
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2003

A bloom-filter strategy for response time reduction in distributed A bloom-filter strategy for response time reduction in distributed

query processing. query processing.

Wanxin Gao
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Gao, Wanxin, "A bloom-filter strategy for response time reduction in distributed query processing." (2003).
Electronic Theses and Dissertations. 520.
https://scholar.uwindsor.ca/etd/520

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/520?utm_source=scholar.uwindsor.ca%2Fetd%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Bloom-filter Strategy for Response Time

Reduction in Distributed Query Processing

by

Wanxin Gao

A Thesis

Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science in Partial

Fulfillment of the Requirements for the Degree of

Master of Science at the

Univeristy of Windsor

Windsor, Ontario, Canada

2003

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 W ellington S tre e t
O ttaw a ON K1A 0N4
C a n a d a

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue W ellington
O ttaw a ON K1A 0N4
C a n a d a

Your file Votre reference
ISBN: 0-494-00123-2
Our file Notre reference
ISBN: 0-494-00123-2

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Wanxin Gao 2003
© All Rights Reserved

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ABSTRACT

In distributed database systems, query optimization is to find strategies

attempt to minimize the amount of data transmitted over the network.

Optimization algorithms have an important impact on the performance of

distributed query processing. Since optimal query processing in distributed

database systems has been shown to be NP-Hard [WC96], heuristics are

applied to find a cost-effective and efficient (but suboptimal) processing

strategy.

Many query optimization strategies have been proposed to minimize either

the total cost or the response time. The approaches in distributed query

processing have mainly focused on the use of joins, semijoins, and filters. In

this thesis, we propose a new reduction strategy based on bloom-filters to

significantly reduce the response time of a distributed query. This algorithm

can process general queries consisting of an arbitrary number of relations

and join attributes. The performance of the algorithm with respect to

response time is compared against the Initial Feasible Solution (IFS). An

amount of experimental results has been used to evaluate the performance of

our algorithm. Compared to the IFS, our algorithm provides a significantly

improved query solution.

iv

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

To my grandmother, Yu Liu

my mother, Xiaoqing Tong

my father, Jing Gao

my husband, Hongtao Zhang

V

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to Dr. Joan

Morrissey, who has been a constant source of inspiration and encouragement.

Her support, guidance was invaluable in the successful completion o f this

thesis. I am thankful to Dr. Xiao Jun Chen for her insightful comments and

constant support. I would like to thank Dr. Karen Y. Fung for her comments

and suggestions. I also would like to thank Dr. Peter Tsin and my other

committee members for being accommodating when I needed it most. I

would like to thank my friends Amber and Nelson for all the help and

support during the completion of this thesis. Also thanks must go to my

husband - Hongtao whose help and company was a constant source of

strength, happiness and encouragement throughout the course of this work.

Last, but not least, I would like to thank my parents whose love always keep

my hope and confidence.

vi

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CONTENTS

ABSTRACT...iv

ACKNOWLEDGMENTS...vi

LIST OF FIGURES.. ix

Chapter 1. INTRODUCTION... 1

1.1 Distributed Database Systems.. 1

1.1.1 What is a Distributed Database System...1

1.1.2 Potential advantages and problems of DDBS..2

1.1.3 Distributed query processing.. 4

1.2 Query optimization approaches overview...4

1.3 The thesis statement and topics to be investigated.. 5

1.4 Definitions and notations..5

1.5 Organization of the thesis proposal document...6

Chapter 2. BACKGROUND REVIEW.. 7

2.1 Cost models..7

2.2 JOIN operation and approaches based on joins..7

2.2.1 JOIN operation... 7

2.2.2 Approaches based on joins.. 8

2.3 SEMIJOIN operation and approaches based on semijoins...11

2.3.1 SEMIJOIN operation.. 11

2.3.2 Approaches based on semijoins...13

2.4 FILTER and approaches based on filters...18

2.4.1 FILTER.. 18

2.4.2 Approaches based on filters.. 19

Chapter 3 ASSUMPTION..23

vii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 4 ALGORITHM H..24

4.1 Description of the algorithm H...24

4.2 An example of using the algorithm... 26

Chapter 5 EXPERIMENTS AND EVALUATION.. 34

5.1 Methodology.. 34

5.1.1 Experimental rationale...34

5.1.2 Experimental system..35

5.1.3 Test queries (query-relation generator)...35

5.1.4 Initial Feasible Solution (IFS).. 39

5.1.5 Analysis program.. 40

5.2 Experiments and results..40

5.3 Discussion..43

Chapter 6 CONCLUSIONS AND FUTURE WORK... 49

6.1 Future work.. 51

BIBLOGRAPHY... 52

VITA AUCTORIS... 59

viii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

LIST OF FIGURES

F igure 1.1 DDB S Environment... 1

Figure 2.1 Join operation.. 8

Figure 2.2 Semijoin operation... 12

Figure 2.3 2 - way semijoin operation..16

Figure 2.4 Bloom filter operation...18

Figure 4.1 The four relations of the example...27

Figure 4.2 Query graph for example databases.. 27

Figure 4.3 The RT of the example query.. 33

Figure 5.1 Example files for a query... 37

Figure 5.2 The four relations of the example..39

Figure 5.3 Results of reduced RT at selectivity 0.1 -0.4...41

Figure 5.4 Results of reduced RT at selectivity 0.4-0.7...42

Figure 5.5 Results of reduced RT at selectivity 0.7-0.9...43

Figure 5.6 The four relations of the example..44

Figure 6.1 H - IFS cost comparisons...50

ix

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 1 INTRODUCTION

A Distributed Database System (DDBS) is a kind of decentralized information system. It

allows data to be distributed and managed over the network. Distributed Database

Systems have certain advantages over traditional Centralized Database Systems in that

they achieve the advantages of performance, reliability, availability and modularity that

are inherent in distributed systems [Teo92]. However, optimizing queries in DDBS is

difficult. In this thesis, a new reduction algorithm is proposed to significantly reduce the

response time of queries.

1.1 Distributed Database Systems

1.1.1 What is a Distributed Database System?

A Distributed Database (DDB) is a collection of multiple, logically interelated databases

which are dispersed geographically over a computer network and maintained by local

computers. What we are interested in is an environment where data is distributed among

a number of sites (Figure 1.1).

Site 1

Site 5
Site 2

Communication
Network

Site 4 Site 3

Figure 1.1 DDBS Environment

i

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

A Distributed Database Management System (DDBMS) is then defined as the software

system that permits the management of the DDBS and makes the distribution transparent

to the users. A Distributed Database System (DDBS) refers to the combination of the

DDB and DDBMS. To form a DDBS, files should not only be logically related, but there

should be structure among the files, and access should be via a common interface.

1.1.2 Potential advantages and problems of DDBS

As presented in Figure 1.1, in a distributed database system, data is distributed among a

number of sites. Thus, each of the relations can be fragmented and each partition can be

stored at a different site. This is known as fragmentation. Furthermore, it may be

preferable to duplicate some of this data at other sites for performance and reliability

reasons. This is known as replication. However, some inherent problems give additional

consideration complexity and maintenance costs. Distribution causes some problems of

control and security. Depend on these characters of the DDBS, there are several

advantages and problems as follows [OV99]:

Advantages:

i. Since a distributed DBMS fragments the conceptual database, enabling data to be

stored in close proximity to its points of use,

• each site handles only a portion of the database, contention for CPU and I/O

services is not as severe as for centralized databases.

• localization reduces remote access delays that are usually involved in wide area

networks.

ii. With replication, site failure does not mean transaction failure.

2

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

iii. The inherent parallelism of distributed systems may be exploited for inter-query and

intra-query parallelism.

iv. In a distributed environment, it is much easier to accommodate increasing database

sizes.

Problems:

i. Complexity. DDBS problems are inherently more complex than centralized database

management ones.

ii. Cost. Distributed systems require additional hardware and some additional more

complex software and communication that may be necessary to solve some of the

technical problems.

iii. Distribution of Control. Distribution creates problems of synchronization and

coordination.

iv. Security. In a distributed database system, there are serious problems in maintaining

adequate security over computer network.

v. NP-Hard. For general queries with arbitrary complexity to generate an optimal

processing strategy in distributed database systems is called NP-Hard. Therefore, most

proposed algorithms for processing distributed queries are heuristic, and focus on

producing efficient but suboptimal strategies that minimize some practical cost of the

query.

3

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1.1.3 Distributed query processing

Basically, a distributed query processing algorithm is defined to be a set of relational

operations and network transmission steps. To process distributed queries, most

algorithms process as follows.

i. Initial local processing: all local processing that requires no intersite communication

such as selection, projection and local join operations are performed.

ii. Reduction: after the preprocessing by the first step, a sequence of reducers (semijoins

and joins) is used to reduce the size of the relations in a cost-effective way and for

reducing the total communication cost required.

iii. Final processing: all resulting relations (possibly reduced) are sent to the final (or

assembly) site where the final query processing is performed to produce the answer for a

given query.

1.2 Query optimization approaches overview

The area of query optimization is very large within the database field. It has been studied

in a great variety of contexts and formed many different angles, giving rise to several

diverse solutions in each case. Among the algorithms that have been proposed for query

optimization, especially distributed query optimization, the research in this area falls into

the following categories: Using join based strategies [LMHD+85][BMS96]

[CY90][LPP91][CL89][Seg84]; Semijoins based strategies [BGWR+81][AHY83][KR87]

[RK91] [MB96] [YL89] [PC90] [CL90] [WLC91] [WCS92] [TC94]; filters based strategies

[TC92] [CCY92] [LR95] [MBB95] [Ma97] [MM98] [Kam96] [M098] [Osb98] [MLOOO]

[Lia99].

4

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1.3 The thesis statement and topics to be investigated

We will propose a new optimization algorithm for distributed databases - algorithm H,

which uses bloom-filters to accomplish the same reduction effects as semijoins, but at a

lower cost. The primary goal of our algorithm is to reduce the response time of a

distributed query. The secondary goal is to reduce relation sizes while using data

transmission as little as possible. This algorithm can process general queries consisting of

an arbitrary number of relations and join attributes.

The performance of the algorithm with respect to response time is compared against the

Initial Feasible Solution (IFS) that ships all relations directly to the query site and

perform joins there. Our algorithm is evaluated to determine how much better it comes to

reducing the response time when comparing with IFS.

In this thesis, the following questions will be examined:

• Can improvement be made in bloom-filter based query optimization heuristics?

• When is it profitable to apply this algorithm for a distributed query?

• On average, how much response time is reduced with respect to IFS?

1.4 Definitions and notations

Simple queries: A query that after initial local processing, each relation in the query

contains only one common join attribute.

General queries: A query consists of an arbitrary number of relations, each relation has

an arbitrary number of join attributes.

Tree queries: A query whose graph is tree or equivalent to a query with tree graph.

Cyclic queries: A query that has cycled query graph.

5

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Acyclic tree query: A tree query that has no cycled query graph.

Heuristic: An algorithm that attempts to generate efficient, but suboptimal query

execution strategies by minimizing some cost function.

Schedule: The data transmissions used for reducing a relation and the transmission of the

reduced relation to the query computer form a schedule for this relation.

Query graph: Let G = (V , E) be a query graph. G b = (V b , E b) is a connected subgraph of

G. Let Ri, R-2 , ... , Rn be relations corresponding to nodes in Vb and let A, B, ... be the

attributes associated with edges in Eb.

Degree: In query graph, the number of edges that incident with relation Rj is the degree

of R;.

1.5 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 reviews related background in

the area of query optimization. The properties of joins, semijoins, and filters are

discussed. Several query processing algorithm are presented. Some assumption about our

proposed algorithm is presented in chapter 3. In chapter 4 there is a detailed introduction

of our proposed algorithm. An illustrated example of how the algorithm works is also

presented. The evaluation framework and experiment result are described in chapter 5.

Lastly, in chapter 6, we provide a summary of the conclusions attained from the work

that this thesis represents along with some plans for future work.

6

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 2 BACKGROUND REVIEW

In distributed query processing, many approaches use relational operators such as joins

[LMHD+85] [BMS96][CY90] [LPP91][CL89] [Seg84], semijoins [BGWR+81][AHY83]

[KR87] [RK91] [MB96] [YL89] [PC90] [CL90] [WLC91] [WCS92] [TC94], and filters

[TC92] [CCY92] [LR95] [MBB95] [Ma99] [MM98] [Kam96] [M098] [Osb98] [MLOOO]

[Lia99]. In this chapter, some representative approaches related with this thesis will be

presented.

2.1 Cost models

In distributed query processing, the objective is to minimize one of two cost functions:

the total cost and the response time. They are two most popular cost models. The total

cost model includes all the costs involved in the transmission of all data. The response

time model calculates the elapsed time between the start of the query and the final results

are obtained. As the speed of the network over which the data are transmitted is

relatively low, the data transmission cost is the most important factor. Most heuristics

assume that the cost involved in transmission data from one site to another is linear and

local processing cost is considered to be negligible in most cases.

2.2 JOIN operation and approaches based on joins

2.2.1 JOIN operation

The join operation is one of the fundamental relational database query operations that

allows data stored at different sites to be combined together based on some common

information in query processing [ME92][YC84].

7

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

A B

1 4
2 3

3 6

>

A D
2 8
3 9
4 7

>

A 0 D

2 3 8
3 6 9

Ri R2 RjM R2

Figure 2.1 Join operation

In figure 2.1, given two relations Ri and R2 , both relations contain the common join

attribute A. Join Ri with R2 is performed by concatenating tuples of Ri and R2 where the

value of attribute A is equal for both relations. In distributed systems, if relations Ri and

R2 are not in the same location, we have to ship data in one location to another. The

sequence of operations could be used to optimise queries. Although the join has the

advantage of simplicity, it suffers from some problems. One is that the result relation

could be much larger than the relations participating in the join. This increases the data

transmission cost. Another is that for joins in which only a small percentage of tuples at a

remote site are needed, transmission of an entire relation is clearly a waste of network

resources.

2.2.2 Approaches based on joins

In this part, we illustrate two representative algorithms which use joins: R* optimizer

[LMHD+85] and two-way join algorithm [CL89][Seg84].

R* optimizer:

In 1979, R* optimizer [LMHD+85] is an experimental adaptation to a distributed

environment of System R [ABCE+76] and it is developed at IBM San Jose Research

Laboratory. The objective of the R* optimizer is to minimize the total cost of a

8

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

distributed join query. The total cost includes local processing, I/O, and communication

cost. It is executed at the site where the query is initiated. R* optimizer generates a

processing strategy for a query as follows:

1) For each relation in the query, find all possible access paths to access the relation,

and choose the one that has the minimum cost as the access path for this relation.

2) For each order of relations in the query, build a strategy to do the joins and

calculate the cost of the strategy. Finally, choose the order with the minimum cost.

3) For each site involved in the query, choose a local processing strategy to carry out

the local processing.

The purpose of query optimization in R* is to decide on five major aspects of execution:

the access method, the join method, the join sites, inner-table transfer strategy, and

ordered result delivery to query site. Actually this algorithm significantly reduces the

number of alternatives by using dynamic programming and heuristics, but it has a

combinatorial complexity in the number of relations involved.

Legato et al [LPP91] presents an algorithm for determining a better execution sequence

to minimize data transmission costs. This algorithm is to formulate the optimization

problem in terms of the construction of a tree structured solution (AQT), and a

dominance property has been used to reduce the search space to be explored. Legota's

algorithm improved the R* optimizer, by removing a restriction, which is at least one of

the two operands of each binary join is a base relation. As with the R* optimizer, the

complexity of this algorithm is exponential.

9

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Two-way join:

The two-way join algorithm is used to solve the problem of single join between two

fragmented relations [CL89][Seg84]. Two-way joins are the most commonly encountered

operations in relational queries. The optimization of two-way joins serves as a basis for

the optimization of multiple joins.

Two general strategies exist for processing the two-way join of relation [AM91]: either

union the fragments of each relation, then perform a join between the two relations or

join all fragments of the first relation with all fragment of the second relation, then union

the results.

Using the second strategy, a four-phase approach has been proposed in [CL89] to

optimize two-way joins on fragmented relations in a broadcast local computer network.

Phase one: Join Graph construction.

Constructing a join graph for a given join. The nodes in the join graph represent the

fragments of joining relations. The edges in the join graph represent the nonempty join of

fragments. The qualification of fragment, which refers to the formulation of the

properties common to all tuples in a fragment, is used to determine and remove empty

fragment joins for the join graph.

Phase two: Join-Analysis Graph construction.

Transforming the join graph into a join-analysis graph. The fragment joins that are locally

processable are identified on order to minimize the total amount of intersite data transfer.

Phase three: Determining a Minimum-Weight Vertex Cover.

10

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Finding Minimum-Weight Vertex Cover (MWVC) for the corresponding join-analysis

graph in order to determine which fragment join execution plan has minimum data

transmission cost.

Phase four: Final processing optimization.

The final optimisation transmits fragment joins to the query site and units item to finish

the join.

This algorithm only focuses on minimizing the data transmission cost of shipping

fragments and fragment join results when processing a two way join. There have several

other optimization approaches for two-way join presented in [AM91][Seg84]. At here,

they will not be introduced one by one.

2.3 SEMIJOIN operation and approaches based on semijoins

2.3.1 SEMIJOIN operation

To process a query, the join operator suffers some problems such as the result relation

could be much larger than the relations participating in the join, or transferring a large

amount of data between different sites over the network, especially if the result of join

relation only contains a few tuples which is much smaller than the size of original

relation. To alleviate these problems the semijoin operator [BC81][BGWR+81] is

introduced as an effective operator to reduce the cost of an expensive join. The semijoin

operation is guaranteed to monotonically reduce the size of a relation, with the worst case

being no reduction. In addition, the properties of semijoins permit their computation with

less intersite data transfers than for joins.

11

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The semijoin is a relational algebraic operation that selects a set of tuples in one relation

that match one or more tuples of another relation on the joining domains. Semijoins have

been used as a basic ingredient in query processing strategies for a number of hardware

and softeware database systems. The semijoin Ri XA Rj is computed by the following

steps (Figure 2.2):

A B

1 4

2 3

3 6

1

2
>

A D

2 8

3 9

4 7

>
A D

2 8

3 9

Ri Ri[A] Rj Ri X Rj

(Ri[A] XJ Rj)

Figure 2.2 Semijoin operation

1) Send the projection Ri[A] from site i to j.

2) Reduce Rj by eliminating tuples whose attribute A are not matching any value in

Ri[A],

So semijoin R; X Rj equals to join Ri[A] IX Rj.

The purpose of the semijoin Rj X Rj is to reduce the relation Rj before any joining takes

place by removing tuples which will not be part of the final result. The semijoin is cost-

effective when the benefit is larger than the cost. The semijoin cost is the size of

projection R i[A]. The benefit is the amount of size reduction on relation Rj.

12

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The advantages of the semijoins are that the data transmission cost is reduced since only

an attribute projection needs to be shipped and never producing a larger relation than

those participating in the semijoin. The disadvantage is that it incurs higher local

processing costs since a projection must be executed each time.

2.3.2 Approaches based on semijoins

In this part, we illustrate three representative algorithms that use semijoins: SDD-1, AHY,

and two-way semijoin.

SDD-1:

The SDD-1 [BGWR+81] (System for Distributed Database) is a distributed database

system developed by the Computer Corporation of America. It is the first system to allow

a relational database to be distributed on a computer network. Users interact with SDD-1

by submitting queries coded in a high level procedure language called Datalanguage. The

SDD-1 algorithm proceeds in four phases as follows:

Initialization. It generates a set of beneficial semijoins - BS, and an execution strategy -

ES that includes only local processing.

Selection of beneficial semiioins. The phase selects the beneficial semijoins from BS by

iteratively choosing the most beneficial semijoin - SJj, and modifying the database

statistics (such as the cardinality, size, and selectivity of relations) and BS accordingly.

The modification affects the statistics of relation R involved in SJ, and the remaining

semijoins in BS that use relation R. The iterative phase terminates when all semijoins in

BS have been considered and appended to the execution strategy - ES.

13

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Assembly site selection. It selects the assembly site by evaluating, for each candidate site,

the cost of transferring to it all the required data and taking the one with the least cost.

Postontimization. It permits the removal from the execution strategy (ES) of those

semijoins that affect only relations stored at the assembly site. This phase is necessary

because the assembly site is chosen after all the semijoins have been ordered. The SDD-1

optimizer is based on the assumption that relations can be transmitted to another site.

This is true for all relations except those stored at the assembly site, which is selected

after beneficial semijoins are considered. Therefore, some semijoins may incorrectly be

considered beneficial. It is the role of postoptimization to remove them form the

execution strategy.

Although SDD-1 algorithm is an improved optimization algorithm, it still has several

drawbacks. The SDD-1 algorithm selects local optimal strategies, which means only

selecting semijoins that maximize immediate gain. Therefore, it ignores the higher-cost

semijoins that would result in increasing the benefits and decreasing the costs of other

semijoins at each step of the strategy generation. Thus this algorithm may not be able to

select the global minimum cost solution.

AHY:

Apers et al [AHY83] present a new algorithm - algorithm AHY (GENERAL) that use

semijoin operation to derive processing optimization strategies for arbitrarily complex

queries. For a special class of simple queries (see 1.4), Hevner and Yao developed

algorithms PARALLEL and SERIAL [HY79] that find strategies with, respectively,

minimum response time and total time for simple queries. There are three versions of the

14

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

algorithm AHY: one for minimizing response time (RESPONSE) and two for minimizing

total time (TOTAL, COLLECTIVE)

Algorithm AHY:

1. Do all initial local processing.

Local processing includes the computation of restrictions, projections, and semi-joins

between relations that reside in the same node.

2. Generate candidate relation schedules (see 1.4).

For all three versions, a general query (see 1.4) is decomposed into simple queries by

isolating each join attribute. These simple queries are then processed by either algorithm

PARALLEL or SERIAL depend on the type of optimisation to generate candidate

schedules.

3. Integrate the candidate schedules into a near optimal execution strategy.

After step 2, all candidate schedules are saved. In this step, those candidate schedules are

integrated to form a processing schedule for the response time or total tome of each

relation Ri according to each strategy of three versions.

4. Remove schedule redundancies.

Some schedules for relations have been transmitted in the schedule of another relation. So

the last step is to eliminate these relation schedules.

Algorithm AHY (GENERAL) to be an efficient algorithm of polynomial complexity that

derives close to optimal query processing strategies on distributed systems. But the lack

of consideration of global conditions and many simplifying assumptions concerning the

network may result in suboptimal strategies being generated.

15

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Two - way semijoin:

Traditional semijoin only does the forward size reduction of the joining relations. So, it

can be improved for more cost-effective.

Kang and Roussopoulous [KR87][RK91] describe a new relational operator — 2-way

semijoin that enhances the semijoin with backward size reduction capability for more

cost-effective query processing. A 2-way semijoin operator not only performs forward

reduction as the traditional semijoin operator does, but also performs backward reduction

always cost-effective.

A 2-way semijoin R ,«—A —*■ Rj is computed with the following steps (Figure 2.3):

A B
2 1
4 3
6 5
8 7

>
A
2_
4_
6

>
A C
1 5
2 7
3 9

Ri step 1 Ri[A] step 2 Rj
Ri X Rj (R;[A] tx Rj)

V
A B < = A < = > A c
2 1 2 2 7

B
i

4 step 4 Ri[A]m step 3 Rj'

Ri[A]m IX Ri R i[A]m: 2 RifAjmnl 4,6,8

Figure 2.3 2 - way semijoin operation

1. Send Ri[A] from site i to j.

2. Executing Ri[A] M Rj. During the forward reduction of Rj, partition Ri[A] into R i[A]m

and R i[A]nm where R i[A]m contains the values of attribute A which match one of values in

Rj[A], and Ri[A]nm contains the values of (R i[A]-R i[A]m).

16

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. Send the smaller size one between Ri[A]m and Ri[A]nm from site j back to i.

4. Perform backward reduction. If Ri[A]m is used, execute Ri[A]m M RL If Ri[A]nm is

used, then tuples whose attribute A are matching values in are eliminated. The figure 2.3

shows an example of 2 -way semijoin.

The result of a 2-way semijoin t: R; <—A—>■ Rj is equal to the result of two separate

semijoins s: Ri X a Rj and sr: Rj X a Ri. Thus, the benefit of t is the sum of the benefits of s

and sr. However, the cost of t is always smaller than the sum of the costs of s and sr

because in step 3 we send the one of R;[A]m and RifAjnm which is less size from I back to

j. Therefore, the extension of the semijoin to the 2-way semijoin is done in a cost-

effective way. No matter the cost and the benefit of the forward reduction is, the

backward reduction is always performed cost-effective. Besides these, the 2-way

semijoin has more powerful propagation effects that have been proved in [KR87].

In [KR87], the authors mention some existing heuristic algorithms based on semijoins

can be easily modified by replacing semijoins with 2 -way semijoins or combining

semijoins and 2 -way semijoins together.

The authors also proposed an algorithm [RK91] that attempts to minimize the local

processing cost of a query. This algorithm uses the 2-way semijoin framework and

pipeline techniques to eliminate the process of creating, storing, and transmitting

intermediate results on the local disks of the query site. This gives good I/O savings.

17

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2.4 FILTER and approaches based on filters

2.4.1 FILTER

The difficulty of the optimization of general queries in a distributed database

management system is to select the database operations that will process the query and

minimize costs. Traditional solutions include the use of heuristic strategies based on

semijoin or join operations. Compared with it, constructing a filter is generally smaller

than the join attribute projection due to its small size. It is cheaper to transfer a filter over

the network than a relation. However because hasing is utilized, a filter suffers from the

problem of collisions. Collisions occur as a result of two or more attribute values hashing

to the same address in the array. But by choosing the size and the hashing transformations

carefully, it is possible to make collisions insignificantly small.

A filter, also called bit vector filter, is an array used to encode the information about the

values or other properties contained in an attribute. Bloom filter [Bab79][Mul83] is an

important filter that was invented by Vurton Bloom in 1970 [Blo70]. A bloom filter is an

array of bit generated by using a hash function on a join attribute. Each bit in the bloom

filter functions as compact representation of the join attribute values. The storage

structure of a bloom filter consists of an array of bits. Figure 2.4 shows how a filter

works.

A B

i------- s

1
1 1------- 'V.

A C
1 1 2 5

2 3 1-------
0 3 7

2 5 0 4 9
5 7 l

Ri f (A) Rj Rj

Figure 2.4 Bloom filter operation

18

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1) Create a filter f (A) at site i.

• Create an array to hold bits.

• Let all bits in the array to zero.

• Developed a hash function and use it to produce an address in the array for each

joining attribute value.

• For each address produced, set the corresponding bit it 1.

2) Reduce relation size

• Send the filter f (A) to site j .

• Each value of join attribute of Rj, hashes on the value to produce an address.

• For each above address in the filter, evaluate its value.

If the value is 1, the corresponding tuple is kept for further processing.

If the value is 0, discard the tuple.

2.4.2 Approaches based on filters

In this part, we illustrate three representative algorithms that use filters: Hash-semijoin,

algorithm X, and PERF join.

Hash-semijoin

Tseng and Chen [TC92] propose a new relational operator called a hash-semijoin that is

designed based on the concept of search filter to greatly reduce the cost of a semijoin

operation by sacrificing some benefits. The hash-semijoin of Rj and Rj is denoted by Rj

oc R;. To reduce the cost of a semijoin operation, they use a search filter that represents

the semijoin projection with a small bit array. The approach works as follows:

19

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1. Initialize all bits in the array F by setting to 0.

2. For each value of the join attribute in Ri, use the d hash functions to hash the attribute

value into d bit addresses. Then set d bits in the bit array F to 1.

3. Transmit the bit array to the site of Rj.

4. For each tuple of Rj, use the same d hash functions to hash the join attribute value to d

bit addresses. If all these d bits are 1 in the bit array, then the tuple in Rj will be selected

as a semijoin result.

Compare with traditional semijoin, the hash-semijoin is more cost-effective. However, it

can only be used for the tree query (see 1.4). And using search filter to reduce the tuples

of the relation may not be a real semijoin result because of the information loss in

representing a value with d bits. The case where a value is falsely accepted by the search

filter is called a false drop. So after hash-semijoins (Rj oc Rj), the reduced Rj (Rj) is a

subset of Rj, but a superset of Rj X Rj since false drops may occur. That means "hash-

semijoins have to sacrifice some benefits". Another drawback is hard to choose the

number of hash functions, d. With a smaller d, the cost and the benefit of the hash-

semijoin are smaller. On the contrary, with a larger d, the cost and the benefit are larger

too. So it is not easy to derive an optimal d that result in an improvement in the potential

cost of a semijoin program.

Algorithm X:

Morrissey and Ma [Ma97][MM98] propose a heuristic for processing general queries.

Algorithm X uses bloom filters to reduce query response time as well as local processing

costs.

20

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The basic idea is to apply all filters to all relations, concurrently. The rationale is that the

filter sizes are relatively small and therefore the cost is relatively low. Each relation is at

most processed two times, once to construct the filters (which can be done during initial

local processing) and once when the reducing filters are applied. Furthermore, the

application of all filters concurrently will not increase the response time - and it will

certainly decrease the local processing cost.

The detailed description of Algorithm X is as follows.

Begin

Send all relevant filters to the relation R which is to be reduced.

Repeat

read a tuple T;

hash on all join-attribute values in R.

If there is a hit in every filter,

then keep tuple as part of the reduced relation R,

else discard tuple;

read next tuple T;

Until all tuples have been processed.

End

Compared with AHY (response time) [AHY83], algorithm X is more efficient. However,

algorithm X is based on the perfect hash function.

21

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

PERFjoin:

Li and Ross [LR95] propose a new search filter called "Positionally Encoded Record

Filters"(PERF) and describe their use in a distributed query processing technique called

PERF join. A PERF is a novel two-way join reduction implementation primitive which

having the same storage and transmission efficiency as a hash filter (e.g., bloom filter), a

PERF is based on the tuple scan order instead of hashing. So it doesn't suffer any loss of

join information incurred by hash collisions.

The basic idea of PERF join is to minimize the cost of the "backward" reduction. For

relation Ri, a bit vector contains one bit of every tuple. When performing forward

reduction of semijoin, the PERF for relation R; encodes with tuples that will be part of the

join result. The bit is set to 1 if it is in the projection Rj. Then ship it back to the site of Ri

and applied to Ri to filter out any unwanted tuples.

PERF join can reduce the cost of “backward” phase much better than two-way joins and

two-way semijons.

22

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 3 ASSUMPTION

The algorithm we will propose in this thesis is based on the following assumptions.

1) We assume a Distributed Database Management System that contains relational

data that is no fragmentation or replication, a point - to - point network.

2) Only Select - Project - Join (SPJ) query is considered. There is no set operations

like UNION, INTERSECTION, PRODUCT, DIFFERENCE involved in the

research.

3) A query consists of a number of relations, each at different site, and the result

made available at the query site. Each relation can have a number of join

attributes.

4) We assume the cost model is

C(X) = Co + X Where Co = 0 for simplicity.

X is the amount of data transmitted. Here we use unit “word” to represent

transmitted data.

5) We assume that we have a perfect hash function so the filter size (number of

address) is the same as the domain size. Each attribute value is a 64-bit word.

23

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 4 ALGORITHM H

In this chapter, we present our algorithm. The idea of this algorithm is that we use bloom-

filters to accomplish the same reduction effects as a semijoin strategy, but at a lower cost.

We use the parallel concept to achieve the simultaneous data transmission as much as

possible and reduce the response time of the query.

4.1 Description of the algorithm H

Before we describe the algorithm, we need to discuss some related concepts and

conditions firstly.

1. In this algorithm, we need to compare two filters (such as filter Ai, filter A2) of the

same attribute A.

• If the bits that have been set to 1 in the two filters are exactly same, then we say

that filter Ai equals filter A2 .

• If the bits that have been set to 1 in filter A2 not only include all bits that have

been set to 1 in filter Ai but also include some more bits that have been set to 1 ,

then we say that filter Ai is smaller than filter A2 and filter A2 is larger than filter

Ai.

• If the bits that have been set to 1 in filter A2 do not include all bits that have been

set to 1 in filter Ai and the bits that have been set to 1 in filter Ai do not include

all bits that have been set to 1 in filter A2 , we say that filter Ai and A2 are

different.

2. In this algorithm, when we add any element (filter) to the queue or a list, there is a

prerequisite - the element is not already on the queue or list.

24

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. In this algorithm, we need use two filterlists (filterlistl & filterlist2) and one queue.

Filterlistl is used to keep all new/smallest/different filters. When we need decide to

keep or discard the created filters in the algorithm, we will compare them with the

filters in the filterlistl. If the created filters are new/smaller/different ones, we will

keep them. Otherwise we will discard them.

Filterlistl is used to keep only the filters that will be used to reduce the other relations

in this algorithm. After using them, the filters will be deleted from filterlist2.

Queue is used to keep the relations in which the filters of some/all join attributes will

be used to reduce other relations.

Details of the algorithm:

1. Select the relation(s) with the lowest number of joining attributes. If the number of

selected relation(s) is more than one, select the relation with the higher degree (see 1.4)

among them. We will denote this relation Rj.

2. Construct the bloom-filters of all join attributes contained in R; and put all filters in

both filterlistl and filterlist2. Add Ri to queue.

3. Remove the relation from the front of queue. We will denote this relation Rj.

4. Determine if filters for any attributes of Rj exist in filterlist2, and apply them to reduce

the relations that can be reduced by these filters.

5. Delete the used filters in the step 4 from filterlist2.

6 . For each reduced relation in step 4, denote it Rt, construct the bloom-filters for all

joining attributes contained in Rt and check these filters one by one.

a. If it is a new filter, add it to filterlistl and filterlist2; add Rt to queue.

25

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

b. If it only exists in filterlistl and is not larger than or equal to any filter for the

same joining attribute in filterlistl, compare it with the filters for the same joining

attribute in filterlistl one by one:

• If it is smaller, delete the existing one from filterlistl; add it to filterlistl

and filterlist2; add Rt to queue.

• If it is different from the existing one in fitlerlistl, add it to filterlistl and

filterlist2; add Rt to queue.

c. If it exists in both filterlistl and filterlist2, compare it with all filters for the same

joining attribute in filterlistl and delete the larger ones from filterlistl.

If it does not equal any filter for the same joining attribute in filterlistl and is not

larger than or equal to any filter for the same joining attribute in filterlist2 , compare

it with the filters for the same joining attribute in filterlist2 one by one:

• If it is smaller, delete the existing one from filterlist2; add it to filterlist2

and filterlistl; put Rt to the position before the relation that creates the

existing filter in filterlist2 on the queue.

• If it is different from the existing one in filterlist2, add it to filterlist2 and

filterlistl; add Rt to queue.

7. Repeat step3 to 6 until queue is empty.

4.2 An example of using the algorithm

Following example illustrates how this algorithm works.

In this example, the query has four relations that must be joined. These four relations are

shown in Figure 4.1.

26

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Rj C R2 A R3 A C D R4 c d

3 1 1 3 4 2 2

6 2 4 6 5 3 4

7 3 4 9

00 5 6

00 4 8 7

Figure 4.1 The four relations of the example

Domain size of joining attributes: A 5, CIO, DIO

Domain of an attribute includes all possible values of the attribute. The size of the filter

of an attribute is the domain size of the attribute.

Using the example database given in Figure 4.1, the following query graph (see 1.4) is

constructed.

R4

Figure 4.2 Query graph for example database

From this query graph, we find it is a cyclic query (see 1.4). The difficulty of the cyclic

query is hard to terminate. But the example shows our proposed algorithm can handle the

cyclic queries and easily terminate them.

27

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1. In these four joining relations, Ri and R2 both have the lowest number of joining

attributes, that is, one. But the degree of Ri is two which is larger than the degree of R2 ,

that is, one. Ri is selected; a filter for attribute C is produced (3,6 ,7,8); place the filter

Cj on the filterlistl and filterlist2. Because the filters of joining attributes contained in

Ri will be used to reduce other relations, Ri is placed on the queue.

filterlistl { Ci } filterlist2 { Ci } queue { Ri }

2. Remove Ri from the queue and use filter C of Ri (Ci) in filterlist2 to reduce related

relations (R3, R4); delete the filter Ci from filterlist2.

filterlistl { C i} filterlist2 0 queue 0

3. Check the reduced relations R3 and R4

Produce the filter A, C, and D of R3 and check these three filters.

R3 A C D filters A3 : 1,4

1 3 4 C3: 3, 6

4 6 5 D3: 4, 5

The filter A is a new filter, add it to filterlistl and filterlist2; add R3 to queue.

The filter C only exists in filterlistl, compare C3 with Ci in filterlistl:

C3 < Ci, delete Ci from filterlistl; add C3 to filterlistl and filterlist2; because R3 is

already on the queue, don’t need add R3 to the queue.

The filter D is a new filter, add it to filterlistl and filterlist2; because R3 is already on

the queue, don’t need add R3 to the queue.

filterlistl { A3, C3, D3 } filterlist2 { A3, C3, D3 } queue { R3 }

28

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Produce the filter C and D of R4 and check these two filters.

R4 C D filters C4: 3 , 8

3 4 D4: 4 ,7

8 7

The filter C exists in both filterlistl and filterlist2, compare C4 with all filter C in

filterlistl; no larger ones can be deleted and no one equals C4; compare C4 with C3 in

filterlist2 :

C4is different from C3 , add C4 to filterlist2 and filterlistl; add I^ to the queue.

The filter D exists in both filterlistl and filterlist2, compare D4 with all filter D in

filterlistl; no larger ones can be deleted and no one equals D4; compare D4 with D3 in

filterlist2 :

D4 is different from D3, add D4 to filterlist2 and filterlistl; because R4 is already on the

queue, don’t need add Rf to the queue.

filterlistl { A3, C3, D3, C4, D4 } filterlist2 { A3, C3, D3, C4) D4 } queue { R3,R4 }

4. Remove R3 from the queue and use filter A, C, D of R3 (A3 , C3 , D3) in filterlist2 to

reduce related relations (Ri, R 2, R4); delete the filter A3, C3, D3 from filterlist2.

filterlistl { A3, C3 , D3 , C4, D4 } filterlist2 { C4, D4 } queue { R4 }

5. Check the reduced relations Ri, R2 , and R*

Produce the filter C of Ri and check it.

29

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Ri C filter Q : 3, 6

3

6

The filter C exists in both filterlistl and filterlist2, compare Ci with all filter C in

filterlistl; no larger ones can be deleted; but we have C3 = C^do not need compare Ci

with existing filter C in filterlist2.

Produce the filter A of R2 and check this filter.

R2 A filter A2: 1,4

1

4

No change about filter A in filterlistl.

Produce the filter C and D of R4 and check these two filters.

R 4 C D filters C 4 : 3

3 4 D4: 4

The filter C exists in both filterlistl and filterlist2, compare new C4 with all filter C in

filterlistl and delete the larger ones (C3, existing C4) from filterlistl; no one equals new

C4 in filterlistl; compare new C4 with the existing C4 in filterlist2:

new C4 < existing C4, delete the existing C4 from filterlist2; add new C4 to filterlist2

and filterlistl; because R4 is already on the queue, don’t need add ILj to the queue.

30

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The filter D exists in both filterlistl and filterlist2, compare new D4 with all filter D in

filterlistl and delete the larger ones (D3, existing D4) from filterlistl; no one equals

new D4 in filterlistl; compare new D4 with the existing D4 in filterlist2:

new D4 < existing D4, delete the existing D4 from filterlist2; add new D4 to filterlist2

and filterlistl; because R4 is already on the queue, don’t need add R4 to the queue,

filterlistl {A 3 , C4 ; D4 } filterlist2 { C4 ; D4 } queue { R4 }

Note: The C 4 and D 4 in both filterlists are new ones now.

6 . Remove R4 from the queue and use filter C and D of R4 (C4 , D4) in filterlist2 to reduce

related relations (Ri, R3); delete the filter G*, D4 from filterlist2.

filterlistl { A3; C4 , D4 } filterlist2 0 queue 0

7. Check the reduced relations Ri and R3

Produce the filter C of Ri and check it.

Ri C filter Ci: 3

3

No change about filter C in filterlistl.

Produce the filter A of R3 and check it.

R3 A C D filters A 3 : 1

1 3 4 C3: 3

D3: 4

The filter A only exists in filterlistl, compare new A3 with the existing A3 in filterlistl:

31

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

New A3 < existing A3, delete the existing A3 from filterlistl; add new A3 to filterlistl

and filterlist2 ; add R3 to queue.

No change about filter C and D in filterlistl.

filterlistl { A3> C4, D 4 } filterlist2 {A 3 } queue { R3 }

Note: The A3 in both filterlists is new one now.

8 . Remove R3 from the queue and use filter A of R3 (A3) in filterlist2 to reduce related

relation (R2); delete the filter A3 from filterlist2.

filterlistl { A3, C4, D4 } filterlist2 0 queue 0

9. Check the reduced relation R2

Produce the filter A of R2 and check it.

R2 A filter Ai: 1

1

No change about filter A in filterlistl.

10. The queue is empty now. The algorithm stops.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Now, we will calculate the Response Time (RT) of the example query.

The Response Time of a query is the elapsed time between the start of the query and the

final results are obtained.

The RT of this query is as follows:

reduce R^ R:

reduce R3< Rj reduce R^ R2i R*

reduce R2 query site

Figure 4.3 The RT of the example query

RT: Ci + Max(A3, C3, D3) + Max(C4, D4) + A3 + Max(Ri’, R2’, R3’, R4)

= 10/64 + Max(5/64,10/64, 10/64) + Max(10/64,10/64) + 5/64 + Max(1,1, 3, 2)

- 0.15625 + 0.15625 + 0.15625 + 0.078125 + 3

= 3.546875

33

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 5 EXPERIMENTS AND EVALUATION

To study whether the use of the algorithm H leads to better performance, we carried out

various experiments based on a large number of queries. In this chapter, we discuss our

methodology, present details of our experiments, and finally discuss the significance of

these results.

5.1 Methodology

The framework for evaluating the algorithm is based on the following objective:

• To compare the proposed algorithm H against the effects of the Initial Feasible

Solution (IFS) that ships all relations directly to the query site and performs joins

there. Our algorithm is evaluated to determine how much better it comes to

reducing the response time when comparing with IFS. This comparison is done

under the assumption of a perfect hash function.

5.1.1 Experimental rationale

With few exceptions, previously proposed algorithms have not been objectively

evaluated. Heuristic have been evaluated for performance by comparison with another

heuristic or not evaluated for performance at all. But since the mostly compared heuristic

algorithms have different assumptions and restrictions, it is hard to determine the

performance of which heuristic is better. The Initial Feasible Solution is an algorithm

that ships all relations directly to the query site and performs joins there. Since it is a very

simple heuristic that has no assumptions or restrictions, then comparing against IFS, the

performance of our proposed algorithm is being evaluated objectively.

34

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5.1.2 Experimental system

The experimental system includes the query-relation generator, algorithm H, IFS, and

Analysis program.

The query-relation generator that is described in 5.1.3 was programmed by the Database

Research Group of the University of Windsor.

The algorithm H has been described in Chapter 4 and implemented in C++.

IFS that is introduced in 5.1.4 is an algorithm that ships all relations directly to the query

site and performs joins there.

The analysis program that is introduced in 5.1.5 is to evaluate the performance of our

algorithm.

In experiments we constructed 3600 different queries as input. The queries and relations

vary in the number of relations, the number of joining attributes, the relation size, the

domain size, and the selectivity.

5.1.3 Test queries (query-relation generator)

The proposed algorithm is evaluated using Select - Project - Join (SPJ) queries. A

variety of test queries contain the following characteristics:

• Number of relations and attributes

Each query consisted of between 3 and 6 relations and the number of joining

attributes varied between 2 and 4. Overall, this gave us 12 different types of test

queries (from 3 relations - 2 attributes to 6 relations - 4 attributes).

• Relation cardinality - the number of tuples or records in a relation.

Each relation in the query has between 150 and 2000 tuples.

35

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• Attribute domain sizes - the total number of distinct attribute values an attribute can

contain.

The size of each join-attribute domain varies between 100 and 600.

• Selectivity - the ratio of distinct attribute values over the attribute domain size.

Intuitively, the selectivity of an attribute is an estimate of the ability of the attribute to

reduce the size of the relations. For clarification, a joining attribute has high

selectivity if the ratio is low, and low selectivity if the ratio is high. For example, a

selectivity of 0.1 is considered high while a selectivity of 0.9 is considered low.

The selectivities in the query are in the range between 0.1 and 0.9.

• Connectivity - an approximate ratio of the number of joining attributes appearing in

all relations of the query over the total number of possible join attributes that can

appear in the query. The total number of possible joining attributes is a product of the

number of relations and the number of common joining attributes.

For our evaluation we consider minimum connectivity is 50%.

The actual query and relation construction is handled by the C program create_query.c

and relbuilder.c that are described in [Bea95] respectively. We describe these two C

programs below for completeness:

• create_query.c\ This program generates a query. The input includes the number of

relations, the number of common join attribute, and the range of attribute selectivities.

The output consists of the file ‘dbstats’, file ‘domains’, and several ‘Rel’ files.

36

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The file ‘dbstats’ which is the database statistics contains the number of relations, the

number of common joining attributes, the relation cardinalities, and each attribute

cardinality and selectivity.

The file ‘domains’ that is the domain size consists of the domain size for each

common joining attribute.

For each relation specified in the query, a file ‘ReT is generated, which consists of the

relation cardinality, the number of joining attributes, and for each joining attribute,

the attribute label, the size of the attribute and its domain.

The example, given in Figure 5.1, shows these files for a query,

dbstats

32

258 104 0.7 76 0.6

392 0 0.0 114 0.9

532 101 0.68 0 0.0

domains

148

127

RelO

258 2 0 104 148 1 76 127

Figure 5.1 Example files for a query

Consider the ‘dbstats’ file in Figure 5.1. Line 1 contains the number of relations (3)

and the number of common joining attributes (2). Lines 2, 3, and 4 contain the

37

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

statistics for each relation specified in the query. For relation Ro, represented by line 2

of ‘dbstats’, the cardinality is 258. The following numbers in line 2 are the data about

two attributes of Ro.

The first attribute is attribute 0, with a cardinality of 104 and a selectivity of 0.7. The

second attribute is attribute 1, with a cardinality of 76 and a selectivity of 0.6. The

same data about Ri and R2 are represented in line 3 and line 4 of ‘dbstats’

respectively.

The ‘domains’ file in Figure 5.1 contains a domain size of 148 for common joining

attribute 0 and a domain size of 127 for common joining attribute 1.

The ‘RelO’ file in Figure 5.1 is generated for relation Ro. The first number (258) is the

cardinality of relation Ro. The second number (2) is the number of joining attributes

in the query. The third number (0) represents attribute 0 whose cardinality and

domain size are the forth and fifth number (104, 148). The sixth number (1)

represents attribute 1 whose cardinality and domain size are the seventh and eighth

number (76,127). Similar ‘Rel’ files are created for relation Ri and R2 .

• relbuilder.c: This program generates a relation based on the statistics generated in

create_query.c. The input of relbuilder is a number indicating the relation to generate.

rebuilder uses this number to access the corresponding ‘Rel’ file, which is generated

by create_query.c. The output is a ‘R’ file, which contains the required number of

tuples of the corresponding relation and the necessary header information, including

the number of joining attributes and the joining attribute labels.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5.1.4 Initial Feasible Solution (IFS)

To evaluate the algorithm H that is described in chapter 4 objectively, the performance of

algorithm H is compared against IFS. For this reason, we have developed an IFS program.

The Initial Feasible Solution is an algorithm that ships all relations directly to the query

site and performs joins there. We explain how the IFS works with the same example we

used to describe algorithm H in chapter 4.

Four relations are shown in Figure 5.2.

Ri C R2 A R3 A C D R4 C D

3 1 1 3 4 2 2

6 2 4 6 5 3 4

7 3 4 9 8 5 6

8 4 8 7

Figure 5.2 The four relations of the example

The sizes of Ri, R2, R3, and R4 are 4,4, 9, and 8 respectively.

Depend on the definition of the Response Time which is the elapsed time between the

start of the query and the final results are obtained, the RT of this example should be the

maximum one among the sizes of four relations.

RT: Max (Ri, R2, R3, R4)

= Max (4, 4, 9, 8)

= 9

39

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5.1.5 Analysis program

To evaluate the performance of our proposed algorithm H precisely, we have produced

the analysis program to collect and compare results generated by algorithm H and IFS.

The analysis program calculates the reduced RT (Response Time) that is based on the

following formula.

reduced RT (%) = [(RT by IFS - RT by H) / RT by IFS] * 100

We still use the same example that is described in chapter 4 and in 5.1.4 to explain this

formula.

RTbylFS: 9

RT by H: 3.546875

reduced RT (%) =[(9 - 3.546875) / 9] * 100 = 60.59

The analysis program still calculates the average RT achieved by algorithm H and by IFS

and the average reduced RT when we compare algorithm H against IFS.

5.2 Experiments and results

In the experiments, each relation in the query consists of (150 - 2000) tuples. The

attribute domain contains (100 - 600) distinct values. The experiments carried out are

divided into three parts based on the selectivities of all joining attributes in the test

queries: high selectivity (0.1 - 0.4), middle selectivity (0.4 - 0.7), and low selectivity (0.7

- 0.9). For each test query type, 100 queries were constructed and executed using

algorithm H and IFS, recording the costs incurred. So, each data in the following result

tables is the average result of 100 queries. Overall, a total of 3600 queries were used to

evaluate the performance of the proposed algorithm H.

40

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Type RT by IFS RT by H Reduced RT
3-2 3042.86 261.06 90.49
3-3 4367.14 154.49 95.56
3-4 4991.43 147.77 96.71
4-2 3018.57 242.25 91.67
4-3 4158.57 217.1 93.81
4-4 5848.57 292.42 94.43
5-2 3240 248.39 91.9
5-3 4805.71 283.15 93.78
5-4 5275.71 243.98 94.23
6 - 2 3594.29 242 93.14
6-3 4461.43 301.76 92.74
6-4 6242.86 271.28 95.44

Average of the Column 4420.6 242.14 93.66

Figure 5.3 Results of reduced RT at selectivity 0.1-0.4

• The results of the comparison in Figure 5.3 show that, the RT by using the algorithm

H equals less than 10% of the RT by using IFS. On average, algorithm H outperforms

IFS by 93.66% when the selectivity is between 0.1 and 0.4.

• For test query type 3-2, 4-2, and 5-2, the average reductions of RT are lower than

those of the remaining test query types. But the algorithm H still achieves 90+%

reduction of RT.

• For test query type 3-3, 3-4, and 6-4, the average reductions of RT are higher than

those of the remaining test query types. The algorithm H achieves 95+% reduction of

RT.

41

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Type RT of IFS RT of H Reduced RT
3-2 3282.86 530.93 83.96
3-3 4642.86 599.13 85.5
3-4 4577.14 421.61 89.92
4-2 3444.29 465.62 85.85
4-3 4565.71 649.34 85.12
4-4 5192.86 517.36 89.31
5-2 3281.43 355.28 88.15
5-3 4415.71 432.29 8 8 . 6 6

5-4 5722.86 477.26 90.76
6 - 2 3367.14 351.36 89.23
6-3 4918.57 424.26 89.93
6-4 6028.57 559.28 90.32

Average of the Column 4453.33 481.98 88.06

Figure 5.4 Results of reduced RT at selectivity 0.4-0.7

• The results of the comparison in Figure 5.4 show that, the RT by using the algorithm

H equals less than 20% of the RT by using IFS. On average, algorithm H outperforms

IFS by 88.06% when the selectivity is between 0.4 and 0.7.

• This average reduction (88.06%) is lower than the one at selectivity 0.1-0.4 (93.66%)

about 5%.

• For test query type 3-2, 3-3, 4-2, and 4-3, the average reductions of RT are lower than

those of the remaining test query types. But the algorithm H still achieves 83+%

reduction of RT.

• For test query type 5-4 and 6-4, the average reductions of RT are higher than those of

the remaining test query types. The algorithm H achieves 90+% reduction of RT.

42

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Type RT of IFS RT of H Reduced RT
3-2 3125.71 1559.5 50.29
3-3 4861.43 2390.94 50.94
3-4 5982.86 2742.33 53.88
4-2 3594.29 1606.83 55.66
4-3 4518.57 2146.83 52.37
4-4 6382.86 2741.08 55.54
5-2 3761.43 1669.87 56.45
5-3 4555.71 1868.65 57.84
5-4 6175.71 2609.94 56.21
6 - 2 3434.29 1405.93 58.72
6-3 5118.57 1887.53 62.8
6-4 6272.86 2114.59 64.83

Average of the Column 4815.36 2070.25 56.29

Figure 5.5 Results of reduced RT at selectivity 0.7-0.9

• The results of the comparison in Figure 5.5 show that, the RT by using the algorithm

H equals less than 50% of the RT by using IFS. On average, algorithm H outperforms

IFS by 56.29% when the selectivity is between 0.7 and 0.9.

• This average reduction (56.29%) is lower than the one at selectivity 0.1-0.4 (93.66%)

about 37% and lower than the one at selectivity 0.4-0.7 (88.06%) about 32%.

• For test query type 3-2, 3-3, 3-4, and 4-3, the average reduction of RT is lower than

those of the remaining test query types. But the algorithm H still achieves 50+%

reduction of RT.

• For test query type 6-3 and 6-4, the average reduction of RT is higher than those of

the remaining test query types. The algorithm H achieves 60+% reduction of RT.

5.3 Discussion

The performance evaluation shows that, on average, the proposed algorithm H gives good

improvement, even when the selectivity is low. Actually, in some cases, the proposed

43

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

algorithm H has some kind of redundancy problem. This is illustrated with a simple

example that is changed a little from the example described in chapter 4.

R , R2

3

6

7

8

1

2

3

r 3 a c d

1 3 4

4 6 5

4 9 8

R4 _ C __

2 2

3 4

5 6

8 7

Figure 5.6 The four relations of the example

In this example, we just remove the last value of joining attribute A of R2 . We don’t

explain every step in detail because it has already been done in the description of the

similar example in chapter 4. We directly give the result of each step as follows. The

redundancy occurs in the step 8 .

1. Ri is selected; a filter for attribute C is produced (3,6 ,7,8); place the filter C on the

filterlistl and filterlist2 . Ri is placed on the queue,

filterlistl { Ci } filterlist2 { Cj } queue { Ri }

2. Remove Ri from the queue and use filter C of Ri (Cj) in filterlist2 to reduce related

relations (R3, R 4) ; delete the filter Ci from filterlist2.

filterlistl { C i} filterlist2 0 queue 0

3. Check the reduced relations R3 and R4

4 4

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Produce the filter A, C, and D of R3 and check these three filters.

R3 A C D filters A3 : l , 4

1 3 4 C3: 3, 6

4 6 5 D3: 4, 5

filterlistl { A3j C3; D3 } filterlist2 { A3; C3) D3 } queue { R3 }

Produce the filter C and D of R4 and check these two filters.

R4 C D filters C4 : 3, 8

3 4 D4 : 4 ,7

8 7

filterlistl { A3 ,C 3,D 3,C 4 ,D4 } filterlist2 { A3>C3 ;D3, C4fD4 } queue { R ^R a }

4. Remove R3 from the queue and use filter A, C, D of R3 (A3j C3, D3) in filterlist2 to

reduce related relations (Ri, R2 , R4); delete the filter A3; C3> D3 from filterlist2.

filterlistl { A3) C3; D3> C4; D4 } filterlist2 { C4; D4 } queue { R4 }

5. Check the reduced relations Ri, R2 , and Rt

Produce the filter C of Ri and check it.

Ri C filter Cj: 3, 6

3

6

No change about filter C.

Produce the filter A of R2 and check this filter.

4 5

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

R-2 A filter A2 : 1

1

filterlistl { C3> D3i C4j D4, A2 } filterlist2 { C4, D4> A2 } queue { R4 , R2 }

Produce the filter C and D of R4and check these two filters.

R4 C D filters C4: 3

3 4 D4: 4

filterlistl {C4) D4> A2 } filterlist2 { C4; D4j A2 } queue { R4, R2 }

6 . Remove R4 from the queue and use filter C and D of R4 (C4, D4) in filterlist2 to reduce

related relations (R|, R3); delete the filter C4) D4 from filterlist2.

filterlistl { C4; D4j A2 } filterlist2 { A2 } queue { R2 }

7. Check the reduced relations Ri and R3

Produce the filter C of Ri and check it.

Ri C filter C i:3

3

No change about filter C.

Produce the filter A of R3 and check it.

R3 A C D filters A3: 1

1 3 4 C3: 3

D3: 4

No change about filter A, C, and D

filterlistl { C4> D4> A2 } filterlist2 { A2 } queue { R2 }

46

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

8 . Remove R2 from the queue and use filter A of R2 (A2) in filterlist2 to reduce related

relation (R3); delete the filter A2 from filterlist2.

filterlistl { C4; D4; A2 } filterlist2 0 queue 0

9. Check the reduced relation R3 (it’s same as in step 7. Step 8 is redundant)

Produce the filter A of R3 and check it.

R3 A C D filters A3: 1

1 3 4 C3: 3

D3: 4

No change about filter A, C, and D.

10. The queue is empty now. The algorithm stops.

Actually, in the first 7 steps, the all relations have already been reduced fully. But

because there still has the filter A of R2 (A2) in the filterlist2 and R2 on the queue, we

have to do the step 8 in which the proposed algorithm H can not further reduce any

relation in the query. The step 8 is useless. It is redundant.

The reason why the algorithm H has the redundancy is the following. The relation R3

supposed to be further reduced using A2 in step 8 has already been reduced fully when the

algorithm uses C4, D4 to reduce the relation R3 in step 7. Although the relation R3 has

been reduced fully in step 7, the algorithm still have to try to reduce it again in step 8

since there still has the filter A of R2 (A2) in the filterlist2 and the R2 on the queue. The

algorithm did not stop until the queue is empty.

47

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Because every relation has at least one joining attribute, if the relation has more than one

joining attributes, it is possible for this kind of redundancy to occur.

Although the proposed algorithm H has the redundancy, we still find the performance of

our proposed algorithm H is significantly better from the evaluation of this algorithm.

48

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 6 CONCLUSIONS AND FUTURE WORK

In this thesis, we propose a new filter-based algorithm that uses bloom-filters to process

general queries. The primary goal of our algorithm is to reduce the response time of a

distributed query. The secondary goal is to reduce relation sizes while using data

transmission as little as possible.

This algorithm can process general queries consisting of an arbitrary number of relations

and joining attributes. Most heuristic algorithms in distributed database systems can only

be used for tree queries (see 1.4) or simple queries (see 1.4). Even if some heuristics can

process general queries, it is difficult for them to be efficient for cyclic queries. The

difficulty of cyclic queries is hard to terminate. But our proposed algorithm can handle

the cyclic queries.

The performance of our proposed algorithm with respect to response time is compared

against the Initial Feasible Solution (IFS) to determine how much better it reduces the

response time. We perform some experiments to evaluate the proposed algorithm. The

test data used to evaluate the algorithm consists of many Select- Project-Join (SPJ)

queries, which vary in selectivity, number of relations, and number of joining attributes.

Analyzing the results of the evaluation, we get the following figure 6.1.

49

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

H vs IFS ■ Algorithm H
■ Algorithm IFS

6000

5000

| 3000
o| 2000

1000

0.1-0.4 0.4-0.7 0.7-0.9

Selectivity

Figure 6.1 H - IFS cost comparisons

• The improvement of algorithm H decreases as the selectivity decreases. In other

words, the Response Time of algorithm H increases as the selectivity decreases.

• Algorithm H clearly outperforms IFS (as illustrated in Figure 6.1). On average,

algorithm H outperforms IFS by approximately 79.34% in all the cases. The greatest

difference in performance is found in those queries whose selectivities of joining

attributes are between 0.1 and 0.4.

• The Response Times of the queries whose selectivities of joining attributes are

between 0.7 and 0.9 by using algorithm H are much higher than the remaining queries.

• We found the number of relations is an important factor to affect the performance of

our proposed algorithm H. The experiment results in chapter 5 indicate that the more

number of relations, the better the effect of the reduction of RT, especially in the

cases in which the selectivity is 0.4-0.7 or 0.7-0.9.

50

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• For the number of joining attributes, we found that for the queries containing the

same number of relations, the more number of joining attributes, the larger reduction

of RT.

In conclusion, if the high selectivity (0.1-0.4) is used in our algorithm H, then our

algorithm performs excellent. Otherwise, in order to obtain better reduction performance,

we suggest to adopt those queries with more number of relations and more number of

attributes.

6.1 Future work

We assume that we have a perfect hash function and apply it to our proposed algorithm H.

That means no collision problems in our algorithm. In reality, collision problems always

exist in filter-based algorithms. So one key area of continued research is to test the

proposed algorithm under the situation with collisions and try to use multiple bloom-

filters for each common joining attribute to attempt to minimize the collision problem.

Another key area of continued research is to test the effects of our proposed algorithm

about cyclic queries by comparing against another algorithm that can handle cyclic

queries too.

51

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

BIBLIOGRAPHY

[AHY83] Peter M.G.Apers, Alan R.Hevner, and Bing Yao. "Optimization algorithms

for distributed queries". IEEE Transactions on Software Engineering,

vol.9(l), pp.57-68, 1983.

[AM91] J.K.Ahn and S.C.Moon. "Optimization joins between two fragmented rel­

ations on a broadcast local network". Info. Sys, vol. 16(2), pp. 185-198,

1991.

[ABCE+76] M.M.Astrahan et al. "System R: A relational approach to data management".

ACM Transactions on Database Systems, vol. 1(2), pp.97-137, June 1976.

[Bab79] E.Babb. "Implementing a relational database by means of specialized

hardware". ACM Transactions on Database Systems, vol.4(l), pp.1-29,

1979.

[Bea95] William T. Bealor. "Semi-join strategies for total cost minimization in

distributed query processing". Master thesis, University of Windsor, 1995.

[BC81] P.Bemstein and D.Chiu. "Using semi-join to solve relational queries".

Associaton for Computing Machinery Journal, vol.28, pp.25-40, Jan 1981.

[BGWR+81] P.Bemstein, N.Goodman, E.Wong, C.Reeve, and J.Rothnie. "Query

processing in a system for distributed databases (SDD-1)". ACM

Transactions on Database Systems, vol.6(4), pp.602-625,1981.

[BDT83] Dian Bitton, David J.Dewitt and Carolyn Turbyfill. "Benchmarking Database

Systems - a Systematic Approach". Technique report, Computer Science,

University of Wisconsin-Madison, 1983.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[Blo70]

[BMS96]

[BR8 8]

[Bra84]

[CCY92]

[CL89]

[CL90]

[CP84]

B.H.Bloom. "Space/time trade-offs in hash coding with allowable errors".

Communication of the ACM, vol. 13(7), pp.422-426,1970.

S.Bsnfyopsfhysy, J.M.Morrissey, and A.Senpupta, "A query optimization

strategy for distributed databases on allO-optical networks". In Proceedings

of the Canadian Conferencd on Electrical and Computer Engineering,

pp.245-248, 1996.

P. Bodorik and J.S.Riordon. "A threshold mechanism for distributed query

processing". In Proc. Of the ACM Computer Science Conference, pp.616-

621,1988.

Kjell Bratbergsengen. "Hashing methods and relational algebra opteations ".

In Proc. Of the 10th International Conference on VLBD, pp 323-333, 1984.

T.S.Chen, A.L.P.Chen, and W.P.Yang. "Hash-semijoin: A new technique for

minimizing distributed query time". In Proc. Of the 3rd Workshop on Future

Trends of Distributed Computing Systems, pp 325-330, 1992.

J.S J.Chen and V.O.L.Li. "Optimizing joins in fragmented database systems

on a broadcast local network". IEEE Transactions of Software Engineering,

vol.15(1), pp.26-38, 1989.

J.S.J.Chen and V.O.K.Li. "Domain-specific semijoin: a new operation for

distributed query procesing". Information Sciences, vol.52, pp.165-183,

1990.

S.Ceri and G.Pelagetti. "Distributed Databases: Principles and

Systems".McGarw-Hill, 1984.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[CY90] M.S.Chen and P.S.Yu. "Using join operations as reducers in distributed query

processing". In Proc. Of the 2nd Intematio Symposium on Database in

Parallel and Distributed Systems, pp. 116-123,1990.

[Hen80] A.r. Henver. "The optimization of query processing in distributed database

systems".PhD thesis, Purdue University, 1980.

[GS8 6] B.Gacish and A.Segev. "Set query optimization in distributed database

systems". ACM Transactions on Database Systems, vol. 11(3), pp.265-293,

1986.

[GLPK94] C.Galindo-Legaria, A.Pellenkoft, and M.Kersten. "Fast, randomized join-

thorder selection - why use transformations?". In Proc. 20 Int. VLDB

Conference, pp.85-95, Santiago, Chile, September 1994. (Also available as

CWI Tech. Report CS-R9416.).

[Kam96] S.Kamat. "Dynamic strategy and bloom filters in distributed query

optimization". Master thesis, University of Windsor, 1996.

[KR87] H.Kang and N.Roussopoulos. "Using 2-way semijoins in distributed query

processing". In Proc. of The 3rd International Conference on Data

Engineering, pp.664-651,1987.

[Lia99] Y. Liang. "Reduction of collisions in bloom filters during distributed query

optimization". Master thesis, University of Windsor, 1999.

[LMHD+85] G.M.Lohman et al. "Query processing in R*". Query processing in database

system, Springer, New York, 1985.

[LPP91] P.Legato, G.Paletta and L.Palopoli. "Optimization of join strategies in

distributed database". Information Systems, vol.l6(4), pp.363-374,1991.

54

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[LR95]

[Ma97]

[MB96]

[MBB95]

[ME92]

[MOLOO]

[MM98]

[M098]

Z.Li and K.A.Ross. "PERF join: an alternative to two-way semijoin and

bloomjoin". In Proc. of CIKM'95, pp.137-144,1995.

X.Ma. "The use of bloom filters to minimize response time in distributed

query optimization". Master thesis, University of Windsor, 1997.

J.M.Morrissey and W.T.Bealor. "Minimizing data transfers in distributed

query optimization: A comparative study and evaluation". The Computer

Journal, vol.39, no.8 , pp.676-687, Dec 1996.

J.M.Morrissey, S.Bandyopadhyay, and W.T.Bealor. "A comparison of static

thand dynamic strategies for query optimization". In Proceedings of the 7

/LASTED/ISM International Conference on Parallel and Distributed

Computing Systems, 1995.

P.Mishra and M.Eich. "Join processing in relational databases". ACM

Computing Surveys, vol.24(l), pp.63-113, March 1992.

J.M.Morrissey, W.K.Osbom, and Y.Liang. "Collisions and reduction filters

in distributed query processing". In Proc. of the 2000 IEEE Conference on

Electrical and Computer Engineering, vol.l, pp.240-244, 2000.

J.M.Morrissey and X.Ma. "Investigating response time minimization in

distributed query optimizaiton". Present at ICCI'98, pp.124-138,1998.

J.M.Morrissey and W.K.Osbom. "Distributed query optimization using

reduction filters". In Proc. of the 1998 IEEE Conference on Electrical and

Comuter Engineering, vol.2, pp.707-710,1998.

55

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[Mor96] J.M.Morrissey. "Reduction filters for minimizing data transfers in distributed

query optimization". In Proc. of the 1996 Canadian Conference on

Electrical and Computer Engineering, vol.l, pp. 198-201, 1996.

[Mul83] James K.Mullin. "A second look at bloom filters". Communication of the

ACM, vol.26(8), pp.570-571, August 1983.

[Mul90] James K.Mullin. "Optimal semijoins for distributed database systems". IEEE

Transactions on software engineering, vol. 16(5), pp.558-560, May 1990.

[Mul93] James K.Mullin. "Estimating the size of a relational join". Information

Systems, vol. 18(3), pp. 189-196, 1993.

[Osb98] Wendy.K.Osborn. "The use of reduction filters in distributed query

optimization". Master thesis, university of Windsor, 1998.

[OV99] M.T, Ozsu and P.Valdurize. "Principles of distributed database systems".

Second 2nd ed., Upper Saddle River, NJ: Prentice-Hall, 1999.

[PC90] W.Perrizo and C.S.Chen. "Composite semijoin in distributed query proce­

ssing". Information Sciences, vol.50, pp. 197-218,1990.

[RK91] N.Roussopoulos and H.Kang. "A pipeline n-way join algorithm based on

the 2-way semijoin program". IEEE Transactions on Knowledge and Data

Engineering, vol.3(4), pp.486-495, 1991.

[Seg84] A.Segev. "Optimizing fragmented 2-way joins". In Proc. Of the 4th

International Conference on Distributed Computing Systems, pp.378-388,

1984.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[TC92]

[TC94]

[Teo92]

[VG84]

[WC96]

[WCS92]

[WLC91]

J.C.R. Tseng and A.L.P.Chen. "Improving distributed query processing by

hash-semijoins". Journal of Information Science and Engineering, vol.8 ,

pp525-540,1992.

P.S.M.Tsai and A.L.P.Chen. "Optimizing entity join queries by extended

semijoins in a wide area multidatabase environment". In Proc. 1994

International Conference on Parallel and Distributed Systems, pp.676-681,

1994.

T.J.Teorey. "On dependability in distribute databases". Technical report,

Center for Information Technology Integration, University o f Mochigan,

September 1992.

P. Valduriez and G. Gardarin. "Join and semijoin algorithms for a

multiprocessor database machine". ACM Transactions on Database

Systems, vol.9(l), pp 133-161,1984.

C.Wang and M.-S.Chen. "On the complexity of distributed query

optimization". IEEE Transactions on Knowledge and Data Engineering, vol.

8(4), pp.650-662, 1996.

C.Wang, A.L.P.Chen, and S.-C.Shyu. "A parallel execution method for

minimizing distributed query response time". IEEE Transactions on Parallel

and Distributed Systems, vol.3(3), pp.325-332,1992.

C.Wang, V.O.K.Li, and A.L.P.Chen. "Distributed query optimization by

one-shot fixed precision semijoin execution". In Proc. 7th International

Conference on Data Engineering, pp.756-763, April 1991.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[YC84] C.Yu and C.Chang. "Distributed query processing". ACM Computing

Surveys, vol. 16(4), pp.399-433, December 1984.

[YL89] H.Yoo and S.Lafortune. "An intelligent search method for query optimization

by semijoins". IEEE Transaction on Knowledge and Data Engineering,

vol. 1(2), pp.226-237, June 1989.

[YLGT+8 6] C.Yu, L.Lilien, K.Guh, M.Templeton, D.Brill, and A.Chen. "Sdaptive

techniques for distributed query optimization". In Proc. Of the 2nd

International Conference on Data Engineering, pp 86-93,1986.

58

R ep ro d u ced with p erm issio n o f th e copyright ow ner. Further reproduction prohibited w ithout p erm ission .

Vita Auctoris

Wanxin Gao was bom in Hefei, China. She graduated from Univeristy

of Anhui obtaining a Bachelor’s Degree in Computer Science in 1994.

From there she joined the Anhui International Trust & Investment

Corporation, China as Network & Database administrator. She is

currently a candidate for a Master’s degree in Computer Science at the

University of Windsor and will graduate in the Winter of 2003.

59

R ep ro d u ced with p erm issio n o f th e copyright ow ner. Further reproduction prohibited w ithout p erm ission .

	A bloom-filter strategy for response time reduction in distributed query processing.
	Recommended Citation

	tmp.1614188122.pdf.Zw1r7

