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Abstract

Our in vitro studies support a functional link between the
induction of cathepsin B gene expression and the cata-
bolic restructuring associated with myotube formation
during myogenesis in vivo. We have tested two predic-
tions that are basic to this hypothesis: (1) that active
cathepsin B is localized to plasma membrane caveolae
of fusing myoblasts; and (2) that active cathepsin B is
secreted from fusing myoblasts at physiological pH. Dur-
ing differentiation, L6 rat myoblasts demonstrated a
fusion-related increase in activity associated with the
25/26-kDa, fully processed, active form of cathepsin B.
Immunocytochemical studies demonstrated a redistri-
bution of lysosomal cathepsin B protein toward the
membrane of fusing myoblasts, and a colocalization of
cathepsin B with caveolin-3, the muscle-specific struc-
tural protein of membrane caveolae. Sucrose density
fractionation and Western blot analysis demonstrated
that an active form of cathepsin B localizes to caveolar
fractions along with caveolin-3, annexin-VII, B-dystrogly-
can and dystrophin. Finally, ‘real-time’ activity assays
and Western blot analysis demonstrated that active
cathepsin B is secreted from fusing myoblasts at physio-
logical pH. Collectively, these studies support an asso-
ciation of active cathepsin B with plasma membrane
caveolae and the secretion of active cathepsin B from
differentiating myoblasts during myoblast fusion.

Keywords: cathepsin B; caveolae; membrane;
myogenesis; myotubes.

Introduction

The formation of non-cycling, multinucleated myotubes
from cycling, mononucleated skeletal-muscle myoblasts
(myogenesis) is accompanied by dramatic changes in
gene expression and cell physiology (Yeoh and Holtzer,
1977; Stockdale, 1992). It is well established that myo-
tube formation involves recognition events that allow
committed myoblasts to align and adhere after migration,

and fusion events that allow adherent myoblasts to fuse
with each other (Dufresne et al., 1976). The recognition
events appear to be mediated by alterations in cell
membrane glycoproteins (Knudsen and Horwitz, 1977),
whereas the fusion events appear to be mediated by
extensive reorganization of membrane components to
form protein-free areas of phospholipids (Thiery et al.,
1982; Rieger et al., 1985).

There is longstanding evidence that many cellular pro-
teases are involved in the structural alterations associ-
ated with recognition and fusion events, and that the
expression of these proteases is tightly regulated during
myogenesis (Kaur and Sanwal, 1981; Guerin and Hol-
land, 1995; Dourdin et al., 1999). Our studies in rat,
mouse, and human myoblasts in culture suggest that the
lysosomal cysteine protease, cathepsin B (catB), is one
these cellular proteases. For example, we have demon-
strated that a fusion-related increase in catB activity
occurs in fusion-capable L6 rat skeletal muscle myo-
blasts, but not in fusion-deficient L6 variants or in muscle
fibroblasts (Jane and Dufresne, 1994). Moreover, reduc-
tions in catB gene expression in gene-trapped C2C12
mouse myoblasts or of catB activity in CAO74Me-treated
L6 rat myoblasts (Jane et al., 2002a,b) are reversibly
associated with reductions in the size and extent of myo-
tube formation over time. While these results support a
functional link between the regulated expression of catB
and myoblast fusion, little is known about the precise
cellular locations and mechanisms associated with catB
function. Studies demonstrating an association between
caveolin-1 (cav-1), the principle component of caveolae
(Anderson, 1998), and catB at the level of the plasma
membrane may provide an important clue. These studies
suggest that tumor progression is mediated in part by
the association of catB with cav-1 in membrane caveolae
of tumor cells (Cavallo-Medved et al., 2003, 2005), and
the subsequent activation of a proteolytic cascade con-
sisting of remodeling proteases such as matrix metallo-
proteases, plasminogen and tissue-type plasminogen
activator (Cavallo-Medved et al., 2005).

The principle component of skeletal muscle membrane
caveolae is the integral membrane protein caveolin-3
(cav-3; Song et al., 1996). Cav-3 is expressed only in
fusing myoblasts and plays a key role in the organization
and stabilization of the dystrophin-glycoprotein complex
(DGC), which in turn serves as a link between laminin in
the extracellular matrix (ECM) and the F-actin cytoske-
leton (Meacci et al., 2000). Since both catB and cav-3
are up-regulated during myogenesis by the MyoD family
of skeletal muscle-specific transcription factors (Biederer
et al., 2000; Jane et al., 2002c), we hypothesize that a
caveolae-associated proteolytic cascade similar to that
hypothesized in tumor cells is one of the mechanisms
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mediating the extensive cell-membrane, membrane-
cytoskeleton modifications required for myoblast-myo-
blast fusion. We further hypothesize that active catB on
the membrane of and secreted from fusing myoblasts
participates in the extensive cell surface-ECM modifica-
tions required for myotube formation (Adams and Watt,
1993). Two predictions are basic to these hypotheses:
(1) that catB localizes to plasma membrane caveolae
of differentiating myoblasts; and (2) that active catB is
localized on and secreted from fusing myoblasts at phy-
siological pH. These predictions were examined in the
current study using cell fractionation, Western blot,
immunocytochemical, and ‘real-time’ catB activity anal-
yses in cell-free, whole and living L6 myoblast pre-
parations.

Results

Levels of the 25/26-kDa active form of cathepsin B
increase during myogenesis

There are literally thousands of non-specific and muscle-
specific genes, the expression of which is regulated dur-
ing myoblast differentiation (Gogos et al., 1996). The
expression of many of these, including the two classic
biochemical markers of terminal differentiation, creatine
phosphokinase (CPK) activity and myosin heavy chain
(MHC) protein (Figure 1), is temporally related to the
fusion process (Dufresne et al., 1976; Jane and Dufresne,
1994) and involves the MyoD family of muscle-specific
transcription factors (Olson, 1990). Our previous (Jane
and Dufresne, 1994; Jane et al., 2002a,b,c) and current
studies in myoblast cell cultures suggest that catB
belongs to this latter class of genes (Figure 1). While catB
is expressed at constitutively high levels in most cell
types throughout growth (Gong et al., 1993), levels of
catB activity in differentiating myoblasts decreased as
dividing presumptive myoblasts became post-mitotic
(day 4) and then increased as myotube formation pro-
ceeded (days 5-6). The difference in catB activities be-
tween days of differentiation was significant (p<0.001).
There are two mature active forms of catB, a single-
chain form and a lower-molecular-mass, fully processed
double-chain form. The extent to which the inactive pro-
form of catB is processed to either of these active forms
varies between cell types within and among species
(Mach et al., 1992). A monospecific antibody to catB that
recognizes all forms of the protein (i.e., Western blots)
was used to determine whether fusion-related alterations
in catB activity were accompanied by alterations in the
relative contribution of these two active forms (Figure 2).
Reproducible changes were observed. Specifically, as
proliferating myoblasts (i.e., days 2 and 3) became post-
mitotic (i.e., day 4) the expression level of the 31-kDa
single-chain form of catB decreased by approximately
two-fold. These lower levels were maintained as myo-
blasts fused to form myotubes (i.e., days 5 and 6). In
contrast, low levels of the 25/26-kDa mature double-
chain form of catB were first detected in day-3 cells, then
increased as myotube formation proceeded (Figure 2B).
When the band intensity of each of the two active catB
forms was quantified and summed for each day (Figure
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Figure 1 Expression of myogenic phenotypes and cathepsin B

activity analyses.

For each day, beginning on day 3, the percentage fusion (tri-
angles) was determined and cells were collected and homoge-
nized. Percentage fusion is defined as: (number of nuclei within
myotubes divided by total number of nuclei within a microscopic
field)x100. At least 10 fields were examined. catB activity (cir-
cles) was measured in cell homogenates using the selective sub-
strate Z-Arg-Arg-NHMec and confirmed using the selective catB
inhibitor CAQ74. catB activity is expressed as mU/mg protein,
where 1 mU is defined as the amount of protease that liberates
1 nmol of aminomethylcoumarin per minute. Creatine phos-
phokinase activity (CPK) activity (squares) was measured using
ADP-glutathione according to the Sigma diagnostics kit. CPK
activity is expressed as units (nmol/min) per mg according to a
standard absorbance curve for the creatine product. For catB
and CPK activity assays, each value represents the mean of at
least three measurements (n=3), with error bars denoting the
standard error. The differences in activities between successive
stages were statistically significant (*p<0.001). Myosin heavy
chain (MHC) expression was measured by Western blot analysis
using a monoclonal antibody specific to myosin heavy chain.
Three successive stages of myoblast differentiation are repre-
sented: (i) division of presumptive myoblasts (day 3); (i) align-
ment and adherence of postmitotic myoblasts (day 4); and (iii)
fusion of non-cycling postmitotic myoblasts to form myotubes
(days 5-6).

2B), the pattern of total catB protein corresponded with
that for catB activity (compare Figure 2B and Figure 1).
These transient expression patterns were reproducible
between experiments (n=3).

Cathepsin B protein relocalizes toward the plasma
membrane of fusing myoblasts

It is generally agreed that the formation of myotubes
requires dramatic structural reorganization of the cyto-
skeleton, plasma membrane and ECM associated with
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Figure 2 Cathepsin B Western blot analyses.

(A) For each of three independent experiments, equal amounts
of protein from myoblast homogenates were used for immuno-
blot analysis using a rabbit anti-human liver catB monospecific
antibody, and enhanced chemiluminescence as described in the
materials and methods section. The catB marker lane was load-
ed with purified human liver catB (CB). Experimental lanes were
loaded with 8 pg of protein from cells on days 3-6. Standards
were used to determine the molecular mass range (kDa) of puri-
fied human catB (indicated on the left). After transfer, gels were
stained with Coomassie Blue and bands corresponding to con-
stitutively expressed proteins were analyzed to ensure equal
loading. Immunoblots are representative of at least three exper-
iments. (B) Densitometric analysis of the 31-kDa (gray bar) and
the 25/26-kDa (black bar) forms of catB was performed on
scanned images of Western blots exposed to hyperfilm for 30 s
using a Fuji imaging system and are presented as relative optical
density in arbitrary units per mm? (AU/mm?). The intensity of
each band is expressed relative to the optical density of the
darkest band. For each day, the 25/26-kDa and 31-kDa bands
were summed to provide the total level of catB protein detected.

each myoblast (Knudsen and Horwitz, 1977; Thiery et al.,
1982; Adams and Watt, 1993). These structural changes
coincide with a redistribution of lysosomal vesicles within
the cytoplasm of differentiating myoblasts (Bird et al.,
1981). In view of this consensus, it is reasonable to pre-
dict that increased levels of catB during myogenesis are
associated with a redistribution of catB protein from its
perinuclear site of synthesis on polysomes of the rough
endoplasmic reticulum (Berquin and Sloane, 1996)
toward the membrane of fusion-committed myoblasts
via lysosomal vesicles. We used a LysoTracker probe
(Invitrogen, Burlington, Canada), which is highly selective
for acidic organelles, for immunocytochemistry and con-
focal image analysis to examine this prediction (Figure 3).

In proliferating myoblast populations, LysoTracker-
stained acidic vesicles appeared punctate and were
localized close to the nucleus (i.e., perinuclear) (Figure 3,
upper panels). Stained acidic vesicles in post-mitotic and
fusing populations were also punctate (Figure 3); how-
ever, they appeared to be redistributed throughout the
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cell and toward the plasma membrane. This redistribution
pattern was similar to that observed in whole cell pre-
parations of presumptive, postmitotic, and fused popu-
lations of L6 myoblasts stained for intracellular catB
using primary antibodies specific to catB and the cyto-
skeleton protein tubulin, and the appropriate secondary
antibody conjugated to fluorescein isothiocyanate (FITC)
and Texas red, respectively (Figure 3, lower panels). CatB
staining was punctate and concentrated in the perinu-
clear region of dividing presumptive myoblasts. However,
when these myoblasts became aligned and began to
form myotubes, catB staining was redistributed through-
out the cell and toward the plasma membrane. The stain-
ing in the largest myotubes appeared to be diffuse and
less intense than the staining patterns in the early stages
of fusion. This redistribution pattern was not observed
during growth of fusion-deficient myoblasts or muscle
fibroblasts (data not shown).

More direct evidence for the localization of catB to the
membrane of fusing myoblasts was obtained by double
staining for catB and cav-3 (Figure 4). Cav-3 is expressed
in fusing but not pre-fusion populations of myoblasts
(see Figure 5) and is the structural component of plasma
membrane caveolae of terminally differentiating skeletal
myoblasts (Lisanti et al., 1994). In individual scans for
each protein, cav-3 (red stain) and catB (green stain)
were localized throughout the cell and at the level of the
plasma membrane of fusing myoblasts (Figure 4). When
these scans were merged, areas of overlap for cav-3 and
catB (i.e., yellow staining) were concentrated in regions
adjacent to the cytoplasmic face of the cell membrane.

Cathepsin B co-fractionates with caveolae-
associated proteins

Caveolae, invaginations of the plasma membrane, play a
role in many cellular membrane activities, including
receptor-mediated uptake, transcytosis, stabilization of
lipid rafts, and compartmentalization of signaling events
at the cell surface (Anderson, 1998). Recent studies have
demonstrated that catB associates with the structural
protein cav-1 in plasma membrane caveolae of human
colorectal carcinoma cells, and suggested that this asso-
ciation is implicated in proteolytic remodeling associated
with tumor progression (Cavallo-Medved et al., 2003,
2005). In view of these studies and our whole-cell studies
demonstrating colocalization of catB and cav-3 in ter-
minally differentiated myoblasts, we examined the asso-
ciation of catB with membrane caveolae and their
associated proteins isolated from differentiating popula-
tions of L6 myoblasts using a well-established protocol
based on the insolubility of caveolae to Triton-X 100
extraction and their buoyant density in equilibrium
sucrose gradients (Lisanti et al., 1994). Fractions (1.0 ml)
were analyzed by immunoblotting for catB, and the
caveolae-associated proteins cav-3, annexin VII, dystro-
phin, and B-dystroglycan (Figure 5).

For proliferating myoblasts (Figure 5, left panels), a
31-kDa form of catB was detected in fractions 7-9 con-
taining the lysosomal marker protein, p-galactosidase
(Cavallo-Medved et al., 2003). This is consistent with the
localization of the 31-kDa form of active catB protein in
both whole-cell (see Figure 2) and lysosomal fractions of
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Figure 3 Immunocytochemical localization of lysosomes and cathepsin B within differentiating L6 myoblasts.

(A) For live-cell staining of lysosomes, proliferating, postmitotic, and fusing myoblasts were rinsed with HBSS and LysoTracker-
supplemented serum-free medium was added. After 2.5 h of incubation, the medium was removed and the LysoTracker was ‘chased’
for 1 h in 10% supplemented horse serum medium. Lysosomal staining of living cells was observed using a Zeiss LSM microscope
fitted with a 40X immersion lense (see materials and methods). (B) For fixed cell catB/tubulin staining, proliferating, postmitotic, and
fusing myoblasts were fixed and stained for: (1) catB protein using rabbit anti-human liver catB IgG as primary antibody and FITC-
conjugated donkey anti-rabbit IgG as secondary antibody; and (2) tubulin using mouse anti-tubulin IgG as primary antibody and
Texas red-conjugated donkey anti-mouse IgG as secondary antibody. Intracellular staining was observed with a Zeiss LSM 310
microscope in confocal mode at an original magnification of 630X under oil immersion (see materials and methods). For all staining,
images are representative of three experiments. Bar: 20 pm.

detected in light membrane fractions 4 and 5. These
results are consistent with differential expression of dys-

crude myoblast cell lysates (data not shown). Cav-3 pro-
tein was not detected in any of the fractions analyzed, a

result consistent with the fact that cav-3 is not expressed
in proliferating myoblasts (Biederer et al., 2000). In con-
trast, low levels of the 47-kDa isoform of annexin VIl were
detected in all subcellular fractions, a result consistent
with its reported basal-level expression in proliferating
myoblast populations (Clemen et al., 1999). A 116-kDa
form of dystrophin was detected in the dense cytosolic
fractions 6-9, while a 43-kDa form of B-dystroglycan was

Caveolin-3

Figure 4

Cathepsin B

trophin and its associated proteins in myoblast cell cul-
ture (Radojevic et al., 2000; Blake et al., 2002).

For fusing myoblasts (Figure 5, right panels), the
25/26-kDa form of active catB protein was detected in
the same fractions as cav-3 (light density fractions 4 and
5). This result is consistent with the detection of the
25/26-kDa fully processed form of active catB protein in
whole cells (Figure 2) prepared from fusing myoblast

Merge

Immunocytochemical localization of cathepsin B and caveolin-3 within differentiating L6 myoblasts.

For fixed-cell catB/cav-3 double staining, fusing myoblasts were fixed and stained for: (1) catB protein using rabbit anti-human liver
catB IgG as primary antibody and FITC-conjugated donkey anti-rabbit IgG as secondary antibody; and (2) caveolin-3 using mouse
anti-caveolin-3 IgG as primary antibody and Texas red-conjugated donkey anti-mouse IgG as secondary antibody (see materials and
methods). Staining was observed using a Zeiss LSM 310 microscope in confocal mode at an original magnification of 630 under
oil immersion. Intracellular immunostaining for cav-3 and catB is shown in red and green, respectively. The arrow points to overlap
for cav-3 and catB staining, shown in yellow adjacent to the cytoplasmic face of the cell membrane. For all staining, images are
representative of three experiments. Bar: 20 pm.
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Figure 5 Western blot analyses of myoblast and myotube sucrose density fractions.

Equal amounts of protein from cellular lysates of proliferating and fusing myoblasts were fractionated in discontinuous 5-40% sucrose
density gradients as described in the materials and methods section. Fractions were collected from the top of the gradient and equal-
volume aliquots were analyzed by SDS-PAGE and immunoblotting. Panels from top to bottom represent fractions 2—10 analyzed for
catB, caveolin-3 (Cav-3), annexin IIV (Ann IIV), dystrophin (dys), and B-dystroglycan (3-Dys) immunoreactivity, respectively, using
mono- or polyclonal antibodies and enhanced chemiluminescence as described in materials and methods. Standards were used to

determine the molecular mass of proteins bands (kDa). Immunoblots are representative of at least three experiments.

lysates. Light density fractions 4-6 contained the follow-
ing caveolae-associated proteins: (a) the 47- and 51-kDa
isoforms of annexin VII; (b) 116-kDa dystrophin; and (c)
the 43-kDa form of B-dystroglycan.

Active cathepsin B is localized on and secreted
from differentiating myoblasts

Our cell-free and whole-cell analyses suggest that the
25/26-kDa fully processed form of active catB is local-
ized to the cytoplasmic face of the plasma membrane
within caveolae of differentiating rat myoblasts. These
results support the prediction that active catB plays a
role in the extensive cell membrane-cytoskeletal rear-
rangements required for myoblast fusion. However, myo-
blast fusion also requires extensive cell surface-ECM
modification (Adams and Watt, 1993). While a role for
catB in this modification is hypothetical, it has been sug-
gested that catB localized to the cell surface, and secret-
ed from tumor cells, degrades ECM components during
tumor invasion (Sameni et al., 2000; Sloane et al., 2005).
In view of these considerations, it is also reasonable to

Proliferating

Postmitotic

predict that: (1) CatB is localized on the extracellular sur-
face of differentiating myoblasts; and (2) CatB is secreted
from differentiating myoblasts in an active form at phys-
iological pH. We examined the first prediction using an
established method for the staining of surface proteins
(Willingham, 1990; Sameni et al., 2000). The second pre-
diction was examined using a continuous assay devel-
oped by Linebaugh et al. (1999) for catB activity secreted
‘in real time’ from living cells, followed by Western blot
analysis of differentiating myoblast-conditioned medium
to determine the molecular mass form(s) of catB
involved.

Cathepsin B is localized on the surface of
differentiating myoblasts

To determine if catB is localized on the surface of differ-
entiating myoblasts, we used an established protocol for
the staining of surface proteins that does not permeabi-
lize the cells and permits the differentiation of cell surface
catB from lysosomal catB (Sameni et al., 1995) (Figure
6). Using this method, catB was detected as discrete

Fusing

Figure 6 Immunocytochemical localization of cathepsin B on the surface of differentiating myoblasts.

Surface staining of catB was performed on differentiating L6 myoblasts seeded on round glass coverslips at 1x10* cells per well of
a 24-well tray grown in 10% horse serum-supplemented medium. Proliferating, aligning, and fusing myoblasts were fixed and stained
for catB protein at 4°C using rabbit anti-human liver catB IgG as primary antibody and FITC-conjugated donkey anti-rabbit IgG as
secondary antibody (see materials and methods). Cells were observed with a Zeiss LSM 310 microscope in confocal mode at an
original magnification of 630 under oil immersion. For all staining, images are representative of three experiments. Bar: 20 wm.
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Figure 7 Analyses of pericellular and secreted cathepsin B.
(A) Measurement of pericellular and secreted catB activity was
performed on living cultures of L6 rat myoblasts grown on 9x9-
m? glass coverslips. After establishment of a baseline, three cov-
erslips containing monolayer cultures of myoblast (solid bar) or
myotube (open bar) populations were added to assay buffer (1)
containing Z-Arg-Arg-NHMec substrate and pericellular catB
activity was measured continuously for 10-15 min at 37°C. Cells
were removed (Il) and the soluble (secreted) catB activity remain-
ing was monitored for 10 min at 37°C. Total catB activity was
measured from one 9X9-mm? coverslip by lysing the cells in the
presence of 0.1% (v/v) Triton X-100 and monitoring catB activity
continuously for 10 min at 37°C. At the end of each reaction
period () 10 wm CAO074 was added and the activity was
measured for an additional 5 min at 37°C. CatB activity was
expressed as pmol/min by measuring the slope of the initial
velocity curve and was then expressed per g of DNA. Each
value represents the mean of at least three measurements (n=3),
with error bars denoting the standard error. Between myoblast
and myotube populations, levels of catB activity for total, peri-
cellular and secreted fractions were significantly different
(*p<0.01). (B) The molecular mass forms of extracellular secret-
ed catB protein were examined by Western blotting (see mate-
rials and methods). Myoblasts were seeded at 3x10° cells per
100-mm dish. At proliferating (day 2), postmitotic (day 4), and
fusing (day 6) stages of differentiation, conditioned medium was
collected and concentrated. Samples were analyzed for catB
immunoreactivity using a rabbit polyclonal anti-human catB anti-
body, HRP-conjugated secondary and enhanced chemilumines-
cence. Molecular mass standards (kDa) are indicated on the
right. After transfer, gels were stained with Coomassie Brilliant
Blue and bands corresponding to constitutively expressed pro-
teins were analyzed to ensure equal loading. Immunoblots are
representative of at least three experiments.

green patches on the cell surface of differentiating myo-
blasts in proliferating, postmitotic (aligned) and fusing
stages. These results are similar to those reported for
catB in human breast carcinoma cells (Sameni et al.,
1995) and in U87 human glioma cells (Rempel et al.,
1994).

Active cathepsin B is secreted from differentiating
myoblasts at pH 7.0

If catB participates in remodeling of ECM components,
catB must be secreted in an active form at physiological
pH (e.g., to activate secreted inactive, high-molecular-
weight pro-forms of catB and/or to activate other pro-
teases). This prediction was examined directly using a
modification of a ‘real-time’ continuous assay for catB
activity optimized for enzyme stability, cell viability and
sensitivity (Linebaugh et al., 1999; Jane et al., 2002a).
This assay is designed to quantify low levels of active
catB secreted from living cells at pH 7.0, and permits the
experimenter to distinguish between cell surface and
secreted activities. In this assay, levels of pericellular (cell
surface and secreted), secreted, and membrane-associ-
ated (pericellular minus secreted) catB activities were
measured in viable myoblast and myotube populations
(Figure 7A). Both pericellular and secreted activities were
detected when the catB selective substrate Z-Arg-Arg-
NHMec was added directly to myoblast and myotube
cultures. In both populations, these activities were sev-
eral-fold lower than the total activity determined after
treatment of cells with Triton X-100. All these activities
were completely abolished in the presence of the catB
selective inhibitor, CAQ74. Finally, levels of total, pericel-
lular, secreted and membrane-associated catB activities
in the multinucleated myotube population increased by
at least 50% relative to the mononucleated myoblast
population.

The molecular mass form of active catB secreted from
differentiating L6 myoblasts was examined using
immunoblot analysis of samples prepared from condi-
tioned, concentrated medium collected from differenti-
ating myoblasts. In the proliferating and aligning stages
of differentiation, a band consistent with the 43-kDa pro-
form of catB protein was detected (Figure 7B, lanes 1
and 2), which is consistent with our previous findings of
pro-catB in L6 conditioned myoblast medium fraction-
ated by HPLC. In contrast, a 31-kDa band consistent
with the mature form of catB protein was detected in
conditioned, concentrated medium of fusing myoblasts
(Figure 7B, lane 3) and supports the real-time activity
data shown in Figure 7A.

To the best of our knowledge, this is the first report
demonstrating that: (1) catB activity is present on the sur-
face of differentiating L6 rat myoblasts; (2) an active form
of catB is secreted from these cells at physiological pH;
and (3) the associated activity increases as myoblasts
fuse to form myotubes.

Discussion

There is increasing evidence that the ubiquitous lyso-
somal cysteine protease, catB, plays a specific role in a
number of cellular processes, including the onset of
acute pancreatitis (Halengk et al., 2000), the pathogenic-
ity of myoclonus epilepsy (Houseweart et al., 2003), and
TNF-a-induced hepatocyte apoptosis (Guicciardi et al.,
2001). Our in vitro studies suggest that the induction of
catB gene expression in differentiating myoblasts
involves the MyoD family of skeletal-muscle specific



transcription factors binding to E-box promoter elements
of the catB gene promoter (Jane et al., 2002c), and that
the resultant catB activity plays a specific role in myo-
genesis in vivo, most likely in the events associated with
myoblast-myoblast fusion (Jane et al., 2002a,b). While
these studies support a role for catB in myogenesis, they
tell us little about how and where catB functions during
myogenesis. In this study, we provide evidence for the
association of active catB with plasma membrane caveo-
lae and the secretion of active catB from differentiating
myoblasts at physiological pH during myoblast fusion.

Myotube formation involves a series of plasma mem-
brane events requiring dramatic structural alterations.
Given the catabolic restructuring implicit at the level of
the plasma membrane (Thiery et al., 1982), the plasma
membrane-cytoskeleton (Moyen et al.,, 2004), and the
plasma membrane-ECM (Rapraeger et al., 1991; Adams
and Watt, 1993) of fusing myoblasts, it is reasonable to
predict that catB is relocalized from its site of synthesis
in proliferating myoblasts to the plasma membrane of
fusing myoblasts. Our cell-free fractionation and whole-
cell immunocytochemical studies support this prediction.
For example, results for Triton X-100 sucrose density
subcellular fractionation demonstrate that mature catB is
localized to the lysosomal fractions of proliferating myo-
blasts. In contrast, mature catB is localized to light den-
sity fractions containing the plasma membrane marker
cav-3 of fusing myoblasts. In fixed whole-cell prepara-
tions of fusing myoblasts, catB and cav-3 are co-local-
ized to the cytoplasmic surface of the sarcolemma. Since
cav-3 is an integral membrane structural protein specific
to membrane caveolae of fusing myoblasts (Lisanti et al.,
1994), it follows that a probable trafficking target for catB
on the membrane of fusing myoblasts is membrane
caveolae. To the best of our knowledge, this is the first
direct evidence for the targeting of active catB to plasma
membrane caveolae of fusing myoblasts. This evidence
has exciting functional implications.

In all cells, caveolae are membrane invaginations
reported to play a role in transcytosis, receptor-mediated
uptake, stabilization of lipid rafts, and compartmentali-
zation of signaling events at the cell surface (Hazen et
al., 2000). It is well established that the principle com-
ponent of skeletal muscle caveolae, cav-3, plays a role
in signal compartmentalization (Lisanti et al., 1994). More
recent evidence suggests that cav-3 also plays an impor-
tant role in the organization and stabilization of the DGC,
which in turn serves as a link between laminin in the ECM
and the F-actin cytoskeleton (Williams and Lisanti, 1994;
Smart et al., 1995).

Our subcellular fractionation studies provide the first
evidence of an association of the lysosomal protease
catB with both dystrophin and B-dystroglycan in caveo-
lae of differentiating myoblasts. However, the association
of proteolytic enzymes with members of the DG complex
is not without precedence and, consequently, functional
significance. For example, processing B-dystroglycan by
matrix metalloproteases (MMP) activity disrupts the link
between the ECM and the cell membrane via the dystro-
glycan complex (Yamada et al., 2001). Cav-3 is reported
to be a substrate of p-calpain in C2C12 mouse myo-
blasts (Moyen et al., 2004). Calpain-3 is involved in
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remodeling of cytoskeleton-membrane interactions that
include filamin C-sarcoglycan during myoblast fusion and
muscle repair (Guyon et al., 2003).

Striking examples of protease involvement in stabili-
zation of the DGC also come from studies of skeletal
muscle disease. For example, mutations in the gene
encoding the muscle-specific calcium-activated neutral
protease 3 (CANP3) large subunit cause limb-girdle mus-
cular dystrophy type 2A (Richard et al., 1995). In sarco-
glycanopathy, MMP processing of B-dystroglycan is
activated and is hypothesized to cause the disruption of
the link between the basement membrane and sarcolem-
ma (Yamada et al., 2001). Taken together, these studies
suggest that skeletal muscle caveolae may serve as
organizing centers for proteolytic enzymes that are
involved in assembly and stabilization of the DGC during
myoblast fusion, regeneration and repair. Our data dem-
onstrating cofractionation of catB with the DGC-associ-
ated proteins dystrophin, B-dystroglycan and cav-3,
suggest that catB may be one of these proteases. Indi-
rect support for this association comes from immunohis-
tochemical and subtractive hybridization studies that
report twice as much catB protein and mRNA expression
in dystrophin-deficient mouse muscles (mdx) than in
control muscle (Sano et al., 1988; Fang et al., 2000).
While a role for catB at the level of the DGC remains
hypothetical, our data provide evidence that catB is
associated with multiple members of the DG complex
within membrane caveolae.

How is the fully processed 25/26-kDa active form of
catB relocalized to plasma membrane caveolae of fusing
myoblasts? Our data support a mechanism involving
lysosomal vesicles. First, our fixed-cell immunocytoche-
mical data demonstrate punctate staining of catB in
perinuclear vesicles of proliferating myoblasts and vesi-
cles localized to the cytoplasmic face of the plasma
membrane of fusing myoblasts. Secondly, our live-cell
lysosomal staining with LysoTracker data demonstrates
a localization pattern of punctate vesicles that is similar
to that of catB staining in fixed whole-cell preparations
of differentiating myoblasts. Third, both the 25/26-kDa
active form of catB — the form normally found in mature
lysosomes (Mach et al., 1992) — and cav-3 - the struc-
tural protein of caveolae — are detected in light density
Triton-X 100 fractions of fusing myoblasts. A lysosomal
vesicle-mediated mechanism for the targeting of catB to
membrane caveolae is also supported by the observa-
tions of Kuncl et al. (2003). These investigators reported
that treatment of differentiating rat myoblasts with the
microtubule disrupting agent colchicine induces myopa-
thy characterized by an inhibition of lysosomal trafficking
to the sarcolemma and of lysosomal exocytosis. Further
studies, including ones using antibodies and inhibitors
specific to lysosomal enzyme trafficking proteins, such
as mannose-6-phosphate receptors (Szebenyi and Rot-
wein, 1991), microtubule proteins (Kuncl et al., 2003) and
synaptic vesicle-associated proteins (Reddy et al., 2001),
are required to gain insight into the mechanisms involved
in trafficking catB to plasma membrane caveolae of fus-
ing myoblasts.

If surface-associated catB plays a role in myogenesis,
what is/are the mechanism(s) of association with the
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myoblast cell surface? Recent results from tumor cell
studies may provide important clues. In tumor cells,
caveolae appear to serve as an organization center for
the localization of protease receptors, binding proteins
and proteases to the cell surface. For example, within
caveolae the annexin Il tetramer (Allt) forms a putative
tumor-cell membrane receptor for procatB at the cell sur-
face (Mai et al., 2000; Sloane et al., 2005). Moreover,
other proteases, such as urokinase plasminogen activa-
tor (UPA) and its receptor uPAR (Cavallo-Medved et al.,
2005) and the matrix metalloproteases MMP-2 and MT1-
MMP (Annabi et al., 2001; Puyraimond et al., 2001), have
been localized to caveolae at the level of the tumor cell
surface. Sloane et al. (2005) have hypothesized that inter-
actions of procatB with the annexin Il tetramer, through
direct binding to p11, facilitate activation of procatB and
in turn tumor progression by initiating a proteolytic cas-
cade involving remodeling proteases. While a putative
receptor for catB at the level of the plasma membrane in
differentiating myoblasts has not yet been identified, we
have used sucrose density fractionation to demonstrate
co-fractionation of the 52-kDa isoform of annexin VIl with
catB in light density plasma membrane fractions of fusing
myoblasts. The 47-kDa isoform of annexin VIl is
expressed at a basal level throughout proliferating myo-
blasts and becomes enriched in caveolae as myotubes
form. These results are consistent with the possibility of
a surface receptor associated with the caveolae of dif-
ferentiating myoblasts. Nevertheless, binding experi-
ments and screens for catB-associating partners are
required to identify the nature of this putative surface
receptor.

In addition to extensive cell membrane and mem-
brane-cytoskeleton modifications, myoblast fusion
requires dramatic catabolic restructuring at the level of
the cell surface and its association with the extracellular
environment. If catB plays a role in this restructuring, it
is reasonable to predict that at least some active catB is
secreted from the cell surface of differentiating L6 myo-
blasts. Our results from the ‘real-time’ activity assay of
living L6 myoblasts and immunoblot analysis of condi-
tioned medium support this prediction. These results are
also consistent with those obtained from studies in dif-
ferentiating C2C12 mouse myoblasts (Jane et al., 2002a)
and from studies in tumor cells (Linebaugh et al., 1999)
that suggest that the mature single-chain 31-kDa form of
catB is the prevalent active form secreted from cells.
Moreover, these studies, like our current one, suggest
that the 31-kDa form of catB detected in real time is not
derived from the secretion and subsequent activation of
pro-catB, or from the exocytosis of catB from mature
lysosomes. Another compartment, most likely an endo-
somal compartment, would seem to be involved in the
secretion of the single-chain 31-kDa active form of catB.

Based on our current and previous studies, we hypoth-
esize that catB participates in a proteolytic cascade at
the level of plasma membrane caveolae that ultimately
facilitates the intracellular and/or ECM remodeling nec-
essary for myotube formation. The potential for catB
interaction with other proteases at the membrane of fus-
ing myoblasts is substantial and longstanding. For exam-
ple, the non-lysosomal cysteine protease, m-calpain,

increases in a fusion-related manner, exhibits a peripheral
distribution in fusion-competent myoblasts (Kaur and
Sanwal, 1981; Schollmeyer, 1986), and has been impli-
cated in cleavage of the fibronectin network and myo-
blast cytoskeletal and membrane components, including
caveolin-3 (Dourdin et al., 1999; Moyen et al., 2004),
while serine proteases — and their receptors, such as
uPA, tissue plasminogen activator (tPA) and the a-eno-
lase-type plasminogen receptor (PIgR) — are required for
myoblast fusion (Festoff et al., 1986; Lopez-Alemany
et al., 2003).

If catB plays a role at the level of the membrane,
knowledge of potential substrates should help in the
design of screening experiments to identify substrates
and/or interacting proteins for catB at the plasma
membrane caveolae of fusing myoblasts, and ultimately
provide information on the molecular basis for catB func-
tion during myogenesis.

Materials and methods

Materials

The Micro BCA protein assay kit was purchased from Pierce
(Rockford, IL, USA). Xcell Il Mini-Cell electrophoresis apparatus,
1.5-mm cassettes, blot modules, nitrocellulose membranes,
blotting sponges; combs and filter paper were purchased from
Helixx Technologies, Inc. (Scarborough, Canada). Glycine, sodi-
um dodecyl sulfate (SDS), avidin-HRP conjugate, Model 500
power supply and 40% acrylamide/bis solution were purchased
from Bio-Rad Laboratories (Mississauga, Canada). Minimal
essential medium (a-MEM), fetal bovine serum, gentamycin sul-
fate, trypsin, ethylenediaminetetraacetic acid (EDTA), and tissue
culture plasticware were purchased from GIBCO (Burlington,
Canada). Equine serum was purchased from Hyclone (Logan,
UT, USA). Sodium chloride and tissue culture plasticware were
purchased from Fisher Scientific (Nepean, Canada). Bovine
serum albumin (BSA), Tween, sodium selenite, Giemsa stain,
E-64, 7-amino-4-methylcoumarin, creatine phosphate, nicoti-
namide-adenine dinucleotide (reduced), nicotinamide-adenine
dinucleotide phosphate, glucose-6-phosphate dehydrogenase,
hexokinase, creatine phosphokinase (CPK), lactate dehydrogen-
ase (LDH), myokinase (MK), cathepsin B (catB), N-a-CBZ-
argininyl-argininyl-7-amido  methylcoumarin-HCI  (Z-Arg-Arg-
NHMec), N-a-CBZ-phenylalanyl L-argininyl-7-amido methylcou-
marin-HCI (Z-Phe-Arg-NHMec) were purchased from Sigma
Chemical Co. (St. Louis, MO, USA). The enhanced chemilumi-
nescence Western blotting detection system was purchased
from Amersham (Arlington Heights, IL, USA). Sucrose, centrifuge
tubes, SW41 Ti rotor, SW 60 rotor and corresponding buckets
were purchased from Beckman (Mississauga, Canada). 4-
Methylumbelliferyl-2-acetamide-2-deoxy-B-b-glucopyrannoside
was purchased from Research Products International Corp. (Mt.
Prospect, IL, USA). The catB selective inhibitor, CA074 was pur-
chased from Peptides International, Inc. (Louisville, KY, USA).
Rabbit anti-human liver catB IgG was prepared as previously
described (Moin et al.,, 1992). Myosin heavy-chain antibody
(MF20) was generously provided by llona Skerjanc (University of
Western Ontario, London, ON, Canada). Mouse monoclonal
caveolin-3 antibody was purchased from Transduction Labora-
tories (Lexington, KY, USA). Anti-dystrophin (mAb, clone NCL-
NLC-DYS3) and anti-B-dystroglycan (mAb, clone NLC-B-DG)
were purchased from Nova Castra (Vector Laboratories, Burling-
ton, Canada).



Cell cultures

The fusion-capable (i.e., differentiating) L6 rat myoblast cell line
was originally obtained from Bill Sanwal (University of Western
Ontario, London, ON, Canada) and first characterized by
Dufresne et al. (1976). Cell cultures were maintained at 37°C in
an atmosphere of 5% CO,/95% air in a-MEM supplemented
with either 10% horse serum (HS, differentiation conditions) or
fetal bovine serum (FBS, proliferation conditions) as previously
described (Jane and Dufresne, 1994). Physiological differentia-
tion (i.e., myotube formation) was quantified as the percentage
fusion according to established procedures (Jane and Dufresne,
1994).

Cell fractionation

Cells were plated in «-MEM supplemented with 10% HS and
collected on day 2 (presumptive population), and day 6 (fusing
population). Medium was aspirated and the cells were washed
twice with cytosol buffer (25 mm HEPES, 125 mm potassium
acetate, 2.5 mm magnesium acetate, 200 mm sucrose, 1 mm
DTT, adjusted to pH 7.0). Cells were then swelled in a 10-fold
dilution of cytosol buffer for 10 min and then collected using a
rubber policeman. Cells were homogenized using a Dounce type
B homogenizer. Samples were then centrifuged at 1000 g for
10 min in an IEC Micromax centrifuge. Pellets, corresponding to
unbroken cells and intact nuclei, were frozen at -20°C. The
supernatant was then removed and either centrifuged at
10 000 g for 10 min to obtain crude lysosomes (pellet diluted
into cytosol buffer) or centrifuged at 250 000 g for 15 min in a
SW60 rotor using an L8-M Beckman ultracentrifuge to obtain
crude cytosol (supernatant) and crude membrane (pellet). All
samples were stored at -20°C and later analyzed for catB protein
using SDS-PAGE and Western blotting.

Sucrose density fractionation

Preparation of caveolae-enriched membrane fractions was
essentially performed as previously described (Song et al.,
1996). Cells were plated at 3x10° cells per 100-mm tissue cul-
ture dish in a-MEM supplemented with 10% HS. On days 2
(proliferating) and 6 (fusing) of differentiation, plated cells were
washed twice with MES buffer and then collected on an ethanol-
dry ice bath in 750 wl of MES buffer containing 1% Triton X-
100. Cells were homogenized by eight passages through a 20G
needle. For each sample, 1.6 ml was loaded to the bottom of a
14 mmx89 mm Beckman centrifuge tube and 2.4 ml of a 67%
sucrose solution was then added to make 4 ml of a 40% sucrose
solution. For each sample, 4 ml of a 30% sucrose solution was
layered on top of the 40% layer using a syringe with a 21-gauge
needle, and 4 ml of 5% sucrose was layered to the top of the
30% solution. All samples were then centrifuged at 185 000 g
in a SW41 Ti rotor in an L8-M Ultracentrifuge for 20 h at 4°C. A
total of 12 1-ml fractions were collected, beginning at the top of
the gradient. Each fraction was diluted in cold MES buffer to a
total of 12 ml and then centrifuged at 176 000 g for 70 min in a
SW41 Ti rotor in an L8-M Ultracentrifuge. The supernatants were
decanted and the pellets were resuspended in 40 .l of 2Xsam-
ple buffer containing 10% B-mercaptoethanol. Equal-volume ali-
quots from each gradient fraction were analyzed by SDS-PAGE
and Western blotting.

Enzyme activity analysis

Intracellular cathepsin B Cell homogenates were prepared
from cells collected every 24 h from day 2 of growth to day 6
as previously described (Jane and Dufresne, 1994). CatB activity
was measured using 20 mm of the catB-selective fluorimetric
substrate, Z-Arg-Arg-NHMec according to a modified procedure
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of Jane and Dufresne (1994). A 500-u.| aliquot of cell homoge-
nate (10.0 pg of protein diluted in 0.1% Brij 35 solution) was
pre-incubated for 5 min at 37°C with 250 .l of activation buffer
(852 mm KH,PO,, 48 mm Na,HPO,, 4 mm disodium EDTA, and
8 mm DTT, pH 6.0). The reaction was initiated with the addition
of 250 wl of substrate. The specificity of the substrate was
checked by adding 10-¢ m of the catB selective inhibitor CA074,
or of the cysteine protease inhibitor E-64 (Towatari et al., 1991).
The fluorescence of free aminomethylcoumarin in each reaction
tube was measured at an excitation wavelength of 370 nm and
an emission wavelength of 460 nm. One milliunit of proteolytic
activity was defined as the quantity of enzyme releasing 1 nmol
of aminomethylcoumarin per min.

Creatine phosphokinase  The activity of the muscle-specific
biochemical enzyme marker, creatine phosphokinase was meas-
ured according to established procedures (Jane et al., 2002a).

Pericellular cathepsin B Pericellular and secreted catB
activity produced by cells growing on coverslips was measured
using a continuous assay according to the established proce-
dure of Linebaugh et al. (1999) and modified by Jane et al.
(2002a). Cells growing on 9x9-mm? glass coverslips were rinsed
twice in PBS, placed in coverslip holders and equilibrated in
assay buffer (Hank’s balanced-salt solution supplemented with
0.6 mm CaCl,, 0.6 mm MgCl,, 2 mm L-cysteine and 25 mm Pipes,
adjusted to pH 7.0) minus substrate at 37°C for 5 min. The rate
of fluorescent product formation was recorded in a Shimadzu
RF-450 spectrophotometer set at 380 nm for excitation and
460 nm for emission, and equipped with a temperature-con-
trolled cuvette holder, a microstirrer and a DR-3 data chart
recorder. Recordings generally consisted of four readings: (i) a
fluorescent baseline for the assay buffer containing 100 wm Z-
Arg-Arg-NHMec substrate (5 min); (ii) the rate of fluorescent
product formation due to the introduction of cells, i.e., pericel-
lular catB activity; (jii) the rate of fluorescent product formation
after the removal of cells from the cuvette, i.e., secreted catB
activity (10 min); and (iv) the rate of fluorescent product forma-
tion after the addition of CA074 (10 wm final concentration).
Activity was expressed as pU/pg of DNA. DNA levels were
determined by the procedure of Downs and Wilfinger (1983)
using bisbenzimide dye (H33258) and calf thymus DNA
standard.

SDS-PAGE and immunoblot analysis

Cell homogenates were prepared from cells collected every 24 h
on days 2-6 of growth (Jane and Dufresne, 1994) with the fol-
lowing modifications. Cells were harvested in PBS supplement-
ed with 0.5 wm ALLN, 1 mm PMSF and 100 U/ml aprotinin.
Clarified cell homogenates were snap-frozen in liquid nitrogen
and stored in an Ultra Low freezer at -80°C. The total protein
concentration of each homogenate was measured using the
Micro BCA protein assay reagent kit. Samples of 40 g (for
myosin heavy chain, MHC) or 10 g (for catB) of cell lysate were
separated on a 7.5-12% SDS-polyacrylamide gel. For cell frac-
tionation studies, 30-wl aliquots were loaded onto each lane.
After transfer to nitrocellulose membranes, blots were probed
with primary antibodies against MHC (1:200), catB (1:5000), cav-
3 (1:5000), annexin VII (1:2000), dystrophin (1:1000), B-dystro-
glycan (1:1000) and secondary antibodies conjugated with
horseradish peroxidase (1:10 000) in TBS wash buffer (20 mm
Tris, pH 7.5, 0.5 m NaCl) containing 0.5% Tween 20 and 5%
(w/v) non-fat dry milk. After washing, specifically bound anti-
bodies were detected by enhanced chemiluminescence accord-
ing to the manufacturer’'s instructions. Quantification and
analysis of the bands were performed using a Luminescent
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Image Analyzer LAS-1000 Plus (Fuijifilm) and expressed as AU/
mm2.

Immunocytochemical staining and confocal
microscopy

Cells were seeded onto glass coverslips in differentiation medi-
um and were used during proliferation (day 2), postmitotic (day
4) and fusing (day 6) stages of differentiation for intracellular or
surface staining as previously described (Sameni et al., 1995).
Intracellular staining was carried out at room temperature using
saponin-permeablized cells, whereas surface staining was car-
ried out at 4°C using unpermeabilized cells. Rabbit anti-human
liver catB and goat anti-mouse cav-3 were used as primary anti-
bodies. Fluorescein-conjugated affinity-purified donkey anti-rab-
bit, fluorescein-conjugated affinity-purified donkey anti-goat and
Texas red-conjugated affinity-purified donkey anti-goat were
used as secondary antibodies. Coverslips were mounted
upside-down with Slow-Fade antifade reagent on glass slides
and the cells were observed using a Zeiss LSM 310 microscope
in confocal mode.

Lysosomal staining of living cells

L6 myoblasts were plated at 4x10* cells per 30-mm tissue cul-
ture dish (containing two glass coverslips) in a-MEM supple-
mented with 10% HS. Live cell populations were observed in
proliferation (day 2), postmitotic (day 4) and fusing (day 6) stages
of differentiation. A 2-wl aliquot of LysoTracker was added to
20 ml of serum free a-MEM. Cells were then washed twice with
HBSS, incubated at 37°C in LysoTracker-containing medium for
2.5 h, washed twice with HBSS, incubated again at 37°C in
LysoTracker-free medium containing 10% HS for 1 h, and
washed three times with HBSS. Washed cells were observed
immediately using a Bio-Rad confocal microscope and captured
images were merged using Confocal Assistant computer
software.

Protein determination

Protein levels were determined by the method of Bradford (1976)
and by the Pierce Micro BCA assay.

Degree of reproducibility

Calculations of standard deviations, standard errors and statis-
tical tests, including Student’s t-test, were computer-generated
using Sigmaplot.
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