filters. We compare the results in this section

to the results without collisions in order to show the fact that the collisions affect the

performance of the algorithm.

The results of the experiments are based on the assumptions described in section

4.3 (Experiments with Collisions Using a Single Set of Filters). We evaluate the

algorithm under the assumption of collisions. We simulate the specific percentages of

collisions at 1%, 5%, 10%, 20%, 30%, 40%, 50% and 60%.

In figure 5-2, we present the results o f average reduction (%) with collisions. Each

data is the average result of 100 queries. The first row represents the specific percentages

of collisions. We do the experiments on the query types 3-2, 4-2, 5-2, and 6-2. The last

column is the average data of the different query types. The last row represents the

average data of different percentages of collisions. The data at right bottom comer is the

average result of all data.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

collision % 1 5 10 20 30 40 50 60 average
3 -2 89.27 86.65 87.56 87.10 84.44 78.52 80.39 70.12 83.59
4 -2 94.73 94.29 94.63 92.88 92.43 90.49 87.88 86.35 91.92
5 -2 97.65 97.22 98.58 97.80 96.53 96.06 93.57 92.23 96.42
6 -2 99.14 98.97 99.43 98.57 98.58 97.86 97.73 94.23 98.17

average 95.20 94.28 95.05 94.09 93.00 90.73 89.89 85.73 92.53

Figure 5-2. Results of average reduction (%) with collisions using a single set of filters

We analyze results of average reduction (%) with collisions in figure 5-2 as

follows.

On average, 92.53% of all unneeded tuples are eliminated by the algorithm when

the collision rate is in the range 1% to 60%. Therefore, on average, the algorithm gives

substantial reductions in relation size.

For query types 3-2 and 4-2, the algorithm gives average percentages of reduction

which are substantially lower than those o f the remaining query types.

In figure 5-3, we show the results of full reduction with collisions using a single set

of filters. The results are based on the experimental assumptions described in section 4.3 (

Experiments with Collisions) and each data is the results of 100 queries. The first row

represents the specific percentages o f collisions. We also do the experiments on query

types 3-2, 4-2, 5-2, and 6-2. The last column shows the average data of different query

type. The last row represents the average data of different percentage of collisions. The

data at right bottom comer is the average result of all data.

collision % 1 5 10 20 30 40 50 60 average
3 -2 26 19 19 18 19 17 21 13 21
4 -2 50 41 40 34 39 29 29 14 37
5 -2 70 66 58 47 43 44 40 30 54
6 - 2 80 66 52 46 41 36 32 25 52

average 57 48 42 36 35 32 31 21 41

Figure 5-3. Results of average percentages of full reduction with collisions using a
single set of filters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The results in figure 5-3 show that the percentage of full reduction declines

substantially when the percentage of collisions increases. On average, 41% of all queries

are fully reduced by the algorithm when the collision rate is from 1% to 60%. In figure

5-1, the average full reduction is 74% under the assumption of perfect hash function. The

full reduction decreases more than 30%. Therefore, the amount of collisions substantially

affects the number of queries achieving full reduction.

In figure 5-3, we notice that query types 3-2 and 4-2 have percentages o f full

reduction that are significantly lower than other query types.

5.3 Results with Collisions Using Two Sets of Filters

We have improved the algorithm by utilizing two sets of filters. The assumptions

of the experiments are similar to the assumptions of the experiments with collisions. The

assumptions are described in chapter 4 (Experiments).

In figure 5-4, we present the results o f evaluation of the algorithm using two sets

of filters under the specific percentages of collisions. The results show the average

reduction (%) with collisions. Each data in the table is the average results of 100 queries.

The first row represents the specific percentages of collisions. We also do the experiments

on query types 3-2, 4-2, 5-2, and 6-2. The last column contains the average data of

different query types. The last row represents the average data of the different percentage

of collisions. The data at right bottom comer is the average result of all data.

collision % 1 5 10 20 30 40 50 60 average
3 - 2 89.08 89.17 85.53 89.14 88.63 88.91 87.53 89.39 88.29
4 - 2 94.79 94.57 93.46 96.88 95.03 95.06 93.12 94.95 94.79
5 - 2 98.24 97.66 97.76 98.09 97.30 97.41 97.39 98.52 97.85
6 - 2 99.23 99.61 99.37 99.30 99.41 99.02 99.01 99.46 99.25
average 95.38 95.25 94.03 95.85 95.09 95.11 94.26 95.58 95.05

Figure 5-4. Results of average percentage reduction (%) with collisions for the
two sets of filters

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The results in figure 5-4 show us the following facts:

- The different percentages of collisions do not affect the average reduction of

relations using two sets of filters described in the previous section. We obtain

this conclusion by comparing the data in each row.

~ The performance of the algorithm using two sets of filters is better than the

performance of the algorithm using a single set of filters under the specific

percentage of collisions. The average of all data is improved from 92.53% to

95.05%. We obtain this conclusion by comparison the results in figure 5-4 to

the results in figure 5-2. The results in figure 5-2 are the evaluation of the

algorithm using a single set of filters

- By using two sets of filters, for the query type 3-2, the average result of

various percentage of collisions is improved from 83.50% to 88.29% and for

the query type 4-2, the average result of various percentage of collisions is

improved from 91.92% to 94.79%.

- The average result of all data in figure 5-4 is 95.05%, only 2.36% lower than

the results without collision in figure 5-1, the average reduction of different

query types is 97.41% in that table. This means that the performance of our

algorithm using two sets of filters is good under the assumption of collisions.

In figure 5-5, we show the results of full reduction for evaluation of the algorithm

using two sets of filters under the specific percentage of collisions.

collision % 1 5 10 20 30 40 50 60 average
3 -2 47 41 31 46 42 34 34 30 38
4 - 2 59 54 54 61 57 55 45 53 55
5 -2 82 74 72 71 70 72 69 77 74
6 - 2 87 90 85 90 91 79 84 82 86

average 69 65 61 67 65 60 58 61 63

Figure 5-5. Results o f full reduction (%) with collisions for the two sets of filters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The results in figure 5-5 tell us that

~ The different percentages of collisions do not affect the full reduction of

relations much using two sets of filters. We obtain this conclusion by

comparing the data in each row.

~ The performance of the algorithm using two sets filters is better than the

performance of the algorithm using a single set of filters under the specific

percentage of collisions. The average of all data is improved by 22%, from 41

to 63%. We obtain this conclusion by comparison the results in figure 5-5 to

the results in figure 5-3. The results in figure 5-3 are the evaluation of the

algorithm using a single set of filters

- For the query type 3-2, the average result of various percentage of collisions

is improved from 21% to 38%. For the query type 4-2, the average

result of various percentage of collisions is improved from 37% to 55%.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Conclusions

The optimization of general queries in a DDBMS is an important research area.

The problem is the selection of the best sequence of database operations to process the

query and keep costs to a minimum. As finding the optimal solution is NP-hard, the

approach is to develop heuristic algorithms which can produce near-optimal solutions.

The main approaches in the literature have been joins [5, 31, 32, 33], semijoins [7,

8, 9, 10,11, 35] and filters [16, 17, 18, 19, 20, 21, 24, 26], In general, semijoin-based

algorithms perform better than join-based algorithms. But the problem is that semijoins are

still expensive. Filters have been proposed as a cheap way to implement semijoins.

However, since Bloom filters are constructed using hash functions, collisions are a

problem. Specifically, because of collisions some relations in a query may not be reduced

to the full extent possible. This means that data transmission costs are higher than they

need to be.

In this thesis we investigate the effect of collisions on a filter-based algorithm. Our

hypothesis is that the use of two sets of filters, each with a different set of collisions, can

reduce the effect of the collisions and improve the performance of the algorithm.

To investigate the effect of the collisions and test our hypothesis we conducted

three sets of experiments:

1. We simulated a perfect hash function to evaluate the performance of the

algorithm without collisions.

2. We simulated various percentages o f collisions to see the effect o f these

collisions on the performance of the algorithm. For these experiments we used

a single set of filters for each joining attribute.

3. We noted that certain types of queries were very badly affected by the

collisions. So in our last set of experiments we simulated two separate hash

functions, with possibly different sets of collisions, to investigate the effect of

two sets o f filters on the performance of our algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From our experiments we conclude the following:

1. Using a perfect hash function, the algorithm achieves substantial reduction in

the relations.

- On average, approximately 97.41% of all tuples not required for the final

answer of the query are eliminated from the relations.

- The average tuil reduction of ail data is 74%.

- We get better reduction when the query requires more relations.

2. With a single set of filters, collisions effect the performance of the algorithm.

- The full reduction of the algorithm declines substantially when the

percentage of collisions increases. On average, only 41% of all queries are

fully reduced.

~ The query types 3-2 and 4-2 have low percentages of full reduction, 21%

and 37% respectively.

3. Using two sets of filters, the performance of the algorithm is much better than

using a single set of filters under the assumption of collisions.

- The average reduction o f all data is improved from 92.53% to 95.05%.

- The average reduction of all data is 95.05% when collisions occur. This is

only 2.36% lower than the result under perfect hash function.

~ The average full reduction of all data is improved by 22%, from 41% to

63%.

~ The different percentages of collisions do not affect the reduction.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] M.T. Ozsu and P. Valduries, “Principles of Distributed Database System”, Printice

Hall International, 1991.

[2] C. Wang and M. S. Chen, “On the Complexity of Distributed query Optimization”,

IEEE Transactions on Knowledge and Data Engineering, 8(4), Pages 650-662, 1996.

[3] Xiaobo Ma, “The Use of Bloom Filters to Minimize Response Time in Distributed

Query Processing”, Master’s thesis, University of Windsor, 1997.

[4] W. Perrizo and C. S. Chen. “Composite semijoins in distributed query processing”,

Information Science, 50: 197-218, 1990.

[5] S. Bandyopadhyay, J. M. Morrissey, and A. Senpupta, “A Query Optimization

Strategy for Distributed Databases on All-optical Networks”, In Proceedings of the

Canadian Conference on Electrical and Computer Engineering, pages 245-248, 1996.

[6] J.M. Morrissey, W.T. Bealor, and S. Kamat, “A comparative evaluation of dynamic

heuristics for cost minimization”. In Proceedings of the 8th International Conference on

Computing and Information (ICCI’96), 1996.

[7] B.C. Ooi and B. Srinivasan, “On the identification of semijoin sequences for

distributed query processing”, In Processings of the IFIP WG 10.3 Working Conference

on Distributed Processing, pages 551-561, 1987.

[8] N. Roussopoulos and H. Kang, “A pipelined n-way join algorithm based on the 2-way

semijoin program”. IEEE Transactions on Knowledge and Data Engineering, 3(4), pages

486-495, 1991

[9] M.S. Chen and P.S. Yu, “Combining join and semijoin operations for distributed

query processing”, IEEE Transactions on Knowledge and Data Engineering, Pages 534-

542, 1993

[10] P.S.M. Tsai and A.L.P. Chen, “Optimizing entity join queries by extended semijoins

in a wide area multidatabase environment”, In Proceedings 1994 International Conference

on Parallel and Distributed Systems, Pages 676-681, 1994.

[11] X. Lin, M.E. Orlowska, and X, Zhou, “Using parallel semi-join reduction to

minimize distributed query response time”, In Proceedings o f the First International

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conference on Algorithms and Architectures for Parallel Processing, pages 517-526,

1995.

[12] A.Y. Lu and P.C.Y. Sheu. “Processing of multiple queries in distributed databases”.

In Proceedings of the Seventh International Conference on Data Engineering, Pages 42-

49, 1991.

[13] M.S. Chen and P.S. Yu. “Combining Join and Semi-join Operations for Distributed

Query Processing”. IEEE Transactions on Knowledge and Data Engineering, vol. 5, no. 3

June 1993.

[14] P. Valduriez and G. Gardarin. “Join and semijoin algorithms for a multiprocessor

database machine”. ACM Transactions on Database Systems, vol9, no. I, March 1984,

Pages 133-161.

[15] T.S. Chen, A.L.P. Chen, and W.P. Yang. “Hash- semijoin: A new technique for

minimizing distributed query time” . In Proceedings of the 3rd Workshop on Future Trends

of Distributed Computing Systems, pages 325-330, 1992.

[16] S. Kamat. “Dynamic strategy and Bloom filters in distributed query optimization”.

Master’s thesis, University of Windsor, 1996.

[17] Z. Li and K.A. Ross. “Perfjoin: an alternative to two-way semijoin and bloomjoin”.

In Proceedings of CIKM’95, pages 137-144, 1995.

[18] J.M. Morrissey and X. Ma. “Investigating response time minimization in distributed

query optimization”. Presented at ICCI’98, 1998.

[19] J.M. Morrissey and W.K. Osborn. “Experiments with the use o f reduction filters in

distributed query optimization”. In Processings o f the Ninthe LASTED International

Conference on Parallel and Distributed Computing and Systems, 1997.

[20] J.M. Morrissey. “Reduction filters for minimizing data transfers in distributed query

optimization”. In Proceedings of the 1996 Canadian Conference on Electrical and

Computer Engineering, 1996.

[21] J.K.Mullin. “A second look at Bloom filters”. Communications of the ACM, vol. 26,

no.8, 1983

[22] J. K. Mullin. “Optimal semijoins for distributed database systems”. IEEE

Transactions on Software Engineering, vol. 16, no. 5, pages 558-560, 1990.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[23] J.K. Mullin. “Estimating the size of a relational join”. Information System, vol. 18,

no. 3, pages 189-196, 1993

[24] W.K. Osbom. “Distributed query optimization using bloom filters” . Report,

University of Windsor, 1996.

[25] J.C.R. Tseng and A.L.P. Chen. “Improving distributed query processing by hash-

semijoins”. Journal of Information Science and Engineering, vol. 8, pages 525-540, 1992.

[26] C.Y. Wang, W.P. Yang, J.C.R. Tsing and M. Hsu. 'Random filter and its analysis".

In Proceedings of the 23rd Asilomar Conference on Signals, Systems and Computers,

pages 1031-1035, 1989.

[27] W. K. Osbom. “The use of reduction filters in distributed query optimization”.

Master thesis, University of Windsor, 1998.

[28] Jarke, M and Koch, J, “Query Optimization in database system”, ACM Compu.

Survey, vol. 16, no. 2, June 1984, pages 111-152.

[29] Harris, EP and Ramamohanarao, K, “Join Algorithm Cost Revisited”, The VLDB

Journal, vol. 5, 1994, pages 64-84.

[30] Lu, AY and Sheu, PC-Y, “Processing multiple queries in distributed databases”,

Proc. of IEEE, 1991, Pages 42-49.

[31] Willia Perrizo, Prabhu Ram and David Wenberg, “Distributed Join Processing

Performance Evaluation”, IEEE 1994, International Conference on System Sciences.

[32] G.M. Lohman, C.Mohan, L.M. Haas, D. Daniels, B.G. Lindsay, P.G. Selinger, and

P.F. Wilms. “Query processing in R*”. In Query Processing in Database Systems.

Springer, New York, 1985.

[33] J.K. Ahn and S.C. Moon. “Optimizing joins between two fragmented relations on a

broadcast local network”. Information Systems, vol. 16, no. 2, pages 185-198,1991.

[34] J.S.J. Chen and V.O.K. Li. “Optimizing joins in fragmented database systems on a

broadcast local network”. IEEE Transactions on Software Engineering, vol. 15, no. 1,

pages 26-38, 1989.

[35] Apers, PMG, Hevner, A, and Yao, SB, “Optimization algorithm for distributed

queries”, IEEE Trans. Software Eng., Vol.9, No.l, Jan. 1983, Pages 57-68.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[36] Bernstein, PA, Goodman, N, Wong, E, Reeve, C, and Rothnie, J, “Query processing

in a system for distributed database (SDD-1)”, ACM Trans. Syst., Vol.6, Dec. 1981,

pages 602-625.

[37] Ceri, S, Gottlob, G, Tanca, L, and Wiederhold, G, “Magic semijoins”, Information

Processing Letters, Vol. 33, North-Holland, 1989.

[38] Chen, M-S and Yu, PS, “Interleaving a join sequence with semijoins in distributed

query processing", IEEE Trans. Parallel and Distributed Systems, 1992, pages 611-621.

[39] Hevner, AR and Yao, SB, “Query processing in distributed database system”, IEEE

Trans. Software Eng., vol. SE-5, no. 5, May 1979, pages 177-187.

[40] Pramanik, S and Vineyard, D, “Optimizing join queries in distributed databases”,

IEEE Trans. Software Eng., vol. 14, no.9, Sept. 1988, pagesl319-1326.

[41] Yu, CT and Chang, CC, “On the design of a of a query processing strategy in a

distributed database environment”, Proc. ACM SIGMOD Intl. Conf. Management of

Data, 1983, pages 30-39.

[42] W. T. Bealor. “Semijoin strategies for total cost minimization in distributed query

processing”. Master’s thesis. University of Windsor, 1995.

[43] J.M. Morrissey, S. Bandyopadhyay, and W.T. Bealor. “A comparison of static and

dynamic strategies for query optimization”. In proceedings of the 7th IASTED/ISM

International Conference on Parallel and Distributed Computing Systems, 1995.

[44] J.M. Morrissey, S. Bandyopadhyay, and W.T. Bealor. “A heuristic for minimizing

total cost in distributed query processing”. In proceedings of the 7th International

Conference on Computing and Information - ICCI’95, 1995.

[45] J.M. Morrissey and W.T. Bealor. “Minimizing data transfers in distributed query

optimization: A comparative study and evaluation”, Computer Journal, vo!39, no. 8, 1997.

[46] H. Kang and N. Roussopoulos. “Using 2-way semijoins in distributed query

processing”. In Progceedings of the 3rd International Conference on Data Engineering,

pages 644-651, 1987.

[47] C. Wang, V.O.K. Li and A.L.P Chen. “Distributed query optimization by one-shot

fixed-precision semijoijn execution”. In Proceedings o f the 7th International Conference

on Data Engineering, pages 756-763, 1991.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[48] C. Wang, V.O.K. Li and A.L.P Chen. “One-shot semi-join execution strategies for

processing distributed join query”. Computer Systems Science and Engineering, vol.8, no.

4, pages 245-253, 1993.

[49] J.S.J. Chen and V.O.K. Li. “Domain-specific semijoin: a new operation for

distributed query processing”. Information Sciences, 52, 1990.

[50] F. Barlos and O. Frieder. “On the development of a site selection optimizer for

distributed and parallel database systems". In CIKM’93. Proceedings o f the Second

International Conference on Information and Knowledge Management, pages 423-432,

1993.

[51] BH. Bloom, “Space/time tradeoffs in hashing coding with allowable errors”,

Commun. ACM, vol. 13, no.7, July 1970, pages 422-426.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

NAME Yan Liang

PLACE OF BIRTH Chengdu, China

YEAR OF BIRTH 1961

EDUCATION M. Sc., Computer Science,

University of Windsor,

Windsor, Ontario, Canada

1997 - 1999

B.Sc., Mechanical Engineering,

Beijing Institute of Technology,

Beijing, China

1978 ~ 1982

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Reduction of collisions in Bloom filters during distributed query optimization.
	Recommended Citation

	tmp.1618578716.pdf.ptBsO

