University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

1974

An investigation of acoustically controlled turbulence amplifiers.

Gary W. Rankin University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

Recommended Citation

Rankin, Gary W., "An investigation of acoustically controlled turbulence amplifiers." (1974). *Electronic Theses and Dissertations*. Paper 1103.

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

AN INVESTIGATION OF ACOUSTICALLY CONTROLLED TURBULENCE AMPLIFIERS

A Thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical Engineering in Partial Fulfillment of the requirements for the Degree of Master of Applied Science at the University of Windsor

Gary W. Rankin

by

B. A. Sc. The University of Windsor, Ontario, Canada, 1971

Windsor, Ontario, Canada

ABSTRACT

The static and dynamic characteristics of shrouded, acoustically controlled turbulence amplifiers are investigated. The static characteristics study includes a variation of shroud diameter, gap length and supply flow conditions.

Existing analytical and empirical relationships are evaluated for the purpose of predicting these characteristics. It is found that the analytical procedure employed by Bell (Ref. 14) for unshrouded, flow controlled turbulence amplifiers reasonably describes the laminar jet pressure recovery of shrouded turbulence amplifiers. Bell's approximate method for quickly determining the maximum pressure recovered with a laminar jet is modified for operating points which are lower than the maximum. The turbulent jet recovery pressure given by Bell's procedure is not in agreement with the experimental results of this investigation.

A "jump" in the characteristic frequency occurs as the Reynolds number of the emitter tube is increased. The lower characteristic frequency can be predicted by an advanced Helmholtz resonator theory.

It is also shown that the acoustically controlled, unlike the flow controlled, turbulence ampfifier can be operated in the proportional mode over a limited range of " control variables.

A dynamic characteristic study is performed for

iii

one geometrical shape with varying supply flow conditions. Both the laminar - turbulent ("switch-off") and the turbulent-laminar ("switch-on") characteristics are investigated:

The "switch on" and "switch off" characteristics of the acoustically controlled turbulence amplifier are more equal and less erratic than the flow controlled turbulence amplifier. The existing theoretical and empirical studies of these response times, originally developed for the flow controlled turbulence amplifier, agree with the present experiments only in general trends.

1

my wife and parents То

69 ~

ACKNOWLEDGEMENTS

The author is grateful to Professor W.G. Colborne, Head of the Mechanical Engineering Department, for his interest and continuous support.

The author wishes to express his sincere gratitude to Dr. K. Sridhar for his supervision, generous aid and encouragement throughout the course of this study!

Thanks are also due to Dr. Z Reif and Dr. J. McCorquodale for their efforts in helping the author to better understand the problem.

The technical assistance given by Mr. O. Brudy and the staff of the Central Research Shop in constructing the apparatus is gratefully acknowledged. Thanks are also due to Miss Jane Adair and Mrs. D. Abbott for typing the manuscript.

The author wishes to thank his wife, Janice, and his parents for their support and understanding.

The work was financially supported through a Gulf Oil Canada Ltd. Graduate Fellowship and a Bell Canada Centennial Fellowship. TABLE OF CONTENTS

PAGE

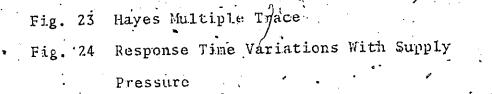
	. ,	· · ·
	ABSTRACT .	iii
•	ACKNOWLEDGEMENTS	V
	TABLE OF CONTENTS	vi
	LIST OF FIGURES	· viii
	LIST OF TABLES	xi
	NOMENCLATURE	xii
	CHAPTER I	1
	INTRODUCTION	1
	CHAPTER II	3
	LITERATURE SURVEY	3
	2.1 Flow Controlled Turbulence Amplifier	- 3
ţ	2.1.1 Analysis of Static Performance	3.
-	2.1.2 Dynamic Performance	5
	2.2 Acoustically Controlled Turbulence Amp	Lifier 🕅
	2.2.1 Analysis of Performance	7
	2.3 Jet Sensitivity to Sound	8
	2.4 Helmholtz Resonators	12
	CHAPTER III	× 14
•	EXPERIMENTS	14
	3.1 Objectives	14 -
	3.2 Test Facilities	′]4
-	3.2.1 Turbulence Amplifiers	14
	3.2.2 Test Facility	16

vi

6,

	· · · · · · · · · · · · · · · · · · ·		
		PA	GE
-	3.3.Experimental Procedure		18.
	3.3.1 Calibration		18
.*	3.3.2 Setting up the Turbulence Amplifie	r	19
٢	3.3.3 Static Characteristic Study		20
	3.3.4 Dynamic Characteristic Study		22
	CHAPTER IV	:	24
	RESULTS AND DISCUSSION		24
;	4.1 Static Characteristics		24
	, 4.1.1 Emitter Tube Characteristics		ň 24
		sure2	24
		· ·	27
		mental Proceedice18Calibration18Setting up the Turbulence Amplifier19Static Characteristic Study20Dynamic Characteristic Study22ND DISCUSSION24c Characteristics24Output Pressure versus Supply Pressure224Output Pressure versus Supply Pressure224Output Pressure versus Frequency27C Characteristic Study36ONS36DATIONS38ional Analysis81eainty Analysis81eical Methods93ional Data107S139	
	CHAPTER V		36
	CONCLUSIONS		36
	CHAPTER VI	¥.	38
	RÉCOMMENDATIONS		38
¢			39
	REFERENCES .	• .	43
÷		•	80
	TABLES	-	81 /
	· · · ·	-	् 81 <u> </u>
(84
•	•		91
/			93
,			107
•	, î		139
•	VITA AUCTORIS VII		

CREATEN STREET


ł,

ļ.	-	LIST OF FIGURES	D.4.65
The second	1		PAGE
гıg.	<u> </u>	Turbulence Amplifier Principle	43
		(a) "On State"	43
\frown	•	(b) "Off State"	43
Fig.	2	Basic Helmholtz Resonator	44
Fig.	3	Experimental Turbulence Amplifier and Support	45
Fig.	4	Test Facility	46
Fig.	5	Calibration Curve for (ROTA L10/400-6185)	
·		Rotameter	47
Fig.	6	Calibration Curve for (ROTA L2.5/100-3458)	
		Rotameter	48
Fig.	7 :	Response Time Definitions	49
• 4		Supply Flow Rate Versus Supply Pressure	⊾ 50
		Output Pressure Versus Supply Pressure	51
•	-	(a) g = 3.81 cm.	51
Χ.		(b) $g = 2.54$ cm.	52
• - •		(c) g = 1.27 cm.	53
		Non-Dimensional Laminar Pressure Recovery	54
Fig.	11	A Test of the Polynomial Fit.	55
Fig.	12	Non-Dimensional Gap for Transition Versus	
•		Reynolds number	56
Fig.	13	Output Pressure versus Frequency at Constant	j.
		Supply Pressure	57
		(a) $dc = 2.54$ cm., $g = 3.81$ cm.	57
۰.		(b) $dc = 2.54$ cm., $g = 2.54$ cm.	58
		(c) dc = 2.54 cm., g = 1.27 cm.	59

viii

•	ч. •		PAGE
عر		(d) dc = 1.27 cm., $g = 3.81$ cm.	60
5		(e) $dc = 1.27 \text{ cm}$, $g = 2.54 \text{ cm}$.	61 `
		(f) $dc = 1.27$ cm., $g = 1.27$ cm.	62
•			. 6 ⁻ 3
	•	(h) $dc = 0.95$ cm., $g = 2.54$ cm.	64
		(i) $dc = 0.95$ cm., $g = 1.27$ cm.	·65
	Fig.	14 Strouhal Number Versus Non-Dimensional	
		Shroud Diameter and Gap Length	66
Ø	Fig.	15 Output Pressure Versus Control Sound Pressure	
		Level at the Characterisitic Frequency	67
		(a) $dc = 2.54$ cm.	67
•	•	(b) $dc = 1.27$ cm.	68
		(c) $dc = 0.95$ cm.	- 69
	Fig.	16 Proportional Mode of Operation	70
	Fig.	17 Non-Dimensional Turbulent Pressure Recovery Data	71
	Fig.	18 Output Pressure Versus Frequency for Different	· · ·
		Reynolds Numbers :	72
	N	(a) $dc = 0.95 cm$.	72
		(h) $dc = 2.54$ cm.	73
	Fig.	19 Characteristic Frequency Variation with	•
	. [.]	Reynolds Number	74
	Fig.	20 Comparison of Characteristic Strouhal Numbers	I
		with Jet Sensitivity Information	75
	Fig.	21 Effects of Control Sound Variables on	•
.4	۶ ^۳ .	Response Time	76
	Fig.	, 22. Multiple Traces of Switching	77
			· · ·

ix.

PAGE

LIST OF TABLES

хi

I Summary of Test Program

7

80

Page

Y.

.

NOMENCLATURE Area (m^2) A B end correction for the Helmholtz resonator neck (m) B.N.L. background noise level (db.) speed of sound (m/sec.) С Non-dimensional cavity diameter dc/ds D, diameter (m) d frequency of sound (Hz.) f non-dimensional gap length g/ds G gap length (m) g effective depth of Helmholtz Resonator (see Equ. D.4.1)(m) h laminar jet matching parameter К non-dimensional length ℓ/ds L length (m) l. number of vent holes 、 N gage pressure (N/m^2) Ŕ flow rate $(m^3/sec.)$ Q Reynolds number of the supply tube Usds Re St Strouhal number fds temperature (^oC) Т laminar - turbulent delay time (m.sec.) Tl.d. laminar - turbulent fall time (m.sec.) Tf. Tt.d. turbulent - laminar delay time (m.sec.) Tr. turbulent - laminar rise time (m.sec.) average velocity (m/sec.) U volume (m³) v

xii

 β momentum correction factor

 λ wavelength (m)

- δ displacement thickness at the nozzle exit (m)
- μ dynamic viscosity (kg/sec.m.)
- v kinematic viscosity $(m^2/sec.)$
- ρ density of fluid $(\frac{kg}{m^3})$

Subscripts

a ambient

c control

char. characteristic

c.l. centerline

m.s. maximum sensitivity

n Helmholtz resonance neck

o output

r Helmholtz resonance

s supply

v venthole

],

CHAPTER I

In general the principle of the turbulence amplifier is based upon the fact that a normally laminar jet can be made turbulent by subjecting it to certain external disturbances. The method employed to disturb the laminar jet is one criterion used to distinguish between different types of turbulence amplifier.

The basic configuration of the turbulence amplifier consists of two, small diameter, tubes located on a common centerline, with a gap between them, as shown in Fig.1(a). The longer tube serves as a supply tube (emitter) from which a laminar jet is directed across the gap towards a second (collector) tube. This laminar jet will naturally become turbulent at some distance downstream and therefore the gap spacing must be less than this natural laminar length. The laminar jet hitting the collector causes a relatively high pressure to be recovered. This condition is referred to as the "on" state of the turbulence amplifier.

The presence of a control signal disturbance causes the laminar-turbulent transition position to move towards the emitter. Usually, only a small disturbance is needed to cause the laminar-turbulent interface to be shifted to a stable position close to the emitter exit as shown in Fig. 1(b) Because the turbulent jet spreads more than the laminar jet the pressure that is recovered at the receiver is considerably less. This condition is referred to as the "off" state of the turbulence amplifier.

The most common methods used to disturb the laminar jet are by impinging a control jet onto the main jet, transversly, near the emitter exit or by subjecting the main jet to sound at this position. These types of turbulence amplifiers are referred to as "flow controlled" and "acoustically controlled" respectively.

Another distinct classification can be made depending upon whether the main jet is enclosed in a protective cover referred to as a "shroud".

The main objective of this study is to investigate some of the characteristics of "shrouded, acoustically controlled" turbulence amplifiers. These characteristic, may be discussed in terms of two types, static and dynamic.

The static characteristics involve the determination of the output pressure variation with such variables as the supply pressure, gap length, shroud diameter, control sound pressure level and frequency.

The dynamic characteristics involve measurement of the switching times from the "on" to the "off" state and vice versa for certain static characteristic settings referred to as operating conditions.

CHAPTER II

LITERATURE SURVEY

The material presented in this section summarizes briefly the existing literature which is pertinent to the study of acoustically controlled turbulence amplifiers.

2.1 Flow Controlled Turbulence Amplifier

Auger (Ref. 3) introduced the turbulence amplifier in 1962. In this and his subsequent papers (Ref. 4 and 5) emphasis was on describing the basic principle of the device and possible means of control (including acoustic). He also listed several advantages, disadvantages and possible applications. However, no rational analytical or experimental procedure was given to predict the operating characteristics of the device.

Because of the relative ease with which an operable turbulence amplifier could be constructed, a variety of devices were manufactured, marketed and applied. These included both planar and axisymmetric, shrouded and unshrouded configurations.

2.1.1 Analysis of Static Performance

Oels, Boucher and Markland (Ref. 30) were the first to publish results of a systematic experimental study of axisymmetric, shrouded and unshrouded turbulence amplifiers They presented some design guidelines concerning the emitter length to diameter ratio L and the maximum output pressure s

Verhelst (Ref. 41) presented an experimental design procedure for choosing the operating conditions of an amplifier of certain fixed geometry. However, if the geometry was changed a new set of experimental curves was required to determine the operating points and predict the amplifier performance.

Bell (Ref. 13 and 14) was the first to consolidate theory and experiment to produce an analytical procedure that reasonably describes the unshrouded, flow controlled turbulence amplifier. He separated the 'turbulence amplifier into its characteristic sections considering the tube flows,. laminar jet, turbulent jet and receiver pick up. To model the flow in the tubes (emitter, collector and control) of the amplifier, which in most cases is developing, he used Hornbeck's (Ref. 26) open form solution. To avoid the open solution he interpolated from a table given by Hornbeck.

For the laminar jet he used Schlichting's (Ref. 34) point source model, employing centerline velocity matching to approximate the jet issuing from a source of finite size.

For the turbulent jet he used the Goertler jet model (Ref. 34) with the condition that the virtual origin was at the jet exit. This was to account for the fact that the control jet which caused the jet to become turbulent was located at a distance of 2 nbzzle diameters downstream, and the exact position where the turbulent jet began, after the control, was not accurately known.

Bell calculated the blocked load output pressure in the receiver knowing the centreline velocity of the jet at the mouth. This decision was based on previous work cited in his paper.

The only characteristic which could not be predicted analytically was the natural laminar length of the jet. To aid in determining this value he presented his experimental results and those of two other investigators. Other researchers such as Gradetsky (Ref. 22), Vaz (Ref. 40), Marsters (Ref. 27) and McNaughton and Sinclair (Ref. 28) have studied this problem and can be consulted for further information.

The computer program that was written to perform calculations using Bell'S analyzical procedure is given in Appendix D.1.

2.1.2 Dynamic Performance

.***-**

Several early investigators (Ref. 3,4,5, 25 and 41) quoted approximate values for the switching times of flow controlled turbulence amplifiers.

Siwoff (Ref. 35) demonstrated that by "inbuilding" an edge between the emitter and collector such that this edge almost touches the laminar jet, the switching time could be reduced.

Hayes (Ref. 23) was the first to perform a comprehensive experimental study of the geometrical and flow variables affecting the response time. He also developed an analytical

.

model to predict the switching times of turbulence amplifiers. The resulting equations for the model are presented in Appendix D.2.

Experiments indicated that the shroud geometry of the amplifier affected the switching times considerably. The laminar-turbulent switching time was not equal to the turbulent-laminar time. This difference increased as the gap length was made larger or the shroud diameter smaller. It was also noticed that the turbulent-laminar switching time was quite erratic. This uncertainty increased with gap length and decreased with shroud diameter.

Abramovich and Solan (Ref. 1) found experimental correlations for the laminar-turbulent and turbulent-laminar switching times for a jet and described how these could be applied to the flow controlled turbulence amplifier. The correlations obtained are given in Appendix D.3.

2.2 Acoustically Controlled Turbulence Amplifier

Auger (Ref. 5) nopiced that his turbulence amplifier was sensitive to sound at frequencies of approximately 8 KHz and the sensitivity to sound increased with a larger gap between the emitter and collector. He delt mainly with applications of the device in the remainder of the paper.

Generally, in the literature, two attitudes were prevalent regarding the sensitivity of the turbulence amplifier to sound. The first one involved the identification of the problem areas of a flow controlled turbulence amplifier

(response to external noise) (Ref. 12 and 23). The other involved a direct use of the phenomenon as an acoustic-fluidic transducer or a switch. In this survey emphasis is given to the papers concerning the second attitude mentioned.

Also, some investigators studied the bistable fluid amplifier as an acoustic-fluidic switch (Ref. 15, 21, and 39). However, these references will not be discussed as they do not pertain to the turbulence amplifier.

2.2.1 Analysis of Performance

In 1968 Gradetsky (Ref.22) experimentally studied two acoustically controlled turbulence amplifiers. He measured the output pressure drop with control sound over a frequency range from 200 - 10,000 Hz. At the same time the sound pressure level inside the cavity was measured. He noticed that the output pressure dropped appreciably at resonance conditions inside the cavity. However, these resonant frequencies did not correspond to those predicted using the basic Helmholtz formula (without the correction factors).

Nomota and Shimada (Ref. 29) studied what can best be described as an electric-fluidic transducer based upon the principle of acoustic control of a laminar jet. They showed that the laminar jet could be sensitive to frequencies up to 50 KHz. The sound pressure levels used in the study were not measured. Also it was noted that the acoustically controlled. turbulence amplifier switching time was small, without giving any numerical values.

Beeken (Ref. 11) described the commercial form of an acoustically controlled turbulence amplifier and an acoustic generator. He mentioned possible methods of using these devices in various applications.

Tryburcy (Ref. 37) did a more comprehensive study of displacement and proximity sensing applications. A generator and sensor similar to Beeken's were used. He studied the maximum separation distance and the sensitivity of the devices as a combined unit.

2:3 Jet Sensitivity to Sound

As mentioned by Rayleigh (Ref. 32) the acoustical sensitivity of jets has been the subject of scientific study since 1858 when Leconte first noticed the "jumping" nature of a coalgas flame in response to certain notes being played on a musical instrument. Initially, the phenomenon was associated only with burning jets. However, it was shown by Tyndall that combustion was not a necessary condition for the phenomenon. Rayleigh's personal contribution was to theoretically show that inviscid plane jet flows are always unstable.

Subsequent to these early investigations, a considerable amount of work was done on both two-dimensional and axisymmetric jets. Although there is a similarity of behaviour in both cases, emphasis it on the axisymmetric case in the remainder of this section because of the present experimental arrangement. Papers concerning the instability of axisymmetric jets due to

very small internal disturbances are included because of their direct relationship to the instability caused by sonic disturbances.

Batchelop and Gill (Ref. 7) solved the inviscid stability equations for an axisymmetric parallel jet. They determined that a point of inflection in the velocity profile is a necessary condition for any disturbance in the jet to be amplified. Such a point always exists downstream in a jet. This condition occurs closer to the nozzle exit for a flat velocity profile than for a parabolic one.

Viilu (Ref. 42) experimentally determined, using flow visualization, that for a real jet, a minimum Reynolds number exists below which the jet is always stable to small disturbances. He found this value to be approximately 11.

Freymuth (Ref. 20), using a hot-wire technique, experimentally studied the growth of small sonic disturbances in a jet issuing from a nozzle with a flat velocity profile except for the boundary layer. He noticed that transition of the jet to a turbulent state begins very near the nozzle exit. The effects of jet supply pressure, compressibility, viscosity and sound frequency were investigated in terms of nondimensional parameters. The characteristic length and velocity used were the local momentum thickness and the centerline velocity respectively. The only term which had an important effect on the transition was the Strouhal number. The wavelength of the vortices produced in the jet increased as the Strouhal number decreased. Becker and Massaro (Ref. 9) used smoke photography, stroboscopic observation and a light scattering technique to study a jet emerging from a nozzle. The displacement thickness at the nozzle exit (δ) could be determined from the experimental correlation shown below:

 $\frac{\delta}{ds} = \frac{0.9}{\sqrt{Re}}$

<u>ب</u>^_

They noticed that as the jet velocity increased, the maximum sensitive frequency increased in a stepwise manner. They attributed this to resonance effects in the supply tube. A correlation for the Strouhal number of maximum jet sensitivity and the Reynolds number was found and is given below:

-2.1

---2.2

$$St = \frac{fmsds}{U} = 0.012\sqrt{Re}$$
; 1000

Their Strouhal number was based on the frequency of sound for maximum sensitivity to the sound, the jet average velocity and the diameter of the jet.

They also measured the growth and frequency of the vortices that occur in the jet due to natural causes and found that the above correlation also held for this case. Hence, the effect of sound is maximum when the sound wave-length is approximately equal to that of the vortices which occur naturally (λn) . A correlation for λ n was found as well as for lb, the wave-breaking length defined as the distance from the nozzle exit to the first vortex. These expressions are given below:

107 / Re It was also noted by observing equations 2.1 and 2.2, as the characteristic length in the Strouhal choosing number that this value would be a constant and independent of Reynolds number. It was then speculated that because a parabolic velocity profile has a constant ratio of displacement thickness to nozzle diameter, the Strouhal number based on the diameter of the jet should be the constant.

11

2.

2.4

A discussion of the jet issuing from a square-edge orifice was also given. In this case it was pointed out that in the flow through an orifice there would be an eddy between the shoulder and the separating flow rounding the shoulder. The eddy size would be proportional to the width of the orifice wall. They postulated that this wall dimension might determine the displacement thickness at the jet exit and hence be independent of orifice diameter.

Such a case was studied by Beavers and Wilson (Ref. 8) and they found the Strouhal number based on orifice diameter to be a constant value of 0.63 over a Reynolds number range of 600 to 3200.

Bell (Ref. 12) studied the sensitive frequency range of round tubes of various ℓ s/ds. However, he did not

determine the particular frequencies associated with maximum sensitivity. Jet sensitivity was indicated by the decrease in total pressure measured on the centerline of the jet at the downstream end of the laminar jet length. He found an upper Strouhal number limit of approximately 0.5. The lower limit increased with Reynolds number:

2.4 Helmholtz Resonators

The Helmholtz resonator shown in Fig. 2 essentially consists of a relatively large cavity with a narrow opening (neck) connecting the fluid inside to the surrounding medium. When the opening is subjected to an acoustical signal the frequency of which corresponds to the natural frequency of the resonator, the amplitude of the sound signal inside the cavity increases above that of the impressed sound.

A theoretical model of the resonator was developed about one hundred years ago, according to Rayleigh (Ref. 32) and is given below.

 $f = \frac{c}{2\pi} \int \frac{An}{Vc \ell n}$

This is essentially a lumped parameter model assuming that the only mass being accelerated is in the neck of the resonator. The fluid inside the volume is considered as a spring and the resonant frequency is considered to be independent of the shape of this cavity volume.

Not long after this formula was developed it was found to be in considerable error in predicting the resonant

้าว

frequency when the length of the neck was short. This was attributed to the fact that the fluid just inside and that just outside of the neck was also undergoing some acceleration. A correction factor was added as indicated below, (Ref.36)

$$f_{r} = \frac{c}{2\pi} \sqrt{\frac{An}{Vc (\ell n+B)}}$$

It was shown that for necks approaching the configuration of an orifice in a plate the value of $B = \frac{\pi dn}{(\text{Ref. 36})}$.

⁴ Alster (Ref. 2) showed that the shape of the resonator does affect the resonant frequency and developed a complicated theoretical formula to account for this. The general formula that was developed has the restrictions that any dimension of the resonator $< \frac{\lambda r}{4}$ and h dn. The particular expression for a circular cylinder with a centred lateral hole along with the definitions of terms used are given in Appendix D.4.

2.6

CHAPTER III EXPERIMENTS

3.1 Objectives

Although acoustically controlled turbulence amplifiers can be obtained commercially, little work has been published on a systematic experimental investigation of this device.

The present investigation aims to provide information of primary importance to the operation of shrouded, acoustically controlled turbulence amplifiers. This involves the determination of:

- (a) the effect of the shroud on the output pressure with no sound.
- (b) the control sound frequency to which the device is most sensitive (denoted as the characteristic frequency) as a function of the shroud geometry and flow variables.
- (c) the effect of the sound pressure level on the output pressure of the device at the characteristic frequency.

(d) the dynamic switching times .

3.2 Test Facilities

3.2.1 Turbulence Amplifiers

To accompaish the objectives described in the previous section three turbulence amplifier shrouds were designed and fabricated. An axisymmetric, as opposed to a planar, geometry was chosen because of the manufacturing ease and availability of theoretical analyses.

The shrouds are identical except for the diameter and made of plexiglass. Mach consisted of two sections, a barrel and an end plate. A schematic diagram with pertinent dimensions is shown in Fig. 3.

15

The barrel was made so that it fit tightly over the emitter tube at the lowest position. To allow for fine alignment of the emitter and collector the hole for the emitter tube, in the barrel, was drilled slightly larger than the emittor outside diameter over approximately 7/8 of the length of the hole.

In order to provide a means of moving the barrel for alignment two sets of thumb screw tighteners were attached to the end plate with an angle of 120° between them. The other ends of the thumb screws were rigidly attached to the settling chamber which is described later.

In order to vary the gap length between the emitter and the collector the hole for the collector was machined slightly larger than the tube. A set screw was provided for fastening the collector.

A modified DISA subminiature hot-wire (5 micron dia.; 0.45 mm. length) was mounted such that the hot-wire was on the centerline of the collector, approximately 0.25 mm. in front of the mouth. The hot-wire was also held in position by a set screw fastener.

3.2.2 Test Facility

Figure 4 shows a schematic diagram of the general experimental facility that was used to test the amplifiers. Air from the building compressed air facility was passed through a 3 micron filter, pressure regulators, needle valve and rotameters before entering a large settling chamber (approximately 15.24 cm. dia.; 50.8 cm. length) which contained screens, flow straighteners and pressure taps connected to an inclined manometer for measurement of the supply pressure (Ps). A belimbuth entrance led to the inlet of the emitter tube of the turbulence amplifier. Further information concerning the settling chamber, belimouth and emitter tube construction can be found in Ref. 40.

The output pressure (Po) was measured by connecting the collector tube to a second inclined manometer.

The control sound was provided by passing the signal from a sine wave oscillator through an electronic switch power amplifier and speaker. The frequency of this signal was measured with an electronic counter. A speaker was mounted on a tripod (not shown in Fig. 4) in such a way that it was aligned with the control hole opening of the turbulence amplifier and approximately 5cm. in front of **it**. A trigger signal, useded in the dynamic response tests, was taken from the electronic switch.

• The sound measuring equipment consisted of a standard B&K microphone (Type 4138), preamplifier (Type 2618) and measuring amplifier (Type 2607). The microphone was held in position approximately 3mm. in front of and 2mm. to the side of the control opening. The microphone was secured by means of a specially designed holder (not shown in Fig. 4) which fastened onto the settling chamber. The holder allowed positioning of the microphone at various positions in front of the control opening. A traverse of the area arounk the control opening indicated a uniform sound field, hence, the position of the microphone mentioned previously. Was found to be acceptable.

The signal from the measuring amplifier was displayed on one channel of a dual beam oscilloscope. The second channel was connected to a DISA Type 55MIO hot-wire anemometer for the dynamic tests.

In order to provide a controlled acoustic environment the turbulence amplifier the items shown within the dashed ' for lines in Fig. 4 were kept inside a "soft" room enclosure. The tubes and wires required for the auxiliary equipment, that was kept outside of the room, were passed through a small hole This hole was then plugged with plasticine. in the enclosure. The "soft" room enclosure was a modified "walk-in" refrigerator. The inside dimensions were 2.79 m. by 3.38 m. by 2.29m. high. The walls, ceiling, floor and door of the refrigerator consisted of thin sheets of steel separated by approximately 7.62 cm. of styra-foam insulation. In addition to the existing structure approximately 7.62 cm. of polyurethane foam was adhered to the inner walls and ceiling of the refrigerator and also around the refrigeration unit which occupied one corner of

the room. The same thickness of foam was laid on the floor, however, it was not adhered in order to facilitate movement of the tripod and settling chamber. Both the tripod and settling chamber were sitting solidly on the main floor of the refrigerator with polyurethane foam around them.

18

A complete list of the standard equipment and instruments mentioned in this section is given in Appendix A along with the pertinent information concerning them. 3.3 Experimental Procedure

The material in this section naturally falls into the following categories; calibration, setting up the turbulence amplifier with alignment of the emitter and collector, static characteristics and dynamic characteristics. The geometrical variables and a summary of the test programme are given in Table I.

3.3.1. Calibration

The three types of equipment which are considered in this section include the rotameters, sound measuring equipment and the hot-wire.

Two rotameters were used in this study, the ROTA L10/400 - 6185 and the ROTA L2.5/100 - 3485. Both of these were calibrated by installing a precision wet test meter in series with them. The calibration curves for these two rotameters are shown in Fig. 5 and 6.

The sound measuring equipment which required calibration included the B&K microphone, preamplifier, and measuring amplifier combination. The procedure that was used

£

is a standard one given in Ref.6 using the B&K Type 4220 Pistonphone and therefore will not be repeated here. This calibration was performed each time the equipment was used.

In this study it was not necessary to calibrate the particular hot-wire anemometer to obtain a relationship between velocity and voltage because velocity was not actually measured. Only time readings were taken, hence, it was only necessary that the hot-wire and anemometer respond fast enough. Therefore, the standard procedure given in Ref. 18 for adjusting and measuring the time constant was performed. The time constant measured was approximately 2 microseconds.

3.3.2 Setting up the Turbulence Amplifier

A standard procedure was developed for setting up the turbulence amplifier shroud on the test stand and aligning the emitter and collector. This procedure was followed for each turbulence amplifier to assure consistency.

After a particular shroud was fitted onto the common emitter tube, the exit of the emitter tube was observed under a microscope to determine if any dirt particles were present. Any such particles were brushed away using a small, clean paint brush of the type artists use.

The emitter tube-shroud assembly was then bolted onto the settling chamber using vaseline as a sealant.

The dimensions C and D in Fig. 3 were measured using a vernier caliper and the dimension E calculated to obtain the required gap setting. This value was then set by positioning the collector tube and fastening it with a set screw. For the static characteristic study the hot-wire hole was plugged so that the inside surface was smooth. For the dynamic characteristic study the hot-wire was positioned at a small.(but safe) distance from the mouth of the collector (approximately 0.25 mm.). It was centered over the opening by observing the setting under a microscope.

In both cases the end plate was then attached to the shroud by means of three screws, two of the screws were used to secure the adjustable thumb screws to the shroud as shown in Fig. 3.

The supply pressure was then increased until the output pressure dropped, indicating that the jet had become turbulent. The collector tube and shroud were moved by means of the adjustable thumb screws until the output pressure rose above the value before the drop. The supply pressure was increased again until another output pressure drop occurred. This procedure was repeated until it was not possible to increase the output pressure by any further adjustment of the alignment.

This was an extremely tedious procedure, taking as long as 3 hours to be reasonably sure that the proper alignment had been achieved.

3.3.3. Static Characteristic Study

Ŷ

(A) Output Pressure wersus Supply Pressure

For all the geometrical combinations given in Tables I, the ouput pressure P_0 and supply

flow rate were measured for different values of supply pressure Ps. This was done until Po dropped and began to increase again. •Results from these tests were used to obtain the Po versus Ps plots and select the different operating conditions for Ps. Output Pressure versus Sound Variables (Constant Re) (B)

With Ps set at a particular value, Po was measured for different values of the control sound frequency f and pressure level Pc. For all the geometrical combinations, the conditions used were: $P_s = 660 \text{ N/m}^2$ (Re = 895); Pc = 90, 100, 110, and 120 db; and 170 < f < 18000Hz. This portion of the investigation was done with the specific aim of holding the Reynolds number constant, so that the effects of shroud geometry could be brought out more clearly.

(C)

ŧ

Output Pressure versus Sound Frequency (Different Re)

For a given value of Pc, Po was measured for different values of f and Ps or Re in order to study the Reynolds number effects. However, this type of experimentation was carried out for two geometrical configurations only. With the $d_c = 0.95$ cm. and g = 1.27 cm. configuration Pc = 110 db. and for the dc = 2.54 cm. and g = 3.81 cm. configuration Pc = 100db.

It should be noted that the ambient pressure, temperature and noise level were measured at the beginning of all the tests mentioned above. 3.3.4 Dynamic Characteristic Study

This study was conducted only for the dc = 2.54 cm. and g = 3.81 cm. geometrical combination.

The dynamic characteristic study consisted of the measurement of four response times, characteristic of the turbulence amplifier. These times are the laminar-turbulent delay time Tl.d., laminar-turbulent fall time $T_{f.}$, turbulent-laminar delay time Tt.d. and the turbulent-laminar rise time $T_{r.}$ and are defined in Fig. 7. These definitions are similar to those used by Hayes (Ref. 23).

The response times were measured by photographing the trace of the hot-wire signal and the microphone signal which were simultaneously displayed on the screen of the dual-beam scope. At least three traces were photographed for each experimental condition studied. Slides were made from the film and displayed on a screen for measurement.

Such measurements were taken at a supply pressure of 1120 N/m² (Re = 1244), with control sound pressure levels of 100, 95 and 90 db. Five frequencies were chosen for study, the characteristic frequency (3100 Hz) and two frequencies on each side of this (2200, 2600, 3700 and 4400 Hz).

To investigate the effects of Reynolds number, measurements were also taken at a frequency of 3100 Hz and

2.2

sound pressure level of 100db for additional supply pressures of 1220 N/ $_{\rm m}^2$ (Re = 1332), 1030 N/ $_{\rm m}^2$ (Re = 1153) and 834 N/ $_{\rm m}^2$ (Re = 991).

Ð

CHAPTER IV

RESULTS AND DISCUSSION

In some of the figures discussed in this chapter a few data points have been omitted in order to avoid overcrowding. However, this omission does not affect the interpretation of the results.

4.1 Static Characteristics

Because of the large number of readings the university I.B.M. 360-65 computer and the on line Calcomp 565 plotter were used to reduce and plot the experimental data. 4.1.1 Emitter Tube Characteristics

The variation of the supply flow with the supply pressure is shown in Fig. 8 along with Bell's prediction. This characteristic is not of much importance to this study as the emitter tube was not altered throughout the experiments. However, it does serve to show that the analytical procedure given by Bell for predicting the emitter tube characteristics holds for this case with about 7.5% difference from the present experimental data.

4.1.2 Output Pressure versus Supply Pressure

The dimensional plots of the output pressure versus the supply pressure for the various diameter shrouds used and a gap setting of 3.81 cm. is shown in Fig. 9 (a). Bell's analytical procedure was used to calculate the laminar recovery pressure for this case and is shown as a dashed line. It should be noted, however, that the supply pressure

at which transition occurs cannot be predicted from the analytical procedure. Similar plots for gaps of 2.54 and 1.27 cm. are shown in Fig. 9(b) and 9(c) respectively.

It can be seen that the laminar pressure recovered compares reasonably well with the analytical result having a maximum difference of approximately 12%.

To obtain a reasonable estimate of the output pressure for a given turbulence amplifier Bell suggested an approximate graphical method (Ref. 14). He plotted P_0/P_S versus R_e/KGL_s , using only those values of P_0/P_S near the P_0 versus Ps peak. In this method it is assumed that the amplifier is to be opened near the peak. In some cases this may not be desirable. It was decided to attempt to obtain a correlation for the laminar pressure recovery without the above mentioned restriction.

A plot of P₀/Ps versus R_e/KGLs was made as a first attempt. This graph is shown in Fig. 10. In the present investigation L_s is a constant and the jet matching parameter K only varied 2.5% according to Bell's procedure. Hence both were considered constant. The lines through the data points are Bell's prediction for each gap length. Obviously, these scaling parameters are not adequate to describe the phenomenon.

It was decided to attempt a correlation of the form $P_O/Ps = ARe^B G^C$. Multiple linear regression yielded:

 $A = 1.14 \times 10^{-4}$

A plot of this correlation along with the data points indicated that the exponent C = -0.27 is adequate to merge the three curves in Fig. 10 into one. Further the Reynolds number dependence is not of the form indicated above.

B = 1.2

C = -0.27

An attempt to fit a curve of the form

 $G^{+0.27}$ $P_0/P_S = A + BRe + CRe^2 DRe^3 + --- -4.1$ was undertaken using a standard I.B.M. program package. A second order polynomial was indicated with no further improvement obtained by going to a third order. The constants were

 $A = -0.2^{\circ}$

 $B = 8.3 \times 10^{-4}$

A plot of the experimental $G^{0.27}$ Po/Ps versus the $G^{0.27}$ Po/Ps estimated by the equation is shown in Fig. 11 indicating that the agreement is good.

 $C = 1.22 \times 10^{-7}$

Although the different laminar-turbulent transition lengths cannot be predicted analytically, they can be compared with correlations and the data found by other investigators. A method of indicating this comparison is to plot G for transition versus Re. This plot is shown in Fig. 12 and contains curves found for free and shrouded jets. े.

It can be seen that even for the unshrouded free jet, large discrepancies exist not only in the magnitudes but in the shapes of the curves. The free jet transition depends upon a large number of variables such as the entrance conditions of the supply jet, ambient noise and the method of measurement. These are not taken into account in a simple plot of the type shown in Fig. 12. It would be expected that the present data would best be described by Vaz's (Ref.40) correlation, due to the fact that the settling chamber, bellmouth and supply tube used in that experiment were also used in the present study. However, a large discrepancy exists in this particular comparison also, indicating that the shroud has a significant effect. 4.1.3 Output Pressure versus Frequency

Effects of Geometrical Variables (Re = constant) (A)

The dimensional plots of ouput pressure versus the sound frequency at various control_sound pressure levels and a constant supply pressure of M/m^2 (Re = 895) for all the geometrical configurations tested are shown in Fig. 13. The straight dashed line is the value of Po for the turbulent jet obtained from Bell's procedure. It can be seen that in some of the plots there are two and in other where is one substantial frequency range where the output pressure drops significantly. Also it is noticed that as the congrol sound pressure level is reduced, the gensitive frequency range becomes narrower and in some cases disappears.

The following points can be investigated using the information from these plots:

- the variation of the characteristic frequency (defined in Section 3.1) with the geometrical variables dc and g.
- (2) the effects of the control sound pressure level on the output pressure at the characteristic frequency.
- (3) a comparison between the "off" state (turbulent jet) pressure recovery and that obtained using the analytical procedure of Bell.

The characteristic frequency is defined as the frequency at which the output pressure drops the greatest percentage of the undisturbed level. In each of the plots in Fig. 13 this is just the frequency at which y_0 is the lowest value. To reduce the error in obtaining fchar. for each geometrical combination the value of fchar. was obtained for each sound pressure level plot that had a significant drop and then averaged. This value was then expressed in terms of a Strouhal number (fchar. ds) and the geometrical terms in G = g/ds and D = dc/ds. The plot of Strouhal number versus D for various G values is shown in Fig 14. The lines shown are the Strouhal numbers calculated using the frequency obtained from the theoretical formulas for Helmholtz resonators given in the literature survey and Appendix D.2 (Equ. 2.5, 2.6 and D.2.1) using the appropriate velocity and emitter diameter. It can be seen that G has no significant effect as the three point's

for different G values at each value of D lie approximately at the same point.

Comparison with the theoretical formulae show that the simple expression (Equ. 2.5) overestimates the Strouhal number. The addition of the theoretical correction factor B(Equ.2.6) overcompensates so that lower values are predicted. The theoretical formula of Alster (Equ. D.2.1) agrees quite well with the experimental data, even though the effect of the vent holes is ignored. The maximum deviation occurs at D = 6.94 with a difference of 12%. This may be expected as Alster points out that errors occur when $\lambda r./4$ is less than the largest dimension of the cavity. Although the condition is not violated in this case it is being approached.

A standard way of showing the effect of the control signal on a flow controlled turbulence amplifier is to plot Po versus Pc at the operating Reynolds number and characteristic frequency.

Plots similar to this are obtained for the present investigation by taking cross plots of the Po versus f plots shown in Fig. 13 at the characteristic frequency in each case. The cross plots are shown in Fig. 15. The dashed line in each case indicates the output pressure with only the background noise level present. The output pressure is unaffected by the control signal until a certain level of control is reached. The output pressure then decreases with increasing control to a value which does not change for further increases.

It was not possible to obtain the entire curve for all of the geometrical configurations due to the upper limit imposed by the speaker used and the lower limit set by the loss of accuracy in measurement of the control sound pressure level near the background noise level. However, some general observations can be made.

1 1

It is known that the transition from the "on" state to the "off" state of a flow controlled turbulence amplifier requires only a small change in the control pressure signal and it is difficult to maintain an intermediate position between "on" and "off". Also within this range the (output has been noticed to consist of large, erratic flucuations. These characteristics have led to the use of the flow controlled "turbulence amplifier only as a digital device.

As can be seen from Fig. 15, the output pressure decreases gradually as the control sound pressure level increases. It was also noted qualitatively that there were no large erratic output pressure fluctuations.

The above discussion leads to the possibility of operating the acoustically controlled turbulence amplifier as a proportional device. To do so the output pressure versus control pressure plot should have a straight portion. The lines passing through the data points in Fig. 15 indicate that this is approximately true for certain geometrical configurations and sound pressure level ranges. More data points would increase the confidence in this observation and hence additional experimentation was done for one particular case. The results are shown in Fig. 16 which indicate that for the dc = 0.95 cm. and g = 1.27 cm. geometry with Ps = 660 N/m² (Re = 895) and 101 < Pc < 112 db. a proportional mode of operation is possible. The gain is -9.64 N/m² per db. The gain obtained by expressing the sound pressure as a root mean square pressure in N/m² is -18.5.

In order to compare the "off" state turbulent pressure recovery with the analytical procedure mentioned previously it must be insured that the jet is fully turbulent. The criterion used to determine whether this condition is satisfied is to observe the change in the output pressure at the characteristic frequency as the control sound pressure level is increased (see Fig. 15). If there is no substantial change the jet could "reasonably" be assumed as fully turbulent. The value of the output pressure for 120 db. was then taken as the "off " state pressure. The corresponding values for the geometrical configurations which complied with this criterion were recorded and Bell's non-dimensional parameter $\frac{G^2Po}{41.0Pc.L}$ was calculated using an experimental value of Pc.e. = $1/2 \rho (2U_s)^2$ Figure 17 shows this parameter as a function of D along with the constant value predicted from the analytical procedure. Unlike the unshrouded flow controlled turbulence amplifier case, the present data lie consistently above the predicted value. This could perhaps be

explained by the assumed location of the virtual origin in the analytical procedure or by the effects of the shroud. However, the number of data points are considered insufficient for further analysis at this time.

(B) Effects of Reynolds Number (Pc = constant) The dimensional plots of the variation of Po with f
for two geometries at various Reynolds numbers are shown in
Fig. 18. The line indicating the analytical turbulent "off"
pressure is not shown as only one sound pressure level is used
in each case.

The characteristic frequencies at various Reynolds numbers were taken following the definition mentioned previously and plotted against Reynolds number as shown in Fig. 19. The line going to a Re of 400 is shown dotted to indicate that a characteristic frequency was not evident at Pc = 110 db. When Pc was increased to 120 db.a characteristic frequency was found.

It is seen that a frequency "jump" occurs for each geometry considered. This is a result of the definition used to determine the characteristic frequency. When the output pressure drop at any frequency becomes larger than the one at the characteristic frequency, this new frequency becomes the characteristic. At the discontinuity, the pressure drops for both frequencies would be the same, hence fchar. would be double valued at this Reynolds number.

The lower two frequencies correspond to those found from Alster's Helmholtz equation for a circular cylinder with a lateral hole (Equ. D.2.1). The upper frequency is not a harmonic of the lower. Neither supply tube resonance nor resonances related to the cavity could satisfactorily account for the higher characteristic frequency.

By calculating characteristic Strouhal numbers from the frequency data this information can be compared to the upper and lower limits of jet sensitivity to sound found in Ref. 12. Although the investigation cited was not detailed it can serve as a reasonable estimate of the sensitivity of jets emitting from tubes of large Ls. Figure 20 indicates this plot. The upper and lower limits are denoted by cross hatched lines. The solid lines join the data points of the characteristic frequencies taken from Fig. 19. It can be seen that almost all the Strouhal numbers lie within the limits.

A plot of Becker and Massaro's correlation (Equ. 2.2) is drawn on Fig. 20. Although there is an order of magnitude agreement of Strouhal number values, the Reynolds number dependence indicated by the experiments is opposite to that of the correlation. It is believed that this discrepancy could be attributed to some modes of cavity resonance. It is worth recalling that the lower characteristic frequency is related to a Helmholtz type resonance.

4.2 Dynamic Characteristic Study

The variation of the switching times with the control sound frequency and pressure level is shown in Fig. 21. It can be seen that within the experimental range and accuracy, the four response times are almost independent of the control sound variables. Perhaps a possible exception is that the turbulent-laminar rise time Tr. has a very weak dependence on the frequency. Further, the laminar-turbulent delay, time decreases slightly but consistently with an increase in the control pressure level.

The mean of all the experimental values taken for the four response times are given below along with the standard deviation in each case. From these mean values it can be

> $T\ell.d. = 2.24$ msec. (S = 0.171 msec.) Ttd. = 2.40 msec. (S = 0.287 msec.). Tf. = 0.487 msec. (S = 0.130 msec.)

Tr.= 0.606 msec. (S = 0.263 msec.) seen that the two delay times are almost equal and the difference between the fall time and the rise time is not significant. Thus the acoustically controlled amplifier tested has more equal switch "on" and switch "off" dynamics than the flow controlled turbulence amplifiers studied by Hayes (Ref. 24) This point is more emphatically made considering that Hayes found a large increase in the difference between the switch "on" and switch "off" characteristics with increasing gap length. The largest gap considered in Ref. 24 was 2.44 cm. while the present, as noted previously is 3.81 cm.

From the standard deviations given above an indication of the erratic nature of the response time can be felt. Hayes did not express the erratic behaviour in this manner. He produced multiple traces of switching. The multiple trace $\frac{1}{2}$ photograph of the "on" and "off" switches for the present study are shown in Fig. 22. The lack of erratic behaviour in the position of the rise and the fall portions of the traces can be seen. Hayes multiple trace of the switch "on" dynamics for dc = 1.27 cm., g = 2.44 cm. and ds = 0.074 cm. is shown in Fig. 23. (taken from Ref. 23). The extremely great variation in the position of the rise portion of the trace is evident. Hence the acoustically controlled turbulence amplifier dynamics can be seen to be less erratic than the flow controlled mode of operation.

The variation of the response times with supply pressure are shown in Fig. 24 compared to Hayes theoretical and Abramovich's empirical equations (Ref. 25 and 1 respectively) for the flow controlled turbulence amplifier. Within the range tested the present data agrees with both of the above mentioned relationships in general trends only. Hayes theory predicts the laminar-turbulent delay time Tgd, more closely than the other three times. Abramovich's relationship predicts the turbulent-laminac rise Tr. time and the laminar-turbulent delay time Tgd; quite well but the other two times are of considerably different magnitude.

þ

CHAPTER V

CONCLUSIONS

(a) Bell's Analytical Approach

- (1) Bell's analytical procedure can reasonably predict the characteristics of the laminar jet in a shrouded, turbulence amplifier. However, for the turbulent jet the results of the procedure are not in agreement with the present experimental data.
 - (2) The approximate method put forward by Bell for determining P_0/P_s at an operating point near the peak of the P_O versus P_S curve is extended to include operating points in the laminar portion. The following equation was obtained by curve fitting

 $G^{\pm 0.27} P_0/P_s = -0.2 + 8.3 \times 10^{-4} Re + 1.22 \times 10^{-7} Re^2$ (b) Static Characteristics

- - (1) A "jump" in characteristic frequency occurs as the Reynolds number of the emitter is increased, the upper characteristic frequency is yet to be predicted.
 - (2) The characteristic frequency of a shrouded,
 - acoustically controlled turbulence amplifier may be determined for low Reynolds number using advanced Helmholtz resonator theory such as Alster's (Ref. 2).

- (3) The Strouhal numbers at which shrouded, acoustically controlled turbulence amplifiers respond, fall / within the limits of the sensitivity of a free jet given by Bell (Ref 12).
- (4) The acoustically controlled turbulence amplifier, unlike the flow controlled Turbulence amplifier can be operated in a proportional mode under certain conditions of shroud geometry and control variables.
- (c) Dynamic Characteristics
 - Within the experimental range studied, the switching dynamics of the acoustically controlled turbulence amplifier is almost independent of the control sound frequency and pressure level.
 - (2) The two delay times (TLd. and Ttd.) are almost equal and the fall and the rise time (Tf. and Tr.) may also be considered equal.
 - (3) The switching dynamics of the sound controlled turbulence amplifier tested is less erratic and more equal than a flow controlled turbulence amplifier.

37

CHAPTER VI

38

RECOMMENDATIONS

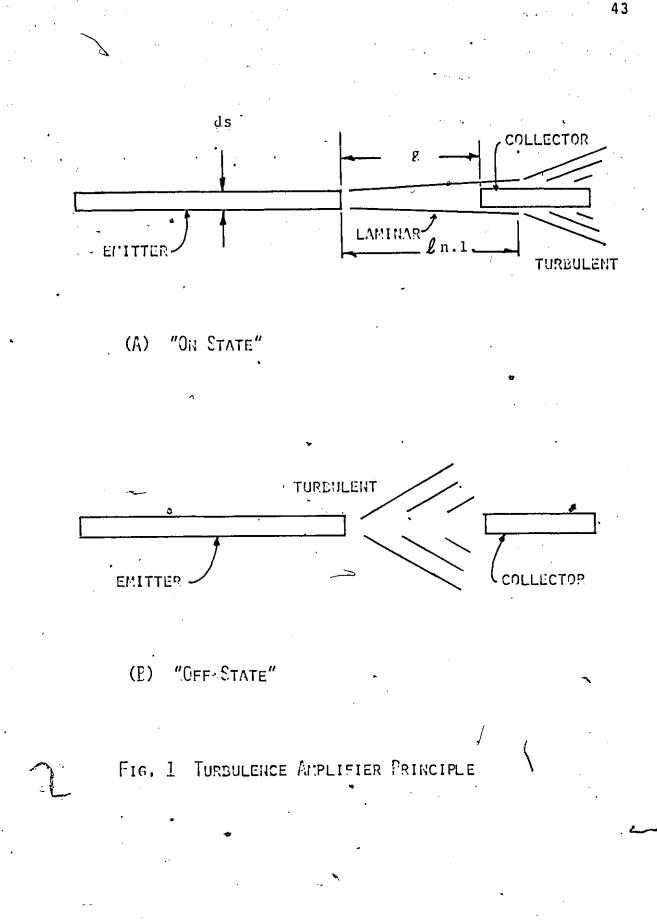
- (1) An analytical and experimental study of the turbulence amplifier should be undertaken which would extend Bell's procedure to account for the effect of a shroud on the laminar-jet length and the turbulent jet output pressure.
 (2) Further work should be done to determine the nature of the frequency "jump" and the higher characteristic frequency that occur when the Reynolds number is increased.
- (3) The many studies that have been conducted concerning the maximum sound sensitivity of jets issuing from short nozzles should be extended to cover those issuing from long, straight bore tubes.

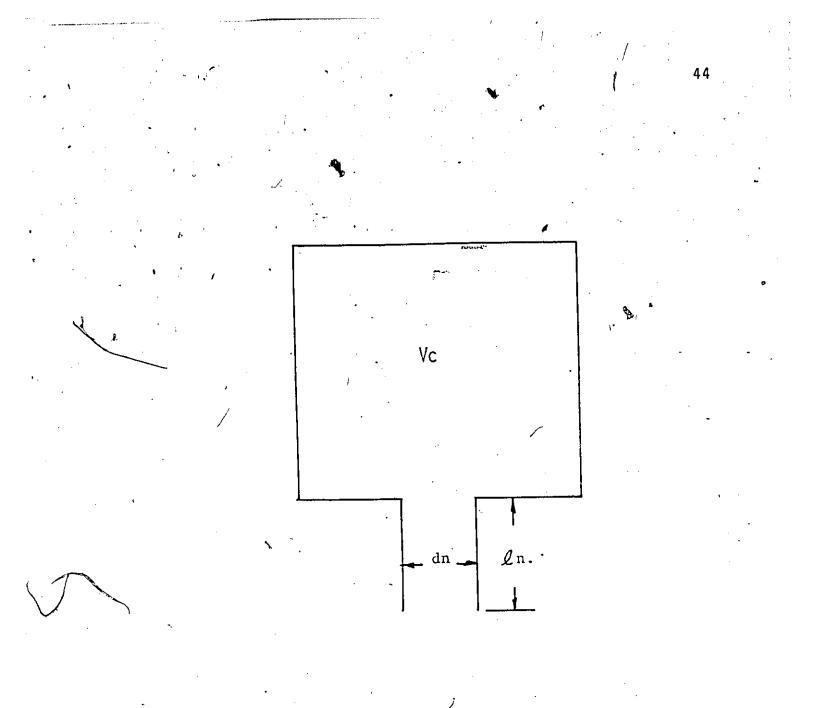
REFERENCES

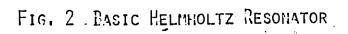
()

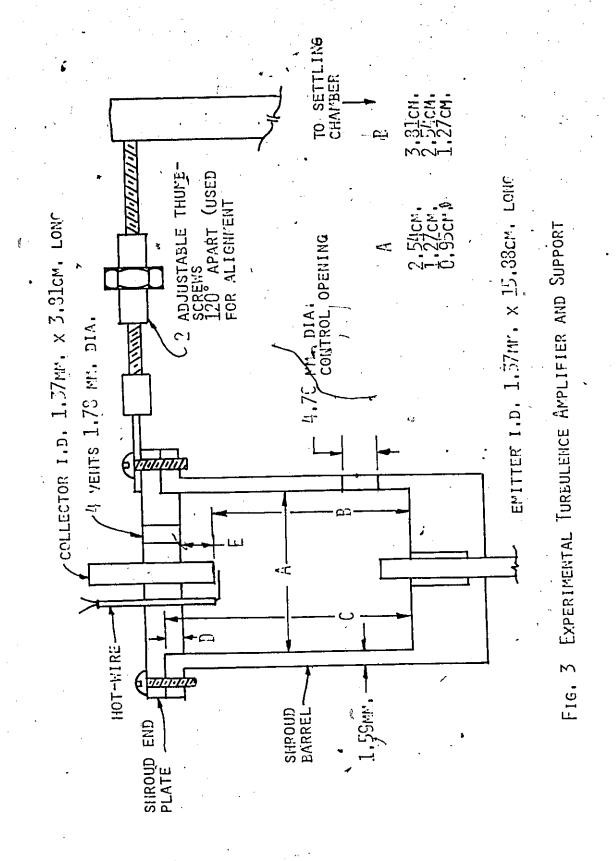
- 1. Abramovich, S. and Solan. A., "Turn on and Turn off times for a Laminar Jet" A.S.M.E. paper no. 73-Aut-N (1973) Alster, M., "Improved Calculation of Resonant Frequencies of Helmholtz Resonators", Jour. of Sound and Vibration, vol. 24, no. 1, pp. 63 - 85 (1972). 2. Auger, R.N., "A New"Solid State" Pneumatic Amplifier for Logic Systems," Automatic Control, pp.24-28 (Dec. 1962) 3. Auger, R.N., "Pneumatic Turbulence Amplifiers", Instruments and control Systems, vol. 38, pp. 129-133 (March 1965) 4. Auger, R.N., "Turbulence Amplifier Design and Application", 5. Proc. of the Fluid Amplifier Symposium, Harry Diamond Labs, vol. 1, pp.357-365 (Oct. 1962) B and K Manual for Type 2607 Measuring Amplifier, B and K 6. Naerum, Denmark (Nov. 1970). Batchelor, G.K. and Gill, A.E., "Analysis of the Stability of Axisymmetric Jets"; Jour. of Fluid Mechanics, vol. 14, 7. pt. 4, pp. 529-551 (1962). Beavers, G.S. and Wilson, T.A., "Vortex Growth in Jets", Jour. of Fluid Mechanics, vol. 44, pt. 1, pp. 97-112 (1970). 9. Becker, H. A. and Massaro, T.A., "Vortex Evolution in a Round Jet" Jour. of Fluid Mechanics, vol. 31 , pt.3, pp. 435-448 (1968).
 - 10. Beeken, B.B., "Long Range Fluidic Acoustic Sensor", A.S.M.E. paper 72-WA/Flcs - 8 (1972).
 - 11. Beeken, B.B., "Acoustic Fluidic Sensor", Instruments and Control Systems, pp. 75-79, (Feb. 1970).
 - 12. Bell, A.C., "An Analytical and Experimental Investigation of the Turbulence Amplifier", Sc. D. thesis, Mechanical Engineering Department, M.I.T. (1969).
 - Bell, A.C., "An Analytical and Empirical Basis for the Design of Turbulence Amplifiers Part I: Analysis and Experimental Confirmation", A.S.M.E. paper no 7.2-WA/FLCS-1. (Nov. 1972).

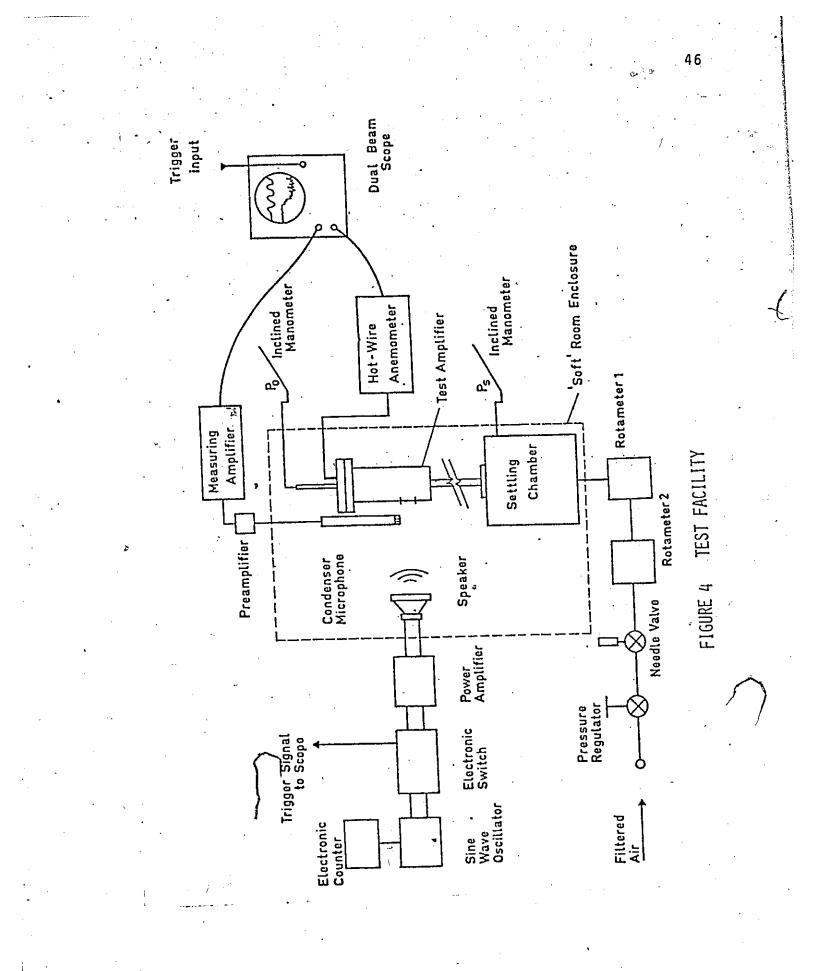
14. Bell, A.C., "An Analytical and Empirical Basis for the Design

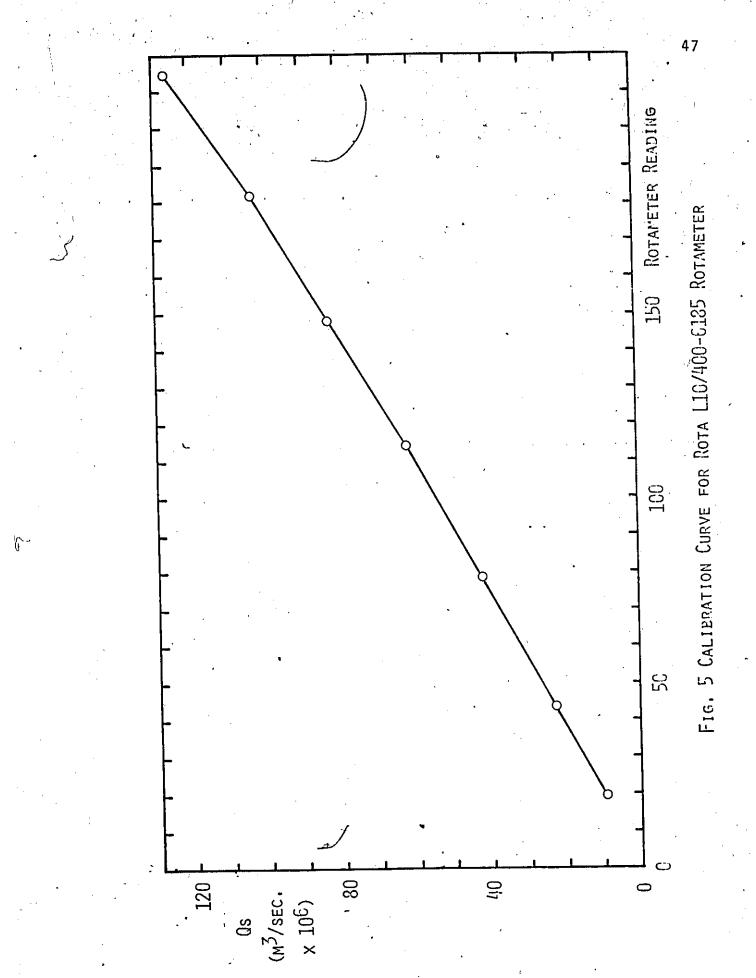

of Turbulence Amplifiers Part II:- Empirical Relationships and Design Procedure", A.S.M.E. paper no. 72-WA/FLCS-2 (Nov. 1972).

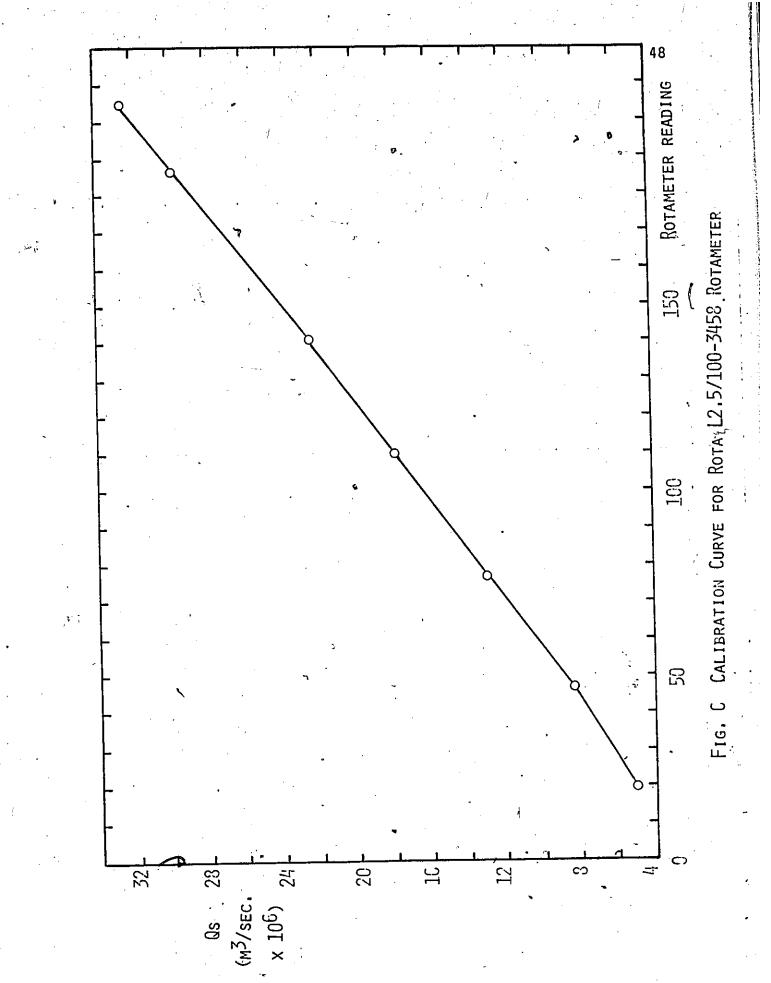

- Benson, C.A.R. and Hagwood, D., "Electropneumatic Transducer using the Acoustic Switching of Fluid Logic Flements", Jour. of Scientific Instruments, vol. 43, pp. 527-528 (1966).
- 16. Brown, G.B., "The Vortex Motion in Gaseous Jets and the Origin of their Sensitivity to Sound", Proc. of the Physical Society of London, England, vol. 47, pp. 703-732 (1935).
- 17. Chanaud, R.C. and Newell, A., "Experiments Concerning the Sound Sensitive Jet", J.A.S.A., vol. 34, no. 7, pp. 907-915 (July 1962).
- .18. DISA Type 55M System: Service Manual, DISA Information and Documentation Dept., DISA ELEKTRONIK A/S DK-2730, Herlev, Denmark (March 1972).
- 19. Fox., A.L., "Direct Fluidic Sensors", Instrumentation Technology, pp. 67-75 (Sept. 1967).
- Freymuth, P., "On Transition in a Separated Laminar Boundary Layer", Jour. of Fluid Mechanics, vol. 25, pt. 4, pp. 683-704 (1966).
- 21. Gottron, R.N., "Acoustic Control of Pneumatic Digital Amplifiers", Proc. of the Fourth H.D.L. Fluid Amp. Symp., vol. 1, pp. 279-292 (1964).
- 22. Gradetsky, Dr. V, Dmitriev, Dr. V. and Sons, M., "Some Design Problems of the Fluidic Digital Elements and Devices", paper T1, Proc. of the Third Cranfield Fluidics ConTerence, Turin, Italy (May 1963).
- 23. Hayes, W., "Static and Dynamic Performance Characteristics of Fluidic Turbulence Amplifiers", Report LTR-CS-9, control Systems Laboratory, N.R.C. (June 1969).
- 24. Hayes, W., "The Dynamic Response of Fluidic Turbulence Amplifiers", paper A1, Proc. of the Fourth Cranfield Fluidics Conference Coventry, England (March 1970).
- Hodge, J. and Hutchinson, J.G., "Turbulence Amplifiers -Principles and Applications", paper F2, Froc. of the First International Conference on Fluid Logic and Amplification, B.H.R.A. Cranfield, England (Sept. 1965).


- 26. Hornbeck, R.W., "Laminar Flow in the Entrance Region of a Pipe", Applied Scientific Research, Series A13, pp.224-232 (1962).
- 27. Marsters, G.F., "Some Observations on the Transition to Turbulence in Small, Unconfined Free Jets", Report #1-69, Dept. of Mech. Eng., Queens University, Kingston, Ontario, Canada (Oct. 1969).
- McNaughton, K.J. and Sinclair, C.G., "Submerged Jets in Short Cylinderical Flow Vessels", Jour. of Fluid Mechanics, vol. 25, pt. 2, pp. 367-375 (1966).
- 29. Nomota, A. and Shimada K., "Ultrasonically Modulated Fluid - State Transducer", Bull. Fac. Science and Eng. of Chou University, vol. IF, pp. 76-84 (1968).
- 30. Oels, R.A., Boucher, R.F. and Markland, E., "Experiments on Turbulence Amplifiers", paper D3, Proc. of the First International Conf. on Fluid Logic and Amplification (Sept. 1965).
- 31. Powell, A., "Characteristics and Control of Free Jaminar Jets", Proc. of First Fluid Amp. Symp., vol. 1, pp. 239-299 (Oct. 1962).
- 32. Rayleigh, J.W.S., "The Theory of Sound", vol. II, Dover Publications Ltd., New York, N.Y. (1945).
- 33. Rayleigh, J.W.S., "The Theory of Sound", vol I, Dover Fublications Ltd., New York, N.Y. (1945).
- 34. Schlichting, H., "Boundary Layer Theory", Sixth Ed., McGraw Hill, New York, N.Y. (1968).
- 35. Siwoff, F., "Improvement of the Static and Dynamic Behaviour of the Turbulence Amplifier by Imbuilding an Edge over the distance between the Emitter and the Collector", paper no. H-2, Third Cranfield Fluidics Conference, Turin, Italy (May 1968).
- 36. Stephens, R.W.B., and Bate, A.E., "Acoustics and Vibrational Physics", Edward Arnold (Publishers) Ltd., London, England (1966).
- 37. Tryburcy, J., "Investigations of an Acoustic Fluidic Sensor", paper no. F-22, Fourth International Fluidics Conference, Varna Bulgaria (Oct. 1972).
- 38. Urfried, H.H., "An Approach to Eroad Band Fluid Amplification at Acoustic Frequencies," Proc. of the H.D.L.Third Fluid Amp. Symp., vol. 1, pp. 267-296 (1965).


مع ر

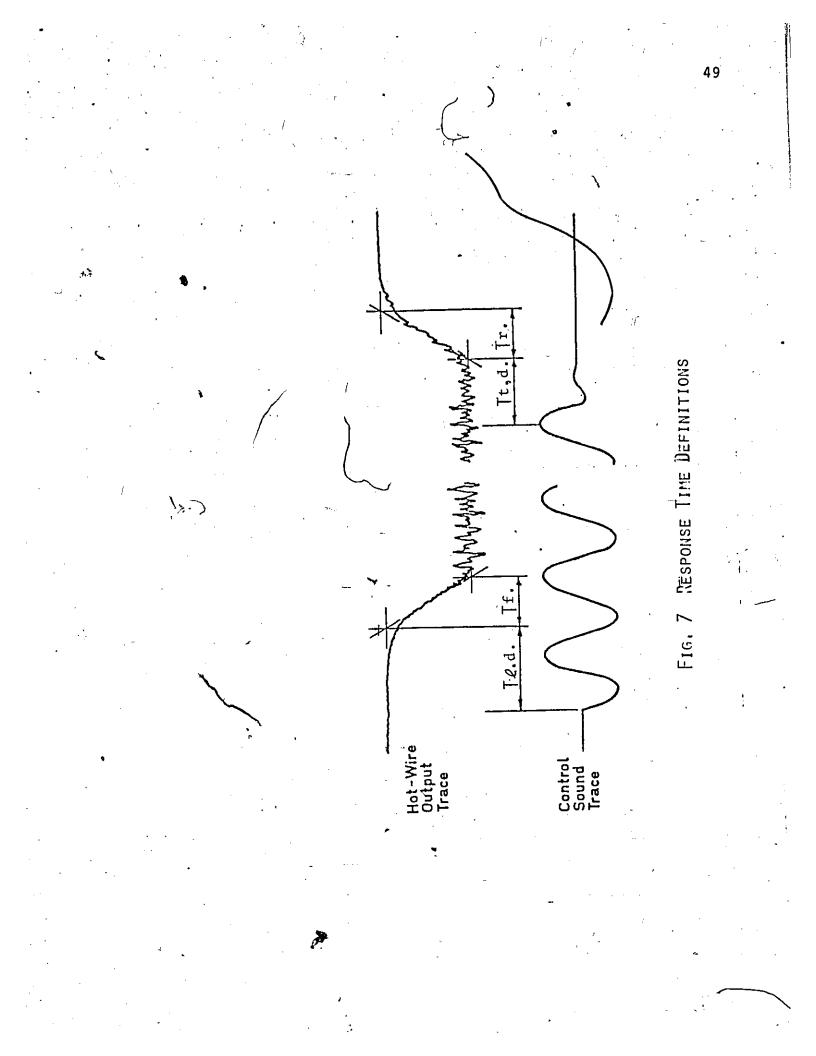

- Unfried, H.H., "Experiment and Theory of Acoustically Controlled Fluid Switches", Proc. of the H.D.L. Third Fluid Amp. Symp., vol. 2, pp. 113-127 (1965).
- 40. Vaz, T.I.N., "An Experimental Investigation into the Response of a Turbulence-Type Amplifier and Laminar/ Turbulent Jet Study", M.A.Sc. thesis, University of Windsor, Windsor, Ontario, Canada (1970).
 - 41. Verhelst, H.A.M., "On the Design, Characteristics and Production of Turbulence Amplifiers", paper no. F-2, Second Cranfield Fluidics Conference, Cambridge, England (Jan. 1967).
- 4 2. Viilu, A., "An Experimental Determination of the Minimum Reynolds Number for Instability in a Free Jet", Journal of Applied Mechanics, Trans. of the A.S.M.E., pp. 506-508 (Sept. 1962).

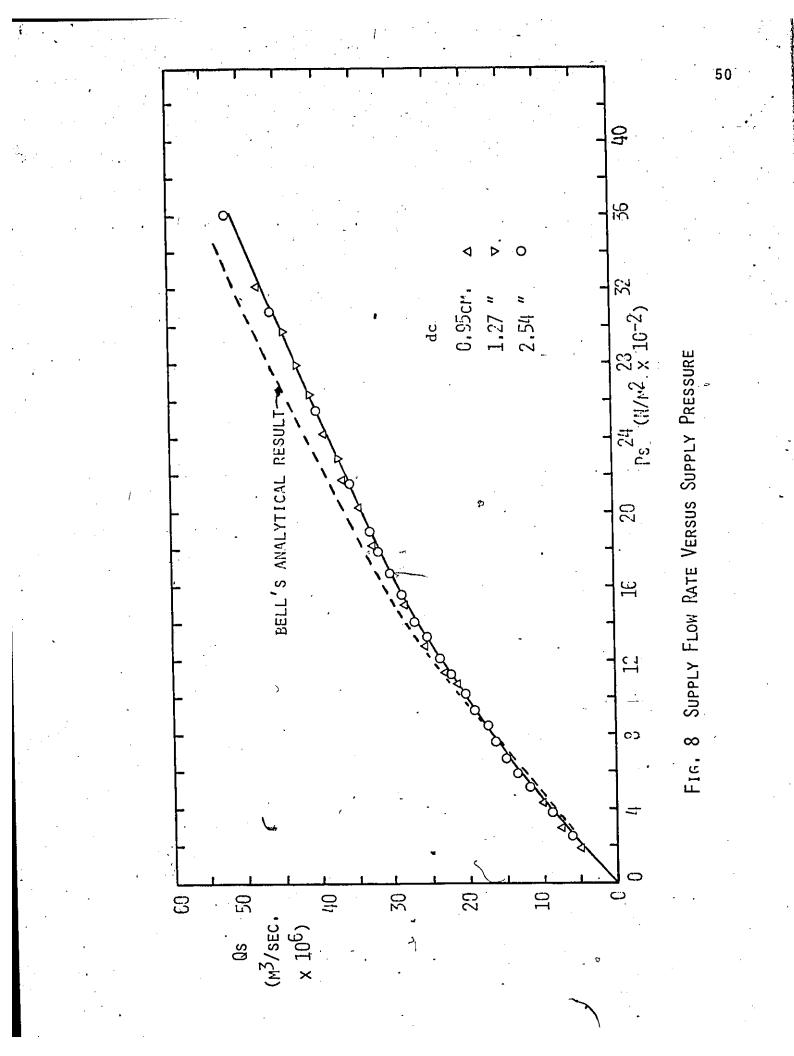


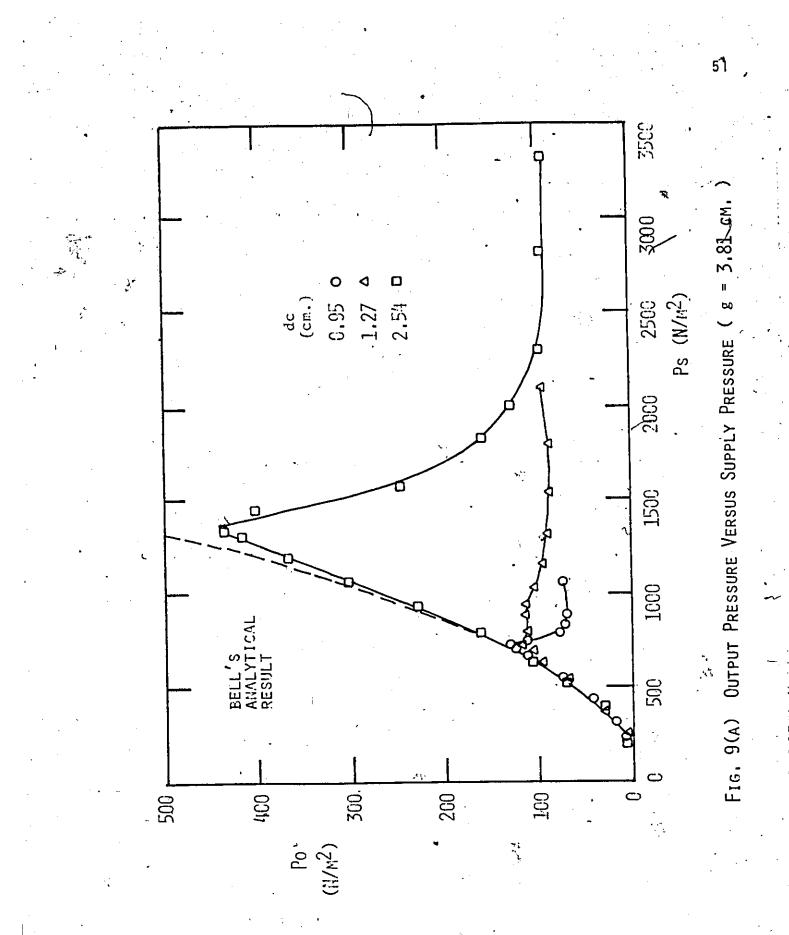


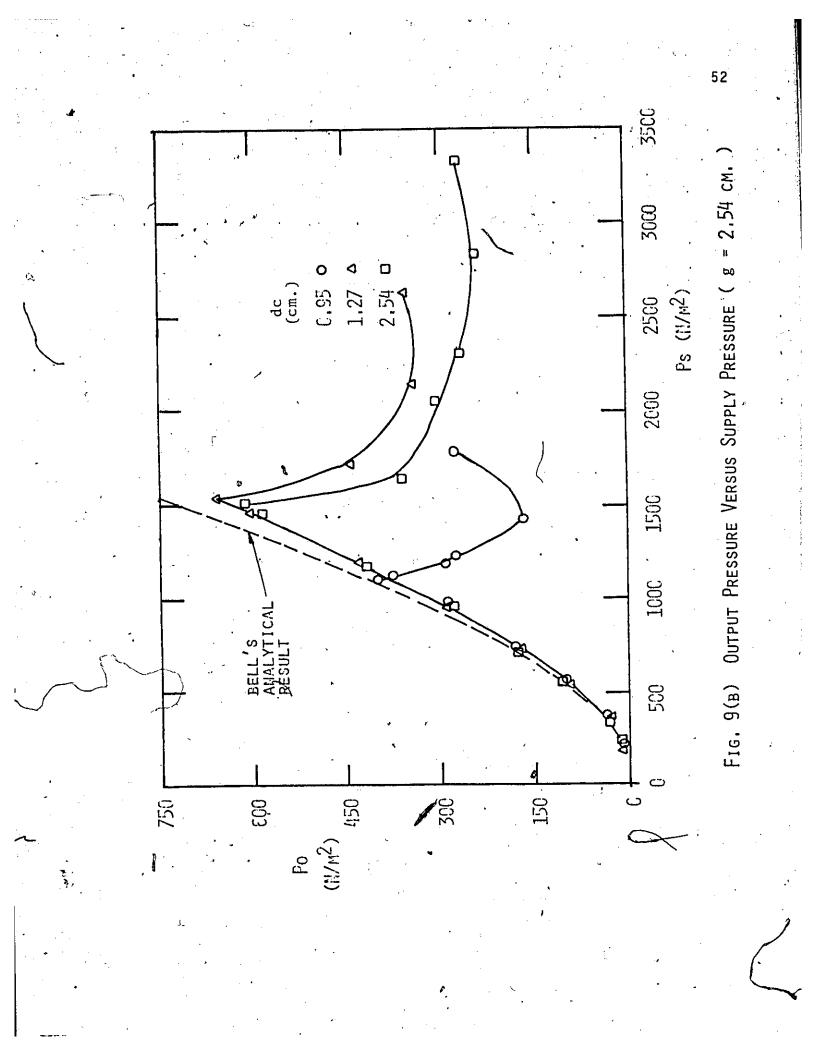
.

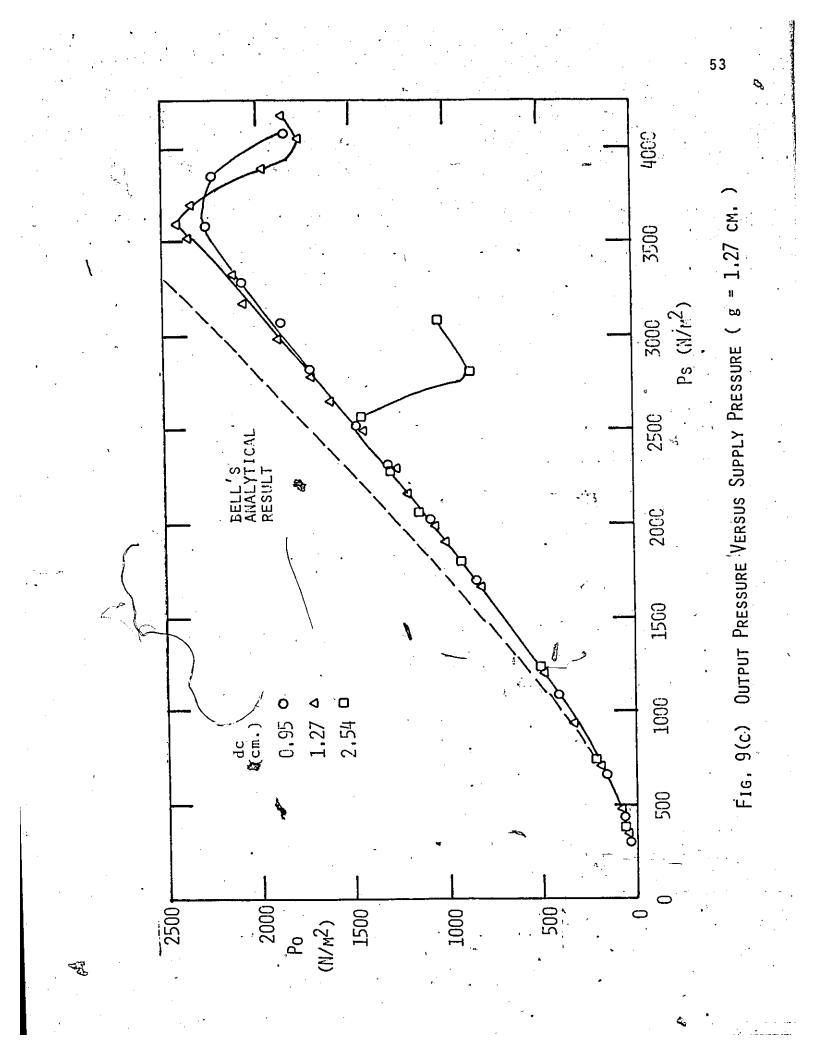
τ

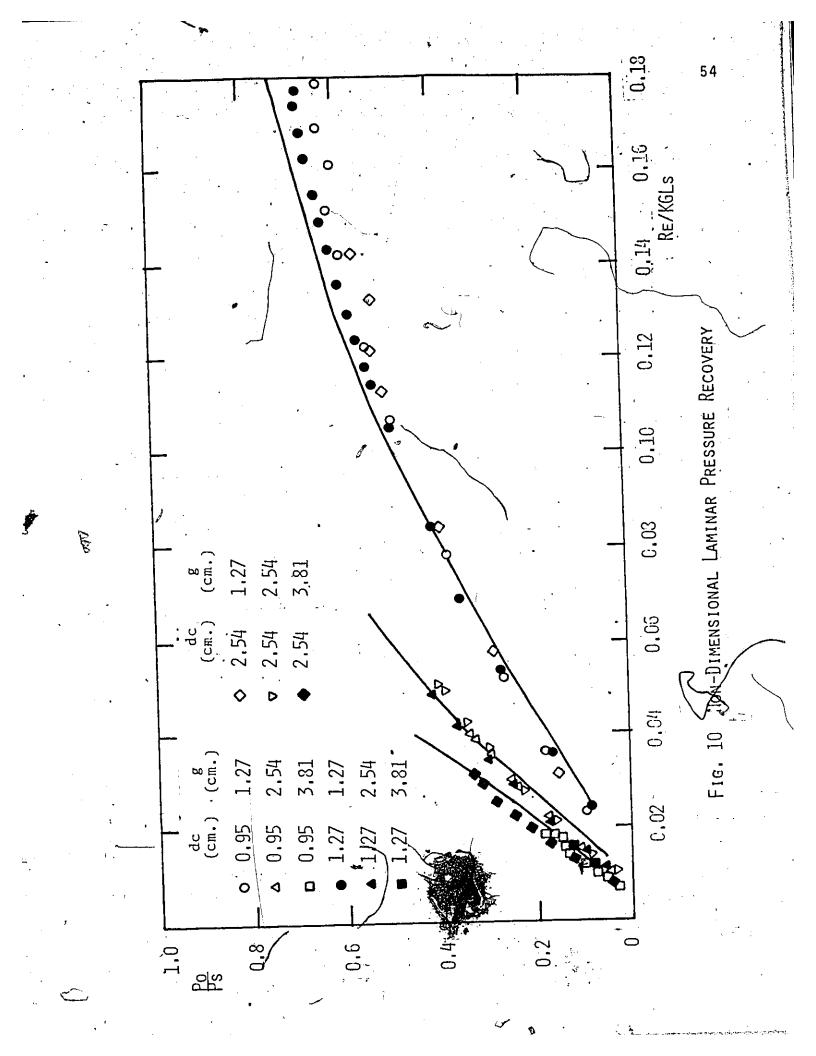

1

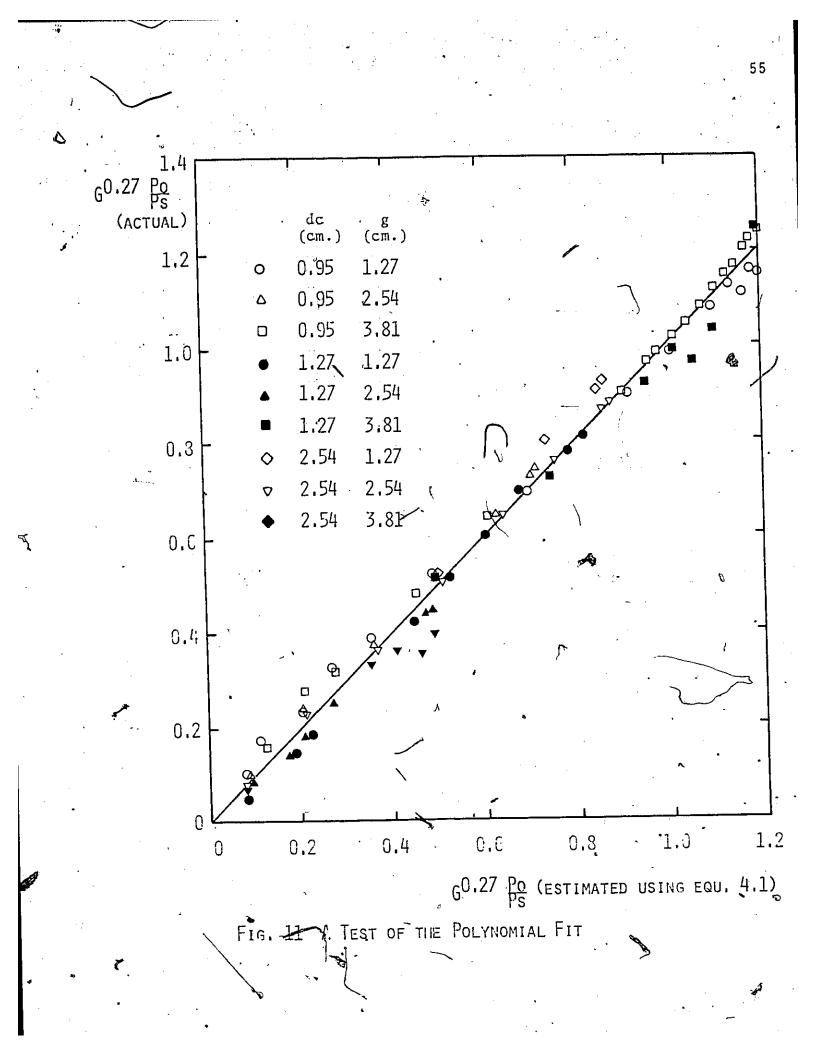


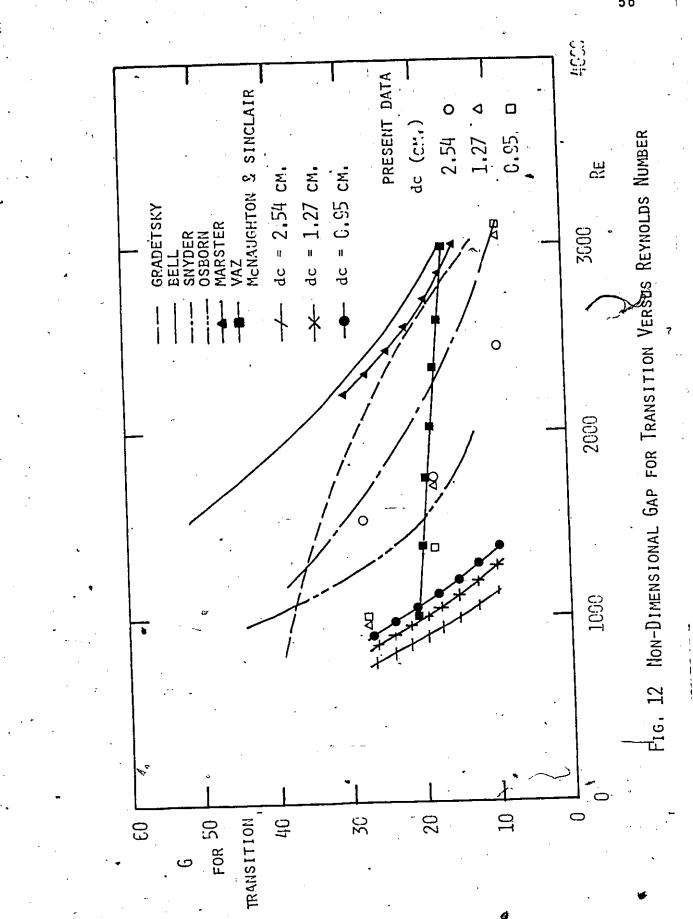


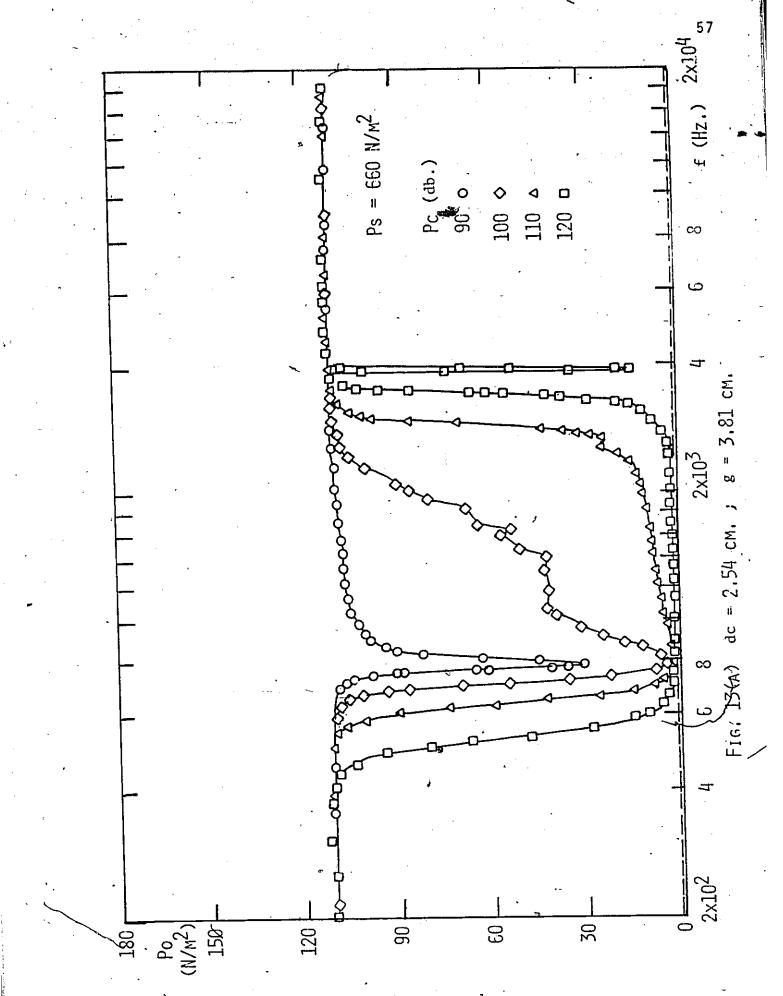

k •

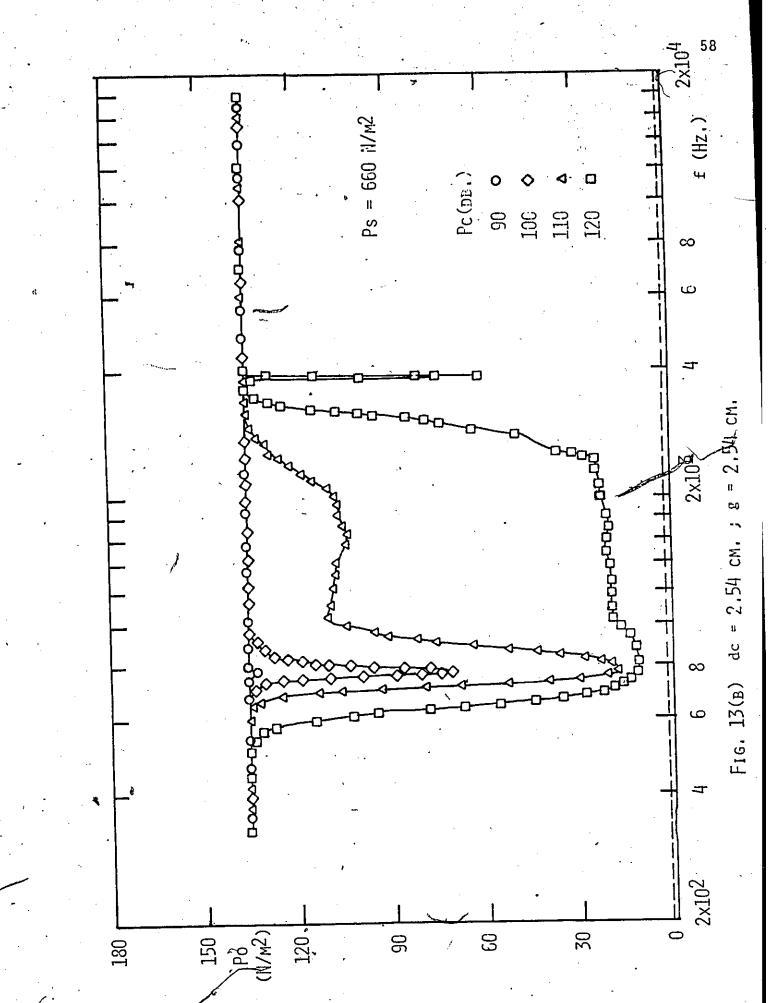

.

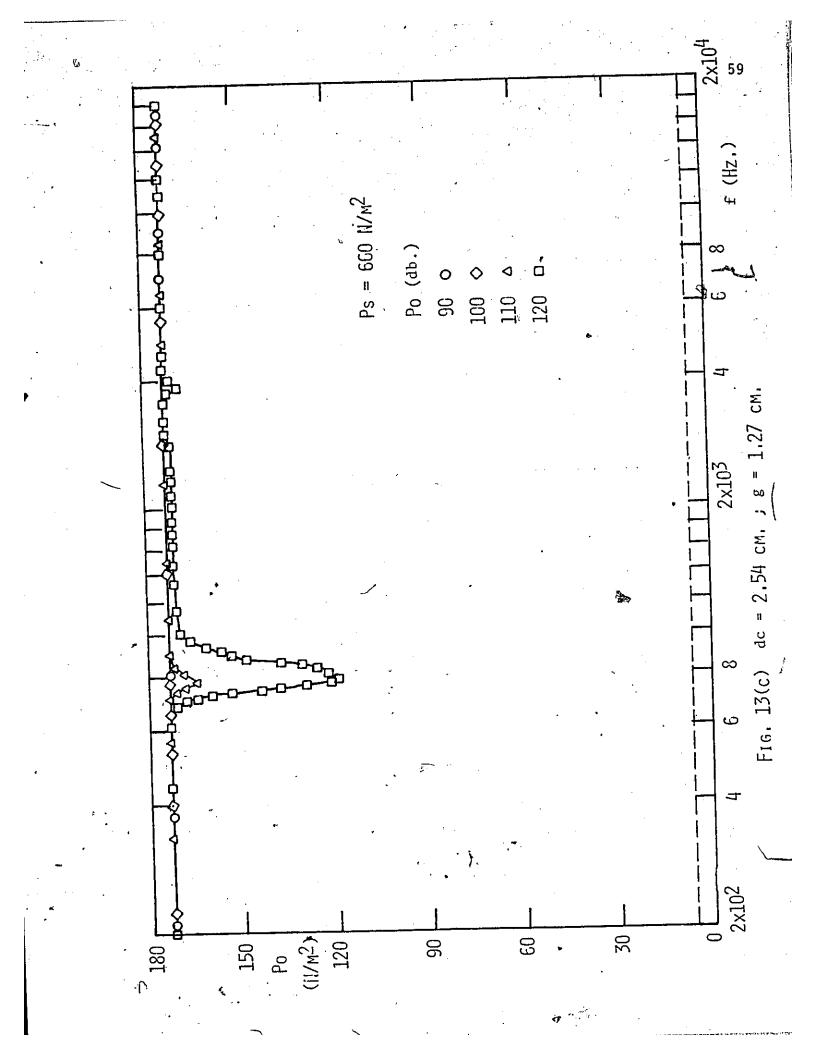


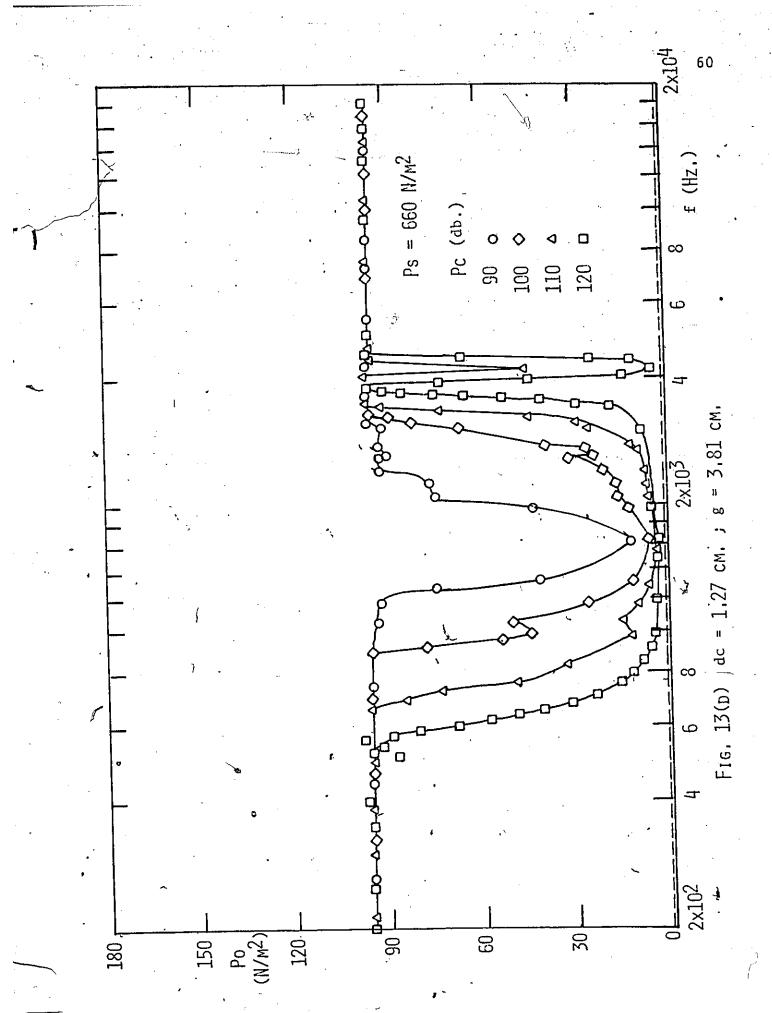


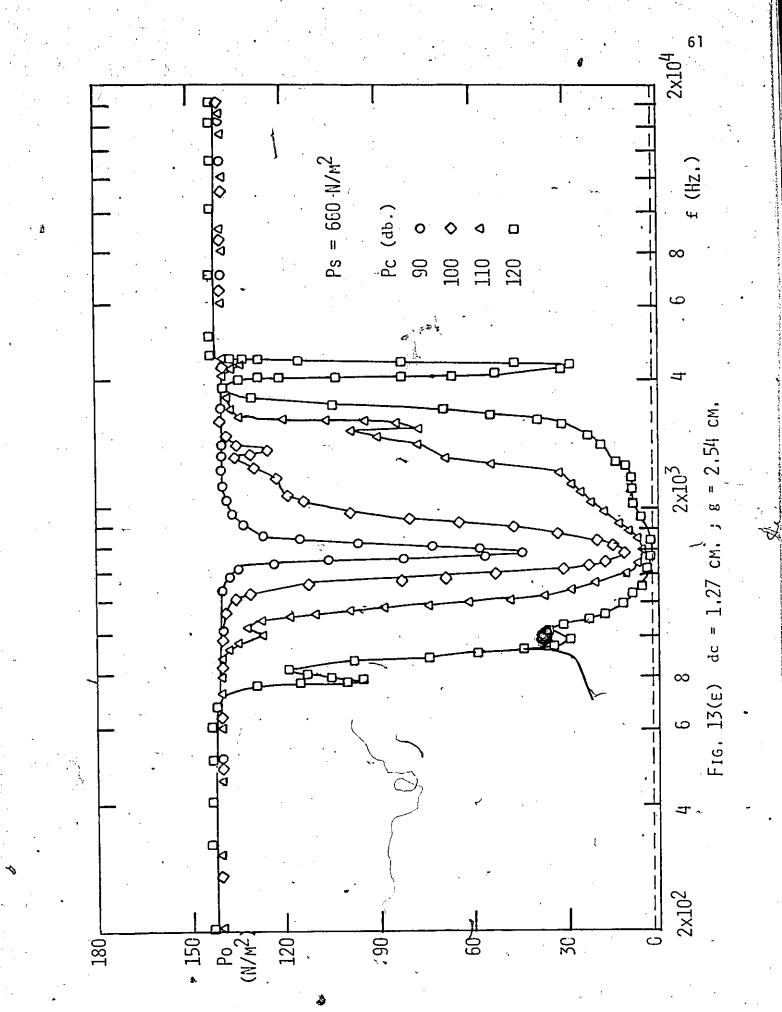


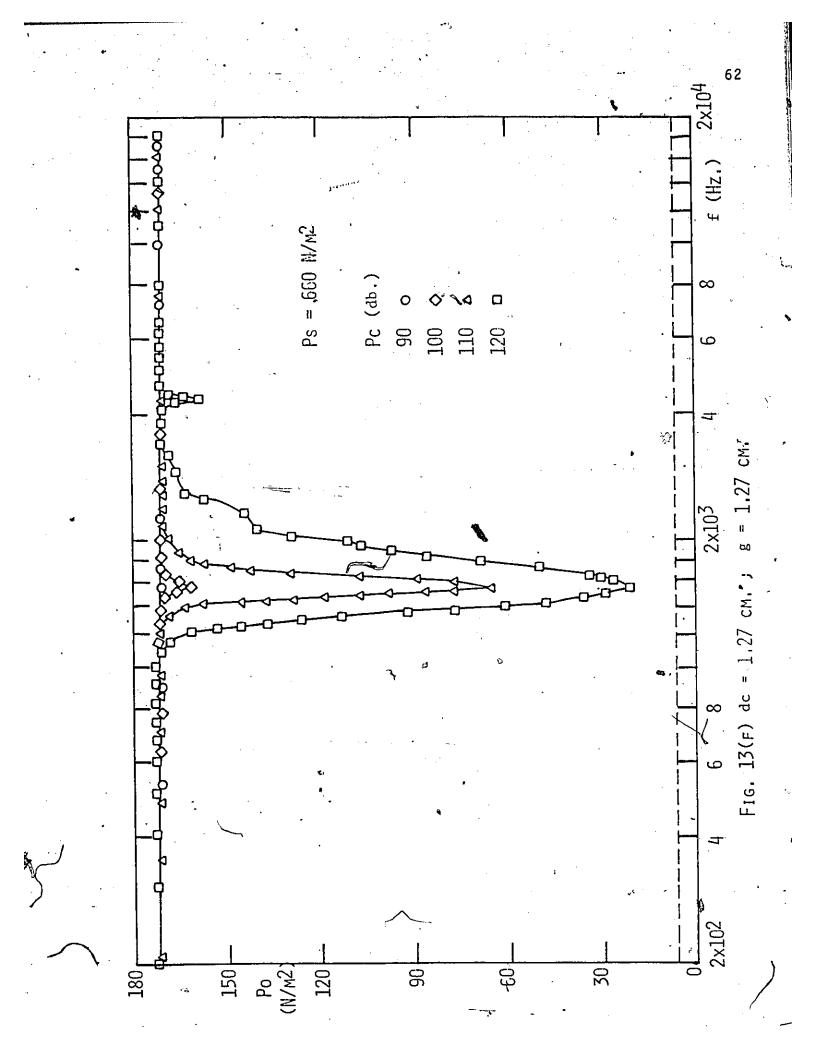


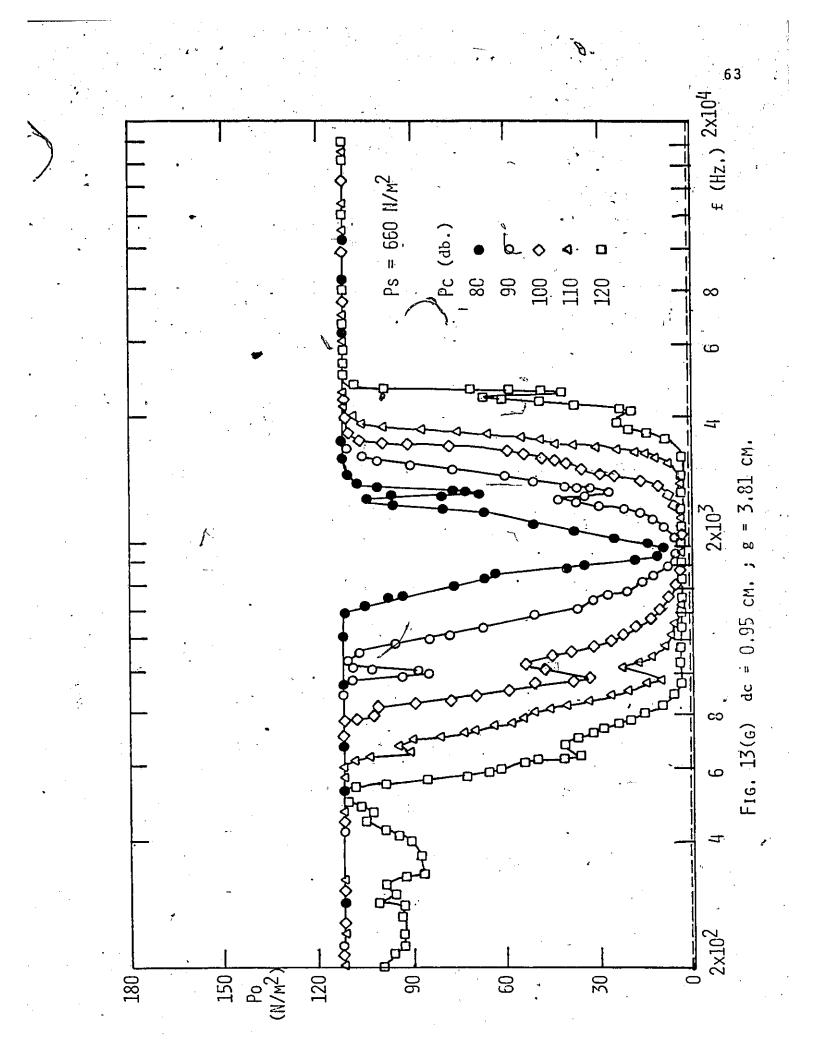


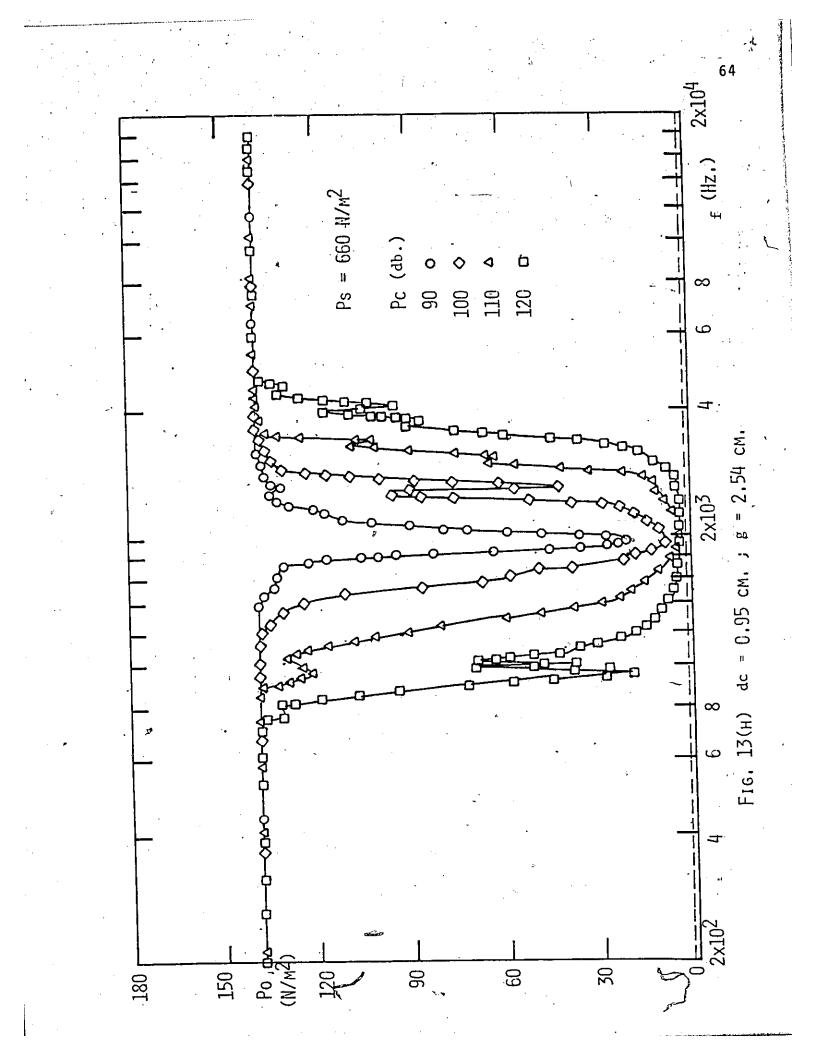


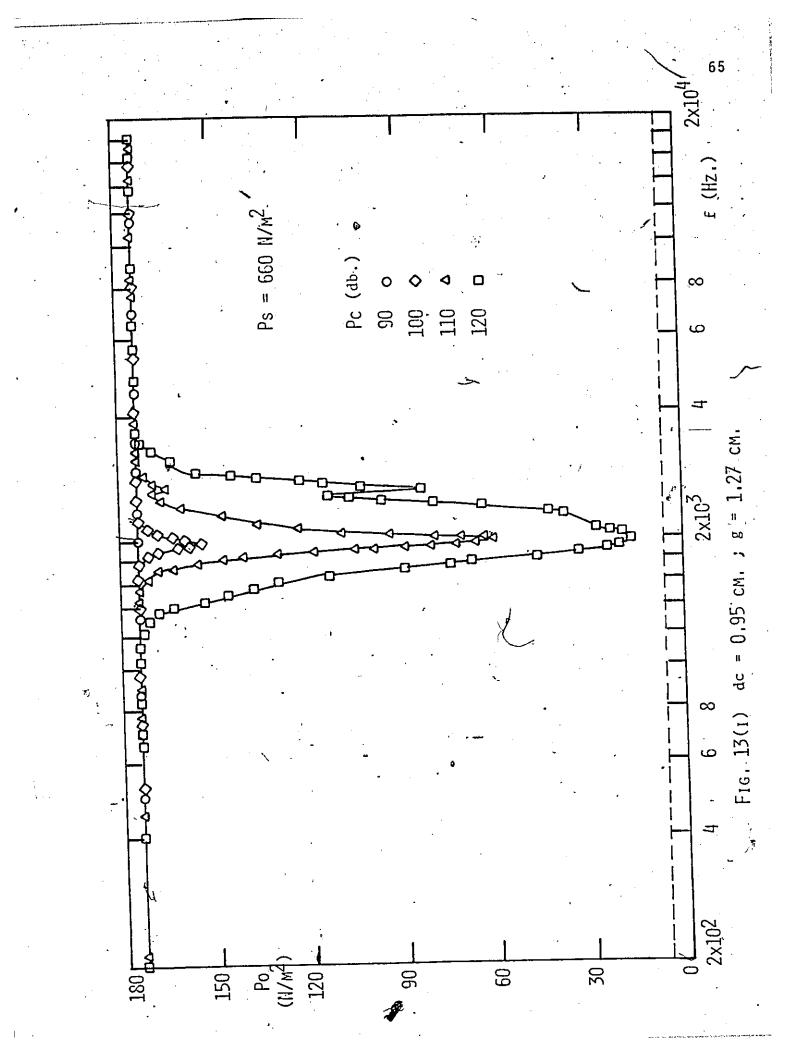


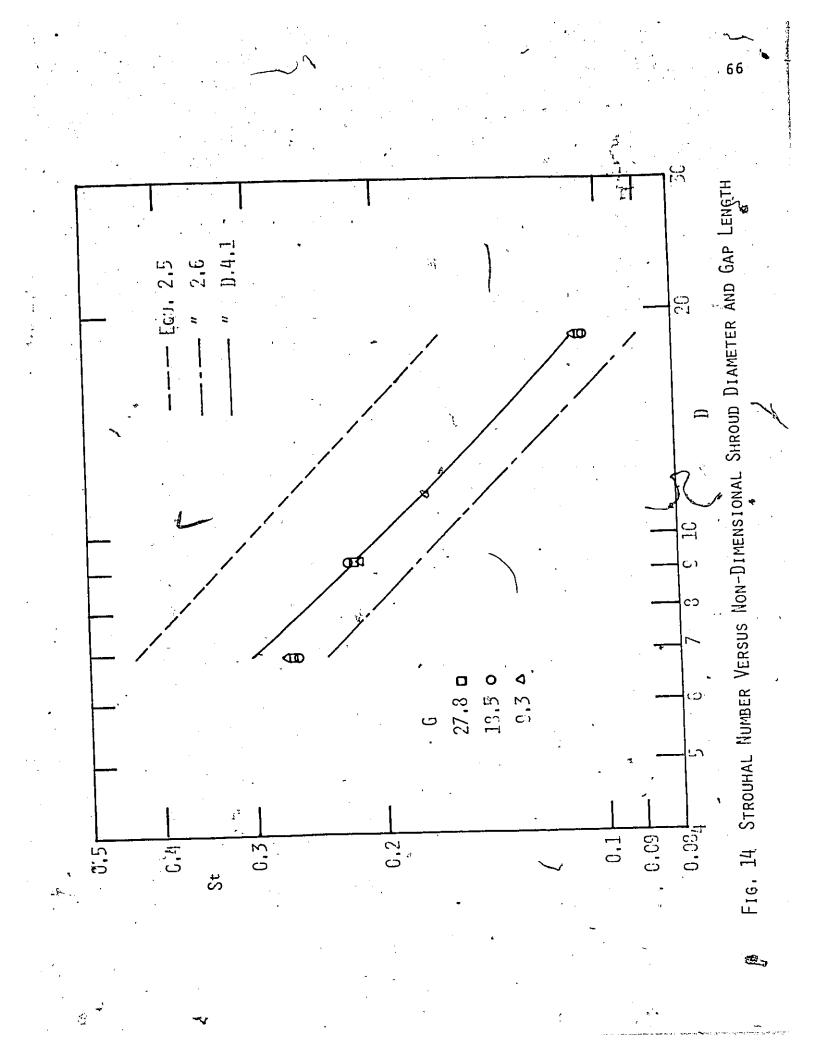


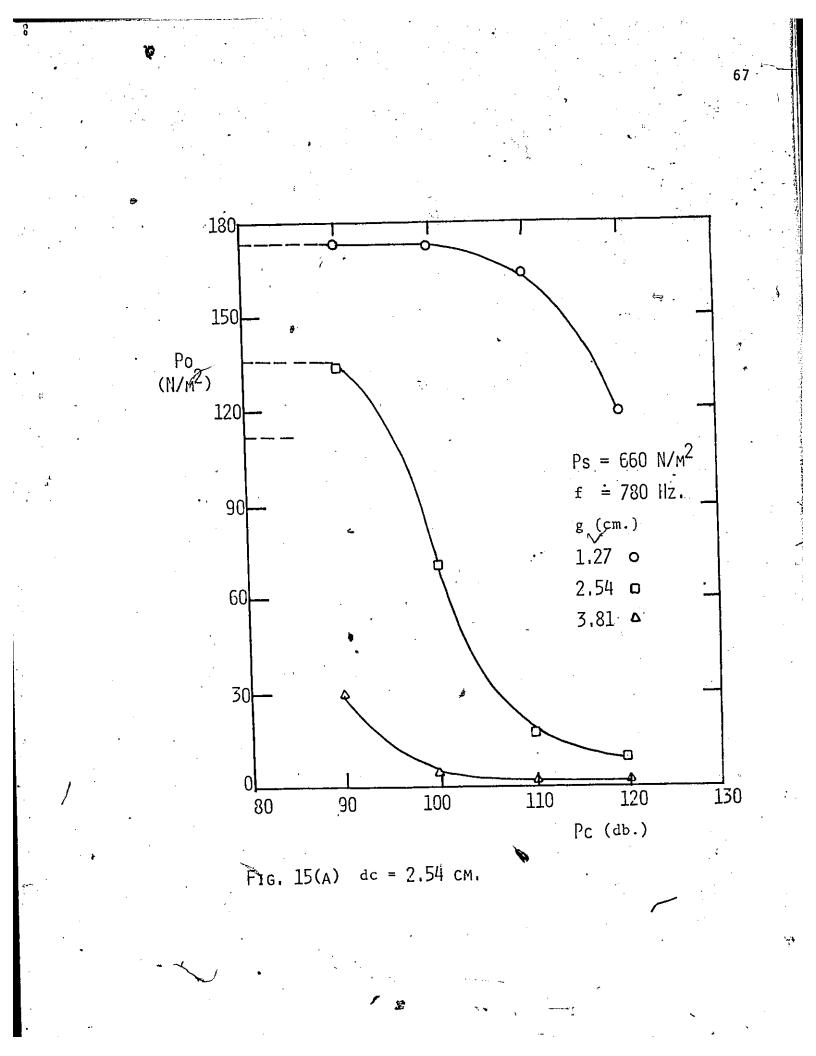

and the second second

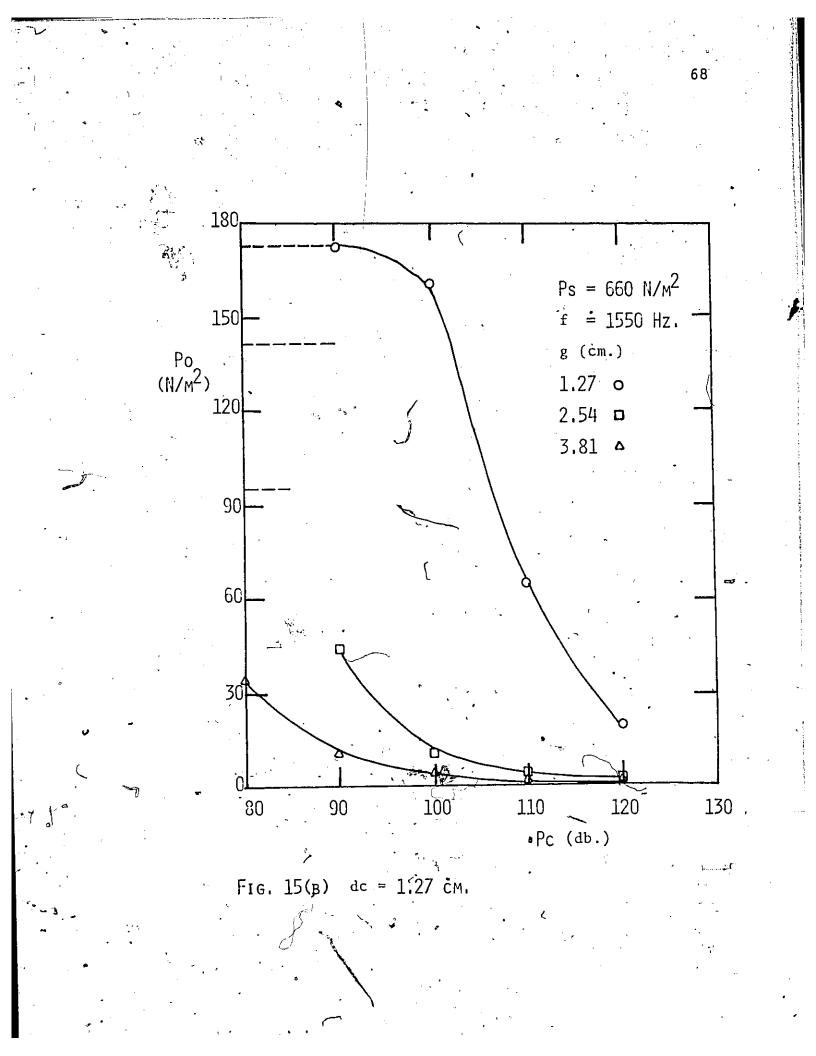


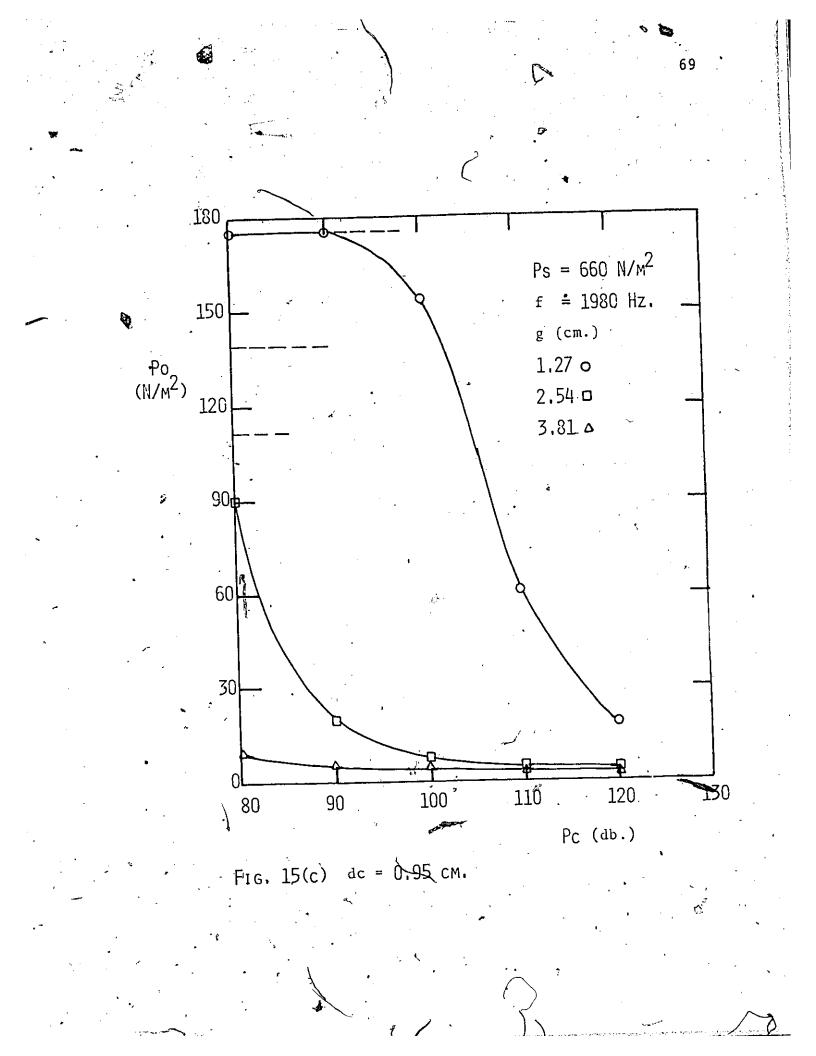


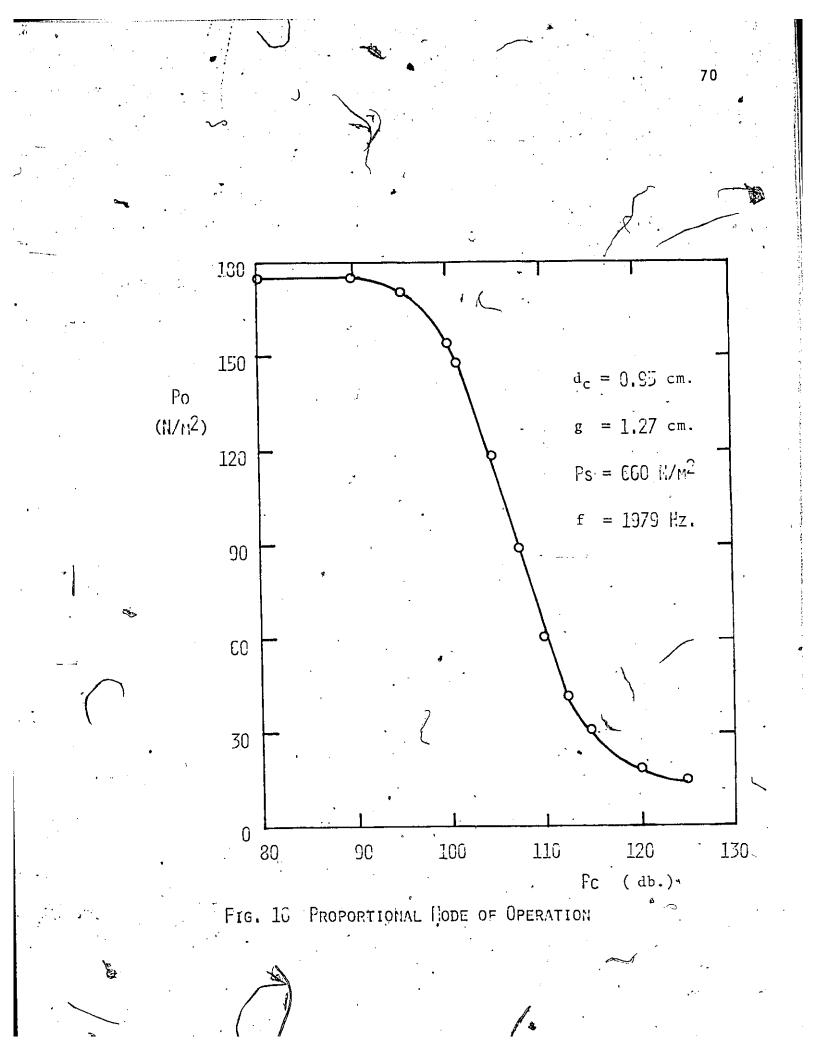


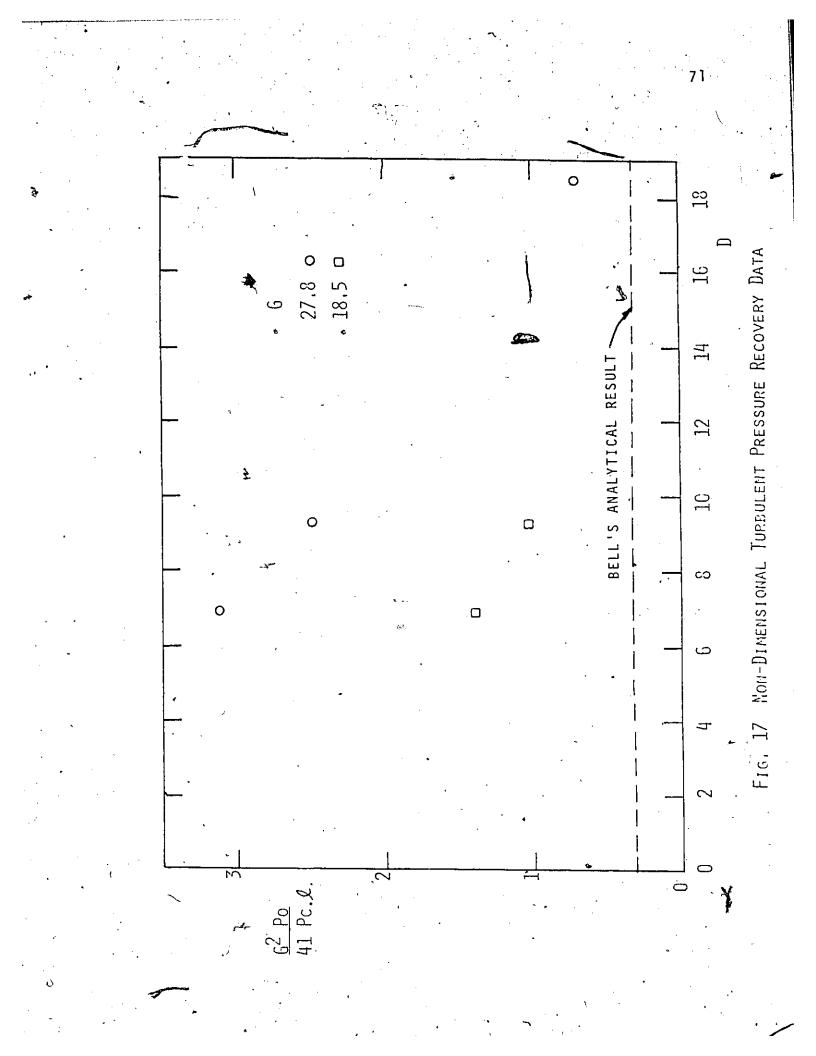




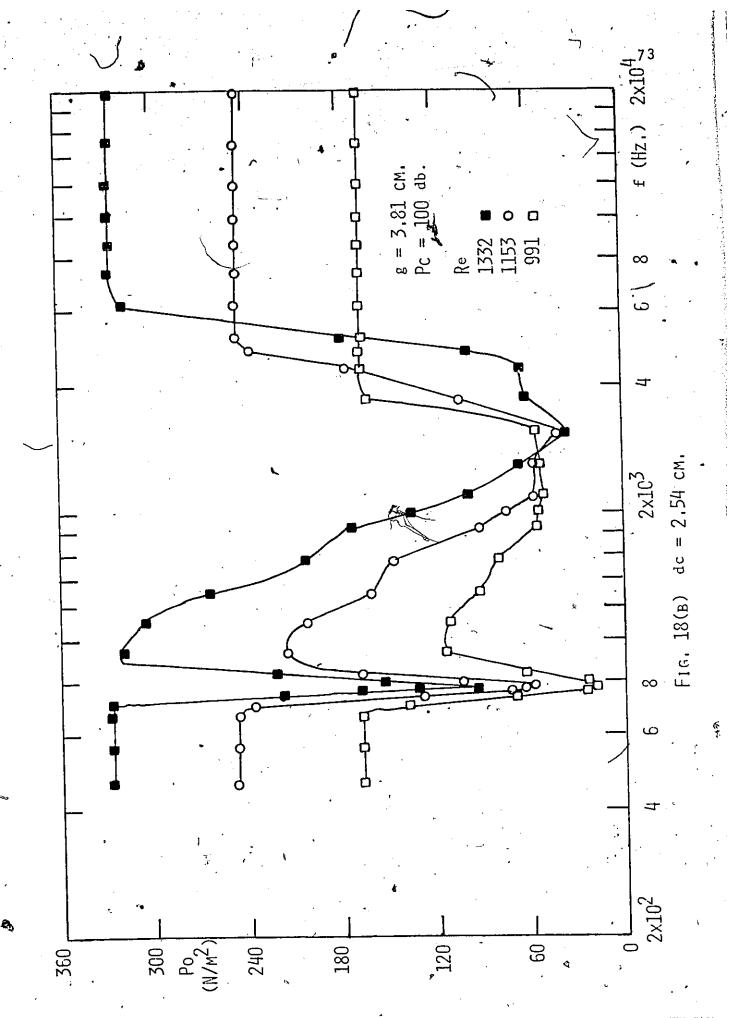


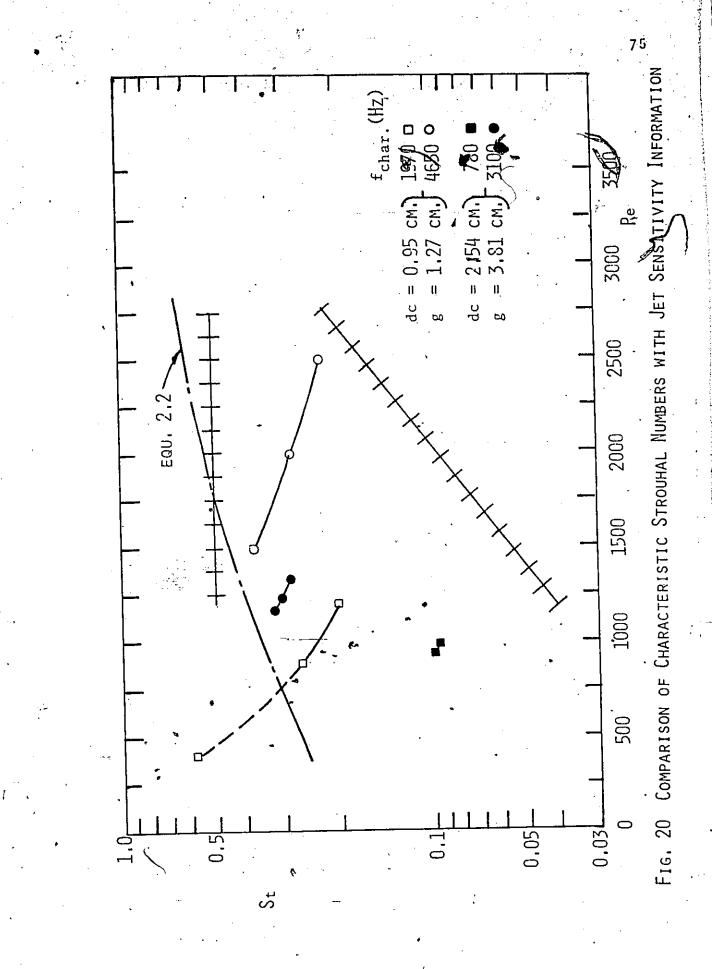




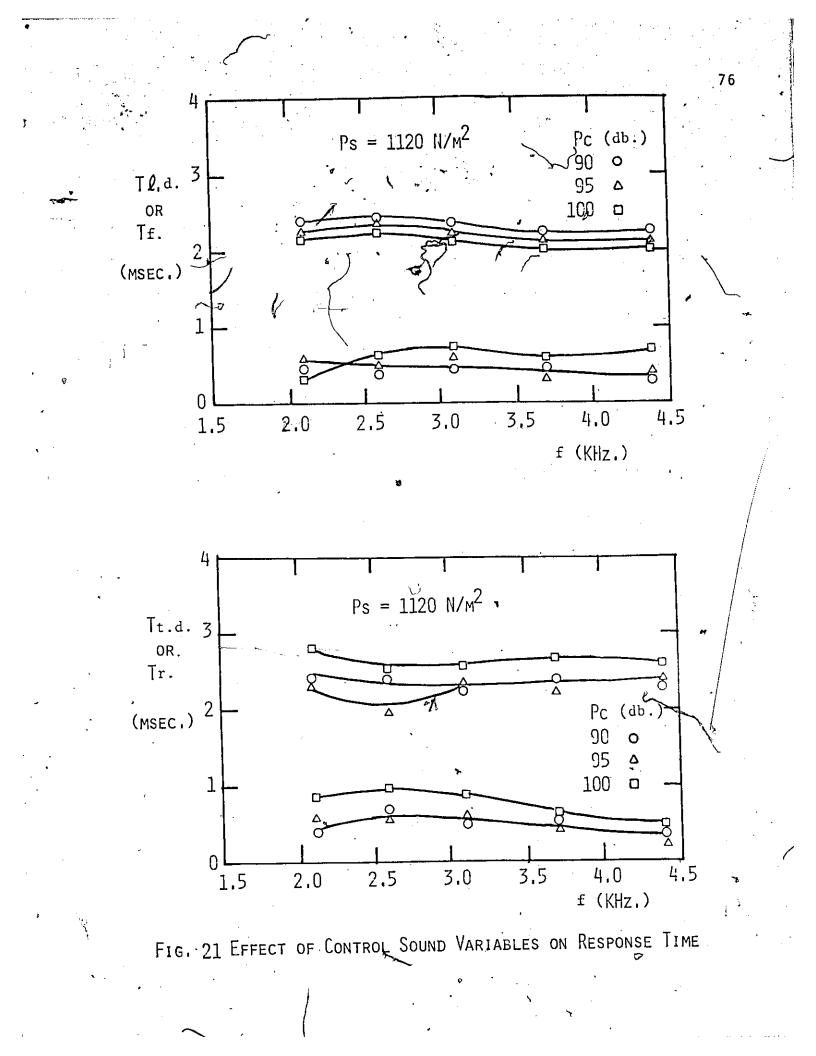


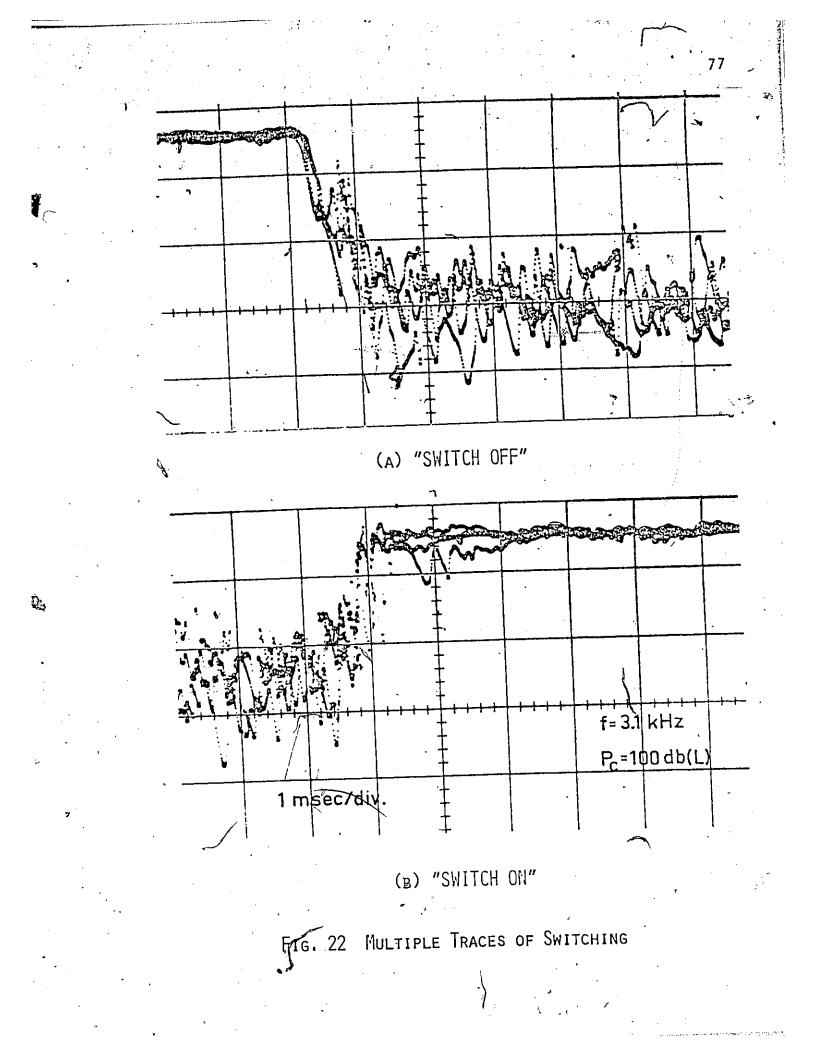


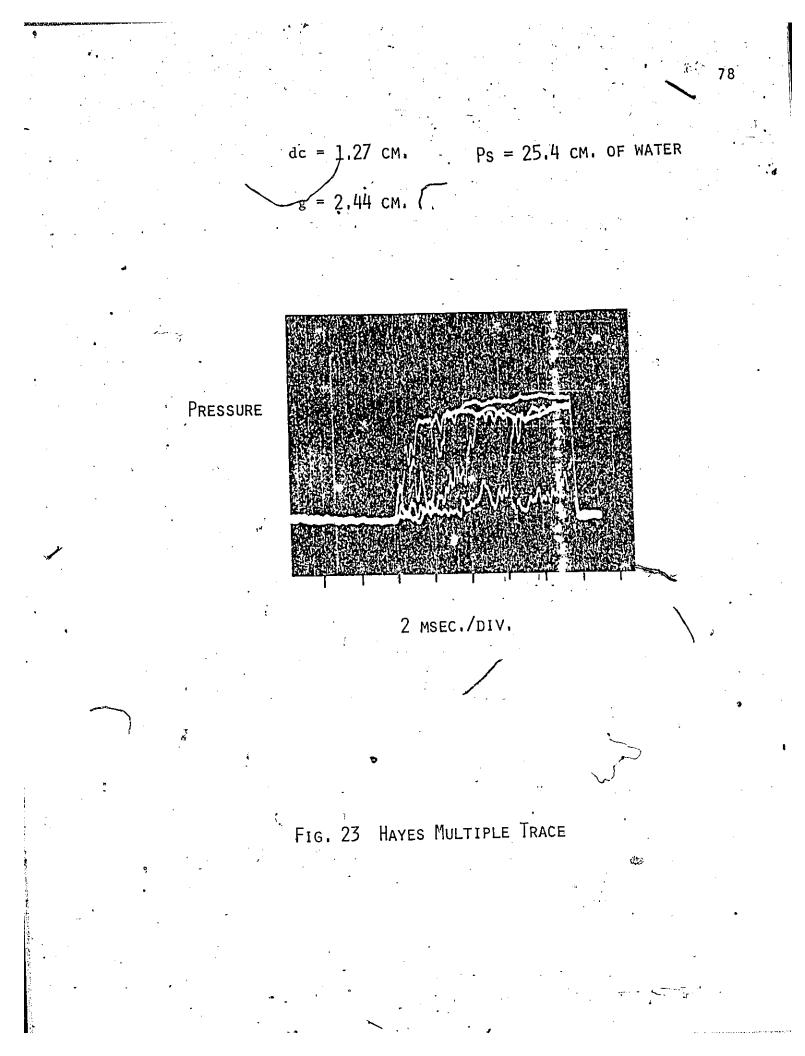


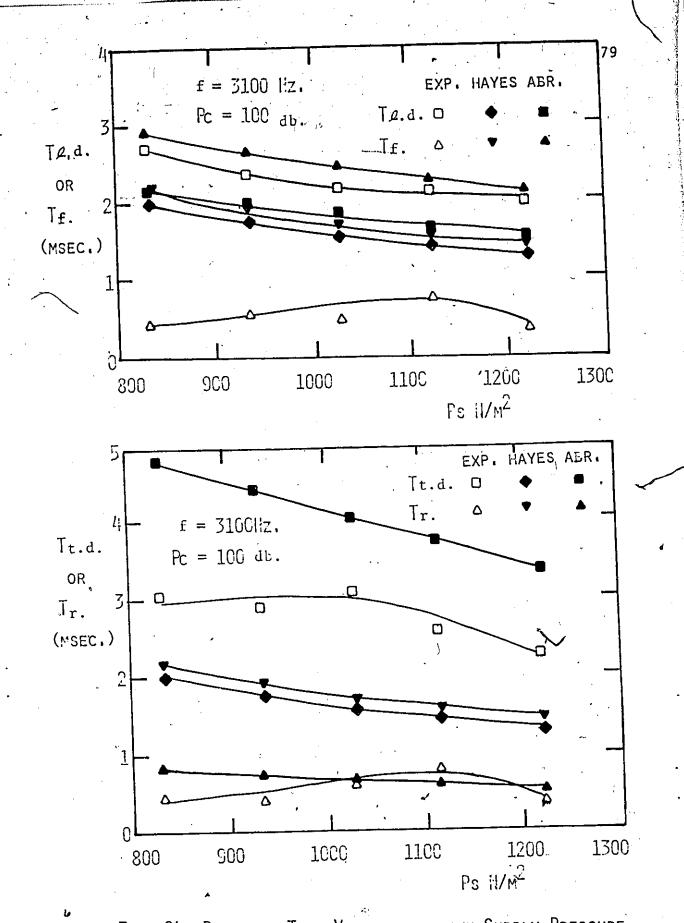


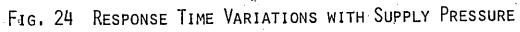
and a second state of the second state of the






.


· 、 、


.

B

•			
	•	80	
		•	
	4.		

4

۰. 3.81 cm 2.54 cm 1.27 cm. g dcA,B A,B A,B,C 0.95 cm. A,B. A,B 1.27 cm. A,B A,B,C,D A,B A,B. 2.54 cm.

ζf

- A PovsP_s
- B Povsf for Different Pc
- C Po vs f for Different Re, with Pc = constant
- D Switching Time .

TABLE I SUMMARY OF TEST PROGRAMME

 $\langle \cdot \rangle$

-1

APPENDIX A

The quantities which are pertinent to the present study are listed below along with their symbols and dimensions according to the MLT system.

Quantity	Symbol	Dimension	
supply tube diameter	ds	L · · L	;
output tube diameter	do	۲.	
shroud diameter	dc	L. ar	н. - С С С С С С С С
control hole diameter . (neck diameter)	dų	ъ І.	
vent hole diameter	d∨	I.	•
number of vent holes	N	-	·
supply tube length	ls	L	• • • • •
output tube length	lo	Ľ	
gap length	g	Ĺ	·¥
control hole thickness	ln	L L	• ′
vent hole thickness	ev.		м.
supply pressure	Ρs	ML ⁻¹ T ⁻²	
output pressure.	Po	ML- ⁻¹ T ⁻²	
control sound pressure	Pc'	$M_{4}^{-1}T^{-2}$	
average supply type velocity	Us	LT ⁻¹	
average output tube velocity	Vo	/ LT ⁻¹	•
*frequency of sound	۶	τ-1	

*NOTE: The dimensions of f are actually cycles/sec.however this can be converted to rad/sec or T⁻¹

dýnamic viscosity µ density p laminar-turbulent delay time TLd.

ds, Us, P

laminar-turbulent fall time Tf. turbulent-laminar delay, time Ttd. turbulent-laminar rise time Tr.

The physical phenomenon of interest can be represented by writing the 23 quantities in the following form.

function (ds, do, dc, dn, dv, N, ls, lo, g, ln, lv, Ps, Po, Pc', Us, Uo, f, ρ , μ , T d, Tf, Ttd, Tr)=0 Choosing the repeating variables as

the following non-dimensional groups can be found by -

 $\frac{do}{ds}, \frac{dc}{ds}, \frac{du}{ds}, \frac{dv}{ds}, N, \frac{ls}{ds}, \frac{lo}{ds}, \frac{g}{ds}, \frac{ln}{ds}, \frac{lv}{ds}$ Using the Buckingham \mathcal{N} method the remainder of the groups

Listed below can be found Ps Po PUS², PC PUS², PUS² PUS² Tl.d.US, Tf.US, Tt.d.US, Tr.US ds ds ds ds f ds Uo and Usds/4 US' US

All of the quantities listed were not varied in the reference experiment. Those that were varied are listed below: $\frac{dc}{ds}$, $\frac{g}{ds}$, $\frac{Ps}{PUs^2}$, $\frac{Po}{gUs^2}$, $\frac{Pc'}{gUs^2}$, $\frac{T\ell.d.Us}{ds}$.

 $ML^{-1}T^{-1}$

ML

 $\frac{\text{Tf.Us}}{\text{ds}}, \frac{\text{Tt.d.Us}}{\text{ds}}, \frac{\text{Tr.'Us}}{\text{ds}}, \frac{\text{fds}}{\text{ys}}, \frac{\mu \text{Usds}}{9}$

The non-dimensional groups that were actually used in present analysis are given below with their respective symbols.

$$D = \frac{dc}{ds}; G = \underline{g}; Re = \underbrace{UUSds}_{\rho}$$
$$ST = \frac{fds}{Us}; Ls = \underbrace{Ps}_{ds}; \frac{Po}{Ps}$$

The non-dimensional response times were not used in order to make comparisons with information in the literature. The term $\frac{Pc}{rr^2}$ was not used due to the preference of .

expressing the sound pressure level in decibels with a standard reference pressure (Pr) of 2 $\times 10^{-5}$ N/m² as defined below.

 $Pc = 20 \log_{10} \frac{Pc}{Pr}$ (db)

APPENDIX. B

UNCERTAINTY ANALYSIS

An uncertainty analysis of the experimental quantities is given below for one complete set of experimental conditions of the amplifiers. Throughout the analysis a double apostrophe after a symbol denotes the uncertainty in the quantity (ie. Re"). The conditions for which the uncertainty analysis is done are given below. dc = 12.7×10^{-3} m. $ds' = 1.37 \times 10^{-3} m.$ $g = 12.7 \times 10^{-3} m.$ $Ps = 660 \text{ N/m}^2$ (Re = 895) fchar. = 1554 Hz. $Po = 21 N/m^2$ $Qs = 14.9 \times 10^{-6} m^3/sec.$ Pc = 120 db. = 0.1547 X 10^{-4} m²/sec. (a) Supply Pressure 'Ps = 9.78 Rs sin Θ N/m² = 660 ¥/m² where Rs = manometer reading = $135 \text{ mm} \cdot \text{H}_2\text{O}$ Θ = manometer slope $= 30^{\circ}$ Rs" = ± 1mm. $a'' = \pm 0.25^{\circ} (0.00436 \text{ rad.})$ 1/2 $= \left[\left(\frac{\delta P s}{\delta R x} R s'' \right)^2 + \left(\frac{\delta P s}{\delta \theta} \Theta'' \right)^2 \right]$ Ps"

85

$$\frac{\int Ps}{\int R^{5}} = 9.78 \sin \theta = 4.89 \frac{M}{m^{2}mm} H_{20}$$

$$\frac{\int Ps}{\int R^{5}} = 9.78 \text{ Rs} \cos \theta = 1143$$

$$Ps'' = 7.0 \text{ N/m}^{2}$$

$$Po = 9.78 \frac{Ro}{S} (S.G.)$$
where
$$Ro = \text{Output manometer reading} = 13$$

$$S = \text{manometer slope factor} = 5$$

$$S.G. = \text{manometer fluid specific gravity} = 0.827$$

$$Po = 21 \text{ N/m}^{2}$$

$$Ro'' = \pm 0.5 \text{ mm}.$$

$$S'' = \text{assumed equal to 0 due to standard slope fixtures holding the tube in place
$$(S.G.)'' = 24 = 0.016$$

$$Po'' = \left[\left(\frac{\int Po}{\int Ro''}\right)^{2} + \left(\frac{\int Po}{\int (S.G.)}\right)''\right]^{2} \right]^{1/2}$$

$$\frac{\int Po}{\int Ro} = \frac{9.78 \cdot (S.G.)}{S} = 1.62 \frac{M}{m^{2}} \text{ mm. H}_{2}0.$$

$$\frac{\int Po}{\int (S.G.)} = 0.91 \text{ N/m}^{2}$$

$$Po''' = 0.91 \text{ N/m}^{2}$$$$

(c) Reynolds Number

(b)

$$Re = \frac{40s}{\pi ds v} = .895$$

Ď

 $g'' = \pm 0.15 \times 10^{-3} m.$

86

(f

87

•

(h) Characteristic Strouhal Number

Stchar. =
$$\frac{fchar. ds}{Us}$$
 = $\frac{fchar. \pi ds^3}{4Qs}$
fchar. = 1554
Stchar. = 0.211
fchar." = \pm 10Hz
Stchar." = $\left[\left(\frac{\int Stchar.}{\int fchar.} \cdot fchar."\right)^2 + \left(\frac{\int Stchar.}{\int ds} + \left(\frac{\int fchar.}{\int Qs} Qs"\right)^2\right] 1/2$
 $\frac{\int Stchar}{\int fchar.} = \pi d^3 = 1.36 \times 10^{-4} \text{ sec.}$
 $\frac{\int Stchar.}{\int ds} = 3 ds^2 \pi fchar. = 461 \text{ m}^{-1}$
 $\frac{\int Stchar}{\int Qs} = -\frac{fchar. \pi dz^3}{-4 Qs^2} = -14136 \frac{sec.}{m} \cdot 3$
Stchar." = $\rho:0139$
St.char." X 100 = 6.6%

(i) Response Times

The response times could be measured with an uncertainty of ± 0.2 msec.considering the sweep time of the oscilloscope (1m.sec./cm.) and possible errors involving the attainment of a reading according to the definitions of the times. (j) Control Sound Pressure Level

Based on the calibration procedure used to obtain these values and the position of the microphone in front of the control hole opening the uncertainty (Pc") is estimated as ± 1 db.

ds''

(k) $\frac{G^2 Po}{41 Pc.\ell}$

Only certain variables were used to calculate $\frac{G^2 Po}{41 Pc. \ell}$. The following data consists of the information required to obtain one of the points in Fig. 17.

ds =
$$1.37 \times 10^{-3}$$
 m.
dc = 25.4×10^{-3} m.
g = 38.1×10^{-3} m.
Qs = 14.9×10^{-6} m³/sec.
Ps = 660 N/m^2
Q'' = $\pm 2.085 \times 10^{-3}$ Kg/m³

It can be shown using the previous methods that $Po = 0.97 \text{ N/m}^2$, $Po'' = 0.325 \text{ N/m}^2$

$$G = 27.8$$
 and $G'' = 0.619$

also

P

$$Pc.\ell. = \frac{8 QQs}{\pi ds^2} = 24.0 \text{ N/m}^2$$

$$c. \ell ." = \left[\left(\frac{\delta Pc. \ell}{\delta Q}, Q'' \right)^2 + \left(\frac{\delta Pc. \ell}{\delta Qs}, Qs'' \right) \right]^{\frac{1}{2}} + \left(\frac{\delta Pc. \ell}{\delta Qs}, ds'' \right)^2 \right]^{\frac{1}{2}}$$
$$\frac{\delta Pc. \ell}{\delta Qs} = \frac{8Qs}{11 ds^2} = 20.2 \frac{N. m}{Kg}$$
$$\frac{\delta Pc. \ell}{\delta Qs} = \frac{8Qs}{11 ds^2} = 1.61 \times 10^6 \frac{N se}{m^2}$$
$$\frac{\delta Pc. \ell}{\delta Qs} = -\frac{16QQs}{67 4s^3} = -3.51 \times 10^6$$

$$Pc. l." = 1.07 N/m^2$$

letting $Y = \frac{G^2}{41.0} \frac{PO}{PC. \mathscr{Q}} = 0.761$ $Y'' = \left[\left(\frac{\delta Y}{\delta G} \cdot G'' \right)^2 + \left(\frac{\delta Y}{\delta PO} PO'' \right)^2 + \left(\frac{\delta Y}{\delta PC. \mathscr{Q}} \cdot PC. \mathscr{Q} \cdot \right)^2 \right]^{\frac{1}{2}}$ $\frac{\delta Y}{\delta G} = \frac{2GPO}{41.0} \frac{\delta Y}{PC. \mathscr{Q}} = 0.055$

 $\frac{\delta Y}{\delta Po} = \frac{G^2}{41.0 Pc. c} = 0.785 \frac{m^2}{N}$

 $\frac{\delta Y}{\delta^{Pc} \cdot c} = -\frac{G^{2}Po}{41.0(Pc \cdot c)^{2}} = -0.0317 \frac{m^{2}}{N}$

 $\frac{Y''}{Y} \times 100 = 34\%$

APPENDIX C EQUIPMENT TABLE

•

	/Company	Inc. Oregón	NDIK ABTK	Denmark		4	icht 1. Germa	Instruments Ltd. ; Sussex	•	lgen .		N.J.	Ý
) 	Manufacturer/Company	Tektronix, I Portland, Or	Disa Elektronik Herlev, Denmark	۳S	=	-	Wilh. Lambr Gottingen,	T.E.M. Crawley	re U. of W.	ROTA Oeflingen Baden	-	Hoke Inc. Cresshill,	/· ·
	Measurement	Switching times		Control Sound pressure level	=		Output pressure	Supply pressure	Supply pressure	Supply flow	-	•	
•	Accuracy			•	•	± 1 db.	± 0.55 Full Scale	± 0.21 Full Scale	± 0.2% Full Scale	± 0.2% Full Scale	± 0.21 Full-Scale		•
	Range					70-180 db	0-807 N/m ² .	0-7000 N/m ²	0-9000 N/m ²	0-120x10 ⁻⁶ m ^{\$} /sec	0-33x10 ⁻⁶ m ³ /sec	•	
	Model/Type	564	SSM	2607	2618	4138	520111	9845	*NE C406	L10/400-6185	L2.5/100-3458	1335 G2B 1° Sten	8
•	Equipment	, Dual Beam Oscilloscope	Hot-Wire Anemometer ,	Measuring Amplifier	Preamplifier	Condenser Nicrophone	Inclined Manometer	Inclined Manometer	Manometer , Bank	Rotameter	Rotameter	Needle Valve	
	No.	-	2	m	4	, .v	¢	1	60	S	10	::	

7.

91

	1.				•	,	•	* c					92
	Manufacturer/Company	ducts use, Pa.	Wilkerson Inc. Englewood, Colorado	Eng. Ltd.	(Philips) Ont.	•	Packard and, Col.	ackard	b				•
	Manufactu	Moore Products Spring House, Pa	Wilkerson Englewood	Marsland E Waterloo	DeForest Toronto,	-	Hewlett Packard Loveland, Col	ld Hewlett-Packard	U. of W.	U: of W.	BąX,	`€2 = '	
	Measurement	•					•	Control Sound Frequency	1		Background noise level	•	
	Accuracy		•	•	•		21	, ± 1 Hz		• •		± 0.2db	:k Numbers.
, ,	Range	0-508 cm. H ₂ 0	•	170-18 KHz	1 KHz-22 KHz •	400-8KHz	5-600KHz.	zH 20000	25W.		0-20% Hz 0-130 db	250 Hz 124 db.	Number Correspond to the Department Stock Numbers
	Model/Type	7266-1	A-1138-8	LS-809-14W	AD.0160/TA	AD 5060/508	200 CP	5221B	ME CS15		2204	4220	ber Correspond to
	Equipment	Pressure Regulator	Filter	8" Speaker	4" Dome Tweeter	5" Speaker a	Sine Wave Oscillator	Electronic Counter	Power Amplifier	Electronic Switch	Sound Level Meter	Sound Level Calibrator	• NOTE: M/E. Num
	No	12	S	14	15	16	17	18	19	20	12	22	

APPENDIX D

. • • •	ANALYTICAL METHODS	Page
n.1	Rell's Analytical Procedure	\ 94
D.2	Maye's Theoretical Switching Times	102
D.3	Abramovich's Empirical Switching Times	103
D.4	Alster's Helmholtz Formula	104

APPENDIX D.1 .

BELL'S ANALYTICAL PROCEDURE

A general description of the theoretical methods that Bell used is given in Chapter II. In this section, emphasis is given to the usage of the standard mathematical relationships, given by Bell in Ref. 12 for determining the characteristics of the unshrouded turbulence amplifier. In the following analysis it is assumed that ds, g, Ps, and Ls are known.

(1) Estimate Qs from

Qs = nr is⁴₽s 128425

(2) Calculate Re from.

Re== 4Qs TRESU Ls

(3) Find Pcl. using Table D.1.1 (Ref. 12) shown on the next page.

Ps can be found by adding 1 to ΔP to include the $\frac{1}{1/2}\rho lis^2$.

non-dimensional Bernouli pressure drop incured by the fluid passing from the settling chamber into the tube through a bellmouth entrance. Pc. is then found by inverting these values and interpolating for the particular Re found from ts

(4) **\lambda_o** is found by interpolating the R=O column of
 Table D.L.1 for the particular value of Re mentioned previously.
 (5) Calculate Pc. *L*, from

$$Pc \boldsymbol{k} = 0.5 \boldsymbol{g} \left(\frac{4 \boldsymbol{\lambda} \cdot \boldsymbol{Q} \boldsymbol{s}}{\boldsymbol{\pi} \, \mathrm{d} \, \mathrm{s}^{2}} \right)$$

0.1.3

D.1.1

11.1.2

DEVELOPING FLOW THROUGH TUBES

TABLE D.1.1 HORNBECK'S SOLUTION FOR PRESSURE DROPS IN

r is the radial distance from the centre of the tube

 $`seen \ by \ considering \ the \ cases \ of \ Ls \ and `Re \ approaching$

in brackets. This value must be infinity as can be easily

 $\frac{\Delta r}{2} \rho U_s^{a}$ given by Bell for $\frac{R_e}{L^{a}} O$ is shown

NOTE: The value of J

9200

5.2688

0.8

0**.**7 ·

0.6

0.5 0000

ds/2)

Re/Ls

 $\lambda = \frac{U(R)}{(4 \Theta_s / \pi ds^2)}$

infinity and zero respectively.

(6) Calculate Ps. estimate from

\Rightarrow Ps estimate = step 6 step 4

(7) Compare Ps estimate to Ps. If they are not equal within certain error bounds guess a new value of Qs and return to Step 3. If they are equal the values of Qs, Re, Pcl, Pcl, λo are determined.

This portion of Bell's procedure was used to determine the theoretical line shown in Fig. 8. (8) Calculate β from Table D.I.1 by interpolating λ 's for 0 < R < 1.0 at 'Re from step 7 and 'mumerically integrating these λ 's over 0 < R < 1.0.

(9) Calculate K from

(10) Calculate G from

K = 32 A c

(11) Calculate $\frac{P_0}{P_c}$ from

 $\frac{P_{0}}{P_{C} \mathcal{L}} = \frac{1}{\left(\frac{KG}{Re^{2}} + 1\right)^{2}}$

(12) Calculate Po from

Po = (step 11) x (Step 7)

D.1.8

D.1.5

D.].6

D.1.7

This value of Po with the value of Ps in step 7 were used to plot the theoretical lines in Fig. 9.

(13) Calculate Re from KGLs

96

D.1.4

$\frac{\text{Re}}{\text{kGLs}} \approx \frac{(\text{step 7})}{(\text{step 10})} \qquad D.1.9$

This value along with $\frac{Po}{Ps}$ from Step 7 were used to plot

the theoretical lines in Fig. 10.

(14) Calculate Poturb, from

Poturb =
$$41.0 \ \beta Pc\ell$$

This value was used to plot the theoretical lines in

Fig. 13.

(15) Calculate $\frac{G^2 Po}{41.Pcl}$ from

$$\frac{G^2 p_0}{41.Pc.\ell.} = \frac{\beta}{(\text{step 14}) \sqrt{0^2}}$$
 D.1.11

This value was used to plot the theoretical line in Fig. 17.

The program that is used to perform the previous computations is given in the remainder of this section.

D.1.10

****** С C - RELL'S AMALYTICAL PROCEDURE (NAIN PROGRAM) C C. **** Ċ. **** ******* ٠C **** ***** С ******* REAL KILANDA DIMENSION PE(16) EXTERNAL LAMDA, PEST (BETA COMMON REL READ) + FL + G +D 1 FORMAT (3F10.5) $G = G^{+}/{-12}$ 0 = 0 / 12.0EL= EL / 32.0 GG=G*2.54 1)()=1)*2.54 . EELL=1<u>1*2</u>.54 $\begin{array}{rcl} \mathbf{GE} &= & \mathbf{G} & \mathbf{Z} & \mathbf{D} \\ \mathbf{EUU} &= & \mathbf{EU} & \mathbf{Z} & \mathbf{D} \\ \end{array}$ PRINT 100-00-66-ELL 100 FURHAT ('1', 'DIAMETER = ', F10.3, 5X, 'GAP = ', F10.3, 5X, 'L/U = 1 F10.2} PRINT 200 1,3X, 1 .REL ... 1,3X, 1 LAMDA ... ',3X,' KEY. 200 FORMA1(101+2X+1 Û PS 1,3X,1 REOKGE 1/101, 1.3%.1 к 1,3X,E PHPS 1,3X+1 2 'POTUKB' +2X + 'TUKB') 10 READ 2+ PS 2 FORMAT (F10/5) IF(PS.E0.0.0) GO TO 999 PS=P5/248.142 PS= PS / 12.0/ CALL PSTHED(D. + EL + PS + "O + REL + AMDA + PCLPS + PCL) REY == REL 🛎 EL 🗶 D B = BETA (LAMDA) ^ K = 32.0 * AMDA / (3.0 * 80)PU = POPCL * PCL PS = PS * 12... PCL = PCL * 12. PO = PU = 12. PO , PS , PCL IN INCHES UF WATER С Q = Q = 28316.8 + 60.3 Q IN CC / HIN C PU=PU#248.142 PS=PS#248.142 PCL=PCL#248.142 REOKGL=REGKG/ELL PUPS=PU7PS YYY=GE##0.27#PUPS PUTURB=(B*41.0*PCL)/(GE#AMUA)**2.0 TURB=8/AMDA++2.0 Q=0760. Q IN COUSEC C, PRINT 4.0.REY, RFL, AMDA, K, POPS, YYY, PS, REOKGL, POPCL, PO 4 FURMATE 11 (2X , E8.3)) PRINT S.POTORB.TURB.B 5 FURMA1(1,3F10.3) GO TO 10 999 STOP

Ż

3

4

6

н

9 10

11 12

12 14

35

10

17

<u>3</u>.8

19 20.

21 22

23.

24 25

26

27

28 29 30

31

32

33

34

35

36 37

38 39

40

41 42

43

44

46

47

48 49

50

END

FUNCTION BETAL LAMDA) COMMON REL DIMENSIUM RF(16) REAL' - LAMDA A=0.0 B=1'x0 N=10 H = 0.1 SUM = 0.0 $\kappa = N - 1$ 100.6.1 = 1 + KΛ +] * H } SUM = SUM + L'AMDA (("H / 2.0) BEIA = (LAMDA(A) + LAMDA(B) + 2.0 * SUM) * RETURN END , AMDA , PCLPS , PCL) SUBROUTINE PSTHEOL D , EL , PS , Q , A CUMMUN REL 61 DIMENSION RE(16) 86. REAL LAMDA 69 70 14 =+ 0 0 = 3.14159 = [** 4 * PS * 0.4335 * 144. * 32.2 / (128. * 71 1 0.1468E-04 * EL) Q.IN FEET##? / SEC С 20 CONTINUE 72 REL = 4.0 * 0 / (3.14159 * EL * 1.55E-04) 13 PCLPS = PFST(REL) 74 PCL = ($8.0 \approx 0.0750 \approx$ (LAMDA(0.0) \approx U / ($3.14159 \approx$ U \approx 2) 1 \approx 2) \approx 0.192227 / (12. \approx 32.2) 75 ----P1 = PCL / PCLPS76 PCL + P1 + PS IN FEET UF WATER C 1F (PS - P1 .G1..0001 .AMD. N .Eu. 0) GD 10 25 ٩77 IF(P1 - PS .GT..0001 .AND. N .EW. 0) GO TO 26 78 IF (N .FC. 0) GO 10, 99 79 IF (PS - P1 .GT..0001 .AND. NC..NE. 0) GU TU 27 IF(P1 - PS .GT..0001 .AND. N .NE. 0) GU TU 28 80 **R**-1 GO TO 99 82 25 OR1T = 2.0 * 0 83 .0LFFT = 0 84 60 TO 30 -85 26 ORIT = 0 86 OLEFT = 0.087 GD- TO 30 88 89 21 uLFF = 0GO TO 30 90 9] 28/0K11 = U GII TU 30 .92 30 U = (ULFF1 + UR11) / 2.0 44 94 N = N + 160 10 20 95 96. 99 CONTINUE 97 $\Lambda = REL$ 98 AMDA = LAMDA(0.0)RETURN 99 ENO 100

51 52

53

54 55

56

57

58

59

60

61

62

62

64

65

66

REAL FUNCTION LAMDA (R) M(16+11) + RR(11) REAL RE(16) + CUMMUN RFL HATA RE/0.0.16.0.20.0.25.0.33.3.44.4.57.1.80.0.100.0.133.0. 1 200.0,267.0,400.0,800.0,2000.0,9999.97 DATA PR/0.0.0.1.0.2.0.3.0.4.0.5.0.6.0.7.0.8.0.9.1.0/ DATA M(1,)),M(2,1),F(3,1),M(4,1),M(5,1),M(6,1),M(7,1),M(H,1), 1 M(9,1),M(10,1),M(11,1),M(12,1),M(13,1),M(14,1),M(15,1),M(16,1)/ 2.0000.1.9863.1.9698.1.9431.1.8920. 3 1.8240+1.7555+1.6595+1.5977+1.5239+1.4332+1.3782+1.3126+1.2269, 4 1.1503.1.00007 DATA N().2).N(2.2).N(3.2).N(4.2).N(5.2).N(6.2).N(7.2).N(8.2). 1 M(9+2)+M(10+2)+M(11+2)+M(12+2)+M(13+2)+M(14+2)+M(15+2)+M(16+2)/ 1.9500+1.9672+1.9517+1.9200+1.8785+ 3 1.8142, 1.7488, 1.6562, 1.5960, 1.5232, 1.4331, 1.3781, 1.3126, 1.2269, 4 1,1503,1,0000 / -1)A1A M(1.--),M(2,3),M(3,3),M(4,3),M(5,3),M(6,3),M(7,3),M(8,3), 1 M(9,3),M(10,3), M(11,3), M(12,3), H(13,3), H(14,3), M(15,3), H(16,3)/ 1.9200,1.9095,1.8969,1.8763,1.8366, 1.7829.1.7269.1.6448.1.5893.1.5204.1.4324.1.3779.1.3125. 1.2269.1.1502.1.0000 / A M(1,4),M(2,4),M(3,4),M(4,4),M(5,4),M(6,4),M(7,4),M(8,4), 9,4),M(10,4),M(11,4),M(12,4),M(13,4),M(14,4),M(15,4),H(16,4)/ 1-8200+1-8128+1-8042+1-7901+1-7626+ 5),M(5,5),M(6,5),M(7,5),M(8,5), 1;H(13,5),M(14,5),M(15,5),H(16,5)/ 1.6800,1.6764,1.6721,1.6650,1.6509, 4 1.1503.1.00007 2 3 1 4 1

DA 1 M 2 30, 3

4 DATA M(1,8),M(2,8),M(3,8),M(4,8),M(5,8),M(6,8),M(7,8),N(8,) 1 M(9,8) . M(10,8) . M(11,8) . M(12,8) . M(13,8) . M(14,8) . M(15,8) . L(16,8) / 1.0200,1.0229,1.0264,1.0321,1.0433,

4 1 1485 1 00007 DAIA M(1.5).M(2.9).M(3.9).M(4.9).M(5.9).M(6.9).M(7.9).M(8.9).

3 0.7584.0.7756.0.8040.0.8261.0.8585.0.9107.0.9511.1.0098.1.0950. 4

7.101. HATA H(1.10) H(2.10) H(3.1 ,,10), 1M(8,10).M(9,10).M(10,10).M(2 M(15,10), M(16,10)/

77,0.3947, 40.4047.0.4159.0.4346.0.4496.0.4720.0.5100.0.5417.0.5408.0.6893. 5 0.8424.1.0000/

DATA M(1-11), M(2-11), M(3-11), M(4,11), M(5,11), M(6,11), M(7,11), 1M(H.1) + (10.11) + (10.11) + (11.11) + M(12.11) + M(13.11) + H(14.11) + 2 H(15+11) M(16+11)/-

116

111 .

112

1153

115

113

101

102

102

104

105

106

107 --

3

108

3 1.6306,1.6073,1.5675,1.5358,1.4902,1.4214,1.3733,1.3115,1.2268,

DATA M(1.6).M(2.6).M(3.6).M(4.6).M(5.6).M(6.6).M(7.6).M(8.6). 1 M(9,6), H(10,6), M(11,6), M(12,6), M(13,6), M(14,6), M(15,6), H(16,6)/

3 1.0588.1.0757,1.1023.1.1218.1.1476.1.1814,1.2000.1.2144.1.2016,

1 M(9,9),M(10,9),M(11,9),M(12,9),M(13,9),M(14,9),M(15,9),M(16,9)/ 0.7200.0.7229.0.7263.0.7319.0.7429.

1.1293.1.00007

100

÷. h

0.0000.0.0000.0.0000.0.0000.0.0000. 5 0.0000.0.00007 ND1M = 15 MD10 = 10 $\{H_{1}, I, T = 1, \dots, NDIM$ TEC REL. LT. REC 1 + 1 1 .OR. 1 .EU. NDIM) GO TO 2 1 CONTINUE 2 DU 3 J = 1 4 MUM 16(A .LT. RK(J+1) .UR. J .EO. 001M) 60 10 4 5 CONTINUE ALPHA = (REL = RE(1)) / (RE(1+1) = RE(1))4 1 BETA - (1.0 - ALPHA) * M'[[+1+]] + ALPHA * BETA 🖗 M(1+1,J+1) 2 *

128 . RETURN 129 . END

117

118

119

120

121

122

1-23 124

125

.176 127

120

140

FUNCTION PEST (REL). DIMENSION P(19) RF(19)

131 HATA RE/0.0.5.5.10.0.17.5.16.0.20.0.25.0.33.3.44.4.57.1.80.0. 122 1 100.0,133.0,200.0,267.0,400.0,800.0,2000.0,11117 UAIA P/0. (00,0.244,0.420+0.511+0.629,0.712,0.788,0.872,0.932+ 123 1 0.966,0.990,0.997.1.000,1.002,1.002,1.001,1.001,1.001,1.00/ 174 MDIM = 18 $\mathbf{D}\mathbf{D} = \mathbf{1} + \mathbf{D}\mathbf{D}\mathbf{H}$ 135 IFT REC .LT. RECHTI .DR. T .EO. NDIM J GO TO 2 1.6 137 1 CUMIINUE 2 PEST = P(1) + (REL - RE(1)) + (P(1+1) - P(1)) / (RE(1+1))138 1 - FI(1)129 RETHRN

END

APPENDIX D.2

HAYES' THEORETICAL SWITCHING TIMES Hayes (Ref. 13) derived theoretical relationships to describe the various switching times associated with the turbulence amplifier. He assumed that the velocity profile at the emitter exit was parabolic. Schlichting's point source model (Ref. 34) was used with centerline velocity matching, to model the laminar jet. To obtain an estimate of the "so called" inviscid core length $\mathcal L$ i.c., he assumed similarity between planar and axisymmetric free laminar jet spreading and "so called" inviscid core length. He also assumed that the control action was concentrated at the point where the control jet hit the supply jet. Such an assumption is not realized in the present case and therefore the control action was assumed to occur at the jet exit. The equations obtained are shown below converted to the terms used in the present investigation.

Xo = 0.0624 ds Re		D.2.1.
<i>l</i> i.c. = 0.00762 ds Re	•	D.2.2

$$T\ell.d.=Tt.d.=\frac{\ell i.c.}{2Us} + \frac{g-\ell i.c.}{2Xo Us} \left[Xo + \frac{g-\ell i.c.}{2} \right] -D.2.3.$$
$$Tr: = Tf. = \frac{1.10g}{2Us} ---D.2.4.$$

APPENDIX D.3

ABRAMOVICH'S EMPIRICAL SWITCHING TIMES

Abramovich (Ref. 1) found experimental correlations for the switching times of the laminar jet. The definitions for T.Q.d., Tf. and Tt.d. are similar to those of the present study. the rise time is based on 70% of the "particular velocity rise. Since the velocity versus the time in this region was approximated by a straight line the time corresponds to 70% of the Tr. definition used in the present study. The empirical equations for the switching times converted to account for the present definition are given below.

D.3.1.

$$T = \left[A \frac{G^2}{Re} + B \frac{G^2}{Re}\right] \frac{ds^2}{2v\sqrt{Re}}$$

	A		, B
Tt.d.	1.58		1.48
Tr.	0.39		0.17
Tl.d.	0.60	•••	0.76
Tf.	0.60		1.20

103 -

APPENDIX D.4

The equations that were given by Alster (Ref. 2) to predict the resonant frequency of a circular cylinder with a centered lateral hole are given on the next page and the computer program used to calculate the resonant frequency follows in the remainder of this section.

$$f = \frac{c}{2\pi} \int \frac{An}{1.21(\text{Ve+Vn}) \left\{ \left[\frac{VC}{(\text{Ve+Vn+V_0})} \left[\frac{h}{h+1n+z_0} \right] \right]^{\frac{h}{h} + \frac{h}{(2n+z_0)} (1+1/2) \left[\frac{(\text{Vn+V_0})}{-\text{Ve}} + \frac{gn+g_0}{h} \right] \right]}{\frac{r}{1/3} \frac{\text{Vn+V_0}}{\text{Ve}} \frac{gn+g_0}{h} \frac{gn+g_0}{h} + \frac{gn}{g_0}}$$
where:
v = form factor:
 $= \frac{T}{\pi \ln^2 \left[\frac{h}{13} \frac{dc^2h}{g} \frac{gac^2}{g} + \frac{gac^2}{gac} \left(\int dch+h^2 + \frac{h^{1.5}}{h} + \frac{h}{g_0} \right] + \frac{dc^3}{g} \left(4.88 + \sin^{-1} \left(\frac{2h-dc}{dc} \right) \right) \right)}{\frac{h}{g}}$
h = effective depth of the chamber
 $= \frac{1}{2/2(dc+Jdc^2-dn^2)}$
Vc = effective volume of the chamber
 $= \frac{L}{g} \left[dn \sqrt{dc^2-dn^2} + \frac{dn^2}{gn} \sin^{-1} \sqrt{\frac{L}{g} \frac{dc^2-dn^2}{dc}} + \frac{dc^2}{gn} \right]}$
Enters of the total end correction

 $1 \cdot lo2 =$ two parts of the total characteristic factor due to the motion of the gas outside the resonator empirically determined to be $l_{o1} = l_{o2} = 0.24$

V₀₁=An L₀₁

•				•				•
•		and a sub- constant	• .	•	• . •			
1		DIMENSION FF(10)						4
		100/11NOE (E70_100.FC.EEL.DUG	FI-L N		•	:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
•		-UREAT (4F10.5)		•		• •		
1			· ·				-	· .
		LF(0C.GT.2.0)G0 TU	999	· · · ·			٠.	
		CUNTINUE	•				.· ·	· •
		IF()ash.FO.33 GO TO				e e		
		1F(MAN.61.3) 60 10	20			• .	•	
		KC=NC#2.54/2.0	•				1111	• •
	-	KH=DH#2.5477.0		4	•	· · · · · ·		
		EE=EEL*2+54					· · ·	•
· · ·		FLN=EFL化率2+54			•		· .	•
		C=344.0F02 H=RC+SUR1 (RC**2.0-	പംകഴ്വ്		•			
		V1=KC**2.0*3.14159	12.0			•	•	
		V2=RC##2.0#ARS1№((Str148C**	2.0-KH##2	2.0))/KC)		· · ·	•
		V3=KH#SORT(KC##2.0	-RH##2.0)					
		$V = FI \approx (V + V + V + V + V)$						
		LINI-UPROV OUTA NO.	13 14159"	ARS1NCCH-	·KC)/KC))			
		FT AS=2.14]22+2.14]22+KC+45	.0#(BURL)(2.0*60*14-	-8042.0)+	(114,41.5/	3.07SORT	(R.C.) } }
		ĖL∛3=RC≈≈2.0≈H/2.0		· · · ·	• •		•	
•		ELV4=14*%.0/3.0						
	È i	ELV=3.14159*KH**2.	0*(ELV1-E	LVZ-ELV2-	FELV41724	0/h/¥		
•		IF(ROW.E0.2) ELV=	1	2.0766	.•	-	· ·	· ·
	• •	GU TU 20 CUNTINUE	• .			. ' '		• .
÷.,	tr.	COMPTENDE RH=0.070#2.54	• •	•	•		· ·	
		H=FL			•	•		· · · · · · · ·
		ELM=0.1875*2.54						•
		HLW=(RH/RC)**2.0*	1/3.0		1	• •	1. A.	• • •
	20	CONTINUE	, i	•		·		
	17	EL01=0.24×RH	• `			· · ·		•
		ELU2=0+24#88					•	•
•		FN=3.)4155 #RH##2.0	ງ ່				•	
	•	VIII=FRAFLO1	:	• •				
		VN=FIPELV			•			
•		$\mathbf{F} = (\mathbf{A} \mathbf{F} + \mathbf{A} \mathbf{H} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$			•			· · ·
		- F2=(ELN+FU91)/H -F3=(].0+0.5*(F1+F)	214614627	4_0) ₽(ELN	+ELU1.)			, ,
		F4=h1v+#3			•			
- .		+5=V/(v+VIJ+VII)	•				1. F	
		F6=H/(II+FLN+FLU1)				-		
	·	ド7=ト5キドハギデ4+ビモ112	·	•				
		FH=1.21=(\+VH)=F1						
		F=C#SURT(FM/F8)/2	.0/3.1415	9	•			
		FF(1)4N)=F		•				
		N(0) = N(4) + 1					· .	,
		66 10 6						•
	3,0	COMTINUE PRICT 200.0C.EEL.	1911 - 1. 1 ² 1 - 1. 12	6111.661	21.66(3)			
		PRINT 200 DRAFEEL	101340000548					• ·
	200	1 FORMATE 1.7F11.5	•					-
		GU 10 5 E CUPTINUE						
	-1 -1 V	STUP					· .	
		END.					•	•
		· .			•			

с7

> () 4]

1,06

APPENDIX E

EXPERIMENTAL DATA

In general the significant figures shown in the following tables are more than those claimed on the basis of the Uncertainty Analysis (Appendix B).

E.1 Output Pressure vs Supply PressurePageE.2 Output Pressure vs Sound Variables111

137

E.3 Switching Times

APPENDIX E.1 OUTPUT PRESSURE VS. SUPPLY PRESSURE

dc = 0.95 cm.

			· · · ·
•	(N/m ²)	Po (N/m ²)	Qs (m ³ /sec.x 106)
g = 1.27 cm	· 248 .] 440.5	23.4 78.3	6.7 10.3
$Ta = 23.9^{\circ}C$	163.8	174.5	14.9 22.3
Pa = 7Å8.28 mm. Hg.	1693+6 2024+4 2528+2	871 • 3 109 3 • 0 1492 • 7	30.5 35.0 40.6
B.N.L. =66db	2813.3	1729.8 1862.9	· 43.3 - 46.1
	3288.5 3592.7 3847.4 4080.6	2081.5 2262.0 2250.2 1865.4	48.3 51.1 53.3 55.6
g = 2.54 cm.	217+1 278+4 558+3	9.7 41.7 94.4	6.0 8.8 12.0
$ra = 23.90^{\circ}C$	744 • 4 986 • 4	175.9	16.4
Pa = 749.3 mm. Hg.	1116.6 1129.0	271.7 379.3	22.5 22.7 23.3
B.N.L. = 660 db.	1172.5 1246.9 1420.6 1780.4	282.4 262.3 161.4 181.6	24.7 27.4 31.8
g =3.81 cm.	223.3 304.0	7.3	6.0 8.0
$Ta = 23.9^{\circ}C$	440.5	44.4	10.5 · 5 12.6 14.9
pa = 75.84 mm. Hg.	663.8 707.2 719.6	113.0 125.9 128.7	15.6
B.N.L. = 68	750.6 . 787.8 837.5	113.0 76.7 70.2	$ \begin{array}{r} 16 \cdot 4 \\ 17 \cdot 2 \\ 17 \cdot 9 \\ 18 \cdot 7 \end{array} $
	893.3 980.2 1073.2	70.2 70.2 71.8	18.7 20.2 21.7

dc = 1.27 cm.

-

			· · · · · · · · · · · · · · · · · · ·
	P _s (N/m ²)		Q _s m ³ /sec. x
g = 1.27 cm	246.] 441.3	21.7	6.9 10.5 15.0
$Ta = 24.4^{\circ}C$	666.2 942.1	174.0 331.0	19.7 °
Pa = 745.45 mm. Hg.	1200.9 1684.2	492.2 825.1 1005.0	24.1 30.2 32.8
B.N.L. = 68	1910.7 1985.1 2158.8	1067.0	· 33.9 35.6
db.	2289.1 2444.2	1308.9 1445.4 1615.7	37.2 28.9 41.1
	2652•7 2704•8 2955•9	1748.8 ⁶ 1801.4	42.8
	3165.0 3326.5	2083 •5 2224•0	46.7
u 	3602.6	2378.4 2425.0 2355.1	50.0 50.8 51.7
	2707.5	1970.3 1774.2	53,3
	. 4181.2	1885.9	56.1
g = 2.54 gm	210.9 372.7 545.9	-8 • 1 95 • 7	. 8.8 12.6
$r_a = 25.6^{\circ}C$ $r_a = 751.08$	732.0	172•7 290•5	16.2 20.2
mm. Hg.	1464.0	425.8 605.2	24 •0 27 • 9 28 •4
8.N.L. =65db	1532.3 1772.1 2168.5	645.6 443.8 324.9	31 • 8 26 • 1
and the second	2658.2	351.0	41.7
g = 3.81 cr	210.9 n. 372.2 545.9	21.4	8.8 12.6
$Ta = 26.7^{\circ}C$	632.8	92.8 101.7	14.1 15.6
Pa = 749.55 mm. Hg		119.4 113.8 117.0	16.4 17.2 18.7
B.N.L. = 66db		111.4 103.2	19•4 20•9
	1166.3	95.2 87.2	23.2
	1538.5 1799.0	79.9 76.7 82.3	28.7 31.8 35.0
	2098-6	(* 2, • ./	

dc =	2.	54	cm.
------	----	----	-----

			<u></u>
	Ps (N/m ²)	Bo (N/m ²)	(m ³ /sec. x 106)
g = 1.27 cm Ta = 23.9° C Pa = 751.84 mm. Hg. 3.N.L.=68 db.	272.2 744.4 1203.5 1799.0 2052.9 2290.6 2556.7 2813.3 2069.9	55.8 210.9 477.7 905.7 1112.0 1207.1 1444.7 893.4 1045.5	8.8 16.4 24.0 32.2 55.0 37.8 40.6 43.3 46.1
g = 2.54cm. Ta = 21.7°C Pa = 749.81 mm. Hg B.N.L.= 67 dl	545.9 744.4 967.8 1197.3 1488.9	8.1 37.1 90.4 171.1 282.4 411.6 585.1 609.3 363.1 306.7 262.3 238.1 262.3	6.0 8.8 12.6 16.4 20.2 24.0 27.9 28.5 30.2 35.0 37.8 43.3 48.9
g = 3.81cm $Ta = 24.4°C$ $Pa = 748.54$ $mm. Hg$ $3.N.L.=67 dt$	217.1 372.2 539.7 663.8 787.8 936.7 1073.2 1209.7	4.0 26.6 72.6 113.0 164.6 227.6 302.6 367.2 411.6 435.8 403.5 ,246.1 157.4 125.1 88.8 80.7 76.7	$ \begin{array}{r} 6.0\\ 8.8\\ 12.6\\ 14.9\\ 17.2\\ 19.4\\ 21.8\\ 24.1\\ 25.5\\ 26.8\\ 27.6\\ 29.0\\ 32.3\\ 34.4\\ 37.8\\ 43.3\\ 48.9\\ \end{array} $

APPENDIX/ E.2

OUTPUT PRESSURE VS. SOUND VARIABLES

dc = 0.95 cm.

= 1.27 cm.

 $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

	•			John .			
.[Pc (db)	f (H_) z	Po (N/m ²)	(H)	Po (N/m ²)	$(\mathbf{H}_{z})_{f}$	Po (N/m ²)
, 	90	180.000 500.000 900.000 1200.000	174.300 174.300 174.300 174.300	2300.000 2900.000 3700.000 4500.000	174.300	8200.000 11400.000 14750.000 16650.000	174.300 174.300 174.300 174.300
ŀ	· ·	1500.000	174.200	6900.000		1800C.000	174.300
	L00 ,	170.000 520.000 990.000 1150.000 1450.000 1550.000 1770.000 1800.000 1848.000	174.300 174.300 174.300 174.300 174.300 174.300 174.300 174.300 174.300 172.700 171.100	2122-000	158.200 156.600 154.900 153.300 155.600 159.800 163.000 167.900 169.500 171.100	2500.000 2800.000 4850.000 5709.000 8200.000 9400.000 11900.000 14600.000 18000.000	174.300 174.300 174.300 174.300 174.300 174.300 174.300 174.300 174.300 174.300 174.300
	•	1888.000	167.900 161.400	2172.000 2234.000	172.700 174.300	1 <u>.</u> 5	
	110	180.000 $.450.000$ 700.000 900.000 1000.000 1200.000 1200.000 1400.000 1500.000 1591.000 1625.000 1682.000 1720.000 1749.000 1780.000 1828.000 1828.000 1857.000	174.300 169.500 163.000 154.900 140.400 129.100	1938.000 1958.000 1958.000 1979.000 1989.000 2004.000 2021.000 2053.000 2077.000 2126.000 2182.000 2222.000 2301.000 2393.000 2448.000	88.800 80.700 72.600 66.200 64.600 59.700 62.900 71.000 79.100 93.600 108.100 127.700 135.600 145.300 145.300 159.800 164.600	$\begin{array}{c} 2878.000\\ 2912.000\\ 2961.000\\ 3113.000\\ 3245.000\\ 3352.000\\ 3500.000\\ 4800.000\\ 7600.000\\ 8500.000\\ 10500.000\\ 10500.000\\ 14300.000\\ \end{array}$	$\begin{array}{c} 164.600\\ 169.500\\ 171.100\\ 171.100\\ 171.100\\ 72.700\\ 172.700\\ 172.700\\ 172.700\\ 172.700\\ 174.30$
		1873.000 1888.000 1898.000		2521.000 2664.000	167.900 169.500 164.600		174.300 174.300 174,300

g = 1.27 cm.

= 660 N/m^2 = 14.9 x 10⁻⁶ m³/ sec. p s Q_s ŋ ر

•			•.	•		
Pc (db)	f (H _z)	Po (N/m ²)	(11 _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)
120	175.000 400.000 658.000 8257000 1030.000 1126'.000 1178.000 1215.000 1299.000 1350.000	174.300174.300174.300174.300174.300174.300174.300174.300174.300177.700171.100157.900	1890.000 1918.000 1939.000 1947.000 1993.000 2021.000 2061.000 2106.000 2276.000 2313.000	24.200 20.200 19.400 16.900 16.900 19.400 23.400 27.400 37.900 42.800	2910.000 2967.000 3009.000 3062.000 3100.000 3145.000 3207.000 3267.000 3333.000 3418.000	154.900 163.000 164.600 163.000 163.000 163.000 167.900 169,500 171.100 173.000
	1391.000 1429.000 1488.000 1547.000 1597.000 1646.000 1710.000 1738.000 1775.000 1812.000	163.000 153.300 145.300 137.200 129.100 113.000 88.800 74.200 67.800 46.800	2764.000 2813.000	63.800 79.100 96.000 106.500 113.000 83.100 102.500 114.600 121.900 135.600	8900%000 13500.000 15700.000	173.000 172.000 174.300 174.300 174.300 174.300 174.300 174.300 174.300 174.300 174.300
	1859.000	33.100	2860.000	143.600	18000.000	174.300

- dc = 0.95 cm.
- g = 2.54 cm.

 $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

		•			·····	
Pc (db)	f (H _z)	 -(N/m ²)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)
. 90	175.000	138.800	1880.000	35,500	2349.000	121.100
. 50	425.000	138.800	1892.000	24.400	2401.000	128.300
	625.000	138.800	1904.000 /	27.400	2469.000	133.200
	1025.000	138.800	1925.000	¥3.400	2563.000	134.800
	1114.000	138.800	1937.000	S1, HO04	2645.000	130.700
	1400.000	1-38, 800	1945+000	20.200	2684.000	134.000
	1473.000	137.200	1959,000	20.200	27 32 .000	135.600
	1534.000	134.000	1969.000	21.000	2833.000	136,400
	1602.000	132.300	1483.000	22.000	2934+000	137.200
÷.,	1675.000	133,200	2001+000	27.600	3030,000	137.200
	1729.000	12.9.400	2011+000	35,500	,3155.000	138.000
	1755.000	127.700	2027.000	47,600	3200.000	128.800
	1796.000	116.200	2053.000	58,900	. 4625.000	138.800
	1808.000	105.700	2073.000	71.800	5825.000	138,800
	1814.000	100.100	2097.000	79.100	8375.000	138.800
	1821.000	94 400	2153.000	90.400	11465.000	- <u>138.800</u>
	1831.000	R2.300	2180+000	101.700	14566.000	138.800
	1847.000	67.900	2210.000	111.400	18000.000	138,800
	1864.000	45.200	2306.000	117.000		
100	175.000	138.800	1905.000	8,100	2756.000	99,200
	420.000	138,800	1937.000	7.300	2803.000	-108.900
Į	720.000	1.38.800	1980.000	8.100	2839.000	116.200
	800.000	138,800	2042.000	9,700	2873.000	122.700
1	872.000	138.800	2088.000	11.200	284%.000	128,300
	950.000	138.800	2130.000	12,400	2454,000	1.4.4.200
	1018.000	138.800	2186.000	16.100	3033.000 -	1.24.000
]	1126.000	138.800	2235.000	18,600	3135.000	134.800
1	1203.000	138.000		18.600	3186.000	135.600
	12 54 .000	135.600	2340.000	22.600	3224.000	136.400
	1301.000.	133.200		28.200	3279.000	136.400
ĺ	1354.000	130.700	2402-000	37.900	3320.000	137.200
l ·	1413.000	124.300	1	51.600	3404.000	137.200
1 1	1492.000	111.400	2481.000	75.400	3477.000	138.000
1 V	1524.000	86.300	2508.000	HP.300	3568.000	138.800
ļ,	1565.000	67.000	2540.000	96.00U	4500.000	138.800
	1627.000	58.100		89,600		138.800
	1683.000	49.200		56,500	-7850.000	138,800
1	1702.000	37.900	2632.000	47,000	13850.000	138.440
	17 55.000	21.800	2682.000	61.300	15850.000	138.800
	1800.000	18.600	2702.000	75.400	18000.000	138.800
1.	1846.000	12.900		нн.000		1
					<u> </u>	

dc = 0.95 cm.g = 2.54 cm.

 $P_s = 660 \text{ N/m}^2$ = 14.9 x 10^{-6} m³/sec. $\bar{Q_s}$

. '	•		•		<u> </u>	<u> </u>
Pc (db)	f (ĥ _z)	Po . . (N/m ²)	<u>f</u> (ال _z)	Po (N/m ²)	f (H _Z)	$\frac{10}{(N/m^2)}$
110	175.000	-138.800 138.800	1480.000	20.200 17.800	3087.000 3143.000	62.400
• .	400.000 750.000	138.800	1527.000 1568.000	15.200	3177.000	75,100
	898.000 907.000	138.000	1602.000 1657.000 [*]	13.700	3224.000 3295.000	100.400
	920.000	129.100	1706.000	8.900	3322.000	10H,900
	940.000	125.900	1758.000	7.300	3389.000	106.500
	954.000	125.900	1822.000	6.5UU	3423.000	101.700
	960.000	125.100.	1917.000	4.880	3465.000	124.300
	972.000	121.900	1979.000	4.KUU 5.600	3493.000 3513.000	132.300 124.800
	494.000	125.100	2052.000	5.600	3583.000	136,400
	1026.000	128.300	2725.000	6.500	3697.000	137.200
-	1054.000	129.900	2303.000	6.500	37.69.000	138.000
Į	1077.000	126.700	2278.000	н.100	3814.000	138,000
	1100.000	123,500	2452.000	* 8 . 960	3917.000.	138.000
, ·	1124.000	117.000	2511.000	- 11.200	4065.000	138.000
	1152.000	108.100	2575.000	12,900	4104.000	138.000
	1177.000	- 101 • 70A7 	2. 270 . 000	11.300	4200.000	138.800
	1748.000	HO.700	2718.000	12.100	4P00.000 5500.000	138.800 129.800
	1294 000		2765.000 2825.000	15.300	7300.000	
	1925.000	48.400		32.500	8:00.000	178,800
	1363.000	37.900	2920.000	41.200	10300.000	1.424 . 241-171
	1393.000	29.100		55.700	16300.000	1
	1440.0000	23,400	3012.000	64.600	18000.000	1.321
120	175.000	138.800	1019.000	69.400	859.000	107.300
120	263.000	138.800		63,800	877.060	94,400
	315.000	138.800		58.900	898.000	72.600
	289.000	138,800		51.600	910.000	58.100
ļ	529.000	138.800		42.800		30.700
	611-000	138.800		40.400		28.200
{	706.000	138,800		36.300	1	19.400
	740.000.	138.800		23.400	T as a second	27.400
	762.000	131.500	1	18.600	• • • •	38.700
1	7,88.000	129.900		15.300	985.000	51.600
	804.000	132.300	1280.000	12, 900		70.200
	P22.000	128.300	1321.000	10.500	· · · · · · · · · · · · · · · · · · ·	37.900
	\$(42.(30))	119,400	1409.000	8.100	1000.000	48,400

114.

0195 cm. dc2.54 Ĉ'n. g

· P_	₩.	660 N/1	n ⁴ .	
Qs	2	14.9 x	10 ⁻⁶	m ³ /sec.

						- <u>-</u>	Po
-	Pc (db)	(H _z)	Po (N/m ²)	۴ (۱۱ _z)	(N/m^2)	(H _z)	Po (N/m ²)
	120	1482.000 1515.000 1592.000 170¥.000 1807.000 1913.000 1992.000 2094.000 2165.000 2368.000 2425.000 2469.000 2518.000 2518.000 2547.000 2818.000 2844.000 2844.000 2849.000 2927.000	6.500 6.500 5.600 4.800 4.0000 4.0000 4.0000 4.00000000	3934.000 4000.000 4020.000 4062.000	12.900 16.900 21.800 27.400 36.300 44.400 59.700 66.200 76.100 75.100 90.400 86.300 90.400 93.600 97.600 101.700 108.900 117.000 104.100 95.200	$\begin{array}{c} 4129.000\\ 4167.000\\ 4261.000\\ 4201.000\\ 4201.000\\ 4304.000\\ 4304.000\\ 4377.000\\ 4454.000\\ 4454.000\\ 4455.000\\ 4655.000\\ 4655.000\\ 4626.000\\ 4679.000\\ 4679.000\\ 4747.000\\ 4747.000\\ 6000.000\\ 5000.000\\ 5000.000\\ 16750.000\\ 16750.000\\ 18000.000\end{array}$	93.600 102.500 109.800 117.000 124.300 129.900 131.500 131.500 131.500 131.500 131.500 131.500 131.500 131.500 131.500 131.500 138.800 138.800 138.800 138.800 138.800 138.800 138.800 138.800

g = 3.81 cm.

 $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

	,		•			
Pc (db)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)
80	170.000	112.200	1850.000	18.600	2648.000. 2675.000	67.800 73.400
1	200+000 - 500+000	112.200	1900.000 1929.000	11.300 8.900	2692.000	76.700
	700.000	112.200	1947.000	9.700	2727.000	96.800
•	900.000	112.200	1967.000	9.700	27.53+000	101.700
	1227.000	112.200	2020.000	14.500	2791.000	108,100
	1385.000	111.400	2087.000	25.000	2876.000.	109.800
• •	1429.000	104.900	2166.000	\$7.900	5919.000	110.600
·	1444.000	103.300	2241.000	50,800	3046.000	111.400.
•	1457.000	100.100	2397.000	66,900	3199.000	112.200
-	1479.000	101.700	2443.000	79.900 96.000	4200°0000 6000°000	112.200
i	1497.000	97.600	2487.000 - 2538.000	105.700	8000.000	112.200
	1509.000	92.800	2570.000	105.700	12000.000	112.200
	1604.000	76.700 66.200	2598.000	104.400	16000.000	112.200
en e	1654.000 1698.000	63.800	2601.000	103,200	18000.000	112.200
	1766+000	40.400	2612.004	96.800		
	1801.000	34,700	2628.000)	1 79,100		
90	170.000	112.200	1370.000	50.800	2527.000	37.100
50	656.000	112.200	1415+000	37.100	2558.000	42.800
	885.000	112:4200	1481.000	32,300	2578.000	42.4800
	908-000	112.200	1536.000	27.400	2608.000	-4.100
	935.000	112.200	1568.000	20,900	2625.000	29,100
	960.000	108.900	1583.000	18.600	2637.000	25.800 25.800
	979.000	93.600	1645.000	16.100		27.4110
ł	989.000	84.700	1705.000	H.100	2700.000	30.700
·	1001.000	107.500	1853.000	6.500	i	36.200
	1028.000	108.400	1913.000	5.600	27 51 .000	40.400
1	1044.000	110.600	1977.000	4.800		50.800
1	1062.000	110.600	2032.000	5.600	2916,000	60.500
1	1088.000	108,900	2110.000	6.500	3015.000	76.700
1	11.17.000	106.500	2175.000	8.900	1	90.400
1	1166.000	5.200	2243.000	10.500		100,900
ł . –	1196.000	84.700	2317.000	12.900		105.700
1	1221.000	18.300	2287.000	16.900		108.900
1	1276.000	66.900	2430.000	21.800		110.600
	1317.000	65:400	2479.000	29.900	3412.000	111.400
1	1	<u>t</u>		4		

- dc = 0.95 cm.
- g = 3.81 cm.

 $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

		•	•		·	
Pc (db)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)
90	3525.000 3600.000 5400.000	111.400 112.200 112.200	7600.000 8500.000 10000.000	112.200 112.200 112.200	15000.000 18000.000	112.200 1124200
100	170.000	112.200	1154.000	31.500	2843.000	1.6.400
	250.000 337.000 460.000 557.000	112.200 112.200 112.200 112.200	1193.000 1221.000 1279.000 1314.000	26.600 22.600 18.600 15.300	2911.000 2953.000 2998.000 3047.000	25.000 24.400 34.700 36.300 41.200
	626.000 708.000 767.000	112.200 112.200 112.200 108.100	1346.000 1409.000 1453.000 1498.000	$ \begin{array}{c} (13.700)\\ (11.300)\\ (9.700)\\ (8.900) \end{array} $	3124.000 3175.000 3228.000 3299.000	45.200 48.400 54.100
	775.000 788.000 794.000 814.000	108.100 102.500 100.900 103.300	$ \begin{array}{r} 1.593.000 \\ 1526.000 \\ 1547.000 \\ 1579.000 \end{array} $	7.300 7.300	3745.000 3415.000 3461.000	58.900 77.500 91.200
	832.000 848.000 864.000	100.100 88.800 77.500	17 54 000	6.500 5.600 5.600	3548.000	104.900 108.100
	882.000 914.000 943.000 958.000	69,400 58,900 50,800 38,700	1840.000	4.800 4.800 4.800 4.800	3583.000 3624.000 3756.000 3826.000	10),800 110,600 111,400 111,400
•	958.000 957.000 976.000 990.000	24.700 33.100 35.500	2050+000 2141+000	4.800 2.800 4.800	3900.000 4700.000	112.200
	1001.000 1017.000 1030.000	41.900 47.600 52.500	2342.000 2400.000	4.800 5.600 7.300	7800.000 8600.000 9800.000	112.200 112.200 112.200
	1053.000 1063.000 1074.000 1096.000	54.100 52.500 50.800 45.200 39.500	2621.000 2713.000 2759.000	4.700 7.300 8.100 10.500 13.700	14500.000 16500.000 18000.000	112.200 112.200 112.200 112.200 112.200
110	2'38.000 322.000	111.400 111.400 111.400	617.000 631.000 648.000	10×.400 103.400 40.400	680.000 695.000 705.000	92.800 89.600 80.700
	473.000 564.000 600.000	111.400 111.400 111.400	665.000	90.400 93.600 94.400	728.000	73.400 70.200 63.800

g = 3.81 cm.

 $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

	-

				<u> </u>		{
Pc	f	Po	£	Po	£	Po (N/m ²)
(db		(N/m ²)	(II_Z)	(N/m^2)	(II _z)	(N/m ²)
110		58.100	1510.000	4.800	3448.000	37.900
1110	782.000	54-100	1638.000	4.800	3473.000	43.600
	809.000	50.800	17 30.000	14 . H()()	3531.000	48.400
	821.000	45.900	1789.000	4.000	3606.000	54.900
ļ	840.000	- 40.400	1836.000	4.000	3665-000	65.400
1	861.000	33.100	1901.000	4.000	3700.000	√ 75.100
1	887.000	26.600	2013.000	4.000	3743.000	86.200
	911.000	20.900	5134.000 -	4.000	37.92.000	984500
	945.000	15.300	2221.000	4.000	3838.000	106.500
	965.000	10.500	2322.000	4.000	3884.000	108.100
	<pre>986.000.</pre>	12.900	2428.000	4.000	3935.000	108.100
	993.000	15.300	2501.000	4.000	3988.000	10/4-900
	1009+000 ·	18,600	2612.000	4.000	4052.000	108*806
	1030.000	23.400	2756.000	4.000	4093.000	109.800
· ·	1049.000	20.900	S818*000	4 . KOQ	· 4111.000	108.900
	10.60.000	17.800	2916.000	5.600	4221.000	110.600
	1086.000	14.500	2986.000	7.300	4245.000	111.400
	1108.000	12.100	3038.000	7.300	4417.000	111.400
	·* 1164.000	R.900	3133.000	8.000	4528.000	111.400
·Ľ	1194.000	8.100	3184+000	10,500	4620.000	111-400
	1222.000	7.300	37 34 .000	12.100	4750,000	111.4440
	1263.000	6.500	3299.000	16.100	7000.000	411.660
ł.	1215.000	-6.500	3330.000	1.8,600	11000.000	111.400
	1348.000	5.600	3286.000	24.200	17000.000	111.000
	1415-000	4.800	3421.000	30.700	13000.000	11.11
12	0 183.000	105.700	348.000	87.900	535.4	908,100 98,500
1	192.000	103.300	368.000	87.200		85.500
	202.000	99.300	384.000	88_800	558.000	72.600
4	216.000	96.000	401.000	44,400	1	65.400
ļ	226.000	92.800	1	94,400		62.100
	239.000	92.100	424.000	100.400	1	54.100
	250.000	.91.200		104.900	1.5	50.000
	264.000	43.600	445.000	107.300	1	41.900
	281.000	92.800		102.500		
	284.000	100,900	· ·	106.500		
	295.000	97,600		108.900		
	300.000	95.200		111.40		
1.1	214.000	91.900		112.200		
	329.000	46.200		-		I
	234.000	1	729.000			E

.

119

dc = 0.95 cm. g = 3.81 cm. $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

	· · ·	,	_		·	
Рс (db) 120	f (H _Z) 721.000 740.000 763.000 777.000 804.000 847.000 900.000 950.000 950.000 950.000 950.000 1011.000 1056.000	Po . (N/m ²) 32.300 29.100 24.200 20.200 16.100 9.700 6.500 4.800 5.600 4.800	$\begin{array}{c} 2948.000 \\ 3106.000 \\ 3261.000 \\ 3350.000 \\ 3411.000 \\ 3526.000 \end{array}$	Po (N/m ²) 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000	4675.000 4687.000 4699.000 4757.000 4757.000 4757.000 4805.000	Po (N/m ²) 61.300 66.900 62.906 50.000 41.900 48.400 58.900 71.000 98.500 108.100 109.800 110.600 111.400
	1056.000 1103.000 1155.000 1284.000 1279.000 1495.000 1675.000 1798.000 1907.000 2022.000	4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000	3574.000 3665.000 3755.000 3848.000 3938.000 43938.000 4617.000 4419.000 4397.000 64192.000 60 6190.000	25.000 24.200 22.600 19.400 23.400	5012.000 5346.000 5510.000 5510.000 5610.000 5800.000 512000.000 016000.000 518000.000	$ \begin{array}{c} 111.400\\ 111.400\\ 111.400\\ 111.400\\ 111.400\\ 111.400\\ 111.400\\ 111.400 \end{array} $

dc = 1.27 cm. g = 1.27 cm.

Ð

 $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

		• •		`		<i></i>
Pc (db)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m2)	f (H _z)	Po (N/m ²)
90	200.000 520.000 870.000 950.000	171.000 171.000 171.000 171.000 171.000	1120.000 1552.000 2600.000 4310.000	171.000 171.000 - 171.000 171.000	6200.000 9900.000 15000.000 18000.000	171.000 171.000 171.000 171.000
100	190.000 700.000 1200.000 1252.000 1245.000 1408.000 1463.000 1485.000	171.000 171.000 171.000 171.000 171.000 171.000 171.000 170.000 168.000	1504.000 1521.000 1543.000 1543.000 1552.000 1564.000 1575.000 1586.000 1600.000	166.000 165.000 165.000 161.000 163.000 165.000 165.000 165.000	1625.000 1660.000 1702.000 1818.000 3000.000 8000.000 14000.000 18000.000	168.000 170.000 171.000 171.000 171.000 171.000 171.000 171.000
11-2	180.000 350.000 480.000 700.000 840.000 971.000 1009.000 1105.000 1203.000 1256.000 1323.000 1323.000 1323.000 1409.000 1424.000 1436.000	171.000 171.000 171.000 171.000 171.000 171.000 171.000 171.000 171.000 171.000 171.000 171.000 171.000 171.000 171.000 171.000 157.000 145.000 137.000	1462.000 1482.000 1500.000 1514.000 1524.000 1551.000 1551.000 1644.000 1644.000 1666.000 1695.000 1727.000 1757.000	118.000 107.000 98.000 77.000 65.000 77.000 89.000 107.000 129.000 142.000 148.000 157.000 161.000 165.000 168.000	2152.000 2253.000 2360.000 2550.000 2750.000 2916.000 3112.000 3268.000 3789.000 4033.000 4217.000 4330.000 5000.000 8000.000 12000.000	170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 170.000 171.000 171.000 171.000 171.000
	1446.000	128.000	2050.000	168.000	18000.000	1/1.000

dc = 1.27 cm. g = 1.27 cm. $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

			· · ·	• ب	×	•
Pc	f	Ро	£	Po	f	Po
(db)	· (H _z)	(N/m^2)	(H _z)	(N/m ²)	(H _z)	(N/m^2)
()	C 27		- 4.			
120	175.000	173.000	1502.000	29.000	3781.000	171.000
	300.000	173.000	1554.000	21.000	3888.000	171.000
States and	400.000	173.000	1625.000	27.000	4033.000	171.000
	\$ 500.000	173.000	1644.000	131.000	4108.000	171.000
· ·	600.000	\$73.000	1663.000	1.34.000	4156.000	170.000
	667.000	173.000	1741.000	50.000	4193.000	168.000
	736.000	173.000	1793.000	69.000	4230.000	166.000
	818.000	173.000	1830.000	86.000	N 4290.000 -	158.000
	912.000	173.000	1893.000	97.000	4322.000	160.000
[· · · }	.950.000	171.000	1944.000	107.000	4335.000	163.000
]]	997:000	173.000	1985.000	111.000	4374.000	168.000
	1049:+000	173.000	2032.000	129.000	4446.000	171.000
	1081.000	171.000	2109.000	140.000	4513.000	171.000
	1109.000	170.000	2153.000	140.000	4613.000	171.000
· .	1148.000	168.000	2316.000	-144.000	47.61.000	171:000
	1183.000	166.000	2492.000	157.000	4855.000	171.000
	1215.000	161.000	2529.00	161.000	5041.000	171.000
	1235.000	153.000	2569.000	163.000	5376.000	171.000=
· ·	1251.000	145.000	2818.000	145.000	5704.000	171.000
	1267.000	137.000	2897-000	166.000	6159.000	171.000
ł	1295.000	126.000	2946.000	168.000	6463.000	171.000
	1325.000	113.000	3044.000	168.000	8000.000	171.000
	1355.000	92.000	3147.000	168.000	11000.000	171.000
1	1375.000	77.000	32 39 .000	170.000	14000.000	171.000
	1404.000	61.000	3361.000	171.000	16000.000	171000
· · .	1427.000	48.000	3434.000	171.000	18000.000	171.000
	1472.000	36.000	3590.000	171.000		· · · ·
L	1	ļ		<u></u>	· · · ·	

2

3

g = 2.54 cm.

$P_s = 660 \text{ N/m}^2$. $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

Pc	f	Po	£	Po	£	Po
(db)	(H _z)	(N/m^2)	(H _z)	(N/m^2)	(H _z)	(N/m^2)
	C-21		•••		· · ·	
. 90	180.000	140.000	1537.000	44.000	2334.000	140.000
······	500.0008	140.000	1559.000	44.000	2401.000	140.000
	800.000	140.000	1583.000	58.000	2505.000	140.000
	1010.000	140.000	1602.000	73.000	2603.000	140.000-
• ``	1104.000	140.000	1628.000	.96.000	2695.000	140.000
н., н.	12.50.000	140.000	1662.000	115.000	2772.000	140.000
1. A.	1295.000	139.000	1694.000	127.000	2964.000	· 140.000
	1349.000	138,000	1793.000	133.000	32 45 .000	140.000
	1406.000	135.000	1873.000	136.000	7000.000	140,000
.	1448.000	123.000	1943.000	137.000	13000.000	140.000
	1486.000	106.000	2010.000	138.000	17000.000	140.000
	1504.000	82.000	2100.000	139.000		
:	1522:000	56.000	2202.000	140.000	· · · · ·	
100	175.00	140.00	1512.000	15.00	2694.000	125.00
TOO	2.69 000	140.00	1552.000	11.00	27 54.000	136.00
	476.000	140.00	1613.000	15.00	2818.000	138.00
	634.000 :	140.00	1657.000	- 20.00	2929.000	139.00
	700-000	140.00	1732.000	33.00-	3115.000	140.00
	/953.000	140.00	1789.000	47.00	3371.000	140.00
ľ	(1008.000	139.00	1832.000	- 64:00	3583.000	140.00
	122.000	139,00	1862.000	80.00	3800.000	140.00
1	1200-000	136.00	1938-000	99.00	4054.000	140.00
· .	1234.000	132.00	2047.000	114.00	4168.000	140.00
	1305.000	112.00	2115.000	119.00	4252.000	139.00
	1338.000	83.00	2269.000	_o 123.00	4309.000	139.00
1 [.]	1355.000	69.00	2330.000	122.00	6100.000	140.00
1	1384.000	53.00	2464.000	130.00	9000.000	
	1421.000	31.00	2552.000	135.00	11000.000	140.00
	1449.000	23.00	2.605.000	136.00	18000+000	140.00
	1479.000	18.00	2614.000	132.00	•	
110		140.00	1014-000	129.00	1412.000	10.00
· ·	300.000	140.00	1032.000	132.00	1460.000	7.00
1 · .	450.000	140.00	1057-000	129.00	1499.000	
	600.000	140.00*		127:00	1572.000	5.00
	7.58.000	140.00	1095.000	.118.00	1601.000.	5.00
	774.000	138.00	1112.000	110.00	1654.000	00.8
	790.000	140.00	1135.000	99.00	1700.000	8.00
•	802.000	140.00	1152.000	88.00	1754.000	10.00
	828.000	140.00			1821.000	13.00 18.00
5	872.000	138.00	1190.000	61.00	2045.000	22.00
	914.000 945.000	135.00	1238 000	48.00 37.00	•	
	973.000		1278.000		2152.000	25.00 28.00
	983.000	127.00	1317.000	25.00	2298.000	25.00
1	993.000	126.00	1364.000	14.00	2408.000	32.00
· · · ·	775.000	TEG+00	1204+000	1 . 14 . 00	2400+000	pr +00

g = 2.54 cm.

÷,

				•		
Pc ·(db)	f (H _z)	Po (N/m ²)	(H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)
110	2517.000 2594.000	54.00	3206.000 3232.000	- 120.00 134.00	4386.000 4415.000	137.00 139.00
	2800.000 2837.000 2919.000	77.00 87.00 90.00	3385.000 3589.000 3889.000	137.00 138.00 139.00	4514.000 6000.000 8000.000	139.00 139.00 139.00
	3010.000 3048.000 3143.000	98.00 77.00 84.00	4070.000 4122.000 4230.000	139.00 138.00 136.00	12000.000 15000.000 17000.000	139.00 139.00 139.00
	3172.000 3189.000	94.00 106.00	4250.000 4313.000 4346.000	131.00		
120	175.000	143.60 143.60	1246.000 1300.000	9.00 6.00	3916.000 3963.000	[² 139.00 € 134.00
	400.000	143.60 143.60 143.60	1347.000 1423.000 1536.000	5.00 4.00 3.00	3996.000 4013.000 4022.000	128.00 121.00 103.00
i K An An	667.000 718.000 752.000	142:00 140:00 129.00	1664.000 1788.000 1884.000	3.00 5.00 6.00	4039.000 4056.000 4107.000	66.000
	7 61.000 769.000 7 75.000	115.00 100.00 .95.00	2031.000 2127.000 2212.000	8.00 9.00 9.00	4137.000 4253.000 4300.000	31.00
	789.000 803.000	105.00	2341.000		4344.000 4361.000	45.00
	819.000 8.63.000 879.000	119.00 98.00 74.00	2549.000 2796.000 2946.000	19.00 23.00	4399.000 4416.000	128.00
ş.	903.000 923.000 942.000	44.00 34.00	3125.000 3202.000 3295.000	31.00 39.00 54.00	4489.000 4576.000 5000.000	143.60
· ·	977.000 1021.000 1051.000	36.00	3388.000 3459.000 3610.000	104.00	7000.000 10000.000 13000.000	143.60
	1085.000 1120.000 1183.000	23.00h	3687.000 3784.000 3889.000	142.00		

 $P_s = 660 \text{ N/m}^2$

 $Q_s = 14.9 \times 10^{-6} m^3/sec.$

dc = 1.27 cm.

dc = 1.27 cm.

g = 3.81 cm.

 $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \text{ x} 10^{-6} \text{ m}^3/\text{sec.}$

Pc	f	Po	f	Po (N/m²)	f (H _Z) ♣	Po (N/m ²)
(db)	(H _z)	(N/m ²)	(H _Z)	(117 11-)	(11 <u>2</u> .)	. (,
. 90	400.000	95.20	2608,000	90.40		
90	500:000	95.20	2702.000	95°00 89°40	3664.000 3694.000	95.20 95.80
	1058.000	92.80		92.80		95.20
	1177:000	92.00	2765.000	97.00	3732.000 3800.000	96.001
•	1281.000	74.20	3122.000	91.20	3937.000	96.00
	1325.000	41.20	32 42 .000	95.20	3961.000	96.80
	1636.000	11.30	3362.000	96.80	4036.000	96,00
•	1973.000	42.80	3426.000	195.20	4200.000	97.60
• =	2100.000	14.20	3472.000	46.00	4400.000	96.80
	22.56.000	. 75.90	3542.000	96.800	4434.000	.95.20
	2423.000	92.00	3589.000	95.20	4415-000	45.20
	2590.000	92:00	3622.000	95.20	4600.000	92.80
· · · ·	40.000					
100	400.000	95.20	2423.000	20.24	3664.000	96.80
	500.000 900.000	95.20	2590.000	31.50	3694.000	96.00
	927.000	95.20	2608.000	23.40	3732.000	96.80
		77.50	2702.000	25.80	~ 3800.000	96.,80
ł .	990.000	53.30 43.60	2765.000	38.70	3937.000	96.80
	1058.000	4	3045.000	66.20	3961.000	98.50
·	1177.000	50.00 25.80	3122.000	81,50	4036.000	96.80,
1	1281.000	15.30	32 42 .000	88.80	4200.000	.99.30
	1325.000	11.30	3362.000	96.80 96.80	4400.000	96.90
Q.	1636.000	4.80	3472.000	96.00	4434.000	95.20
	1973.000	12.10	3542.000	96.00	4485:000	95-20
	2100.000	16.10	3589.000	96.00	-4600.000	92.80
	2256.000	16.10	3622.000	96.80	•	
		1	5.22.000			
110		96.80	2256.000	6.45	3622.000	1 9A . 50
	- 662.000	95.20	2423.000	6.45	\$664.000	97.60
1	694.000	83.90	2590.000	10.50	3694.000	48:50
	7,32,000	72.60	2608.000	8.90	37 32 .000	197.60
	768'.000	48.40	2702.000	8.90	3800.000	96.80
	846.000	32.20	27 45.000		3937.000	100 • 90+
	975.000	11.30	3045.000	425.80	3961.000	100,90
1	1058.000		3122.000	28.20		99.30
	1177.000	8.90	3242.000	43.60	4200.000	45.20
	1281.000	5.60		72.60	4400.000	
1	1325.000	4.80	3426.000	91.20	4434.000+	95.20
	1636.000	2.40	3472.000		+485.000	95.20
	2100.000	4.80	3542.000	97,60	4600.000	92.80
	2100.000	5.84	3589.000	598.50		
					9	

dc = 1.27 cm.

= 3.81 cm. g

• •	P _S = 660 Q _S = 14) N/m ² .9 x 10 ⁻⁶	^{m3} /sec.
£	Po	f	Po ()) (-2)

Pc	f	Po	f	po	(H _z)	Po
(db)	(H _z)	(N/m ²)	(H _z)	(N/m ²)		(N/m ²)
120	$\begin{array}{c} 175.000\\ 400.000\\ 500.000\\ 509.000\\ 520.000\\ 520.000\\ 540.000\\ 540.000\\ 575.000\\ 575.000\\ 590.000\\ 603.000\\ 625.000\\ 643.000\\ 662.000\\ 684.000\\ \end{array}$	95.20 97.60 90.40 87.20 95.20 95.20 97.60 88.70 79.90 67.80 57.30 48.40 40.40 31.50	717.000 765.000 805.000 805.000 922.000 950.000 1000.000 1500.000 3000.000 3472.000 3542.000 3589.000	$\begin{array}{c} 23.40 \\ 15.30 \\ 11.30 \\ 8.07 \\ 5.60 \\ 4.80 \\ 4.00 \\ 3.20 \\ 8.07 \\ 3.20 \\ 8.07 \\ \sqrt{17.80} \\ 29.10 \\ 40.40 \\ 57.50 \end{array}$	3622.000 3664.000 3694.000 3732.000 3800.000 3937.000 3961.000 4036.000 4200.000 4400.000 4434.000 4485.000 4600.000 18000.000	64.60 74.20 84.70 90.40 95.20 71.80 43.60 13.70 4.80 11.30 24.20 65.40 92.80 95.20

dc = 2.54 cm.

g = 1.27 cm.

 $P_{s} = 660 \text{ N/m}^{2}$

 $Q_s = 14.9 \times 10^{-6} m^3/sec.$

r

	·	E7	· · · · · · · · · · · · · · · · · · ·	T		
90	1450.000	∽173.00 173.00 173.00	4000.000 7000.000 9000.000	173.00 173.00 173.00	11060.000 15000.000 17000.000 18000.000	173.00 173.00 173.00 173.00
100	190.000 800.000 1500.000	173.00 173.00 173.00	3000+000 6000+000 8000+000	173.00 173.00 173.00	10000.000 13000.000 16000.000 18000.000	173.00
110	180.000 400.000 600.000 720.000 743.000 753.000 759.000 765.000	-	7 73.000 782.000 789.000 800.000 828.000 833.000 840.000 1100.000	166.20 166.20 166.20 167.90 169.90 171.10 173.00 173.00	1500.000 2200.000 4800.000 5500.000 12000.000 18000.000	* 173.00 173.00 173.00 173.00 173.00 173.00

g = 1.27 cm.

)					
Pc (db)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)	(H _z)	Po (N/m ²)
120	175.000 335.000 442.000 563.000 611.000 684.000 701.000 711.000 723.000 741.000 741.000 750.000 761.000 761.000 761.000 782.000 797.000 811.000 835.000 853.000 864.000 879.000	173.00 173.00 173.00 173.00 173.00 173.00 173.00 173.00 173.00 173.00 173.00 167.90 167.90 164.60 159.60 153.30 143.60 137.20 129.10 121.10 121.10 122.70 125.90 130.70 137.20 148.50	898.000 921.000 939.000 973.000 1015.000 1338.000 1476.000 1476.000 1476.000 1782.000 1852.000 1900.000 2029.000 2154.000 2154.000 2476.000 2476.000 2700.000 2815.000	× 171.10 173.00	3721.000 3412.000 3550.000 3656.000 3756.000 3756.000 3792.000 3828.000 3928.000 3974.000 4017.000 4039.000 4104.000 4210.000 4584.000 4584.000 4584.000 4584.000 1000.000 1000.000	173.00 173.00 173.00 173.00 173.00 173.00 171.10 169.50 167.90 169.50 171.10 171.10 171.10 171.10 173.00
. <u></u>				 D =	660 N/m ²	

dc = 2.54 cm.

 $P_{s} = 660 \text{ N/m}^{2}$

g = 2.54 cm,

 $Q_s = 14.9 \times 10^{-6} m^3/sec.$

90	165.000	136.00	787 000	133.10	2 400.000	136.0
	360.000	136.00	792.000	134.70	4800.000	136.0
	540.000	136.04	802,000	135.50	5600.000	136.0
	680.000	136.00	810.000	136.00	7800.000	136.0
	700.000	136.00	889.000	136.00	11500.000	136.0
[.723.000 -	136.00	972.000	136.00	137.50.000	136.0
·	745.009	136.00	1031.000	136.00	16750.000	136.0
	771.000	134.70	1350.000	136.00	18000.000	136.0
	177.000	133.40	1550.000	136.00	· · ·	
ļ	781.000	133.90	1850.000	136.00		

 $Q_s = 14.9 \times 10^{-6} m^3/sec.$

 $P_{s} = 660 N/m^{2}$

.

g = 2.54 cm.

 $P_s = -660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

	Pc (db)	f (H _z)	Po (N/m ²)	f (H _z)	(N/m^2)	£ (H _Z)	Po (N/m ²)
┢	100	180.000	135.50	789.000	75.80	1240.000	135.50
1	100	370.000	135.50	792.000	86.30	1308.000	135.50
1		470.000	135.50	799.000	45.40	1428.000	135.50
		520.000	135 50	807.000	103.30	1540.000	135.50
		605.000	135.50	816.000	112.1a	1618.000	135.50
		696.000	135 50	823.000		1822.000	135.50
ļ		710.000	124.70	831.000	118.60	1904.000	135.50
		726.000	133.10	. 837.000	121 QO	- 2090.000	135-50
		736.000	130.70	843.000	123+40	2182.000	1,35.50
		745.000	125 10	849.000	125.90	2318.000	135.50
		751.000	118.60	854.000	128.30	2504.000	135.50
	•	758.000	109.70	880.000.	130.70	2733.000	135.50
	~	764.000	-49.20	408.000	132.20	2931.000	135,50
		- 4 68.000	88.70	924.000	133.10	3400.000	135.50
		a.1.000	50.70	946.000	124.90	6*00.000	135.50
•		7 75.000	74.20	968.000	135,50	10500.000	135.50
1		780,000	72.60	.1047.000	1:55.50	16500.000	135.50
		7.83.000	70.900	1141.000	125.50	-18000.000	135.50
	110	175.000	136.00	867.000	43.50	2132.000	104.70
		350.000	136.00	882.000	52.40	2205.000	114.60
	Į	450.000	136.00	898.000	67.70	2306.000	117.80
		500.000	136.00	912.000	75.80		121.80
		600.000	136.00	.929.000	81,50		125+00
		646-000	134.70	947.000	91.20		128.30
		661.000	132.30	966+000	95-20		129.90
	·	669.000	130.70	970.000	92.80		132.30/
	1 ·	682.000	125.00	1002.000	104.00		133.90
	I	698.000	117.90	1030.000	108.90	1 3031.000	154.79
		705.000	105.70	1059.000	109.70		134.70
	5	711.000	92 HU	1086.000		f .	1:5-50
		717.000	74.10	1.097+000	108.90		135.50
		722.000	67.80	1121:000			136.00
	i ·	729.000	52.40	1227.000	108.10	1	136.00
		738.000	39.50	1321.000	107.30		136.00
		748.000	24.80	1412.000	107.30		134.70
		763.000	20.40	1473.000			133.40
	1	771.000	14.30	1529.000			135+50
		780 000	17.70	1557.000			136.00
		1 792.000	18.50	1622.000			136+00
	1	809.000	20.10	.17 33 .000			136.00
		820.000	23.40	1522.000	1		136,.00
	1	832.000	28.20	1941.000	L		
		849.000	36.30		107.30		

g = 2.54 cm.

P s					
Q _s	1	4. 9	x	10-6	m ³ /soc.

Pc (db)	(H _z)	Po (N/m ²)	f (H _z)	. Po (N/m ²)	(II _z) ·	Po (N/m ²)
120	175.000	136.00	946.000	13.70	3171.000	99.20
	330.000	136.00	970.000	15.30	32.08.000	106.50
	460.000	136.00	A88*000	16.90	3249.000	113.80
	482+000	136.00	1005*000	18150	3312.000	123.40
	505.000	135.50	1038.000	49.30	3365.000g	126.70
	- 536.000	133.40	1098.000	19.30	3384.000	158*30
	564.000	131+50	1181.000	19.30	3432.000	130.70
ł	-578.000	127.50	1264 ± 000	19,301	3463.000	132.30
	- 600.000	114+60	1280.000	20.10	3504.000	134.70#
	.612.000	102.50	1482.000	20.90	-3545.000	135.50
	623.000	94.40	1595.000	20.90	3620.000	136.00
	634.000	78.20	1696.000	20.10	37 29 .000	136.00
	642.000	66.90	1810.000	20.90	3787.000	~ 135.50
	651.000	55.60	,1933.000	21.80	3818.000	133.90
	663.000	44 4()	-2008.000	22.60	3835.000	128.30
<i>:</i>	675.000	° 35∎50	2135.000	22.60	3845.000	98.40
· ·	683.000	28.20	2226+000	24.20	3852.000	74.20
- 15	695.000	22-60	2341.000	24.20	38.69+000	60.50.
	716.000	18.50	2444.000	24.20	3875.000	80.70
·	728.000	16,10	2480.000	28.20	3883.000	112.90
•	744.000	13.70	2538.000	31.40	3894.000	128.30
	7.58.000	12.90	2562.000	36.30	3924.000	133.10
-	775.000.	12.00	2808.000	49.20	3945.000	135.50
·]	782.000	11.30	2896.000	62 .90	4000.000	136.00
	813.000	11.30	2972.000	73.40	7000.000	136.00
Same 1	846.000	11.30	30.60.000	78.20	11000.000	136.00
	881.000	12.00	3090.000	83.40	17500.000	136.00
	916.000	12.90	3136.000	94 40		

3.81 cm. g

	· .		· · · · ·		1	
ा उप	E	Po T	£	Po (N/m ² ,)	f	Po
(db)	(H ₂)	(N/m^2)	(H _z)	(N/m ⁻ ,)	(H _z)	(N/m^2)
90	170.000	111.00	787.000	36.00	1536.000	108.00
90	450.000	111.00	803.000	45.00	1691.000	109.00
	600.000	111.00	818.000	63.00	1780.000	109.00
· · {	_689.000	104.00	834,000	82.00	1871.000	109.00
•	714.000	107.00	847.000	92.00	2023-000	110:00
	725.000	104.00	= 867.000	94.,00	2294.000	1.10.00
	738.000	98.00	899.000	100.00	2544.000	111.00
	748.000	→ 93.00°	948.000	101.00	2600.000	111.00
	753.000	8₽ , 00	983.000	103.00	5500.000	.111.00
	759.000	65.00	1044.000	105.00 106.00	7300.000	111.00
	762.000	61.00	1131.000	107.00	11500.000	111.00
±	7.68.000	41.00	1222.000	107.00	14500+000	111.00
	775.000	36.00	1424.000	107.00	18000.000	111.00
•	782%000	31.00	1 2 4 . ((())	107.000		
100	170.000	111.00	861.000	12.60	1919.000-	80.00
100	500.000	111.00	880,.000	17.00	2018-000	86.00
••	589.000	110.00	912.000	25.10	2082.000	90.00
	620.000	109.00	961.000	32.00	2154.000	91.00
с ,	648.000	107.00	993.000	32.00-	2275.000	100.00
	660.000	103.00	1028.000	40 •0 Û	2420.000	105.00
	676+000	94.00	1054.000	43.00	2499.000	107.00
	687.000	87.00	10.69.000	42.00	2561.000	108.00
	699.000	70.00	.1094.000	· 42.00	2655.000	107.001
	706.000	55.00	1190.000	4].60	2720.000	108.00
	720.000	36.00	1298.000	43.30	2760.000	109.00
	734.000	22.00	1393.000	42.30	2912.000	110,00
	7 53 .000	7.40	1475.000	50.60	3292.000	111.00
ļ.	-778.000	4.20	1581.000	57.00	6000.000	. 11.00
	785.000	4.20	1611.000	53.00	9000.000	111.00
• • •	811.000	5.20	1666.000	64.00	15000.000	111.00
·	842.000	H .4()	1823.000	68.00	18000-000	111.00
110	170.000	112.00	720.000	5.20	1638.000	-9.00
[·	400.000	112.00	743.000	290	1755.000	9.40
1	500.000	111.00	758.000	1.90	1890.000	10.90
	538.000	110.00	787.000	1.60	1980.000	11.60
	558.000	107.00	858.000	1.90	2084.000	11.90
	578:000	101.00	883.000	2.90	2199.000 2266.000	13.20
	,603.000	90.00.	974.000	4.20	2374.000	14.50
1	619.000	74.00	-1017.000	5.50	2459.000	19.00
	628.000	59.00	1124.000	6.10	2506.000	23.20
l ·	.644.000	42.00	1231.000	7.10	2589.000	25.50
1, +	658.000	26.00	1312.000	7.70	2603.000	27.60
ľ	676.000	15.00	1526.000	8.40	2694.000	24.20
· ·	702.000	18.07	1	<u> </u>	2074.000	1 6

 $P_s = 660 \text{ N/m}^2$ $Q_s = 14.9 \times 10^{-6} \text{ m}^3/\text{sec.}$

2.59 cm. dc -

= 3.81 cm. g .

P _s	= 660 1	N/m	2.	متن:	
Qs	=. 14.9	x	10-6	m ³ /se	ec.

)

	· · ·				v	
Pc (db)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)
110	2719.000	28.40	3207.000	108.00	3892.000	109.00
	27 41 .000	32.60	3311.000	110.00	· 3913.000 3989.000	110.00 111.00
	2776.000 2809.000	37.10	3614.000	111.00	4082.000	111.00
. :	2918.000	70.00	3712.000	111.00	4120.000	111.00
	2950.000	86.00	3808.000	111.00	6500.000	111.00
	2987.000	98.00	3844+000	111.00	. 8000.000	111.00
	3042.000	101.00	3871.000	110.00	14000.000	111.00
	3105.000	+106.00	3883.000	110.00	18-000.000	111.00
120	170.000	113.00	1644.000	1.90	3827.000	108.00
120	251.000	111 . ດັບເ	1819.000	1.90	3847.000	100.00
	302.000	113.00	1915.000	2.30	3858.000	74.00
4	370.000	112.000	2039.000	l. 2.30	3866.000	34.00
	282.000	111.00	2158.000	2.60	3875.000	15.00
	405.000	111.00	2445.000	2.90	3901.000	19.00
.'	434.000	109+00	2544.000	3.60	3910.000	53.00
•	457.000	104.00	2664.000	4.20	3913.000	69.00
	485.000	. 94,00	2760.000	4.RU	3924.000	96.00
* -	501.000	80.00- 67.00	2850.000	6.10	3946.000	107.00
	517.000	67.00	2965.000	8.70	3986+000	109.00
	-531.000	48.00 28.00	3014.000	9.4()	4027.000	111.00
	552.000	15.00	3109.000	11.90	4111.000 4220.000	111.00
	1	10.00	3218.000	19.00	4326:000	111.00
	632.000	6.00	3247.000	28.70	4425.000	111.00
	660.000	4.00	3:37.000	37.40	4572.000	112,00
	701.000	2.00	3362.000	42.00	4688.000	112.00
•	750.000	2.00	3398.000	55.00	4198.000	112.00
	835.000	2.00	3417.000	61.00	+ 4964.000	112.00
	885.000	1.30	3433.000	66.00	5204.000	112.00
	914.000		3460.000	85.00	5656.000	112.00
	1,000.000	1.00	3491.000	95.00	6122.000	112.00
	1122.000	1.00	3520+000	102.00	< 70.90%.00 <u>0</u>	112.00
	1225.000	1.00	3569.000	106.00	11000.000	112.00
	1328.000	1.30	3594.000	107.00	15000.000	112.00
	1435+000	1.60	3658.000	109.00	18000.000	112.00
	1546.000	1.60	*37.92.000	110,00		
L	<u> </u>	1	L	I	L	

130

¥.

g. = 3.81 cm.

Pc = 100 db.

Ps V/m ²)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)
834	460.000	167.90	940.000	112.90	4400.000	167.90
0.04	560.000	167.40	1100.000	111.40	4300.000	167.90
.	660.000	167.40	1360.000	92.00	5200.000	1.66+20
* .	700,000	137.20	1550.000	×0.70	- 6200,0001	167.90
·]	740.000	1,4,41)	1850.000	54.90	7400.000	167.90
	760.000	24.20	2000.000	54+90	8600.000	167.90
	770.000	19.40	2200.000	50.00	10000.000	- 167.90
	780.000	17.80	2600.000	75.90	12000.000	167,90
	0.00+008	24.20	3160.000	85.90	15000.000	167.90
. 1	840.000	62,90	3760.000	163.00	20000.000	
920	460.000	201.80	940.000	167.90	×400.000	200.10
320	560,000	201.80	1100-000	154.70	4300.000	201.80
	660,000	201.80	1300.000	127.50	5200.000	201.80
	700.000	Ten.607	1550.000	119.40	. 6200.000	201.80
	740.000	95.20	1850.000	12.60	7400.000	201.HC
	760.000	54.30	2000+000	61.30	860.0.000	201.20
	770.000	37.10	2200.000	50.00	-10000-000	201.80
	780.000	32.30	2600.000	58,10	12000.000	201.80
	800.000	56.50	3100.000	54.90	15000.000	201.80
1	840.000	112,90	3700.000	< <u>163.00</u>	*20000.000	201.80
	460.000	246.90	- 940.000	216.30	4400.000	177.50
1030	-560.000	246,90	1100.000	203.40	4800.000	237.3(
	660.000	246.90	1300.000	161.40	5200.000	246.90
•	700.000	235.60	1550.000	146.90	6200.009	246 - 191
	740.000	129.10	1850.000	42.00	7400,000	244.9
	760,000	12.00	2000.000	75.90	s0500.000	246.41
	770.000	64.60	2200.000	56,50	10000.000	246.9
	780.000	56.30	2600.000	55.70	12000.000	146.9
1	800.000	102.30	3100.000	42.60	15000.000	246.9
1 . A	840.000	167,90	3700.000	104,90	20000.000	
1120	\$60.00	285.00	1100.000	226 70		547.8
i	560.00	281.50	1300.000	180.30		ំហ្មុំ 🗘
	660.000		15501000	181:20		5.0
•	700-000		1050-000	111.00	2600.000	35.0
	750+000		**2600.000	•		115-0
	770.000					55.0
	780.000					
· -	800.000					0.5.0
	840.00		1			īī
	940-000	213.70	4.400.000	144.0		
1 · · ·	1	1 ·	1 .	1 .	· •	1

* F

- dc = 2.54 cm.
- g = 3.81 cm.
- Pc = 100 db.

Ps	(H _z)	Po	f	Po	f	Po
(N/m ²)		(N/m ²)	(H _z)	(N/m ²)	(H _z)	(N/m ²)
1220	•460.000 560.000 760.000 760.000 760.000 770.000 780.000 800.000 840.000	327.60 327.60 327.60 217.90 167.90 132.30 59.70 153.30 222.70	940.000 1109.000 1300.000 1550.000 2000.000 200.000 2600.000 3100.000	31 4.60 305.00 264.70 203.40 174.30 135.60 98.50 66.20 38.70 64.60	4400.000 4800.000 5200.000 6200.000 7400.000 8600.000 10000.000 12000.000 15000.000 20000.000	66.20 98.50 179.30 319.60 327.60 327.60 327.60 327.60 327.60 327.60

- dc = 0.95 cm.
- g = 1.27 cm.
- Pc = 110 db.

rc	- 110 ub.					
260	175,000 205,000 480,000 680,000 890,000 1050,000 1200,000 1400,000	25.80 25.80 25.80 25.80 25.80 25.80 25.80 25.80 25.80	1600.000 1800.000 1900.000 2000.000 2200.000 2600.000 3700.000 4800.000	25:80 25:80 25:80 25:80 25:80 25:80 25:80 25:80	$\begin{array}{c} 6000.000\\ 8000.000\\ 10000.000\\ 12000.000\\ 14000.000\\ 16000.000\\ 18000.000\end{array}$	25.80 25.80 25.80 25.80 25.80 25.80 25.80
974	$\begin{array}{c} 175.000\\ 400.000\\ 400.000\\ 800.000\\ 1000.000\\ 1000.000\\ 1200.000\\ 1400.000\\ 1400.000\\ 1600.000\\ 1650.000\\ 1710.000\\ 1771.000\\ 1821.000\\ 1843.000\\ 1843.000\\ 1865.000\\ 1865.000\\ 1890.000\\ 1915.000\\ \end{array}$	338.90 338.90 338.90 338.90 338.90 338.90 338.90 338.90 338.90 338.90 338.90 338.90 338.90 330.80 318.80 306.70 286.50 262.30 246.10 221.90	1925.000 1951.000 1975.000 1975.000 2006.000 2032.000 2053.000 2076.000 2173.000 2173.000 2248.000 2318.000 2354.000 2403.000	209.80 189.60 177.50 181.60 197.70 213.90 221.90 242.10 262.50 278.40 290.50 302.60 318.80 314.70 314.70 322.80	2455.000 2490.000 2529.000 2544.006 2555.000 2610.000 2627.000 2649.000 2662.000 2674.000 2674.000 2745.000 2745.000 2814.000 2814.000	326.40 330.40 330.40 330.40 326.40 327.40 314.70 314.70 314.70 314.70 314.80 322.80 326.80 326.80 330.90 330.90 330.40

g = 1.27 cm.

 $Pc = 110 \, db.$

						• .
Ps V/m²)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)
974	2891.000	334.90	3494.000	338.90	4673.000	5310.70
1	2915.000	334+90	3123,000	338.90	4704.000 4754.000	314.70 322.80
· 1	.2962.000	334.90	-3600.000	335,90	4797.000	327+10 326,80
	3019.000	338.90	3700,000	438.90 338.90	4851.000	330.90
	3071.000	338.90 333.90	3800.000	338.40	4911.000	334.40
	3148.000 3187.000	338.90	3900.000	338.90	4976.000	334,90
	3234.000	3.38.90	4143.000		5000.000	, 334.40
	3266.000	- 33×.40	4204.000	334 90	5052.000	338.90
	3295.000	338.40			6000.000	338.90
· · · ·	3317.000	338.90	4294.000	334,40	8000.000	238.90
	3335.000	334,90	4348.000	330.90 324.80	12000.000	334.90
	3352.000	334.90	4426.000	322.HO	15000.000	33R, 40
	3384.000	338,90.	4521.000	314.70	18000.000	338.40
	3410,000	332.90	4619.000	305 10		
	3433.000	338,40	6663.000	306.70		
1253	1.68.000	524.60	2025.000	407.50	3864.000	524.60
1.00	278.000	524.60	2041.000	427.70	4060.000	524.60
	377.000	524.60	2054.000	439.80.	4165.000	520.50
<u>.</u>	496,000	. 524.60	2063.000	451.90	4185.000	516.50
•	564.000	624.60	2074.000	464.00	4712.000	516.50
-	- 674+000	524.60	2096.000	480.204	4287.000	512.40
	747.000	524.60	2131.000	492.20	4366.000	508,40
	833.000	3524.60	2188.000	5()4 . 4()+	4395.000	500.30
•	908.000	524.60	2224.000	508.40	4429.000	492.30
	1070.000	524.60	2304.000	508.40	4469.000	476.10
	1128.000	524.604	2403.000	512.40	4535.000	427.70
	1176.000	524.60	2460.000	516.50	4565.000	< 07.50
	1328.000	524.601	2525.000	520.50	4609.000	59.10
	1400.000	524.60	2554.000	524.60	4641.000	. 51. 00
	1533.000	524.601	2610.000	.516.50	'4690.000	1.51.00
•	1600.000	524.60	2631.000	512.40	4728.000	67.20
	1703.000	524.601	2675.000	512.40	47 70.000	611.60
	1742.000	520.50	2702.000	516.50	4787.000	443.90
•	1785.000	516.501	2744.000	520.50	4814.000	459,90
	1815.000	512.40	2798.000	520.50	4878.000	476.10
	1880.000	496.301	2838.000	520.50	4913.000	4 HR 20
	1897.000	464.00	2910.000	524.60	5002.000	200.30
	31917.000	439.881	3050.000	524.60	5051.000	594 40
	1939.000	407.50	3164.000	524.60	5084.000	504.4U
	I to a second	1	3242.000	524.60	5129.000	500.30
	1972.000	379.30	1 26 12 0000	1. 267.00	1 212/0000	
	1972.000	379.30	3375.000	524.60	5161.000	500.30

5

1. . . **. .**

g -= 1.27 cm.

Pc = 110 db.

	, PC	= 110 db.	•				
ĺ	P N/m²)	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)	f / (H _z)	Po (N/m ²)
	1253	5267.000 5326.000	504 40 504 40	5706.000 5788.000	520.50 520.50	8400.000 11400.000	524.60 524.60
		5490.000 5541.000	504.40 3508.40	5874.000 5988.000	520.50 520.50	13700.000	524.60
		55991000	516.50	6310.000	524.60	18000.000	. 524.60
	1898	205:000	979.96 979.96	4387.000	970.20 955.56	6878.000 7028.000	960.44
		234.000	979.96	4477.000	901.27	7218.000 7288.000	940.62
		448.000	979.96 979.96	4514.000 4561.000	857.05 822.58	7430.000	940.62
	· .	808.000	, 979,96 979,96	4588.000 4660.000	812+52 812+52	7574.000 7619.000	930.80 921.10
		1050.000	979.96	4714.000	802.76	7678.000 7731.000	886.63 842.10
		1180.000 1350.000	979.96 979.96	4757.000 4783.000	Г,н12 +52 822 • 58 °	77 58.000	832:34
		1500.000	979.96 979.96	4818.000 4857.000	842.10 871.69	7800.000	822.58
		1791.000 -	979.96	4889.000	886.63	7859.000	857.17. 886:63
		1800.000	975.08	4929.000 4997.000	911.03 935.74	7,906,000	.904.93
		1856.000	965.32	5078.000 5173.000	945.50° 940.62°	7954.000	940.621 955.56
	-	1955.000	930.86 921.10	5265.000 5360.000	945.50 935.74∀	80-34.000	965.32
·		1990.000	916.22	5515.000	. 940.62	8154-000	960.44 950.65
4		2004.000	930.86	5596.000 5721.000	950.68 955.56	8230.000	945 54
		2061.000	950.68	58914000 6026.000	950%68 935.74	8427.000	945 60
. •		2148.000	965-32	6043.000	930.86	8709.000	435.74
	ļ	2180.000	970.20	6071.000 6095.000	925.98 940.62	4000.000	935.74
a		2237.000	979.96	6141.000	950.68	9149.000 9298.000	945,50 -
		2600.000	97,9.96	6231.000	925.48	9429.000	145.50.
		2700,000	979.96	6331.000	935.74	9828.000	940.62
		3000.000	979.96	6458.000	930.86	10948.000	955.50
].	3400.000	979.96 979.96	6544.000	935.74	10253.000	965.32
		3800.000	979.96	6631.000	955.50	10617.000	-970.20
• .	•	4000.000	97.9.96	6663.000 6711.000	940.62	10780.000	975.08
•••		· 4302.000 4346.000		6790.000	955.56	11000.000	979.96

g = 1.27 cm.

,

 $Pc = 110 \, db$.

	•		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u>1</u>	
P (N/m ²	f (H _z)	Po (N/m ²)	f (H _z)	Po (N/m ²)	(H _z)	Po (N/m ²)
1898	13000.000 15000.000 18000.000	979,96 974,96 979,96				
2647	170.000	1600.90	4956.000	1594.70	9627.000	1396.10
2047	300.000	1600.90	5025.000	1600.90	9651.000	1352.70
· · · ·	600.000	1600.90	.5200.000	1600.90	9700.000	1290.60
	800.000	1600.90	5400.000	1600.90	9786.000	1383.70
	1000.000	1600.90	~5800 . 000	1600.90	9825.000	1402.30
	1200.000	1600.90	6300.000	1600.90	9965.000	1433.40
	1400,000	1600.90	6800.000	1600,90	10068.000	1476.80
	1600.000	1600,90	7000.000	1600.90	10114.000	1501.460
	1800.000	1613.30	7200.000	1600.90	10204.000	1538.80
	1838.000	1619.50	7370.000	1569.90	10326.000	1538.80
	1897.000	1625.70	7500.000	1588.50	10472.000	1532.60
:	1981.000	1576.10	7634.000	1588.50	10625.000	1526.40
<u>}</u>	2026.000	1588.00	7654.000	1563.70	10820+000	1545.60
	20.67.000	1607.00	7670.000	.c1538.80/	11066.000	1538.80
	2081.000	1613.00	7686.000	1495.40	11267+000	1545.00
	2300.000	1600.90	77.05.000	1427.20	11390.000	1538.80
1 .	2400.000	1600.90	7716.000	1389.90	11507.000	1545.00
	.2600.000	1600.90	77.48.000	1303.10	11615-000	1532-60
	2800.000	1.600.90	7784.000	1191.69.		1538.80
	3000.000	1600.90	7821.000	1092.19	11976.000	1545.00
	3200.000	1600.90	7859.000	1290.60	12032.000	1551.30
	3400.000	1600.90	7882.000	1493.60	12215.000	1557.50
	.3800.000	1600.90	7895.000	1489.20	12312.000	1563.70
	4200.000	1600.90	7943.000	1563.70	12450.000	1569,90
	4400.000	1600.90	8002.000	1588.50	12620.000	576.10
,	4494.000	1576.10	8111.000	1594.70	12836.000	1,582.30
· ·	4530.000	1538.80	8200.000	1588.50	13032.000	1588.50
	4576.000	1433.40	82.86.000	1576.10	13336.000	1594.70
	4592.000	1365.10	8400.000	1576.10	13855.000	
	4615.000	992.80	\$8487.000	1557.50	14152.000	1600.90
1	4623.000	967.60	8567.000	1526.40	14500.000	1500.90 1582.30
	4659.000	1110.70	8840.000	1495.40	15069.000	1582.30
1	4687.000	1241.00	9004.000	1482.90	1.51 25 4000	1588.50
	4723.000	1340,30	9159.000	1495.40	15767.000	1600.90
	4737.000	1396.10	9395.000		16000.000	
	47 59 .000	1458.20	1	1451.90	17000.000	1600.90
	4791.000	150.7.80	9451.000	1431.40	18000.000	
T .	48.67.000	1557.60	9530.000	114.54.00	1.000.000	1

dc = 0.95 cm. 1.27 cm. g . = 660 N/m² P_s z $f = 1979 H_z$ $Q_s = 14.9 \times 10^{-6} m^3/sec.$

 Pc
 Po

 (db) (N/m^2)

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

•

)136

APPENDIX E.3

· SWITCHING TIMES

dc = 2.54 cm.

= 3.81 cm. g

 $P_{s} = 1120 \text{ N/m}^{2} (\text{Re} = 1244) - Q_{s} = 18.7 \times 10^{-6} \text{ m}^{3}/\text{sec.}$

۰.	1			<u> </u>		
	f (H _z)	• Pc (db.)	T l .d. (m.sec.)	Tf. (m.sec.)	Tt.d. (m.sec.)	Tr. (m.sec.)
	2200 2200 2200 2600 2600 3100 3100 3100 3100 3700 3700 3700 4400 4400	90 95 100 90 95 100 90 95 100 90 95 100 90 95 100 95 100	2.4 2.3 2.2 2.0 2.4 2.3 2.4 2.2 2.2 2.2 2.2 2.3 2.2 2.1 2.2 2.2 2.1 2.2 2.1	0.4 0.5 0.4 0.5 0.6 0.5 0.6 0.7 0.5 0.3 0.3 0.3 0.3 0.7	2.4 2.4 2.8 2.4 2.0 2.5 2.2 2.3 2.5 2.4 2.2 2.7 2.3 2.4 2.4 2.6	0.4 0.6 0.9 0.7 0.5 0.9 0.5 0.6 0.8 0.5 0.5 0.6 0.4 0.2 0.5

- dc = 2.54 cm. g = 3.81 cm. Pc = 100.db.
- $f = 3100 H_{z}$.

•	•				
Ps (N/m ²)	Q _s (m ³ /sec.x 10 ⁻⁶)	T g. d.	Tf.	Tt.d.	Tr.
1220 1030 920 834	23.5 20.5 19.3 17.5	2.0 2.0 2.3 2.7	v0.3 0.5 0.8 0.4	$ \begin{array}{r} 2.4\\ 2.7\\ 3.0\\ 7\\ 3.0 \end{array} $	0.5 ~ 1.3 0.5 0.6

ſ

138

ø

Ń.

VITA AUCTORIS

1.948 B

Born in Chatham, Ontario, Canada on April 23.

- Completed high school Chatham Kent Secondary School, Chatham, Ontario, Canada in June.
- Recieved the Mechanical Technologist Diploma from St. Clair College, Windsor, Ontario, Canada in May.
- 1971 Recieved the Degree of Bachelor of Applied Science in Mechanical Engineering from the University of Windsor, Windsor, Ontario, Canada in May.

1974

1965

1968

Currently a candidate for the Degree of Master of Applied Science in Mechanical Engineering at the University of Windsor, Windsor, Ontario, Canada.