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ABSTRACT

Given the locations of the Sensor Nodes in a Wireless Sensor Networks (WSN), find-

ing the minimum number of Relays required and their locations such that each sensor

is covered by at least one relay is called the Relay Node Placement(RNP) problem.

Given the locations of the relays, finding an optimized trajectory for the Mobile

Data Collector(MDC) is another important design problem of the WSN domain.

Previous researchers have shown that jointly solving different design problems in

the WSN domain often leads to better overall results. In recent years, Ant Colony

Optimization (ACO) have emerged as an effective tool for solving complex opti-

mization problems. An ACO based approach for solving the joint problem of Relay

Node Placement & Trajectory calculation(RNPT) is proposed in this thesis. We

also present a deterministic, and a Continuous Ant Colony Optimization (ACOR)

approach for refining the trajectory produced by the ACO approach.
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1. Introduction

Wireless Sensor Networks (WSN) are ad-hoc networks consisting of numerous, low-

powered and multi-functional sensing devices called Sensor Nodes, which are capable

of sensing one or more physical parameters of the ambient environment and main-

taining communication with other members of the network through the wireless

medium. Besides the sensors, a WSN may include some specialized entities such

as the Base Station(BS). The BS acts as a point of authority for the entire net-

work where the data generated from different sensors are accumulated, processed

and made accessible to the users. A WSN is usually deployed to monitor an area

of interest known as the sensing field. The dimension of the sensing field can range

from the size of a small house to several square kilometers[68].

The origins of WSN can be traced back to the 1950s when the United States Mil-

itary launched a project, which later came to be known as Sound Surveillance

System(SOSUS)[27], for detection and tracking of submarines during the cold war

period. The SOSUS consisted of submerged acoustic sensors – hydrophones – com-

municating with reception stations located in coastal areas. This sensing technology

is still in service, but the mission has shifted to the peaceful and constructive purpose

of monitoring undersea wildlife and volcanic activity.

Advances in semiconductor, networking and material science technologies in recent

decades have made large-scale WSNs a possibility. Together, these technologies have

1



Chapter 1 Introduction

combined to enable a new generation of WSNs that differ greatly from wireless net-

works developed and deployed a decade or more ago. Today’s state-of-the-art WSNs

have lower deployment and maintenance costs, last longer, and are more rugged.

There has been significant advancement in accessibility as well. Off-the-shelf com-

ponents are available for today’s WSN designer that are capable of bridging with

mainstream networks such as the Internet, to upload the data to a cloud service[2]

or provide means of controlling various operational parameters of the WSN from a

remote location. The next big step to formally explore the challenges in implement-

ing a distributed network of wireless sensors was taken by the United States Defense

Advanced Research Projects Agency(DARPA) by launching the Distributed Sensor

Network (DSN) program in the 1980s. The DSN project involved several universities

besides the US Military, resulting in an increase of civilian scientific and engineering

research.

The early WSNs consisted of bulky sensing and communication machinery. Ap-

plications of WSN was limited to military, and heavy industrial settings. With

the advancements in semiconductor technology, networking and material science in

the 1990s, this started changing rapidly. As the technology matured, the range

of application of WSN grew to include smart home health care[5], industrial con-

trol and monitoring[89, 35], precision agriculture[82], wildlife tracking and habitat

monitoring[57], disaster relief management[15] etc.

1.1. Motivation

Modern WSN are deployed in a wide range of scenarios. The sensing field can

be somewhere as close as an urban household, in the case of monitoring power

consumption in a smart home or as remote as a volcanic site miles away from

2



1.1 Motivation

research base. The environmental phenomena being monitored can be either man-

made such as monitoring electricity and/or voltage levels in a smart grid, pressure of

fluids in an industrial setting, presence of pollutants in the air, structural integrity of

a building or it can be purely natural such as the behavior of wild animals, rainfall,

seismic or volcanic activity.

The advantages of using WSN in such a setting: convenience in data collection and

cost reduction. For any of the examples mentioned above, a conventional sensing

system could very well achieve the goal of sensing environmental parameters using

same or similar set of components connected by a wired network. However, the

establishment cost and maintenance cost of such a wired network, which is not

trivial by any means, can be eliminated altogether if a WSN is used. Since this

cost grows proportionally with the distance between the sensing field and the BS,

deploying a WSN to monitor a remote sensing field can result in significant cost

saving.

In the case of remote sensing applications, random deployment of sensors is the only

feasible option. In this kind of deployment maintaining connectivity of the network

cannot be guaranteed. A special kind of component called the Relay Node[10, 11]

is introduced to face this challenge. The relay node is essentially a sensor node

provisioned with higher capacity energy source, memory and processor. The relay

nodes are tasked with collecting and forwarding the data from the sensor nodes.

However, since the power dissipation in radio communication grows with the dis-

tance between the sender and the receiver, further energy saving can be achieved

by provisioning the BS with the capacity of mobility. Such a BS is called a Mobile

Data Collector(MDC)[72]. In such a WSN, the data from sensor nodes are buffered

at relay nodes and the MDC which is capable of navigation across the sensing field,

visits the relay nodes to download the buffered data. The MDC is assumed to know

3



Chapter 1 Introduction

the locations of the relay nodes, from which a trajectory is calculated to sequentially

visit the relay nodes. Under this scheme, the maximum distance over which a relay

node transmits is significantly reduced, resulting in energy saving at the relay nodes

as well as at the sensor nodes.

Since the relay nodes are provisioned with higher capacity hardware, they are more

expensive compared to sensors nodes. For this reason, it is an important design

problem in the domain of WSN to find out the minimum number of relays and their

locations such that each sensor node in the network is connected to at least one

relay node. This problem is known as the Relay Node Placement Problem(RNP).

Another important design consideration is reducing the trajectory of the MDC. A

shorter trajectory implies smaller interval between two successive visit to a relay

node. This improves the timeliness of the data, and also reduces the required buffer

size.

1.2. Solution Outline

From the work of previous researchers, it was found that jointly solving the design

problems in the WSN domain often lead to improved result than separately solving

the design problems[55, 56, 8, 12]. However, both the RNP and trajectory calculation

problems have been shown to belong to the class of problems called NP-hard[76, 28,

30, 69]. Heuristic algorithm often deliver acceptable solutions within reasonable

time frame in such cases. A population based meta heuristic called Ant Colony

Optimization(ACO) has emerged in recent years as a powerful tool for tackling

complex optimization problem [73]. In this thesis, an ACO approach is proposed for

jointly solving the RNP and trajectory calculation problem for the MDC in a WSN.
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1.3. Organization

The remainder of this thesis is organized as follows. In Chapter 2, an introduction

to Wireless Sensor Networks, and Ant Colony Optimization as a tool for solving

design problems in WSN is presented. In Chapter 3, an approach for jointly solving

relay node placement and trajectory calculation of MDC in a hierarchical WSN is

proposed. Experimental results and findings are presented in Chapter 4. The thesis

is concluded with a summary and direction for future works in Chapter 5.
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A detailed discussion on Wireless Senor Networks and some important design prob-

lems are presented in this chapter. Further, the Ant Colony Optimization(ACO)

meta-heuristic is introduced as a tool for jointly solving the relay node placement

and trajectory calculation for a Mobile Data Collector in a 3-tier Wireless Sensor

Network.

2.1. Wireless Sensor Networks

Wireless Sensor Networks (WSN) are ad-hoc networks consisting of a number of

small sensing devices, called sensor nodes, and a Base Station (BS). The sensor

nodes (or sensors, for short) are capable of sensing one or more physical parameters

of the environment and communicating with each other and the BS through wireless

medium[3, 16]. The members of a WSN work collaboratively to sense one or more

physical parameters of the environment and forward the collected data to the BS,

which serves as as a central data repository.

A WSN is deployed to monitor a geographical area, called the sensing field. The

sensing field can be a remote location[85], or in a hazardous (due to pollution, or

presence of radioactivity[52] ) environment, or discourages human intervention e.g.,

wildlife habitat[57, 77]. Due to such restrictions, replacing the faulty sensors is
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not feasible. Therefore, the sensors are designed as low-cost, disposable units of

small dimension. Small dimension poses strict constraints on processor, memory

and power source. Due to such operating conditions, efficient power management is

of critical importance to the lifetime of a sensor and the WSN as a whole.

The BS on the other hand is not power constrained. It can be stationary or mounted

on a vehicle capable of navigating through the sensing field. Such a non-stationary

BS is called a Mobile Data Collector (MDC). Besides being the central repository

for the data collected by a WSN, the BS also serves as a data processing centre, and

as an access point for the information through a conventional network such as the

Internet. A schematic of the data flow from a WSN to the end user can be seen in

Figure 2.1.

Figure 2.1.: Data flow from a WSN to an end user.

2.1.1. Sensor Nodes

The sensor nodes are the building blocks of a WSN. A typical sensor node and its

schematic drawing are shown in figure 2.2a and 2.2b. A sensor node consists of a

microcomputer, sensing hardware, radio transceiver and a battery[3]. The sensing

hardware consists of an Analog to Digital Converter(ADC) and one or more sensors

for measuring physical parameters such as light, temperature, humidity, vibration

etc of the ambient environment. The ADC converts the analog signals from the
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sensor into digital values which are then passed on to the microcomputer. The

microcomputer consists of a microprocessor, and a memory unit. The data collected

by sensors are buffered in the memory until they are forwarded to the BS. Buffered

data can be transmitted directly to the BS or routed through other members of

the network acting as intermediaries. The transceiver maintains communication

with the network; it consists of radio transmitter, and receiver circuitry. All of these

components are connected to the battery from which they draw the necessary energy

to operate. The radio transceiver, sensors, batteries and other units are available as

off-the-shelf components[2].

(a) A state-of-the-art sensor node. (b) Schematic drawing of a sensor node.

Figure 2.2.: Sensor node.

The sensor nodes are designed as autonomous units. Recharging or exchanging the

batteries of individual sensor nodes is generally considered too costly to carry out.

Once the limited energy of the battery is completely dissipated, a sensor node will

be out of operation and lose its functionality[80]. Therefore, sensors are designed

as disposable, low-cost units. The requirement of small dimension puts constraints

on the size (and capacity) of the battery on board. Since the communication range

of a wireless device is directly related to available energy, the sensor nodes typically

have a limited communication range as well.
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2.1.2. Sensor Node Deployment

Sensor nodes are normally deployed inside or very close to the phenomenon of inter-

est in order to ensure effective sensing. Sensors within a sensing field can be placed

either in a pre-determined fashion or in a random distribution. The pre-determined

placement applies to situations where the sensing field is accessible. This strat-

egy achieves better coverage[86, 40], but relies on prior knowledge of the sensing

field. However, in many real life cases, e.g. in hostile environment such as bat-

tle field or polluted area, randomly deploying sensor nodes is more practical and

sometimes the only possibility[3, 68]. Random deployment is also faster compared

to pre-determined placement. However, it requires self-organized routing schemes

and distributed network algorithms to be incorporated in to sensor networks, which

are relatively complex. Despites these challenges, the random deployment is more

popular in real life application due to the practical aspect[79, 41, 43].

2.1.3. Energy Model of WSN

The first order radio model provides a metric for the energy dissipation at each

node of a WSN[38]. According to this model, energy dissipation is calculated for

communicating one bit of information. Amount of energy dissipated in transmitting

one bit, Etx can be calculated by:

Etx = Et + Ed × dn (2.1)

Here, Et is the energy dissipated in transmission circuitry, Ed is the energy dissipated

in transmission, d is the distance between transmitter and receiver, and n is the path

loss component which is a physical property of the medium. The value of n is 2 for

air.
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The amount of energy dissipated in receiving one bit of information is calculated

by:

Erx = Er (2.2)

Here, Er is the energy dissipated in reception circuitry.

Although in theory it is possible to transmit from a sensor over a distance as large

as the battery permits, in practice a sensor is restricted to transmit within a pre-

specified distance called the communication range, denoted by r. A two-dimensional

disk of radius r centered at a sensor defines the region of influence of that sensor.

A sensor can transmit to another sensor (or the BS) located inside its region of

influence.

2.1.4. Network Model of WSN

Based on their network architecture, WSNs can be classified as either flat or hier-

archical networks. In flat sensor networks, all sensors nodes are made identical and

are assigned the same roles. Besides sensing the environment, the sensors in a flat

network are tasked with forwarding their sensed data and routing data from other

sensors towards the BS. A typical flat WSN is shown in Figure 2.3a.

In a hierarchical WSN, the members of the network are organized in different tiers;

each tier performing some specific tasks. The lowest tier or first tier consists of

sensors nodes, responsible for sensing the environment. A second tier consists of

nodes tasked with the routing and forwarding of data sensed by the sensors at the

first tier. These nodes are called relay nodes (or relays, for short). The sensors are

grouped in clusters, and each cluster is headed by a relay[10, 11]. Each sensor usually

belongs to only one cluster and communicates directly to its cluster head. All the
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(a) Flat WSN. (b) Hierarchical WSN.

Figure 2.3.: Flat, and hierarchical WSN

data from the sensors in a cluster are thus collected and buffered in the respective

cluster head. The cluster head forwards the buffered data using an appropriate

routing scheme towards the BS[36]. An example of a 2-tiered WSN is shown in

Figure 2.3b.

Compared to flat architecture, hierarchical model achieves prolonged network lifetime[78].

In a 2-tiered WSN, for example, sensor nodes in the lower tier are relieved from the

burden of routing and forwarding; this reduces the energy consumption of these

nodes[78, 36, 10]. Due to such advantage, hierarchical architecture has gained in-

creased popularity in the research and development of sensor networks.

Since the relays are required to hold more data and transmit over a larger distance,

compared to sensors, they are usually equipped with higher capacity memory and
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battery. This also makes them more expensive than sensors. For this reason the re-

lays are not designed as disposable units, unlike the sensors. This makes it desirable

to keep the number of relays used in a hierarchical WSN as small as possible, to

lower the setup and maintenance cost. This gives rise to a well known design prob-

lem in the WSN domain, called the relay node placement problem. This problem is

discussed in detail in section 2.2.

(a) Single-hop routing. (b) Multi-hop routing.

Figure 2.4.: Routing schemes in a 2-tier WSN

The relays in the upper tier of a 2-tier network can follow either a single-hop or

multi-hop routing scheme to forward the data collected from the lower tier. In a

single-hop scheme, the relays communicate directly with the BS, as shown in Figure

2.4a. In this scheme, the relays located far away from the BS dissipate more power

than the ones located nearby, as can be explained by the first order radio model.

In multi-hop routing scheme, the relays located near the BS act as intermediary
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between the BS and other relays located far away from the BS. Figure 2.4b shows

a 2-tier WSN using multi-hop routing. In this scheme, the intermediary relays have

to transmit large volume of data towards the BS. As a result, energy dissipation is

higher in the relays nearer to the BS than the ones that are farther. Depending on

the type of routing scheme used, either the relays close to the BS or the ones far

from the BS are depleted of all energy sooner than the rest, reducing the operating

lifetime of the network as a whole.

2.2. Relay Node Placement Problem

Relays are more expensive than sensors and unlike sensors they are not designed as

disposable units. Thus, the number of relays used in a network directly contributes

to the establishment and maintenance cost of the network. Therefore, reducing the

number of relays used while still maintaining full coverage of the network in a WSN

is an important design consideration. This concern is addressed in the Relay Node

Placement(RNP) problem. Given the locations of sensor nodes in the sensing field,

the RNP problem asks to find the minimum number of relays, and the locations

to place the relays such that each sensor should be connected to at least one relay.

Multiple solutions can exist for a particular distribution of sensors nodes. The

non-uniqueness of the solutions is illustrated in Figure 2.5 with two different relay

placements for the same scenario. Both solutions use same number relays (3) but

their locations are different.

The RNP problem has been shown to be NP-hard[76, 28]. According to the com-

putational complexity theory, a problem is classified as NP-hard if an algorithm

for solving it can be translated into one for solving any NP-problem. An NP-

problem is one which is solvable in polynomial time by a nondeterministic Turing

13



Chapter 2 Background Review

(a) Placement a. (b) Placement b.

Figure 2.5.: Different solutions of the placement problem for the same scenario.

machine[18, 83, 84]. An NP-hard problem quickly becomes intractable as the input

size (number of sensors in this case) increases. As a result, simple exhaustive search

is not a feasible solution approach for this problem. Previous researchers have pro-

posed approximation or heuristic algorithms to find near optimal solutions of the

RNP within a reasonable time limit[39, 54, 78, 61].

A joint solution for RNP with Energy Provisioning in a 2 tier WSN is presented

in[39]. The Energy Provisioning problem refers to finding a given number of senors

which can be provisioned with a given amount of extra energy so that the over-

all network lifetime would be increased. The joint problem has been modeled as

a Linear Programming(LP) problem. A heuristic called Smart Pairing and IN-

telligent Disc Search (SPINDS) has also been proposed. A set of approximation

algorithms for RNP is presented in[54]. An 7-approximation algorithm (with up-

per bound on results being 7 times that of the optimum value) to solve the RNP

has been presented. This algorithm also ensures that there is a path consisting of

sensors or relays between every pair of sensors in the sensing field. This problem
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is referred to as the Single-Tiered Relay Node Placement Problem. Another version

of the problem is the Two-Tiered Relay Node Placement Problem, where the path

between every pair of sensor nodes consists solely of relays, has been solved with

(5+ε)-approximation algorithm. A polynomial time approximation algorithm with

constant bounds for placing relay nodes in large scale two-tiered networks is pre-

sented in [78]. The proposed solution ensures that each sensor node is covered by at

least two relay nodes and there exist two node-disjoint paths between each pair of

relay nodes in the network, this problem is referred to as 2-Connected Relay Node

Double Cover (2CRNDC) problem. The authors of [78] also presented a similar solu-

tion for Connected Relay Node Single Cover (CRNSC) problem where, the condition

is that each sensor should be connected to a relay and the sub network consisting

of relays should also be connected. A relay node placement strategy for WSN with

bi-connectivity requirement and under locations constraints for placing the relays

is presented in [61]. This work also includes a framework for O(1) approximation

algorithm for solving the RNP problem.

2.3. 3-Tier WSN and Trajectory Calculation for MDC

The limitations of a 2-tier WSN with stationary BS can be overcome by replacing

the BS with a Mobile Data Collector (MDC). The MDC is basically a BS mounted

on a vehicle capable of navigating across the sensing field[72]. This component alone

forms the third tier of a hierarchical WSN. In this scheme, the data collected from

sensors are buffered in the the relays acting as cluster heads. In such a 3-tier WSN,

the MDC moves at a constant speed along a pre-calculated trajectory to visits each

relay in sequence to download the buffered data. Once the buffered data from a

relay is downloaded to the MDC, its buffer is cleared and becomes ready to hold
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new incoming data from the sensors in its respective cluster.

It has been shown that inclusion of an MDC can improve the performance of a WSN

in terms of network lifetime, coverage, connectivity and fault-tolerance[9, 29, 45, 55,

62, 72, 44, 34]. Since the MDC can move within the sensing field, the need for dense

deployment of sensors and relays to ensure coverage and connectivity is eliminated.

The involvement of MDC in the network also improves the lifetime of the network

because the nodes would transmit to much shorter distance, leading to less power

dissipation at individual nodes.

Introducing an MDC into the network brings additional challenge of calculating

a trajectory for the MDC. Calculating the trajectory of an MDC is of significant

importance because shorter trajectory of MDC implies shorter interval between two

successive visits to a relay. This improves timeliness of the collected data, and also

leads to reduced buffer size in the relays[12]. Given the locations of a set of relays

in the sensing field (a solution of the placement problem), calculating the trajectory

of the MDC in a 3-tier WSN requires finding the shortest trajectory that allows the

MDC, starting from a point in the sensing field, to visit each relay at least once

before coming back to the starting point. A relay is considered visited by the MDC

when the data buffered in relay has been downloaded to the MDC. This problem is

closely related to the Traveling Salesman Problem(TSP), a well studied problem in

Computer Science[18].

The Traveling Salesman Problem problem asks, given a set of entities called called

cities, and pairwise distances between the cities, what is the shortest possible tour

that visits each city exactly once and returns to the starting city[18]. Figure 2.6a

shows a TSP instance with 5 cities. This problem belongs to the computational

class NP-hard[18]. Practical application of TSP and its variations can be found

in diverse range of domains including vehicle routing [7], computer wiring [49], job
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sequencing [31], crystallography [13] etc. Due to its widespread applicability, TSP is

one of the most intensively studied combinatorial optimization problem in Computer

Science[48]. Since the TSP quickly becomes intractable as the number of cities grow,

approximation and heuristic algorithms[58] have gained popularity for solving large

TSP instances.

(a) An instance of TSP. (b) A TSPN instance extended from TSP.

Figure 2.6.: Comparison of TSP and TSPN tours.

A generalized version of the TSP, the Traveling Salesman Problem with Neighbor-

hoods (TSPN), extends the TSP to the case where cities are defined as regions on

the plane. A city is considered visited in TSPN as long as at least one point from

its corresponding region is reached[70]. The TSP instance in Figure 2.6a can be

extended to a TSPN instance by considering the cities as circles of different radii

centered at the given points. An example TSPN instance is shown in Figure 2.6b.

The dashed line represents the TSPN tour. A TSPN tour has a shorter tour length

than the corresponding TSP tour, as illustrated in Figure 2.6. Applications of TSPN

include VLSI routing[66], communication networks[42] etc.

In the context of 3-tier WSN, The TSPN problem is of higher importance compared
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to the TSP, because the optimum trajectory of an MDC is essentially a TSPN

tour. A feasible trajectory of the MDC is a solution instance of the TSP problem

formed by considering the relays as cities and their pairwise distances defined by

the Euclidean distance. Following such a trajectory, the MDC stops at each relay to

download its buffered data. However, due to the wireless communication capability

of the relays and the MDC, its is not necessary for the MDC to be on the exact

same spot as a relay in order to download data from it; the MDC is only required to

be sufficiently close (to the relay) to initiate communication. This can be ensured

as long as the MDC is at the boundary or inside the relay’s region of influence.

Therefore, the trajectory calculation can be solved as a TSPN problem where each

relay is a city with the neighborhood defined as a disk of radius equal to the relay’s

range of communication and centered at the relay. Following such a trajectory, the

MDC is likely to traverse much shorter length as illustrated in the side by side

comparison in Figure 2.6.

Compared to TSP, which is a combinatorial optimization problem, the TSPN is an

optimization problem with two distinct components: a combinatorial and a contin-

uous one. The combinatorial aspect of TSPN is to decide the order in which the

neighborhoods need visiting. The continuous aspect is to decide for each neighbor-

hood which point within the neighborhood needs visiting. Like TSP, TSPN is also

classified as NP-hard[30, 69]; the running time of a deterministic solution can be

prohibitively large. The TSPN problem was first studied by Arkin and Hassin[4],

they proposed an O(1) approximation algorithm for solving TSPN where neigh-

borhoods are: parallel unit-length segments, or translates of a convex polygons or,

(more generally) shapes with diameter segments that are parallel to a common di-

rection and a ratio between the longest and the shortest diameter that is bounded

by a constant. An approximation algorithm is presented in[59] for solving TSPN
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in O(lg k) time where neighborhoods are arbitrary polygons. A polynomial-time

constant-factor approximation algorithm for disjoint convex fat neighborhoods of

arbitrary size is presented in [20].

Several researchers have investigated the trajectory calculation for one or more

MDCs in WSN. The range of approaches include Linear programming(LP), deter-

ministic algorithms, heuristic, and approximation algorithms. A 3-tier architecture

for sparse WSN containing multiple mobile entities called Data Mules has been pro-

posed in[72]. The data mules, playing a similar role as MDC, are assumed to walk

randomly within the sensing area and no trajectory calculation is involved. A parti-

tioning based algorithm for a network containing multiple MDCs is presented in[34].

This approach suggests that the MDCs should visit each individual sensor node in

order to collect the buffered data therein. An LP formulation for the joint problems

of determining the trajectory of an MDC and its sojourn time at different points in

the network that leads to the maximum network lifetime is presented in [81]. The

MDC in this case moves in direction either parallel to X or Y axis. A more fine

grained solution in terms of time and (physical) space is proposed in [47]; the time

for the MDC to travel from one point to another along it trajectory is considered in

this approach. The limited hop strategy(LHS) where only the sensors within a given

number of hops away from the MDC transmit their data while the others buffer

their data until the sink is accessible to them, is introduced in this work. Heuristics

for constructing a trajectory, and for refining the trajectory are also presented. A

deterministic solution for fining the trajectory as a TSPN solution from a given TSP

is presented in [65]. The quality of the final result in this work is dependent on the

initial TSP. A clustering based-genetic algorithm for trajectory calculation of an

MDC is presented in [53].

A two phase heuristic for finding the trajectory of an MDC in a sparse WSN is
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presented in [88]. The WSN is considered sparse in the sense that, for any pair

of sensors their regions of influence do not overlap. The trajectory of the MDC,

which is also the TSPN solution of the given scenario, is expressed as a set of points

called hitting-points, a concept introduced in this work; one hitting-point from each

relay, and the order of visiting those points. The hitting-point of a relay refers to

a point on the boundary of that relay’s region of influence, where the trajectory

of MDC intersects with the circle defining that relay’s region of influence. Since

the MDC can start downloading data from a relay as soon as it enters the relay’s

region of influence, after reaching a particular relay the remainder of the tour is

concerned about the next relay to visit and the direction of the trajectory is altered

according to do the same. Following this rationale, it is convenient to specify the first

intersection point as the hitting-point. The first phase of the approach presented in

[88] consists of finding a set of hitting points and their order of visit. The authors

of [88] suggested that dedicated TSP algorithms are sufficiently effective for solving

large TSP instances and are preferred over evolutionary approaches. In the second

phase, an evolutionary approach called the (1+1) Evolutionary Strategy[71] is used

to refine the choice of hitting points found as the output of the first phase. In this

phase, the trajectory is refined by fine tuning the positions of the hitting-points

while keeping the order of visiting unaltered.

An Ant Colony Optimization(ACO) approach (described in section 2.5, section 2.6,

and section 2.7) for solving the trajectory calculation for an MDC in sparse WSN

is presented in [17]. The notations and problem formulation in this work is adapted

from [88]. Major difference from the approach presented in [88] is that the order

of visiting the neighborhoods is not considered fixed in this approach. Although

the use of ACO in trajectory calculation presented in [17] is a novel approach, no

significant improvement over the work presented in [88] was observed.
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2.4. Jointly Solving WSN Design Problems

While designing a 3-tier WSN, the following design goals are of prime importance:

• Every sensor should be covered by at least one relay,

• The number of relays should be optimized,

• The total distance traveled by the MDC to collect data from the relays should

be minimized

(a) Result of Separately solving. (b) Result of jointly solving.

Figure 2.7.: Comparison of separately solving vs and jointly solving.

The joint Relay Node Placement and Trajectory calculation (RNPT) problem encom-

pass all three of these design goals. The RNP and trajectory calculation problems

can be solved either separately or jointly. In the former case, the RNP is solved

first, then a trajectory for the MDC is calculated, based on the result of RNP. In

the latter case, the placement and trajectory calculation is solved as a joint opti-

mization problem. The advantage of jointly solving the two problems is illustrated

in Figure 2.7. The solution on left is the result of separately solving the two design

problems. The solution on the right is the result of attempting to solve them jointly.
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In both cases, number of relays stay the same, but locations vary. It is the different

locations of the relays which allows the MDC to traverse a shorter trajectory. Ide-

ally, the non-uniqueness of the placement can be thus leveraged towards finding a

shorter trajectory for the MDC.

It has been shown by several researchers in recent years that jointly solving design

problems such as RNP, data routing, trajectory calculation etc. in the WSN domain

lead to better results [55, 56, 8, 12]. Data routing and trajectory planning has been

jointly addressed for improving the network lifetime in[55]. In this work, the sensors

are assumed to be deployed within a circular sensing field and the MDC travels

along the boundary of that area. An approach to jointly solving the routing and

trajectory planning problem in case of constrained mobility i.e., only parts of the

sensing field is accessible to the MDC, is presented in [56]. Jointly solving the data

routing and RNP problem in a 2-tier hierarchical WSN is shown in [12]. An ILP

formulation for jointly optimize the placement and routing is presented in this work.

Two heuristics for determining potential relay node locations are also presented in

this work.

Both the placement and trajectory calculation problems quickly becomes intractable

as the number of sensors increase. In real world setting, a deterministic approach is

likely to have prohibitively large running time due to large number of sensors present.

Heuristic algorithms on the other hand, can guaranty an acceptable solution within

a reasonable time frame. In this thesis, an ACO based approach is proposed for

jointly solving the RNP and trajectory calculation for an MDC in a 3-tier WSN.

The ACO meta heuristic has shown competitive performance in solving NP-hard

problems and has emerged as a powerful tool for solving this class of problem[26].

This is the first attempt towards solving the RNPT problem using ACO, to the best

of the author’s knowledge. The closest previous work can be found in [8], where an
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ILP approach for jointly solving the RNP and calculating a load balancing trajectory,

and a heuristic for further refining the the solution of the ILP is presented.

Besides the said ACO approach for jointly solving RNP and trajectory calculation

problem, a deterministic heuristic and a continuous ACO approach has been pre-

sented for refining a trajectory. Using continuous ACO for calculating the trajectory

of and MDC in a non-sparse WSN is also another first attempt to the best of the

author’s knowledge.

2.5. Ant Colony Optimization

Ant Colony Optimization is a population based meta heuristic derived from observa-

tions of the foraging behavior of ants in nature. Although very simple organisms as

individuals, capable of only a limited range of actions, a colony of ants working to-

gether manages to solve complex problem such as finding an optimized path between

their nest and a food source[32]. A special ability called Stigmergy, common to ants

and other social insects, is essential in this kind of collaborative problem solving

by simple agents. Stigmergy refers to the phenomena of indirect communication

between the agents of a group, e.g., the ants belonging to a colony, by marking their

environment with chemicals called pheromones[14]. A Pheromone is a chemical se-

creted by an individual that produces a change in the behavior of another individual

of the same species; a volatile hormone that acts as a behavior-altering agent[60].

23



Chapter 2 Background Review

(a) Ants come out of
the nest, exploring
for food.

(b) An ant return-
ing to the nest af-
ter finding food lays
pheromone.

(c) Some of the other
ants follow the
pheromone trail.

(d) Ants that found
food following
other paths also lay
pheromone.

(e) Pheromone evap-
orates from long
paths over time,
making shorter
paths more likely to
be followed.

(f) High amount of
pheromone accumu-
lates on the best
path.

Figure 2.8.: Stages of finding path by ants using stigmergy.

The foraging behavior of ants is illustrated in Figure 2.8. To find food, several ants

start exploring from the nest (Figure 2.8(a)). This initial exploration is preformed
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randomly, without any knowledge of the landscape. An ant that finds food, comes

back to the nest. On the way back, the ant lays a trail of pheromone on the

ground to mark the way to the food source(Figure 2.8(b)). Other ants coming

across this pheromone trail takes a biased random decision, based on the amount of

pheromone present on the trail, whether to follow the trail. The higher the amount

of pheromone, the more likely is the ant to follow the trail. Out of many ants who are

exploring, some of them will follow this trail(Figure 2.8(c)). Let the ones deciding

to follow the trail be called followers of this trail. Other ants may find food following

different paths, these ants lay pheromone as well (Figure 2.8(d)). These trails will

have followers too. The followers of a trail returning to the nest after finding food

also deposit pheromone on the trail. This causes the amount of pheromone to build

up on a promising path, increasing the likelihood of it being followed. However,

the pheromones being subjected to evaporation, the intensity of pheromone on a

particular trail decreases with time. For paths with shorter length, this does not

pose a big problem because by the time an ant on a shorter path reaches the nest after

finding food, a good portion of the pheromone laid by this ant is likely to remain. But

in the case of a longer path, since it takes more time for an ant following that path

to reach the nest, there will be little amount of pheromone remaining at the other

end of the path. In fact, depending on the length of the path, all the pheromone

laid by the ant may be evaporated. This makes the longer paths less likely to be

followed (Figure 2.8(e)). Due to this phenomena, significant amount of pheromone

accumulate on the best path(s). In the long run, the best paths direct most of the

ants towards food (Figure 2.8(f)). Thus, the random exploration gradually shifts

towards guided exploration and eventually toward fully guided expeditions.
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2.6. The ACO Meta Heuristic

Inspired by the foraging behavior of ants, the Ant Colony Optimization (ACO) meta

heuristic is developed. The ACO was introduced as tool for solving large combina-

torial optimization problems in the early nineties [21]. The earliest works on ACO

focused on solving the TSP problem [21, 24, 23, 25, 22]. Eventually, ACO found its

way in to solving different NP-hard optimization problems such as the graph color-

ing problem [19], the bin packing problem [51], the quadratic assignment problem

[87], the set covering problem [50], the car sequencing problem [33], probabilistic

traveling salesman problem [6] etc.

ACO is based on two core concepts:

• incremental solution construction by virtual agents (called ants) through bi-

ased random exploration,

• stigmergy by updating the pheromone values, which are accessible to all the

agents.

The basic skeleton of the ACO meta heuristic is presented in Algorithm 2.1[26].

Algorithm 2.1 ACOmetaHeursitic
1: initialize algorithmic parameters
2: initialize pheromones
3: while stopping criteria is not satisfied do
4: construct solution
5: (optional)perform local search
6: update pheromones

After initializing the algorithmic parameters and pheromones, the actual search

process begins. The search is carried out until a given stopping criteria is satisfied.

The following actions are performed during each iteration of the search:

• Construct solutions:
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A number of ants are employed to parallelly construct tentative solutions using

probabilistic rules. The probabilistic rules used in this step are functions of

pheromone values. These tentative solutions constructed by the ants are in

fact feasible solutions of the problem.

• Perform local search:

A problem specific optional local search procedure may be applied to farther

improve the tentative solutions constructed by the ants.

• Update pheromone :

This phase consists of two steps, pheromone evaporation, and pheromone de-

positing. Pheromone evaporation is performed first to mimic the natural phe-

nomena of pheromone reduction. In pheromone depositing step, a sub-set of

the solutions constructed by the ants in the previous phase are selected as

sufficiently good quality solutions. Only the ants generating these solutions

are allowed to deposit pheromone. The amount of pheromone deposited by

each ant is a function of the quality of the solution generated by that ant.

In this way, the results of one iteration guides the explorations carried out in

next iteration.

The modeling of a problem for solving with ACO and different steps of the ACO

meta heuristic are described next.

2.6.1. Problem Modeling and Algorithmic Parameters

A problem is modeled as a graph with a finite set of positions or states, each being

a vertex in the graph. An edge exists from the positions i to j if selecting j is

allowed after selecting i. Selecting the edge (i, j) is synonymous to transitioning

from position i to j. The cost of transitioning from a position i to j is denoted by
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ηij, and is called heuristic information. The heuristic information is specific to a

problem, and is assumed to be known a priori.

The following algorithmic parameters are provided as inputs, all real valued:

• The pheromone importance parameter,α

• The heuristic importance parameter, β

• The pheromone evaporation constant, ρ ∈ [0.0, 1.0]

The algorithmic parameters provide means of controlling the behavior of the algo-

rithm. Typical values for solving TSP problem are shown in Table 2.1.

2.6.2. Pheromone Representation and Initialization

Pheromone is represented by τ , a matrix of real numbers. Each entry τij in the

pheromone matrix denotes the amount of pheromone present on the edge (i, j). The

amount of pheromone on an edge (i, j) denotes the attractiveness of selecting j after

selecting i in the solution. At the beginning of the search, pheromone values are

initialized with a pre-specified amount τ0. The value of τ0 requires careful selection,

because if it is too low, then the search is quickly biased by the first solutions

generated by the ants, which in general leads to premature optimization. On the

other hand, if the initial pheromone values are too high, then many iterations are

lost waiting until pheromone evaporation reduces enough pheromone values, so that

pheromone added by ants can influence the search.

Ideally, the initial pheromone value should be low enough that pheromone added

due to the new solutions generated by ants can have influence on the search, but

high enough to provide equal preference to all edges during the initial phase of the

search. Following this rationale, it has been suggested [26] that calculating a greedy
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solution Sg of the problem and the cost of such a solution Cg can aid in pheromone

initialization using the following formula:

τ0 = 1
Cg

(2.3)

2.6.3. Solution Construction

During the Solution Construction phase,m number of ants are employed to construct

tentative solution. The value of m can be a constant e.g. 1, 2, 10 or relative to

the problem size e.g. for TSP problem, m being equal to the number of cities is

suggested[26].

Each ant constructs a solution in an incremental manner by biased random ex-

ploration of the problem graph. Starting from an initial position, each leg of the

exploration consist of a transition from position i to position j until a solution is

considered complete. The probability Pij of selecting position j after position i is

calculated by the following rule.

Pij = [ηij]α × [τij]β∑
j∈N(i)[ηij]α × [τij]β

(2.4)

Here, N(i) denotes the set of positions adjacent to i which are unvisited by this ant.

The criteria for determining the completeness of a solution, and definition of N(i),

the neighborhood of a position i vary from one problem to another.

2.6.4. Local Search

As a meta heuristic, the ACO approach is tasked with guiding a search procedure

through the problem space[63]. Different local search techniques have been reported
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in scientific literature for solving different problems. The 2-opt local search proce-

dure has been suggested for solving TSP[26]. An iterative local search technique

for solving the bin packing and stock cutting problem has been presented in [51].

Local search techniques named 1-shift and 2.5-opt-EEais are suggested for solving

the probabilistic traveling salesman problem[6]. Although the use of a local search

procedure is considered optional, coupling the ACO with a local search has been

observed to improve the result[26].

2.6.5. Pheromone Update

Pheromone update consists of two steps: pheromone evaporation, and pheromone de-

positing. In the pheromone evaporation step, the natural phenomena of pheromone

reduction due to evaporation is simulated. This is carried out by updating all the

entries in the pheromone matrix τ using the formula:

τij = (1− ρ)τij (2.5)

In the pheromone depositing step, a sub-set of solutions are selected, out of the m

solutions produced by the ants during exploration phase, according to a preference

rule. The preference rules are one of the main differences between different versions

of the ACO approach. Only those ants who were responsible for generating these

preferred solutions are allowed to add pheromone. Let a preferred solution be Sp

and its cost be Cp, then the respective ant deposits pheromone according tho the
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following formula:

τij=


τij + 1

Cp
∀(i, j) ∈ Sp

τij otherwise

(2.6)

In this way, ants generating solutions with relatively higher quality are allowed to

guide the subsequent stages of the search by depositing pheromone. This in turn,

results in gradual improvement of the overall quality of solutions generated by the

ants in each iteration.

The value of ρ determines how quickly or slowly the search should converge. For large

value of ρ, the pheromones reduces rapidly, causing the newly added pheromone in

the beginning of the search to heavily bias the exploration in subsequent iterations.

This causes a subset of edges being used repeatedly in solution construction and a

pheromone accumulation takes place in those edges. As a result, the search converges

quickly to generating solutions using that subset of edges. On the other hand, for

smaller values of ρ, the pheromone reduces slowly. This allows the ants to explore

a wider range of edges in the initial phase. Eventually a significant amount of

pheromone accumulates on a subset of edges that are frequently included in good

quality solutions. Experimental results show that lower values of ρ result in better

quality results compared to using higher values of ρ[26], because in the latter case

the algorithm converges prematurely.

2.6.6. Variations of ACO

The earliest and most rudimentary ACO approach, the Ant System (AS)[21, 25]

follows the skeleton algorithm (Algorithm 2.1). The AS was introduced as a meta

31



Chapter 2 Background Review

heuristic for solving the TSP [25]. It was initially found to be promising, but did

not fare well in comparison to the state-of-the-art TSP algorithms. This limitation

was overcome later by introducing several extensions of the AS, with increasingly

improved performance. Two prominent extensions of the AS are the Elitist Ant

System (EAS)[21, 24, 23], and the Max Min Ant System(MMAS)[75]. The main

difference between different ACO approaches lies in the pheromone initialization and

pheromone update rules. Apart from that, the preference of values of algorithmic

parameters also vary. The extension of AS are described next:

Elitist Ant System(EAS):

The core idea of EAS is to provide strong additional reinforcement to the edges

included in the best solution found since the start of the algorithm[21, 25, 24]. This

is carried out by depositing additional pheromone on the edges included in the global

best solution at the end of each iteration. Let SB denote the global best solution

found since the beginning of the algorithm, and CB be the cost of this solution,

then additional pheromone is added to the edges included in SB according to the

following formula:

τij ← τij + e

CB
∀(i, j) ∈ SB (2.7)

where e is an additional algorithmic parameter introduced in the EAS. Experimental

results presented in [21, 25, 24] suggest that selecting an appropriate value for e can

improve the quality of result as well as reduce the required number of iteration. Since

this additional step is the only difference between AS and EAS, the EAS approach

is not discussed in further details.
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Max Min Ant System(MMAS):

The MMAS is the most sophisticated version of AS. The following four major mod-

ification are incorporated in this approach[75, 74]:

• Strong Restriction on Pheromone Deposition

Pheromone is added based on either the global best solution SB or the iteration

best solution Sb only. Unlike other variations of the AS, not all the ants

employed in an iteration are allowed to deposit pheromone. Either SB or Sb

is chosen using a probability rule in which, the chance of SB being selected

increases with each iteration.

• Pheromone Limits

Because of the first modification, there is a possibility of large accumulation of

pheromone on a small subset of edges. This effect is countered by limiting the

pheromone values within the a dynamic interval [τmin, τmax]. In the beginning

of the algorithm the values are set by τmax = τ0 and τmin = τmax
a

where, τ0 is

calculated from Equation 2.3, and a is an additional algorithmic parameter.

Afterwards, τmin, and τmax are updated at the end of each iteration according

to the following rule:

τmax = 1
ρCB

(2.8)

τmin = τmax
a

(2.9)

where, CB is the cost of the global best solution SB. The value of a should

vary from one problem to another. For the TSP, Setting a =
n√0.05×(avg−1)

1− n√0.05
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where, n is the input size and avg is the average number of choices available

to an ant during the construction of a solution has been suggested in [75].

• Encouragement for Initial Exploration

A small value of ρ is set, to encourage exploration at the start of the search.

For the TSP, ρ = 0.02 is suggested[75].

• Pheromone Reinitialization

Pheromone trails are reinitialized to current value of τmax each time the system

approaches stagnation or when no improved tour has been generated for a

certain number of consecutive iterations.

The suggested values[26] of algorithmic parameters for solving the TSP using dif-

ferent ACO approaches are summarized in Table 2.1.

ACO Algorithm α β ρ m τ0

AS 1 [2, 5] 0.50 n m
Cg

EAS 1 [2, 5] 0.50 n n+m
ρCg

MMAS 1 [2, 5] 0.02 n 1
ρCg

Table 2.1.: Suggested values of algorithmic parameter for solving the TSP using
different ACO approaches.

2.7. Extension of ACO for Continuous Domain

The Ant Colony Optimization (ACO) meta heuristic was originally meant to be

used for combinatorial optimization problems. An extension of ACO, called the

Continuous Ant Colony Optimization (ACOR), was proposed later [73] to handle

optimization problems in continuous domains as well. This section presents an

overview of the ACOR followed by description of the actual algorithm.
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In the large group of algorithms for solving continuous optimization problems, ACOR

has been classified as an Evolutionary Algorithm (EA) due to the similarity between

ACOR and many other EAs[73]. Some other EAs are presented in [64], [37]. A

comparative study of these algorithms along with other EAs can be found in [46].

According to the authors of [73], these different algorithms share a common trait

with ACOR: learning and modeling explicitly probability distributions.

2.7.1. The ACOR Algorithm

The following actions are carried out iteratively in the ACOR algorithm until a

predefined stopping criteria is met.

• A number of ants are employed to construct tentative solutions by taking

random decisions biased by a collection of existing solution instances. An

optional local search may be performed on the solutions.

• The collection of solutions are updated by replacing low quality solutions with

high quality solutions (if any) from the newly created solutions by the ants.

A Continuous Optimization Problem (CnOP) defined for solving with ACOR as

Q = (S,Ω, f) where:

• S is a search space defined over a set of n continuous decision variables

• Ω is a set of constraints

• f : S→ R+
0 is the objective function to be minimized

A solution instance S is defined as a set of continuous variables Xi, i = 1, . . . , n.

The central idea behind the ACO meta heuristic is the incremental construction

of solutions based on the biased probabilistic choice of solution components. This

is reflected in Algorithm 2.1. The ACOR follows the same idea and algorithmic
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structure. However, the pheromone representation, and solution construction are

are carried out differently.

Pheromone Representation

In ACOR pheromone information is stored in the Pheromone table T . Each entry

in T contains a solution instance. Unlike its discrete domain counterpart, the solu-

tions are not discarded after depositing pheromone. The solutions in T are ordered

according to their quality, i.e. based on the value of the objective function. The

pheromone table is illustrated in Table 2.2. While the pheromone matrix τ plays

the role of implicit memory during the execution of ACO, the pheromone table T

in ACOR serves as explicit memory.

s1 s1
1 s2

1 · · · si1 · · · sn1 f(s1) ω1
s2 s1

2 s2
2 · · · si2 · · · sn2 f(s2) ω2

... ... . . . ... . . . ... ... ...
sl s1

l s2
l · · · sil · · · snl f(sl) ωl

... ... . . . ... . . . ... ... ...
sk s1

k s2
k · · · sik · · · snk f(sk) ωk

Table 2.2.: Pheromone table for ACOR, the entries are sorted according to solution
quality f(s)

The size of T , denoted by k, refers to the number of entries to be stored in T and

is provided as an algorithmic parameter. In the beginning of the algorithm, T is

initialized by populating with uniform-random samples.

Solution Construction

The number of ants employed during solution construction, m is an algorithmic

parameter, and is provided as an input. During each iteration of the algorithm,

each ant constructs a tentative solution. The solution construction begins with
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probabilistically selecting a solution entry from T . The probability of selecting the

jth solution is given by :

pj = ωj∑k
r=1 ωr

(2.10)

where, ωj denotes the weight of the jth solution, given by:

ωj = 1
qk
√

2π
e

−1(j−1)2

2q2k2 (2.11)

where, q is an algorithmic parameter. An increasingly wider range of solutions

become likely to be selected as the value of q rises. Small values of q give more

weight to a narrow range of solutions concentrated near the best entries.

Once a solution sl is selected, the ant samples the neighborhood of each decision

variable in sl. For the ith decision variable in sl, denoted by sil, the sampling is

performed using a probability density function. The use of a probability density

function, which is a continuous function, is a major difference of ACOR from ACO

where a discrete probability distribution function (the Equation 2.4, for example)

is used during solution construction. Any real valued positive function P (x) can

be used as the probability distribution function as long as the following criteria is

satisfied:

ˆ ∞
−∞

P (x)dx = 1 (2.12)

However, the authors of [73] suggest using Gaussian function as the probability

distribution function for sampling according to the following formula:

P (x) = g(x, µ, σ) = 1
σ
√

2π
e

−(x−µ)2

2σ2 (2.13)
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where, the parameters µ and σ are defined for each sji as follows:

µ = sji (2.14)

σ = ξ
k∑
r=1

|sir − sij|
k − 1 (2.15)

here, ξ is an algorithmic parameter. Higher values of ξ allows the resulting samples

being taken from a wider area, as a result the algorithm explores more and converges

slowly. Lower values of ξ on the other hand, narrow down the sampling, resulting

in fast convergence with less exploration. The role of ξ is similar to the pheromone

evaporation constant ρ in ACO in this regard [73].

Pheromone Update

Each of the m ants employed in an iteration constructs a solution in this way. At

the end of the solution construction phase, the new m solutions are added to the

pheromone table T , which contained k entries prior to this action. From the resulting

k + m entries in T , the worst m entries are removed. In this way, the collection of

solutions guiding the search is refined with each iteration.
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A heuristic to jointly optimize the relay node placement and the trajectory of a mo-

bile data collector in a 3-tier wireless sensor network (RNPT problem) is presented

in this chapter. The proposed approach operates in a 2-phase process. Taking the

coordinates of a set of sensors as input, a list of coordinates for placing relays in the

order meant to be visited by the mobile data collector is produced in the first phase

using an ant colony optimization approach. This ordered list is in fact a feasible

trajectory for the mobile data collector. This feasible trajectory if farther optimized

in the second phase. A deterministic algorithm, and a continuous ant colony op-

timization approach is presented in this chapter for further optimizing the feasible

trajectory.

3.1. The Network Model

A three-tiered wireless sensor network (Figure 3.1) is considered, where the lowest

tier comprises of a set of sensors. The sensors are assumed to be deployed to ensure

appropriate coverage of the sensing field. The sensors are organized in clusters,

where a relay node acts the cluster-head for each cluster. The middle tier consists of

the relays. Each relay is equipped with higher capacity CPU, memory, and power

source, and is capable of collecting, buffering and transmitting the data collected
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from sensors over a larger distance. The top tier consists of a mobile data collector

which is a base station mounted on a vehicle. The mobile data collector operates

without any power or memory constraints. The duty of the mobile data collector is

to traverse a pre-calculated trajectory to visit each of the relays in a predetermined

sequence and collect the data buffered in the relays.

Figure 3.1.: A 3-tier WSN.

3.2. Problem Formulation

It is assumed that the number of sensors and their positions in a flat 2-dimensional

sensing field are known. There are no obstacles in the field. Here r(R) denotes the
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communication range of the sensors(relays). The data from a sensor can be collected

by a relay as long as it lies within the region of influence of the sensor, which is a

disk of radius r centered at the sensor. Two or more sensors can have overlapping

regions of influence. Buffered data from a relay can be downloaded to the MDC as

long as it gets sufficiently close to the relay, i.e. within R distance from it. The

regions of influences of the sensors and the relays are illustrated in Figure 3.2. Since

relays are equipped with higher capacity batteries, R is greater than r.

Figure 3.2.: Regions of influences of the sensors and the relays.

The objective is to calculate a placement of relay nodes and a trajectory for the

MDC based on the said placement such that the number of relays and the length of

the trajectory are optimized.

The proposed solution approaches the problem in a two-phase process. In the first

phase, given the number and the locations of the sensors in a sensing field, an ordered

list of locations for placing relays is produced such that, every sensor is covered by

at least one relay while the number of relays and the total distance traveled by the

MDC when they are visited in the given order is optimized. This is carried out by

an ACO approach, presented in section 3.3. Since the resulting trajectory found in

the first phase is a feasible solution of the problem, henceforth it is referred to as a

feasible trajectory.

Such a trajectory determines the sequence in which the MDC travels from one relay
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to another in order to download the buffered data. In that regard, the resulting

trajectory presents a TSP solution. It has been mentioned earlier in section 2.3

that, a TSPN solution results in a shorter trajectory compared to the corresponding

TSP. Therefore, a feasible trajectory found from the first phase can be further refined

by calculating a TSPN-like tour where the neighborhoods are disks centered at each

relay. This refinement is carried out in the second phase. Two alternatives are

presented for refining a feasible trajectory: a deterministic heuristic in section 3.5,

and an ACOR approach in section 3.6. The scenario presented in Figure 3.3 shows

a sensing field containing 8 sensors labeled as s1, s2, . . . s8. This scenario is referred

to as the example scenario in the remainder of this chapter, and is used to illustrate

different stages of the proposed approach.

Figure 3.3.: An example scenario.
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3.3. Relay Placement and Trajectory Calculation

An ACO approach to RNPT problem is presented in this section. Before the actual

ACO algorithm can begin, a preprocessing step for calculating the potential relay

locations is performed. Different components of the proposed ACO approach are

described next. The result of the proposed approach is a trajectory expressed as a

list, containing a subset of the potential relay locations.

3.3.1. Calculation of Potential Relay Locations

From a given set of sensors, the first step towards the solution is to calculate R, a set

of potential relay locations. Our proposed heuristic for selecting a set of potential

relay locations begins by initializing R as an empty set.

For each pair of sensors whose regions of influence overlap, the points of intersection

between the circles with radius r and centered at the sensors are added to the set

of potential relay locations. Note: there can be one or two such points depending

on whether the circles are touching or intersecting. Such locations are referred to

as class− I locations henceforth. In Figure 3.5, the locations labeled r2, r3, . . . r10

are such locations.

The sensors whose regions of influence do not overlap with those of any other sensors

are not yet covered by any potential relay location. Such senors are referred to as

disconnected sensors henceforth. For each disconnected sensor, a number of evenly

spaced points on the boundary of the sensor’s region of influence are added to R.

These locations are also classified as class− I locations. The concept is illustrated

in Figure 3.4(a) for 4 and 8 points. A limitation of this selection criteria is that the

size of R grows by factor of 4, or 8 with the number of disconnected sensors.

An alternative strategy for covering the disconnected sensors, is to add the location
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(a) Evenly spaced
points on the
boundary of a
sensor’s region of
influence.

(b) Selecting the lo-
cation of the sen-
sor as a potential
relay location.

Figure 3.4.: Different strategies for selecting potential relay locations for discon-
nected sensors.

of the sensor itself to R. This strategy ensures that the size of R would not exceed

the number of sensors. These locations however, would need special treatment dur-

ing calculation of trajectory. Therefore, they are classified as class−II locations, to

distinguish from the class−I locations. This concept is illustrated in Figure 3.4(b).

The location labeled r1 in Figure 3.5 is such a location. Results of experimentation

with three different strategies for choosing potential relay locations i.e., selecting the

centre point, or evenly spaced 4 points, or 8 points on the boundary are presented

in Chapter 4.

Let the number of locations be denoted byN . AnN×N matrixD is maintained such

that the ith row and column in D corresponds to the ith potential relay location.

Each entry dij in D represents the euclidean distance from location i to location j.

In order to speed up the execution, distance values are looked up from D instead
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Figure 3.5.: Potential relay locations in the example scenario (labels of sensors are
omitted for simplicity).

of calculating in all subsequent stages. Using an ACO approach, a subset from the

set of potential relay locations are chosen in an ordered list such that the following

design goals are achieved:

• Every sensor is covered by at least one relay in the list,

• The number of relays are optimized,

• The total traveling distance, when the relays are visited in that order, is min-

imized.
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3.3.2. ACO Approach for Jointly Solving Relay Placement and

Trajectory Calculation

The proposed ACO meta-heuristic for jointly solving the relay placement and tra-

jectory problem is presented in this section. Since the joint problem of relay node

placement and trajectory calculation has much in common with the TSP problem,

the proposed ACO approach follows the framework for solving the TSP, as pre-

sented in [75, 26]. Each iteration of the proposed approach consists of two steps,

the solution construction, and the pheromone updating step. The following tasks

are carried out during each iteration:

• Solution Construction:

a pre-specified number of ants are employed to construct tentative solutions.

Problem specific heuristic information and the existing pheromone trace is

consulted during the construction of a solution by each ant. The solution

constructed by each ant is refined by a local search procedure, then stored in

the memory.

• Pheromone Updating:

the pheromone trail values are updated based on the solutions generated in the

exploration phase. A stagnation detection method, described in Equation 3.3.8,

is also used to prevent the meta-heuristic from narrowing down to a possibly

local optima. Pheromone trails are reinitialized upon detection of stagnation.

The result of ACO approach is a trajectory for the MDC expressed as a list of points.

Such a trajectory found from the example scenario is illustrated in Figure 3.6. The

potential relay locations chosen are r1, r2, r5, and r4 , and they are intended to

be visited by the MDC in that order. Labels of sensors are omitted for the sake

of simplicity. Different components of the proposed ACO approach is described in
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detail in the following sub-sections.

Figure 3.6.: Outcome of the proposed ACO approach.

3.3.3. Solution Representation & Cost Metric

A solution instance essentially represents a trajectory for the MDC. For the re-

mainder of this thesis, a solution instance is assumed to be represented as a list of

locations. Each entry in the list is a 2-dimensional point in the Euclidean space. For

each point u in the list, next(u), and previous(u) denotes the points to be visited

after, and before visiting u respectively. Since this is a closed trajectory, if u is the

first entry, then previous(u) refers to the last entry of the list, and if u is the last

entry, then next(u) refers to the first entry of the list.

Since the solution is a list, index(u, S) denotes the index of a particular point u in

a solution instance S. The number of entries in a solution S is denoted by ls. The
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cost of a solution can be measured by two different metrics C1
s , and C2

s as described

next.

The total length of the trajectory suggested by a solution instance is an important

component of the cost. From the WSN perspective, the number of relays used in a

solution instance is also of significant importance, as mentioned in subsection 2.1.4.

The metric C1
s estimates the cost of a solution s taking both of these factors into

account using the formula:

C1
s = ls

∑
u∈s

du,next(u) (3.1)

A simplified metric C2
s estimates the cost as the total trajectory length, ignoring the

contribution of the number of relays used, using the formula:

C2
s =

∑
u∈s

du,next(u) (3.2)

Results of experiments performed with both metrics are presented in the Chapter 4

of this thesis.

3.3.4. Heuristic Information

The heuristic information is a measurement of the attractiveness of a particular

move during the solution construction by an ant. In the context of our problem,

making a move is synonymous to adding a particular location to the solution being

constructed by that ant.

Two factors contribute to the relative attractiveness of a move: distance traveled

to make that move, and the number of uncovered sensors that can be covered by

making this particular move. The attractiveness being inversely proportional to
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the distance traveled to make a move, and directly proportional to the number

of uncovered sensor that can be covered by making that move. A metric for the

heuristic information taking both of the factors into account is calculated using the

formula:

η1
ij = u(j)

dij
(3.3)

where, η1
ij denotes the attractiveness of selecting location j after selecting location i,

and u(j) denotes the number of uncovered sensors that can be covered by including

j.

An alternative metric which takes into account only the distance traveled in making

that move is calculated using the formula:

η2
ij = 1

dij
(3.4)

Where η2
ij is the attractiveness of selecting the jth location after selecting the ith

location without considering the contribution of the number of uncovered sensors

covered by making that move. Results of experiments preformed using the two

different heuristic information are presented in Chapter 4.

3.3.5. Pheromone representation and Initialization

Pheromone is represented by an N ×N matrix τ . Each entry τij in the pheromone

matrix denotes the intensity of pheromone trace from the ith location to the jth loca-

tion. Adapting the framework presented for solving the TSP [26, 75], the pheromone

matrix is initialized with τ0 = 1
Cg
, where Cg is the cost of an initial greedy solution.

The initial greedy solution is found by calculating a TSP tour using the Nearest-
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Neighbor(NN) heuristic(Algorithm 3.2), of a subset of potential relay locations cal-

culated using a greedy cover algorithm (Algorithm 3.1).

Algorithm 3.1 GreedyCover
Input: R, set of potential relay locations
S, set of sensors

Output: T , a subset of R that covers all sensors in S
1: T ← ∅
2: while S 6= ∅ do
3: r ←the relay in R that covers the most number of sensors in S
4: T ← T ∪ r
5: R ← R− r
6: remove the sensors covered by r from S
7: removes the relays in R which do not cover any sensor in S

Algorithm 3.2 NN-TSP
Input: T , a set of locations
Output: P , a trajectory expressed as a list locations
1: P ← ∅
2: r ←first element in T
3: add(P , r)
4: T ← T − r
5: while T 6= ∅ do
6: s←the nearest potential relay location from r which belongs to T
7: r ← s
8: add(P , r)
9: T ← T − r

3.3.6. Solution Construction

Each individual ant employed during an iteration incrementally constructs a ten-

tative solution. When the number of ants is the same as the number of potential

relay locations, one ant starts from each location. In case the number of ants is less

than the number of potential relay locations, a sub-set of locations are chosen using

uniform random sampling, without replacement; an ant starts from each location in

this sub-set[26]. This location is called the starting-location of an ant.
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Each ant maintains two sets of potential relay locations:

• Set of visited-locations, U :

The set of potential relay locations that have been included in the solution

constructed by this ant; initialized as a set containing only the starting-location

of the ant.

• Set of unvisited-locations, V:

The set of potential relay locations not yet included in the solution constructed

by this ant; initialized to contain all the potential relay locations except the

starting-location of the ant.

It has been shown that maintaining a list of nearby location can speed up the solution

construction process [26, 22]. A dynamic list called the candidate-list is maintained

for each location. The candidate list of the ith potential relay location, denoted by

N (i), holds the most attractive potential relay locations in U reachable from the ith

location, sorted in descending order of attractiveness. The size of the candidate-list

can be a constant (i.e., 2, 4, 10 etc.) or relative to the number of locations (i.e.,

N/4).

The current-location of an ant refers to the most recent potential relay location

included in the solution being constructed by that ant. In the beginning of solution

construction by an ant, its starting-location is included in the solution, and is set

as its current-location. The incremental construction of a tentative solution now

begins. The following actions are repeated until the tentative solution is considered

completed:

An ant located at the ith location probabilistically selects the next location to add
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to the solution using the formula which was introduced earlier in section 2.6:

Pij = [ηij]α × [τij]β∑
j∈N(i)[ηij]α × [τij]β

(3.5)

where α,β are algorithmic parameters and N(i) is candidate list of i.

Upon selection of the next location j, the following actions are performed:

• j is added to the solution,

• j is added to V,

• j is removed from U ,

• j is set as the current-location of the ant,

• redundant locations in U are removed,

• candidate lists are updated.

When a decision is made to place a relay at a potential relay location, it is possible

that some of the remaining potential relay locations will be redundant. If all sensors

covered by a relay placed at a potential relay location l is already covered by the

locations already included in the solution, then l can be removed from the set of

potential relay locations to be considered in constructing the solution. Following

this rationale, all such redundant locations in U are removed.

The removal of the jth potential relay location from U makes it unreachable from the

remaining members of U . As a result, the candidate lists of the remaining members

of U needs updating. In addition to that, the locations which became redundant

due to the inclusion of j in the tentative solution should also be removed from the

candidate list of any member of U .

The solution construction by an ant is considered completed when all the sensors are

covered by at least one potential relay location in V . All the solutions constructed
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during an iteration is stored in the memory and is used during the pheromone update

phase. The solution construction procedure is presented in Algorithm 3.3.

Algorithm 3.3 SolutionConstruction
Input: t, starting location of the ant

τ , pheromone matrix
R, set of potential relay locations

Output: S, a solution instance
1: U ← {t}
2: V ← R− {t}
3: c← t
4: S ← ∅
5: for all u ∈ U do
6: initilize candidate list N (i)
7: while S is not a complete solution do
8: select j using the probability rule in Equation 3.5
9: add(S, j)
10: V ← V ∪ {j}
11: U ← U − {j}
12: c← j
13: remove redundant locations from U
14: for all u ∈ U do
15: update the candidate list N (u)

3.3.7. Local search

A local search procedure is applied to further optimize the solution constructed by

each ant. Referring back to subsection 2.6.4, several local search procedures are

found in the literature, of which 2-opt is commonly known.

Given a tour as a sequence of nodes, the 2-opt operation performs the following

tasks:

• selects a pair of edges (u1,u2) and (v1, v2), appearing in this order,

• replaces them by a new pair of edges (u1,v1), (u2, v2),

• reverses the direction of edges appearing between v1and u2.
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This results in a new tour with possibly different tour cost. The 2-opt local search

is elaborated with an example in Figure 3.7. In the given scenario a possible tour

acbdef can be improved by switching the edge (a, c) with (b, d). The resulting tour

abcdef has shorter length than the previous one.

Figure 3.7.: 2-opt local search.

For each solution generated during the solution construction phase, the 2-opt op-

eration leading to maximum cost reduction is determined and performed. This is

similar to a steepest descent search[90].

At the end of the iterative part, once the stopping criteria has been satisfied, the

global-best solution is refined by performing a sequence of 2-opt operations leading

to highest cost reduction until no more 2-opt operations can be performed. This

greedy optimization has been observed to considerably improve the quality of the

result.

3.3.8. Components of the MMAS

Among several variations of ACO, experiments were performed with the Ant Sys-

tem(AS), the Elitist Ant System(EAS) and, the Max Min Ant System(MMAS). The

experimental results are presented in Chapter 4. The basic structure of ACO is fol-

lowed in all three above mentioned variations. The modifications specific to the EAS
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has been described earlier in Chapter 2. Only the MMAS specific modifications are

described here. The Algorithm 3.4 shows the basic structure of the MMAS. Com-

pared to AS, or EAS, the modifications in MMAS can be seen in: pheromone update,

enforcing pheromone limits, stagnation detection and pheromone reinitialization.

Algorithm 3.4 ACO-meta-heursitic
1: initialize algorithmic parameters
2: initialize pheromone values
3: while stopping criteria is not satisfied do
4: construct solutions
5: update pheromone values
6: if stagnation is detected then
7: reinitialize pheromone values

Pheromone Update

Pheromone update comprises of the following two steps:

Step-1: The first step is referred to as the pheromone evaporation step(subsection 2.6.5).

The natural phenomena of pheromone intensity reduction by evaporation is

mimicked in this step. It is performed by reducing the value in each entry of

the pheromone matrix by factor of (1−ρ) where ρ is the evaporation rate. The

following formula is used to perform pheromone evaporation on each entry τij

of the pheromone matrix.

τij = (1− ρ)τij (3.6)

Step-2: In the second step, referred to as the pheromone depositing step(subsection 2.6.5),

pheromone is added to a subset of pheromone trails. A sub-set of solutions

constructed during the previous phase is selected as preferred solutions for

depositing pheromone. For small problem instances (i.e. N ≤ 200) only the
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iteration-best solution is chosen in every iteration and the ant responsible for

generating this solution is eligible for depositing pheromone [26]. For larger

problem instances, the iteration-best and the global-best solution is selected

alternatively, with the global-best solution being selected with increasing prob-

ability. The probability p of the global-best solution being selected is calculated

using:

p = 1
1 + log(k) (3.7)

Here, k denotes the iteration number. According to the principals of MMAS,

only the ant responsible for generating the selected solution is eligible for

depositing pheromone [26, 75]. Let spl be the selected solution, Cpl be the cost

of the tour, and the edge (i, j) denote that j is selected after i in the solution.

Pheromone is deposited using the following formula:

τij=


τij + 1

Cpl
if i→ j ∈ spl

τij otherwise

(3.8)

The pheromone evaporation rate ρ is an important algorithmic parameter. The ex-

tent of exploration performed by the ACO meta-heuristic is controlled by specifying

the value of ρ. For larger values of ρ, the pheromone traces are evaporated quickly,

leading to narrowing down of the search into a promising avenue. This involves the

risk of premature termination of the optimization process. For smaller values of ρ

on the other hand, pheromone traces reduce slowly, allowing the ants to explore

more during each iteration. The search converges slowly, but with more chances of

finding good solutions. Using ρ ∼ 0.02 has been suggested for MMAS [75].
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The selection of solutions for depositing pheromone in one iteration affects the search

procedure by influencing the explorations in subsequent iterations. Therefore, only

relatively good quality solutions should be used for depositing pheromone. Selecting

the global best solution every time causes the search to quickly converge in the

neighborhood of the global best solution. This premature optimization is avoided

by using the solution selection criteria described in Step 2. The rationale behind the

selection criteria is that the search should perform more exploration in the beginning,

and is expected to gradually narrow down to a relatively promising neighborhood

within the search space. By selecting the iteration-best solution in early iteration,

or always in the case of small problem instances, exploration is encouraged. By

updating the pheromone trails based on the global-best solution more often in later

period of the search, the search is guided toward the neighborhood of the best known

solution.

Enforcing Pheromone limits

In the MMAS, pheromone values are regulated to stay within the dynamic interval

[τmin,τmax]. Each time a new global best solution Sbs(with cost Cbs) is found, the

value of τmax and τmin is updated as follows[26]:

τmax = 1
ρCbs

(3.9)

τmin = τmax/a (3.10)

where a ≥ 1.0 is an algorithmic parameter. At the end of each iteration, the entries in

the pheromone matrix are checked and updated to stay within the dynamic allowed
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limits according to the following formula:

τij =



τmin if τij < τmin

τmax if τij > τmax

τij otherwise

(3.11)

Since the pheromone values are gradually built up, and edges with high amount of

pheromone are more likely to be chosen during solution construction, it is possible

that a few edges receiving high amount of pheromone in the beginning of the search

will be repeatedly chosen in all subsequent stages. Having an upper limit τmax of

pheromone values solves this problem. By setting the value of τmax as a function of

the solution cost of the global best solution, it is ensured that the highest preference

that any edge would receive during solution construction by an ant would not exceed

that received by an edge belonging to the global best solution.

The lower limit of pheromone values, τmin helps avoid stagnation. By putting a

lower limit on pheromone values, it is ensured that none of the edges would have

such a small pheromone value that it will be hardly ever considered in solution

construction.

The value of the algorithmic parameter a controls how low the τmin can be compared

to the τmax. For small values of a, the pheromone limits are closer to each other

and, as a result the edges have similar chance of being selected during solution

construction. As the value of a increases, the gap between τmax and τmin also

increases. This leads to a wider variety of chances of different edges being selected

during solution construction.
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Pheromone Initialization and Reinitialization

Pheromone values are initialized with the estimated upper limit τ0 = 1
Csg

where

Csg is the initial greedy solution. The pheromone limits are initialized by setting

τmax = τ0 and τmin = τmax/a. The value of τ0 requires careful consideration because

a value too high would make the search stay in exploratory stage for too long until

the pheromone values are reduced sufficiently due to pheromone evaporation. A very

small value on the other hand, would push the search towards a greedy approach

because edges belonging to the solutions generated in early iterations would receive

considerably more pheromone, and higher chances of being selected during solution

construction in subsequent iterations.

Pheromone values are occasionally reinitialized upon detection of stagnation. Stag-

nation detection is performed at the end of each iteration by calculating the coeffi-

cient of variance(CV)[1] of the average cost of the best solutions found in K most

recent iterations since last reinitialization, and then comparing the value of CV with

a pre-determined threshold. Here, K can be a fixed number (i.e. 100) or provided as

an input to the algorithm. If K iterations have not passed since last reinitialization

of pheromone values, stagnation detection is not performed. CV is calculated by

the following formula:

CV = σ

µ
(3.12)

where, µ is the mean costs of best solutions constructed in K most recent iterations,

and σ is the standard deviation of those costs. CV is a scale free measurement of

the diversity in a set of samples[1]. Its value stays in the interval [0, 1]. In this

context, CV is a measurement of the diversity of the solutions generated in K most

recent iterations. A lower (than the threshold) CV implies that the exploration has
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narrowed down to a point where the ants are repeatedly generating same or similar

solutions. This takes place when there is a significant buildup of pheromone on a

subset of edges and very little pheromone on the rest. This causes that subset of

edges being frequently used by the ants during solution construction. Upon detection

of stagnation, all the entries in the pheromone matrix are set to the current τmax

value. This ensures that all the edges will have equal probability of being selected

in solution construction of subsequent iterations.

3.4. Refining a feasible trajectory

The feasible trajectory calculated during the first phase using the ACO approach

described in section 3.3 is refined in the second phase. The goal here is not to

calculate a new trajectory, but to improve the existing one. In order to do so, the

notion of the download-point is introduced. The download-point of a relay is the

point within its region of influence where the MDC arrives in order to download the

buffered data from that relay. Since a relay’s region of influence is a disk of a given

radius, any point on the periphery or inside the disk can serve as the download-point.

If the MDC is already inside the region of influence of the relay, the buffered data

can be downloaded without moving any closer to the relay. On the other hand, if the

MDC is approaching the relay from outside its region of influence, it is sufficient for

the MDC to reach a point on the periphery of the region of influence of the relay in

order to download the buffered data. In this case, selecting a point on the periphery

of the region of influence reduces the distance traveled by the MDC from its current

location to download buffered data from the relay. This concept is explained with

an illustration in Figure 3.8.

For an MDC located at the point a, which needs to visit the relay rc located at the
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(a) When either point a (or b) is inside the
region of influence.

(b) When both points a and b are outside of
the region of influence.

Figure 3.8.: Selecting a download-point on the periphery results in shorter path
length.

point c, then move on to point b, the path suggested by the feasible trajectory would

be acb. The point c acting as the download-point of the relay located at a potential

relay location rc. However, an optimal point p within the region of influence of the

relay can be found such that the resulting path would have shorter length than acb

and still allow the MDC to visit the relay. The following cases may arise:

Case-1: The point a(b) is within the region of influence of rc.

This case is illustrated in 3.8a. The point a(b) serves as the download-point

in this case. The MDC can download the buffered data from rc when it is at

a(b). The refined path is a straight line from a to b.

Case-2: When both of the points a, and b are outside of the region of

influence of the relay.

This case is illustrated in 3.8b. In this case, a point p within the region of

influence can be found such that apb would have a shorter length than acb.
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The path refining technique explained above improves the a path by reducing the

length; leading to a local optimization of the feasible trajectory.

The proposed solution for refining a given feasible trajectory consists of the following

steps:

Step-1: Preprocessing to find out how far the meeting points can be placed from

their respective potential relay locations.

Step-2: Finding download-points using either the deterministic heuristic presented

in section 3.5 or the ACOR approach presented in section 3.6. The list of

download-points defines the final trajectory of the MDC; it is referred to as

the final-trajectory henceforth.

Step-3: Post-processing to find the actual locations of the relay nodes from the sug-

gested download-points and potential relay locations in the feasible trajectory.

The pre-processing and post-processing steps are described next.

3.4.1. Pre-processing for feasible trajectory Refinement

The goal of the pre-processing step is to find, for each potential relay location, the

upper limit on the distance of the download-point from the location. A vector de-

noted by range holds this value. The value range(i) denotes the maximum allowable

distance of the download point from the ith potential relay location.

As described in section 3.3, some of the locations listed in the given feasible trajec-

tory are class− I locations, while the rest are class− II locations. For all class− I

locations, the corresponding range entry is set to R.

In the case of class − II relays, they serve only one sensor which is also served by

that relay only. However, coverage of that sensor by this relay can be maintained
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by placing the relay anywhere within the periphery of the region of influence. In an

extreme case, the relay could be placed on the periphery of the region of influence

of the sensor and the download point would be on the periphery of the region of

influence of that relay. In such a situation, the MDC would be communicating with

the relay from a point at distance R+ r from the sensor. Therefore, the download-

point for a relay placed at a class− II location can actually be anywhere within a

circle of radius R+ r from the sensor served by this relay. Following this rationale,

the allowed distance of the download point of all class−II locations are set to R+r.

The range values for different locations in the previously calculated feasible trajec-

tory of the example scenario are illustrated in Figure 3.9. Potential relay locations

not included in the feasible trajectory are omitted to avoid cluttering in the diagram.

Figure 3.9.: The example scenario after setting the range entries for the locations
in the feasible trajectory.
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3.4.2. Post-processing for relay placement

The goal of the post-processing step is to calculate the final locations of the relays

using the feasible-trajectory, and the final-trajectory. A relay is placed in each

class − I location of the feasible trajectory. In case of the class − II locations

however, the placement of a relay is determined by the corresponding download-

point in the final-trajectory.

For each class − II location in the feasible trajectory, a relay is placed at the

intersection point of the circle having radius r centered at the relay location and the

line segment connecting the corresponding download-point in the final-trajectory.

This procedure is illustrated in Figure 3.10. In the given example, c is a class-II

potential relay location, the download point for this location is p. A relay node is

placed at t, which is the point of intersection between the circle of radius r, centred

at c and the line segment cp.

Figure 3.10.: Placement of a relay node for a class-II potential relay location.
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3.5. Deterministic Heuristic for Optimizing a Feasible

Trajectory

A deterministic heuristic for refining a given feasible trajectory is presented in this

section. First, a path refinement operation based on the rationale presented in

section 3.4 is defined. This operation is then used to design a deterministic algorithm

for performing the actual task of trajectory refinement.

3.5.1. The Path Refinement Operation

The path refinement technique presented in section 3.4 can be seen as an operation

performed on a given trajectory. Let T be a feasible trajectory and M be the list

of download points of the potential relay locations in T . For a given potential relay

location c in the trajectory T , this operation updates the corresponding download

point m in M such that the length of the resulting trajectory represented by M

is reduced. Let a = prev(c,M) and b = next(c,M). This operation reduces the

length of the path from a, through the region of influence of c, to b. It is achieved

by transferring the previous download-point m of c to a point p on within the region

of influence such that the path apb has shorter length than the path amb.

Based on the relative position of the end points a,b, and c, several cases may arise.

The cases are described along with the chosen download-point in each case:

Case-1: Point a (or b) lies inside the circle centred at c having radius

range(c) :

The point a (or b) is set as the download-point p in this case. Illustrated

in Figure 3.11.

Case-2: Perpendicular projection of the point c lies inside the line-
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segment ab :

Let p′ be the projection of the point c on the line-segment ab. Illustrated

in Figure 3.12. Then, the following two sub cases may arise:

Case-2a: The point p′ is inside the circle centred at c having

radius range(c) :

The projection point p′ is set as the download-point p.

Case-2b: The point p′ is outside the circle centred at c having

radius range(c) :

The intersection point between the angle-bisector of ∠acb

and the circle centred at c, having radius range(c) is set as

the download-point, p.

Case-3: Perpendicular projection of the point c lies outside the line-

segment ab :

This case is illustrated in Figure 3.13. The following two sub cases may

arise:

Case-3a: The point c is closer to point a, than b :

The intersection point of the line segment ac and the periph-

ery of the circle centred at c having radius range(c) is set as

the download-point p.

Case-3b: The point c is closer to point b, than a :

The intersection point of the line segment bc and the periph-

ery of the circle centred at c having radius range(c) is set as

the download-point p.
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Figure 3.11.: Case-1 of finding download point by deterministic heuristic.

Figure 3.12.: Case-2 of finding download point by deterministic heuristic.

Figure 3.13.: Case-3 of finding download point by deterministic heuristic.
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3.5.2. A Deterministic Algorithm for Optimizing a Feasible

Trajectory

An algorithm for optimizing a feasible trajectory by representative application of

the path refinement operation is presented in Algorithm Algorithm 3.5. Taking a

trajectory T , the vector range, and a real number threshold, the algorithm delivers

M , an improved version of the input trajectory T .

Algorithm 3.5 DeterministicTrajectoryOptimization
Input: T

range
threshold

Output: M = an optimized trajectory expressed as a list of points
1: M ←copy of T
2: Cprevious ←∞
3: Ccurrent ← cost(T )
4: ∆cost ←∞
5: c←the first entry in T
6: while ∆cost > threshold do
7: a← index(previous(c),M)
8: b← index(next(c),M)
9: M(c)←PathRefinement(M(a),M(b),c,range(c))
10: c← next(c)
11: Ccurrent ← cost(M)
12: ∆cost ← ccurrent − cprevious
13: cprevios ← ccurrent

The sub-procedure PathRefinement performs according to the steps described in

subsection 3.5.1.

The algorithm starts by making an exact copy M of the input trajectory T . This

is illustrated in Figure 3.14. The points r1, r2, r4 and r5 denote potential relay

locations that were selected in the first phase. The points p1, p2, p4 and p5 are the

download-points being calculated. At this stage, the feasible trajectory T and M

are the same.
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Figure 3.14.: Initializing M as a copy of T in Algorithm Algorithm 3.5.

A few variables are initialized to keep track of the current cost and previous cost

of the trajectory and the cost difference. The first entry in T is set to the current

location c. After that, the following actions are performed repeatedly until the cost

difference becomes smaller than threshold.

Let a(b) the index of the preceding(succeeding) entry of c in T . The pathM(a)−c−

M(b) is refined using the path refinement operation presented in subsection 3.5.1.

Then, c is set to the next entry in T and the costs are updated.

The step by step execution of this procedure on the example scenario is shown in

Figure 3.15 through Figure 3.18, with the final result shown in Figure 3.18.
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Figure 3.15.: Refining of the path p4 − r1 − p2, p1is the new download-point.

Figure 3.16.: Refining of the path p1 − r2 − p5, p2is the new download-point.
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Figure 3.17.: Refining of the path p2 − r5 − p4, p5is the new download-point.

Figure 3.18.: Refining of the path p2 − r5 − p4, p4is the new download-point.
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3.6. ACOR Approach for Optimizing the Feasible

Trajectory

A Continuous Ant Colony Optimization (ACOR) approach for refining a feasible

trajectory is presented in this section. Given a feasible trajectory T , the goal of the

proposed optimization approach is to find an improved trajectory M , consisting of

the download points of the potential relay locations in T . It is assumed that the

download point of a given location lies on the periphery of the region of influence.

Such a download point can be expressed by the angle with respect to an arbitrary

axis, as illustrated in Figure 3.19. For a potential relay location c, the download

point p at a distance r can be specified by the angle a. This angle is called the hitting

angle; generally the hitting angle lies inside the interval [−π, π). This concept is

adapted from [88].

Figure 3.19.: Hitting angle.

For two given relay locations a and b in T , such that ca = prev(cb, T ) (in other

words, cb is visited right after ca), let A and B denote two circles representing their

respective areas of influence. For the circles A and B centred at points ca, cb and

having radius ra, rb respectively, all possible download points in B, when visited

after A, can be represented as a result of the intersection between the periphery of

B and the lines passing through the points in A. This is illustrated in Figure 3.20.
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Figure 3.20.: Distribution of hitting angle.

Let dab denote the distance between a and b. By choosing the line segment connect-

ing a and b as the axis for expressing the hitting angle, the distribution of the hitting

angles can be bounded within the interval [−π
2 + αb,

π
2 − αb] where αb is measured

by:

αb = arcsin

(
|ra − rb|
dab

)
(3.13)

Following this rationale, the line segment connecting a with b is chosen as the axis

from which the hitting angle is measured. The angle between this line segment and

the X-axis is called the offset angle, denoted by ωb, of the potential relay location b.

This is illustrated in Figure 3.21. The coordinates of the corresponding download

point pb can be found by the formula:

px = bx + range(b)× cos(ωb + θb) (3.14)

py = by + range(b)× sin(ωb + θb) (3.15)
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where, px (py) denotes the X(Y ) coordinate of the point p, and bx (by) denotes the

X(Y ) coordinate of the point b.

Figure 3.21.: Offset angle.

Since the order of visiting the potential relay locations is already defined by the

feasible trajectory, it is sufficient to calculate the hitting angles of each of the lo-

cations in the feasible trajectory, such that the cost of the resulting trajectory is

optimized. Since the hitting angles are real numbers, the problem boils down to

finding N real numbers, each denoting the hitting angle for a location in the feasible

trajectory. This multivalued real optimization problem is solved by the proposed

ACOR approach. A solution instance S is thus expressed by a vector containing N

real numbers (Table 3.1), the value S(i) denotes θi, the hitting angle of the potential

relay location i in T .

1 2 3 · · · N
S θ1 θ2 θ3 · · · θN

Table 3.1.: A solution instance of the proposed ACOR heuristic.

In order to estimate the cost of such a solution instance, it is converted to a trajec-

tory, expressed as a list of points in the euclidean space, using the Algorithm 3.6.
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3.6 ACOR Approach for Optimizing the Feasible Trajectory

Here M is the output produced by Algorithm 3.6.

Algorithm 3.6 TrajectoryFromHittingAngles.
Input: T , feasible trajectory

S, a vector holding the angles θ1, θ2, ... ,θN
ω1, ω2, ... ,ωN , the offset angles

Output: M , a refined trajectory
1: M ← T
2: for all r ∈ T do
3: θr ← S(r)
4: x← rx + range(r)× cos(θr + ωr)
5: y ← ry + range(r)× sin(θr + ωr)
6: t← Point(x, y)
7: M(r)← t

3.6.1. Proposed ACOR heuristic

The proposed ACOR heuristic utilizes the concept of hitting angles to refine a given

feasible trajectory. The algorithm begins with initializing the pheromone table.

After initializing the pheromone table, the iterative part of the algorithm begins.

The following actions are performed during each iteration until a stopping criteria

is satisfied:

• Solution Construction:

A number of ants are employed to build tentative solutions by consulting the

existing entries in a pheromone table. Here, m denotes the number of ants

employed, and is an algorithmic parameter provided as an input.

• Pheromone Update:

The pheromone table is updated by replacing poor quality solutions in the

table with better solutions constructed by the ants in this iteration.

The different components of the proposes ACOR heuristic is described in the re-

mainder of this section.
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Pheromone Representation and Initialization

As described in section 2.7, the pheromone in ACOR is represented by a pheromone

table consisting of a number of entries; each entry denotes a solution instance

(Table 2.2). Here, k is an algorithmic parameter provided as an input, and repre-

sents the total number of entries in the pheromone table. Results of experimenting

with different values of k is presented in Chapter 4. The jth column in the table

correspond to the jth potential relay location in the feasible trajectory and holds

the value of θj for a particular solution instance.

To begin with, the pheromone table is initialized by inserting a greedy solution Sg

containing θj = 0, for each potential relay location j in T . This solution results in

a trajectory, where the download point for each potential relay location in T is the

point where the line segment connecting this location with its predecessor intersects

with the periphery of the region of influence of the relay. The trajectory resulting

from this initial greedy solution for the example scenario is illustrated in Figure 3.22.

Figure 3.22.: Trajectory resulting from initial greedy solution of ACOR.

Following the initialization of the pheromone table, solution construction and pheromone

76



3.6 ACOR Approach for Optimizing the Feasible Trajectory

update is performed iteratively, until a stopping criteria is met. Solution construc-

tions and pheromone updating have been described earlier in section 2.7. Occa-

sionally the pheromone values are reinitialized upon detection of stagnation. These

components of the algorithm are described next. The entire algorithm is summarized

in Algorithm 3.7.

Algorithm 3.7 ACORForRefiningFeasibleTrajectory
Input: T , feasible trajectory

I, number of iterations
t, threshold

Output: s, an ACOR solution instance
1: Sg ← ∅
2: for all r ∈ T do
3: Sg(r)← 0
4: Cg ← cost(Sg)
5: T ← ∅
6: insert(T ,Sg)
7: i← 1
8: CV ← 1
9: while i 6= Ior CV > t do
10: G← ∅
11: W ← ∅
12: for all m ∈ [1,m] do
13: S ← ∅
14: for all j ∈ T do
15: S(j)←sample(T , j)
16: G(m)← S
17: W (m)← cost(S)
18: for all s ∈ W do
19: insert(T ,s)
20: sort(T )
21: for all p ∈ [k + 1, k +m] do
22: remove(T (p))
23: CV ← sd(W )

mean(W )
24: i← i+ 1
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Stagnation Detection and Pheromone Reinitialization

Stagnation detection is performed during the step by step construction of a solution.

Using the procedure described in section 2.7, the jth step of the solution construc-

tion consists of taking a random sample, based on the values in the jth column

of the pheromone table. The stagnation detection is performed by comparing the

coefficient of variation (CV) of the values in the jth column with a threshold. Since

the CV in any sample set provides a scale-free measure of the variability of the

samples[1], a lower than threshold value of CV in this case indicates that all the

random samples for hitting angles are being drawn from a relatively narrow range.

This phenomena is interpreted as an indication of stagnation. Upon detecting stag-

nation, the stagnant column of the pheromone table is reinitialized by setting all

the entries in that column to 0.

Pheromone Update and Stopping Criteria

The cost of the solutions constructed during an iteration is calculated at the end of an

iteration. These k new solutions are inserted into the pheromone table; the table now

contains k+m solution. These are sorted by their corresponding weights, calculated

using Equation 2.11. The best k solution are kept and the rest are discarded.

The stopping criteria is adapted from [26]. The CV of the costs of the solutions

constructed during an iteration is calculated for detecting convergence of the search

procedure. When the costs of different solutions constructed by the ants during an

iteration fall within a narrow range, that phenomena is interpreted as convergence

of the search procedure. The CV of cost values is compared with a previously

determined threshold value. The searching is stopped when the CV is lower than

the threshold or a certain number of iterations have been performed, whichever

occurs first.
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The results of the experiments performed using the proposed approach to jointly

solving the Relay Node Placement and Trajectory calculation (RNPT) problem are

presented in this chapter. Three variations of ACO i.e., the Ant System(AS), the

Elitist Ant System(EAS), and the Max Min Ant System(MMAS) were discussed

in Chapter 2. A comparative study was carried out in order to find out the most

suitable approach for solving our problem. The most suitable approach based on

the initial experimental results, was chosen for further experimentation. The effect

of varying different algorithmic parameters and the choice of different algorithmic

components were studied next. In the last section, a comparison between the de-

terministic approach, and the ACOR based approach for trajectory refinement is

presented. The following performance metrics, which are relevant for a particular

experiment, were used to compare the outputs of the experiments performed:

• Feasible trajectory length

• Refined trajectory length

• Number of relays used

• Time per iteration

For our simulations, we focused on two network sizes n = 25, and n = 50, where n

denotes the number of sensors, in sensing fields of dimension 150×150 and 200×200
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respectively. For each network size, 10 different sensor distributions were randomly

generated. For the networks with n = 25, 500 iterations were performed during each

run, while 1000 were performed for networks with n = 50. The results of the initial

greedy approach on the test networks are listed in Table A.1, and Table A.2.

Two different cost metrics were discussed in section 3.3:

• The metric C1
s = ls

∑
u∈s du,next(u) estimates the cost of a solution s as a product

of the number of relays used and the trajectory length.

• The metric C2
s = ∑

u∈s du,next(u) estimates the cost as the total trajectory

length, ignoring the contribution of the number of relays used.

For each set of network parameters, experiments were performed using different

variants of ACO approaches using either of the two cost metrics. The experiments

and their results are presented next.

4.1. Experiments on ACO Variants Using C1

The three ACO variants were compared by running a series of experiments. The

three main algorithmic parameters α, β, and ρ were set to suggested standard values,

listed in Table 4.1, for solving the TSP problem[26].

ACO Approach α β ρ

AS 1.0 2.0 0.50
EAS 1.0 2.0 0.50
MMAS 1.0 2.0 0.02

Table 4.1.: Suggested[26] algorithmic parameters for solving TSP.

The cost metric C1 was used during these experiments. The detailed results are listed

in Table A.3, Table A.4 and are illustrated in Figure 4.1, and Figure 4.2 respectively.

The presented values are the averages of 5 runs on each network.
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Figure 4.1.: Results of applying different ACO approaches on networks with 25
sensors.
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Figure 4.2.: Results of applying different ACO approaches on networks with 50
sensors.

None of the three ACO approaches performed consistently better than the others

for the networks with n = 25. For the networks with n = 50 however, AS performed
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the worst, and MMAS performed the best for most cases. The results of EAS was

found to be comparable to that of MMAS, although a little inferior.

However, it was noted during this experiment that the running time for MMAS is

longer, compared to that of EAS for the same input. In order to gain a comparative

understanding of the running times of the two approaches, the average running times

per iteration for each network was measured. The results are presented in Figure 4.3.

The average running time per iteration for EAS was shorter than that of MMAS

for all the networks except one. The difference in running time per iteration was

significantly larger for networks with n = 50, when compared to that of the ones

with n = 25. Due to the inferior performance, AS was not considered for the next

set of experiments.
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Figure 4.3.: Comparison of time per iteration for EAS, and MMAS for different
networks.
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(a) EAS, on 10 networks with 50 sensors each.
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(b) MMAS, on 10 networks with 50 sensors
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Figure 4.4.: Trajectory length, and # relays used VS. # of ants employed.

4.1.1. Number of Ants Employed

The running time increases with m the number of ants employed in each iteration.

In the case of TSP, using the same number of ants as the number of cities has

been suggested[26]. For our problem however, setting m = N , where N denotes

the number of potential relay locations, results in prohibitively large running time.

In order to gain an understanding of the affect of varying m on the quality of

the solution quality, experiments were performed by running the EAS, and MMAS

approach on the test networks with n = 50, by varying the value of m within

the set {N, N2 ,
N
4 ,

N
8 ,

N
16 ,

N
32 ,

N
64}. The results are shown in Figure 4.4. To measure

the degree of interdependence between the two main performance metrics and m,

the Pearson’s correlation coefficients[67] were calculated. The results are shown in

Table 4.2. Stronger negative correlation in the case of EAS shows that the result

improves as m increases. In the case of MMAS on the other hand, the value of

m has less measurable influence on the result. It is also evident from the plot in
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Figure 4.4 that, the result of MMAS varies very little with m.

Performance metric EAS MMAS
cor(# relays, m) -0.274 -0.155
cor(Trajectory length, m) -0.183 -0.095

Table 4.2.: Correlation between m and performance metrics when cost metric C1

is used.

4.2. Experiments on ACO Variants Using C2

Only the length of the trajectory is considered in the cost metrics C2. This metric

was suggested for solving TSP[26]. The same set of experiments as the ones pre-

sented in the previous section were performed on the three ACO variants using cost

metric C2. The detailed results are listed in Table A.5, Table A.6 and presented

in Figure 4.5, Figure 4.6, and Figure 4.7. In case of using C2 as the cost metric,

EAS was found to perform better than AS and MMAS both in terms of trajectory

length, and number of potential relay locations. AS was again found to perform the

worst for all the networks. Due to this inferior performance, AS was not considered

for any further experimentations. When the results of EAS, and MMAS were com-

pared by varying m, MMAS was found to consistently produce good results while

EAS produced result that varied with m. The Pearson’s correlations between the

two main performance metrics and m are shown in Table 4.2. Stronger negative

correlation in the case of EAS shows that the result improves as m increases. In the

case of MMAS on the other hand, the value of m has less measurable influence on

the result.
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Figure 4.5.: Results of applying different ACO approaches on networks with 25
sensors, using cost metric C2
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Figure 4.6.: Results of applying different ACO approaches on networks with 50
sensors, using cost metric C2
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(a) EAS, on 10 networks with 50 sensors each.
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Figure 4.7.: Trajectory length, and # relays used VS. # of ants employed, using
cost metric C2

Performance metric EAS MMAS
cor(# relays, m) -0.159 -0.074
cor(Trajectory length, m) -0.204 -0.092

Table 4.3.: Correlation between m and performance metrics when cost metric C2

is used.

4.3. Comparison of EAS, MMAS Using C1, and C2

Side by side comparison of the results produced by the greedy algorithm(section 3.3),

EAS, and MMAS using different cost metrics for networks with n = 25, and n = 50

are presented in Figure 4.8, and Figure 4.9 respectively. For most networks with n =

25, the ACO approaches perform better than the greedy algorithm in terms of the

number of relays used and trajectory length. MMAS with C1 consistently produced

the best results in terms of the number of relays. But none of the combinations of

ACO algorithm and cost metric produced consistently better result than the others

in terms of the trajectory length. For networks with n = 50, the ACO approaches
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Figure 4.8.: Results of EAS, and MMAS using different cost metrics, on networks
with n = 25.

perform better than the greedy algorithm in terms of trajectory length. But for

most of the networks, the greedy algorithm performs best in terms of the number

of realys used. EAS with C2 consistently produced the best results among ACO

approaches in terms of trajectory length. In most cases MMAS with C1 produced

the best results among the ACO approaches in terms of the number of relays used

but, the results of EAS with C1, and C2 were comparable.

It was concluded based on these observations that, MMAS performs the best among

the ACO approaches, but these results are produced at the cost of longer running

time. However, EAS provides a balance between running time and solution quality.

MMAS with cost metric C1 was identified as the most suitable ACO approach for

jointly solving the RNP and calculation of a trajectory. This combination is used

in subsequent experiments. However, EAS with cost metric C2 is recommended

if higher priority is given to the trajectory length, or the constraints are somewhat

relaxed to allow more than the minimum number of relays to find a shorter trajectory

87



Chapter 4 Experimental Results

50_0 50_1 50_2 50_3 50_4 50_5 50_6 50_7 50_8 50_9
test cases

600

700

800

900

1000

1100

1200

1300

1400

1500

tr
aj

ec
to

ry
 le

ng
th

Length of trajectories calculated by different ACO approaches

Greedy
EAS-C1
MMAS-C1
EAS-C2
MMAS-C2

50_0 50_1 50_2 50_3 50_4 50_5 50_6 50_7 50_8 50_9
test cases

0

10

20

30

40

50

#
 re

la
ys

# relays used in the solutions calculated by different ACO approaches

Figure 4.9.: Results of EAS, and MMAS using different cost metrics, on networks
with n = 50.

length.

4.4. Heuristic information

The heuristic information is a measure of attractiveness of a move during the con-

struction of a solution. Two different versions of heuristic information were men-

tioned in section 3.3:

• η1
ij = u(j)

dij
, takes into account the distance between the ith and jth potential

relay node location and the number of uncovered sensors that can be covered

by selecting the jth potential relay node location.

• η2
ij = 1

dij
, takes into account only the distance between the ith and jth potential

relay node location.

The two versions of the heuristic information were compared by running the MMAS

using C1on all the test networks twice; using a different heuristic information each
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time. The results are shown in Figure 4.10, and Figure 4.11. The results were

comparable for networks with n = 25. But for networks with n = 50, the trajectory

lengths were significantly shorter when η2 was used while the number of relays used

stayed comparable. Based on this observation, it was concluded that η2 was better

suited than η1 for solving the RNPT problem.

25_0 25_1 25_2 25_3 25_4 25_5 25_6 25_7 25_8 25_9
test cases

0

100

200

300

400

500

600

700

tr
aj

ec
to

ry
 le

ng
th

Length of trajectories calculated by using different huristic informations

25_0 25_1 25_2 25_3 25_4 25_5 25_6 25_7 25_8 25_9
test cases

0

5

10

15

20

25

30

#
 re

la
ys

# relays used in the solutions calculated by using different huristic informations

MMAS-C1-e1
MMAS-C1-e2

Figure 4.10.: Comparison of different heuristic informations on networks with n =
25.
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Figure 4.11.: Comparison of different heuristic informations on networks with n =
50.

4.5. Strategies for Calculating Potential Relay Node

Locations

Three different strategies for calculating potential relay node locations were men-

tioned in section 3.3. These strategies differ from each other in the handling of

disconnected sensors, or sensors whose regions of influence do not overlap with that

of any other sensor. The three proposes strategies were:

• selecting the location of the sensor as the potential relay location;

• selecting 4 points on the boundary of the sensor’s region of influence, evenly

spaced from each other;

• selecting 8 points on the boundary of the sensor’s region of influence, evenly

spaced from each other.
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For sensors whose regions of influence overlap, the potential relay locations are al-

ways the intersection points of the boundaries of their respective regions of influence.

Experiments were performed to find out the efficacy of the three strategies; using

MMAS with cost metric C1. The results are listed inTable A.7, and Table A.8. The

result of first, and second phase of the proposed approach (section 3.3, section 3.4)

are listed as feasible trajectory and refined trajectory respectively. The results are

also shown in Figure 4.12, and Figure 4.13. For networks with n = 25, the short-

est feasible trajectories were produced when the 8-point strategy is used, but the

refined trajectories produced from different potential relay location strategies were

comparable. All strategies produced same number of relays for all the networks

with n = 25. The average time per iteration was the shortest when the centre point

strategy was used, and longest average time per iteration resulted from the 8-point

strategy. For networks with n = 50, the average feasible trajectory lengths were

comparable, but the refined trajectory lengths were significantly reduced when the

8-point strategy was used. The average number of relays used were the lowest when

the 8-point strategy is used, with next to best was found when the centre point

strategy was used. The average running time per iteration was the shortest in case

of the centre point strategy, and the longest in case of the 8-points strategy. Based

on these results, it was concluded that the 8-points strategy produces the best re-

sults while the centre point strategy provides a balance between result quality and

running time.
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Figure 4.12.: Comparison different strategies for calculating potential relay loca-
tions on networks with n = 25.
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Figure 4.13.: Comparison different strategies for calculating potential relay loca-
tions on networks with n = 50.
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4.6 Size of Candidate List

4.6. Size of Candidate List

During the construction of a tentative solution, each ant maintains a list of most

attractive unvisited potential relay locations. This list is called the candidate list

[26, 22]. The size of the candidate list is denoted by L. Experiments were performed

by varying the value of L To find out the effect of candidate list size on the output.

The value of L was varied within the set {N, N2 ,
N
4 ,

N
8 ,

N
16 ,

N
32 ,

N
64}. The trajectory

length, number of relays used and average running time per iteration are shown

as semi-log plots in Figure 4.14. For all networks, the average running time per

iteration increased logarithmically with respect to L. For networks with n = 25, an

optimum value of the trajectory length, and the number of relays used was found for

L ≥ N
4 . In case of networks with n = 50, a similar phenomena was also observed,

with some fluctuations.
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Figure 4.14.: Effect of the candidate list size on the output.
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Figure 4.15.: Comparison of trajectory refinement algorithms.

4.7. Comparison of Trajectory Refinement Algorithms

The two trajectory refinement approaches presented in Chapter 3 were compared by

calculating the length difference between the feasible trajectory produced in Phase-1,

and the refined trajectory produced in Phase-2. The reduction of length was ex-

pressed as a percentage of the feasible trajectory. The results are listed in Table A.9,

Table A.10 and illustrated in Figure 4.15. The deterministic algorithm performed

better than the ACOR algorithm for all the networks.
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5. Conclusion & Future Work

5.1. Conclusion

In this thesis, a new Ant Colony Optimization (ACO) approach for solving the joint

problem of Relay Node Placement and Trajectory calculation (RNPT) has been

proposed. This is the first ACO based approach for solving the RNPT problem, to

the best of the author’s knowledge. Given the locations of the sensor nodes in a

sensing field, the proposed approach calculates a set of locations for placing relay

nodes, and an optimized trajectory for the MDC for visiting the said relay nodes

such that:

1. each sensor is covered by at least one relay;

2. the number of relays is minimized;

3. the length of the trajectory is minimized.

Several ACO variants were compared to find out the best suited one for our problem.

The results were also compared with that produced by the greedy approach. Results

produced by the MMAS and EAS were comparable to that produced by the greedy

approach. In terms of the number of relays used and the length of the resulting

trajectory, MMAS was found to produce the best results while EAS was found to

produce good results within a shorter running time. However, if the priority of
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minimizing the number of relays can be relaxed, then using EAS is recommended

because of shorter running time without compromising the solution quality.

Experiments were performed to compare two different cost metrics, and two dif-

ferent heuristic information for the proposed ACO approach. Using a cost metric

specialized for the RNPT problem along with the heuristic information proposed for

solving TSP by other researchers produced the best results.

A deterministic, and a Continuous Ant Colony Optimization (ACOR) approach for

further refining the trajectory produced by the ACO approach have been proposed in

this thesis. These trajectory refinement approaches are in fact, algorithms for solving

the TSPN problem in non-sparse neighborhoods. The deterministic approach was

found to perform better than the ACOR approach, but the results were comparable.

5.2. Future Work

The work presented in this thesis can be extended in the following ways:

• Designing an appropriate heuristic information for the ACO approach: The

effect of using a specialized cost metric was well observed in the reported

experiments. There is potential for further improvement if an appropriate

heuristic information is used.

• Designing an appropriate local search for the ACO approach: Experiments

were conducted using a local search technique[26] suggested for the TSP prob-

lem. Using a customized local search for the RNPT problem is likely to improve

the performence.

• Incorporating realistic sensing field: The sensing field has been assumed to

be flat and devoid of obstacles. In real world application, the sensing field is
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5.2 Future Work

often irregular and obstacles are common. Therefore, modifying the proposed

approach to address the presence of obstacles in an irregular sensing field is of

practical interest.

• Modifying the proposed ACOR approach for trajectory refinement: The per-

formance of the proposed ACOR approach for trajectory refinement was com-

parable to that of the deterministic algorithm. Further research can be carried

out to modify the ACOR approach to improve its performance.
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A. Appendix

Network # relays Trajectory length

25_0 628.702 17

25_1 744.261 15

25_2 731.606 18

25_3 723.528 18

25_4 510.774 14

25_5 586.061 16

25_6 647.145 18

25_7 552.734 17

25_8 604.636 15

25_9 673.611 18

Table A.1.: Greedy solutions for the networks with n = 25.

Network # relays Trajectory length

50_0 1025.017 28

50_1 998.617 30

50_2 1076.676 30

50_3 1018.752 32

50_4 1122.001 31

50_5 845.705 29

50_6 1062.896 28

50_7 1173.050 30

50_8 1099.817 31

50_9 1129.523 30

Table A.2.: Greedy solutions for the networks with n = 50.
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Appendix

Network Performance metric
ACO Approach

AS EAS MMAS

25_0
Feasible trajectory(CV) 595.389(0.022) 580.763(0.005) 577.739(0.006)

# Relays(CV) 17.0(0.0) 17.0(0.0) 17.0(0.0)

25_1
Feasible trajectory(CV) 645.331(0.011) 642.719(0.01) 638.16(0.003)

# Relays(CV) 15.0(0.0) 15.0(0.0) 15.0(0.0)

25_2
Feasible trajectory(CV) 643.165(0.034) 640.781(0.019) 626.054(0.0)

# Relays(CV) 18.0(0.0) 18.0(0.0) 18.0(0.0)

25_3
Feasible trajectory(CV) 622.702(0.006) 637.55(0.019) 619.059(0.0)

# Relays(CV) 18.0(0.0) 18.0(0.0) 18.0(0.0)

25_4
Feasible trajectory(CV) 514.406(0.006) 510.142(0.035) 514.848(0.004)

# Relays(CV) 14.0(0.0) 14.2(0.031) 14.0(0.0)

25_5
Feasible trajectory(CV) 557.991(0.003) 526.307(0.007) 558.63(0.003)

# Relays(CV) 16.0(0.0) 17.0(0.0) 16.0(0.0)

25_6
Feasible trajectory(CV) 597.898(0.006) 559.84(0.023) 593.953(0.0)

# Relays(CV) 18.0(0.0) 19.2(0.023) 18.0(0.0)

25_7
Feasible trajectory(CV) 552.323(0.015) 502.54(0.021) 554.955(0.011)

# Relays(CV) 16.0(0.0) 17.8(0.025) 16.0(0.0)

25_8
Feasible trajectory(CV) 542.797(0.004) 544.363(0.003) 541.897(0.002)

# Relays(CV) 15.0(0.0) 15.0(0.0) 15.0(0.0)

25_9
Feasible trajectory(CV) 609.566(0.011) 611.646(0.012) 604.403(0.001)

# Relays(CV) 18.0(0.0) 18.0(0.0) 18.0(0.0)

Table A.3.: Performence of ACO approaches on networks with n = 25, using cost
metric C1.
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Network Performance metric
ACO Approach

AS EAS MMAS

50_0
Feasible trajectory(CV) 934.978(0.023) 910.888(0.026) 893.081(0.018)

# Relays(CV) 31.2(0.027) 29.6(0.045) 29.4(0.019)

50_1
Feasible trajectory(CV) 1008.509(0.022) 1029.638(0.037) 992.222(0.016)

# Relays(CV) 32.4(0.035) 31.8(0.014) 31.2(0.014)

50_2
Feasible trajectory(CV) 1083.943(0.035) 1034.744(0.023) 1010.792(0.019)

# Relays(CV) 32.0(0.0) 31.4(0.017) 30.6(0.018)

50_3
Feasible trajectory(CV) 1022.008(0.04) 1002.547(0.035) 964.868(0.018)

# Relays(CV) 33.2(0.013) 33.0(0.021) 32.2(0.014)

50_4
Feasible trajectory(CV) 1047.533(0.032) 1000.021(0.013) 971.92(0.018)

# Relays(CV) 32.0(0.038) 31.0(0.0) 31.0(0.0)

50_5
Feasible trajectory(CV) 783.39(0.041) 771.813(0.01) 758.426(0.028)

# Relays(CV) 29.6(0.07) 27.6(0.032) 28.2(0.016)

50_6
Feasible trajectory(CV) 984.29(0.057) 956.776(0.033) 961.135(0.014)

# Relays(CV) 30.8(0.053) 30.8(0.042) 30.4(0.029)

50_7
Feasible trajectory(CV) 1065.273(0.013) 1050.847(0.028) 1034.046(0.015)

# Relays(CV) 32.0(0.022) 30.2(0.015) 30.2(0.015)

50_8
Feasible trajectory(CV) 990.465(0.027) 983.255(0.014) 975.777(0.019)

# Relays(CV) 30.2(0.015) 30.0(0.0) 30.8(0.015)

50_9
Feasible trajectory(CV) 1017.706(0.03)) 1023.766(0.026) 986.779(0.006)

# Relays(CV) 30.2(0.015 30.0(0.0) 30.0(0.0)

Table A.4.: Performence of ACO approaches on networks with n = 50, using cost
metric C1.
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Network Performance metric
ACO Approach

AS EAS MMAS

25_0
Feasible trajectory(CV) 610.76(0.021) 576.40(0.007) 574.207(0.002)

# Relays(CV) 17.2(0.026) 17(0.000) 17.6(0.031)

25_1
Feasible trajectory(CV) 652.17(0.010 ) 640.186(0.030) 635.693(0.000)

# Relays(CV) 16.2(0.080) 18(0.000) 16.6(0.033)

25_2
Feasible trajectory(CV) 652.85(0.036) 635.285(0.000) 625.916(0.000)

# Relays(CV) 18.8(0.044) 15(0.000) 18(0.000)

25_3
Feasible trajectory(CV) 651.93(0.028) 619.059(0.000) 619.103(0.000)

# Relays(CV) 18.4(0.030) 18(0.000) 18.2(0.024)

25_4
Feasible trajectory(CV) 517.13(0.002) 510.490(0.001) 512.224(0.001)

# Relays(CV) 16.4(0.054) 14.2(0.0315) 15(0.067)

25_5
Feasible trajectory(CV) 573.400(0.015) 556.914(0.003) 556.904(0.001)

# Relays(CV) 17(0.041) 17(0.000) 17.2(0.049)

25_6
Feasible trajectory(CV) 618.547(0.030) 593.571(0.001) 593.479(0.000)

# Relays(CV) 18.6(0.048) 19.2(0.0233) 19(0.000)

25_7
Feasible trajectory(CV) 555.378(0.011) 542.136(0.001) 542.197(0.001)

# Relays(CV) 18(0.039) 17.8(0.025) 17.8(0.047)

25_8
Feasible trajectory(CV) 547.262(0.006) 540.150(0.000) 541.171(0.000)

# Relays(CV) 16.6(0.081) 15(0.000) 15.8(0.028)

25_9
Feasible trajectory(CV) 634.914(0.031) 603.436(0.000) 604.177(0.000)

# Relays(CV) 18.2(0.024) 18(0.000) 18(0.000)

Table A.5.: Performence of ACO approaches on networks with n = 25, using cost
metric C2.
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Network Performance metric
ACO Approach

AS EAS MMAS

50_0
Feasible trajectory(CV) 946.397(0.016) 844.521(0.020) 847.917(0.007)

# Relays(CV) 32.6(0.027) 29.4(0.019) 34.2(0.0131)

50_1
Feasible trajectory(CV) 1081.105(0.043) 934.861(0.005) 952.371(0.002)

# Relays(CV) 35.6(0.047) 30.6(0.0292) 35.2(0.047)

50_2
Feasible trajectory(CV) 1073.863(0.0143) 962.001(0.008) 977.968(0.006)

# Relays(CV) 32.6(0.041) 30(0.000) 33.8(0.0248)

50_3
Feasible trajectory(CV) 1041.056(0.0462) 922.564(0.010) 931.623(0.004)

# Relays(CV) 35.8(0.023) 32.2(0.014) 35.2(0.031)

50_4
Feasible trajectory(CV) 1013.0305(0.0146) 952.542(0.015) 954.387(0.004)

# Relays(CV) 33.8(0.038) 31(0.000) 33(0.037)

50_5
Feasible trajectory(CV) 842.111(0.037) 699.741(0.012) 721.624(0.007)

# Relays(CV) 31.8(0.060) 26.4(0.021) 31.4(0.048)

50_6
Feasible trajectory(CV) 1006.643(0.016) 905.788(0.011) 913.949(0.008)

# Relays(CV) 35.6(0.055) 28.8(0.029) 34(0.036)

50_7
Feasible trajectory(CV) 1096.312(0.055) 988.632(0.003) 997.794(0.006)

# Relays(CV) 33.2(0.025) 30.4(0.018) 34.2(0.013)

50_8
Feasible trajectory(CV) 1072.507(0.037) 928.194(0.000) 948.030(0.005)

# Relays(CV) 32.2(0.026) 30(0.000) 32.8(0.040)

50_9
Feasible trajectory(CV) 1058.579(0.030) 981.179(0.021) 977.812(0.003)

# Relays(CV) 31(0.032) 30.6(0.018) 31.4(0.043)

Table A.6.: Performence of ACO approaches on networks with n = 50, using cost
metric C2
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Network Performance Metric
Strategy

Centre 4 points 8 points

25_0

Feasible Trajectory(CV) 893.081(0.018) 533.935(0.007) 527.826(0.007)

Refined Trajectory(CV) 315.409(0.032) 326.383(0.034) 313.815(0.028)

# potential relay location 32 56 96

25_1

Feasible Trajectory(CV) 992.222(0.016) 535.285(0.007) 534.937(0.011)

Refined Trajectory(CV) 403.065(0.005) 410.268(0.013) 401.153(0.008)

# potential relay location 35 53 83

25_2

Feasible Trajectory(CV) 1010.792(0.019) 599.442(0.023) 603.331(0.012)

Refined Trajectory(CV) 360.271(0.010) 369.909(0.033) 359.878(0.020)

# potential relay location 33 66 121

25_3

Feasible Trajectory(CV) 964.868(0.018) 580.183(0.016) 578.418(0.015)

Refined Trajectory(CV) 336.960(0.018) 348.519(0.006) 339.973(0.009)

# potential relay location 30 60 110

25_4

Feasible Trajectory(CV) 971.92(0.018) 398.684(0.013) 398.689(0.035)

Refined Trajectory(CV) 284.354(0.012) 298.998(0.035) 296.832(0.030)

# potential relay location 61 82 117

25_5

Feasible Trajectory(CV) 758.426(0.028) 489.536(0.016) 491.995(0.006)

Refined Trajectory(CV) 351.331(0.039) 348.037(0.008) 348.243(0.017)

# potential relay location 35 56 91

25_6

Feasible Trajectory(CV) 961.135(0.014) 550.518(0.003) 545.664(0.011)

Refined Trajectory(CV) 357.612(0.013) 337.861(0.024) 344.892(0.025)

# potential relay location 32 68 128

25_7

Feasible Trajectory(CV) 1034.046(0.015) 484.554(0.026) 477.822(0.022)

Refined Trajectory(CV) 326.734(0.039) 345.305(0.063) 341.906(0.055)

# potential relay location 46 73 118

25_8

Feasible Trajectory(CV) 975.777(0.019) 447.080(0.013) 447.907(0.011)

Refined Trajectory(CV) 335.459(0.010) 356.925(0.018) 352.870(0.030)

# potential relay location 39 54 79

25_9

Feasible Trajectory(CV) 986.779(0.006) 554.593(0.008) 570.796(0.066)

Refined Trajectory(CV) 339.246(0.043) 328.033(0.018) 335.769(0.031)

# potential relay location 31 64 119

Table A.7.: Comparing different strategies for calculating potential relay locations
on networks with n = 25.
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Network Performance Metric
Strategy

Centre 4 points 8 points

50_0

Feasible Trajectory 893.081(0.018) 845.784(0.039) 819.828(0.000)

Refined Trajectory 523.124(0.088) 537.715(0.092) 0.303(0.014)

# potential relay location 85 109 149

50_1

Feasible Trajectory 992.221(0.016) 913.693(0.021) 931.992(0.002)

Refined Trajectory 594.628(0.029) 611.708(0.040) 0.441(0.009)

# potential relay location 78 114 174

50_2

Feasible Trajectory 1010.792(0.019) 981.508(0.023) 949.844(0.000)

Refined Trajectory 651.828(0.013) 718.031(0.033) 0.399(0.023)

# potential relay location 83 116 171

50_3

Feasible Trajectory 964.868(0.018) 923.884(0.017) 914.595(0.000)

Refined Trajectory 568.222(0.057) 590.885(0.046) 0.445(0.023)

# potential relay location 79 115 175

50_4

Feasible Trajectory 971.920(0.018) 920.641(0.023) 938.248(0.000)

Refined Trajectory 647.121(0.0239) 639.081(0.047) 0.378(0.008)

# potential relay location 81 114 169

50_5

Feasible Trajectory 758.425(0.028) 761.320(0.088) 702.855(0.005)

Refined Trajectory 521.092(0.060) 508.138(0.050) 0.297(0.013)

# potential relay location 120 132 152

50_6

Feasible Trajectory 961.135(0.014) 908.088(0.038) 895.655(0.002)

Refined Trajectory 555.774(0.039) 572.453(0.088) 0.418(0.014)

# potential relay location 91 179 179

50_7

Feasible Trajectory 1034.046(0.015) 976.886(0.022) 986.951(0.002)

Refined Trajectory 633.601(0.027) 654.955(0.051) 0.401(0.008)

# potential relay location 73 177 177

50_8

Feasible Trajectory 975.777(0.019) 934.952(0.033) 929.079(0.001)

Refined Trajectory 604.334(0.027) 625.773(0.074) 0.365(0.010)

# potential relay location 70 168 166

50_9

Feasible Trajectory 986.779(0.005) 956.382(0.011) 963.869(0.000)

Refined Trajectory 644.773(0.013) 659.359(0.035) 0.274(0.016)

# potential relay location 68 148 148

Table A.8.: Comparing different strategies for calculating potential relay locations
on networks with n = 50.
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Network
% Reduction of trajectory length

Deterministic ACOR

25_0 45.40 39.10

25_1 36.84 36.16

25_2 42.45 41.56

25_3 45.57 38.63

25_4 44.77 41.34

25_5 37.11 34.46

25_6 39.79 36.65

25_7 41.14 39.44

25_8 38.09 32.75

25_9 43.87 43.02

Table A.9.: Comparison of trajectory refinement algorithms on networks with n =
25.

Network
% Reduction of trajectory length

Deterministic ACOR

25_0 41.46 36.88

25_1 40.06 34.69

25_2 35.50 30.83

25_3 41.09 34.56

25_4 33.41 32.70

25_5 31.28 30.64

25_6 42.17 36.77

25_7 38.71 34.26

25_8 38.06 31.55

25_9 34.65 29.72

Table A.10.: Comparison of trajectory refinement algorithms on networks with
n = 50.
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