
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2013

Pathfinding by demand sensitive map abstraction
Sourodeep Bhattacharjee

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Bhattacharjee, Sourodeep, "Pathfinding by demand sensitive map abstraction" (2013). Electronic Theses and Dissertations. Paper 4720.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/4720?utm_source=scholar.uwindsor.ca%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Pathfinding by Demand Sensitive
Map Abstraction

By
Sourodeep Bhattacharjee

A Thesis Submitted to the Faculty of Graduate Studies
through School of Computer Science in Partial Fulfillment of
the Requirements for the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada
2012

c©2012 SOURODEEP BHATTACHARJEE

PATHFINDING BY DEMAND-SENSITIVE
MAP ABSTRACTION

by
SOURODEEP BHATTACHARJEE

APPROVED BY:

Dr. Myron Hlynka
External Reader

Department of Mathematics and Statistics

Dr. Dan Wu
Internal Reader

School of Computer Science

Dr. Scott Goodwin
Advisor

School of Computer Science

Dr. Subir Bandyopadhyay
Chair of Defense

School of Computer Science

Date: December 03, 2012

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of
this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe
upon anyone’s copyright nor violate any proprietary rights and that any
ideas, techniques, quotations, or any other material from the work of other
people included in my thesis, published or otherwise, are fully acknowledged
in accordance with the standard referencing practices. Furthermore, to the
extent that I have included copyrighted material that surpasses the bounds of
fair dealing within the meaning of the Canada Copyright Act, I certify that
I have obtained a written permission from the copyright owner(s) to include
such material(s) in my thesis and have included copies of such copyright
clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions,
as approved by my thesis committee and the Graduate Studies office, and
that this thesis has not been submitted for a higher degree to any other
University or Institution.

iii

Abstract
In this thesis, we present a new algorithm: Demand Sensitive Map

Abstraction (DSMA). DSMA is a special kind of hierarchical pathfind-
ing algorithm in which we vary the granularity of abstraction of the
high-level map based on pathfinding request demand associated with
various regions in the high level map and the search time of the last
path request. Additionally, the low level A* search is not restricted
by the boundaries of the high level sectors. By dynamically varying
the abstraction we are able to maintain a balance between path qual-
ity and search time. We compare DSMA with two variations where
the granularity of abstraction is constant; one of those contains maxi-
mum granularity throughout (Dense HA*) and the other contains the
minimum (Sparse HA*).

Our experimental results show that DSMA’s performance is a bal-
ance between Dense HA* and Sparse HA*. Depending on the re-
sources available DSMA can behave either as Dense HA* or as Sparse
HA* or lie somewhere in between. Moreover we do not pre-cache
paths at any level, which gives us the added benefit of working with a
flexible abstract map without the necessity of changing the pre-cached
paths if the low level map changes.

iv

Dedication

To my father, Late Debojit Bhattacharjee...

v

Acknowledgments

First of all, I would like to thank my supervisor - Dr. Scott Goodwin for being
patient with me and for helping me nurture the idea of Demand Sensitive Map
Abstraction; always commending the strong ideas while providing suggestions
on improving the weak ones. I would also like to thank Dr. Richard Frost
for showing how and where to find dependable research materials and how
to extract essential information from lengthy papers quickly. I would like to
thank my friend Mirna Šečić, for her recommendations on academic writing
style and improving the graphics presented in this thesis. I am grateful to the
committee members -Dr. Myron Hlynka and Dr. Dan Wu and the Chair Dr.
Subir Bandyopadhyay for finding time from their busy schedules to attend
my thesis proposal and defense.

Thank you all, it has been a very satisfying and exciting journey.

vi

Contents

Author’s Declaration of Originality iii
Abstract . iv
Dedication . v
Acknowledgments . vi
List of Figures . ix

1 Introduction 1
1.1 Problem Domain . 1
1.2 Contribution . 1
1.3 Organization . 3

2 Hierarchical Pathfinding 4
2.1 Near Optimal Techniques . 5

2.1.1 Hierarchical A* . 5
2.1.2 Near Optimal Hierarchical A* 7
2.1.3 Partial Pathfinding using Map Abstraction and Refine-

ment . 11
2.1.4 Cooperative Pathfinding 14

2.2 Improvements to Near Optimal Techniques 18
2.2.1 Improving Collaborative Pathfinding using Map Ab-

straction . 18
2.2.2 HPA* Enhancements 20

3 Demand Sensitive Map Abstraction 23
3.1 Motivation . 23
3.2 Abstract Terrain Representation: Triangle Bin-trees 25
3.3 Measuring Demand . 35
3.4 Composition and Decomposition Queues 36

3.4.1 The Decomposition Queue 36
3.4.2 The Composition Queue 38

3.5 Operations . 42
3.5.1 The Decomposition Operation 42
3.5.2 The Composition Operation 47

3.6 Pathfinding using DSMA . 52

vii

4 Experimental Analysis 60
4.1 The Setup . 60
4.2 Results and Discussion . 64

4.2.1 Path Quality . 64
4.2.2 Nodes Expanded . 68
4.2.3 Relative Time Consumption 70
4.2.4 Comparison on Map 71

5 Conclusion 72

6 Future Work 74

Glossary 75

Acronyms 76

References 77

Vita Auctoris 79

viii

List of Figures

1 Illustration of Pre-Processing step: Near Optimal HPA* . . . 8
2 Illustration of Intra/Inter Edges in Near Optimal HPA* 9
3 Illustration of QuickPath . 12
4 Experimental maps for WHCA*(w,a) and CPRA* 19
5 Grid/Cell . 27
6 Illustration of Triangle Binary Tree 28
7 Levels in Triangle Binary Tree 30
8 Sample Game Map . 32
9 Sample Game Map with Grids 33
10 Sample Game Map showing Hierarchical Clusters 34
11 The Decomposition Queue . 36
12 Initial Decomposition Queue 37
13 The Composition Queue . 38
14 Empty Composition Queue . 39
15 Initial Composition Queue . 40
16 Relative Demand Levels . 42
17 Decomposition . 44
18 The Decomposition Operation 45
19 Relative Demand Levels . 48
20 Composition . 49
21 The Composition Operation 50
22 Adjacent and Neighbor Triplets 52
23 DSMA Map showing high level triplets and start and goal

positions . 53
24 Two possible abstract paths 54
25 Choosing the Adjacent Triplets 55
26 Complete Abstract Path . 56
27 Actual Path . 57
28 An Alternate Case . 58
29 After Path Smoothing . 59
30 Sample Sparse HA* Map . 62
31 Sample Dense HA* Map . 63
32 Path Length Graph . 66
33 Path Length Graph . 67

ix

34 Nodes Expanded Graph . 69
35 Path Length Graph . 70
36 Visual Comparison . 71

x

Pathfinding by Demand Sensitive Map Abstraction

1 Introduction

1.1 Problem Domain

In this thesis we try to solve the problem of pathfinding in game maps.

Pathfinding is the problem of finding a route of desired quality from a given

start location to a given goal location in a game map. It consists of two

phases: path planning and path following; the latter encompasses the traver-

sal of planned path and dealing with unpredicted dynamic obstacles or other

mobile agents. In our thesis we restrict all our claims to path planning only.

We attempt to solve the problem of pathfinding in game maps using

hierarchical pathfinding techniques. Hierarchical pathfinding involves the use

of a high level abstract map created from the low level, actual, game map.

This is employed to overcome the exponential search time of A* search. We

assume that the map is known a priori and hence exploration is not necessary.

All our maps use grid worlds at their lowest level and the grids have octile

navigation which means a mobile agent can move north, south, east, west,

north-east, north-west, south-east and south-west.

1.2 Contribution

In this thesis we present a new algorithm which we call Demand Sensitive

Map Abstraction (DSMA). In this algorithm we vary the abstract map dy-

namically depending on the demand of pathfinding in a particular section

and the last pathfinding time.

1

Pathfinding by Demand Sensitive Map Abstraction

We claim that by varying the granularity of abstraction dynamically we

can make optimal use of resources (CPU time and memory space) to find a

suitable path, as opposed to keeping the granularity constant throughout the

game-play. There are set, industry standard, upper and lower bounds on the

time, that can be devoted to pathfinding when a game is being played which

is one millisecond (1 ms) to three milliseconds (3 ms). DSMA attempts to

keep the pathfinding time between these limits by varying the granularity

of abstraction, associated with either high demand or low demand regions,

depending on whether the last pathfinding time went above 3 ms (region is

split into two, finely grained, regions) or below 1 ms (two low demand regions

are coalesced to have a single, coarsely grained, region), respectively.

In order to prove our claim we compare DSMA to two other variations

where we do not vary the granularity of the abstract map. This gives us an

idea of the benefit we can get from dynamically varying the granularity of

abstraction. We measure path quality, pathfinding time and number of cells

explored to find a path. The experimental results support our claim, since

the performance metric curves of DSMA lie between the curves of the two

constant granularity variations.

Our work is significant because it is the first one to vary the granular-

ity of abstraction associated with specific regions instead of adding more

hierarchical levels to suit the resources available. So DSMA provides a new

philosophy of interpreting hierarchical pathfinding and opens up avenues for

further research in a new direction, within the same research area.

2

Pathfinding by Demand Sensitive Map Abstraction

1.3 Organization

This thesis contains four major sections: “Hierarchical Pathfinding” which

discusses the previous related work, “Demand Sensitive Map Abstraction” in

which we discuss our algorithm (DSMA) and explain why and how DSMA

works, “Experimental Analysis” where we discuss our experimental setup,

the results and discuss the graphs concisely and finally the “Conclusion.”

3

Pathfinding by Demand Sensitive Map Abstraction

2 Hierarchical Pathfinding

The term “Hierarchical Pathfinding” was first penned in the paper “Hierar-

chical A*: Searching Abstraction Hierarchies Efficiently” (Holte et al., 1996),

which was the first paper that initiated this area of research. In large search

spaces with many obstacles and pathfinding units, the execution time of A*

search (Hart et al., 1968) becomes prohibitively large. To overcome this prob-

lem, Hierarchical pathfinding is employed. The process involves splitting up

the search space in regions and creating an abstract pathfinding map with

these abstract regions by placing an edge between connected regions. Each

region thus obtained can be further split into sub-regions. Each such con-

nection of regions form one level of hierarchy in the collection of pathfinding

maps. This process is carried out in a pre-processing step and all abstracted

regions are cached, along with the distance between them.

Later, during game play, when any game agent requests a path, the algo-

rithm begins searching for a path in the topmost abstract hierarchical map

by running A* search between regions. The path thus obtained is refined

subsequently by running A* search on lower level maps until the real game

map is reached. Collectively, the pre-processing and the on-line search is

called Hierarchical Pathfinding A*. This process ensures search for the path

is restricted only to those regions which is likely to contain the optimal path.

4

Pathfinding by Demand Sensitive Map Abstraction

2.1 Near Optimal Techniques

In this section we will discuss some of the first papers on Hierarchical Pathfind-

ing. The authors in these papers claim to have achieved results that are very

close to optimal or the desired least cost (edge weight) path. While all of

the papers discuss the idea of hierarchical pathfinding, their techniques are

different from each other and hence demand a discussion.

2.1.1 Hierarchical A*

The authors of the paper titled “Hierarchical A*” (Holte et al., 1996) claim

that this paper was the first one to address the problem of high execution

time of A* in large maps by applying Hierarchical Pathfinding techniques.

The motivation of this paper was to break Valtorta’s Barrier (Valtorta, 1983),

which is the number of nodes expanded when searching blindly. Valtorta’s

theorem (Valtorta, 1983) states that this barrier cannot be broken by “em-

bedding transformations” - abstracted state spaces. (Holte et al., 1996) is

different from the other papers discussed in this thesis, as it deals with puzzles

and not game world maps. Nonetheless it demands a discussion, since (Holte

et al., 1996) is the first paper to explore the idea of Hierarchical Pathfinding.

The idea proposed by the authors involved selecting a state (node in the

pathfinding graph) with maximum degree and grouping it together with its

neighbors within a certain distance (abstraction radius), and forming a single

node with them. The process was repeated until a level is created with only

one state. The lowest level of this hierarchy represents the original graph.

5

Pathfinding by Demand Sensitive Map Abstraction

When searching for a path in the lowest level, the algorithm proposed by

the authors, searched for a high level path in the abstract levels until the

highest level with a single state was reached. This algorithm was called

Naive Hierarchical A* (NHA*).

In their preliminary experiments the authors found that NHA* was ex-

panding more states than A*. They explained this observation by stating

that A* search using monotone heuristic will never expand the same state

twice. NHA*, on the other hand, expanded same states repeatedly in higher

levels for same start-goal pair in the base level. To overcome the problem they

introduced a technique they named h*-caching. The idea involved caching

h(s) values for states that have been expanded already and reusing these val-

ues in subsequent searches without expanding the state. Their experiment

showed that NHA* was expanding roughly the same number of states as A*.

This implied that Valtorta’s Barrier was not yet broken and more enhance-

ments were needed. The next improvement suggested by the authors relied

on the idea that for every state X for which h(X) is known, a path from

X to goal is also known. This precludes the necessity to expand X, if this

path is cached along with h(X). The authors state that “knowing a path of

length g(X) to X means knowing a path of length g(X) + h(X) to the goal”.

Instead of adding X to the open list, the goal state is added to it and the

search terminates when the goal is on top of the list. They call this technique

Optimal Path Caching. Thus NHA* with Optimal Path caching was able to

break Valtorta’s Barrier; this is the claim made by the authors in (Holte

6

Pathfinding by Demand Sensitive Map Abstraction

et al., 1996).

The paper concludes by mentioning two important future research areas:

firstly, the authors state that a better method is needed to vary the granu-

larity of abstraction and secondly, to find a better way to build abstracted

states automatically.

2.1.2 Near Optimal Hierarchical A*

The topic of Hierarchical Pathfinding was revived in the paper Near Opti-

mal Hierarchical Pathfinding (Botea et al., 2004). Their paper addressed

the problem of pathfinding on “large” maps where limited CPU and mem-

ory resources create severe bottlenecks. They achieved this by employing

hierarchical pathfinding techniques. (Botea et al., 2004) is very well writ-

ten and introduces many new ideas, algorithms and optimizations of those

algorithms.

The previous work referred to by the authors include (but are not lim-

ited to) (Rabin, 2000) and (Holte et al., 1996). The authors state that their

work is very similar to A* Aesthetic Optimizations (Rabin, 2000) in that

both employ hierarchical pathfinding by map abstraction. They differ in the

respect that the algorithms proposed by the authors support multiple levels

of hierarchy while the other supports only two. Another difference is that

in A* Aesthetic Optimizations, the optimal distances between two states are

computed on-line while in this paper the authors pre-compute and cache this

information. The authors state that their contribution is similar to Hierarchi-

7

Pathfinding by Demand Sensitive Map Abstraction

cal A* (HA*) (Holte et al., 1996) in that both use hierarchical representation

of the search space for reducing search effort. However, the two papers are

different in the respect that Hierarchical Pathfinding A* (HPA*) proposed

by the authors uses abstraction to enhance the representation of the search

space while HA* is used for “automatically generating domain independent

heuristic state evaluations”.

The algorithm proposed by the authors consists of two phases: a pre-

processing step and an on-line search. The pre-processing step defines a

topological abstraction of the map. The map is divided into rectangular

regions (“clusters”) as shown in the figure 1 below (Botea et al., 2004), p.24:

Figure 1: Illustration of Pre-Processing step: Near Optimal HPA*

8

Pathfinding by Demand Sensitive Map Abstraction

The authors then define a gateway between two clusters by identifying a

set of entrances connecting them, where an entrance is the longest obstacle-

free set of cells that lie in the border of two adjacent clusters. The transition

point (the point where an agent goes from one cluster to another) is the

midpoint of the entrance. The authors call this an inter-edge. For each pair

of such points inside a cluster, the authors link them by edges and name

them intra-edge. This forms a high level abstract graph. This is illustrated

in the figure below (Botea et al., 2004), p.24:

Figure 2: Illustration of Intra/Inter Edges in Near Optimal HPA*

9

Pathfinding by Demand Sensitive Map Abstraction

The next step consists of an on-line search. In this step the start and

goal nodes are inserted into the abstract graph and use A* search to find a

path from start to goal in the abstract graph. This gives an abstract path

which can be made concrete by mapping it to the low level graph and further

refining the path.

For their experiments, the authors used 120 maps from a game (Baldur’s

Gate from Bioware) varying in size from 50x50 to 320x320. For each map the

authors generated random start and goal states where a valid path between

the two existed. The authors state that A* is slightly better than HPA*

when the solution length is small (i.e., the search problem is easy). The

authors explain the difference in performance by stating that the overhead

of inserting start and goal states into the abstract graph and other such

techniques becomes an unnecessary expense when the map is mostly empty

or the path is possibly a straight line through the grid. However, given a

real game scenario with standard number of obstacles and mobile agents, the

authors claim that HPA* is up to 10 times faster than a highly optimized

A*.

With respect to their contribution the authors state that their method

of map abstraction is automatic and is independent of specific topology and

works well with both random and real maps as well as static or dynamic

environments. They also state that their technique is simple and easy to

implement.

10

Pathfinding by Demand Sensitive Map Abstraction

2.1.3 Partial Pathfinding using Map Abstraction and Refinement

The next paper we are about to discuss, titled “Partial Pathfinding using Map

Abstraction and Refinement” (Sturtevant and Buro, 2005), is a significant

one. The reason for its significance lies with the fact that this paper is the

first one to explore the challenge of interleaving path planning with execution

in the hierarchical pathfinding framework. In this paper the authors propose

a set of algorithms they named - Path-Refinement A* (PRA*).

The authors refer to HPA* (Botea et al., 2004) as a related work. The

authors state that HPA* and PRA* is similar considering the fact that both

algorithms use hierarchical pathfinding. The two algorithms differ in the

respect that HPA* overlays an entire map with clusters/sectors and an inter-

connected set of such clusters form the high level graph, on the other hand

PRA*, instead of making a general abstraction of the entire map, studies the

map topology and groups together tiles (from the grid based low level map)

which are cliques forming one node and connects them with orphans.

The authors introduce their idea using a simple algorithm - QuickPath

and extend the same to PRA*, PRA*(∞) (one that finds complete paths)

and PRA*(k) (one that finds partial paths). The authors explain QuickPath

using the figure 3 below (Sturtevant and Buro, 2005), p.3:

11

Pathfinding by Demand Sensitive Map Abstraction

Figure 3: Illustration of QuickPath

12

Pathfinding by Demand Sensitive Map Abstraction

After building the abstraction hierarchy, all the nodes in the graph resolve

to a single high level node. To check if two nodes are connected, the algorithm

checks if they ever converge into the same parent within the abstraction

hierarchy. This provides a “quick check for path-ability” and can also find

plausible paths in the game world, by tracking the parents of the nodes,

without performing an extensive search, as claimed by the authors.

The PRA* proposed by the authors apply four enhancements to the

QuickPath algorithm. Firstly, the authors use a heuristic to make the search

more directed. Secondly, it allows path refinement in areas outside the ab-

stract path such as in corridors. Thirdly, it starts path-planning from the

bottom of the hierarchy instead of the top. Finally, it finds only partial

paths in the entire path planning step. Meaning the partial path thus found,

is executed/traveled by the agent before further planning. The QuickPath

algorithm ensures that planning and execution is interleaved. The authors

also propose two more variations: PRA*(∞) which is a version of PRA* in

which partial refinement is not allowed and PRA*(k) that refines k number

of nodes from the abstract path at a time. For experimentation, the authors

claim to have used 116 maps from Baldur’s gate and Warcraft 3 and scaled

them to size 512 X 512. The maps were represented as square tile grids with

octile relationship between tiles - an agent could move in eight directions

from any tile. They generated random start and goal pairs for each map.

They claim that PRA*(∞) has similar performance as HPA* and both are

faster than A* while delivering close to optimal results. On the runtime of

13

Pathfinding by Demand Sensitive Map Abstraction

PRA*(k) the authors state that the algorithm is “super-linear in the path

length”. They state that the paths derived from PRA*(k) are longer com-

pared to A* and PRA*(∞) but the algorithm proves to be faster than the

other two.

In conclusion, the authors claim that their paper was the first one to have

attempted partial pathfinding techniques and successfully interleaved plan-

ning with action. As future work, they plan to extend PRA* to incorporate

cooperative behavior.

2.1.4 Cooperative Pathfinding

The paper tilted Cooperative Pathfinding by Silver (Silver, 2005) addresses

the problem of multi-agent cooperative pathfinding where agents must collab-

orate with each other to find optimal paths to their destinations. Although

this paper is related to research on cooperative pathfinding, the reason we

are reviewing its contributions is that the algorithms suggested by the author

are inspired from and provide elegant extensions to HA*. We will see later

in our literature review how other scientists extended the work of Silver to

derive more general and robust Hierarchical Pathfinding algorithms.

The author refers to a general, industry standard, algorithm called Local

Repair A* (LRA*) which, the author claims, is often used in many video

games to tackle the problem of cooperative pathfinding. LRA* works by

re-planning an agent’s path, using the A* algorithm, when encountered with

an unexpected obstacle such as another agent. The author criticizes LRA*

14

Pathfinding by Demand Sensitive Map Abstraction

by pointing out that in crowded situations, bottlenecks can take very long

time to get resolved. He also states that frequent re-planning in order to

avoid collisions creates “visually disturbing behavior that is perceived as

unintelligent”.

Silver proposes three novel algorithms in his paper : Cooperative A*

(CA*), Hierarchical Cooperative A* (HCA*) and Windowed Hierarchical

Cooperative A* (WHCA*). A brief description of the three algorithms are

as follows:

CA*: In this algorithm the path for each agent is calculated individually

in “three dimensional space-time” and a reservation table is maintained that

contains entries about the location of an agent (on the way to its goal) at

certain instances of time. An entry in the reservation table is avoided by

other agents when planning their routes. An additional “wait move” is also

incorporated in the table in which an agent waits for another agent to pass

before moving.

HCA*: This algorithm is inspired from HA* (Holte et al., 1996). However

the abstraction employed here simply consists of a high level map in which all

mobile obstacles, other than the current pathfinding agent, are non-existent.

The reservation table of CA* is used in tandem with the abstraction when

planning paths. Another feature of HCA* is that it uses Reverse Resumable

A* (RRA*) for calculating abstract distances between two locations. RRA*

works by running A* in reverse, from goal to start.

WHCA*: WHCA* fixes a window to the look ahead of HCA*. Thus

15

Pathfinding by Demand Sensitive Map Abstraction

WHCA* calculates partial paths up to a certain depth. At regular intervals,

as the agent has followed a certain distance of the planned partial path, the

window depth is shifted forward (toward the goal) and a new partial path

is calculated. In order to guarantee that the agent is moving in the correct

direction, the path planning in the abstract map is performed up to the goal

(that is the complete path is calculated).

For the experiments, the author uses 10 randomly generated mazes. The

mazes were of size 32 x 32 and obstacles were strewn over 20% of the tiles.

The tiles were four-connected. Then random start and goal positions were

generated for a number of agents such that for no two agents, the start or

goal positions coincided. In the experiments, CA*, HCA*, WHCA* and

LRA* were compared in terms of success rate (agents being able to reach

goals within 100 turns), path length and cycle count (an agent visiting an

already visited grid).

The author claims that as the map gets more crowded, LRA* begins to

struggle for a higher success rate. CA* and HCA* perform better than LRA*.

WHCA* performs the best in this regard, especially with a bigger window

size. For measuring path length, the author fixed the shortest distance as a

lower bound and claims that using LRA*, the path lengths are almost twice

the lower bound while CA* and HCA* finds paths that are only 20% above

the lower bound. With regard to the cycle count, the author states that

LRA* produces 10 times the number of cycles produced by the algorithms

proposed by the author.

16

Pathfinding by Demand Sensitive Map Abstraction

In the concluding section, the author states that for “Simple environ-

ments”, LRA* is sufficient to find optimal paths. But in more complex envi-

ronments involving multiple moving obstacles, CA* and its family perform

better in finding optimal paths in a reasonable amount of time.

17

Pathfinding by Demand Sensitive Map Abstraction

2.2 Improvements to Near Optimal Techniques

2.2.1 Improving Collaborative Pathfinding using Map Abstrac-

tion

In the paper titled “Improving Collaborative Pathfinding using Map Ab-

straction” (Sturtevant and Buro, 2006), the authors address the problem of

cooperative pathfinding by combining partial pathfinding (Sturtevant and

Buro, 2005) with WHCA*(Silver, 2005) and cooperative pathfinding tech-

niques suggested by Silver (Silver, 2005) with PRA*(Sturtevant and Buro,

2005).

The authors refer to A* (Hart et al., 1968), WHCA*(Silver, 2005) and

their previous work PRA* (Sturtevant and Buro, 2005). While commenting

on the shortcomings of the previous work, the authors state that A* is inad-

equate for multi-agent pathfinding and WHCA* assumes some restrictions

such as four direction movements and constant speed of all units.

The authors propose two algorithms in (Sturtevant and Buro, 2006). The

first algorithm, WHCA*(w,a) is an extension of WHCA*. The new algorithm

accepts two parameters w (the window size) and a (the abstraction level

used). This algorithm allows WHCA* to operate on higher levels of the hi-

erarchy instead of the base level. The second algorithm attempts to combine

WHCA* with PRA* yielding Cooperative Path-Refinement A* (CPRA*).

The algorithm uses PRA* at all levels of hierarchy other than the lowest

level, where WHCA* is employed.

18

Pathfinding by Demand Sensitive Map Abstraction

In order to compare the two new algorithms, the authors used the maps

shown below (Sturtevant and Buro, 2006), p.4. In these maps the darker

areas are not navigable, while the lighter are possible start and goal positions.

Mobile agents are made to move from a random location on the left side of

the maps to a random location on the right. The algorithms were compared

in terms of nodes expanded - initially (“during the first second”) and in

the subsequent seconds. Path quality was also compared by measuring the

maximum of total distance traveled by all agents.

Figure 4: Experimental maps for WHCA*(w,a) and CPRA*

19

Pathfinding by Demand Sensitive Map Abstraction

From the results the authors obtained, it was deduced that WHCA*(w,a)

has a lower initial cost (expands less nodes in the first second) than CPRA*.

However in subsequent seconds CPRA* expands less nodes than WHCA*. In

terms of path quality, the authors state that the two algorithms have similar

performance.

Finally the authors conclude the paper by stating that if there are many

units in the game scenario and there are limitations in memory, then CPRA*

is a better choice than WHCA*(w,a). On the other hand if higher initial cost

is not a problem and there are no memory constraints, then WHCA*(w,a)

performs better. As future work, the authors plan to store information like

traffic congestion in the abstracted map, so as to avoid those routes when

planning. The authors also propose to dynamically vary the window size of

CPRA* according to the congestion level of the map.

2.2.2 HPA* Enhancements

In the paper titled “HPA* Enhancements” (Jansen and Buro, 2007), the

authors address the problem of optimal pathfinding using hierarchical tech-

niques. They do this by proposing three improvements to HPA*.

The previous work referred by the authors includes HPA* (Botea et al.,

2004), PRA* (Sturtevant and Buro, 2005) and Triangulation Refinement

A* (TRA*) (Demyen and Buro, 2006). While the authors do not find any

shortcoming of HPA*, they claim that the improvements suggested by them

makes HPA* faster and more optimal.

20

Pathfinding by Demand Sensitive Map Abstraction

The improvements suggested by the authors are as follows:

Faster Path Smoothing The authors state that in HPA* path smoothing

is performed to make them shorter and more optimal. The smoothing method

proposed by Botea et al. shoots imaginary straight lines in all eight directions

from each node n on the path. When a line reaches another node m further up

the path, the intermediate nodes between m and n are replaced by a straight

line and the algorithm continues with two positions before m on the new path.

The authors state that the computation involved is expensive, though the

path received is close to optimal. The authors address this issue by placing

a “bounding box” along the path to be refined. Place smaller bounding

boxes makes the smoothing process faster although the path received is less

optimal. The authors claim that the reduction is time has greater impact

than the slightly longer paths received on the overall quality of the process.

Using Dijkstra’s Algorithm To find paths between entrances of a clus-

ter, HPA* uses A* algorithm. The authors propose to use Dijkstra’s algo-

rithm instead since the worst case running time of A* is worse than the worst

case running time of Dijkstra’s single source shortest path algorithm.

Lazy Edge Weight Computation HPA*’s standard strategy to deal with

dynamic environments is to recompute entrances and edge weights of affected

clusters when changes occur in the game environment. The authors propose

to compute edge weights on demand when an agent requests a path. The

21

Pathfinding by Demand Sensitive Map Abstraction

authors state that in an optimistic situation the weights of some of the un-

necessary edges will never be calculated during the game play.

In order to test the theories, the authors use two sets of maps: the first

comprised of 116 real game maps from Baldur’s Gate and Warcraft III and

80 artificial maps; both were of size 512 x 512. The percentage of blocked

portion of the map was varied from 10 to 80. For each map, random start

and goal positions were chosen. The authors compare standard HPA* to

improved HPA* in terms of relative path length and time to find a path.

The experimental results they obtained suggested that pathfinding time in-

creases as the size of the bounding box is increased. They also find that

sub-optimality decreases as the size of the bounding box increases. They

also find that computing edge weights using Dijkstra’s algorithm takes far

less time than using A*. When testing the algorithms for lazy edge weight

computation, the authors claim to have found that using the lazy technique,

the abstract map is built very quickly since no expensive pre-computation of

edge weight is involved. They also state that the total time for calculating

edge weights was found to be less than the total time using the eager ap-

proach. The authors attribute this to the fact that some of edge weights are

never computed using the lazy approach.

In conclusion the authors state that the improvements to HPA* suggested

by them proves to be beneficial given the scope of the experiments performed.

They state that although preliminary results are promising, further research

is needed to judge the merits of the improvements in dynamic environments.

22

Pathfinding by Demand Sensitive Map Abstraction

3 Demand Sensitive Map Abstraction

3.1 Motivation

HPA* effectively solves the problem of pathfinding in large search spaces in a

reasonable amount of time. The technique, however, has its own limitations

which prevent it from being used in commercial games. The expensive pre-

caching of intra edges step saves a lot of time on scenarios where most of

the map is being used for pathfinding. On the other hand, the same feature

becomes an artifact when only a part of the map is traversable and pre-

caching intra edges of unused sectors of the map is entirely unnecessary

(Jansen and Buro, 2007). A corollary of the same situation occurs when the

map is dynamic and a change in Traversability in a portion of the map calls

for an expensive update of the abstract map. Another interesting observation

is that there is no scheme of varying the granularity of abstraction non-

uniformly across the map in the HPA* paper or any of the literature that

followed it -varying the granularity of abstraction, non-uniformly, (at the

single high level) depending on the last pathfinding time (time taken by the

A* search to find the previous path), is the central idea of our thesis.

The motivation for our thesis sprouts from the idea of tessellating terrain

using triangular bin-trees (Samet, 1990) (Duchaineau et al., 1997) and the

fact that it is reasonable to put a cap on the time required to find a path

from start to goal. An ideal time range to find an initial path would be

1 millisecond to 3 milliseconds (ms) (Dalmau, 2003) (Bulitko et al., 2007)

23

Pathfinding by Demand Sensitive Map Abstraction

given the current technology standards. In the following paragraphs we will

emphasize the two ideas.

In the paper titled “ROAMing Terrain” (Duchaineau et al., 1997), the

authors use spatial data structures called triangle binary trees (bin-trees)

to dynamically vary the Level of Detail (LOD) in a map by using a grid of

triangles and splitting or merging them as needed to increase or decrease the

level of detail as needed, respectively. The dynamic LOD technique inspires

our thesis in that, we use the same data structure to create our abstract map

and dynamically vary the granularity of abstraction by joining or dis-joining

neighbor triangles. The reason for choosing triangle bin tress is that it was

found in (Demyen and Buro, 2006) that using triangles, instead of regular

quadrilaterals as in HPA*, to build the abstract map allows curved corners

and irregularly shaped obstacles to be incorporated in the map and make use

of extra space around them for pathfinding.

Now let us consider the second point in which we mentioned that it is

reasonable to keep the pathfinding time between 1-3 ms approximately. This

time does not include the path following or the execution step in which a game

agent travels the planned path. In the second chapter of the book (Dalmau,

2003), the author writes about real time game loop models; a comprehensive

discussion of the same is not in the scope of this thesis. The author defines

games as “time dependent interactive applications” consisting of a virtual

game world, a simulator to make the world seem real, a presentation layer

which displays the virtual world to the player and controllers to allow players

24

Pathfinding by Demand Sensitive Map Abstraction

to interact with the virtual world.

To say games are time constrained, means a game must display informa-

tion at a constant speed which is usually above 25 frames per second (modern

games run 60 frames per second or more). More frames per second implies

less time available for real time simulators to modify the world to display

new states. Real time interactive applications such as games consist of three

tasks running simultaneously. First the current state of the virtual world

must be updated constantly, second the player must be able to interact with

the world and finally the result should be presented to the player using visu-

als and sounds. When information is displayed at 60 frames per second, the

simulator has only 16.67 ms (approximately) to modify the world (update

the world and render the result). The 16.67 ms in hand is to be spent judi-

ciously and hence only about 1-3 ms can be ideally devoted to pathfinding

according to Bulitko in (Bulitko et al., 2007).

In the next section, we will show how the above facts and conjectures are

woven together to derive Pathfinding by Demand Sensitive Map Abstraction

(DSMA).

3.2 Abstract Terrain Representation: Triangle Bin-

trees

The current section gives an insight into Triangle Binary Trees. Please note

that the term “cell” and “grid” will be used interchangeably to refer to

25

Pathfinding by Demand Sensitive Map Abstraction

a minimum square unit of the game world (grid-based) that an agent or

obstacle can occupy (for our experiments each cell is 8 x 8 pixels) as shown

in figure 5 below:

26

Pathfinding by Demand Sensitive Map Abstraction

Figure 5: Grid/Cell

27

Pathfinding by Demand Sensitive Map Abstraction

A triangle Binary tree (Lindstrom et al., 1996) (triangle bin-tree) is a

spatial data structure. Triangle bin-trees are binary trees with space repre-

sentational properties of Quad Trees. A triangle bin-tree is comprised solely

of right isosceles triangles and hence never develops Cracks or T-junctions.

Triangle bin-trees are mainly used for tessellating terrain (Duchaineau et al.,

1997).

Figure 6: Illustration of Triangle Binary Tree

28

Pathfinding by Demand Sensitive Map Abstraction

Let us consider the figure 6 above. The triangle bin-tree consists of a

triangle (I) and two possible children- a left child (III) and a right child (II).

When triangle I is decomposed, we obtain II and III. Similarly, when triangle

III is decomposed, triangles IV and V are produced. Conversely, it is also

possible to compose or merge two neighbor triangles to reduce granularity.

Such decomposing and composing can be continued until a suitable granu-

larity is reached for a given region or for the entire available area, uniformly

or non-uniformly. Hence, in our thesis we use triangle bin trees to repre-

sent hierarchical abstract maps so as to very the granularity of abstraction

dynamically according to demand.

It is necessary to keep track of all the neighbors of a particular triangle

so that cracks and T-junctions do not develop. In our implementation, we

store the triangles as Triplets of three grid coordinates in a hash table to

facilitate fast storage and retrieval. Henceforth, the term “triangle bin-tree”

and “triplet” will be used interchangeably, referring to any arbitrary trian-

gle in the abstract map. The neighbors are defined as triangles sharing two

common low level cells. For the high level A* search, triangles having one

common cell are considered as neighbors if other strongly connected neigh-

bors are not available. Every triangle has a level associated with it. When a

triangle at level n decomposes, the resulting child triangles are of level n+ 1.

Similarly when two triangles both at level n merge, the resulting triangles are

at level n− 1. Any given configuration of states in a triangle binary tree can

be obtained from other states by series of composition and decomposition.

29

Pathfinding by Demand Sensitive Map Abstraction

The illustration of level change is given below:

Figure 7: Levels in Triangle Binary Tree

30

Pathfinding by Demand Sensitive Map Abstraction

The reason we are using triangle bin trees instead of quad trees as in

HPA*, is that in HPA* the hierarchical paths are pre-computed and cached;

while in our thesis we find hierarchical paths on-demand. Running A* search

on-demand in the hierarchal map using quad trees is, theoretically, an ex-

pensive process as there are more nodes to be processed (quads have more

entrances/sides than triangles). Moreover decomposing a quad will produce

four regular quads again making the hierarchical search expensive. On the

other hand triangles when decomposed produce two new triangles and each

of them can be decomposed if necessary.

31

Pathfinding by Demand Sensitive Map Abstraction

Figure 8: Sample Game Map

32

Pathfinding by Demand Sensitive Map Abstraction

Let us consider a game map as shown in figure 8 above. The dark regions

represent obstacles and the white region is the navigable space. Our first

action is to lay grids on this map thereby getting the map as shown in figure

9 below. Each individual cell is 8 pixels by 8 pixels.

Figure 9: Sample Game Map with Grids

33

Pathfinding by Demand Sensitive Map Abstraction

The initial hierarchal map is hard coded and will usually contain four

clusters as shown in figure 10 below, we have marked the four clusters as T1,

T2, T3, and T4 .

Figure 10: Sample Game Map showing Hierarchical Clusters

34

Pathfinding by Demand Sensitive Map Abstraction

3.3 Measuring Demand

In our thesis, we vary the granularity of abstraction dynamically according

to the demand associated with triplets. Hence, in addition to level we add

another parameter- Demand, to triplets. A value associated with demand

represents how many times a triplet was explored in previous hierarchical A*

searches. Demand is increased by one, for triplets containing start and goal

nodes and for every triplet that gets expanded (explored) in hierarchical A*

search. We also decrease demand by one for every triplet that does not get

expanded in the high level A* search.

When the execution time of previous A* search rises above three millisec-

onds, we decompose the highest demand triplet (breaking ties arbitrarily)

thereby forcing the low level A* search to expand less nodes so that the total

search time is reduced. This step is expected to return less optimal path for

lower execution time.

Conversely, if the execution time of previous A* search falls below one

millisecond, we merge two of the lowest (collective) demand neighbor triplets

(breaking ties arbitrarily) since more time can be allocated to pathfinding.

Combining two low demand triplet forces the low level A* search to explore

more nodes. This is expected to result in more optimal paths at the expense

of higher execution time.

35

Pathfinding by Demand Sensitive Map Abstraction

3.4 Composition and Decomposition Queues

Previously, we have discussed Triangle Bin Trees (Triplets) and how the de-

mand of a triplet is manipulated. In this section we will discuss the process

to keep track of high and low demand triplets and how we compose or de-

compose them when needed.

3.4.1 The Decomposition Queue

Figure 11: The Decomposition Queue

Initially this queue contains all triplets in the abstract map at level 0.

A visual representation is shown in figure 11. We assume that initially

all triplets in the abstract world (hard coded) are at their coarsest level;

that is we do not decompose triplets at level 0. Figure 12 shows an initial

world/game map and the initial decomposition queue alongside it.

36

Pathfinding by Demand Sensitive Map Abstraction

Figure 12: Initial Decomposition Queue

37

Pathfinding by Demand Sensitive Map Abstraction

The interpretation of figure 12 is that the abstract map is composed of

four clusters T1, T2, T3 and T4 and each of the clusters can be further

decomposed to derive non-uniformly fine grained abstract map. If any of the

triplets is decomposed, each of the children will have half the demand of the

parent and level of the children will be one more then the one of the parents.

3.4.2 The Composition Queue

Figure 13: The Composition Queue

This queue contains pairs of triplets that can be composed or merged,

with the lowest demand pair in the front of the queue. Initially this queue

is empty. In our thesis and experiments we maintain a policy that triplets

at level 0 cannot be composed or merged. That is, the composition queue

of the initial map is empty. This policy can however be modified in future

work related to this thesis. The trivial idea is shown in figure 14 below.

38

Pathfinding by Demand Sensitive Map Abstraction

Figure 14: Empty Composition Queue

39

Pathfinding by Demand Sensitive Map Abstraction

However if one of the triplets (say T1) was decomposed in a previous

operation (into say T11 and T12), the composition queue would have one

entry as shown in figure 15 below.

Figure 15: Initial Composition Queue

40

Pathfinding by Demand Sensitive Map Abstraction

The interpretation of the figure 15 is that triplets T11 and T12 can be

composed/merged later into the game-play to derive their parent triplet. If

T11 and T12 are composed the parents demand will be the collective (sum

of) demand of T11 and T12 and level of the parent will be one less than the

level of T11 and T12.

41

Pathfinding by Demand Sensitive Map Abstraction

3.5 Operations

3.5.1 The Decomposition Operation

Figure 16: Relative Demand Levels

42

Pathfinding by Demand Sensitive Map Abstraction

Consider the game map in figure 16; the dots represent the paths taken

by games agents. In other words, the dots are the foot prints of the agents.

As stated previously, we keep track of these footprints and use them to

dynamically vary the granularity of abstraction of the triplets. In addition to

that, we also keep track of the running time in A* search . If the last running

time of A* search went beyond of 3 milliseconds, we apply the decomposition

operation.

When the decomposition operation is applied, we extract the highest

demand triplet from the decomposition queue (T2 for the map shown above)

and we decompose it; thereby replacing T2 by it’s children T21 and T22 as

shown in figure 17 below.

43

Pathfinding by Demand Sensitive Map Abstraction

Figure 17: Decomposition

44

Pathfinding by Demand Sensitive Map Abstraction

The way decomposition queue and composition queue is manipulated in

a decomposition operation is illustrated in figure 18 below.

Figure 18: The Decomposition Operation

Illustrated in figure 18 above is the decomposition process. We pop the

first triplet from QD, split the triplet as to form two isosceles triangles. Assign

the demands of T11 and T12 as half demand of T1 for both. From the triplet

that can be composed/merged and push it to QC . Additionally, it might

be possible to decompose T11 and T12 unless they have reached the finest

permissible granularity (say x). So, we preform the check for granularity and

push T11 and T12 to QD, if possible.

A simple algorithm for the decomposition operation is given below. TA

is the last running time of A* search and UTA is the Upper Threshold Time

limit for A* search which is 3 milliseconds in our thesis. Qd is the decompo-

45

Pathfinding by Demand Sensitive Map Abstraction

sition queue while Qc is the composition queue.

Algorithm 1 Decomposition Algorithm

if TA ≥ UTA then
Decompose{t}
Remove t from Qd

Add t11 and t12 to Qd

Add t11 and t12 pair to Qc

end if

46

Pathfinding by Demand Sensitive Map Abstraction

3.5.2 The Composition Operation

The reverse of the decomposition operation is the composition operation;

which we apply when the last running time of an A* search went below 1

millisecond. In this operation, we usually pick a triplet pair from the compo-

sition queue with lowest collective demand. Usually this is the first element

of the queue since we sort the composition in ascending order of collective

demand at regular intervals. For the game world depicted in figure 19, if the

last A* search time went below 1 millisecond, we would compose/merge T11

and T12 resulting in the game world shown in figure 20 below.

47

Pathfinding by Demand Sensitive Map Abstraction

Figure 19: Relative Demand Levels

48

Pathfinding by Demand Sensitive Map Abstraction

Figure 20: Composition

49

Pathfinding by Demand Sensitive Map Abstraction

The procedure in which the two queues are handled in a composition

operation is illustrated in figure 21 below.

Figure 21: The Composition Operation

The illustration above shows the composition operation. A pair of triplets

is popped out of QD and their parent triplet is pushed into QD. Demand of

the parent is the combined demand of the child triangles. Since the demand

for triplets is varied in subsequent A* searches, it becomes necessary to or-

ganize QD and QC from time to time. Implying the content of the queues

are sorted according to demand in ascending order for QC and descending

order for QD. This operation, how ever is not performed very frequently to

50

Pathfinding by Demand Sensitive Map Abstraction

save execution time.

Outlined below is a simple algorithm describing the steps involved in

composition operation. TA is the last running time of A* search, LTA is

the Lower Threshold Time Limit for A* search which is 1 millisecond in our

thesis. We assume that at the front for the composition queue is an arbitrary

triplet pair ti1 and ti2. That is the pair has the lowest collective demand

compared to all other triplet pairs.

Algorithm 2 Composition Algorithm

if TA ≤ LTA then
Compose{ti1 ,ti2 } { This step results in parent triplet ti

}
Remove ti1 and ti2 from Qd

Add ti to Qd

Remove ti1 and ti2 pair from Qc

end if

51

Pathfinding by Demand Sensitive Map Abstraction

3.6 Pathfinding using DSMA

Triplet Relationships In this section we will discuss how DSMA finds

path given a certain high level map. Two triplets in DSMA can have two

kinds of relationships- they can be adjacent to each other or they can be

neighbors. Adjacent triplets are those that have a side (or part of it) in

common. Neighbor triplets have only one vertex (cell) in common. Hence

all adjacent triplets are neighbors but not all neighbors are adjacent to each

other. All neighbors are considered in the high level search as well. The

relationships are demonstrated in the figure 22 below:

Figure 22: Adjacent and Neighbor Triplets

In I above all the neighbors are a,b,c and d while the adjacent triplets are

(a,b), (b,c),(c,d) and (d,a). In figure II above both c11 and c12 are adjacent

to b while only c11 is adjacent to c2.

52

Pathfinding by Demand Sensitive Map Abstraction

Pathfinding Now let us consider the map in figure 23 below with the start

and goal positions marked as S and G, respectively:

Figure 23: DSMA Map showing high level triplets and start and goal posi-
tions

53

Pathfinding by Demand Sensitive Map Abstraction

As we can see above the start and the goal cells are ambiguously placed

such that their centers lie on the border of the triplets. Since we use IsVis-

ible() method in GraphicsPath in C#, the method resolves such conflicts

arbitrarily. One could possibly, as future work, break the tie by placing the

grids in a triplet whose centroid is closest to the center of the cell. With the

IsVisible() method we have used, the high level A* search can possibly take

two directions as shown in figure 24 below:

Figure 24: Two possible abstract paths

54

Pathfinding by Demand Sensitive Map Abstraction

Let us proceed with case I above because it poses a new challenge which

we will explore. The high level A* search considers an abstract path from

start to the centroid of t1 as shown in the dashed line below.

The high level A* search does not consider obstacles, unless a triplet is

over 90% full or an obstacle covers the centroid. If it is more than 90% full,

a penalty is added to the triplet’s f-value during high level A* search. If an

obstacle is covering a centroid, the low level A* search attempts to connect

the present way-point to the next way-point (centroid), after skipping the

centroid being covered by an obstacle.

Figure 25: Choosing the Adjacent Triplets

55

Pathfinding by Demand Sensitive Map Abstraction

The high level A* search considers two of its adjacent triplets shown in

bold lines in figure 25 above and selects t2 as it has a lower f-value. The

tentative abstract path from t1 to t2 is shown in the dashed line above.

Now, let us assume that the goal is in t3. The only adjacent triplet to t2

is t3 and t3 contains the goal. Hence the high level search is successful and

the complete abstract path is shown in figure 26 below:

Figure 26: Complete Abstract Path

56

Pathfinding by Demand Sensitive Map Abstraction

Thus the high level A* search has discovered way-points which the low

level A* search must now connect to get the actual path. We are assuming

that the abstract path is optimal since we have used A* search and it is to

be noted that the diagram above is not to scale.The challenge of crossing the

obstacle, we mentioned above has been resolved by the low level A* search,

as shown in figure 27 below:

Figure 27: Actual Path

57

Pathfinding by Demand Sensitive Map Abstraction

Another very important property of DSMA evident from the above is

that the low level search is not restricted to the boundaries of the high

level triplets. This is a departure from conventional hierarchical pathfinding

techniques where the low level A* search is restricted to the boundaries of

the high level clusters, as mentioned in the introductory paragraph of section

2.

An Alternate Case: Let us consider a case in which the goal was found

(arbitrarily) to be in t4 instead of t3. The resulting high level abstract path

and actual path is shown in figure 28 below as I and II respectively:

Figure 28: An Alternate Case

58

Pathfinding by Demand Sensitive Map Abstraction

The resulting path has a detour via the centroid of t4. There are two

solutions to resolve the problem, assuming that A* does not find the path

via t5 and t4 to be more optimal. One has already been mentioned above

- to resolve the conflict by Euclidean distance from the centroid. The other

solution is expensive but widely used to achieve better path quality- path

smoothing and refinement techniques (Botea et al., 2004). The techniques

were used in HPA* to remove undesirable detours. Once path smoothing is

applied, we can expect to receive as path as shown below:

Figure 29: After Path Smoothing

59

Pathfinding by Demand Sensitive Map Abstraction

4 Experimental Analysis

4.1 The Setup

In this section we perform a set of experiments. This section describes the

experimental setup. All experiments are inspired from (Jansen and Buro,

2007) and (Sturtevant and Buro, 2005).

Maps and Obstacles We use ten different maps inspired from commercial

RTS games. Each of the maps are scaled to three different pixel sizes: 256

by 256, 512 by 512 and 1024 by 1024. This gives us 30 different maps.

All maps are grid worlds with octile navigational freedom. We conduct all

experiments with one agent only, as our claims and experiments encompass

the domain of path planning only and not the nuances of path following.

In addition to hard coded obstacles in the maps,we also introduce random

obstacles into the map (between calls to the respective algorithms; that is

without modifying the map when a certain instance of path planning is in

progress). The random obstacles are varied in density from 20% to 40%;

always ensuring that the start and goal points are connected. That is, a

path exists between the start goal points, for the algorithms to discover. We

ensure this by running A* search first and if the search fails we discard the

start-goal pair. All obstacles are made to fit to cells, that is, an obstacle

cannot occupy a cell partially.

60

Pathfinding by Demand Sensitive Map Abstraction

Procedure In order to compare the algorithms we generate 500 random

start and goal locations for every map. We compare DSMA to two versions of

a generic hierarchical A* search. The first version has a sparse and constant

(single level) abstract map, containing eight triplets. We call this algorithm

sparse HA*. The second version has a denser and constant (single level)

abstract map, containing 64 triplets.We call this algorithm dense HA*. The

sparse map has 8 triplets beacause that is the minimum number of triplets

DSMA is allowed to have and the dense has 64 because that was maximum

number of triplets used in HPA* experiments and that is the maximum

number of triplets we allow DSMA to create. It is to be noted that we are

using some of the experimental standards of HPA* and not comparing DSMA

to HPA*. By sparse or dense we are referring to the number of clusters in

the abstract map of the generic HA*, as shown in the diagrams below:

61

Pathfinding by Demand Sensitive Map Abstraction

Figure 30: Sample Sparse HA* Map

62

Pathfinding by Demand Sensitive Map Abstraction

Figure 31: Sample Dense HA* Map

63

Pathfinding by Demand Sensitive Map Abstraction

The clusters are regular and hard coded. We are comparing DSMA to

sparse and dense HA* to see if we can benefit from dynamically varying the

granularity of abstraction, as opposed to having a static abstract map. We

also compare DSMA to a naive A* search, to get a theoretical comparison

to HPA*. The lower level A* search for all algorithms uses a hybrid heuris-

tic (Chebyshev distance) for diagonal movements and Manhattan distance

for straight line moves, whereas the high level A* search for all algorithms

uses Euclidean distance as a heuristic. All heuristics mentioned above are

consistent and hence admissible as well.

Performance Metrics and Presentation of Results While carrying

out the experiments we record the number of nodes expanded by the high

level A* and the low level A* search combined, the time taken to find a

path (including the overhead time for sorting the queues and decomposi-

tion/composition) and the length of path for each algorithm for the same

map and same start-goal points. We do not use any form of path smooth-

ing or refinement to keep our focus strictly on the behaviour of DSMA. We

present highlights of the raw data in graphs in the next section.

4.2 Results and Discussion

4.2.1 Path Quality

Firstly, let us consider the graph below depicting relative path lengths of

Dense HA*, DSMA and Sparse HA* against the path length given by A*

64

Pathfinding by Demand Sensitive Map Abstraction

in the x axis. This graph is taken from the maps of size 256 by 256 pixels.

The points are average path lengths returned for a given A* path length.

The tables are sorted in ascending order by A* path lengths, before the

averages are determined. So it must be noted that the points plotted are not

in sequential time.

We observe that the DSMA algorithm balances the path length according

to the time taken by the respective last A* search. The DSMA graph has

sharp hills and valleys due to the reason that the map is small and the random

start-goal generator very often produces two close points. This results in the

search time being less than 1ms and subsequently a composition. A sequence

of such frequent compositions raises the search time again. So, it can be said

that DSMA responds well to the dynamic changes. The sensitivity of DSMA

can be adjusted by modifying the upper and lower time limits.

65

Pathfinding by Demand Sensitive Map Abstraction

Figure 32: Path Length Graph

66

Pathfinding by Demand Sensitive Map Abstraction

The graph below is for maps of size 1024 by 1024 pixels. The graph for

map size 512 by 512 is similar and hence is not shown to avoid redundancy.

This graph is smoother than the one above since the map size is large and

the probability of the randomly generated start-goal points being far away

is high. So we get a wide range of values from the path length of A* search

and hence the number of corresponding values being averaged is small with

low standard deviation; while the number of points being plotted is high.

Figure 33: Path Length Graph

67

Pathfinding by Demand Sensitive Map Abstraction

4.2.2 Nodes Expanded

The graph below shows the relative number of nodes expanded by Dense

HA*, DSMA and Sparse HA* against the optimal path length for map size

1024 by 1024 pixels. It is evident that DSMA can keep the nodes expanded

between those given by the dense and sparse configurations. Another corol-

lary observation is that depending on the situation, DSMA can behave like

the Dense HA* or Sparse HA* there by striking a balance between search

time and path quality. The graphs for 256 by 256 and 512 by 512 have similar

trends and hence not presented to maintain brevity.

68

Pathfinding by Demand Sensitive Map Abstraction

Figure 34: Nodes Expanded Graph

69

Pathfinding by Demand Sensitive Map Abstraction

4.2.3 Relative Time Consumption

The bar chart below shows the relative time consumption of Dense HA*,

DSMA, Sparse HA* and A*. We can say that for smaller maps Dense HA*

, DSMA and Sparse HA* have very similar performance, so using DSMA

is not very advantageous. However as the map size grows, the differences

increase and DSMA is a better choice especially when the map is dynamic.

The results presented below are to give a general idea of the time differences

and have high standard deviations especially for DSMA as it keeps adjusting

the time.

Figure 35: Path Length Graph

70

Pathfinding by Demand Sensitive Map Abstraction

4.2.4 Comparison on Map

The explanation of the results is provided in the self-explanatory diagram

below where the start and goal are marked as S and G. The dots represent

the closed list of the low level A* search and the circles are waypoints provided

by the high level search. The line connecting the start and goal represents

the final path.

Figure 36: Visual Comparison

71

Pathfinding by Demand Sensitive Map Abstraction

5 Conclusion

In this thesis we presented a new hierarchical pathfinding algorithm- Demand

Sensitive Map abstraction in which we vary the granularity of abstraction

dynamically depending on the pathfinding demand associated with various

regions of the high level map and the last pathfinding time. DSMA is an

alternative to the HPA* (and other related work), as HPA* pre-caches all

intra-edges and DSMA does not have intra or inter edges. Instead DSMA uses

a hybrid abstract edge that is computed on the fly. Moreover, the low level

A* search in DSMA is not restricted to the boundaries of high level triplets

and this makes DSMA a special kind of hierarchical pathfinding algorithm.

DSMA is compared it to two cases: a highly detailed abstract map and

a low detail abstract map. The results we derived are promising as DSMA

is successful in balancing the path quality and search time and continuously

evolves the abstract map to keep the balance. The highly detailed abstract

map used in Dense HA* has similar configuration (number of high level

clusters) as those used in experiments for HPA* and we found that if resources

permit, DSMA can perform as efficiently (time-saving) as the dense HA*. On

the other hand, if the search time permits, DSMA can be made to resolve

into sparse HA* (approximately similar performance to naive A* search) .

Moreover we do not pre-cache paths, so DSMA can be applied to dynamic

maps without any modification.

DSMA is better suited to be applied with maps of resolutions 512 by 512

72

Pathfinding by Demand Sensitive Map Abstraction

pixels or higher to gain maximum advantage from varying the abstractions

dynamically.

73

Pathfinding by Demand Sensitive Map Abstraction

6 Future Work

As future work, we plan to implement forced composition and decomposi-

tion. A forced composition is one where the two triplets being composed

do not come from the same parent and a forced decomposition is one in

which we have to perform an additional decomposition in order to decom-

pose a particular triplet or diamond. It would be interesting to experiment

with different values of upper and lower threshold values of search time as

well. Similarly it is also possible to experiment with different maximum and

minimum permissible levels of decomposition.

74

Pathfinding by Demand Sensitive Map Abstraction

Glossary

Chebyshev distance In the context of A* search, Chebyshev distance heuris-
tic returns a value of estimated path cost to goal such that a diagonal
move (North-East, North-West, South-East or South-West) is different
from a straight line movement (North, South, East or West). The fac-
tor by which the two moves differ can be freely modified as desired.
65

Clique A clique in an undirected graph is a subset of its vertices such that
every two vertices in the subset are connected by an edge. 11

Cooperative Pathfinding Cooperative pathfinding refers to a multi agent
path planning problem in which agents must collaborate with each
other to find optimal paths to their destinations, given complete infor-
mation about the paths of each other. 14

Cracks These are defects resulting from polygonal mesh irregularities. The
name comes from the discontinuity in terrain arising due to mis-alignment
of mesh vertices. 28

Level of Detail (LOD) A term related to computer graphics, controlling
level of detail involves diminishing the detail of an object representation
as it moves away from the camera or according to other reference points
such as object importance, eye-space speed or position. 24

Manhattan distance In the context of A* search and pathfinding, Man-
hattan Distance is a heuristic that returns a path cost estimate to the
goal equal to the sum of the required displacement horizontally and
vertically. 65

Orphan A node in a graph that can be reached by a single operator. 11

Quad Trees Quad Tree is a type of spatial tree data structure which when
decomposed produces four regular quads. They are used to segment two
dimensional spaces by recursively decomposing or splitting the initial
space into four parts. 28

75

Pathfinding by Demand Sensitive Map Abstraction

T-junctions These are caused by irregular intervals between mesh ver-
tices.The phenomenon is described as presence of a vertex in higher
level that is not connected to any vertex in the lower levels. 28

Traversability Every position in a given map is associated with a value.
This value indicates the traversability of that position. A game agent
can access that position until the value reaches a certain threshold,
beyond which the position is said to be untraversable or blocked. 23

Acronyms

CA* Cooperative A*. 15–17

CPRA* Cooperative Path-Refinement A*. 18, 20

DSMA Demand Sensitive Map Abstraction. 25, 62, 65

HA* Hierarchical A*. 7, 8, 14, 15, 62, 65

HCA* Hierarchical Cooperative A*. 15, 16

HPA* Hierarchical Pathfinding A*. 8, 10, 11, 13, 20–22, 31, 62, 65

LRA* Local Repair A*. 14, 16, 17

NHA* Naive Hierarchical A*. 6

PRA* Path-Refinement A*. 11, 13, 14, 18, 20

RRA* Reverse Resumable A*. 15

TRA* Triangulation Refinement A*. 20

WHCA* Windowed Hierarchical Cooperative A*. 15, 16, 18, 20

76

Pathfinding by Demand Sensitive Map Abstraction

References

Botea, A., Müller, M., and Schaeffer, J. 2004. Near Optimal Hier-
archical Path-Finding. Journal of Game Development 1, 1, 7–28.

Bulitko, V., Sturtevant, N. R., Lu, J., and Yau, T. 2007. Graph
abstraction in real-time heuristic search. J. Artif. Intell. Res. (JAIR) 30,
51–100.

Dalmau, D. S. C. 2003. Core Techniques and Algorithms in Game Pro-
gramming. New Riders Publishing.

Demyen, D. and Buro, M. 2006. Efficient triangulation-based pathfind-
ing. In AAAI.

Duchaineau, M., Wolinsky, M., Sigeti, D. E., Miller, M. C.,
Aldrich, C., and Mineev-Weinstein, M. B. 1997. Roaming terrain:
real-time optimally adapting meshes. In Proceedings of the 8th conference
on Visualization ’97. IEEE Computer Society Press, 81–88.

Hart, P. E., Nilsson, N. J., and Raphel, B. 1968. A formal basis for
the heuristic determination of minimum cost paths. In IEEE transactions
on Systems Science and Cybernetics. 100–107.

Holte, R. C., Perez, M. B., Zimmer, R. M., and MacDonald, A. J.
1996. Hierarchical A*: searching abstraction hierarchies efficiently. In
Proceedings of the thirteenth national conference on Artificial intelligence
- Volume 1. AAAI Press, 530–535.

Jansen, M. R. and Buro, M. 2007. HPA* enhancements. In AIIDE. 84–87.

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F., Faust, N.,
and Turner, G. A. 1996. Real-time, continuous level of detail rendering
of height fields. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques. SIGGRAPH ’96. ACM, 109–118.

Rabin, S. 2000. A* Aesthetic Optimizations. In Game Programming Gems.
Charles River, 264–271.

77

Pathfinding by Demand Sensitive Map Abstraction

Samet, H. 1990. Applications of spatial data structures - computer graphics,
image processing, and GIS. Addison-Wesley.

Silver, D. 2005. Cooperative Pathfinding. In Game AI Programming Wis-
dom 3. Charles River.

Sturtevant, N. R. and Buro, M. 2005. Partial pathfinding using map
abstraction and refinement. In Proceedings of the 20th national conference
on Artificial intelligence - Volume 3. AAAI Press, 1392–1397.

Sturtevant, N. R. and Buro, M. 2006. Improving collaborative
pathfinding using map abstraction. In AIIDE. 80–85.

Valtorta, M. 1983. A result on the computational complexity of heuristic
estimates for the A* algorithm. In Proceedings of the Eighth international
joint conference on Artificial intelligence - Volume 2. Morgan Kaufmann
Publishers Inc., 777–779.

78

Pathfinding by Demand Sensitive Map Abstraction

Vita Auctoris

NAME: Sourodeep Bhattacharjee

PLACE OF BIRTH: Howrah, India.

YEAR OF BIRTH: 1987

EDUCATION:

2006-2010
Bachelor of Technology
Computer Science and Engineering
Asansol Engineering College
Asansol, India.

79

	University of Windsor
	Scholarship at UWindsor
	2013

	Pathfinding by demand sensitive map abstraction
	Sourodeep Bhattacharjee
	Recommended Citation

	Author's Declaration of Originality
	Abstract
	Dedication
	Acknowledgments
	List of Figures
	Introduction
	Problem Domain
	Contribution
	Organization

	Hierarchical Pathfinding
	Near Optimal Techniques
	Hierarchical A*
	Near Optimal Hierarchical A*
	Partial Pathfinding using Map Abstraction and Refinement
	Cooperative Pathfinding

	Improvements to Near Optimal Techniques
	Improving Collaborative Pathfinding using Map Abstraction
	HPA* Enhancements

	Demand Sensitive Map Abstraction
	Motivation
	Abstract Terrain Representation: Triangle Bin-trees
	Measuring Demand
	Composition and Decomposition Queues
	The Decomposition Queue
	The Composition Queue

	Operations
	The Decomposition Operation
	The Composition Operation

	Pathfinding using DSMA

	Experimental Analysis
	The Setup
	Results and Discussion
	Path Quality
	Nodes Expanded
	Relative Time Consumption
	Comparison on Map

	Conclusion
	Future Work
	Glossary
	Acronyms
	References
	Vita Auctoris

