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Abstract

The process of predicting reasonable spatial distributions of surficial sediments in fluvial 

environments using interpolation techniques can be quite challenging. The process of 

sediment transport creates anisotropy in the spatial distributions that follow the direction 

of flow. Standard geostatistical software only allow for the incorporation of one 

anisotropy direction for the entire problem domain. This is problematic for fluvial 

environments because an average direction usually misrepresents the local changes in 

anisotropy throughout the river.

A distance transformation technique based on flowlines was applied in an attempt to 

improve the way geostatistical algorithms deal with anisotropy. The standard 

geostatistical method of ordinary kriging was modified so that distances measured along, 

and perpendicular to, flowlines are substituted for the Cartesian coordinate system 

distances typically used. Five simple test cases were generated using the CH3D 

hydrodynamic model with sediment transport to examine how the method performs in 

idealized environments. Two test cases were used to determine whether the modified 

kriging algorithm was performing as expected. The other three test cases; a 90-degree 

bend, a channel with an island and a diverging channel were used to examine the 

effectiveness of the flowline method compared to standard kriging. Sediment sampling 

conducted on the Detroit River was also examined as a test case to see how the flowline 

method performs in real environments.

The ability of the flowline method to properly track sediment patterns around bends in 

the channels allows for predictions of spatial distributions that visually appear more 

reasonable. The curved channel test case showed consistently better statistical 

performance using the flowline method. For the diverging channel and island test cases, 

the flowline method performed equally well or better than standard kriging, however the 

diverging channel and to a lesser extent the island test case exhibit decreasing 

effectiveness with larger sample set sizes, apparently due to numerical sensitivity in the
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current implementation to the size of the problem. Overall, the results indicate that the 

flowline method performs well for a variety of flow-dominated environments.
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1.0 Introduction

The surficial sediments in an aquatic ecosystem play an important role in determining the 

overall health of the ecosystem. These sediments provide habitat for a wide variety of 

benthic organisms and act as an interface between the water column and the underlying 

geology. Sediments in contact with the water column may act as either sources or sinks 

for environmental contaminants depending on their physical and chemical properties and 

the relative concentrations of contaminants in the sediments to that of the surrounding 

environment. As a result, environmental assessment studies of aquatic ecosystems often 

include a sediment sampling survey.

Regardless of the analyses performed on the sediment samples, the objective of a 

sampling program is usually to use the sediment properties observed at individual sample 

locations to generate some kind of conclusion about the properties over larger spatial 

extents. This may involve producing a map of the spatial distribution of the sediment 

properties as they vary continuously over the entire study area. Various methods are 

available to produce such spatial distribution maps, each with their own strengths and 

weaknesses. The hydrodynamics of fluvial environments distinguish them from other 

aquatic environments and present additional difficulties when trying to produce spatial 

distribution maps.

Environmental assessment studies are often conducted in phases. The first phase is often 

to collect sample points with a very sparse spatial distribution to determine if there are 

any areas of concern. If such areas are found, the next step is to delineate the extent of 

the problem. In order to delineate the areas, additional samples are taken in locations 

expected to be near the boundary of the areas of concern. Usually very few samples have 

been taken at this point so there is often no way to statistically determine an extent for the 

areas of interest. Instead, it is left up the professional judgm ent of the researcher 

involved to determine where those samples should be taken. The construction of a spatial 

distribution map is one way to help aid in determining where the next round of sampling 

should be conducted. If a statistical assessment is not feasible, this spatial distribution

1
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map needs to produce spatial patterns that intuitively match the expected behaviour of the 

problem domain to be of any use as a guide. Once the problem areas have been 

delineated it may be required to quantify the extent of the problem. For example, a 

volume of sediments or a mass of contamination may need to be determined in order to 

take remedial action. The construction of a spatial distribution map is often required for 

this task. In this case, the spatial distributions should be statistically defendable if a 

reasonable estimate of quantity is to be made. As a result, if a method of spatial 

interpolation is to be useful for these kinds of studies a method that provides both 

intuitively match the expected behaviour of the problem domain and provide statistically 

quantifiable results.

1.1 Determining Spatial Distributions in Fluvial Environments

The peer-reviewed literature contains surprisingly few attempts at producing continuous 

maps of sediment properties for fluvial environments. In order to obtain a better critical 

examination of techniques applicable to fluvial environments, those techniques used in 

non-fluvial aquatic environments also need to be examined, as well as those techniques 

used in the related fields of hydrology and hydrogeology. Although there are a variety of 

techniques that could be used to create maps of sediment properties, the literature seems 

to be dominated by interpolation techniques and by kriging in particular. For a further 

discussion of interpolation techniques and geostatistics (i.e. kriging) as related to this 

thesis refer to Section 2.

Many researchers choose not to produce maps of sediment properties that vary 

continuously over a study area. Instead, they simply discuss any observed trends and 

areas of concern. The discussion often contains a non-spatial statistical evaluation of the 

collected data. If a map is used to convey information, it may only have the sample point 

locations on the map and rely on the reader to make assumptions about the size of the 

area that the sample represents and its relation to nearby unsampled areas. This approach 

is fairly common in studies where the objective of the research is something other than

2
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quantifying overall sediment properties or where few samples are examined. For some 

examples of such studies, refer to Marvin et al. (2003), Roth et al. (2001) and 

Metcalfe et al. (2000).

When producing spatial distribution maps of aquatic sediment properties, Baudo (1990) 

recommends that if the maps are to be used for any real-world application, then at least 

two different techniques should be attempted, one moving average technique and one 

trend surface technique. Kriging is recommended for the moving average technique and 

if the slope of the bed is significant, a method that accounts for depth is suggested.

Geostatistical techniques have been applied to a wide variety of hydrologic variables.

For an overview of such applications, refer to Delhomme (1978), Kitanidis (1993) and 

Haan (2002). The most relevant techniques are those that have been applied to sediment 

mapping. M ethods for the mapping of sediments on a watershed basis have been 

examined by several researchers. For example, Zhang and Selinus (1997) examined the 

concentrations of copper, lead and zinc in the sediments of the Yangtze River basin using 

ordinary block kriging. Variogram analysis conducted as part of the kriging revealed 

anisotropy at ranges longer than 500 km. However, since the variogram revealed 

isotropic behaviour at ranges less than 500 km, the authors chose to ignore the long-scale 

anisotropy and only model the isotropic behaviour. Anisotropy is a fairly common 

occurrence in hydrologic data and is further discussed in Sections 2.3.7 and 2.4. Lu et al. 

(2003) examined sediment yield in the Upper Yangtze basin by measuring sediment load 

in the river and its tributaries and applying universal kriging techniques across the 

watershed. The paper provides a good reference for other techniques of sediment yield 

mapping and attempts to deal with the problem of using hydrologic station point data that 

represents processes not centred on the data point. The distinguishing factor between 

sediment mapping across watersheds and sediment mapping in fluvial environments is 

that the sediments at the bottom of a river are subject to the hydrodynamics of 

channelized fluid flow. As a result, the distributions of sediments are dominantly 

influenced by the process of sediment transport.

3
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Hydrogeology has also benefited from the use of geostatistical techniques. For an 

overview of such applications, refer to Delhomme (1978), ASCE (1990), Kitanidis

(1997), and their excellent lists of references. Mapping sediments for hydrogeological 

studies is very similar to mapping surface soil types except that the process is a three- 

dimensional analysis. As in a fluvial environment, the sediments in hydrogeological 

studies are subject to fluid flow. However, generally speaking, the sediments in 

hydrogeological studies are not mobile. The examination of some mobile property, such 

as a chemical contaminant, is more analogous to the type of analysis needed for mapping 

sediment distributions in fluvial environments. A few examples of the geostatistical 

examination o f chemical contaminants in groundwater can be found in D ’Agostino et al.

(1998), Critto et al. (2003) and Gaus et al. (2003). As pointed out in ASCE (1990), 

Rubin (1991) and D ’Agostino et al. (1998), it is very difficult to model the spatial 

variances in plumes because the concentrations are time dependent. There are also the 

problems of non-stationarity and the typically sparse data sets to deal with. D ’Agostino 

et al. (1998) attempts to improve upon geostatistical estimations by using cokriging on 

several data sets collected at different times. Rubin (1991) attempts to deal with these 

same problems by using the physical principles underlying transport phenomena to 

generate the model of spatial variability. The use of the underlying theory allows for the 

modelling of variability in both time and space. Using sample data, the model of spatial 

and temporal variability can then be conditioned. Once the model is conditioned, 

predictions can be made just as in ordinary kriging. The application of geostatistical 

techniques using such methods is known as conditional simulation. The theoretical 

model of variability points out the model characteristics that should be seen in flow 

generated plumes. It was shown that the model of spatial variability is non-stationary, 

non-symmetrical, anisotropic and that the correlation is stronger along the mean-flow 

direction. It also points out that the model should be bounded. These characteristics 

should also be observed in the spatial variability models of fluvial environments. 

However, in real fluvial environments these model characteristics may be moderated or 

masked by the other processes involved, such as the effects of channelization, erosion 

and exposure of historical deposition, unsteady flow conditions and biological activity.

4
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Geostatistical techniques have been applied to sediment properties in a wide range of 

aquatic environments. Biittner et al. (1998) used inverse distance weighting (IDW) 

interpolation, ordinary kriging and principal component analysis (PCA) to examine the 

geochemistry of surficial sediments in Mining Lake 111, Brandenburg, Germany. This 

study also addresses the issue of the number of sampling points required to produce an 

acceptable interpolation. In total 66 samples were taken from 47 locations throughout the 

lake. However, the authors deemed that this was an insufficient number of points to 

reduce the variance observed in the analysis to an acceptable level. Geostatistical 

techniques have also been applied to larger bodies of water and unbounded study areas. 

Danielsson et al. (1998) used cokriging to examine the distribution of nutrients in the 

surficial sediments of the Gulf of Riga. The distributions of organic carbon, nitrogen and 

phosphorus were examined using loss on ignition as a covariable. Poon et al. (1999) used 

ordinary block kriging to examine the spatial distribution of sewage pollution in a coastal 

area east of Hong Kong. The slow movement of water and the lack of channelized flow 

in these aquatic environments create a much different situation than one would expect to 

observe in a river. As might be expected, no obvious trend or anisotropy was found in 

the above studies.

There are not nearly as many studies on mapping sediment properties within fluvial 

environments as there are for the other environments discussed above. However, the 

studies that do exist use very similar techniques to those already mentioned. The St.

Johns River W ater M anagement District, Palatka, Florida (Ouyang et al., 2002), in their 

studies of the Cedar and Ortega Rivers, used ordinary kriging in three-dimensions on 

lead, zinc, copper and cadmium concentrations to produce maps of metal concentrations 

at various depths in their river channels. Another study on the same rivers (Ouyang et al., 

2003) examined dichloro-diphenyl-trichloroethane (DDT) and its metabolites using 

similar techniques. Butcher (1996) used cokriging to estimate polychlorinated biphenyl 

(PCB) loadings in the Hudson River of the State of New York. In this study, 

contaminated sediment was screened into qualitative concentration ranges and a subset of 

each was sent for more accurate laboratory analysis. The more abundant screening data 

was used as the covariable for the less abundant but more accurate laboratory analyzed

5
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data. Given that these studies were conducted in fluvial environments, it could be 

expected that there would be some trend or anisotropy in the downstream direction. 

However, no such trend or anisotropy was found in the above studies.

Studies performed in complex coastal and estuarine environments have lead to the 

recognition that Euclidean distances may not always be appropriate for aquatic studies. 

The abundance of islands, braided channels and peninsulas lead to situations where a 

straight line measurement between two sample points would have to cross over land. If 

the process being modelled only occurs through water, it would make sense that the 

distances between samples should also be measured only through the water. This 

recognition has lead to the introduction of alternate distance metrics into kriging analysis. 

Little et al. (1997) attempted ordinary and universal kriging using only in-water distances 

to predict several water and sediment quality indicators for Murrells Inlet, South 

Carolina. The improvement in the results depended on the indicator being examined. In 

four of the eight indicators being examined a 10-30% improvement in prediction error 

variance was observed. However, one indicator, the presence of fluoranthene in oyster 

tissue, showed a 10% larger prediction error variance. Rathbun (1998) attempted the use 

of in-water distances with universal kriging on dissolved oxygen and salinity for 

Charleston Harbour, South Carolina. In this study, dissolved oxygen saw only a slight 

improvement from the use of the alternate distance metric, while salinity saw slightly 

worse results. The results were not significant enough to recommend one method over 

the other. The Rathbun study also examined the use of concentration boundary 

conditions in kriging.

Less complicated fluvial environments can also benefit from the use of alternate distance 

metrics. Large rivers often contain islands, and even small meandering channels can 

suffer from the situation where straight line measurements between sample points cross 

over land. Researchers dealing in river environments have, in effect, created alternate 

distance metrics through the use of domain transformation techniques. The domain 

transformation techniques arose from the need to have continuous, regular grids that can 

be used for hydrodynamic modelling. It is easy to visualize why the lines connecting

6
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adjacent nodes in a hydrodynamic modelling mesh must not cross over land. If the nodes 

in a modelling mesh are thought of as sample points or prediction points for the model, 

then by analogy, the straight line measurements between samples in a kriging analysis 

should not cross over land either. Merwade et al. (2003) reviewed and built upon a 

coordinate transformation technique that converts a Cartesian coordinate system into a 

curvilinear orthogonal coordinate system similar to those used in road engineering. Any 

point along a river can be thought of as having a location described by the distance along 

the centreline of the channel and by a perpendicular offset. One of the most important 

decisions to make when conducting such transformations is how to define the centreline 

of the river. Although other concepts of a river centreline are possible, they chose the 

thalweg as a centreline for their study. The method works quite well for single channels, 

but runs into conceptual problems when a channels splits, for example, to go around an 

island. Although the focus of their research was to investigate better methods of 

generating modelling grids, the potential of using such alternate coordinate systems for 

interpolation merits further investigation.

At least one researcher has attempted to use a transformed space for geostatistical 

mapping of fluvial sediments. Barabas et al. (2001) used indicator kriging to quantify the 

uncertainty in the interpolated estimates of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin 

concentrations in the Passaic River, New Jersey. In order to prevent measurement from 

crossing over land they applied a domain transformation with a different structure than 

Merwade et al. (2003). The physical boundary of the study area was transformed into a 

rectangle. The channel banks were treated as opposite sides of the rectangle as were the 

upstream and downstream boundaries. An equal number of evenly spaced points were 

placed along each bank. The same was performed for the upstream and downstream 

boundaries. The problem domain was then ‘rubber-sheeted’ using linear interpolation 

into a rectangular domain. After the kriging was performed, the results were then back- 

transformed into the original problem domain. Using this transformation technique, all 

possible distance measurements between points within the river stay within the 

transformed domain. This straightening of the problem domain also aids in the detection 

of anisotropy in the river. Although the improved ability to detect anisotropy was not

7
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discussed in the paper, it is worth mentioning here and is also discussed further in Section 

2.4.

Anisotropy in river channels occurs in the ‘downstream’ direction. However, when a 

river meanders across the landscape, the geographic bearing of ‘downstream’ varies. In 

highly meandering rivers, the bearing of anisotropy can be exact opposites in different 

parts of the river. If a geographic coordinate system is used, the anisotropy can average 

out and be missed leading to poor models. The same argument can be made for the 

detection of trends in the data. Unlike the studies of fluvial environments previously 

mentioned (Butcher, 1996; Ouyang et al., 2002; and Ouyang et al., 2003) anisotropy was 

detected in the Barabas et al. (2001) study. It is possible that anisotropy did exist in those 

previous studies but was missed because o f this problem.

1.2 Thesis Objectives and Structure

The objective of this thesis is to build upon the concepts of alternate distance metrics and 

domain transformations to develop a method of interpolation that improves upon standard 

techniques and can be applied to surficial sediment properties in a fluvial environment to 

produce maps of sediment properties that vary continuously over a study area.

Section 2 describes the basic theory underling interpolation methods that are used in the 

construction of spatial distributions that vary continuously over the study area. Since 

kriging seems to be the dominant method in the literature, it is also the method used 

extensively in this study. A brief overview of the kriging technique is presented in 

Section 2.3. Having established the underlying assumptions and theory behind kriging, 

Section 2.4 discusses the shortcomings of using standard kriging techniques in fluvial 

environments.

Section 3 proposes a new distance transformation and flowline based kriging method that 

is examined throughout the rest of the thesis. The new distance transformation method

8
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uses flowlines derived from a hydrodynamic model to substitute the typical Ax and Ay 

distances measured in Cartesian space for Ax distances measured along the flow direction 

and Ay distances measured perpendicular to the flow direction. These distances are then 

used in a kriging algorithm to interpolate spatial distributions. Having outlined the 

method, the technique is applied to five simple test cases. The test cases are created 

using sediment transport simulations on simple idealized channel geometries. The 

intention of using a simulation as a test case is to show how the method performs in 

environments dominated by the process of sediment transport without having to be 

concerned with the influence of other geomorphological processes that may exist in real 

environments. At the same time, these simulations allow for knowledge of an ‘actual’ 

value for all locations in the problem space.

Since a method that only works well in idealized environments is of little practical value, 

the new flowline kriging method is applied to a real-world test case in Section 4.

Surficial sediment sampling and hydrodynamic modelling conducted on the Detroit River 

as part of the Detroit River Modelling and Management Framework (GLIER, 2002) was 

examined to determine the technique’s applicability to real rivers. The section also 

includes some background information on the larger Detroit River project and a 

description of the river itself.

Finally, Section 5 discusses the flowline based kriging method’s limitations and its 

applicability to various problem domains. It includes a discussion of the interpolation 

artefacts produced by the flowline kriging method that are different from those typically 

produced by standard kriging methods. It also includes discussions of the types of 

environments where flowline kriging may be applicable and recommends topics that 

merit further investigation.

9
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2.0 Constructing Spatial Distributions

In order to represent spatial distributions, maps can be produced that show how a 

property varies continuously over the study domain. In order to interpolate a map, the 

study area is discretized into smaller sub-areas upon which predictions can be made.

Then an interpolation algorithm is applied to the sampled data that makes one prediction 

for each sub-area in the domain. In this way an estimate of the property is obtained for 

every location in the domain.

Choosing an appropriate size and shape for the sub-areas can greatly affect the accuracy 

of the final result. Typically these sub-areas are small, regularly shaped and sized grid 

cells. The most appropriate size of the grid cells is one that roughly corresponds to the 

sampling support; that is, the area (or volume) over which the sample was collected and 

therefore actually represents. Predicting on areas different from the sampling support can 

lead to change-of-support problems as discussed in Cressie (1993) and elsewhere. In 

practice, the grid size is often chosen for other reasons such as effective communication 

of the results, computational efficiency or personal preference.

2.1 Interpolation methods

In general, algorithms that interpolate a data value at an unsampled location based on the 

values at other sampled locations can be broken down into two categories (Baudo et al., 

1990). The first category is trend surface analysis. This method uses a regression 

approach to determine an equation that relates the spatial coordinates to the data values. 

Examples of these include: polynomial interpolation such as splines, triangular irregular 

networks (TINs) and other forms of regression analysis. The second category is moving 

average algorithms. These methods more explicitly use the assumption that samples 

collected close together should have values that are more similar than those that are 

spaced further apart. They determine weighting functions to account for the decreasing
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influence of data as distances increase. Examples of these are inverse distance weighting 

and kriging. Each interpolation method has its own advantages and disadvantages due to 

its underlying assumptions and implementation, as discussed below.

2.2 Inverse Distance Weighting

Inverse distance weighting is the moving average method of interpolation that is most 

commonly used across all applications (Lo and Yeung, 2002). The method determines a 

set of weights that are explicitly based on a pre-determined, often arbitrarily selected, 

decay function. An estimate, p,  of a property, Z, at an unknown location, s<K can be 

estimated using the following formula

where d„ is the distance between s0 and a known data point sn and p  is the decay 

parameter. Typically this decay function is squared (q=2), or in other words, the weights 

are inversely proportional to the squared distance between the prediction location and a 

data point used in that prediction. While inverse distance weighting is easy to use and 

implement, it suffers from the use of the predetermined decay function. For any 

particular application, the influence of nearby points may not decay exponentially with 

distance and may not decay at the same rate at all distances.

2.3 Kriging

Since kriging was the dominant method of interpolation used in this study, a brief 

overview is presented here. A more comprehensive review of kriging techniques can be 

found elsewhere (Matherson, 1963; Journel and Huijbregts, 1978; Clark, 1979; Cressie,
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1993; Kitanidis, 1997; Deutsch and Journel, 1998; Wackernagel, 1998; and Deutsch, 

2002).

Kriging is a moving average method of interpolation. Interpolated values are calculated 

as a weighted average of the sample data where the weights are established by an analysis 

of the distribution, variation and spatial structure of the sample points. The 

implementation of a kriging analysis involves several steps. First, the data must be 

examined to ensure that it meets the underlying assumptions, as described in Section 

2.3.1. A model of variability versus distance between sample points is then determined. 

Using the model and the sample points, a set of interpolation weights to be applied to the 

sample points can be determined for any unsampled location. The interpolation weights 

are then used to predict an expected value at the unsampled location. Since a statistical 

distribution has been assumed for the data, the interpolation weights can be optimized. 

Usually, the optimization criterion is the minimization of the mean-squared error of 

prediction. As long as the statistical assumptions are valid, the interpolation weights 

produce a best unbiased estimator.

In contrast to inverse distance squared weighting, the kriging weights are not solely 

functions of the number of samples and their distances. Instead, the weights are based on 

the expected variability between points as reflected in the variogram model.

2.3.1 Assumptions

There are two essential assumptions underlying kriging. The first is that a sample is a 

realization of a random process. If the process is a Gaussian random process, the 

interpolation weights will form a best linear unbiased estimator. If the underlying 

process is not Guassian, transformations such as log-normalization can be applied to the 

sample data to make it Gaussian. However, the backtransformed prediction values are 

not unbiased (Cressie, 1993). There are nonlinear forms of kriging that do not require the 

Gaussian assumption, such as disjunctive kriging. However, the solutions to such
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problems will be more mathematically intensive and have additional, and more strict, 

statistical assumptions (Cressie, 1993).

The second assumption is that of stationarity in the random process. Different types of 

kriging require different degrees of stationarity. Strong stationarity exists when all 

realizations of the random process, Z(x), are independent of their locations, jc, in the 

model space. This means that all statistical parameters of the distribution are consistent 

throughout the model space. Strong stationarity is required for disjunctive kriging and 

other nonlinear forms of kriging (Cressie, 1993).

A less rigid form of stationarity is known as second-order stationarity. It requires that 

two conditions be met. First, there must be a constant mean value throughout the model 

space. Second, there must exist a covariance model that depends only on the distance 

between points and not on their locations, and that is consistent throughout the model 

space. Second-order stationarity is required when covariograms and a covariance 

function are to be used in kriging (Wackernagel, 1998).

Intrinsic stationarity is a weaker form of stationarity than second-order stationarity.

Rather than assuming that the data is stationary, it assumes that the differences between 

pairs of points in the data exhibit stationarity. Therefore, the expected value of the 

difference between any two realizations is zero. This is mathematically expressed as

E( Z( s  + h ) - Z ( s ) )  = 0 (2)

where E  symbolizes the expected value, Z is the attribute in question, s is a location in the 

problem domain, and h is a separation vector.

There must also exist a variance model that depends only on the distance between points, 

not on their locations, and is consistent throughout the model space. This is usually 

expressed as
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v a r  (Z  (.9 + h ) - Z  (.?)) =  2 y ( h ) (3)

where var is the variance and the function 2y is called the variogram. M ost forms of 

kriging require at least intrinsic stationarity because of the use of the variogram.

In practice, the required assumptions of Gaussian data and the existence of stationarity 

are often ignored. Kriging has been demonstrated to be exceptionally robust to 

misspecification of the model and, in many situations, kriging will still produce 

acceptable results even though the above assumptions have been violated (Journel and 

Rossi, 1989; Cressie and Zimmerman, 1992; and Cressie, 1993). Kriging owes much of 

its popularity to this robustness and, for this reason, kriging is the interpolation method 

used extensively in this study.

2.3.2 The Variogram

The variogram is the model that attempts to quantify the variability between sample data 

points in relation to the distances between them. From the assumption of intrinsic 

stationarity,

where sj and S2 are any two sample points. This equation is used as the basis for 

constructing a variogram plot. A variogram plot is essentially a plot of semivariance, 

}(h), versus separation distance or lag, h, that includes all pairs of points in the sample 

data set. The semivariance is calculated as

v a r ( Z 0 , )  -  Z 0 2)) =  2 y ( s 1 -  s 2) (4)

(5)
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where N(h)  is the number of pairs separated by a vector of length h. When data is 

sampled on a regular grid, many pairs of points will all have the same separation distance 

and all those pairs will be averaged into one point on the variogram plot. This plot is 

often called an experimental variogram. If data is randomly sampled, then very few 

points will have the same separation distance and there will be many more points plotted. 

This plot is often called a variogram cloud. W hen variogram clouds are created, the 

points are often ‘binned’ into groups with similar separation distances and an average of 

the points is used to represent each group. In either case, a mathematical model is fitted 

to the variogram plot. The selection of an appropriate variogram model is made by 

examining the variogram plot for a match to some standard family of mathematical 

functions. Some goodness-of-fit measure is then used to parameterize the function. The 

selection of an appropriate model may also be tempered by knowledge of the underlying 

physical processes. For a good discussion of which mathematical functions may be used 

as variogram models refer to Cressie (1993).

When a mathematical model is fitted to the data, several significant parameters can be 

observed in the model. The parameters are the nugget, the sill and the range (Figure 1). 

However, some mathematical models may not have all of these parameters. Any two 

sample points taken at the same location should have the exact same value and therefore 

the semivariance should be zero at zero distance. The nugget value is the semivariance at 

zero distance and represents a combination of microscale processes and measurement 

error. Since the nugget is predicted from extrapolating data points, nothing can truly be 

said about the nature of the variogram at distances smaller than the shortest distance 

measured between sample points. Caution is required when predicting values at 

distances closer than this.

As the distance between samples increases, the semi variance also increases. Under some 

mathematical models the semivariance reaches a maximum value known as the sill. The 

value of the sill represents the semivariance around the mean. The distance where the sill 

is reached, called the range, can be interpreted as the distance where spatial 

autocorrelation becomes insignificant. This value is often used as a rough guide in
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determining a kriging neighbourhood. Neighbourhoods are often used to exclude data 

from interpolation calculations, thereby decreasing computational requirements, under 

the assumption that sample points at great distances will have an insignificant influence 

on the final interpolated result. However, the range should not be blindly used for 

determining a kriging neighbourhood. As previously mentioned, kriging weights are not 

solely functions of the number of samples and their distances, but also of the local 

clustering and variability in the data. If insufficient sample points fall within the range, 

the interpolation weights will be a complex combination of weights from points beyond 

the range (Cressie, 1993).
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Figure 1: A sample variogram plot and fitted variogram model showing the parameters 
nugget, sill and range.
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2.3.3 Predicting Interpolation Weights

In kriging, the interpolation weights are calculated by performing an analysis to 

determine the best predictor that minimizes the mean-squared error. If the process is 

Gaussian, then the optimal linear predictor is the optimal overall predictor. For the rest 

of this discussion, it is assumed that the process is Gaussian and therefore the analysis 

can be performed with linear predictors.

In the predictor p,  we are looking for the best set of linear weights L(;

(=1

such that

(6)

E ( Z ( s Q) - p ( Z - s 0) ) 2 

is minimized.

In matrix notation, the weights, Ln, are solved by,

(7)

7 0 i - s2) • • y ( Sl ~ Sn) 1' V

r1Xi

y(s  2-S i) y( s2 - s 2) ■ ■ y ( S2 ~ Sn) 1 ^2 y ^ t)- s 2)

J>
5 1 

'

r ( Sn ~ S2) • • y ( Sn ~ Sn) 1 K y( So ~ Sn)
1 1 1 0 1

(8)

where p. is a Lagrange multiplier to ensure that the weights sum to 1. When filling the 

matrices, the (n, n) matrix could be obtained either from the variogram data itself or from 

the mathematically fitted modelled variogram. Since s0 is an unknown location and not 

contained in the data set, the right hand vector values must be calculated from the model
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variogram for every estimated location. Typically, the model variogram is also used for 

the (n, n) matrix so that should s0 fall on a known data point, and there is no nugget 

effect, the kriging method is an exact interpolator.

2.3.4 Predicting Values

Once the interpolation weights have been determined, they are used to calculate a value 

at that location.

[Z(S]) Z ( s 2) -  Z ( s n)] = [p(Z;s0)\ (9)

The process of predicting weights and calculating a prediction value is then repeated for 

all locations where an estimate is desired.

2.3.5 Kriging Variance

As the prediction values are being calculated, the mean squared prediction error, or 

kriging variance, can also be calculated. This can be extremely valuable in determining 

areas where uncertainty in the data exists and where more rigorous sampling may be 

required in the future. The mean squared prediction error, also called the kriging 

variance, <r2, is calculated as:

cr2(s0) = Y j Liy( so - s i) + ju (10)
;= l

It should be noted that actual data values are not required for the calculation of the 

kriging variance. In effect, it is a variogram-dependent estimate of uncertainty given the 

relative locations of the data points. This property has allowed the use of the kriging
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variance for the determination of optimal sampling strategies (Ben-Jemaa et al., 1995 and 

Lo et al., 1996). Since the kriging variance is variogram-dependent, it should not be used 

for comparisons between simulations with different variogram models. A 

misspecification of the variogram model could lead to the false assumption that 

variability is low and that the model is predicting well.

2.3.6 Other Forms of Kriging

The form of kriging described above is known as ordinary kriging. Other methods of 

kriging have been developed that allow for departures from the underlying assumptions 

or that consider the joint variability of more than one attribute. A brief discussion of a 

few of these methods will be included here as mention is made of them elsewhere in this 

thesis.

Universal kriging is a variant that allows for the incorporation of an unknown spatial 

trend into the data. As such, it is sometimes called ‘kriging with a trend m odel’. The 

trend is usually modelled as a polynomial function on the spatial coordinates. The 

parameters of this polynomial function are not specified in advance. They are instead 

incorporated into the kriging equations and are worked out in the solution matrices. As 

such, universal kriging will not necessarily produce the same results as removing the 

trend, performing ordinary kriging, and then reapplying the trend.

Cokriging is a variant of kriging that allows for the incorporation of ancillary data into 

the estimations. It can be based on any of the other forms of kriging since its only 

mathematical difference is that it incorporates additional information in the form of 

additional data values and their cross-variability. Any ancillary information that is 

expected to vary in a similar spatial pattern to the primary variable could be used. 

Cokriging is most useful when the ancillary data set is larger than the primary data set. 

For example, cokriging can be used with screening data. If a large number of field tests 

were conducted with a less accurate instrument and then only a subset of those samples
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sent in for laboratory analysis, the analyzed samples could be cokriged with the field data 

to obtain a better spatial distribution from the analyzed data. Similarly, if an extensive 

sampling program has already been conducted on a particular chemical that is known to 

occur in conjunction with a chemical to be sampled, a much smaller sampling program 

could be conducted and then the results cokriged with the larger study.

Block kriging can be applied to any of the above methods of kriging. It is used to find an 

average prediction value for an area (or volume) larger than the grid discretization. The 

prediction block uses the average variogram from all the locations contained within that 

block. This averaging tends to smooth out the map values.

Indicator kriging is not performed to make predictions of a property. Instead it is applied 

to indicator functions to determine a probability of occurrence. For indicator kriging, a 

series of indicator functions with various cut-offs are created, kriging is performed with 

each, and then the results are combined to form a conditional cumulative distribution 

function that represents the probability of occurrence.

Disjunctive Kriging is a non-linear form of kriging that can be used for sample data 

which does not fit the required Gaussian distribution. It enables the calculation of a 

probability of occurrence in addition to the prediction values. This is achieved by 

examining not only the data values themselves, but also a series of functions of the data. 

The use of functions with the data requires the use of more rigid assumptions. If the 

functions examined are indicator functions, then disjunctive kriging can be an alternative 

to indicator kriging.

2.3.7 Anisotropy

In some situations, the variability between any two points may be a function of direction 

as well as distance. This property is known as anisotropy. Anisotropy is often described 

in terms of an anisotropy ellipse. The boundary of the ellipse can be thought of as a
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contour of equal influence. Figure 2 shows a representation of a plan view, two- 

dimensional anisotropy ellipse, however the concept is also extendable to three- 

dimensions. The major axis represents the range in the direction of greatest continuity. 

Ideally, the minor axis is perpendicular to the major axis and represents the range in the 

direction of least continuity.

shoreline

shoreline

Figure 2: A plan view, two-dimensional anisotropy ellipse in the context of a river.

In order to uncover anisotropy in the data, directional variograms need to be created. In 

the construction of a directional variogram, rather than using all pairs of points for the 

variogram plot, only those pairs of points that have a separation vector with the suspected 

anisotropy direction are used. M any directions may need to be examined before the 

direction with the maximum continuity (i.e. the longest range) is discovered. The ratio 

between the range of the major axis and the range of the minor axis is known as the 

anisotropy ratio and is an indication of how strong the anisotropy is.

If the semivariances along the major and minor axis reach the same value of sill, but at 

different ranges, the anisotropy is known as geometric anisotropy and can be corrected
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for by applying a scaling factor to distances along the axes. In effect, this scales the 

Euclidean space so that the major axis and the minor axis have the same range. The 

standard isotropic kriging algorithms can then be applied. If the data along the major and 

minor axis do not reach the same sill, the situation is known as zonal anisotropy. To 

properly model zonal anisotropy a composite variogram model is required. A composite 

model is essentially the sum of two standard variogram models with one component 

representing distances in the major direction and the other representing distances in the 

minor direction.

Unless the direction of anisotropy is known in advance, and some attempt is made to 

sample points in pairs along the major and minor directions, it is unlikely that there will 

be many points with which to construct the directional variograms. In most cases, some 

tolerance is used so that pairs of points that lie only roughly along the anisotropy 

direction get included in the directional variogram. Unfortunately, this means that some 

of the variability from the perpendicular direction is included in the directional 

variogram. This leads to a situation where the directional variograms almost always 

indicate an apparent anisotropy that is less that the true anisotropy (Deutsch and Journel, 

1998).

2.4 Shortcomings of the Standard Techniques in Fluvial Environments

Since the focus on this thesis is on the surficial sediments that lie on the bed of the river, 

the following discussions with only treat the issues from a two-dimensional perspective. 

Since rivers are in fact three-dimensional environments, future work in extending the 

concepts laid out here may require the application of three-dimensional techniques in 

order to extend the concept for other applications.

The primary shortcoming with standard interpolation techniques when applied to fluvial 

environments is in how they deal with the process of sediment transport. The process of 

sediment transport creates anisotropy in the spatial distributions of sediments and other
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attributes influenced by the flow of water. The flow of water will tend to draw sediment 

downstream much faster than it can disperse them across the channel. This creates 

anisotropy in the distribution of sediments. The major axis of the anisotropy ellipse is in 

the downstream direction, while the minor axis of anisotropy is cross-stream. The 

problem arises when a river begins to meander across the landscape. Depending on the 

location in the river being examined, the angle (geographic bearing) of anisotropy may be 

different (Figure 3). Since most kriging algorithms allow only one angle of anisotropy 

for the entire problem domain, the local anisotropy is not properly characterized. When 

these situations arise, unique solutions need to be created to deal with the issue of 

anisotropy.

>
Q.

shoreline

Direction of Anisotropy

shoreline

Figure 3: Plan view of anisotropy ellipses and anisotropy direction shown in the context 

of a meandering river bend.
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W ithout an easy method to deal with this anisotropy, it may be tempting to simply try to 

ignore anisotropy and model the environment as isotropic. With extremely dense 

sampling, this may produce acceptable results. However, sampling is expensive and in 

most studies, sample points are sparsely sampled with respect to the study extent and 

sample variability. The advantage of incorporating anisotropy is to increase the range of 

the major axis and decrease the range of the minor axis. In this way sample points 

sparsely sampled downstream are more likely to lie within the range and have their true 

spatial autocorrelation included in the analysis. A t the same time, it will not be 

incorrectly assumed that points with significant cross-stream separation distances have 

the same spatial correlation.

If the river does not meander too much, it may be tempting to use an average anisotropy 

angle for the area. However, this becomes problematic as the meanders become more 

pronounced. Using a 90 degree bend as an example, the water is flowing at a bearing of 

0 degrees at the start of the bend. As the water leaves the bend, it is flowing at a bearing 

of 90 degrees. The average angle is 45 degrees. The angle of 45 degrees should work 

well in the middle of the bend, but will work poorly for the start and end. This leads to 

some areas being predicted more accurately than others and makes it very difficult to 

judge the accuracy of the overall results. In addition, using an average angle will 

certainly produce an apparent degree of anisotropy that is much less than the true 

anisotropy. Using a 180 degree bend as an extreme example, the bearing of anisotropy 

can be exactly opposite in different parts of the bend. The anisotropy averages out to no 

apparent anisotropy.

Another common approach is to take the area and break it up into subsections that have 

roughly the same direction of anisotropy, model each section as being anisotropic and 

mosaic the results back together. This method can also be used to help overcome 

violations of the assumption of stationarity. This method has the advantage of being easy 

to implement. However, it may not always be practical. By breaking up the river into 

subsections, the number of data points in each section is reduced. With fewer data points
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in the set, the effectiveness of the interpolation decreases. Another problem that occurs 

when breaking up the domain is that mapping artefacts can occur where the subsections 

are pieced back together. Rather than a smooth transition of values between subsections, 

there is often a jum p in values since the estimates on either side of the boundary were 

constructed with different data sets.

The approach taken by Barabas et al. (2001) was to completely transform the real-world 

Euclidean space into a linear model space, conduct the kriging and then backtransform 

the data. To summarize the technique already described in Section 1.1, the channel 

boundaries were treated as opposite sides of the rectangle. An equal number of evenly 

spaced points were placed along each bank and along the upstream and downstream 

boundaries. The problem domain was then ‘rubber-sheeted’ using linear interpolation 

into a rectangular domain within which the kriging was conducted. The use of such 

transformations helps deal with two critical issues. They eliminate the possibility of 

distances between points being measured across land and aid in the detection of 

anisotropy by straightening the river. However, the channel examined in their study had 

a fairly regular width, had no islands (or at least none were mentioned), and therefore had 

a fairly consistent flow environment. The effects of such domain transformations in 

complex environments need to be examined. In particular, it is important to consider the 

effect of the domain transformation on the anisotropy ellipse and prediction areas.

When transforming a channel with diverging width into a linear model space, the cross­

stream compression changes along the length of the channel. The effect of this is to 

distort the anisotropy ellipse (Figure 4). It is then questionable as to whether standard 

kriging algorithms, which assume a regular ellipse, are valid under this transformation. 

From a more physically based view, it may seem intuitive that the degree of anisotropy is 

related to the velocity in the channel. If the velocity in the channel decreases as a channel 

diverges, it may be that the anisotropy ellipse is already distorted and that the 

transformation is distorting the ellipse back into a more regular shape. However, an 

increase in channel width does not necessitate a decrease in the flow velocity and 

therefore the argument still needs to be considered. The issue of whether the concept of a
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regular anisotropy ellipse is valid in the physical world or in the transformed world would 

be an area that requires further examination.

Another issue involving domain transformation deals with gridding the domain. The 

domain in which the kriging is performed needs to be discretized. Using the example of 

a diverging channel again, if the real-world grid has regularly sized and shaped cells, it 

will have distorted grid cells in the transformed domain and vice versa (Figure 4). This 

may create problems if the values of the sampled data are highly dependent on the 

sampling support. It may also create problems for block kriging by altering the number 

points that should be averaged into the block.

Prediction 
Grid cell

Anisotropy
ellipse

Transformed
channelVariable width 

real channel

Figure 4: Distortions to grid cells and anisotropy ellipses caused by a variable 

cross stream compression in a domain transformation.

Islands present several other conceptual problems when interpolation is attempted in 

aquatic environments. One problem is whether or not to treat the island as a barrier to 

spatial autocorrelation. Consider two points on opposite sides of an island. If the 

property being predicted has a different source on opposite sides of the island, there is no 

reason to suspect correlation and the island could safely be modelled as a barrier.
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However, if both points are influenced by the same upstream source, there is some 

argument that the points are correlated. The next problem is modelling the degree of 

correlation. Using normal distance measures, the width of the island increases the 

distance between the points and therefore decreases the correlation. If the source process 

does not distinguish between land and water, it may be appropriate to simply measure 

across the islands. However, a one metre wide island provides just as effective a barrier 

to the flow of water as a one kilometre wide island. For another example, it would not 

take twice the effort to swim around an island 100 m long by 2 m wide than it would to 

swim around an island 100 m long by 1 m wide. Clearly the process creating the 

underlying spatial distribution is important when deciding how to deal with islands in an 

interpolation.

The other problem with islands is that they split the flow of water and send it in different 

directions. The effect on modelled anisotropy is similar to that caused by meanders in the 

channel. The geographic bearing of anisotropy is altered. However, in the case of 

islands, the channel is split and two changes in direction need to be considered. If not for 

the problem of modelling correlation across islands, this would be fairly easy to deal with 

in a domain transformation. The distance across the island would simply be left out when 

scaling across the width of the channel.

3.0 Flowline Transformation Approach

In order to create spatial distribution maps in complex fluvial environments, a method 

was devised to improve upon the interpolation of sample data. The method was created 

to allow for more specific modelling of local anisotropy without suffering from the 

spatial distortions arising from domain transformations.

Given enough information about the flow dynamics of a river and assuming that 

advection is the only transport process, a theoretical path that a group of particles might 

follow as it is carried through a river can be constructed. This path can be called a
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flowline (also known as streamlines or pathlines in other, more specific applications). If 

the particles move off this path, the assumption is that it they are being influenced by 

other transport processes such as secondary currents and cross-stream dispersion. For the 

purposes of this thesis, the perpendicular offset from the flowline that the particles have 

been moved will be called a cross-line.

When calculating the distance between two points for an anisotropic model, a distance 

along the major axis is required and a distance along the minor axis is required. The 

major axis becomes a transformed x-axis and the minor axis a transformed y-axis. In this 

flowline distance transformation method, the distance between two points along a 

flowline corresponds to the major axis and the distance along a cross-line from a point to 

the flowline corresponds to the minor axis (Figure 5).

Length = x component

Figure 5: Conceptual diagram of flowline and cross-line distance transformations.
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Using this new distance measurement technique a variety of interpolation algorithms 

could be used simply by substituting flowline and cross-line distances for the Euclidean 

Ax and Ay.

3.1 Algorithm Implementation

In order to perform interpolation using this method, the following general steps need to 

be performed. First the sample data points are obtained. Flowlines are then generated 

upstream and downstream from each of the data points (see Appendix A for the algorithm 

used in this thesis). If kriging is to be used for interpolation, then a variogram plot needs 

to be created using the new distance system and a variogram model fitted to the data. 

Interpolation can then be conducted. During interpolation, each time a distance is 

required between a prediction point and a data point, the cross-line distance from the 

prediction point to the sample point’s flowline is used as Ay and the distance along the 

flowline from the cross-line to the sample point is used as Ax. The distances are then 

used as appropriate for the given interpolation method.

In order to generate flowlines, information regarding the channel hydrodynamics is 

required. Although there may be other means of generating flowlines, in this study 

flowlines were generated using a velocity vector field. The velocity vector fields were 

generated with flow simulations using the CH3D hydrodynamic model (Chapman et al., 

1996). A small group of software tools was created using Microsoft Visual Basic 6.0 and 

ESRI’s ArcObjects development environment in order to import the CH3D data and to 

trace flowlines through the velocity vector field. The flowlines were stored as ESRI 

shapefiles for later use. For a detailed description of the algorithm used in the generation 

of the flowlines and cross-lines refer to Appendix A.

Kriging was chosen as the preferred method of interpolation because of its widespread 

usage, robustness, extensibility and error estimation capabilities. Therefore, a variogram 

model was required. One of the software tools created in this study exports a variogram
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plot based on the new flowline distance system. The variogram plot was then brought 

into Microsoft Excel and a spherical variogram model with geometric anisotropy was 

interactively fitted to the data.

For the actual kriging implementation, the GSTAT (version 2.4.0) geostatistical 

modelling software (Pebesma, 1999) was modified. Two dynamic link libraries (DLLs) 

were also created in order to allow GSTAT to use the flowline shapefiles. The primary 

DLL was created with Visual Basic and ArcObjects and contains all the required 

numerical processing functionality. The secondary DLL was created with Visual C++

6.0 and merely provides a data conduit for the otherwise incompatible ANSI C code of 

GSTAT and the Visual Basic DLL. The GSTAT source code was modified so that when 

the program is first executed the primary DLL imports the flowline shapefile and stores 

the information in memory. W hen the GSTAT algorithm requires distances, a function in 

the DLL is called that calculates the flowline and cross-line distances and returns them to 

the main GSTAT code. Otherwise, the kriging algorithm in GSTAT remained 

unmodified.

3.2 Simple Test Cases

In order to test that the modified GSTAT algorithm works properly and to determine 

whether the algorithm performs well under ideal cases, a series of five geometrically 

simple test cases were generated using the CH3D hydrodynamic model with sediment 

transport. Samples data sets were selected from the model results and used with both 

standard ordinary kriging with anisotropy and flowline ordinary kriging with anisotropy 

to determine the effectiveness of the methods.

The CH3D hydrodynamic model is a three-dimensional numerical finite difference 

model. It has the capability to model a broad range of physical processes such as 

sediment transport, salinity, temperature, density effects, tidal effects, wind effects,
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turbulence and the effect of the earth’s rotation. For a more detailed description of its 

capabilities refer to Chapman et al. (1996).

Although the CH3D model is capable of sediment transport simulations, it is not the 

intention of this thesis to make predictions of spatial distributions using it. It is being 

used as a tool to aid in the interpolation of sample data points and to investigate the 

effectiveness of interpolation methods. Large amounts of data are required to produce 

reasonable spatial distributions of sediments for real world applications with a sediment 

transport simulation. Often times, sampling and interpolation need to be performed as 

pre-processing steps in setting up the sediment transport simulation. The true purpose of 

the CH3D model in this thesis is twofold. First, it is being used to generate reasonable 

velocity vector fields for the test case channels, which in turn are used to generate 

flowlines. Second, it is being used to create simple simulation test cases where the 

spatial distributions are controlled by the processes of advection and dispersion.

The purpose of using a simulation as a surrogate for a real-world test case allows for a 

test case with much less complexity in its spatial structure. A real-world test case could 

be influenced by several geomorphological processes. The multiple processes may 

interact, masking the true effectiveness of the flowline method, and making it difficult to 

assess the results. Using simulations, the individual processes may be examined 

separately. In addition, the use of a simulation allows for the complete knowledge of the 

‘actual’ sample values at every location in the problem domain. This provides a true 

representation of what the spatial distributions should look like. The use of a simulation 

also allows for complete control of sample sizes, number of samples and sample 

locations. In this way, the effects of sampling density, sampling patterns and 

interpolation methods can be compared without the prohibitive cost of actually 

conducting a real-world sampling program to such a fine degree of detail.

Since the CH3D model is a three-dimensional model, the resulting output is discretized 

into multiple layers. Since it is the surficial sediments are being interpolated, it is 

expected that the flow conditions in the bottom layer adjacent to the bed will have the
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most influence on the resulting distributions. Consequently, it is the steady state velocity 

vector field for this layer that is used to generate the flowlines. The sediment transport 

output of a CH3D simulation is a series of files showing suspended sediment 

concentrations and the bed sediment mass fractions for several grain sizes specified in the 

model input. For these test cases, only the bed sediment fractions were examined. When 

conducting the simulations, they were run only as long as was required to generate 

reasonable looking plumes, not necessarily to steady state. This was done because of the 

setup and purpose of the simulations. The simulations were simple geometries designed 

to be depositing sediments on the bed of the channel. Running the simulations for too 

long would have produced plumes that covered large areas of the channel bed with 100% 

mass fractions of fine grained sediment. Since such distributions would be inappropriate 

for testing the interpolation methods, the simulations were terminated when reasonably 

large plumes and a wide range of mass fractions had been generated in the simulation.

The details for each simulation can be determined from the input files found in 

Appendices B-E. However, a quick summary of the common elements will be briefly 

discussed here. Although the geometry of each CH3D simulation is slightly different, the 

numerical modelling mesh was created so that elements were approximately 5 m2 in size. 

Six sediment point sources were placed within the channel so that they would generate 

sediment plumes on the bed of the channel with a wide range of mass fractions. Seven 

random samplings with 30, 50, 70, 90, 110, 130 and 150 sample points were selected 

from the CH3D model results. Flowlines were created for each o f the data sets using the 

algorithm outlined in Appendix A without any manual editing of the resulting flowlines. 

Variogram plots were then created for the sample data sets using both a standard and a 

flowline distance system. Although the histograms of sediment distributions are skewed 

towards lower concentrations, it was decided not to apply any transformations to 

normalize the data in order to provide a more objective view of the limitations of each 

method and to ensure that the data transformation was not biasing the results towards one 

method or the other.
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Microsoft Excel was used to fit a spherical model with geometric anisotropy to the 

sample variogram plots based on the criteria of minimizing the averaged sum of the 

squared residuals. The spherical model is composed of a combination of a linear section 

and an exponential section (Deutsch, 2002). Using the spherical model with geometric 

anisotropy seemed to provide a reasonable fit for all the variogram plots obtained in the 

study without having to switch model types between trials. Geometric anisotropy was 

chosen because the directional variograms in the y-direction were insufficient to 

determine a composite variogram model. To reduce the computational effort of fitting a 

model, the plot was ‘binned’ into ranges of 10 m for the 150, 130 and 110 sample sets or 

20 m for the 70, 50 and 30 sample sets. The 90 sample sets used whichever binning 

produced the most reasonable results. Anisotropy ratios between 0.50 and 0.01 were 

examined in increments of 0.01 and the Solver Add-in tool for Microsoft Excel was used 

to solve for the nugget, sill and range. In order to provide an objective comparison of the 

standard and flowline kriging methods, the model parameterization that produce the 

smallest averaged sum of the squared residuals was used for the kriging, regardless of 

any visual assessment of the fit.

The problem domain was discretized into 5 m2 regular sized grid cells upon which 

kriging predictions were to be made. The results were imported into ESRI’s ArcGIS for 

visualization and the generation of test statistics.

3.2.1 Horizontal and Vertical Straight Channels

The primary purpose of these two test cases was to verify the correctness of the basic 

algorithm. A perfectly horizontal channel with perfectly horizontal flow will have all its 

flowlines running straight along the x-axis and all the cross-lines perfectly straight along 

the y-axis. Consequently, the results of the flowline kriging method should produce 

exactly the same results as a standard kriging algorithm. A perfectly vertical channel 

with all the same inputs should produce a rotated version of the horizontal channel.
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Since the purpose of these simulations was only to determine whether the algorithm 

produced correct numerical results, the resolution of the computations was decreased and 

an isotropic variogram model was used in order to decrease the computational effort.

The simulation used a 20 m2 grid cell resolution for the CH3D simulation, 3 random 

sediment sources, 30 random sample points and a 10 m grid resolution for prediction 

cells.

The CH3D input files, random samples and variogram equations used for the simulations 

can be found in Appendix B.

The standard kriging and flowline kriging methods produced nearly identical results for 

the horizontal and vertical straight channels (Figures 6, 7 and 8). A cell by cell 

examination of the results from the two methods reveals that the methods produce 

identical values to an accuracy of 5 decimal places. The results were taken as a 

demonstration that the newly developed algorithm was working as expected.
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Figure 6: Predicted mass fractions of sediment with grain size diameter of 0.037 mm 
using isotropic standard kriging on 30 random samples in a straight horizontal channel.
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Figure 7: Predicted mass fractions of sediment with grain size diameter of 0.037 mm 
using isotropic flowline kriging on 30 samples in a straight horizontal channel.
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Figure 8: Predicted mass fractions of sediments with grain size diameter of 0.037 mm 
using isotropic standard kriging (left) and isotropic flowline kriging (right) on 30 samples 
in a straight vertical channel.
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3.2.2 Curved Channel

A 90-degree curved channel served as the primary test case to compare how the flowline 

algorithm performs compared to standard methods. W hen standard anisotropy 

algorithms are applied to curving or meandering channels, an average anisotropy angle 

needs to be applied. It is expected that in areas where the local anisotropy angle is far 

from the global average angle, the results of the standard prediction techniques would 

behave poorly. The flowline kriging method, since it does not use a global average angle, 

should behave better in those areas.

The sediment sources were randomly placed in the channel for these simulations and an 

average anisotropy angle of 45 degrees was used for the standard variogram model. The 

CH3D input files, random samples and variogram equations used in this test case can be 

found in Appendix C.

It can be seen in Figures 9, 10, and 11 that the flowline method does a better job  of 

characterizing the actual shape and extent of the sediment plumes. The plumes generated 

by both kriging algorithms show lower concentrations than the actual concentrations.

This should be expected since a random sample would have to land exactly on a source or 

extremely close and perfectly downstream of a source to capture the highest 

concentrations and incorporate them into the interpolation. As was expected, the 

standard kriging method performed poorly in areas where the average direction of 

anisotropy was far from the true local direction of anisotropy. Figure 10 shows how, at 

the ends of the channels, the standard kriging method predicts sediment plumes that 

extend cross-channel, rather than along the direction of flow. This inability of the 

standard method to compensate for changes in the direction of anisotropy around curves 

can even divide a plume into two (or more) separate plumes as seen at the downstream 

end of Figure 10.
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Figure 9: Mass fractions of sediment with grain size diameter of 0.01 mm for a curved 
channel as output from the CH3D model.

Upstream

Downstream

^  :

Figure 10: Predicted mass fractions of sediment with grain size diameter of 0.01 mm 
using standard kriging on 150 samples in a curved channel (Same legend as in Figure 9).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Upstream

Downstream

Figure 11: Predicted mass fractions of sediments with grain size diameter of 0.01 mm 
using flowline kriging on 150 samples in a curved channel (Same legend as Figure 9).

Figures 12 and 13 show the distributions of kriging variances. The variance maps also 

show the flowline m ethod’s ability to track around curves. The standard method shows a 

narrower range of variances and more area with low variance. As mentioned in Section 

2.3.5, the kriging variance is model-dependent and therefore should not be used to 

directly compare methods. The smaller variability predicted by the standard method may 

actually be misleading. It may lead to the false assumption that areas are being well- 

predicted, when in fact, a better model specification would actually reveal that they are 

being poorly predicted.
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Figure 12: Kriging variances for sediment with grain size diameter of 0.01 mm using 
standard kriging on 150 samples in a curved channel.
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Figure 13: Kriging variances for sediment with grain size diameter of 0.01 mm using 
flowline kriging on 150 samples in a curved channel.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In addition to the visual inspection of the kriging results, two statistical measures were 

examined to compare the performance of the standard and flowline kriging methods. The 

correlation coefficient and the root mean squared error of prediction (RMS) were 

generated for each of the seven simulations by comparing, on a cell by cell basis, all the 

values predicted by kriging to the actual values output from the CH3D model. The 

statistics are shown in Figures 14 and 15. The graphs show that the flowline method 

outperforms the standard method over a wide range of sampling densities. The better 

predictive capability is indicated by larger correlation coefficients and lower error in 

predictions, as indicated by the RMS. It should be expected that as the number of sample 

points is increased, the interpolated results would be better. This is observed in both the 

standard and flowline kriging methods. However, the flowline method consistently has a 

higher correlation coefficient and a lower RMS over all seven simulations examined. 

From a sampling perspective, this would mean that in order to obtain the same predictive 

accuracy, fewer points would need to be sampled using the flowline method than using 

the standard kriging method. At a first glance, it also appears that the correlation 

coefficient for the flowline kriging method approaches 1 (i.e. perfect correlation) more 

rapidly than for the standard kriging method. However, each of the test simulations uses 

only one of the many possible random samplings. Consequently the single random 

sampling may not represent the average behaviour well enough to verify that particular 

conclusion. In addition, variogram modelling can be very subjective and a poor random 

sampling combined with poor variogram modelling could lead to differing results. 

However, the consistent performance improvement of the flowline kriging method over 

the standard kriging method gives confidence that the flowline method produces better 

numerical as well as visual results.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.8

0.7 -

«-»c0)
o
£a>oo
co

oo

10 30 50 70 90 110 130 150 170
Number of Samples

S ta n d a rd  kriging F low lin e kriging

Figure 14: Graph of correlation vs. number of samples for a curved channel.
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Figure 15: Graph of RMS vs. number of samples for a curved channel.
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3.2.3 Channel with Island

As discussed in Section 2.4, islands can create a variety of problems in kriging. The 

current implementation of the flowline kriging algorithm measures across islands and 

therefore the island’s width decreases the correlation between points on either side of the 

island. Although the issue of modelling spatial correlation across islands requires more 

thorough study, these test cases were performed as an initial estimation of the 

effectiveness of the flowline kriging method in such complex environments.

For this simulation (Figure 16), three sediment sources were randomly placed throughout 

the channel and the other three were placed together just upstream of the island. The 

flow of water is from left to right so an average anisotropy direction of 90 degrees was 

used for the standard variogram model. The sediment sources just at the head of the 

island create plumes that flow around both sides of the island, although dominantly along 

the top. The other sources flow around corners in the channel. It is these effects that the 

interpolation methods must capture. The CH3D input files, random samples and kriging 

equations used in this test case can be found in Appendix D.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Legend

S e d i m e n t  F r a c t io n

«V A L U E >

j ] 0.00 - 0.05 ) - 0.55

[ | 0.05-0.10 m H  0 .55-0 .60

|0 .1 0 -0 .1 5 —  0.60 - 0.65

] 0 .15-0 .20 BH8B 0.65 - 0.70

' 0.20 - 0.25 m m  0.70 - 0.75

0.25 - 0.30 m m  0 .7 5 -0  .80

i  0.30 - 0.35 m m  o.so - o.85

0.35 - 0.40 m m  0 85  - 0.90

0.40 - 0.45 m m  a9°  - 0 9 5

0 .45-0 .50 m m 095  - 1 ° °

D o w n s tr e a mU p str e a m

Figure 16: Mass fraction of sediments with grain size diameter of 0.05 mm for a channel 
with an island as output from the CH3D model.

The two methods produce similar results with respect to the kriging predictions and the 

kriging variances. There are two primary areas where differences occur. The first is 

around the head of the island. The standard method (Figure 17) shows a sediment plume 

stretching horizontally off the upper left side of the island. The method fails to extend 

the plume up to the head of the island where the source actually occurs. The method also 

fails to show the sediment plume on the opposite side of the island. The standard method 

does an acceptable job of capturing the elongated plumes that curve around the corners of 

the channel simply because of the sampling density. The elongated plumes are created 

by several small horizontal plumes that blend together. The flowline kriging method 

(Figure 18) captures the sediment plume on both sides of the island and elongates the 

plumes up to the head of the island where the source occurs. The flowline method does 

an equally good job of capturing the other plumes.
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The other area that differentiates the two methods is just offshore at the bottom of the 

island. With the flowline kriging method, an area with a larger-than-actual proportion of 

sediment is predicted. The flowline kriging method produced quite a few values that 

were either less that 0 or greater than 1. Since it is not possible to have less than a 0% 

mass fraction or greater than a 100% mass fraction, the values that exceeded these bound 

were reclassified to the limits of 0% or 100%. This overestimation beyond 100% is the 

cause of the large area off the bottom of the island with the larger than actual proportion 

of sediment. The effect of this is also observed in the map of kriging variances for the 

flowline method (Figure 20) and in the graphs of correlation vs. number of samples 

(Figure 21) and RMS vs. number of samples (Figure 22). The map of kriging variances 

shows a large area of low variance (i.e. high predictability) that occurs in the same 

location as the overestimation. The graphs show less accuracy in the results for the 

flowline method simulation with 150 samples compared to the standard method because 

of this overestimation in some areas and the underestimation in other areas. The cause of 

this is likely a combination of factors. It is possible that the particular geometric 

arrangement of sediment sources and sample points makes it difficult to determine the 

variogram structure. It may also be that the flowline method is numerically more 

sensitive to the underlying assumptions of kriging, the specification of the variogram 

model and/or the number of samples used in the calculation. This could cause the greater 

variability in the prediction results. Since this effect was not as prominent for the 

simulations with other sample sizes, it is likely that a different random sampling and 

variogram model would produce different (and more likely better) results.

The simulations for 90 sample points also show better performance with the standard 

method over the flowline method. The cause of this is actually due to the existence of a 

large kriging artefact. The cause of kriging artefacts is discussed in Section 5.1. For the 

other 5 simulations with sample sizes 30, 50, 70, 110 and 130, the flowline method 

performed equally as well as, or better than, the standard kriging method.
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Downstream

Figure 17: Predicted mass fractions of sediment with grain size diameter of 0.05 mm 
using standard kriging on 150 samples in a channel with an island (Same legend as 
Figure 16).

DownstreamUpstream

Figure 18: Predicted mass fractions of sediment with grain size diameter of 0.05 mm 
using flowline kriging on 150 samples in a channel with an island (Same legend as Figure 
16).
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Figure 19: Kriging variances for sediment with grain size diameter of 0.05 mm using 
standard kriging on 150 samples in a channel with an island.

Legend

Kriging Variance 
Value

Low: -0.083553

DownstreamUpstream

Figure 20: Kriging variances for sediment with grain size diameter of 0.05 mm using 
flowline kriging on 150 samples in a channel with an island.
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Figure 21: Graph of correlation vs. number of samples for a channel with an island.
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Figure 22: Graph of RMS vs. number of samples for a channel with an island.
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3.2.4 Diverging Channel

As mentioned in Section 2.4, a domain transformation will likely distort the shape of the 

anisotropy ellipse under converging and diverging conditions. Although the results are 

not being compared to a domain transformation, sections of channel with diverging and 

converging widths are very common and an algorithm that behaves well under those flow 

conditions is desirable.

Figure 23 shows the actual sediment distributions as produced by the hydrodynamic 

model. The flow of water is from right to left so an average anisotropy direction of 90 

degrees was used. For the CFI3D simulation the six sediment sources were randomly 

placed in the channel, however two o f the six sediment sources failed to generate plumes. 

The four plumes that were generated were deemed sufficient so no further attempt was 

made to generate additional plumes. The CH3D input files, random samples and kriging 

equations used in this test case can be found in Appendix E.

The graphs of correlation vs. number of samples (Figure 28) and RMS vs. number of 

samples (Figure 29) show that for test cases up to and including 70 samples, the results 

for standard kriging and flowline kriging produce results with roughly the same 

numerical accuracy. However, for larger sample sets, the standard kriging method 

continues to show small improvements in accuracy while the flowline method shows 

decreasing performance. The maps of kriging predictions for the simulations with 150 

sample points (Figures 25 and 26) show some of the reasons why. It seems that in these 

simulations, like the island test case for 150 sample points, the flowline kriging method 

suffers from numerical sensitivity that causes prediction values less than 0% and greater 

than 100%. The effect is so pronounced that it actually causes the appearance of areas 

with large proportions of sediment where there actually is none, as seen in the bottom 

half of the channel in Figure 26. The plumes in the upper half of the channel cover 

roughly the same area for the standard and flowline kriging methods. However, the 

flowline method produces much larger values than actually exist.
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Figure 23: Mass fractions of sediment with grain size diameter of 0.01 mm for a 
diverging channel as output from the CH3D model.
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Downstream

U pstream

Figure 24: Predicted mass fractions of sediment with grain size diameter 0.01 mm using 
standard kriging on 150 samples in a diverging channel (Same legend as Figure 23).

Downstream

Upstream

Figure 25: Predicted mass fractions of sediment with grain size diameter 0.01 mm using 
flowline kriging on 150 samples in a diverging channel (Same legend as Figure 23).
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Figure 26: Kriging variances for sediment with grain size diameter of 0.01 mm using 
standard kriging on 150 samples in a diverging channel.

L egend  

Kriging Variance
Value

■ H igh : 0 .5 5 7 6 5 0

Upstream

Figure 27: Kriging variances for sediment with grain size diameter of 0.01 mm using the 
flowline kriging method on 150 samples in a diverging channel.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.8  -

re 0.6 
o
ita>oo

0.4 -

re
re
o 0.2 o

- 0.2

» ----

10 30 50 70 90 110

Number of Samples

130 150

S ta n d a rd  kriging F low lin e kriging

Figure 28: Graph of correlation vs. number of samples for a diverging channel.
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Figure 29: Graph of RMS vs. number of samples for a diverging channel.
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The existence of prediction values greater than 100% and lower than 0% can occur with 

both the standard and flowline kriging methods. There is nothing in the kriging 

algorithm that specifies that percentages are being used and that therefore there are 

bounds on allowable values. This effect can be compensated for with better selection of a 

variogram model or by the application of various transformations on the data values. In 

order to objectively compare the standard and flowline kriging methods, only one attempt 

at fitting a variogram model was performed for each method so that ‘selective tuning’ 

would not bias the results. In practice, if these results were obtained, further attempts at 

variogram modelling and kriging would be conducted.

For the test cases with large numbers of samples, the flowline method also suffers from 

the existence of kriging artefacts. The existence of a large kriging artefact is part of the 

reason for the poor correlation and RMS observed in the flowline simulation with 90 

sample points. A small kriging artefact can be seen in Figure 28 along the upper bank of 

the channel. Kriging artefacts are discussed in Section 5.1.

For the test cases with large numbers of samples, it appears that the flowline kriging 

method may also be suffering from poor specification of the variogram. It seems that the 

flowline method may be more sensitive to the underlying assumptions of kriging, the 

specification of the variogram model and/or the number of samples used in the 

calculation. If this is the case, it would explain why decreasing performance is observed 

with the increasing number of samples. Part of the problem for the flowline method in 

this test scenario may be the geometric arrangement of the sediment sources. Since the 

sources produce plumes that nearly all line-up and are clustered in the upper half of the 

channel, the variogram for the flowline method may be having difficulty describing the 

spatial structure. It is likely that, with a re-examination of the variogram model and some 

attempt to reduce kriging artefacts, results comparable to the standard kriging method 

could be obtained with the flowline method.
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3.3 Assessment of the Results from Test Cases

The results of the above test cases suggest that the flowline kriging algorithm should 

perform well over a wide variety of channel geometries and sampling densities. 

Examining the spatial distributions from both a statistical and visual perspective seems to 

indicate that the flowline method should generally outperform standard kriging 

techniques in fluvial environments. Although the flowline kriging method seems to be 

more sensitive to the model inputs, especially for larger sample sets and certain 

geometries, it is likely that this can be dealt with by a closer examination of the data and 

the use of more advanced techniques for variogram model specification.

It should be noted that these test cases only examined sediment deposition from point 

sources. Non-point source deposition is likely to appear as a trend in the data. In most 

kriging applications, a trend would be removed prior to kriging the residuals and 

therefore there would be little point in examining the implications of the process on 

kriging. Another major process that affects sediment distributions in real rivers is erosion 

and the uncovering of historically deposited layers of sediment. In these situations, much 

of the spatial variability in the sediment distributions would be determined by that of the 

underlying layers. Test cases for erosion would be much more arbitrary than the cases 

tested in this study, since both a random bed surface and underlying historical sediment 

distributions would need to be generated. Rather than pursuing further simplified test 

cases through simulation, it was decided to test the method on a complex real-world test 

case.

4.0 Case Study: Sediment Distributions in the Detroit River

For large study areas, the amount of money required to adequately sample the area can be 

prohibitive. There may also be instances when the researchers have to work with data 

sets that were not collected with the intention of performing geostatistical analysis. As a 

result, researchers sometimes have to make do with data that is either too sparse or poorly
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distributed in the problem domain to allow the proper use of standard geostatistical 

methods in producing spatial distributions.

A surficial sediment sampling survey conducted for the Detroit River Modelling and 

Management Framework will be examined as a real test case. The Detroit River study 

area was very large and consequently the data can be considered quite sparse, despite the 

large scope, budget and resources dedicated to the project. The new flowline 

transformation approach was attempted to evaluate whether it could improve upon the 

standard geostatistical methods and produce a better spatial distribution map for 

sediments in the river.

4.1 Background on the Detroit River Project

The Detroit River M odelling and Management Framework began in 1999 as an initiative 

of the Detroit River Canadian Cleanup Committee. This committee was formed in 1998 

to manage Canadian obligations arising from Canada-US Great Lakes W ater Quality 

Agreement for the Detroit River Area of Concern. The project was different than most 

other studies that had been previously conducted on the river. Its objective was to gain 

an overall indication of ecosystem health. Many studies had previously been conducted 

in the Detroit River, but they had always focused on a particular problem area. Since 

much of the data on the Detroit River was either out-of-date or focused on particular 

problem areas, the committee decided to conduct a completely new comprehensive study. 

The Great Lakes Institute for Environmental Research (GLIER) at the University of 

W indsor was given the responsibility of conducting and managing the new study. To get 

an overall picture of ecosystem health, the study was comprised of many components 

including environmental assessment studies, bioaccumulation modelling and hydraulic 

modelling of the river. In addition to the surficial sediment sampling survey data 

analyzed in this thesis, there were many other data sets collected for the project and 

analyzed by other researchers. These included: acoustically surveyed river bathymetry, 

sonar sediment classification, water surface elevation data, acoustic doppler current
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profiler (ADCP) velocity data, sediment core data, and a wide variety of biological 

sampling data. Some of the findings from this related research can be found in Detroit 

River Modelling and M anagement Framework: Modelling Report and Manual. (GLIER, 

2002)

4.2 The Detroit River

The Detroit River forms part of the international border between Wayne County, State of 

Michigan, USA and Essex County, Province of Ontario, Canada. The two largest 

communities on the river are Detroit, Michigan and Windsor, Ontario. The river is 

approximately 51 km  long and varies in width from about 600 m to 3000 m. The depth 

of the river varies depending on location. In the deeper regions of the river, particularly 

in the navigation channels, depths can reach about 15 m. In other areas, such as the 

wetlands at the mouths of the various tributaries, depths may only be a few centimetres. 

There are a total of twelve major islands in the river of which some are natural islands 

and some are man-made. The Detroit River is often referred to as a connecting channel 

because flow through the river is not driven by topography but rather by the small 

difference in lake surface water elevations between Lake St. Clair and Lake Erie. The 

change in water surface elevation over the entire length of the river averages 

approximately 1 m.
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Figure 30: Location of the Detroit River.

Based on channel characteristics, the river can be considered to have 2 distinct reaches 

(OMOE, 1991). The upper reach runs from Lake St. Clair to the upstream tip of Fighting 

Island. This stretch is approximately 21 km long and varies in width from about 600 m to 

1500 m and in centre line depth from about 9 m to 15 m. Over this length about 30% of 

the hydraulic head difference is dissipated. Peche Island and Belle Isle are the two 

islands in the upper reach and can be found a short distance downstream from Lake St. 

Clair. After the two islands, the river tends to form one well defined channel with a 

consistent cross section. Throughout much of this section, the river has an engineered 

shoreline since it flows through the downtown urban areas of Detroit and Windsor.

The lower reach runs from the upstream tip of Fighting Island to the mouth of the river at 

Lake Erie. This stretch covers the remaining 30 km and varies in width from about 

1500 m to 3000 m and in centre line depth from about 0.6 m to 9 m. Over this length the 

remaining 70% of the hydraulic head difference is dissipated and 70% of those losses 

actually occur between Fighting Island and Bois Blanc Island. In the lower reach of the
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river, the remaining 10 islands divide the river into many channels. In order to facilitate 

navigation in this area 5 navigational channels have been dredged (OMOE, 1991).

The long-term average flow rate of the river is approximately 5300 nrVs which varies 

from a monthly winter low of about 4400 m3/s to a monthly summer high of about 

5700 m3/s. (Holtschlag and Koschik, 2001) Seasonal variations in flow range from 

about 800 to 1300 m3/s. The flow in the river is considered well-mixed vertically but 

lateral mixing of the river water occurs only gradually along the length of the river, 

leading to deposition of sediments and contaminant in an along-shore pattern. The 

average linear velocity of the water ranges from about 0.3 m/s to 0.6 m/s and gives an 

average retention time of about 21 hours for the river. Local channel properties and 

weather conditions can produce velocities significantly different than the average. In 

fact, water depth and flows in the river are highly dependent on current lake levels and 

wind conditions. Reversals in flow direction have even been known to occur with high 

winds and elevated lake levels in Lake Erie (Derecki, 1990).

The tributaries and sewers that discharge into the Detroit River drain approximately 

2100 km 2 of land (OMOE, 1991). Approximately 1580 km 2 of this watershed is on the 

U.S. side while only 520 km2 is on the Canadian side. The major tributaries of the 

Detroit River on the US side include: the Rouge River, Ecorse River, Huntington Creek, 

Frank and Poet Drain, and Brownstown Creek. The major tributaries on the Canadian 

side include: the Little River, Turkey Creek and Canard River. Despite this large 

watershed, the majority of flow in the Detroit River is drainage water from the Upper 

Great Lakes.

The total inflow from the tributaries is approximately 35 n r/s , which represents less than 

1% of the river’s total flow (OMOE, 1991). Groundwater contributions to the river flow 

are considered negligible (OMOE, 1991). Groundwater discharges from the Michigan 

side of the river have been estimated at between 1.5 and 3 m3/s. Given the relative 

contributing watershed areas on the US and Canadian sides, it is reasonable to assume
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that groundwater discharges from the Canadian side are also negligible compared to the 

total flow in the river.

The mean annual river temperature is about 10 °C with monthly average temperatures 

ranging from about 0.6 °C to 22.2 °C (OMOE, 1991). Heated wastewater discharges and 

relatively swift currents in the river tend to prevent ice build-up in the river except in 

shallow areas surrounding the islands. Ice build-up around the lower islands can 

occasionally cause ice jam s and, with incoming ice from Lake St. Clair, cause ice jams 

through the entire river.

W ater from the Detroit River is used in a variety of ways depending on the need of the 

surrounding communities and the various land uses along the river’s banks. W ater uses 

which tend to have the largest impact on water quality are water supply and sewerage. 

W ater from the Detroit River is taken for both domestic and industrial use by Detroit, 

W indsor and numerous other communities and industries along the river. The river acts 

as receiving water for municipal wastewater, industrial wastewater, storm sewer 

discharge, combined sewer overflow discharge, and agricultural runoff. Other important 

uses of the river include navigation and recreational activities such as fishing, hunting, 

swimming and boating. The Detroit River also provides important fish and wildlife 

habitat.

Surficial sediments in the Detroit River have been influenced by numerous factors. 

Agricultural and urban runoff has contributed sediments characteristic of the surrounding 

soils, while the dredging of navigational channels has exposed the bedrock in other areas. 

The soils around the Detroit River are dominantly clays and silts on the US side and clays 

on the Canadian side. Sandy soils exist around the Rouge River and the Ojibway area of 

Windsor. The depth to bedrock under the city of Detroit varies from 15 to 61 m (OMOE, 

1991).

Sediments in the main channels tend to be coarse material due to the relatively high 

velocities. The upper reach of the river has mostly consolidated clays lining the bed. The
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lower reach is much more varied. Dredging has exposed the bedrock in some areas and 

glacial boulders and other coarse sediments can be found in the main channels. Fine 

grained silts and clays can also be found near the shoreline and around the many islands 

in the lower reach.

Toxic concentrations of various chemicals, as defined in the Stage I  Remedial Action  

Plan fo r  Detroit River Area o f  Concern (OMOE, 1991), are known to exist in Detroit 

River sediments. In general, contaminant concentrations are higher on the Michigan side 

of the river than on the Ontario side or in the middle of the river. The area that appears to 

have the most contamination overall is the shoreline extending from the Rouge River, 

south through the Trenton Channel.

4.3 Surficial Sediments Data

A vast amount of data was collected and analyzed for the Detroit River Modelling and 

Management Framework project. O f primary interest to this thesis is the surficial 

sediment sampling survey conducted in 1999. In total, 150 locations were sampled over 

21 days during M ay and June. The samples were analysed for: benthic community 

structure; grain size distribution, organic carbon, sulphur, nitrogen, 17 metals, 41 PCBs, 

16 polycyclic aromatic hydrocarbons (PAHs) and at least 14 other organic compounds 

including some pesticides. The sampling was conducted with a Stainless Steel Ponar 

Dredge Sampler with a 0.05m2 horizontal cut. Field samples were taken in triplicate at 5 

locations for quality control. All samples were analysed by GLIER staff at their 

laboratory which is accredited by the Canadian Association of Environmental Analytical 

Laboratories (CAEAL) and quality-assured by the Standards Council of Canada (SCC).

The sampling locations were stratified so that 30 stations were selected from each of the 

Upper and M iddle Zones and 90 stations were chosen from the Lower Zone. Samples in 

each zone were equally divided between the American and Canadian sides. Then from 

within each zone and jurisdiction, sample locations were selected so that 2/3 of the
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samples came from depths less than or equal to the median depth and the remaining 1/3 

of the samples from depths greater than the median depth. When choosing sample 

locations from the stratified map of the river, locations were chosen at random, subject to 

the restriction that no two samples could be taken within 300 m. In an attempt to reduce 

spatial trending due to small scale temporal variability, sample locations were randomly 

assigned to sampling days.

Figure 31: Point samples for the 1999 sampling survey.
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4.4 Conventional Approaches on the Detroit River

In order to provide a point of comparison and to ensure that sample data from the Detroit 

River behaved as an anisotropic environment, a series of interpolations using standard 

techniques were performed. The property examined by the interpolation was the mass 

fraction of sediment with grain size diameter smaller than 0.075 mm. For the purposes of 

the Detroit River study, this was considered the fine-grained fraction. The interpolations 

were performed using ESRI’s ArcGIS 8.1 software with the Geostatistical Analyst 

extension. Cross-validation results from ArcGIS are represented by the root mean 

squared error of prediction (RMS) and the average standard error of prediction (ASE).

W hen dealing with variograms, ArcGIS allows for the use of 11 different variogram 

models. Although all 11 models were examined for effectiveness, since the trends 

remained the same, only the results of two commonly used models, spherical and 

exponential are summarized below. The parameter optimization routines within 

Geostatistical Analyst were used to determine the best sets of the model parameters.

4.4.1 Statistical Results

If the Detroit River does behave as an anisotropic environment, there should be an 

improvement seen in the RMS and ASE as new techniques are applied that deal with the 

anisotropy. To start, Inverse Distance W eighting was attempted. Ordinary kriging was 

attempted, with and without anisotropy. In case a trend existed in the data, methods were 

applied to remove a first-order trend, a second-order trend and a third-order trend. 

Universal kriging was also attempted with a first-order trend, a second-order trend and a 

third-order trend. Finally, the river was broken up into three roughly straight sections of 

river. Refer to Figures 32-46 for the extents of the three areas. Universal kriging was 

applied to each section individually using a first-order trend and a second-order trend.
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Table 1 summarizes the cross-validation results of interpolating the mass fraction of the 

fine-grained sediments (i.e. grain size diameter smaller than 0.075 mm) in the Detroit 

River using standard kriging techniques.
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Table 1: Cross-validation Results of Standard Interpolations on the Detroit River

Section Method Trend Model Isotropy Anisotropy
RMS ASE RMS ASE

All IDW None P=l. 1255 16.85 NA NC NA

All Ordinary None Spherical 14.06 15.77 14.52 15.86
Exponential 13.69 15.54 14.06 15.95

First Spherical 14.03 15.72 14.26 15.58
Exponential 13.64 15.43 13.83 15.57

Second Spherical 13.49 15.05 13.41 14.99
Exponential 13.64 15.35 13.65 15.31

Third Spherical 15.57 14.79 15.57 14.71
Exponential 15.49 15.00 15.55 14.93

All Universal None Spherical 14.06 15.77 14.52 15.86
Exponential 14.10 15.79 14.64 15.92

First Spherical 13.47 14.91 13.48 14.86
Exponential 13.42 15.14 13.51 15.08

Second Spherical 13.56 15.06 13.54 15.00
Exponential 13.59 15.31 13.63 15.24

Third Spherical 15.34 11.89 15.36 11.82
Exponential 15.38 11.84 15.28 11.93

Upper Universal None Spherical 13.13 8.35 13.76 8.09
Exponential NC NC NC NC

First Spherical 14.68 9.32 14.11 9.23
Exponential 14.20 9.48 13.47 9.53

Second Spherical 12.97 8.73 12.60 8.46
Exponential 13.07 9.03 12.65 8.56

Lower Universal None Spherical 15.64 16.48 15.99 16.40
Exponential 14.86 15.92 15.15 16.21

First Spherical 15.65 12.30 15.74 11.83
Exponential 15.51 12.14 15.51 12.14

Second Spherical 17.98 14.80 18.53 14.67
Exponential 17.94 15.25 18.27 15.13

M iddle Universal None Spherical 10.66 1 17.61 10.87 15.56
Exponential 10.59 | 17.64 10.75 15.04

First Spherical 11.41 16.77 11.68 15.43
Exponential 11.41 16.77 11.54 15.52

Second Spherical 18.12 16.28 20.13 14.91
Exponential 18.11 16.38 19.84 14.71
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4.4.2 Assessment of the Statistical Results

W hen looking at the cross-validation results for the entire river using ordinary kriging 

and the spherical model on the fine-grained fraction, the RMS improved from 14.06 to 

13.49 by incorporating a second order trend in the data. This could be explained by the 

shape of the river. There is likely a linear trend in the sediment mass fraction in the 

downstream direction. However, since the river is curved, the linear trend appears as a 

second-order trend. When universal kriging is applied, modelling a first-order trend 

(RMS = 13.47) appears to produce a very slight improvement over a second-order trend 

(RMS = 13.56). There appears to be no substantial improvement in using universal 

kriging over ordinary kriging when considering the entire river. M odelling anisotropy 

using ordinary kriging produces a RMS value of 13.41, only 0.08 better than no 

anisotropy. Modelling anisotropy using universal kriging produces a RMS value of 

13.48, only 0.01 worse than no anisotropy. There appears to be no substantial 

improvement when modelling anisotropy over the entire river.

Breaking the river up into three relatively straight sections and applying universal kriging 

with a spherical model reveals that each section of the river has its own unique 

characteristics. The Upper reach produces a RMS of 13.13 and an ASE of 8.35 with no 

trend, a RMS of 12.97 and an ASE of 8.73 with a second-order trend and a RMS of 14.68 

and an ASE of 9.32 with a first-order trend. Given the results of the cross-validation, it is 

likely safe to model the Upper reach of the river without any trend. W hen modelling 

anisotropy, a slight improvement is seen in modelling anisotropy with a second order 

trend (RMS = 12.60).

The Middle reach produces a RMS of 10.66 with no trend and increasing RMS values of 

11.41 and 18.12 with first-order and second-order trends, respectively. Modelling 

anisotropy produces best results with no trend (RMS = 10.87), although this is still not a 

better RMS than observed for isotropic modelling. Given the results of the cross- 

validation, it is likely safe to model the Middle reach of the river as isotropic with no 

trend.
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The Lower reach produces a RMS of 15.64 with no trend, 15.65 with a first-order trend 

and 17.98 with a second-order trend. W hen examining the ASE, modelling a first-order 

trend produces a value of 12.30 while modelling no trend produces a value of 16.48. 

Modelling anisotropy produces best results with a first-order trend (RMS = 15.74), 

although this is still not a better RMS than observed for isotropic modelling. It is likely 

best to model the Lower reach o f the river as isotropic with a first-order trend.

In terms of prediction errors, it is obvious that different sections of the river are 

contributing different proportions of the overall error. The Upper reach has roughly the 

same RMS as the overall average, but substantially lower ASE. The Middle reach has 

lower RMS values than the overall analysis, but substantially larger ASE. The Lower 

reach also has higher RMS values to the overall analysis.

The results of these preliminary analyses provide some insight into what could be 

expected when applying the flowline kriging algorithm and how the problem should be 

approached. The different characteristics of the three sections indicate non-stationarity in 

the river data. Although modelling the entire river together appears to be a serious 

violation of the stationarity assumption, modelling each piece individually may be a less 

serious violation. Since there exist only slight trends in the data, it would be appropriate 

to use universal kriging or ordinary kriging with a neighbourhood. It would also appear 

that modelling anisotropy will provide little benefit for most of the river. However, it 

may be that the river is too complex to be properly modelled by the sparse sample data. 

The flowline method may be able to help in such situations by accounting for some of the 

flow complexities.

4.5 Flowline Transformation Approach on the Detroit River

In order to test the applicability and effectiveness of the flowline kriging method for real- 

world applications, kriging analysis was performed on the Detroit River using both
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standard ordinary kriging and ordinary kriging using flowlines. The sediment samples 

used for the interpolations were collected as part of a 1999 sampling program and are 

described in Section 4.3. As with the simplified test cases described in Section 3.2, a 

velocity vector field was required to construct the flowline for each sample location. A 

velocity vector field for the Detroit River, obtained from Dr. Stan Reitsma, was created 

as part of the research for the Detroit River M odelling and Management Framework: 

M odelling Report and Manual. (GLIER, 2002) Otherwise, the algorithm and methods 

used were the same as those described for the simplified test cases and are described in 

Section 3.2 and Appendix A. The particular sediment property examined in this case 

study was also the bed sediment mass fraction of grain size diameter less than 0.075 mm.

As mentioned in Section 4.4.2, any attempt to model the entire river as a whole would be 

a serious violation of the assumption of stationarity. Instead, the three sections of the 

river were examined individually. Although the use of universal kriging would be a more 

appropriate method to use in the river because of the slight trend in the data, variogram 

modelling of data with a trend requires the use of more sophisticated techniques that have 

not yet been developed for the flowline method. As a result ordinary kriging was used in 

the analysis despite the lack of confidence in the assumption of stationarity. Since the 

assumption of stationarity is often violated in fluvial environments, this may help to 

reveal the overall effectiveness of the method in fluvial environments.

In the simple test cases, an average angle of anisotropy was assumed based on the known 

flow directions of the water. Since the Detroit River is a real test case and processes 

other than just the flow o f water may be involved, the selection of an average anisotropy 

angle was determined using only the distribution of sample data (i.e. no subjective user 

input) and ArcGIS. Similarly, the lag distances used for variogram modelling were also 

chosen by ArcGIS for the standard kriging method and the same lags were used for the 

flowline method. Although to some extent this may bias the results towards the standard 

kriging method, it ensures that variability is being modelled over the same spatial scale. 

For these test cases, the problem domains were gridded into cells 20 m2 upon which
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predictions were made. The sample points and variogram equations used in the 

interpolations can be found in Appendix F.

4.5.1 Spatial Distribution

The Upper reach of the river (Figures 32-36) provides an excellent example of how the 

use of flowlines can improve the interpolation. It is clear to see from the figures how 

flowlines track sediment plumes through the river. Examining the south side of Belle Isle 

is quite revealing. On the south side of the island, at Site 25, a sample was collected with 

a very high proportion of fine grain sediments. Two other samples, at Sites 22 and 26, 

were collected further out from shore, upstream and downstream, each with significantly 

lower proportions of fine grain sediments. The standard method (Figure 33) created a 

plume of high concentrations between Sites 22 and 26. The plume was so large that it 

stretched all the way across the island and influenced points on the far side. The flowline 

method (Figure 34) predicts a much more plausible distribution. Since the anisotropy 

follows a flowline and flowlines do not cut across islands, Site 25 has very little effect on 

the far side of the island. The method also strings together Sites 22 and 26 into one 

plume and shows a patch with a high proportion of fine grained sediment hugging the 

shore of the island with a patch composed of a lower proportion of fine grained sediments 

bounding it offshore. Figures 35 and 36, which show the kriging variances, also show a 

more realistic pattern for the flowline method. Examining the southern end of the reach, 

two samples were taken near opposite shores. The deeper centre of the river runs 

between the two. The map of kriging variances using standard techniques (Figure 35) 

shows that the areas of good predictability stretch into the centre of the channel, while the 

flowline technique (Figure 36) shows the areas of good predictability hugging the shore 

and leaves the deeper centre of the river poorly predicted, which is much more likely.

In the Middle reach (Figures 37-41), there are less obvious deviations between the 

results. This stretch of channel has no islands and is very straight which means that an 

average anisotropy angle and the standard kriging techniques should produce very similar
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results to the flowline method. Although the results are quite similar, there are some 

distinguishing characteristics. In the northern section of the channel, where the channel 

turns from the average anisotropy angle, the flowline method (Figure 39) shows an along­

shore pattern of sediments that stretches all the way out of the reach while the standard 

method (Figure 38) does not. Also, the standard method shows a small sediment plume 

stretching out into the middle of the channel from Site 34 while the flowline method 

keeps the plume along the shoreline. W ith the high flow conditions that exist in the 

Middle reach, the along-shore pattern shown with the flowline method is a more likely 

scenario. Comparing the maps of kriging variances (Figures 40 and 41) shows similar 

behaviour. In addition, the flowline method (Figure 41) shows a more distinct pattern of 

variability that is more like the known behaviour of the river, especially near the southern 

end of the channel where the flowlines prepare to flow around Fighting Island just off the 

edge of the map.

The Lower reach (Figures 42-46) is an extremely complex region of the river. To aid in 

interpreting the resulting prediction maps (Figures 43 and 44), the mass fractions were 

reclassified into ranges of 5% for display, rather than using a continuous spectrum as 

seen in the previous figures. The prediction maps for the Lower reach provide a different 

picture than observed in the other test scenarios. In the previous studies the flowline 

method seemed to generate elongated plumes that followed the direction of flow while 

the standard method created much wider ones that did not follow the flow. In the Lower 

reach it is the Standard method (Figure 43) that creates elongated plumes in the direction 

of flow. The flowline method (Figure 44) produces wide, stunted plumes that appear 

more like bands across the channel or blobs rather than plumes. The boundary between 

display ranges is also much smoother for the standard method, while the flowline method 

produces patches with very rough edges. Other than the shape of the prediction regions, 

the flowline method also produces some regions of high and low fine grained fractions 

that do not appear in the standard method. These regions can be seen off the southwest 

corner of Fighting Island, the southwest corner of Grosse lie and south of Crystal Bay. 

The maps of kriging variance (Figures 45 and 46) do not show any noticeable differences 

in pattern. However, the map of standard kriging variances (Figure 45) shows a much

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



wider range of values than the flowline variances (Figure 46). This is likely due to the 

larger proportion of nugget obtained in the flowline variogram equation. One notable 

difference is that the flowline method shows that the area off the northeast corner of 

Fighting Island has high variability, while the standard method shows that predictions in 

the area are not as variable relative to the rest of the values in the river. Given that there 

are no sample points in that area and that the area is sheltered by the islands, it is likely 

that the area is poorly predicted. The standard method shows a much larger area o f low 

predictability in the southern end of the river than the flowline method does. Since there 

is a gap of nearly 5.5 km between sample points in that area, it is likely that the larger 

area of poor predictability shown by the standard method is more representative.

For the Lower reach of the river, the flowline method suffers from the existence of 

kriging artefacts. The reclassification applied to the prediction values has masked most 

of the effect. However, some of the kriging artefacts can still be observed in maps. The 

cause of kriging artefacts and the characteristics of flowlines needed to prevent them are 

discussed in Section 5.1. From visual inspection, there does not appear to be a good 

reason to recommend either kriging method over the other for the Lower reach. The 

following section, Section 4.5.2, will examine the results from a statistical viewpoint in 

an attempt to determine which method is more effective.
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Figure 32: Flowlines used for interpolation of the Upper reach o f the Detroit River.
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Figure 33: Predicted mass fraction of sediment with grain size diameter less than 
0.075 mm for the Upper reach of the Detroit River using standard kriging.
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Figure 34: Predicted mass fraction of sediment with grain size diameter less than 
0.075 mm for the Upper reach of the Detroit River using flowline kriging.
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Figure 35: Kriging variances for sediment with grain size diameter less than 0.075 mm 
for the Upper reach of the Detroit River using standard kriging.
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Figure 36: Kriging variances for sediment with grain size diameter less than 0.075 mm 
for the Upper reach of the Detroit River using flowline kriging.
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Figure 37: Flowlines used for interpolation of the M iddle reach of the Detroit River.
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Figure 38: Predicted mass fraction of sediment with grain size diameter less than 
0.075 mm for the Middle reach o f the Detroit River using standard kriging.
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Figure 39: Predicted mass fraction of sediment with grain size diameter less than 
0.075 mm for the M iddle reach of the Detroit River using flowline kriging.
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Figure 40: Kriging variances for sediment with grain size diameter less than 0.075 mm 
for the Middle reach of the Detroit River using standard kriging.
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Figure 41: Kriging variances sediment with grain size diameter less than 0.075 mm for 
the Middle reach of the Detroit River using flowline kriging.
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Figure 42: Flowlines used for interpolation of the Lower reach of the Detroit River.
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Figure 43: Predicted mass fraction of sediment with grain size diameter less than 
0.075 mm for the Lower reach of the Detroit River using standard kriging.
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Figure 44: Predicted mass fraction of sediment with grain size diameter less than 
0.075 mm for the Lower reach o f the Detroit River using flowline kriging.
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Figure 45: Kriging variances for sediment with grain size diameter less than 0.075 mm 
for the Lower reach of the Detroit River using standard kriging.
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Figure 46: Kriging variances for sediment with grain size diameter less than 0.075 mm 
for the Lower reach of the Detroit River using flowline kriging.
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4.5.2 Assessment of the Statistical Results

Other than the appearance of some interpolation artefacts, from the appearance of the 

resulting spatial distributions the flowline method appears to produce more reasonable 

spatial distributions for the fine grained fraction of sediments than the standard methods 

do when looking at the Detroit River data. The results were also examined statistically to 

see which method performed better numerically. GSTAT reports the results of cross- 

validation using different statistics than ArcGIS and therefore the results are not directly 

comparable to those from Section 4.4. Instead GSTAT uses the correlation coefficient as 

a statistical measure of how well the kriging method is predicting sample values.

Table 2: Correlation results from Cross-Validation on the Detroit River

Standard Flowline

Upper -0.07229 -0.07993

Middle 0.02377 -0.06752

Lower 0.5892 0.6536

The cross-validation results from the Upper and M iddle reaches, using both kriging 

techniques, show essentially no correlation between the predicted and sampled data. The 

implication is that the sampling program was insufficient to model the spatial variability 

in the data for either method. This does not mean that all areas of the river are 

necessarily predicted poorly. An individual point may be predicting well for its 

immediate neighbourhood. It simply means that the sample points are spread so far apart 

that they can not be used to infer sample values at other locations. Given the limitations 

of the data, unless additional sampling is conducted, it becomes simply a matter of 

professional judgem ent as to which method performs better. In that case, since the 

flowline method produces a much more realistic pattern of sediment distribution, the 

flowline method would be recommended for the Upper and Middle reaches.

While there was little in the visual representations of the spatial distributions for the 

Lower reach to recommend one method over the other, examination of cross-validation
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results reveals that the flowline method performs somewhat better than the standard 

method. Although the elongated plumes of the standard method would seem to make 

more sense for a fluvial environment, they are in fact causing poor predictability at the 

sample locations. Based on the results of the cross-validation, the flowline method would 

also be recommended for the Lower reach.

5.0 Discussion

5.1 Flowlines and the Causes of Interpolation Artefacts

The results obtained from the flowline kriging method are highly dependent upon the 

shape and areal coverage of the flowlines. If accurate results are expected from the 

flowline kriging method, special care must be taken to ensure that the flowlines used in 

the method behave well.

The most important property of a flowline is that the line must be traced completely 

through the problem domain. Flowlines that terminate prematurely in the middle of the 

problem domain can cause kriging artefacts that affect both the visual and numerical 

results. The use of prematurely terminating flowlines was partly to blame for the poor 

correlation and RMS seen in the 90 sample point test cases for the island and diverging 

channel simulations. Figure 47 shows an example from an initial attempt on the Lower 

reach of the Detroit River. It can be seen that flowlines terminating in the middle of the 

river cause very noticeable kriging artefacts. The premature termination of a flowline 

causes a sudden jum p in prediction values across a line that stretches perpendicular from 

the termination point of the flowline all the way across the channel. The existence of 

multiple terminating lines compounds the problem. The artefact is caused by the flowline 

Ax (i.e. length along the flowline) and Ay (i.e. length of the cross-line) values that are 

returned from the flowline method. If the flowline terminates, then any cells beyond the 

endpoints of the flowline will always return the same flowline Ax value. The modelling
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of anisotropy compounds the problem since the x-direction provides a greater 

contribution to the variance.

The solution to the problem is to ensure that the flowlines are traced completely through 

the problem domain. In practice, flowlines will not always flow out of the problem 

domain. Sources, sinks, circulation zones and areas of very low velocity may all cause 

the effective termination of a flowline before it exits the problem domain. Realistically, 

some termination criteria must be chosen for the construction of a flowline. In this study, 

most of the prematurely terminated flowlines were caused by either low velocities in the 

shallow areas near the banks of the river, or by flowlines that, due to numerical 

limitations of the hydraulic model, intersected the banks of the channel. One possible 

solution, and the one used in this study, is to complete the flowline by forcing it to follow 

the shoreline all the way out of the problem domain. The results described in Section 4.5 

were generated after the manual correction of the terminated flowlines, so they were not 

affected by artefacts similar to the one shown in Figure 47.

Figure 48 shows a kriging artefact caused by the existence of a small circulation zone. 

The circulation zone also produces discontinuities in the returned values of flowline Ax 

and Ay. Inside the interior of the circulation zone, the flowline Ax distance may be 

extremely long even though the Euclidean distance is very short. On the outside of the 

circulation zone, an odd pattern of flowline Ax and Ay values are returned as the cross­

lines keep being measured to different locations on the exterior of the circulation zone.

In reality the circulation zones are generally not temporally stable. Some flow 

disturbance eventually comes along and alters the flow regime causing the flow to 

temporarily break out of the circulation pattern. The results described in Section 4.5 

attempted to reduce the kriging artefact by forcing the flowline out of the circulation 

pattern. After one loop, the flowline was made to cross over itself and was extended out 

into the main channel where the Tow line then continued downstream and out of the 

problem domain.
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The flowline method shows two other types of kriging artefacts (Figures 49 and 50).

They are caused by sharp curves in the flowlines. Figure 49 shows a kriging artefact 

caused by a concave bend in a flowline. The white lines represent the cross-lines that 

would be constructed. One prediction cell measures its cross-line north of the flowline’s 

curve. The adjacent prediction cell measures its cross-line south of the flowline’s curve. 

This results in very different flowline Ax distances being returned even though the 

prediction cells are adjacent. As mentioned earlier, with anisotropy the flowline Ax 

distances have a greater effect on the prediction results. The effect is to cause a sudden 

jum p in values between prediction cells. In the particular example shown in Figure 49, 

several flowlines are compounding the problem and increasing the effect. It should be 

pointed out that under most circumstances this type of kriging artefact should have very 

little effect on the overall results. In Figure 49, the gray-scale has been adjusted to aid in 

the display of the artefact. There is only about a 1 % difference in the predicted values 

observed on either side of the artefact.

Figure 50 shows the complementary situation to Figure 49. Figure 50 shows a kriging 

artefact caused by a convex bend in a flowline. In this example, a triangular pattern is 

exhibited where all the cross-lines are drawn to the exact same point on the flowline. 

Therefore, they will all have the same flowline Ax distance. Eventually, an adjacent 

prediction cell will break from the pattern and begin drawing cross-lines further down the 

flowline. This causes a discontinuity just as discussed above. In Figure 48, there is 

somewhere between a 5% and 10% difference in predicted values between the interior of 

the artefact and the outside of the artefact. The effect of the artefact is to cover up a 

gradient of 5% to 10% that is occurring over the over that area.

In essence, the flowline method relies on the fact that the flowlines curve and follow the 

true direction of flow. The recommendation is not to make any attempt at reducing the 

existence of artefacts caused by concave and convex bends in the flowlines. These 

artefacts are pointed out here so that their appearance will be recognized, understood and 

properly interpreted and accommodated.
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Figure 47: Kriging artefacts caused by the termination of flowlines within the problem 
domain.
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Figure 48: Kriging artefact cause by a circulation zone.
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Figure 49: Kriging artefact cause by a concave turn in the flowlines
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5.2 Method Applicability and Limitations

Like the other forms of kriging, methods of kriging that use flowlines are based on the 

same assumptions of Gaussian distribution and stationarity in the data. Although the 

assumptions were not strictly adhered to in this proof of concept study, in other studies 

where sampling has been adequately performed and the predicted values are critical, the 

importance of the underlying assumptions should not be ignored. Although 

normalization techniques can be applied to the data to make it Gaussian, the assumption 

of stationarity is often, perhaps nearly always, violated in fluvial environments and needs 

to be addressed.

Any investigation using flowline kriging should begin with an examination of the 

processes involved in generating the spatial distributions. In the method, flowlines are 

generated by fluid flow and the attributes being examined are assumed to be transported 

by the fluid. If the environment being modelled is not dominated by these processes then 

it is unlikely that kriging with flowlines will provide an improvement over standard 

techniques. Special care will need to be taken when dealing with highly erosive 

environments. Although erosion on the bed is certainly a process dominated by fluid 

flow, the end result is the uncovering of historically deposited layers. The uncovering of 

substantial areas of the underlying layers will reveal the influences of historical processes 

and can create additional complexity in the spatial distributions.

Using kriging with flowlines, situations still arise where distance measurements between 

two points can cross over land. Since the flowline paths are traced through the water, a 

flowline will not cross over land. However, a cross-line could still cross over land.

These situations certainly occur with islands, but they can also occur around sheltered 

inlets along a shoreline. Special care must be taken in these environments to ensure that 

an appropriate method of accounting for the decay of spatial a utocorrelation across the 

land is being used. Also, the existence of prematurely terminating flowlines and 

circulation zones must also be examined and perhaps dealt with manually to ensure that 

they are not creating kriging artefacts that adversely affect the final results.
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5.3 Applicability to Other Studies

Based on the above test cases it would seem that kriging with flowlines is a method that 

could be applied to a wide range of fluvial environments. In trying to extend the 

applicability of the method to situations other than fluvial environments, special attention 

must be paid to the processes generating the spatial distributions and anisotropy. Any 

environment where the distribution of sampled parameters is dominated by transport 

processes could be expected to see improvements through the use of the flowline method.

While the test parameter used in this thesis was fine grain surficial sediments, there are 

many other possible attributes that would be suitable for examination using the flowline 

method. The most obvious of these would be chemical contaminants in the bed 

sediments. In many cases, the purpose of looking for fine grain sediments on the bottom 

of a river is that chemical contaminants are often associated them. In addition to the 

parameters from the bed of the river, suspended sediments and chemical contaminants are 

also likely candidate parameters to benefit from the flowline method. It is also possible 

that the spatial distribution of some biological species could be examined with the 

method. Spatial distributions of species that are passively carried along by the flow of 

water and those that rely on the flow of water to transport their offspring to other areas 

are most likely to benefit from the use of the method.

Some non-fluvial aquatic environments may also benefit from the use of flowline kriging. 

Although the flow of water in lakes and oceans is not channelized, some parameters may 

still be controlled by the flow of water. For example, it may be possible to use flowline 

kriging on large circulation zones in lakes and oceans. For the current flowline 

implementation, small circulation zones can create conceptual problems in the method. 

However, the problems may eventually be overcome. It may be that large circulation 

zones will not even suffer from the same problems. In large circulation zones, a flowline 

may not converge in on itself as tightly. If the variogram range is sufficiently short that it 

does not overlap a flowline in multiple places and if the sample spacing is small relative 

to the circulation size, the fact that the flow is circular may not matter.
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Hydrogeology may benefit from the use of these techniques as well. Although the issues 

involving groundwater plumes are mentioned in Section 1.1, the field may also benefit 

from the use of more simplified techniques. The use of flownets for obtaining initial 

estimates of groundwater flow is a good example. There is an obvious analogy between 

the creation of flownets and the generation of flowlines for this kriging method. If the 

creation of a flownet is to be performed, it may be that a substantial portion of the work 

for flowline kriging has already been performed.

Hydrologic studies may also be able to make use of the method. A common technique in 

simple GIS hydrologic models is the tracing of the path of water as it flows across the 

landscape using a digital elevation model. By treating this path as a flowline, this may 

improve the modelling of spatial distributions tied to the flow of water across a 

landscape.

Finally, it may be that air quality studies could use this method under certain 

circumstances. The applicability is likely limited since for most air quality studies, the 

flow of air is dominated by regional wind patterns that are not changing direction as they 

move across the landscape. Exceptional circumstances where the method could apply 

would be modelling with je t streams or wind patterns in a downtown core dominated by 

tall buildings.

5.4 Recommendations for Future Research

The use of kriging with flowlines for more quantitatively based studies requires more 

research into the underlying theory. The violation of the assumptions of stationarity and 

Gaussian distributions is common in many kriging applications. However, the 

implications for the flowline method in particular should be further examined as they 

may be different than the implications for standard kriging techniques. Based on some
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ancillary work not included in this thesis, there is some indication that the flowline 

method may be more sensitive to the assumption that the data has a Gaussian distribution.

A related issue that could be examined is the non-symmetric nature of flow-dominated 

environments. Since the flow of water only goes downstream, it could be expected that a 

point in the middle of a river would have less influence on points upstream than it would 

on points downstream. The degree of the correlation upstream and downstream is likely 

different. However, a means of quantifying the correlation in opposite directions and 

conducting computations with it would need to be devised.

The current implementation of the flowline distance metric has its own theoretical 

problem that needs to be addressed. Strictly speaking, the flowline distance metric is not 

a metric at all. Rathbun (1998) and Lpland et al. (2003) point out that a metric space is 

required to be symmetric; that is, the distance between two points is the same regardless 

of the direction it is measured. This is not true for the current implementation of the 

flowline method since measuring the distances in opposite directions uses different 

flowlines. The consequence of not using a true metric space is that the resulting spatial 

covariance model may not be valid. It is likely that some modification of the current 

flowline implementation could overcome this issue. One possible modification would be 

that measurements are only made from upstream to downstream. However, from a 

practical standpoint the issue may not be that serious. As long as the distances from both 

directions are used in the variogram plot, as was done in this study, the results will, to 

some extent, average out. This doubles the number of points in the variogram plot and 

introduces more noise into the model fitting. However, once a variogram model is fit to 

the plot, the model is used from that point on and the issue never arises again.

To aid in future studies, a more sophisticated algorithm should be implemented. The 

current implementation is highly inefficient since it carries considerable overhead 

embedded in the GIS application programming interface. The current implementation 

also lacks a good, integrated piece of variogram modelling software. Integrated 

variogram modelling software would allow for much easier construction of variogram
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models, help to avoid model specification problems and allow the examination of kriging 

methods other than just ordinary kriging.

In order for the method to gain more widespread applicability, alternate methods for the 

construction of flowlines should also be examined. For any particular study area, the 

researchers involved may not have the inclination or the ability to generate the fine 

resolution flow fields that existed for this study. An investigation regarding the accuracy 

of the flowlines versus the improvements seen in the kriging results could be quite 

helpful. If it turns out that, as with the construction of groundwater flownets, hand drawn 

estimates for flowlines still produce the desired results, this could greatly improve the 

accessibility of the method.

6.0 Summary and Conclusions

The process of predicting reasonable spatial distribution of surficial sediments in fluvial 

environments using interpolation techniques can be quite challenging. The process of 

sediment transport dominates these environments and influences the distributions of 

many attributes to a large degree. The process of sediment transport also creates 

anisotropy along the direction of flow in the resulting distributions. The geographic 

bearing of the flow direction can change throughout the channel due to influences such 

as: changes in the shape of the channel bed, dredging for navigational purposes, flow 

diversions due to hydraulic structures and islands, meanders along the channel length and 

a variety of other local influences.

M ost standard geostatistical software packages allow for the incorporation of only one 

geographic bearing of anisotropy for the entire problem domain. This is problematic for 

fluvial environments because an average bearing will often misrepresent the local 

changes in anisotropy throughout the river.
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A distance transformation technique based on the use of flowlines was applied in an 

attempt to improve the way geostatistical algorithms deal with anisotropy. The standard 

geostatistical method of ordinary kriging was modified so that distances measured along 

flowlines and perpendicular to the flowlines were substituted for the Cartesian coordinate 

system distances typically used.

Five geometrically and hydrodynamically simple test cases were generated using the 

CH3D hydrodynamic model with sediment transport to test how the method performs in 

idealized environments. The first two test cases were straight horizontal and vertical 

channels that were used to determine whether the modified flowline kriging algorithm 

was performing as expected. The results showed that the current implementation of the 

flowline algorithm reproduced the expected interpolation values to an accuracy of 5 

decimal places for these two test cases.

The other three test cases were: a channel in the shape of a 90-degree bend, a 

symmetrical channel with an island in the centre, and a channel with diverging width. 

Seven datasets with 30, 50, 70, 90, 110, 130 and 150 random samples were extracted 

from the CH3D model for each of these three test cases. These 21 scenarios were used to 

examine the effectiveness of the flowline kriging method in comparison to the standard 

kriging method. For the curved channel test case, the flowline method outperformed the 

standard method over the entire range of sampling densities examined, both in terms of 

visual and numerical representation. The channel with an island test case also showed 

that, in general, the flowline method outperforms the standard method. Two particular 

situations appeared in the island test cases where kriging artefacts, poor specification of 

the spatial structure and numerical sensitivity to the problem size lead to decreased 

performance of the flowline method relative to the standard method. The diverging 

channel test case showed similar performance between the standard and flowline methods 

with sample sets of 30 to 70 sample points. With larger data sets the diverging channe1 

test case also suffered decreased performance due to kriging artefacts, poor specification 

of the spatial structure and numerical sensitivity to the problem size.
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Sediment sampling conducted on the Detroit River was also examined as a test case to 

evaluate how the flowline method performs in real environments. The river was divided 

into three relatively straight sections with internally similar flow conditions. Each 

section was examined individually. The use of flowline kriging on the Upper and Middle 

sections of the river generated more realistic looking sediment distributions than the 

standard kriging method. Unfortunately the sampling conducted in these two areas was 

insufficient to determine which method performed better numerically. W hen applied to 

the Lower section of the river, the two kriging methods produced different but equally 

plausible looking sediment distributions. Statistical examination of the results using 

cross-validation indicted that the flowline kriging method was performing better 

numerically.

The test case results indicate that the flowline-based kriging method should perform well 

in a variety of flow-dominated environments. The ability of the flowline method to 

properly track sediment patterns and plumes around curves, corners and islands in the 

channels allows for predictions of spatial distributions that appear much more reasonable 

upon visual inspection. This ability alone can greatly improve upon predictions of 

sediment distributions in fluvial environments, especially for studies where delineation is 

the objective or the sampling is insufficient to statistically analyze the resulting 

distributions. Statistical examination of the test cases revealed that, under most 

circumstances, the flowline based kriging method performs equally well or better than the 

standard kriging methods. It appears that with some particular spatial distribution and 

sampling patterns, the flowline method has more difficulty determining the spatial 

structure of sediments. However, this study is a first attempt at dealing with these issues. 

It is likely that with refinement of the method and the application of more advanced 

kriging techniques, the flowline kriging method can overcome these particular 

shortcomings.
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Appendix A -  Flowline Generation Algorithm

The output of the CH3D hydrodynamic model is a series of text files that contains an 

ordered list of attribute values predicted for the center of each modelling mesh element. 

However, the geometry of the modelling mesh is described by an ordered list of nodes 

that represent the corners of the mesh elements.

The first step in generating flowlines is to import the geometry and produce coordinates 

for the centroid of each mesh element. The corresponding attribute values, in this case 

both the flow velocities and sediment mass fractions, are then matched up to each 

centroid. Then a grid is constructed using these centroids as the corners of the grid cells. 

W hen an attribute value is required for a particular point, the cells in the grid are searched 

to determine which cell contains the point. Then linear interpolation is then applied to 

the cell’s four corners (i.e. the mesh centroids) to produce the desired value for the point. 

If the point happens to lie outside the grid but still within the problem domain, the 

attribute value from the nearest centroid is used.

A flowline is represented as an ordered list of vertices. Functionally the creation of a 

flowline is based on predicting the locations of a series of sequential vertices. The 

flowline construction begins at the sample point and proceeds downstream. A velocity is 

determined at the sample point using the attribute grid as previously discussed. Using the 

velocity and one time step, the location of the next vertex is created. The velocity at that 

vertex is then determined and the process repeats itself until a predicted vertex leaves the 

problem domain. Then the flowline is traced upstream. The process is the same as 

tracing the flowlines downstream except that the x and y components of the velocities are 

multiplied by -1 to reverse their direction. As these vertices are created they are added to 

the beginning of the vertex list rather than the end.

In order to prevent circulation zones, every 1000 time steps a check is performed to 

ensure that the flowline has not crossed over itself. If a flowline does cross over itself, 

vertices are removed until this no longer occurs and the flowline is terminated. In some
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circumstances the flow velocities may become so small that the flowline essentially 

stops. Therefore, a tolerance distance was used. If the line segment for one time step is 

drawn shorter than the tolerance distance, the flowline is terminated. These terminated 

flowlines can then be dealt with manually on a case by case basis.

Several algorithms exist that can help create smooth lines with fewer vertices. With 

fewer vertices, the computational effort is also decreased. However, the effect of these 

methods is to trim the corners of lines, which consequently decreases the length of the 

lines. Since the lengths of the lines are so important to the kriging algorithm, it was 

decided not to use any of these smoothing techniques. Sufficiently small time steps must 

be used to make the flowlines smooth and the increased computational requirements 

simply have to be dealt with.

When determining flowline and cross-line distances there are two particular sections of 

the algorithm that may affect the results. To calculate the distances, the ArcObjects 

method QueryPointandDistance was used. When a perpendicular cannot be drawn to a 

flowline, because of a terminated flowline for example, a tangent is extended off the end 

of the flowline and the cross-line is drawn to the tangent. The cross-line distance is 

returned as expected, but the flowline distance is only measured to the end of the 

flowline. The distance along the tangent is not added into the returned flowline distance. 

This is part of the reason why it is so critical that flowlines do not terminate in the middle 

of the problem domain. The other section of algorithm also involves calculation of cross­

line distances. In order to prevent unrealistic cross-line measurements from being 

returned when a flowline begins to run cross-channel, a cut-off value is implemented.

The cut-off value implemented is the width of the channel (including islands) at that 

location. Any cross-line distances returned that exceed this cut-off are reduced back to 

the cut-off value.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B -  Straight Channel Simulation Inputs

CH3D Channel Geometry (grid.inp)

Although the CH3D grid file describing the channel geometry is too large to include in an 

appendix, a brief description of the channel follows.

The channel is rectangular, 200 m wide by 1000 m long and divided into a 20 m" square 

mesh for computations.

CH3D Main Input File (main.inp)

T I T L E ( A 8 0 )
J a s o n  W i n t e r m u t e , T e s t  r u n .

I T 1 I T 2 DT I S T A R T I T E S T I T S A L T I S  COM N T S E D O N D T I N D T S

1 5 3 6 0 0 1 0 0 0 1 2 8 6 0 0 1
WPRCRD

0
WXCEL1 WXCEL2 WYCEL1 WYCEL2 WZCEL1 WZCEL2 W P R I N T WPRSTR WPREND WPRVAR
S NP CRD

_L
S X C E L 1 S X C E L 2 S Y C E L 1 S Y C E L 2 S Z C E L 1 S Z C E L 2 S N P I N T S N P S T R S NP EN D S NP VAR

1 1 0 1 5 0 1 2 1 5 3 6 0 0 5 3 6 0 0 U V E C D B
NRANG

AU
RANGDR R P O S 1 R P O S 2 R P O S 3 RRNAME

I G I I G H I G T I G S I G U IGW I G C I GQ I G P

0 1 0 0 0 0 0 0 0
X RE F Z R E F U R E F COR GR ROO ROR TO T R
2 0 0 0 2 0 0 4 5 1 .  0 9 8 1 . 0 1 . 0 0 1 . 0 2 1 2 0 2 0

T H ET A
0 . 6

I T E M P I  S A L T I C C I F I i f i t i m I  F A I F B I F C I F D
0 0 0 0 0 0 0 0 1

TWE TWH FKB
0 0 0

I E X P I A V AVR A V I AV2 AVM AVM1 AHR
1 0 1 0 . 0 . 0 . 0 0 2 0 . 0 0 2 1 0 0 0 0

I V I S IQW XPT
0 0 0

GAMAX GBMAX
6 0 0 0 0 6 0 0 0 0
I W I N D TAUX TAUY

0 0 . 0 0 0 . 0 0
I S P A C ( I ) , 1 = 1 , 1 0

0 0 0 1 0 0 0 0 0 0
J S P A C ( I ) , 1 = 1 , 1 0

1 1 - 1 0 0 0 0 0 0 0
R S P A C ( I ) , 1 = 1 , 1 0

0 . 0 3 5 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 0 0 . 0 0 0
I BT M HADD HMI N H I H2 S S S 0 HMAX

4 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 9 9 9 9 9 9 .
I S M A L L I S F I T B Z R E F B N CTB B Z 1 Z R E F T N T Z 1

1 0 5 5 0 . 0 0 3 0 . 2 0 0 5 2 . 0
XMAP A L X R E F A L Y R E F

1 0 0 . 0 0 0
I T R A N I B D ( 1 ) I B D  ( 2 ) I B D  ( 3 ) I B D {4)
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I T B RK ( l )
0

N S T A
0

1 S T  J S T  
N ST A S  

0
1 S T  J S T  

MSTA 
0

1 S T  J S T  
N R I V E R  

0
I J R D I R

1
NBAR

0
I J B D I R  
T I D F N O  

5
T I D S T R

1
I J T D I R  

4
2 
4 
4 
4

R E S E T  H S { 
R E S E T  H U ( 
R E S E T  H V { 
R E S E T  H S ( 

END OF 
END OF

4
(2)

0
N F R E Q

0
S T A T I D
N F R E Q S

0
S T A T I D

MFREQ
0

S T A T I D

4 4
( 4 )  ( 5 )  ( 6 )

0 0 0
( CURRENT S T A T I O N S )

0
(8)

0

4
( 3 )

0
N S T A R T  

0
( K)  ( 2 1 4 , A 4 8 )  ( ONE CARD F OR EACH S T A T I O N  )

N S T R T S  ( T I D E  S T A T I O N S )
0

( K)  ( 2 1 4 , A 4 8 )  ( ONE CARD F O R  EACH S T A T I O N  )
MST ART ( S A L I N I T Y  S T A T I O N S )

0
( K)  ( 2 1 4 , A 4 8 )

(9)
0

(10)

( ONE CARD F OR EACH S T A T I O N  ) h e r e

I J R R O W
J

I J B R O W
T I D B N D

5
2
1

I J T R O W
5 0
1

4 0
10
2 5

I , J )  TO 
I , J )  TO 
I , J )  TO 
I , J )  TO 

DATA 
F I L E

I J R S T R  I J R E N D  
Q R I V E R

( ONE CARD F OR EACH R I V E R  ) 
( ONE CARD F OR EACH C E L L  )

I J B S T R  I J B E N D  ( ONE CARD F OR EACH BAR )

3 4 5 6
1 1 1  

I J T S T R  I J T E N D  T I D T Y P  T I D F N 1
1 1 0 CONS TANT 1
1 1 0 CONS TANT 2
8 8 CONS TANT 3
5 5 CONS TANT 4
2 2 C O N S T A N T  5

Z E RO  A T  TH E F OL LOWI NG C E L L S  
ZERO A T  TH E F OL LOWI NG C E L L S  
ZERO A T  TH E F OL LOWI NG C E L L S  
THE F OL LO WI N G  D E P T H S

T I D F N 2
0
0
0
0
0

10

CH3D Sediment Input File (sed.inp)

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

1 1 1 0 0
0 0 0 0 0 0 0  0 1 0  0 1 0 0 0 0 0 0 0 0 0
1 1 1 1

0
1 1

0
1 .. 0 0 e - 6 3 .. 1 7 e - 6 1 .. 0 0 e - 5 3 . 1 7 e - 5 1 . 0 0 e - 4

0 . 0 0 0 0 0 1 1 4  
2 . 6 5  0 . 4
0 . 6 0  0 . 1 0  0 . 1 0 0  0 . 0 3 0  0 . 0 1 0

0.0000001 0.00000001
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1 0 0

0 . 0 1
0

. 4 e -  5 1 .  3 e - 5 5 . 4 e -  6 1 . 3 e - 7 0

. 3 e -  6 8 . 0 e - 6 3 . 0 e - 6 4 . 5 e - 8 0
1 0 0 0  .

0
1 1 2

0 . 1 0 0 1 0 0
1 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0

- 2 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0
1 5 0 1 1 1
2 5 0 1 1 1
3 5 0 1 1 1
4 5 0 1 1 1
5 5 0 1 1 1
6 5 0 1 1 1
7 5 0 1 1 1
8 5 0 1 1 1
9 5 0 1 1 1

1 0 5 0 1 1 1
8 4 0 1 1 2
2 2 5 1 1 2
5 1 0 1 1 2
1 1 - 1
2 1 - 1
3 1 - 1
4 1 - 1
5 1 - 1
6 1 - 1
7 1 - 1
8 1 - 1
9 1 - 1

- 1 0 1 - 1
0 0

- 1 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0
1 1 . 4 e - 5 1 . 3 e - 5 5 . 4 e - 6 1 .  3 e - 7

9 . 3 e - 6 8 . O e - 6 3 . O e - 6 4 . 5 e - 8
2 1 . 4 e - 4 1 . 3 e - 4 5 . 4 e - 5 1 .  3 e - 6

9 . 3 e - 5 8 . 0 e - 5 3 . 0 e - 5 4 . 5 e - 7
2 3

- 1 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0
1 1 .  4 e - 5 1 .  3 e - 5 5 . 4 e - 6 1 . 3 e - 7

9 . 3 e - 6 8 . O e - 6 3 . 0 e - 6 4 . 5 e - 8
2 1 . 4 e - 4 1 .  3 e - 4 5 .  4 e - 5 1 .  3 e - 6

9 . 3 e - 5 8 . O e - 5 3 . 0 e - 5 4 . 5 e - 7

CH3D Boundary Conditions (tide.inp)
FORTRAN 1 6  F I L E :  T I D E  T A B L E  DATA

1 1 9 8 0 0 1 .  0 0 1 . 0 0 1 . 0 0 1 . 0 0
1 1 9 8 1 0 1 .  0 0 0 . 9 0 0 . 9 8 1 0 . 9 2
8 2 9 8 3 0 1 .  0 0 0 . 9 0 0 . 9 8 1 0 . 9 2

Sample Points

X Y Attr.
613.7534 37.31479 0.26725
310.3279 126.4922 0.27
609.7043 17.05808 0.268517
477.3509 101.1303 0.27981
224.7918 129.0449 0.263817
485.4493 141.6437 0.26515

0.20
0
0
0
0

0 .20 
0 
0 
0 
0

1. 00 
0 . 9 5 2  
0 . 9 5 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



156.5906 60.45262 0.270034
75.10363 83.26195 0.273197
139.2557 131.5975 0.276049
716.6244 164.6173 0.2734
438.6321 22.16332 0.27559
673.8563 65.39361 0.267532

53.7196 134.1501 0.275306
947.7995 187.5909 0.21401
986.5184 65.55786 0.207606
271.609 47.52527 0.273006

30.56271 61.43814 0.273
240.3538 135.2999 0.27081
329.9391 153.004 0.269877
197.5857 36.07619 0.280184
946.0266 63.99076 0.219571
205.6841 76.58961 0.276734
611.9806 114.7147 0.271
796.3384 18.20785 0.270264
860.4905 66.54338 0.254926
436.8592 99.56319 0.27387
158.8669 158.1092 0.276923
394.0911 0.339504 0.277
338.2999 193.9481 0.27
231.3798 46.38889 0.277421

Variogram Equation

Variogram Equation is specified in the format required by GSTAT. (Pebesma, 1999)

A  Nug(O) + B  Sph(C)

where A  is the nugget, B  is the partial sill (sill -  nugget), C is the range. Sph denotes a 

spherical variogram model.

Both Standard and Flowline

2.1973e-006 Nug(O) + 7.9262e-005 Sph(237.07)
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Appendix C -  Curved Channel Simulation Inputs

CH3D Channel Geometry (grid.inp)

Although the CH3D grid file describing the channel geometry is too large to include in an 

appendix, a brief description of the channel follows.

The curved channel is a regular 90-degree bend, 200 m wide throughout and 1000 m long 

through its centre. The computational mesh was created with cells approximately 5m2. 

Mesh nodes were evenly spaced across the channel’s width perpendicular to the channel 

banks and evenly spaced along the channel’s length.

CH3D Main Input File (main.inp)

T I T L E ( A 8 0 )
J a s o n  W i n t e r m u t e ,  T e s t  r u n .

I T 1 I T 2 DT I S T A R T I T E S T I T S A L T I S  COM N T S E D O N D T I N D T S
1 2 0 0 0 1 0 0 0 1 3 0 0 1

WPRCRD
nU

WXCEL1 WXCEL2 WYCEL1 WYCEL2 WZCEL1 WZCEL2 W P R I N T WP RS T R WPREND WPRVAR
S NP CRD

±
S X C E L 1 S X C E L 2 S Y C E L 1 S Y C E L 2 S Z C E L 1 S Z C E L 2 S N P I N T S N P S T R S NP E N D  S NP VAR

1 2 0 0 1 4 0 1 2 1 0 3 0 0 2 0 0 0 C B
NRANG

0
RANGDR R P O S 1  R P O S 2 R P O S 3 RRNAME

I G I I G H  I G T I G S I G U IGW I G C I G Q I G P
0 1 0 0 0 0 0 0 0

X R E F Z R E F  U R E F COR GR ROO ROR TO T R
5 0 0 2 0 0  2 0 1 . 0 9 8 1 . 0 1 . 0 0 1 .  0 2 1 2 0 2 0

T H ET A
0 . 6

I T E M P I S A L T  I C C I F I i f i t i m I  FA I F B I F C I F D
0 0 0 0 0 0 0 0 1

TWE TWH FKB
0 0 0

I E X P I A V  AVR A V I AV2 AVM AVM1 AHR
1 0 1 0 . 0 . 0 . 0 0 2 0 . 0 0 2 1 0 0 0 0

I V I S I QW I P T
0 0 0

GAMAX GBMAX
6 0 0 0 0 6 0 0 0 0
I WI ND TAUX TAUY

0 0 . 0 0  0 . 0 0
I S P A C ( I ) , 1 = 1 , 1 0

0 0 0 1 0 0 0 0 0 0
J S P A C ( I ) , 1 = 1 , 1 0

1 1 - 1 0 0 0 0 0 0 0
R S P A C ( I ) , 1 = 1 , 1 0

0 . 0 3 5 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 0 0 . 0 0 0
I BTM HADD HMI N H I H2 S S S 0 HMAX

4 0 . 0  0 . 0 0 . 0 0 . 0 1 . 0 9 9 9 9 9 9 .
I S M A L L I S F  I T B Z R E F B N CTB B Z 1 Z R E F T N T Z 1
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1 0 5 5 0 . 0 0 3  0 . 2 0 0  5 2 . 0
XMAP A L X R E F A L Y R E F

1 0 0 . 0 0 0
I T R A N I B D ( l ) I B D  ( 2 ) I B D ( 3 ) I B D  ( 4 )

2 4 4 4 4
I T B R K ( l ) ( 2 ) ( 3 ) ( 4 ) ( 5 )  ( 6 )  ( 7 )  ( 8 )  ( 9 )

0 0 0 0 0 0 0 0 0
N S T A N F R E Q N S T A R T ( CU RRE N T  S T A T I O N S )

0 0 0
1 S T  J S T S T A T I D (K)  ( 2 1 4 , A 4 8 ) ( ONE CARD F OR EACH S T A T I O N  )

N S T A S N F R E Q S N S T R T S ( T I D E S T A T I O N S )
0 0 0

1 S T  J S T S T A T I D (K)  ( 2 1 4 ,  A 4 8 ) ( ONE CARD FOR EACH S T A T I O N  )
MSTA MFREQ MST ART ( S A L I N I T Y  S T A T I O N S )

0 0 0
1 S T  J S T S T A T I D (K)  ( 2 1 4 , A 4 8 ) ( ONE CARD F OR EACH S T A T I O N  ( h e r e

N R I V E R
a-  b

I J R D I R I J R R O W I J R S T R I J R E N D ( ONE CARD F OR EACH R I V E R  )
2 1 2 6 5 6 5
2 7 2 0 2 0
2 1 7 9 8 9 8
2 1 7 1 6 7 1 6 7
2 3 3 7 7 7 7
2 3 9 5 7 5 7
I J Q R I V E R ( ONE CARD FOR EACH C E L L  )

6 5 1 2 0
2 0 7 0
9 8 1 7 0

1 6 7 1 7 0
7 7 3 3 0
5 7 3 9 0

NBAR
0

I J B D I R  I J B R O W  I J B S T R  I J B E N D  ( ONE CARD F OR EACH BAR )
T I D F N O  T I D B N D

2 2
T I D S T R 2 3 4  5 6 7

1 1 1 1 1 1
I J T D I R I J T R O W I J T S T R I J T E N D  T I D T Y P  T I D F N 1 T I D F N 2

1 1 1 4 0 CONS TANT 1 0
3 2 0 0 1 4 0 CONS TANT 2 0

R E S E T  HS ( I , J ) TO Z E RO  AT THE F O L L O WI N G  C E L L S
R E S E T  H U ( I , J ) TO ZERO AT TH E F O L L O WI N G  C E L L S
R E S E T  HV ( I , J ) TO Z E RO  AT THE F O L L O WI N G  C E L L S
R E S E T  HS ( I , J ) TO THE F OL LO WI N G  D E P T H S

END O F  DATA
END O F  F I L E

CH3D Sediment Input File (sed.inp)

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
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9 9 9 9 9
9 9 9 9 9
9 9 9 9 9
9 9 9 9 9

1
0 0 0 0 
1 1 1 1  

0

0 .
2 . 6 5  
0 . 60 

0 
100 

0 . 01 
0 
0 
0

1 0 0 0 .

1
1

0 . 1 0 0  
2

0 . 1 0 0  
-1 

2
0 . 1 00  

-1 
2

0 . 1 0 0
-1

2
0 . 1 00  

-1 
2

0.100
-1

2
0 . 1 0 0

-1
1

- 2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

9 9 9 9 9
9 9 9 9 9

9 9 9 9 9

9 9 9 9 9
9 9 9 9 9

0 0 0 0 
1 1 1

0
1 . 0 0 e - 6  

0 0 0 0 0 1 1 4  
0 . 4  

0 . 1 0  
. 0 0 0 0 0 0 1

9 9 9 9 9  9 9 9 9 9

9 9 9 9 9  9 9 9 9 9
9 9 9 9 9  9 9 9 9 9
9 9 9 9 9  9 9 9 9 9

1 0  0 
0 1 0 0 1 0 0 0 0 0 0 0

1 .  0 0 e - 5

9 9 9 9 9
9 9 9 9 9
9 9 9 9 9
9 9 9 9 9

9 9 9 9 9

9 9 9 9 9
9 9 9 9 9
9 9 9 9 9

9 9 9 9 9
9 9 9 9 9
9 9 9 9 9
9 9 9 9 9

9 9 9 9 9

9 9 9 9 9
9 9 9 9 9
9 9 9 9 9

9 9 9 9 9
9 9 9 9 9
9 9 9 9 9
9 9 9 9 9

1

1

12
1

7
1

1 7
1

1 7
1

33
1

- 3 9
, 000
, 0 0 0

1
2
3
4
5
6
7
8 
9

10
11
12
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20 
2 1  
2 2
2 3
2 4
2 5
2 6
2 7
2 8  
2 9

0 . 1 0 0  0 . 0 3 0
0  . 0 0 0 0 0 0 0 1

1
100

2
1 0 0

6 5
2

1 0 0
20
2

1 0 0
9 8
2

1 0 0
1 6 7

2
100

7 7
2

100
5 7

0.000
1.000

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

6 5

20

9 8

1 6 7

5 7

0 0

0 . 0 1 0

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1
1
1
1
1
1
1
1
1
1
1

2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
200
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
200
2 0 0
200
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0

- 2 0 0
6 5
20
9 8

1 6 7
7 7

- 5 7
0

3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 0  

1 
2
3
4
5
6
7
8 
9

10
11
12
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20 
21 
22
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 0  
12

7
1 7
1 7
3 3
3 9
0

1
1
1
1
1
1
1
1
1
1
1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1

1 1.000 0 . 000
-2 1. 000 0.000
1 0 . 000 0 . 000

0 . 000 0 . 000
2 0.000 1.000

0.000 1.000

1 1. 000 0 . 000
-2 1.000 0.000
1 0.000 0 . 000

0 . 000 0 .000
2 0.000 1. 000

0 . 000 1. 000
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CH3D Boundary Conditions (tide.inp)

' 1 6 F I L E : T I D E  T ABLE DATA
9 8 0 0 1 . 0 0 1 .  0 0
9 8 0 1 1 . 2 0 0 . 8 0
9 8 3 0 1 . 2 0 0 . 8 0

Sample Points

30

< Y Attr X Y Attr X Y Attr

-1438.23 -651.646 0.000927 -1783.54 -440.855 0.598889 -1830.07 -71.0274 0

-1770.07 -229.229 0.476849 -1698.78 -488.295 0.903707 -1537.58 -628.58 0.000487

-1316.09 -555.886 0.018592 -1777.57 -292.181 6.03E-06 -1471.56 -563.61 0.001589

-1497.9 -663.147 0.001544 -1623.91 -569.915 0.004137 -1851.42 -128.161 0

-1598.42 -428.96 0.434 -1732.91 -284.345 0.925357 -1911.47 -44.4565 0

-1545.87 -575.617 0.308901 -1344.94 -675.971 3.99E-05 -1300.84 -574.509 0.002972

-1750.72 -360.767 7.87E-07 -1645.27 -627.048 0.000718 -1839.58 -200.413 0

-1922.74 -65.8301 0 -1705.31 -543.344 0.004731 -1775.25 -493.819 0.000425

-1706.06 -352.931 0.026401 -1805.83 -309.157 3E-11 -1273.99 -643.096 0.665

-1910.9 -138.082 3E-11 -1817.29 -332.111 3.08E-06 -1745.57 -292.913 0.001517

50

< Y Attr X Y Attr X Y Attr

-1347.13 -601.329 0.000414 -1941.5 -7.49919 0 -1884.69 -119.381 0

-1424.61 -689.253 0.000906 -1817.11 -384.609 0.671238 -1489.45 -646.371 0.000635

-1960.37 -240.82 1.3E-06 -1851.61 -85.4529 0 -1754.34 -347.817 1.46E-06

-1790.02 -156.512 0 -1530.09 -619.707 0.003443 -1821.29 -223.955 0

-1683.63 -611.625 0.000519 -1832.47 -96.3337 0 -1367.31 -550.611 0.033791

-1539.77 -553.938 0.004847 -1560.3 -530.252 0.000455 -1463.53 -526.125 0.109934

-1842.14 -30.5648 0 -1437.22 -623.324 0.262963 -1921.43 -84.9742 0

-1803.11 -463.344 0.000355 -1485.43 -611.871 0.128686 -1855.42 -20.0047 0

-1658.31 -594.489 0.000706 -1835.08 -265.877 0 -1992.95 -24.224 4.54E-09

-1960.69 -71.1158 7.64E-05 -1581.65 -587.385 0.00678 -1854.11 -304.043 0.000471

-1565.44 -598.106 0.005971 -1641.7 -503.681 0.005003 -1421.01 -634.044 0.95699

-1864.84 -0.39532 0 -1973.54 -81.2645 0.019795 -1787.16 -427.905 0.773523
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-1836.5 -449.807 6.12E-05 -1569.82 -659.637 0.00026 -1486.58 -522.987 0.109378

-1826.71 -47.6078 0 -1645.62 -389.186 0.855 -1345.69 -539.637 0.027523

-1680.6 -462.791 2.06E-07 -1857.37 -134.179 0 -1357.98 -643.412 0.939801

-1838.18 -70.5622 0 -1618.02 -648.185 0.000507 -1359.58 -730.554 5.88E-06

-1794.82 -516.308 1.19E-05 -1592.67 -434.313 0.336443

70

< Y Attr X Y Attr X Y Attr

-1429.99 -618.547 0.094247 -1385.99 -666.081 3.92E-05 -1945.88 -249.17 0.003293

-1363.98 -553.578 0.032262 -1572.1 -563.641 0.401029 -1744.01 -538.356 0.000132

-1693.58 -604.032 0.000519 -1783.85 -308.634 2.41 E-06 -1801.08 -380.314 0.004891

-1917.36 -278.353 0.30548 -1497.23 -645.261 0.000468 -1849.28 -368.862 0.043543

-1337.32 -623.745 0.020166 -1840.91 -150.593 0 -1912.31 -359.494 1.1 E-06

-1340.3 -698.082 0.000811 -1656.48 -611.407 0.000426 -1290.97 -676.18 0.000806

-1679.69 -413.115 0.006674 -1732.29 -340.956 0.950743 -1362.48 -615.43 0.010282

-1477.83 -702.301 7.62E-06 -1944.04 -85.9489 4.32E-07 -1961.26 -157.629 0.523378

-1780.2 -178.928 0 -1657.42 -422.575 0.539937 -1621.5 -537.802 0.733362

-1710.37 -377.448 0.345767 -1482.78 -547.969 0.003302 -1476.7 -668.947 0.001523

-1787.85 -465.372 0.005673 -1674.45 -492.675 0.266146 -1306.35 -584.64 0.0013

-1349.62 -605.281 0.00057 -1463.64 -558.85 0.00287 -1383.83 -672.564 1.32E-05

-1505.15 -687.503 3.95E-05 -1604.15 -637.406 0.00013 -1569.94 -570.124 0.525314

-1605.66 -453.317 0.609855 -1846.48 -197.738 0 -1781.69 -315.117 3.12E-06

-1948.04 -242.687 0.003336 -1906.52 -114.033 0 -1495.07 -651.744 0.000495

-1746.18 -531.873 0.00011 -1295.9 -644.086 0.789774 -1853.2 -254.367 1.07E-09

-1803.24 -373.831 0.000241 -1834.64 -269.99 0 -1654.32 -617.89 0.000723

-1851.45 -362.379 0.382507 -1764.34 -414.721 0.001436 -1730.13 -347.439 0.952636

-1914.48 -353.011 1.27E-06 -1329.09 -628.968 0.071652 -1941.88 -92.4319 1.36E-07

-1293.13 -669.697 0.003035 -1311.29 -552.546 0.016785 -1655.26 -429.058 0.04608

-1290.14 -595.36 0.001328 -1388.77 -640.469 0.947084 -1603.5 -459.8 0.578943

-1963.43 -151.146 0.459175 -1924.52 -192.036 0.025646 -1308.51 -578.157 0.000685

-1761.56 -440.332 0.214296 -1647.79 -562.842 0.00077 -1502.99 -693.986 4.82E-05

-1478.86 -662.464 0.001232
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X)

< Y Attr X Y Attr X Y Attr

-1520.95 -505.418 0.204332 -1854.34 -95.6469 0 -1291.15 -607.925 0.00038

-1376.14 -636.563 0.935545 -1296.66 -580.572 0.00082 -1829.89 -233.828 0

-1430.69 -678.578 0.001225 -1921 -338.223 1.28E-06 -1573.1 -576.206 0.270606

-1695.58 -380.024 0.914757 -1776.19 -469.368 0.007904 -1796.69 -248.947 4.9E-09

-1276.74 -585.131 0.001151 -1720.44 -343.372 0.631246 -1887.05 -224.781 5.57E-06

-1831.24 -24.2874 0 -1966.59 -157.228 0.00381 -1433.06 -551.438 0.000503

-1826.58 -329.195 1.67E-05 -1879.32 -404.725 7.82E-06 -1932.64 -43.7856 0

-1998.24 -129.464 0 -1936.38 -246.683 0.09099 -1793.81 -323.604 5.7E-10

-1796.29 -147.418 0 -1734.52 -535.869 0.000505 -1517.45 -599.204 0.205378

-1605.52 -554.765 0.753559 -1564.17 -451.562 0.261 -1306.63 -665.379 0.005288

-1907.9 -31.3913 0 -1904.75 -152.209 0 -1484.25 -614.322 0.065241

-1911.53 -283.335 0.54928 -1281.07 -572.165 0.008831 -1361.18 -707.394 0.000412

-1788.45 -376.407 3.68E-06 -1835.56 -11.3215 0 -1869.05 -146.779 0

-1978.85 -64.2667 0.000154 -1830.9 -316.229 6.75E-06 -1377.58 -698.254 0.000775

-1301.28 -718.182 0.000201 -1310.9 -577.916 0.000657 -1932.08 -137.411 3.5E-10

-1771.02 -204.779 0 -1614.59 -508.124 2.28E-05 -1492.17 -656.565 0.001104

-1511.67 -672.716 0.000349 -1395.29 -625.682 0.133752 -1883.13 -339.276 0.190729

-1842.58 -439.131 7.77E-05 -1726.2 -392.097 2.29E-05 -1447.88 -553.523 0.001192

-1937.12 -56.2704 2E-11 -1845.27 -142.288 0 -1354.65 -652.346 0.392098

-1948.22 -174.431 0.836723 -1905.32 -58.5831 0 -1666.81 -531.171 0.007014

-1746.36 -463.617 7E-05 -1812.08 -157.406 0 -1652.36 -433.88 0.009857

-1311.11 -677.864 0.000395 -1591.47 -559.002 0.667089 -1695.63 -454.521 7.02E-07

-1929.29 -285.26 3.89E-05 -1829.14 -424.241 0.000281 -1774.42 -258.407 1.62E-06

-1727.42 -574.446 0.000426 -1907.93 -228.126 0.03111 -1785.52 -376.568 2.83E-06

-1784.48 -416.405 0.409055 -1959.49 -195.805 0.003963 -1583.65 -665.754 0.000439

-1508.12 -692.004 6.5E-05 -1546.82 -551.166 0.004308 -1551.2 -490.46 0.305988

-1397.82 -523.992 0.0547 -1751.66 -336.317 3.24E-06 -1710.08 -551.813 0.001453

-1787.02 -314.716 1.26E-07 -1669.7 -456.513 2.15E-05 -1993.72 -140.849 7.2E-10

-1393.08 -557.667 0.014908 -1636.51 -471.632 0.001429 -1822.6 -50.2194 0

-1882.87 -385.436 2.02E-05 -1513-43 -564.704 0.001546 -1863.9 -78.9246 0
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n o

< Y Attr X Y Attr X Y Attr

-1335.79 -662.194 0.004729 -1780.8 -531.174 1.06E-05 -1972.96 -111.021 0.348725

-1997.2 -93.4972 9.72E-06 -1412.51 -621.558 0.085575 -1771.09 -400.208 3.02E-05

-1786.38 -159.672 3.4E-10 -1942.3 -24.4505 0 -1626.29 -531.352 0.556177

-1717.48 -389.966 0.000397 -1400.67 -693.81 0.000841 -1656.5 -441.897 0.007259

-1572.68 -521.111 0.00056 -1460.72 -610.105 0.138332 -1395.53 -625.956 0.139862

-1639.63 -397.248 0.594576 -1725.61 -311.552 0.005193 -1581.63 -523.516 9.41 E-05

-1811.66 -102.311 0 -1803.09 -399.476 0.552344 -1677.86 -499.031 0.74403

-1967.18 -184.533 0.00232 -1430.88 -604.355 0.036262 -1737.9 -415.326 7.63E-09

-1765.32 -473.72 0.004542 -1885.8 -88.8664 0 -1864.9 -207.759 0

-1330.08 -687.966 6.28E-05 -1353.03 -611.637 0.003641 -1332.13 -730.53 1.09E-05

-1799.82 -174.563 3.3E-09 -1963.28 -176.79 0.003147 -1666.02 -571.283 0.003675

-1672.45 -477.336 1.53E-07 -1761.42 -465.977 0.443119 -1570.17 -500.562 0.003823

-1389.75 -699.468 0.00072 -1680.58 -398.922 0.870377 -1838.04 -276.345 7.1E-10

-1925.51 -251.034 0.737564 -1478.72 -688.108 0.000181 -1760.19 -283.628 4.5E-05

-1345.46 -596.425 0.000873 -1308.37 -603.801 0.000506 -1287.47 -722.694 8.83E-05

-1687.84 -385.796 0.907158 -1385.85 -691.725 0.001046 -1900.7 -362.184 7.77E-06

-1873.94 -283.356 0.004996 -1842.82 -439.406 5.68E-05 -1872.17 -72.3951 0

-1799.08 -364.976 8.59E-06 -1921.61 -243.291 0.693135 -1755.9 -493.329 0.007836

-1862.11 -355.608 0.001389 -1763.63 -533.991 0.000787 -1864.66 -131.681 0

-1971.1 -70.0384 0.001235 -1836.45 -189.203 0 -1924.7 -47.9765 0

-1848.03 -163.11 0 -1634.58 -478.389 0.000384 -1923.4 -332.015 1.26E-06

-1646.16 -452.297 0.007135 -1935.65 -239.054 0.198572 -1529.46 -574.966 0.130786

-1959.26 -142.29 0.884071 -1541.72 -482.006 0.106221 -1299.06 -574.364 0.003269

-1738.66 -543.886 0.000156 -1860.79 -320.673 0.070408 -1788.48 -497.339 0.000611

-1363.46 -674.428 1.37E-05 -1939.57 -124.559 3E-10 -1782.51 -348.665 2.35E-09

-1393.67 -584.973 0.001464 -1415.28 -595.947 0.00276 -1529.09 -670.173 0.000158

-1910.69 -248.949 0.295467 -1746.19 -362.363 4.73E-06 -1689.65 -352.281 0.381113

-1857.35 -70.31 0 -1831.88 -126.091 0 -1349.88 -732.454 5.98E-06
-1305.84 -705.49 0.000606 -1873.19 -154.796 0 -1960.7 -203.982 0.00337

-1462.11 -597.3 0.058202 -1950.67 -242.72 1.85E-05 -1804.8 -216.966 1.32E-08

-1727 -298.746 0.911194 -1748.81 -531.906 8.77E-05 -1665.97 -496.785 0.091484

-1793.95 -174.884 1.93E-08 -1578.46 -447.599 0.211415 -1383.27 -718.917 3.09E-05

-1721.13 -519.672 0.003608 -1768.48 -230.664 0.438434 -1919.02 -270.483 0.485867
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-1294.37 -682.536 9.94E-05 -1496.31 -664.582 0.001458 -1681.36 -405.245 0.514359

-1562.25 -458.319 0.179201 -1817.43 -28.7992 0 -1867.46 -302.805 0.008936

-1964.62 -89.4873 0.003719 -1855.62 -375.057 0.000549 -1792.59 -384.425 0.000904

-1841.54 -182.559 0 -1934.41 -178.943 0.209018

130

< Y Attr X Y Attr X Y Attr

-1378.15 -633.16 0.618915 -1749.61 -299.721 0.000191 -1686.41 -504.243 0.889068

-1578.71 -628.012 0.002098 -1595.95 -577.454 0.006203 -1813.41 -296.676 0

-1881.08 -104.639 0 -1472.87 -670.526 0.001426 -1293.41 -558.362 0.01629

-1858.96 -41.1824 0 -1316.97 -683.511 7.49E-06 -1389.63 -533.877 0.04245

-1326.18 -563.953 0.018299 -1755.2 -543.601 0.000727 -1311.78 -541.159 0.023481

-1936.44 -129.106 4.6E-10 -1815.25 -459.897 0.000181 -1608.19 -606.731 0.001882

-1655.78 -614.407 0.000521 -1767.98 -282.517 3.74E-07 -1452.29 -619.715 0.1281

-1734.57 -418.293 6.89E-09 -1942.24 -252.33 0.004918 -1849.21 -451.101 5.46E-06

-1281.52 -556.117 0.014327 -1693.11 -364.137 0.038791 -1768.38 -384.046 2.59E-07

-1359 -644.041 0.941923 -1789.33 -339.651 1.37E-09 -1566.51 -673.232 0.000361

-1815.97 -391.722 0.834714 -1647.51 -545.133 0.007371 -1851.08 -73.437 0

-1756.86 -286.594 8.65E-05 -1439.28 -584.116 0.000281 -1318.31 -596.208 0.001226

-1741.1 -473.341 0.178218 -1334.94 -564.778 0.017922 -1744.7 -528.55 0.00039

-1566.47 -598.735 0.005824 -1819.14 -148.667 0 -1514.31 -527.947 0.001711

-1850.1 -187.771 0 -1807.3 -220.919 3.84E-09 -1444 -672.679 0.001033

-1762.46 -530.475 0.000846 -1665.48 -426.4 0.006739 -1273.65 -588.372 0.00145

-1822.5 -446.77 6.18E-05 -1742.96 -514.324 0.004247 -1890.04 -107.045 0

-1775.23 -269.391 4.12E-08 -1736.99 -365.65 5.44E-05 -1324.44 -549.727 0.018575

-1934.48 -235.538 0.524141 -1841.42 -16.9682 0 -1617.87 -540.962 0.732034

-1723.67 -301.713 0.910419 -1900.16 -217.302 0.000221 -1845.38 -99.2085 0

-1654.77 -532.006 0.351444 -1963.19 -207.934 0.002074 -1312.6 -621.979 0.006845

-1588.75 -467.037 0.516419 -1903.15 -291.639 0.518292 -1922.86 -187.132 0.011886

-1726.28 -471.256 0.953675 -1897.18 -142.965 0 -1720.99 -476.319 0.941461

-1291.04 -685.503 1.36E-05 -1620.45 -513.771 0.004655 -1640.16 -409.264 0.02737

-1883.86 -79.0275 0 -1448.79 -713.501 3.98E-06 -1438.29 -698.45 0.000189

-1294.96 -571.008 0.009351 -1873.5 -287.469 0.006031 -1922.49 -282.339 0.017011

-1886.47 -248.571 0.000611 -1300.36 -592.702 0.001531 -1739.36 -459.115 0.664955

-1747.64 -528.39 0.000132 -1596.77 -658.274 0.000527 -1345.43 -702.067 0.00071
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-1306.43 -593.962 0.001377 -1896.16 -60.5641 0 -1664.49 -540.735 0.004787

-1909.13 -21.6662 0 -1497.94 -513.217 0.159984 -1743.28 -344.62 0.001086

-1565.45 -516.334 0.002965 -1895.79 -155.77 0 -1956.61 -78.3885 1.62E-05

-1907.82 -305.704 0.004774 -1756.96 -435.589 0.081831 -1549.9 -582.424 0.392019

-1705.96 -594.891 0.000496 -1768.43 -458.544 0.494609 -1773.49 -255.165 2.94E-06

-1869.5 -130.731 0 -1585.3 -635.32 0.000845 -1676.9 -374.857 0.012726

-1355.47 -541.092 0.028457 -1844.23 -188.092 0 -1754.38 -462.781 0.529637

-1474.26 -657.721 0.000431 -1322.68 -657.739 0.004947 -1382.17 -667.66 3.83E-05

-1660.37 -555.281 0.000485 -1760.91 -517.83 9.68E-05 -1449.12 -543.798 0.017128

-1872.12 -300.274 0.020554 -1820.96 -434.125 0.001038 -1572.19 -450.726 0.224253

-1585.5 -636.901 0.000453 -1935.92 -297.229 3.76E-06 -1914.57 -240.096 0.319627

-1906.62 -1.11776 0 -1932.94 -222.892 0.809089 -1712.7 -529.282 0.003984

-1589.42 -522.406 8.02E-05 -1791.12 -428.374 0.787621 -1967.06 -18.9421 2.07E-09

-1848.44 -444.778 1.6E-05 -1822.63 -54.8805 0 -1289.49 -672.857 0.002324

-1678.09 -360.471 0.617524 -1870.84 -43.4279 0

-1755.57 -448.395 0.211838 -1670.82 -495.835 0.297159

150

X Y Attr X Y Attr X Y Attr

-1948.55 -266.638 2.65E-06 -1773.35 -485.657 0.003741 -1792.91 -233.462 3.14E-06

-1327.2 -583.324 0.001457 -1628.54 -616.802 0.000324 -1988.9 -165.202 2.6E-10

-1773.91 -392.031 6.64E-06 -1658.75 -527.346 0.678195 -1817.81 -271.307 0

-1404.68 -671.247 0.000219 -1535.68 -620.418 0.002975 -1438.33 -611.55 0.089093

-1919.65 -72.0548 0 -1721.78 -517.979 0.003397 -1643.17 -396.701 0.447918

-1982.68 -62.6873 2.06E-05 -1920.57 -301.87 3.49E-05 -1839.17 -328.441 0.000362

-1762.07 -464.283 0.527314 -1633.95 -638.496 0.000555 -1478.42 -556.274 0.002718

-1859.6 -155.759 0 -1977.63 -143.828 0.000161 -1333.62 -687.419 9.25E-05

-1464.36 -682.749 0.000773 -1775.77 -433.014 0.62829 -2003.68 -92.7895 8.36E-07

-1729.25 -384.195 1.99E-05 -1805.97 -343.559 1.13E-06 -1609 -526.154 0.033278

-1796.2 -260.333 2.57E-09 -1682.9 -436.631 0.000315 -1723.96 -389.258 3.85E-05

-1342.22 -586.989 0.001806 -1731.11 -425.178 2.18E-06 -1853.94 -256.028 2.54E-08

-1438.44 -562.504 0.002561 -1794.14 -415.811 0.768731 -1913.99 -172.324 6.49E-06

-1631.45 -419.906 0.044916 -1619.5 -541.205 0.756204 -1288.35 -698.711 0.000321

-1896.34 -121.352 0 -1903.13 -130.241 0 -1815.15 -27.2663 0

-1973.82 -209.276 7.07E-08 -1742.57 -448.133 0.253782 -1746.25 -257.56 0.931
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-1771.96 -498.463 0.00043 -1828.26 -211.861 0 -1496.37 -559.779 0.000628

-1829.02 -340.421 0.000103 -1607.66 -613.457 0.002319 -1633.9 -563.999 0.004266

-1318.91 -636.287 0.298641 -1987.52 -178.007 1.47E-09 -1936.28 -40.6255 0

-1911.73 -29.8119 0 -1816.43 -284.113 0 -1325.65 -570.678 0.006466

-1989.21 -117.736 1.11 E-05 -1284.59 -618.051 0.001556 -1577.77 -533.208 0.000214

-1787.35 -406.922 0.114316 -1741.56 -365.732 8.43E-06 -1828.59 -42.157 0

-1642.54 -538.067 0.500948 -1837.78 -341.246 0.007799 -1809.44 -53.0378 0

-1807.02 -105.68 0 -1626.96 -407.421 0.545986 -1849.17 -92.968 0

-1334.3 -544.746 0.022351 -1558.06 -637.715 0.001945 -1967.95 -209.597 1.44E-06

-1411.78 -632.67 0.876012 -1492.05 -572.745 0.002425 -1766.09 -498.783 0.001589

-1868.75 -380.351 3.81 E-05 -1629.58 -576.965 0.0007 -1930.57 -66.397 0

-1805.31 -288.19 4E-11 -1931.95 -53.5915 0 -1457.84 -505.463 0.0931

-1789.56 -474.937 0.001101 -1321.33 -583.644 0.001377 -1572.06 -558.98 0.256602

-1862.38 -130.148 0 -1573.45 -546.174 0.025799 -1776.91 -344.131 3.22E-09

-1898.55 -189.367 5.96E-08 -1824.26 -55.123 0 -1431.18 -575.63 0.001585

-1961.58 -179.999 0.003838 -1808.1 -140.341 0 -1762.09 -342.046 3.43E-06

-1429.74 -513.938 0.0734 -1806.8 -424.379 0.248061 -1811.04 -140.18 0

-1781.64 -432.694 0.751995 -1368.57 -564.289 0.008878 -1966.57 -222.403 7.11E-07

-1811.84 -343.238 5.03E-06 -1524.1 -646.511 0.001339 -1764.7 -511.589 0.000133

-1853.15 -371.943 0.001673 -1710.2 -544.071 0.003524 -1619.9 -642.734 0.000619

-1736.98 -424.858 4.81 E-06 -1773.23 -534.704 3.08E-05 -1922.28 -119.36 9.12E-09

-1800.01 -415.49 0.813529 -1889.5 -113.77 0 -1650.11 -553.278 0.003017

-1406.07 -658.442 6.68E-05 -1966.99 -201.694 0.000648 -1527.03 -646.35 0.001743

-1909 -129.921 3E-11 -1882.23 -249.134 0.000129 -1713.14 -543.911 0.002351

-1417.54 -681.396 0.001149 -1961.02 -53.0197 1.16E-06 -1911.92 -327.802 2.29E-05

-1748.44 -447.812 0.220389 -1807.36 -330.753 8.18E-08 -1968.99 -169.76 0.001309

-1834.13 -211.54 0 -1684.29 -423.825 0.001924 -1767.12 -458.946 0.591823

-1875.44 -240.245 2.03E-06 -1916.36 -45.1837 0 -1331.88 -673.193 0.000369

-1580.71 -533.048 0.002139 -1979.39 -35.8163 1.84E-07 -1797.33 -369.491 9.96E-06

-1785.56 -318.199 4.55E-07 -1758.78 -437.412 0.139286 -1674.25 -462.563 4.01 E-06
-1439.82 -549.698 0.000439 -1989.28 -69.9955 7.32E-05 -1722.46 -451.11 2.69E-07

-1816.7 -39.9115 0 -1904.52 -117.436 0 -1785.49 -441.743 0.464793

-1819.68 -114.249 0 -1967.55 -108.068 0.923538 -1610.85 -567.137 0.006005
-1975.21 -196.471 1.17E-06 -1858.92 -298.432 0.000553 -1894.49 -156.173 0
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Variogram Equation

Variogram Equations are specified in the format required by GSTAT. (Pebesma, 1999)

A Nug(O) + B Sph(C, D, E)

where A is the nugget, B  is the partial sill (sill -  nugget), C is the range, D  is the 

anisotropy angle and E  is the anisotropy ratio. Sph denotes a spherical variogram model.

Standard

30: 0.106487 Sph(160, 315,0.48)

50: 0.082778 Sph(265,315,0.39)

70: 0.076135 Sph( 140,315,0.45)

90: 0.051811 Sph( 160,315,0.44)

110: 0.03653 Nug(0) + 0.033597 Sph(365,315,0.43)

130: 0.068813 Sph (85,315,0.45)

150: 0.05112 Sph(150,315,0.25)

Flowline

30: 0.103582 Sph(240,90,0.35)

50: 0.000608 Nug(O) + 0.080303 Sph(260,90,0.34)

70: 0.011578 Nug(O) + 0.065994 Sph(235,90,0.39)

90: 0.052367 Sph( 145,90,0.24)

110: 0.015603 Nug(O) + 0.04867 Sph(145,90,0.33)

130: 0.074783 Sph(l 15,90,0.34)

150: 0.054159 Sph(205,90,0.21)
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Appendix D -  Channel with Island Simulation Inputs

CH3D Channel Geometry (grid.inp)

Although the CH3D grid file describing the channel geometry is too large to include in an 

appendix, a brief description of the channel follows.

The two ends of the channel are 205 m wide and 250 m long. They are divided into a 

computational mesh with regular square cells 5m2. The island is placed in the exact 

centre o f the channel. The channel is 1000 m long measured straight through the centre 

of the channel and the centre of the island. M easuring along the centreline, the island 

begins 5 m wide at the 250 m mark. It increases in width linearly to 200 m wide at the 

500 m mark. It then constricts linearly to 5 m wide at the 750 m mark. At the 500 m 

mark, the channels flowing around the island are 100 m wide each, measured vertically. 

This creates 2 channels divided into 4 areas off each side of the island. The 

computational mesh for each of these areas is created by placing 20 equal length 

segments vertically along the width of each channel at the 250 m, 500 m and 750 m 

marks. Then 50 equal length segments are placed along the banks of each channel and 

the island. The mesh is created by connecting the endpoints of the segments across and 

along the channels.

CH3D Main Input File (main.inp)

T I T L E ( A 8 0 )
J a s o n  W i n t e r m u t e ,  T e s t  r u n .

I T 1
1

WPRCRD
0

WXCEL1
SNP CRD

1
SXCEL1

1
IT RANG 

0
RANGDR

I G I
0

X R E F
5 0 0

T H ET A
0 . 6

I T 2
1 5 0 0

DT
1

I S T A R T  
0

I T E S T
0

I T S A L T
0

I S  COM 
1

N T S E D O N D T I N D T S  
3 0 0  1

WXCEL2  WYCEL1 WYCEL2 WZ CE L 1  WZ CEL2  W P R I N T  WP RS TR WPREND WPRVAR

SXCEL2
2 0 0

R P O S 1
I G H

1
Z R E F

2 0 0

SYCEL1
1

R P O S 2
I G T

0
U R E F

20

SYCEL2
4 1

R P O S 3
I G S

0
COR
1 . 0

SZCEL1
1

RRNAME
I G U

0
GR

9 8 1 . 0

SZCEL2
2

I GW
0

ROO 
1 . 00

SNPINT
10

I G C
0

ROR
1 . 0 2 1

SNPSTR
3 0 0

I G Q
0

TO
20

SNPEND SNPVAR 
1 5 0 0 C B U V

I G P
0

TR
20
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I T E M P I  S AL T I C C I F I i f i t i m I  F A I F B I F C

0 0 0 0 0 0 0 0
TWE TWH FKB

0 0 0
I E X P I A V AVR A V I AV2 AVM AVM1 AHR

1 0 1 0 . 0 . 0 . 0 0 2 0 . 0 0 2 1 0 0 0 0

I V I S I QW I P T
0 0 0

GAMAX GBMAX
6 0 0 0 0 6 0 0 0 0
I W I N D TAUX TAUY

0 0 . 0 0 0 . 0 0
I S P A C ( I ) , 1 = 1 , , 1 0

0 0 0 1 0 0 0 0
J S P A C ( I ) , 1 = 1 , , 1 0

1 1 - 1 0 0 0 0 0

R S P A C ( I )  , 1  = 1, , 1 0
0 . 0 3 5 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 0

I BTM HADD HMI N H I H2 S S S O HMAX
4 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0  9 9 9 9 9 9 .

I S M A L L I S F I T B Z R E F B N CTB B Z 1  Z R E F T N T Z 1
1 0 5 5 0 . 0 0 3 0 . 2 0 0 5 2 . 0

XMAP A L X R E F A L Y R E F
1 0 0 . 0 0 0
I  TRAN I B D ( 1 ) I B D  ( 2 ) I B D  ( 3 ) I B D ( 4 )

2 4 4 4 4
I T B R K ( l ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

0 0 0 0 0 0 0 0
N S T A N F R E Q N S T A R T ( CURRENT S T A T I O N S )

0 0 0
1 S T  J S T S T A T I D ( K )  ( 2 1 4 , A 4  8 ) ( ONE CARD FOR EACH S T A T I O N

N ST A S N F R E Q S N S T R T S ( T I D E S T A T I O N S )
0 0 0

1 S T  J S T S T A T I D ( K )  ( 2 1 4 , A 4 8 ) ( ONE CARD FOR EACH S T A T I O N
MSTA MFREQ MSTART ( S A L I N I T Y  S T A T I O N S )

0 0 0
1 S T  J S T S T A T I D ( K )  ( 2 1 4 , A 4 8 ) ( ONE CARD FOR EACH S T A T I O N

N R I V E R
- 6

I J R D I R I J R R O W I J R S T R I J R E N D ( ONE CARD FOR EACH R I V E R  )
2 1 2 8 2 8 2
2 2 1 4 6 4 6
2 3 7 3 5 3 5
2 2 0 4 6 4 6
2 2 2 4 6 4 6
2 2 4 1 3 6 1 3 6
I J Q R I V E R ( ONE CARD FOR EACH C E L L  )

8 2 1 2 0
4 6 2 1 0
3 5 3 7 0
4 6 2 0 0
4 6 2 2 0

1 3 6 2 4 0
NBAR

AU
I J B D I R I J B R O W I J B S T R I J B E N D ( ONE CARD FOR EACH BAR )
T I D F N O T I D B N D

2 2
T I D S T R 2 3 4 5 6 7 8

1 1 1 1 1 1
I J T D I R I J T R O W I J T S T R I J T E N D T I D T Y P T I D F N 1  T I D F N 2

1 1 1 4 1 CONSTANT 1 0
3 2 0 0 1 4 1 CONSTANT 2 0

R E S E T  H S ( I , J )  TO Z E R O  AT TH E F OL L O WI N G  C E L L S

I F D
1

0

0

0  . 00

( 9 )
0

(10)
0

10

5 1 2 1
5 2 2 1
5 3 2 1
5 4 2 1
5 5 2 1
5 6 2 1
5 7 2 1
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5 8 2 1
5 9 2 1
6 0 2 1
6 1 2 1
6 2 2 1
6 3 2 1
6 4 2 1
6 5 2 1
6 6 2 1
6 7 2 1
6 8 2 1
6 9 2 1
7 0 2 1
7 1 2 1
7 2 2 1
7 3 2 1
74 2 1
7 5 2 1
7 6 2 1
7 7 2 1
7 8 2 1
7 9 2 1
8 0 2 1
8 1 2 1
8 2 2 1
8 3 2 1
8 4 2 1
8 5 2 1
8 6 2 1
8 7 2 1
8 8 2 1
8 9 2 1
9 0 2 1
9 1 2 1
9 2 2 1
9 3 2 1
9 4 2 1
9 5 2 1
9 6 2 1
9 7 2 1
9 8 2 1
9 9 2 1

1 0 0 2 1
1 0 1 2 1
1 0 2 2 1
1 0 3 2 1
1 0 4 2 1
1 0 5 2 1
1 0 6 2 1
1 0 7 2 1
1 0 8 2 1
1 0 9 2 1
1 1 0 2 1
1 1 1 2 1
1 1 2 2 1
1 1 3 2 1
1 1 4 2 1
1 1 5 2 1
1 1 6 2 1
1 1 7 2 1
1 1 8 2 1
1 1 9 2 1
1 2 0 2 1
1 2 1 2 1
1 2 2 2 1
1 2 3 2 1
1 2 4 2 1
1 2 5 2 1
1 2 6 2 1
1 2 7 2 1
1 2 8 2 1
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1 2 9 2 1
1 3 0 2 1
1 3 1 2 1
1 3 2 2 1
1 3 3 2 1
1 3 4 2 1
1 3 5 2 1
1 3 6 2 1
1 3 7 2 1
1 3 8 2 1
1 3 9 2 1
1 4 0 2 1
1 4 1 2 1
1 4 2 2 1
1 4 3 2 1
1 4 4 2 1
1 4 5 2 1
1 4 6 2 1
1 4 7 2 1
1 4 8 2 1
1 4 9 2 1
1 5 0 2 1

R E S E T HU ( I ,  J ) TO
R E S E T H V ( I , J ) TO
R E S E T H S {I , J ) TOTO TH E F OL LO WI N G  D EP T H S  

END O F  DATA 
END O F  F I L E

CH3D Sediment Input File (sed.inp)

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

1 1 1 0 0
0 0 0 0 0 0 0 0 1 0  0 1 0 0 0 0 0  0 0
1 1 1 1 1 1

0 0
1 .. 0 0 e - 6 5 .. 0 0 e - 5

0 . 0 0 0 0 0 1 1 4  
2 . 6 5  0 . 4
0 . 6 0  0 . 1 0  0 . 1 0 0  0 . 0 3 0  0 . 0 1 0

0.0000001 0.00000001 
100 

0  . 01  
0
0 0
0 0

1000  .
1
1 1 1

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

0 0
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0 . 1 0 0 1 0 0
2 1 2

0 . 1 0 0 1 0 0
- 1 12 8 2 8 2

2 1 2
0 . 1 0 0 1 0 0

- 1 2 1 4 6 4 6
2 1 2

0 . 1 0 0 1 0 0
- 1 3 7 3 5 3 5

2 1 2
0 . 1 0 0 1 0 0

- 1 2 2 4 6 4 6
2 1 2

0 . 1 0 0 1 0 0
- 1 2 0 4 6 4 6

2 1 2
0 . 1 0 0 1 0 0

- 1 - 2 4 1 3 6 1 3 6
1 1 , , 0 0 0 0 . 0 0 0

- 2 0 . , 0 0 0 1 . 0 0 0
1 1 1 1 1
1 2 1 1 1
1 3 1 1 1
1 4 1 1 1
1 5 1 1 1
1 6 1 1 1
1 7 1 1 1
1 8 1 1 1
1 9 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1
1 1 2 1 1 1
1 1 3 1 1 1
1 1 4 1 1 1
1 1 5 1 1 1
1 1 6 1 1 1
1 1 7 1 1 1
1 1 8 1 1 1
1 1 9 1 1 1
1 2 0 1 1 1
1 2 1 1 1 1
1 2 2 1 1 1
1 2 3 1 1 1
1 2 4 1 1 1
1 2 5 1 1 1
1 2 6 1 1 1
1 2 7 1 1 1
1 2 8 1 1 1
1 2 9 1 1 1
1 3 0 1 1 1
1 3 1 1 1 1
1 3 2 1 1 1
1 3 3 1 1 1
1 3 4 1 1 1
1 3 5 1 1 1
1 3 6 1 1 1
1 3 7 1 1 1
1 3 8 1 1 1
1 3 9 1 1 1
1 4 0 1 1 1
1 4 1 1 1 1

2 0 0 1 - 1
2 0 0 2 - 1
2 0 0 3 - 1
2 0 0 4 - 1
2 0 0 5 - 1
2 0 0 6 - 1
2 0 0 7 - 1
2 0 0 8 - 1
2 0 0 9 - 1
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200
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0
2 0 0

- 2 0 0
82
4 6
3 5
4 6
4 6

- 1 3 6
0

10
11
12
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20 
21 
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 0
4 1  
12  
2 1  
3 7  
2 2  
2 0  
2 4

0

- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
-1
- 1
-1
-1
-1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1

1
1
1
1
1
1

1 1 . 0 0 0 0 . 0 0 0
2 1 . 0 0 0 0 . 0 0 0

- 3 1 . 0 0 0 0 . 0 0 0
1 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0
2 0 . 0 0 0 0 . 3 3 3

0 . 0 0 0 0 . 3 3 3
3 0 . 0 0 0 0 . 1 0 0

0 . 0 0 0 0 . 1 0 0

1 1 . 0 0 0 0 . 0 0 0
2 1 .  0 0 0 0 . 0 0 0

- 3 1 .  0 0 0 0 . 0 0 0
1 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0
2 0 . 0 0 0 0 . 3 3 3

0 . 0 0 0 0 . 3 3 3
3 0 . 0 0 0 0 . 1 0 0

0 . 0 0 0 0 . 1 0 0

CH3D Boundary Conditions (tide.inp)

F ORTRAN 1 6  F I L E :  T I D E  T A B L E  DATA
1 1 9 8 0 0 1 . 0 0 1 . 0 0
1 1 9 8 0 1 1 . 2 0 0 . 8 0
8 2 9 8 3 0 1 . 2 0 0 . 8 0
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Sample Points

30

X Y Attr X Y Attr X Y Attr

586.0774 244.8073 9.72E-06 358.8203 35.88452 0.010501 663.7345 50.40145 0.024008

479.1573 -53.2476 0.001506 80.82793 154.1416 0 787.9895 204.7509 1.12E-09

334.6565 -6.17971 2.75E-09 671.0669 183.7679 1.29E-07 378.5411 238.7272 0.236746

766.3862 8.956636 1.79E-05 945.0101 24.5942 1.1E-09 246.1878 2.544692 0

976.1772 158.15 7.83E-07 231.2389 86.79844 0.046258 113.1997 21.33056 0

924.6761 130.8633 0.37517 441.03 235.9918 0.003828 768.0062 1.038177 1.52E-07

539.7637 -48.9345 0.03201 389.5289 208.7051 0.001024 710.1531 37.03782 0.419508

65.26595 141.5071 0 4.616402 28.90727 0 945.3773 124.3587 0.510827

655.9203 23.58179 0.7015 419.2737 188.6192 0.256937 889.5861 109.4288 0.609209

720.0724 121.2148 0.410727 483.4258 286.2522 0.00839 555.5401 211.8861 0.00022

50

X Y Attr X Y Attr X Y Attr

161.6232 34.17332 0 300.0611 155.8023 0.004989 415.2989 22.27356 0.07673

935.4973 28.68551 2.69E-09 902.863 160.6266 1.57E-06 442.505 210.061 0.010602

120.628 83.41129 0 587.9247 -36.9618 0.007268 57.59253 30.26322 0

64.57432 67.6114 0 113.4269 153.4799 5.1E-10 521.7156 -33.2681 0.834563

420.0044 268.3652 0.048859 457.3442 -23.4843 0.884892 928.0121 43.74069 2.35E-08

960.4271 19.2164 1E-11 375.8573 22.58825 0.001536 846.5251 89.81326 0.000383

824.0246 148.1174 5.76E-05 4.230494 64.16834 0 424.6667 0.169948 0.251031

124.1738 176.7312 2.93E-06 223.8928 138.8547 7.41 E-06 146.6744 118.4271 5.5E-10

798.9851 8.294877 1.7E-05 416.349 25.75364 0.092901 201.349 88.87205 0.001309

178.8484 147.1762 7.02E-09 405.0555 -53.3811 4E-11 94.42888 196.8171 1.5E-10

396.7378 -27.7974 9.1E-07 268.653 75.51989 0.047795 70.76854 102.3495 0

933.1113 88.13731 0.000591 321.2923 201.4349 0.020392 290.4308 177.0359 0.004272

612.351 5.972452 0.832597 253.091 62.88538 0.028867 166.1759 22.6865 0

437.2296 -24.632 0.427079 579.6734 29.62672 0.042082 820.9823 2.394123 7.77E-08

712.9456 65.85427 0.026062 301.6811 147.8839 0.190445 222.8427 135.3747 4.33E-05

606.0255 173.7993 0.000231 474.5262 -18.7683 0.880584 565.0303 223.0373 0.000156

868.4558 42.90769 3.9E-05 855.3895 120.113 0.871444

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

X Y Attr X Y Attr X Y Attr

851.2275 155.4091 4.47E-06 576.2775 13.3895 0.384395 718.9839 68.51825 0.019895

973.2062 112.5019 0.41256 401.1561 -17.215 0.002015 4.074531 32.0942 0

335.7346 -10.9112 5.3E-10 358.3881 188.3631 0.000712 701.649 212.2238 2.4E-10

508.5797 228.4366 4.73E-05 304.1072 16.22311 9.74E-08 849.0609 107.4441 0.188921

782.5228 69.26296 0.000879 342.8261 175.7286 0.004042 938.6461 143.2046 0.011478

741.5276 118.5009 0.860098 832.3823 50.32474 0.000454 743.9136 59.04914 0.114292

916.649 149.1054 0.000995 263.112 65.46108 0.019758 752.012 140.8822 0.212563

942.9578 184.9912 2.7E-10 410.5239 -39.3186 7.96E-08 279.2871 174.9838 0.011687

583.4786 -56.6791 0.001525 500.1091 -3.55808 0.054201 612.9345 223.8245 2.18E-06

859.1946 33.80718 8.72E-06 367.7558 166.2594 0.440215 912.3108 2.778314 1.2E-10

752.2745 141.7522 0.121266 548.9186 -25.9764 0.78751 465.0192 -24.9925 0.875986

773.6585 38.96322 0.015476 74.42083 164.4653 0 396.8179 242.458 0.165555

655.2256 175.1903 6.8E-05 418.3381 -12.4989 0.485263 620.5294 -47.9391 0.000529

612.4575 -25.2317 0.008239 336.8512 33.57366 0.000435 317.1039 132.1905 0.720064

297.5192 183.18 0.013773 978.3719 197.9034 1E-11 526.8949 281.3838 0.000111

229.3179 44.63045 6.7E-07 873.2247 149.5084 0.002325 421.7477 232.9888 0.007191

147.831 90.70303 6.51 E-09 190.7087 34.41662 1E-11 605.843 37.18466 0.036228

451.0156 -36.1532 0.034083 83.78859 142.3617 0 866.5005 62.63308 0.00013

566.0341 -62.2652 0.000821 110.0974 178.2475 7.17E-08 457.9277 194.3677 0.344539

497.8328 205.1853 0.201998 541.8271 193.3838 0.015146 992.5283 60.64243 1.59E-08

987.3891 79.78151 4.48E-05 778.8242 124.3647 0.911993 350.5306 53.2566 0.200829

627.9098 244.1112 1.09E-07 393.9118 -55.4332 0 734.3265 188.5695 4.66E-08

920.9607

460.3834

190.892

-58.2568

3E-11 

1.88E-06

109.4843

12.4354

81.35922 

114.7973

0

0

90

X Y Attr

334.6567 -23.5262 0

542.1715 -71.5894 1.92E-05 

691.8597 20.88751 0.34902

289.6124 -15.2048 1E-11

117.2707 99.04401 0

X Y Attr

70.56318 6.997107 0

280.0917 155.3204 0.000134 

429.7799 247.7974 0.009625 

114.8416 50.20902 0

641.3438 240.6507 9.12E-08

132

X Y Attr

902.111 9.390726 2.68E-09 

940.8299 168.8962 7.3E-07

861.1158 58.62869 0.000321 

27.13882 7.400077 0

775.5797 63.78473 0.009027
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820.8866 56.33332 0.000693 985.2611 63.68648 9.09E-08 238.7028 0.253388 0

105.9773 19.90927 0 903.7742 109.7591 0.590635 877.1812 18.85984 2.71 E-07

803.5517 200.0389 1.45E-09 747.7605 185.109 2.98E-08 867.9647 13.96724 9.14E-08

950.9636 95.25921 0.003014 704.9925 -15.313 5.39E-05 247.8279 152.8485 3.93E-05

39.54887 131.0197 0 252.7328 115.9546 0.72388 117.2475 166.326 1.21 E-07

845.8163 46.86421 0.000253 167.1967 121.1106 4.17E-08 309.7037 53.2249 0.000289

853.9147 128.6973 0.65863 314.6086 16.33095 1.01 E-07 204.5564 4.829898 0

381.1898 162.7989 0.664724 670.0386 217.0847 2.01 E-09 952.9973 61.21455 5E-09

445.3419 260.4319 0.053245 957.9022 24.3206 2E-11 212.6548 86.66298 0.009905

180.3727 193.1969 0.014091 483.4045 214.7623 0.062036 822.4168 74.69202 0.000278

796.4603 13.39908 0.000113 872.3661 29.47664 7.75E-07 740.9299 120.7646 0.862302

648.545 170.5821 0.000485 652.2004 7.193607 0.554129 48.28025 79.30982 0

549.7232 -45.6398 0.02437 609.4323 212.7716 2.83E-06 373.0898 202.3912 0.000761

500.6297 -78.2349 9.15E-05 53.18513 42.41586 0 7.285065 128.5478 0

166.5836 24.22235 0 91.90401 201.9213 3E-11 174.3081 77.31917 4.53E-08

350.9415 235.2882 0.249066 12.18994 91.65383 0 526.3237 -17.812 0.915843

930.083 145.6449 0.008087 179.213 40.42521 0 710.6816 193.2539 3.2E-10

267.1782 84.10417 0.348867 927.6538 96.80987 0.004512 712.4544 36.91382 0.397462

924.6548 59.37341 8.8E-08 390.7769 33.27852 0.103664 626.9183 42.06986 0.017488

621.2292 239.503 2.37E-07 797.0734 110.2873 0.304468 283.3949 17.3391 8.97E-08

502.7963 -30.2699 0.932862 717.3593 0.019863 7.56E-05 980.9693 197.4687 0

858.2264 170.4838 9.41 E-07 293.728 66.7166 0.091568 216.9665 128.4495 1.71 E-05

671.5922 168.1614 0.00019 15.73567 184.9737 0 819.7684 133.2738 0.488225

261.2465 50.23607 7.75E-06 690.547 16.53742 0.195184 770.6748 100.6787 0.014991

797.62 166.1708 4.83E-05 70.41032 155.4187 0 30.33229 126.1271 0

110

X Y Attr X Y Attr X Y Attr

951.9142 24.2222 3.6E-10 271.3223 131.7942 0.373881 805.4859 91.47712 8.45E-05

15.06624 121.8552 0 735.4453 68.26285 0.032031 510.1587 -52.5602 0.071528

530.0557 -65.4211 0.007351 140.7418 145.2717 1.1E-10 379.5783 -39.0827 1E-11

252.0634 52.83601 5.34E-06 492.9768 -57.2762 0.001449 298.0914 6.989847 6.37E-09

534.1049 -24.5046 0.914837 133.4975 107.0535 2E-11 161.6889 135.8908 4E-11

85.04035 104.0646 0 28.35024 58.65846 0 146.1269 123.2563 1.1E-10

720.2356 30.22121 0.160939 409.2135 197.5397 0.012997 338.5831 10.15524 9.42E-08
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664.1819 14.42132 0.609097 341.0123 58.99023 0.228261 867.7555 196.1585 1.3E-10

621.4138 219.9993 2.05E-06 436.4196 -20.6728 0.773671 334.9277 173.5437 0.002861

572.3203 187.4042 0.003396 667.5947 25.73157 0.656799 869.5283 39.81848 1.6E-05

674.9287 37.67262 0.425628 562.4474 -22.6634 0.747999 249.3916 178.6998 0.08493

221.815 125.3253 0.00025 943.3107 116.2179 0.609755 80.09227 32.67179 0

394.6601 -41.3268 1.4E-10 310.7639 131.4795 0.730683 118.8112 192.1772 5.04E-07

775.5234 97.55444 0.008086 460.4521 223.9564 0.000613 39.09709 81.90976 0

668.6032 205.4995 6.59E-09 145.5138 26.36807 0 685.5426 -21.0857 8.72E-05

931.0336 74.60786 2.75E-06 812.4677 128.8253 0.761361 775.1279 14.67478 0.000157

571.5543 238.9376 0.000556 998.5985 183.5511 1 E-09 642.7746 184.4923 6.2E-06

864.6052 185.7183 4.52E-09 827.4166 44.57155 0.000238 390.2155 240.877 0.189018

671.0307 -30.2401 0.000204 57.59169 90.9759 0 854.3385 177.3456 2.2E-07

446.0499 -41.9064 0.000388 16.59651 140.2139 0 197.2558 0.381403 0

789.9671 187.1294 7.8E-10 961.5428 124.414 0.432986 299.9739 -0.05859 1E-11

572.0777 -43.897 0.005262 752.6273 72.97889 0.010292 941.4946 164.2711 4.06E-07

556.5157 -56.5315 0.005558 797.1682 117.0608 0.813909 99.15679 30.3394 0

107.4512 72.03768 0 519.1759 235.3179 0.000233 608.3242 -41.5134 0.000873

103.402 31.12114 0 692.021 68.66582 0.000671 933.1338 81.56802 3.57E-05

706.2039 35.9454 0.447892 289.7737 32.57354 4.78E-08 777.1201 156.918 3.67E-05

391.2656 244.357 0.206661 931.2944 196.9032 4E-11 866.7054 192.6785 2.4E-10

917.7678 28.79871 3.18E-09 223.3453 143.684 2.11 E-06 680.0712 190.356 1.13E-08

587.53 225.4459 3.97E-05 272.1547 121.2657 0.69342 288.8333 178.3851 0.026301

43.69291 178.7097 0 122.4665 28.78874 0 806.099 188.3654 7.2E-10

490.4811 258.8839 0.006184 658.84 144.7234 0.008016 675.4089 52.55124 0.069247

659.277 51.31527 0.003285 256.5927 108.6312 0.051692 595.6948 -57.7162 0.000383

748.8623 87.07577 0.000116 891.788 34.78775 2.92E-07 436.5724 236.9056 0.004863

554.1297 2.920268 0.632967 835.7343 18.98786 3.96E-05 566.6495 275.8315 2.43E-05

301.5706 59.30492 0.007659 540.4071 280.9505 5.76E-05 743.6102 191.1007 8.88E-08

216.0345 64.46096 2.1 E-06 392.4918 32.13355 0.092516 567.1529 223.4282 0.000168

186.2896 84.54688 6.3E-06 191.9372 63.40156 1.52E-08

130

X Y Attr

850.6203 39.53206 7.82E-05 

623.4943 34.04424 0.087118

X Y Attr

946.3566 1.743883 0

339.1333 211.8414 0.011334

X Y Attr

566.4104 190.333 0.005237

422.5443 -17.5674 0.68103
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809.6251 88.77002 6.94E-05

753.5713 72.97013 0.00902

143.5252 29.92767 0

7.122658 158.8286 0

370.6511 35.41548 0.041278

543.4961 274.7634 6.85E-05

861.9802 159.6716 5.94E-06

527.9342 262.1288 0.003559

16.49042 136.725 0

12.44125 95.80849 0

64.18328 69.82183 0

731.1372 172.2791 1.89E-05

853.1159 129.3719 0.645471

153.2651 157.9857 3.36E-06

388.4894 245.3066 0.202314

706.9734 130.2148 0.824145

600.0533 238.1599 3.46E-06

962.2027 69.3918 5.25E-07

709.6435 125.7765 0.414861

172.7666 62.24511 9E-11

476.1921 288.1155 0.008886

306.8928 142.0875 0.561301

283.2325 47.61996 0.003741

835.1679 176.1892 1.14E-06

912.3432 88.33003 0.000536

142.5183 134.7344 0

486.4355 -42.2298 0.257466

404.9486 3.842752 0.013367

268.5461 132.7437 0.271253

252.9841 120.1092 0.679323

445.4403 7.008142 0.036143

472.6464 194.7956 0.309783

87.73395 14.9978 0

970.5203 43.80811 1.6E-10

350.3836 182.6894 0.001014

219.8032 196.1669 0.23554

537.4116 -16.6832 0.916283

768.5867 29.7212 0.004745

663.4394 -18.6738 9.86E-05

43.3027 120.2075 0

958.7666 125.3635 0.423186

105.1785 20.58386 0

194.7637 56.34436 3.84E-09

476.8052 -20.9962 0.893189

160.9697 35.51373 0

460.346 220.4676 0.003665

13.05436 192.6967 0

230.9438 17.72319 3.3E-10

164.5154 128.8336 3.2E-10

767.3173 133.6579 0.670295

978.8812 126.5112 0.300039

384.1777 203.52 0.000185

24.71836 137.4185 0

325.8676 166.0323 0.012791

561.0918 253.3532 0.000284

879.5759 138.2615 0.110838

545.5299 240.7187 0.001448

34.08613 115.3149 0

167.3151 43.25563 0

111.2614 27.45574 0

466.6914 228.2095 0.000259

19.39977 200.4386 0

870.7116 107.9617 0.571742

448.8531 18.3184 0.102507

170.8608 136.5755 5E-10

343.7059 -30.0766 0

617.649 216.7497 1.59E-06

376.9965 43.15738 0.201102

979.7984 47.98165 4E-11

190.3623 40.83496 1E-11

579.3239 261.5493 4.44E-05

359.1582 239.2663 0.212106
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294.2402 193.1667 0.022014

463.036 -14.402 0.796482

631.8319 184.0293 1.97E-05

319.1699 183.6975 0.00095

988.116 22.39795 0

367.9793 161.2792 0.61269

198.68 15.25126 0

237.3989 174.7567 0.066681

72.1487 69.64527 0

598.651 260.0869 5.86E-06

942.5682 83.12274 0.000103

861.0813 129.1953 0.62742

360.8879 -25.3606 2E-11

938.2565 41.33618 1.18E-09

660.2642 159.5933 0.014978

212.9726 131.8225 1.45E-05

430.862 -43.1511 5.5E-06

127.4365 136.9785 0

274.8483 32.19884 1.6E-06

912.3199 155.612 1.63E-05

832.6058 45.34453 0.000247

747.0697 50.50057 0.157661

117.4556 62.19386 0

403.5463 25.76981 0.051643

247.5326 101.1197 0.168982

166.0457 147.1923 5.8E-10

338.8907 -19.4598 0

719.754 119.4215 0.098689

612.8339 227.3665 2.19E-06

875.2642 96.4749 0.004791

7.493173 24.41565 0

952.4394 8.615762 0

306.8695 209.3695 0.346374

860.5779 181.5987 4.78E-08

526.5318 284.0559 7.07E-05

648.5105 241.1487 4.13E-08
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608.7648 10.88122 0.786967

503.6175 -37.5138 0.536882

884.4808 101.3675 0.01312

753.9003 114.845 0.407146

38.991 78.42092 0

765.0177 3.683278 1.55E-07

150

X Y Attr

805.9721 78.6937 0.000129

491.0337 287.1053 0.005955

689.312 58.58073 0.018698

343.1184 38.28835 0.001071

920.4871 104.9851 0.221561

580.1156 -30.7308 0.015934

815.3398 56.59008 0.000723

195.2031 195.4714 0.076424

584.1847 185.7545 0.000278

671.4936 24.25841 0.650793

84.88844 183.1003 7E-11

5.174382 72.83282 0

539.775 -60.8924 0.014072

920.6383 77.98886 1.53E-05

16.18375 96.95415 0

790.0578 91.46633 2.72E-05

649.3436 178.5808 9.59E-06

238.998 60.6554 7.31 E-05

775.3715 176.5901 1.49E-06

48.31462 17.41644 0

759.8095 163.9556 0.000407

7.319431 66.65441 0

889.8865 202.8815 1E-11

535.2224 -49.4056 0.042235

809.1655 197.4207 9E-10

152.0828 20.45652 0

316.3901 38.84431 0.00091

369.0294 164.7593 0.564376 

300.8282 26.2098 8.52E-08

929.9389 66.91987 2.68E-08 

160.114 113.3242 1.18E-08

X Y Attr

856.0924 182.0509 6.19E-08

496.6132 -59.6194 0.001198

772.3292 30.86685 0.00502

255.0634 20.88655 3E-11

686.7931 36.02289 0.547115

896.5842 185.2163 7E-11

657.9454 208.0105 7.96E-09

476.4986 -60.7671 1.85E-05

2.000841 129.6746 0

90.53602 161.955 1E-11

650.5698 -33.6427 0.000399

607.8018 171.9353 0.000233

926.2859 56.84355 1.16E-07

819.3657 164.7886 1.29E-05

722.3168 198.2267 9.8E-10

14.36769 145.0074 0

630.4552 -34.7904 0.000138

562.254 232.6601 0.000664

917.4215 26.54381 2.85E-09

981.5736 124.1768 0.324251

495.5631 -63.0995 0.000511

217.5708 55.15762 1.34E-06

765.4571 142.8103 0.001001

685.743 32.54281 0.566128

895.5341 181.7362 1.28E-09

790.3868 133.3412 0.552467

226.652 151.5054 4.96E-08 

382.3816 21.14205 0.001749 

215.3585 72.37066 7.92E-05 

211.3094 31.45412 2.1E-10

751.732 188.3054 4.69E-08

X Y Attr

782.1356 199.9297 4.02E-09

18.13274 130.9105 0

368.3755 192.1194 0.000648

832.4986 128.5881 0.729732

62.67365 174.9925 0

723.3021 39.27656 0.301345

958.5264 126.5975 0.402868

512.132 250.7283 0.002428

405.2118 -47.3267 7.3E-10

364.2167 1.911295 1.37E-05

531.2397 -49.3173 0.040341

278.6806 7.067334 2E-11

805.1828 197.509 1.54E-09

164.2968 184.211 0.149142

876.9298 23.37842 5.49E-07

915.6487 182.8839 2.3E-10

903.2386 59.26422 1.17E-06

543.7594 223.5939 3.53E-05

570.9654 5.381404 0.712305

712.5553 16.02526 0.003879

337.514 167.7205 0.026608

572.7383 255.0414 2.38E-05

891.2224 139.9496 0.079809

279.2039 130.2327 0.62348

428.8921 222.7097 0.000443

113.9538 25.12131 0
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336.4407 231.5224 0.264787 643.3687 36.42586 0.167952 640.456 215.563 6.32E-07

915.5822 141.879 0.045642 468.2474 5.821399 0.075022 701.1937 17.31107 0.061045

252.6774 80.33834 0.016804 363.1001 -42.5736 0 277.5623 84.00781 0.172441

404.1385 16.47522 0.010927 743.9634 96.30768 0.002629 615.6576 22.46711 0.47699

5.940352 21.29949 0 637.0432 204.2527 6.35E-07 712.203 41.43239 0.410326

754.3812 77.68414 0.002033 81.6933 185.7986 7E-11 750.9219 200.9378 2.46E-09

713.6054 19.50534 0.03717 477.6151 -16.2822 0.710762 472.667 -87.6751 1E-11

118.9018 96.51415 0 833.0452 184.4715 3E-10 359.3118 38.80525 0.038058

839.6332 17.51469 1.82E-05 884.7872 158.4849 1.83E-06 569.1028 187.9986 0.004368

847.7316 99.34777 0.015109 144.4447 183.9333 0.000622 330.4641 210.7928 0.06461

437.3859 -18.5776 0.835635 672.7198 218.0349 6E-10 946.5517 30.99501 1.46E-09

540.8916 -16.4075 0.922662 674.4927 61.69487 0.001271 206.2091 56.44343 3.1E-08

750.6826 132.7858 0.887388 250.8614 128.3916 0.038702 640.8498 13.86802 0.764285

184.3233 90.21043 2.19E-05 145.7141 79.9966 1.1E-10 598.0818 219.446 2.5E-06

509.1329 213.2918 0.033449 526.5774 218.8779 8.33E-05 307.6794 214.0835 0.458933

872.6613 89.87865 0.000645 853.3791 78.20245 1.57E-06 284.0191 119.6159 0.383699

809.3849 90.00396 8.89E-05 177.1887 201.2838 5.39E-06 476.4753 6.51486 0.078297

924.4033 63.89199 1.36E-08 812.3839 127.4404 0.82101 371.328 -41.8801 0

793.8229 77.36945 0.000278 756.3302 111.6405 0.087 118.7689 14.50451 0

344.7584 205.9387 0.017845 659.2813 145.0786 0.009343 379.4264 39.95293 0.117096

923.8999 116.2953 0.694448 248.9357 27.15325 2.3E-10 785.7229 116.9617 0.72203

12.48516 152.0558 0 92.922 102.5032 0 907.7015 74.05456 1.27E-06

818.7526 67.90034 0.000558 324.0971 148.9075 0.522453 971.8536 171.6875 2.51 E-07

497.9923 -14.2645 0.541225 84.56113 19.80009 0 939.1761 195.3418 2E-11

Variogram Equation

Variogram Equations are specified in the format required by GSTAT. (Pebesma, 1999)

A  Nug(O) + B  Sph(C, D, E)

where A  is the nugget, B  is the partial sill (sill -  nugget), C is the range, D  is the 

anisotropy angle and E  is the anisotropy ratio. Sph denotes a spherical variogram model.
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Standard

30: 0.0477 Sph(95, 90, 0.44)

50: 0.00103 Nug(0) + 0.0949 Sph(165, 90, 0.33) 

70: 0.0624 Sph(90, 90, 0.29)

90: 0.00740 Nug(O) + 0.0674 Sph(305, 90, 0.48) 

110: 0.0582 Sph(115,90, 0.44)

130: 0.0236 Nug(O) + 0.0479 Sph(500, 90, 0.47) 

150: 0.0606 Sph(110, 90, 0.45)

Flowline

30: 0.0453 Sph(105, 90, 0.48)

50: 0.0197 Nug(O) + 0.0772 Sph(500, 90, 0.17) 

70: 0.0956 Sph(225, 90, 0.29)

90: 0.00948 Nug(O) + 0.0546 Sph(260, 90, 0.40) 

110: 0.0677 Sph(210, 90, 0.29)

130: 0.0227 Nug(O) + 0.0415 Sph(355, 90, 0.43) 

150: 0.0814 Sph(200, 90, 0.37)
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Appendix E -  Diverging Channel Simulation Inputs

CH3D Channel Geometry (grid.inp)

Although the CH3D grid file describing the channel geometry is too large to include in an 

appendix, a brief description of the channel follows.

The diverging channel is 400 m wide at the downstream end, 100 m wide at the upstream 

end and 1000 m long through its centre. The computational mesh is created by placing 

40 equal length segments along the upstream end, 40 equal length segments along the 

downstream end and 200 equal length segments along each bank. The interior of the 

mesh is then created by connecting the endpoints of the segments across and along the 

channel.

CH3D Main Input File (main.inp)

T I T L E ( A 8 0 )
J a s o n  W i n t e r m u t e ,  T e s t  r u n .

I T 1 I T 2 DT I S T A R T I T E S T I T S A L T I S  COM N T S E D O N D T I N D T S

1 2 0 0 0 1 0 0 0 1 3 0 0 1

WPRCRD
nU

WXCEL1 WXCEL2 WYCEL1 WYCEL2 WZ CEL1 WZCEL2 W P R I N T WP RS TR WPREND WPRVAR
S NP CRD

il
S XC E L 1 S X C E L 2 S Y C E L 1 S Y C E L 2 S Z C E L 1 S Z C E L 2 S N P I N T S N P S T R S N P E N D  S NP V AR

1 2 0 0 1 4 0 1 2 1 0 3 0 0 2 0 0 0 C B U V

NRANG
u

RANGDR R P O S 1 R P O S 2 R P O S 3 RRNAME

I G I I GH I G T I G S I G U IGW I G C I G Q I G P

0 1 0 0 0 0 0 0 0

X R E F Z R E F U R E F COR GR ROO ROR TO TR

5 0 0 2 0 0 2 0 1 . 0 9 8 1 . 0 1 . 0 0 1 . 0 2 1 2 0 2 0

TH E T A
0 , 6

I T E M P I  S A L T I C C I F I i f i t i m I  F A I F B I F C I F D

0 0 0 0 0 0 0 0 1
TWE TWH FKB

0 0 0
I E X P I A V AVR A V I AV2 AVM AVM1 AHR

1 0 1 0 . 0 . 0 . 0 0 2 0 . 0 0 2 1 0 0 0 0

I V I S IQW I P T
0 0 0

GAMAX GBMAX
6 0 0 0 0 6 0 0 0 0
I WI ND TAUX TAUY

0 0 . 0 0 0 . 0 0
I S P A C ( I ) , 1 = 1 , 1 0

0 0 0 1 0 0 0 0 0 0

J S P A C ( I ) , 1 = 1 , 1 0
1 1 - 1 0 0 0 0 0 0 0
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R S P A C ( I ) , 1 = 1 , 1 0
0 . 0 3 5 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 0 0 . 0 0

I BTM HADD H MI N H I H2 S S S 0  HMAX
4 0 . 0 0 . 0 0 . 0 0 . 0  1 . 0  9 9 9 9 9 9 .

I S M A L L I S F I T B Z R E F B N CTB B Z 1  Z R E F T N  T Z 1
1 0 5 5 0 . 0 0 3  0 . 2 0 0  5 2 . 0

XMAP A L X R E F A L Y R E F
1 0 0  . 0 0 0
I T R A N I B D ( l ) I B D  ( 2 ) I B D ( 3 ) I B D ( 4 )

2 4 4 4 4
I T B R K ( l ) ( 2 ) ( 3 ) ( 4 ) ( 5 )  ( 6 )  ( 7 )  ( 8 ) ( 9 )

0 0 0 0 0 0 0 0 0
N S T A N F RE Q N S T A R T ( CURRENT S T A T I O N S )

0 0 0
1 S T  J S T S T A T I D ( K )  ( 2 1 4 , A4  8 ) ( ONE CARD F O R  EACH S T A T I O N )

N ST A S N F R E Q S N S T R T S ( T I D E S T A T I O N S )
0 0 0

1 S T  J S T S T A T I D ( K )  ( 2 1 4 , A 4 8 ) ( ONE CARD F O R  EACH S T A T I O N )
MSTA MFREQ MSTART ( S A L I N I T Y  S T A T I O N S )

0 0 0
1 S T  J S T S T A T I D ( K )  ( 2 1 4 , A4  8 ) ( ONE CARD F O R  EACH S T A T I O N ) h e r e

N R I V E R
- 6

I J R D I R I J R R O W I J R S T R I J R E N D ( ONE CARD F OR EACH R I V E R  )
2 1 1 5 6 5 6
2 1 7 9 8 9 8
2 1 7 1 6 7 1 6 7
2 2 0 2 0 2 0
2 2 8 1 4 8 1 4 8
2 2 9 7 7 7 7
I J Q R I V E R ( ONE CARD F OR EACH C E L L  )

5 6 1 1 0
9 8 1 7 0

1 6 7 1 7 0
2 0 2 0 0

1 4 8 2 8 0
7 7 2 9 0

NBAR
AU

I J B D I R I J B R O W I J B S T R I J B E N D ( ONE CARD F O R  EACH BAR )
T I D F N O T I D B N D

2 2
T I D S T R 2 3 4 5 6 7 8 9

1 1 1 1 1 1
I J T D I R I J T R O W I J T S T R I J T E N D T I D T Y P  T I D F N 1  T I D F N 2

1 1 1 4 0 C O NS TANT 1 0
3 2 0 0 1 4 0 C O NS TANT 2 0

R E S E T  H S ( I , J )  TO ZE RO  A T  TH E F OL LO WI N G  C E L L S
R E S E T  H U ( I , J ) TO ZE RO  A T  TH E F OL LO WI N G  C E L L S
R E S E T  H V ( I , J ) TO ZE RO  A T  TH E F OL L O WI N G  C E L L S
R E S E T  H S ( I , J )  TO TH E F OL L O WI N G  D E P T H S

END O F  DATA 
END O F  F I L E

CH3D Sediment Input File (sed.inp)

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

1 1 1 0 0
0 0 0 0 0 0 0 0 1 0  0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1  
0 0

l . 0 0 e - 6  1 . 0 0 e - 5
0 . 0 0 0 0 0 1 1 4  

2 . 6 5  0 . 4
0 . 6 0  0 . 1 0  0 . 1 0 0  0 . 0 3 0  0 . 0 1 0

0 . 0 0 0 0 0 0 1  0 . 0 0 0 0 0 0 0 1
1 0 0  

0 .02  
0
0 0
0 0

1000  .

1
1 1 1

0 . 1 0 0 1 0 0
2 1 2

0 . 1 0 0 1 0 0
- 1 1 1 5 6 5 6

2 1 2
0 . 1 0 0 1 0 0

- 1 1 7 9 8 9 8
2 1 2

0 . 1 0 0 1 0 0
- 1 1 7 1 6 7 1 6 7

2 1 2
0 . 1 0 0 1 0 0

- 1 2 0 2 0 2 0
2 1 2

0 . 1 0 0 1 0 0
- 1 2 8 1 4 8 1 4 8

2 1 2
0 . 1 0 0 1 0 0

- 1 - 2 9 7 7 7 7
1 1 .. 0 0 0 0 .. 0 0 0

- 2 0 . . 0 0 0 1 . . 0 0 0
1 1 1 1 1
1 2 1 1 1
1 3 1 1 1
1 4 1 1 1
1 5 1 1 1
1 6 1 1 1
1 7 1 1 1
1 8 1 1 1
1 9 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1
1 1 2 1 1 1
1 1 3 1 1 1
1 1 4 1 1 1
1 1 5 1 1 1
1 1 6 1 1 1
1 1 7 1 1 1
1 1 8 1 1 1
1 1 9 1 1 1
1 2 0 1 1 1
1 2 1 1 1 1
1 2 2 1 1 1
1 2 3 1 1 1
1 2 4 1 1 1
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1 2 5 1 1 1

1 2 6 1 1 1
1 2 7 1 1 1
1 2 8 1 1 1
1 2 9 1 1 1
1 3 0 1 1 1
1 3 1 1 1 1
1 3 2 1 1 1
1 3 3 1 1 1
1 3 4 1 1 1
1 3 5 1 1 1

1 3 6 1 1 1
1 3 7 1 1 1
1 3 8 1 1 1
1 3 9 1 1 1
1 4 0 1 1 1

2 0 0 1 - 1
2 0 0 2 - 1
2 0 0 3 - 1
2 0 0 4 - 1
2 0 0 5 - 1
2 0 0 6 - 1
2 0 0 7 - 1
2 0 0 8 - 1
2 0 0 9 - 1
2 0 0 1 0 - 1
2 0 0 1 1 - 1
2 0 0 1 2 - 1
2 0 0 1 3 - 1
2 0 0 1 4 - 1
2 0 0 1 5 - 1
2 0 0 1 6 - 1
2 0 0 1 7 - 1
2 0 0 1 8 - 1
2 0 0 1 9 - 1
2 0 0 2 0 - 1
2 0 0 2 1 - 1
2 0 0 2 2 - 1
2 0 0 2 3 - 1
2 0 0 2 4 - 1

2 0 0 2 5 - 1
2 0 0 2 6 - 1
2 0 0 2 7 - 1
2 0 0 2 8 - 1
2 0 0 2 9 - 1
2 0 0 3 0 - 1
2 0 0 3 1 - 1
2 0 0 3 2 - 1
2 0 0 3 3 - 1
2 0 0 3 4 - 1
2 0 0 3 5 - 1
2 0 0 3 6 - 1
2 0 0 3 7 - 1
2 0 0 3 8 - 1
2 0 0 3 9 - 1

■200 4 0 - 1
5 6 1 1 1 2 2
9 8 1 7 1 2 2

1 6 7 1 7 1 2 2
2 0 2 0 1 2 2

1 4 8 2 8 1 2 2

- 7 7 2 9 1 2 2
0 0

1 1 . 0 0 0 0 . 0 0 0
- 2 1 . 0 0 0 0 . 0 0 0

1 0 . 0 0 0
0 . 0 0 0

0 . 0 0 0  
0 . 0 0 0

2 0 . 0 0 0  
0 . 0 0 0

5 . 0 0 0
5 . 0 0 0

2 3
1 1 .  0 0 0 0 . 0 0 0
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-2 1 . 000  0 .000
1 0 . 0 0 0  0 . 0 0 0

0 . 0 0 0  0 . 0 0 0  
2 0 . 0 0 0  5 . 0 0 0

0 . 0 0 0  5 . 0 0 0

CH3D Boundary Conditions (tide.inp)

FORTRAN 1 6  F I L E :  T I D E  T A B L E  DATA
1 1 9 8 0 0 1 . 0 0 1 . 0 0
1 1 9 8 0 1 1 . 2 0 0 . 8 0
8 2 9 8 3 0 1 . 2 0 0 . 8 0

Sample Points

30

X Y Attr

255.4257 -223.276 0.014637

310.9976 -102.436 0.066605

242.7963 -239.28 0.000983

225.4615 -97.3439 0.0014

372.8733 -200.833 0.550023

462.4586 -165.513 0.890412

77.54616 -343.097 1.4E-09

930.6309 -187.849 0.000186

506.9995 -121.974 0.908066

166.628 -256.019 6.46E-05

X Y Attr

401.8523 -169.773 0.878516

720.3363 -283.447 3.14E-07

613.4162 -176.832 0.776778

589.7559 -270.136 0.000127

140.6913 -143.15 0.014979

719.8329 -231.689 0.031293

809.4182 -196.369 0.193687

614.6856 -279.488 2.94E-05

362.1265 -223.798 0.032467

228.6134 -206.962 0.066399

X Y Attr

147.1265 -161.457 0.88414

148.8994 -315.872 1.25E-07

726.268 -249.996 0.000862

621.1208 -297.795 9.78E-07

871.4036 -147.313 5.4E-10

156.4943 -183.288 0.536417

62.85981 -259.021 2.34E-06

90.06587 -73.5464 1.23E-05

706.1534 -251.13 0.001128

575.573 -237.818 0.004969

50

X Y Attr

302.9879 -132.117 0.046141

24.99556 -15.3167 0

260.2198 -330.071 0

510.5027 -179.589 0.957135

796.5933  - 215.564 0.257539

430.7886 -288.498 8.74E-07

535.4324 -188.941 0.31121

282.8733 -133.251 0.007572

543.5308 -108.116 0.652605

133.1851 -224.589 8.28E-05

X Y Attr

445.6278 -118.167 0.83103

111.5818 -16.972 3.52E-09

45.26303 -160.777 0.78019

622.6317 -94.9015 0.00192

134.4113 -33.1989 9.09E-09

452.8954 -146.873 0.88963

118.8493 -45.6778 1.35E-07

367.3593 -141.781 0.580606

311.3056 -157.386 0.39076

604.3564 -209.95 0.042382

143

X Y Attr

465.8089 -76.534 0.032948

16.74435 -350.548 1E-11

714.3188 -172.637 0.125756 

951.316 -240.806 0

553.1178  - 236.041  0.003327  

761.7492 -239.576 0.003486 

167.0456 -163.515 0.526383 

23.1795 -368.855 0

24.95236 -122.27 0.004097

590.1735 -177.632 0.744054
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134.958 -379.004 0

125.3709 -251.078 8.23E-06

360.5952 -164.833 0.774285

679.0792 -278.507 6.81 E-06

572.1591 -171.892 0.862303

531.1639 -123.26 0.91457

475.1102 -138.865 0.928507

206.1583 -205.185 0.042145 

157.0648 -237.379 0.000185 

417.7222 -212.244 0.104835 

945.9974 -178.562 7.54E-07 

9.149453 -82.1315 8.15E-07 

308.5258 -300.455 4.57E-09 

755.314 -221.269 0.123441

872.215 -254.021 1E-11

1.292029 -215.574 0.0322

47.75867 -72.0434 1.13E-06 

924.5037 -224.492 3.91 E-08 

185.934 -353.772 0

250.0861 -257.341 0.000298

70

X Y Attr X Y Attr X Y Attr

711.0855 -235.715 0.016338 37.32422 -65.9158 2.1E-09 471.5695 -189.826 0.88166

287.4542 -169.84 0.457413 672.5195 -138.85 0.939133 928.7323 -235.986 1E-11

182.3069 -217.639 0.006269 616.4658 -154.455 0.976084 366.4222 -237.625 0.001467

494.9689 -217.311 0.002977 586.9834 -133.757 0.956515 481.4407 -263.415 4.59E-05

415.2549 -326.22 3.66E-09 437.2952 -225.095 0.001254 347.9276 -246.579 0.000272

625.046 -178.864 0.687726 12.50414 -310.11 1.88E-09 330.5927 -104.644 0.189008

519.8987 -226.663 0.00306 288.2201 -220.738 0.032803 497.6158 -155.241 0.926145

267.3396 -170.973 0.345058 181.3 -114.123 0.003438 182.6774 -350.396 1E-11

52.33957 -108.632 5.1E-05 202.684 -215.646 0.015649 52.09697 -337.085 6.3E-10

415.868 -230.525 0.00149 84.25111 -81.0964 3.96E-05 34.76212 -195.149 0.362461

651.0923 -144.28 0.9784 439.6812 -283.815 1.5E-06 271.7593 -263.318 1.37E-05

862.6562 -151.339 4E-11 253.047 -286.109 4.62E-08 506.9835 -177.073 0.780482

635.5303 -156.759 0.978275 659.3435 -210.048 0.108973 718.5475 -184.131 0.003231

186.4658 -29.773 2.4E-06 421.8429 -90.1212 0.241894 308.2018 -300.604 4.52E-09

572.1442 -304.088 2.43E-07 143.8506 -374.32 0 677.5523 -135.5 0.879348

516.0904 -319.693 3.52E-09 81.84187 -356.923 8E-11 844.5753 -186.098 0.000374

562.5571 -176.163 0.767984 89.94022 -276.098 5.22E-06 592.0162 -130.407 0.938434

164.359 -171.398 0.909021 66.27988 -369.402 0 55.13925 -193.156 0.512422

115.2654 -203.592 0.0964 555.8361 -92.2617 0.075097 461.4357 -117.096 0.836346

375.9229 -178.457 0.851545 196.3569 -330.956 3.2E-10 379.9488 -71.5906 0.021913

904.198 -144.775 0 551.787 -132.674 0.958934 691.7352 -167.817 0.931962

266.7265 -266.368 0.111471 91.20963 -378.755 0 486.3887 -192.902 0.691358

501.9507 -180.423 0.963928 365.1528 -134.968 0.586434

713.5147 -187.481 0.003133 627.5831 -264.248 0.000435
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90

X Y Attr

251.1426 -315.491 1E-11

107.2765 -119.831 0.001343

470.8049 -241.724 0.000281

23.51326 -269.153 1.07E-06

917.5931 -162.537 7.1E-10

893.9328 -255.842 0

179.0235 -291.817 3.37E-06

23.00982 -217.395 0.028426

112.5951 -182.075 0.809445

666.3034 -209.504 0.118699

926.9609 -184.369 6.8E-05

516.6153 -300.842 1.95E-07

817.7645 -272.581 2E-10

370.4728 -300.009 7.07E-09

263.5527 -193.394 0.299265

242.825 -290.222 1.6E-07

466.5364 -176.043 0.946545

372.902 -251.776 2.68E-05

462.4873 -216.456 0.004044

267.7547 -299.575 1.09E-09

213.4739 -68.5948 0.000114

804.1282 -185.068 0.001234

166.6566 -306.961 4.36E-07

339.5017 -70.5609 0.017662

613.4448 -227.774 0.030931

386.3189 -233.195 0.001272

572.4497 -179.143 0.705969

516.3959 -194.748 0.107089

809.4468 -247.312 1.66E-05

411.2487 -242.547 4.57E-05

X Y Attr

362.1551 -274.741 9.51 E-08

622.8126 -249.606 0.003901

147.1551 -212.4 0.00152

148.928 -366.814 0

448.3043 -184.138 0.920457

1.012681 -211.567 0.0322

418.4498 -311.753 4.26E-08

604.5805 -257.701 0.000951

500.8107 -140.774 0.947624

471.3283 -120.076 0.883286

321.6401 -211.414 0.163213

622.7893 -183.152 0.41821

237.8769 -360.736 0

592.9348 -310.767 1.58E-07

588.9953 -203.726 0.026342

825.9924 -271.896 7E-11

427.7943 -267.131 2.25E-06

112.8559 -61.2858 2.29E-06

639.3582 -274.189 6.82E-05

765.3861 -276.156 6.26E-08

818.0253 -151.791 6.99E-08

300.7595 -161.649 0.433806

732.4892 -146.699 0.011934

296.7104 -202.061 0.301922

110.0762 -204.355 0.105836

516.3727 -128.295 0.937519

375.4391 -337.159 3E-11

439.5912 -240.729 4.57E-05

219.4255 -262.737 0.000139

176.6574 -59.6909 8.07E-05

X Y Attr

229.2967 -336.327 0

122.3766 -229.711 6.48E-05

98.71623 -323.015 6.6E-08

650.6517 -196.029 0.0234

19.00217 -30.9246 0

228.7932 -284.569 3.98E-06

255.9993 -99.0938 0.001483

123.646 -332.368 7.95E-09

809.7076 -126.523 0

335.2099 -339.426 2E-11

741.5064 -263.366 1.58E-05

238.161 -306.4 1.24E-09

130.0811 -350.675 1.8E-10

510.9444 -213.504 0.005714

380.3639 -200.192 0.571123

363.0291 -58.2564 0.003534

572.8202 -311.9 6.01 E-08

350.5094 -327.807 2.1E-10

429.72 -167.139 0.879799

395.0503 -284.268 6.51 E-08

281.1052 -321.493 3.3E-10

661.9685 -184.322 0.059317

531.388 -171.011 0.846467

817.4787 -206.986 0.794439

451.6739 -279.92 3.5E-06

661.465 -132.564 0.885353

556.3178 -180.363 0.660373

303.7586 -124.673 0.039918

564.4161 -99.5382 0.229952

235.5574 -261.516 0.000226
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n o

< Y Attr X Y Attr X Y Attr

825.2819 -194.386 0.181693 416.5762 -145.273 0.797404 688.1999 -203.267 0.136119

605.1162 -216.394 0.041628 314.3616 -196.597 0.461819 461.0739 -208.687 0.095651

327.1239 -99.5936 0.138659 61.80244 -140.906 0.221584 647.2047 -154.636 0.982477

499.9689 -264.193 6.83E-05 322.4599 -115.771 0.159987 591.1509 -170.241 0.881556

614.9874 -289.984 3.76E-06 491.2558 -320.784 1.75E-09 295.8238 -312.504 1.3E-09

484.4069 -276.672 1.02E-05 213.2635 -203.983 0.064743 165.2433 -299.193 1.86E-06

35.34242 -149.686 0.561578 766.9718 -231.412 0.019723 21.37716 -103.533 7.33E-05

614.484 -238.226 0.009127 660.0517 -124.796 0.49866 928.7427 -179.266 2.91 E-06

845.6591 -192.393 0.00089 636.3914 -218.1 0.070901 124.2481 -250.561 7.54E-06

188.5763 -367.178 0 922.482 -254.076 0 417.299 -303.125 1.24E-07

107.0894 -321.673 8.14E-08 766.4684 -179.654 0.001357 957.7216 -148.206 0

108.8623 -75.0872 1.68E-05 856.0536 -144.334 0 230.6648 -305.419 5.38E-09

952.0757 -247.251 0 471.1412 -321.917 1.23E-09 636.9613 -229.358 0.034362

345.8594 -143.256 0.426865 669.4195 -146.628 0.979845 399.4607 -109.431 0.613879

855.0268 -214.224 0.142466 74.71593 -70.5671 6.34E-06 856.6236 -155.592 5.1E-10

396.965 -198.165 0.633104 259.0738 -263.101 0.2516 356.6926 -307.385 2.89E-09

828.6947 -183.215 0.000505 560.223 -234.839 0.004321 406.3993 -179.496 0.898187

37.48579 -35.8588 1E-11 112.9314 -262.268 1.09E-05 299.4792 -72.8806 0.005651

64.69186 -251.384 1.66E-05 6.011233 -155.652 0.561227 275.8188 -166.185 0.36121

206.2817 -240.871 0.000477 265.509 -281.408 1.53E-07 468.275 -277.893 6.78E-06

532.8641 -273.72 2.57E-05 261.4598 -321.82 0 495.4811 -92.4182 0.275778

109.2328 -207.845 0.030547 801.8824 -166.901 1.61E-05 363.1278 -325.692 2.4E-10

4.085509 -255.644 1.64E-05 74.82559 -324.114 2.46E-08 110.5687 -270.002 1.31 E-05

384.9488 -118.473 0.670944 418.7429 -97.8989 0.422912 899.5013 -211.185 0.004237

215.6494 -262.703 0.000158 603.1007 -290.432 3.86E-06 477.6428 -299.724 1.69E-07

254.3683 -105.162 0.00187 904.2499 -262.171 0 199.6505 -182.924 0.094443

237.0335 -364.226 0 138.4742 -175.925 0.918839 753.3588 -210.353 0.358272

131.9959 -264.572 2.34E-05 456.9583 -289.6 1.09E-06 646.4387 -103.737 0.001754

159.2019 -79.0969 0.000465 350.0382 -182.984 0.775082 236.093 -220.21 0.020224

26.84861 -312.371 4.14F-09 60.53302 -38.2496 1.23E-08 45.40968 -262.916 9.53E-07

775.2895 -256.68 7.18E-06 309.043 -134.353 0.079651 878.8832 -160.561 3.96E-08

238.4126 -319.429 1E-11 252.9892 -149.958 0.028075 241.4116 -282.454 3.64E-06

582.3298 -93.2142 0.020276 546.0401 -202.522 0.027255 476.6359 -196.208 0.663098
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141.3636 -286.403 8.42E-06 147.842 -197.757 0.026404 247.7803 -341.261 0

864.3713 -169.602 1.8E-07 98.74845 -229.951 0.00033 286.4992 -183.72 0.489158

36.21638 -334.202 3.3E-10 359.4059 -204.816 0.384543 206.7851 -292.629 1.79E-06

417.0797 -197.031 0.68203 765.7024 -128.755 1.19E-09

130

K Y Attr X Y Attr X Y Attr

357.4401 -233.487 0.003434 231.9356 -109.873 0.002445 246.0089 -289.643 1.55E-07

104.881 -177.797 0.860805 233.7085 -264.287 0.000158 455.8 -142.287 0.900754

569.004 -240.546 0.003586 811.0772 -198.412 0.514618 350.6527 -190.086 0.706177

975.3005 -164.486 0 705.9299 -246.211 0.002928 98.09357 -134.396 0.009506

256.342 -240.874 0.000933 85.79319 -109.04 0.000711 358.751 -109.261 0.443167

810.0504 -268.303 1.22E-08 303.6826 -281.859 7.09E-08 527.5469 -314.273 1.22E-08

679.4699 -254.991 0.001118 237.2542 -172.117 0.214664 249.5546 -197.473 0.184122

662.135 -113.055 0.011925 840.0561 -167.352 2.69E-06 800.3303 -221.377 0.104038

829.1581 -163.653 2.44E-06 50.62004 -174.411 0.8191 693.4102 -114.761 6.44E-05

446.0185 -94.6514 0.362686 456.9165 -98.3502 0.52 17.21976 -394.196 0

5.052309 -287.84 4.84E-09 281.7951 -128.578 0.005332 402.8982 -267.511 1.45E-07

728.06 -171.039 0.00093 176.6479 -176.377 0.076684 507.542 -167.954 0.546476

283.7009 -201.993 0.260798 291.6664 -202.167 0.279262 254.9829 -112.264 0.002628

176.7808 -95.3771 0.001332 184.7462 -95.5514 0.001337 515.6403 -87.1286 0.100343

215.4997 -338.836 0 161.0859 -188.856 0.093195 105.2947 -203.602 0.128274

439.2112 -224.657 0.001101 143.751 -46.9199 3.15E-06 107.0676 -358.016 1.2E-10

73.40642 -297.591 6.45E-07 353.5421 -300.564 6.16E-09 613.2592 -131.413 0.931199

283.1975 -150.235 0.087664 245.4622 -344.838 0 951.3544 -192.196 1.14E-06

178.0502 -198.034 0.027057 781.8357 -230.332 0.018064 168.2438 -365.015 0

926.4911 -142.343 0 845.9878 -133.901 0 101.8154 -255.272 2.84E-06

186.1486 -117.208 0.003797 144.3642 -352.225 8E-11 642.2381 -100.353 0.0015

776.8029 -233.682 0.008727 591.1524 -273.038 0.000104 655.5238 -282.701 7.71 E-06

354.9445 -322.221 3.4E-10 118.4275 -239.356 6.29E-06 916.1812 -257.566 0

14.57293 -55.2654 3.2E-10 550.1572 -224.406 0.006336 443.4564 -223.885 0.001057

630.6605 -232.849 0.026318 654.801 -124.849 0.560809 21.59792 -312.424 2.8E-09

523.7404 -126.233 0.935401 402.2419 -69.1591 0.012803 744.6056 -195.623 0.063456

296.6144 -131.653 0.012538 334.0406 -206.002 0.326065 297.3139 -223.052 0.029667

786.1707 -255.513 4.82E-06 252.5537 -160.497 0.128327 190.3938 -116.436 0.003662
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482.7452 -77.6017 0.036719 254.3266 -314.912 IE-11 211.7778 -217.959 0.014906

364.3122 -344.052 1E-11 831.6952 -249.036 2.06E-06 93.3449 -83.4101 5.77E-05

69.09472 -338.863 1.2E-09 106.4112 -159.665 0.879783 448.775 -286.129 1.75E-06

20.00119 -371.056 0 38.21 -296.508 4.48E-08 1.483313 -313.557 3.6E-10

218.2794 -195.767 0.120438 168.287 -258.061 6.75E-05 9.691324 -85.2792 1.04E-06

624.5759 -119.706 0.681251 198.4257 -76.1109 0.000277 353.6086 -260.064 8.08E-06

873.0859 -215.809 0.015951 66.07237 -309.385 7.68E-08 178.4872 -290.292 5.92E-06

109.083 -283.978 7.38E-06 814.5132 -253.694 2.04E-06 73.33995 -338.091 1.76E-09

344.3073 -197.733 0.550052 277.6363 -316.443 4.5E-10 454.2032 -200.92 0.458249

555.8712 -204.791 0.015143 180.5874 -283.417 1.15E-05 284.9039 -345.149 1E-11

328.7453 -210.212 0.240892 903.5951 -166.616 1.36E-07 996.3988 -200.415 0

529.5391 -173.782 0.780312 75.44013 -331.216 7.32E-09 243.9087 -296.518 1.13E-08

473.4854 -189.387 0.883857 456.3034 -194.045 0.770766 128.4084 -165.493 0.923261

444.003 -168.689 0.907732 287.0041 -338.275 3E-11 85.64033 -363.446 4E-11

47.57776 -318.339 

703.5007 -294.445

1 E-08 

7.34E-08

325.7229 -180.734 0.717167 771.702 -157.601 7.96E-06

150

< Y <Mtr X Y /Attr X Y Attr

452.8413 -276.282 5.01 E-06 402.4352 -312.772 2.28E-08 259.2021 -249.01 0.000281

149.4158 -98.3703 0.001256 244.6487 -83.9351 0.000452 494.4264 -162.765 0.866018

296.8277 -201.86 0.304598 905.2771 -217.98 3.61 E-06 92.17906 -198.413 0.294754

386.4129 -166.54 0.832078 139.5014 -131.734 0.001828 727.3743 -271.347 3.47E-06

1.500496 -344.123 0 254.5199 -157.525 0.087374 608.9414 -136.797 0.961276

619.4706 -127.668 0.866178 85.22054 -301.754 6.59E-07 579.459 -116.099 0.774378

537.9836 -82.1631 0.0209 123.9394 -144.213 0.111859 429.7708 -207.437 0.257945

592.5486 -258.807 0.000809 610.5631 -264.548 0.000417 7.912374 -295.977 2.15E-09

827.7729 -172.562 1.33E-05 41.29273 -249.598 6.1 E-05 730.92 -179.176 0.002058

145.257 -286.236 8.7E-06 188.7046 -353.087 0 283.6284 -206.605 0.174318

38.33685 -179.62 0.737427 357.5005 -157.1 0.663969 176.7083 -99.9891 0.001591

14.67651 -272.925 6.22E-07 588.6756 -111.267 0.534712 198.0923 -201.512 0.05018

300.7672 -308.9 1.79E-09 44X3846 -157.427 0.763886 79.65935 -66.9628 5.45E-06

144.7535 -234.478 0.000111 483.5283 -159.066 0.881343 435.0894 -269.681 3.7E-06

234.3388 -199.158 0.132697 598.5468 -184.856 0.398427 248.4552 -271.975 2.69E-05

39.60626 -282.277 1.18E-07 491.6267 -78.2407 0.036049 654.7517 -195.915 0.023452
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788.0471 -226.587 0.038236 81.28102 -194.714 0.483612 773.7978 -234.769 0.008085

575.9798 -167.77 0.917384 660.4226 -283.253 6.83E-06 837.9498 -138.339 0

173.7324 -203.418 0.016753 750.0078 -247.933 0.000585 414.3185 -72.4632 0.016172

492.2165 -317.092 3.1E-09 302.7162 -275.362 4.99E-07 136.3262 -356.662 6E-11

385.2964 -210.477 0.283963 172.1357 -262.05 6.78E-05 309.1713 -120.262 0.071136

92.85863 -62.2176 2.65E-06 90.64879 -216.545 0.008688 583.1144 -277.476 4.11 E-05

341.3686 -158.321 0.59474 92.42165 -370.96 IE-11 293.6093 -132.741 0.009962

285.3149 -173.926 0.490587 391.798 -188.284 0.826527 542.1192 -228.844 0.003809

578.3657 -226.49 0.014091 948.439 -219.237 7.1E-09 423.6863 -94.2946 0.381486

180.1676 -221.725 0.003004 431.1732 -229.094 0.000839 380.9182 -292.248 1.69E-08

131.0741 -253.919 1.37E-05 9.314723 -317.634 4.2E-10 65.97989 -86.4033 3.77E-05

391.7315 -228.784 0.005414 98.9 -282.314 6.01 E-06 592.4822 -299.307 8.22E-07

920.0067 -195.102 0.033956 178.1106 -121.646 0.005642 726.6084 -220.448 0.148453

282.5351 -316.995 5.9E-10 567.0722 -304.65 1.82E-07 316.2627 -336.921 5E-11

455.3802 -80.595 0.067629 81.0617 -88.6198 0.000104 685.6132 -171.816 0.893537

729.3233 -237.808 0.012137 38.29365 -286.574 8.38E-08 249.8343 -227.179 0.009258

502.1974 -243.229 0.000585 249.8576 -293.632 3.74E-09 63.20013 -229.473 0.001861

688.3281 -189.177 0.002803 208.8624 -245.001 0.000338 469.4966 -153.412 0.894153

632.2744 -204.782 0.059358 418.6535 -97.6446 0.41906 392.7152 -265.846 1.1E-07

925.3253 -257.346 0 375.8854 -295.598 1.25E-08 234.9286 -37.0095 2.06E-06

464.7479 -102.426 0.611639 60.94709 -89.7534 3.1 E-05 380.1955 -134.396 0.680033

478.0336 -284.775 3.18E-06 321.6046 -64.6184 0.004583 889.3629 -205.364 0.569717

738.6911 -259.64 5.53E-05 993.7458 -226.597 0 416.638 -171.683 0.89913

72.81049 -22.8514 1.19E-09 490.4005 -269.631 2.72E-05 848.3677 -156.733 3.4E-09

257.1684 -215.385 0.04373 212.4081 -152.83 0.018558 57.15877 -9.37672 5E-11

558.3176 -187.123 0.367576 382.3206 -313.905 1.73E-09 700.562 -255.032 0.000475

173.4051 -364.707 0 632.6034 -163.423 0.959844 448.0029 -199.342 0.550171

4.105795 -107.937 0.00043 918.6941 -199.398 0.004011 912.126 -262.091 0

25.48982 -209.46 0.101125 825.0596 -275.131 3E-11 59.10776 -376.839 0

970.4361 -225.065 0 602.7488 -291.037 3.81 E-06 916.2416 -181.179 7E-05

262.487 -277.629 3.24E-07 155.4572 -318.466 7.7E-08 278.77 -303.072 1.82E-09

802.9096 -122.709 0 416.1146 -293.331 3.14E-07 725.5583 -223.885 0.099651

75.85277 -279.923 2.21 E-06 22.20495 -180.841 0.656977 252.8334 -190.203 0.277989

482.1492 -203.862 0.068937 599.5736 -114.966 0.734452 684.5631 -175.253 0.517966
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Variogram Equation

Variogram Equations are specified in the format required by GSTAT. (Pebesma, 1999)

A  Nug(O) + B Sph(C, D, E )

where A  is the nugget, B  is the partial sill (sill -  nugget), C is the range, D  is the 

anisotropy angle and E  is the anisotropy ratio. Sph denotes a spherical variogram model.

Standard

30: 0.190 Sph(410, 90, 0.44)

50: 0.105 Sph(205, 90, 0.40)

70: 0.172 Sph(405, 90, 0.27)

90: 0.000925 Nug(O) + 0.125 Sph(455, 90, 0.39)

110: 0.0961 Sph(340, 90, 0.45)

130: 0.008 Nug(O) + 0.103 Sph(400, 90, 0.48)

150: 0.109 Sph(350, 90, 0.46)

Flowline

30: 0.185 Sph(440, 90, 0.40)

50: 0.121 Sph(220, 90, 0.45)

70: 0.174 Sph(285, 90, 0.47)

90: 0.000434 Nug(O) + 0.128 Sph(450, 90, 0.40)

110: 0.0945 Sph(350, 90, 0.42)

130: 0.006 Nug(O) + 0.100 Sph(375, 90, 0.45)

150: 0.112 Sph(375, 90, 0.45)
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Appendix F -  Detroit River Interpolation Inputs

Detroit River Sample Points

Upper Reach Middle Reach
Easting Northing % Fines Easting Northing % Fines

340525 4689888 2.19 326039 4679972 43.92
340525 4689888 2.47 326039 4679972 43.07
340525 4689888 1.57 326039 4679972 41.81
334337 4689203 4.38 326013 4680015 16.1
334337 4689203 6.01 326138 4679956 16.13
334337 4689203 3.06 326040 4680172 2.54
334288 4689191 3.64 328443 4686261 1.250938
334437 4689203 4.18 327412 4684361 0
334322 4689004 4.28 327349 4683743 4.637282
342012 4690026 6.933858 327445 4684911 0.47142
341265 4689461 33.28028 327445 4684911 0.117578
339866 4690879 0.772532 327685 4684445 0
340689 4690485 3.565918 328058 4684919 27.43215
340689 4690485 4.007568 328241 4685513 12.749
339735 4689632 2.137953 326497 4683108 0
340044 4689750 2.052124 326489 4682294 18.93592
340044 4689750 1.995885 326790 4683131 2.712032
341644 4690534 2.182494 326623 4683930 2.571042
341872 4691693 2.880253 327281 4684542 0.090827
336514 4690570 10.55328 325815 4679726 7.647174
335902 4689866 15.97602 326039 4679972 52.9991
336014 4689650 14.48919 326316 4681402 0.453515
336329 4690145 30.1092 324946 4679870 0
333961 4688833 5.39559 325061 4680283 11.12903
334337 4689203 6.586022 325210 4680549 31.73847
338700 4688664 4.647436 325235 4679862 0
338700 4688664 3.883052 326235 4681835 11.03231
335245 4689617 20.90395 325052 4679247 1.415701
334666 4688232 14.72603 325165 4679073 41.33333
335206 4688656 25.23452 325165 4679073 7.650926
336336 4688387 8.5 325165 4679073 24.09488
336861 4688637 0 325461 4679714 0.559843
339064 4688929 6.058394 325887 4681100 7.344973
337834 4690914 8.97598 325887 4681100 7.924985
337664 4689184 59.41176 325927 4680541 0
337976 4689071 0.382803 323429 4678367 12.78415
332740 4688196 11.89221 330631 4687575 1.094891
330631 4687575 1.094891
330915 4687127 0
330915 4687127 0
328443 4686261 1.250938

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lower Reach
Easting Northing % Fines

320376 4667135 1.63
320376 4667135 1.54
320376 4667135 1.95
320567 4668984 75.21
320407 4667096 2.76
320430 4667219 0.46
320459 4667317 0.41
320337 4659721 7.96
320769 4661772 16.41924
319633 4660188 2.969247
319797 4660314 2.814862
320017 4660195 1.017675
320017 4660195 1.086376
326196 4673436 54.57986
325207 4668554 64.68657
325207 4668554 63.8864
324584 4669090 2.901655
324896 4669943 35.16414
324896 4669943 35.48185
324898 4668876 22.62537
324984 4668676 17.61594
325854 4673722 44.95413
325533 4668879 36.84871
325627 4671975 11.71024
324019 4670807 30.62404
324395 4670942 11.87648
324395 4670942 21.09441
324395 4670942 21.11136
324985 4672077 22.13801
325171 4671674 3.085106
322978 4671822 3.130831
323762 4671460 35.63974
324580 4672546 46.7128
322568 4673914 31.33854
323453 4668586 20.85354
323586 4674175 22.91667
321547 4671180 56.78012
323056 4672283 5.045409
323268 4670552 8.975954
324508 4668357 2.675585
324508 4668357 2.768166
324855 4662280 57.41379
324855 4662280 57.26694
322412 4662476 72.53976
323328 4662375 62.53122

Easting Northing % Fines

323328 4662375 62.03704
324623 4664772 50.98684
325090 4667938 3.373313
323535 4666909 31.57208
320332 4667836 7.002999
320376 4667135 4.22942
322525 4663157 25.13795
322525 4663157 26.27178
322525 4663157 21.13127
319823 4664009 1.818182
319964 4664402 0.479677
320011 4663255 33.1117
319825 4665335 0.151
324600 4656532 13.57312
322023 4661246 19.94671
323465 4660802 8.497921
323994 4661069 48.62288
324293 4660463 53.1052
323676 4661683 4.663981
320123 4661687 0.986085
320338 4662073 17.74801
319135 4659201 2.318159
319184 4658306 1.792468
319593 4658774 15.14903
319593 4658774 17.88751
320352 4661404 6.654457
319777 4658737 7.911344
321153 4660779 11.05528
320306 4659752 10.50035
319171 4662640 2.53895
319288 4661395 18.59756
319552 4662458 2.841705
325052 4679247 1.415701
325165 4679073 41.33333
325165 4679073 7.650926
325165 4679073 24.09488
323429 4678367 12.78415
320551 4669003 67.71
320536 4669019 61.71
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Variogram Equations

Variogram Equations are specified in the format required by GSTAT. (Pebesma, 1999)

A  Nug(O) + B  Sph(C, D, E )

where A  is the nugget, B  is the partial sill (sill -  nugget), C is the range, D  is the 

anisotropy angle and E  is the anisotropy ratio. Sph denotes a spherical variogram model.

Standard

Upper Reach: 174.27 Sph(3000, 40, 0.21)

Middle Reach: 212.07 Nug(0) + 271.31 Sph(7820, 20, 0.16)

Lower Reach: 256.63 Nug(O) + 345.72 Sph (9000, 0, 0.41)

Flowline

Upper Reach: 132.08 Sph(1530, 90, 0.21)

Middle Reach: 121.89 Nug(O) + 144.57 Sph(7920, 90, 0.11)

Lower Reach: 234.104 Nug(O) + 292.392 Sph(9120, 90, 0.44)
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