
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

Winter 2014

Efficient finite field computations for elliptic curve
cryptography
Wangchen Dai
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

Part of the Electrical and Computer Engineering Commons

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Dai, Wangchen, "Efficient finite field computations for elliptic curve cryptography" (2014). Electronic Theses and Dissertations. Paper
5017.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72770873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5017&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5017&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5017&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholar.uwindsor.ca%2Fetd%2F5017&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5017?utm_source=scholar.uwindsor.ca%2Fetd%2F5017&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

EFFICIENT FINITE FIELD COMPUTATIONS FOR ELLIPTIC
CURVE CRYPTOGRAPHY

by
WANGCHEN DAI

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

2013

© 2013 Wangchen DAI

EFFICIENT FINITE FIELD COMPUTATIONS FOR ELLIPTIC
CURVE CRYPTOGRAPHY

by
WANGCHEN DAI

APPROVED BY:

Dr. D. Wu
School of Computer Science

Dr. C. Chen
Department of Electrical and Computer Engineering

Dr. H. Wu, Advisor
Department of Electrical and Computer Engineering

December 11, 2013

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has
been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyones
copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or
any other material from the work of other people included in my thesis, published or oth-
erwise, are fully acknowledged in accordance with the standard referencing practices. Fur-
thermore, to the extent that I have included copyrighted material that surpasses the bounds
of fair dealing within the meaning of the Canada Copyright Act, I certify that I have ob-
tained a written permission from the copyright owner(s) to include such material(s) in my
thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved
by my thesis committee and the Graduate Studies office, and that this thesis has not been
submitted for a higher degree to any other University or Institution.

iii

Abstract

Finite field multiplication and inversion are two basic operations involved in Elliptic Cure
Cryptosystem (ECC), high performance of field operations can be applied to provide effi-
cient computation of ECC. In this thesis, two classes of fields are proposed for multipliers
with much reduced time delay. A most-significant-digit first and a least-significant-digit
first digit-serial Montgomery multiplications are also proposed, using novel fixed elements
R(x) which are different from xm and xm−1. Architectures of the proposed Montgomery
multipliers are studied and obtained for the fields generated by the irreducible pentanomi-
als, which are selected based on the proposed special finite fields. Complexities of the
Montgomery multipliers in term of critical path delay and gate count of the architectures
are investigated; the critical path delay of the proposed multipliers are found to be as good
as or better than the existing works for the same class of fields. Then, implementation of the
proposed multipliers (m= 233) using Field Programmable Gate Array (FPGA) is provided.
In addition, an FPGA implementation of an efficient normal basis inversion algorithm is
also presented (m = 163). The normal basis multiplication unit is implemented using a
digit-level structure, and a C-code is written to generate the first coordinate of the product
of two normal basis elements for all field size m.

Key Words: Montgomery multiplication, digit-serial, Elliptic Curve Cryptography,
normal basis inverse, FPGA.

iv

Dedication

I dedicate this thesis to my parents for supporting me to accomplish my master’s degree at
University of Windsor in Canada.

v

Acknowledgments

I would like to express my sincere gratitude and appreciation to everyone who helped make
this thesis possible. I am deeply indebted to my supervisor Prof. Huapeng Wu, Professor of
Electrical and Computer Engineering at University of Windsor, for guiding me throughout
the writing of this thesis. As one of best teachers I have ever had, Professor Wu impressed
upon me that a good teacher instructs students in matters far beyond those in textbooks. His
broad knowledge and logical way of thinking have been of great value; without his detailed
and constructive comments on my research, none of this thesis would be possible.

I would also grateful to my colleagues and friends, Yiruo He, Ya Tan, Ran Xiao and
Shoaleh Hashemi Namin for their time and support.

Finally, I with to extend my gratitude to everyone at UWindsor’s Faculty of ECE for
their efforts during my study in the M.A.Sc. Program. I also gratefully acknowledge the
financial support form University of Windsor and Professor Huapeng Wu.

vi

Contents

Author’s Declaration of Originality iii

Abstract iv

Dedication v

Acknowledgments vi

List of Figures x

List of Tables xii

List of Appendices xiv

List of Abbreviations/Symbols xv

1 Introduction 1

2 Mathematical Preliminaries 4
2.1 Finite Field and Representations . 4
2.2 Montgomery Multiplication over GF(2m) 6
2.3 Elliptic Curve Cryptosystem . 7

2.3.1 Elliptic Curves . 7
2.3.2 Finite Field Inversion Using Normal Basis 9
2.3.3 Elliptic Curve Cryptosystem . 10

3 A Review of Existing Work 13

vii

CONTENTS viii

4 Proposed Digit-serial Montgomery Multipliers 19
4.1 Proposed Digit-Serial MSD First Montgomery Multiplier 19

4.1.1 Algorithm . 20
4.1.2 General Architecture . 21
4.1.3 Advanced Architecture . 26

4.2 Proposed Digit-Serial LSD First Montgomery Multiplier 31
4.2.1 Algorithm . 31
4.2.2 General Architecture . 32
4.2.3 LFSR-Based Architecture . 36

4.3 Complexity Analysis . 38
4.4 FPGA Implementation of the Proposed Multipliers 42

4.4.1 Summary of the MSD-First Multiplier Implementation 42
4.4.2 Summary of the LSD-First Multiplier Implementation 43

5 FPGA Implementation of Inverse Generator 45
5.1 The Design of Inverse Generator . 45

5.1.1 REG1 Module . 46
5.1.2 REG2 Module . 47
5.1.3 MUX Module . 48
5.1.4 Digit-level Normal Basis Multiplier Module and Multiplication Al-

gorithm . 48
5.1.5 Top-Level . 52

5.2 Simulation and Compilation . 52
5.2.1 Simulation Results . 52
5.2.2 Compilation Results . 54

6 Conclusions 59

A C-code of F(s) and the First Coordinate c0 Generation 61

B Generated VerilogHDL-code of the First Coordinate c0 66

Bibliography 72

CONTENTS ix

Vita Auctoris 76

List of Figures

2.1 Operations in an elliptic curve . 7
2.2 Elliptic curve over binary field GF(2m) 9
2.3 Encryption/decryption of elliptic curve cryptosystem 10
2.4 Computation structure of ECC over GF(2m) 11

3.1 (a)Tang’s architecture of GF(2233) multiplier [17] (b)Kumar’s architecture
of GF(2m) multiplier [19] . 15

3.2 Tang’s architecture of partial product multiplier, generates the product of
A j×B [17] . 16

3.3 Meher’s block diagram of proposed field multiplier over GF(2m) [24] . . . 17
3.4 Work reported in [28], (a)R(x) = xm, (b)R(x) = xm−1 18

4.1 Block diagram of proposed digit-serial MSD-first Montgomery multiplier
when R(x) = xl . 22

4.2 General architecture of the proposed multiplier when R(x) = xu 23
4.3 Implementation of equation (4.11) . 25
4.4 Model 1: multiply by x structure . 27
4.5 Implementation of computation A(x)x2 mod f (x) 28
4.6 Model 2: multiply by x−1 structure . 29
4.7 Implementation of A(x)Bs−i−1(x)x−l mod f (x) 30
4.8 Advanced architecture of proposed multiplier 30
4.9 General architecture of the proposed digit-serial LSD first multiplier 33
4.10 LFSR-based architecture of the proposed LSD Montgomery multiplier . . . 37

5.1 Architecture of the designed inverse generator 46
5.2 Block diagram of the inverse generator for FPGA implementation 47
5.3 REG1 module . 48

x

LIST OF FIGURES xi

5.4 REG2 module . 48
5.5 MUX module . 49
5.6 Digit-level normal basis multiplier module 49
5.7 Digit-level Normal Basis multiplier structure 50
5.8 Simulation result of the Inverse Generator 56
5.9 RTL of the design . 57
5.10 Technology map viewer of the design . 58

List of Tables

1.1 Key size comparison between RSA and ECC with same secure level 2

2.1 Algorithm of Binary Field Bit-Parallel Montgomery Multiplication 6

3.1 Algorithm of Bit-Serial Montgomery Multiplication 14
3.2 Algorithm of Digit-Serial Montgomery Multiplication, where d is the digit

size, f ′0(x) f0(x) = 1 mod xd , C0(x) and f0(x) are the least significant digits
of C(x) and f (x), respectively . 14

4.1 Digit-serial MSD-first Montgomery Multiplier (R(x) = xl), where 0 6 l 6

d−1 . 21
4.2 Complexity of each block of the proposed MSD-first Montgomery multiplier 26
4.3 Complexity of proposed digit-serial MSD-first Montgomery multiplication

(Algorithm I, general architecture, when ki+1− ki > d− 1,k0 = 0,k4 = m

and 0 6 l 6 d−1) . 26
4.4 Complexity of proposed digit-serial MSD-first Montgomery multiplica-

tion (Algorithm I, advanced architecture, when ki+1− ki > max{l,d− l−
1}, i = 0,1,2,3, k0 = 0, k4 = m and 0 6 l 6 d−1) 31

4.5 Digit-serial LSD-first Montgomery Multiplier (R(x) = xsl), where l > 0 . . 32
4.6 . 33
4.7 Complexity of digit-serial LSD Montgomery multiplication (Algorithm II,

when 1 6 l 6 d−1 and ki+1− ki > d−1, k0 = 0, k4 = m) 34
4.8 Complexity of digit-level Montgomery multiplication (Algorithm II, when

l = d, and ki+1− ki > d−1, k0 = 0, k4 = m) 34
4.9 Degree range of each term of equation (4.22) 35
4.10 Value of l in terms of XOR gate usage of block S1 35

xii

LIST OF TABLES xiii

4.11 Complexity of digit-level Montgomery multiplication (Algorithm II, when
l > d, and ki+1− ki > l, k0 = 0, k4 = m) 36

4.12 LFSR-Based Digit-serial LSD-first Montgomery Multiplier (R(x) = xsl),
where 0 6 l 6 d−1 . 36

4.13 Complexity of digit-level Montgomery multiplication (Algorithm III, when
0 6 l 6 d−1, and ki+1− ki > max{l,d− l−1}, k0 = 0, k4 = m) 38

4.14 Intrinsic delay of XOR2 and AND2 gate, we assume each gate could drive a
maximum of two gates (25°C, 1.8V , CMOSP18 Tech., Y =A ·B, or Y =A⊕B) 38

4.15 Digit-serial Montgomery multipliers comparison (f (x) = xm + xk3 + xk2 +

xk1 +1, s = m/d) . 39
4.16 Proposed multipliers compared with Polynomial Basis finite field multipli-

ers (MSD cases, f (x)= xm+xk3 +xk2 +xk1 +1, s= dm/de, TDFF represents
the time delay of a D-flipflop) . 39

4.17 Proposed multipliers compared with Polynomial Basis finite field multipli-
ers (LSD cases, TM represents the time delay of a 2×1 Multiplexer, TT FF

represents the time delay of a T-flipflop) 40
4.18 Efficiency of the proposed multipliers and existing Montgomery multipli-

ers (m = 233, d = 8, if l < d, then l = 4) 41
4.19 Efficiency of the proposed multipliers and existing PB multipliers (m =

233, d = 8, if l < d, then l = 4) . 41
4.20 Cells usage of compilation (m = 233, d = 8, u = 4) 42
4.21 Gate count of each module (m = 233, d = 8, u = 4) 42
4.22 Time complexity of the design (m = 233, d = 8, u = 4) 43
4.23 Cells usage of compilation (m = 233, d = 8, l = 4) 43
4.24 Gate count of each module (m = 233, d = 8, l = 4) 43
4.25 Time complexity of the design (m = 233, d = 8, l = 4) 44

5.1 Description of Each Clock cycle . 52
5.2 Cells usage of compilation . 55
5.3 Area cost of each module . 55
5.4 Operation delay of the design Inverse Generator over GF(2163) 55

List of Appendices

C-code of F(s) and the First Coordinate c0 Generation 61
Generated VerilogHDL-code of the First Coordinate c0 66

xiv

List of Abbreviations/Symbols

GF Finite Field or Galois Field

PB Polynomial Basis

NB Normal Basis

EC Elliptic Curve

ECC Elliptic Curve Cryptosystems

RSA Rivest, Shamir, Adleman

FPGA Field Programmable Gate Array

ALUT Adaptive Look Up Tables

MSD Most Significant Digit

LSD Least Significant Digit

LE Logic Element

MUX Multiplexer

XOR Exclusive OR

TFF T-Flipflop

DFF D-Flipflop

LFSR Linear Feedback Shift Register

VLSI Very Large Scale Integrated Circuits

xv

Chapter 1

Introduction

The development of cryptography can be divided into the following two stages [1]: classi-
cal cryptography, and modern cryptography. Classical cryptography was the study of the
confidentiality of a message through encryption and decryption. An encryption operation
can be described as the conversion of a message or a piece of information from compre-
hensible text into some incomprehensible form. Transposition cipher [3] and substitution
cipher [2] are two representative classical ciphers.

Due to the rapid development of computer and network technologies, and the world-
wide application of on-line trading services, mobile phones, and credit cards, the increasing
threat to personal privacy and information security is becoming a significant challenge to
security engineers. Under this context, cryptography is no longer just a concern for gov-
ernments, but for civilians as well. Therefore, this field has been expanded far beyond
communication confidentiality to include identity authentication, digital signatures, mes-
sage integrity verification, etc. This extension has led to modern cryptography. Cipher
algorithms in modern cryptography are achieved by using a key to encrypt and decrypt
information. The Data Encryption Standard (DES) and the Advanced Encryption Standard
(AES) are two symmetrical cipher algorithms created in modern cryptography. The en-
cryption and decryption of these algorithms share the same key. The problem is that over
time, more users know the key, and the risk of security breaches increases: once the key is
revealed by one of the uses, the entire cryptosystem will be on longer secure.

During the 1970s, the public-key cryptosystem, known as the most notable advance in
the field of cryptography after World War II, was invented [1]. A public-key system is an

1

CHAPTER 1. INTRODUCTION 2

asymmetrical key system that uses a public key to encrypt but decrypts with a private key.
The concept of public-key cryptography was first raised in 1976 by Diffie and Hellman [6];
they demonstrated the possibility of network communication when the public key could be
widely distributed, while its paired private key remains secret. After that, RSA, which was
first published in 1978 by three talented scientists [7], is considered to be the most widely
used public-key cryptosystem. To break RSA, a large-number factorization problem must
be solved first. Later, elliptic curve cryptosystem (ECC), another public-key system was
proposed by Koblitz [8] and Miller [9] during 1985 to 1987. The breaking of an ECC is
equivalent to solving discrete logarithm problems. A RSA algorithm with 768-bit key size
was broken in 2010 [4], while the hardest ECC scheme broken at present had only a 112-bit
key size [5], ECC seems to be superior to RSA. The following table lists the key size in
terms of security level with regard to these two public-key cryptosystems.

Table 1.1: Key size comparison between RSA and ECC with same secure level
RSA(bit) ECC(bit) Key Size Comparison

1024 160 6 : 1
2048 224 9 : 1
3072 256 12 : 1
7680 384 20 : 1

ECC uses a binary field GF(2m) or a prime field GF(p). The encryption and decryp-
tion speed is an important indicator for evaluating an ECC algorithm. Efficiency of finite
field arithmetic operation has great impact on the performance of an ECC, since an ECC
computation consists a set of point operations and field multiplication and field inversion
are the basic operations involved in the point operation. Due to the fact that field inver-
sion also requires field multiplication during the computation, as a consequence, a large
number of studies are mainly aimed at high-speed and efficient implementations of field
multiplication.

The binary field GF(2m) is widely used in field operations because it is very suitable
for VLSI implementation. However, the multiplication is more complicated and time-
consuming. Efficient computation of field multiplication is one of the critical issue of
public-key based cipher algorithms. In 1985, Montgomery introduced a new method for
integer modular multiplication [10], and proved that the time-consuming trial division op-
eration can be avoided. Later, Koc [12] extended the method to binary field and showed

CHAPTER 1. INTRODUCTION 3

that binary field multiplication can be implemented dramatically faster than standard mul-
tiplication. A number of Montgomery multipliers has been designed, and in general, the
existing Montgomery multipliers can be divided into two styles: general styles including
bit-serial, bit-parallel, and digit-level sub-types; and systolic styles. Bit-serial multipliers
have the least gate count but require the longest time to process one operation. In contrast,
bit-parallel multipliers have the smallest time delay but require largest implementation area.
Digit-level multipliers are available to combine the advantages of both of them and balance
the relationship between gate count and critical path delay by processing constant bits each
clock cycle.

The works reported in this thesis mainly focus on the efficient computation and hard-
ware implementation of digit-serial Montgomery multiplication. A most-significant-digit
first and a least-significant-digit first digit-serial Montgomery multiplier are proposed; two
novel fixed elements R(x), which are different from the general ones (xm−1 and xm), are
applied. Two classes of fields for the multipliers with much reduced critical path delay
are also proposed. Architectures of the proposed Montgomery multipliers are studied and
obtained for the fields generated by the irreducible pentanomials. The complexities of the
proposed multipliers in terms of gate count and critical path delay of the architecture are in-
vestigated, and demonstrated that the critical path delay of the proposed multipliers can be
further reduced by applying the special finite fields. The contributions of this research work
also consist of an FPGA implementation of the proposed Montgomery multipliers in the
case where m = 233. Furthermore, an FPGA implementation of a normal basis inversion
algorithm in GF(2m) is also presented in this thesis.

The outline of this thesis is as follows. Chapter 2 presents the mathematical background
of the finite field, digit-level Montgomery multiplication, elliptic curve cryptosystem, and
some other related equations and concepts. After that, a review of the existing literatures
will be presented in Chapter 3. Chapter 4 presents the details of the proposed digit-serial
Montgomery multipliers, the comparison results of the proposed Montgomery multipliers
in terms of cell usage and critical path delay, the FPGA simulation, and a compilation
report of the proposed works. Chapter 5 describes the FPGA implementation of the normal
basis inversion generator and provides the results. Finally, in the last chapter, there will be
a profound discussion regarding the conclusions and further work.

Chapter 2

Mathematical Preliminaries

This chapter introduces the relevant mathematical background. The definition of finite field
as well as its two general representation methods, the definition of Montgomery multipli-
cation, and the algorithm of elliptic curve cryptosystem (ECC) will be introduced in turn.

2.1 Finite Field and Representations

A finite field (or Galois field) is a group of finitely many elements in which both the addition
and the multiplication are defined, also the usual algebraic laws, commutative, associative,
and distributive can be applied [14]. The number of elements contained in a finite field is
called the order of the field. A finite field can be denoted as GF(q), where q is an positive
integer number greater than one. The order of a nonzero element A ∈ GF(q) is defined as
the smallest positive integer k to make Ak = 1, and k always divides q−1. In cryptography,
there are two kinds of finite fields that are commonly used: prime field GF(p), where p is
prime, and binary extension field GF(2m) where m is a positive integer great then or equal
to two. The representation of field GF(p) is simply a set of integers modulo p, however,
unlike prime field, the binary field has many frequently-used representations. Polynomial
basis representation and normal basis representation are the two methods commonly used
to represent a binary field element.

In a polynomial basis representation, every element in GF(2m) is represented by a
unique polynomial of degree less than m. For example, element A of GF(2m) can be
represented as A(x) = am−1xm−1 + am−2xm−2 + · · ·+ a1x+ a0 = (am−1am−2 . . .a1a0), and

4

CHAPTER 2. MATHEMATICAL PRELIMINARIES 5

the coefficient ai of each term equals either 0 or 1. The polynomial basis is the set:

PB = {xm−1,xm−2, . . . ,x2,x,1} (2.1)

Using polynomial basis to represent elements in binary field GF(2m) has been proved to
be well suited. By applying such a representation, an addition operation in binary field can
be very efficiently implemented by a single XOR gate, and a multiplication operation are
defined simply as the product of the corresponding polynomials reduced by modulo f (x).
f (x) is an irreducible polynomial which generates the binary field GF(2m), see equation
(2.2). If we let only three fi equals to one, where 1 < i < m, we could have an irreducible
pentanomial f (x) = xm + xk3 + xk2 + xk1 + 1, where 1 < k1 < k2 < k3 < m. The works
reported in this thesis are focusing on the binary field due to its efficient implementation in
both hardware and software.

f (x) = xm + fm−1xm−1 + · · ·+ f1x+1 = 0, where fi = 0 or 1 (2.2)

In normal basis representation, we use the basis set

NB = {θ2m−1
,θ2m−2

, . . . ,θ2,θ} (2.3)

to represent elements in the binary field, and elements θ2i
, where i ∈ [0,m− 1], in the

basis set must be linearly independent. Using normal basis, a binary field element A =

(am−1am−2 . . .a1a0) can be represented by equation (2.4):

A = am−1θ
2m−1

+am−2θ
2m−2

+ · · ·+a1θ
2 +a0θ (2.4)

Normal basis representation has the computational advantage that 2x-power operations can
be implemented very efficiently by a left-shift operation, see equation (2.5). But the multi-
plication operations are very complicated and time consuming (see [14] Section A.3.8 and
Section A.6.4). In that case, a special class of normal bases called Gaussian normal bases
are studied in order to minimize the complexity of multiplication.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 6

A22
= (A2)2 = (am−1θ

2(m mod m)
+am−2θ

2m−1
+ · · ·+a1θ

22
+a0θ

21
)2

= am−3θ
2m−1

+am−4θ
2m−2

+ · · ·+a0θ
22
+am−1θ

2 +am−2θ

(2.5)

2.2 Montgomery Multiplication over GF(2m)

Montgomery multiplication was first proposed by Montgomery in 1985 [10] and was ex-
tended to binary field by Koc in 1998 [12]. Compared with the standard multiplication, the
Montgomery multiplication can avoid trail division operations whereas standard modular
multiplication cannot.

Montgomery multiplication in GF(2m) is defined by equation (2.6).

C(x) = A(x)×B(x)×R(x)−1 mod f (x) (2.6)

Table 2.1: Algorithm of Binary Field Bit-Parallel Montgomery Multiplication
Algorithm Binary Field Bit-Parallel Montgomery Multiplication
Inputs: A(x),B(x) ∈ GF(2m), f (x), f ′(x)
Outputs: C(x) = A(x)×B(x)×R−1(x) mod f (x)
Step 1: T (x) = A(x)B(x)
Step 2: U(x) = T (x) f ′(x) mod R(x)
Step 3: C(x) = [T (x)+U(x) f (x)]/R(x)

Instead of obtaining the product of A(x)B(x) mod f (x) directly, we multiply an extra
polynomial R(x), to compute A(x)B(x)R(x)−1 mod f (x). f (x) is the irreducible polyno-
mial which is used to generate the binary field GF(2m) and R(x) is treated as a fixed ele-
ment in GF(2m). The Montgomery multiplication requires that R(x) and f (x) are relatively
prime. Under this condition, we have the property that R(x) ·R(x)−1 + f (x) f ′(x) = 1, the
two polynomials R(x)−1 and f ′(x) can be computed using extended Euclidean algorithm
[12], Table 2.1 presents an algorithm of bit-parallel binary field Montgomery multiplica-
tion. It has been proved that, by letting the value of R(x) equals to xm, efficient implemen-
tations of the Montgomery multiplier can be obtained [12]. For example, as the algorithm
shown in Table 2.1, if R(x) = xm, modular R(x) in Step 2 can be accomplished simply by
ignoring the terms which degree is larger than m, and in Step 3, the division operation can

CHAPTER 2. MATHEMATICAL PRELIMINARIES 7

be implemented by shifting the polynomial to the right side by m bits. Besides, in [25], the
work shows R(x) = xm−1 is also a suitable Montgomery factor for efficient implementation
of Montgomery multiplication.

2.3 Elliptic Curve Cryptosystem

2.3.1 Elliptic Curves

Elliptic curves (EC) are a set of curves that satisfy equation (2.7), where b 6= 0, see Section
A.9.1 in [14].

y2 + xy = x3 +ax2 +b (2.7)

On an elliptic curve, two point operations can be defined [14]: point addition and point
doubling. One special point called point at infinity or zero point is also defined, see Fig 2.1.

Figure 2.1: Operations in an elliptic curve

In Fig 2.1(a), the two points P = (x1,y1) and Q = (x2,y2) do not overlap, line PQ

intersects the curve at point −R, then we draw a vertical line via −R to get its reflection
point R on the curve, and R = (x3,y3), thus the point addition operation can be defined as:
R = P+Q, and x3 and y3 can be calculated by the equations presented in (2.8).

CHAPTER 2. MATHEMATICAL PRELIMINARIES 8

x3 =a+λ
2 +λ+ x1 + x2

y3 =(x2 + x3)λ+ x3 + y2

λ =(y1 + y2)/(x1 + x2)

(2.8)

In Fig 2.1(b), points P and Q are overlapped at point P, a tangent line is drawn via
P = (x1,y1) that intersects the curve at point −R, and the reflection of −R is R = (x3,y3).
In this case, the point doubling operation is defined: R = 2P. Equations presented in (2.9)
presents the coordinate computation of R.

x3 =a+λ
2 +λ

y3 =λx3 + x3 + x2
1

λ =x1 + y1/x1

(2.9)

By combining point addition and point doubling operations, point scalar multiplication
can be defined, for example: 5P= 4P+P= 2(2P)+P, this indicates that one point addition
and two point doubling operations are required to obtain 5P.

In the third case of Fig 2.1, the line P(−P) is perpendicular to the x-axis. Mathemat-
ically, we assume the line intersects the curve at a third point at infinite, and define this
third point as the point at infinity or zero point, denoted as O. According to this definition,
we have: P+(−P) = O, P+O = P, O = −O and P+Q+R = O. The set of points on
the elliptic curve is an Abelian group, which implies that the point operations satisfy the
common algebraic laws: commutativity and associativity.

When we extend the elliptic curve to binary field GF(2m), then a,b ∈ GF(2m), and the
equations in (2.8) and (2.9) should modular f (x) at the end of each equation, f (x) is the
irreducible polynomial to generate GF(2m). In Fig 2.2, we see that the binary field elliptic
curve presented in the coordinate graph is no longer a ”curve” with a set of infinitely points
in a real number field, instead, it consists of finite many points, the points being distributed
separately on the first quadrant and the non-negative axises of the plane coordinate graph.
The number of points involved in the elliptic curve E including O is called the order of
E, denoted as #E(GF(2m)). The order of a single point P on curve E is defined as the

CHAPTER 2. MATHEMATICAL PRELIMINARIES 9

smallest positive integer n such that nG = O, every point on the curve as an order, and this
order divides the order of the curve #E(GF(2m)). Commutativity and associativity are still
satisfied for point operations in binary fields.

Figure 2.2: Elliptic curve over binary field GF(2m)

2.3.2 Finite Field Inversion Using Normal Basis

Finite field inversion operation is one of the basic operations of ECC computation. Assume
α belongs to the finite field GF(2m) and α is represented using normal basis:

α = am−1θ
2m−1

+am−2θ
2m−2

+ · · ·+a1θ
2 +a0θ (2.10)

Since for ∀α ∈ GF(2m) there exists an order, denoted as ord(α), and according to the
definition of the order, we have:

α
ord(α) = 1 (2.11)

Also, ord(α) divides 2m− 1. If we assume that n× ord(α) = 2m− 1, by taking the

CHAPTER 2. MATHEMATICAL PRELIMINARIES 10

power of n from both sides of equation (2.11), we could have:

(αord(α))n = α
2m−1 = 1n = 1 (2.12)

By dividing α with both sides of equation (2.12), we could get the expression of inverse
α:

α
−1 = α

2m−2 (2.13)

Since 2x-power only needs a left shift, see equation (2.5) as a reference, we could take
the advantages of this property and obtain an efficient algorithm to compute finite field
inversion using normal basis representation. In Chapter 5, an efficient computation and
implementation of finite field inversion in GF(2163) is provided based on equation (2.13),
using normal basis.

2.3.3 Elliptic Curve Cryptosystem

Figure 2.3: Encryption/decryption of elliptic curve cryptosystem

Elliptic curve cryptosystem (ECC) is a public-key cryptosystem that has a shorter key
size compared with RSA in same secure level. Suppose a base point G on elliptic curve
E has order n, then we could define the key pair as follows: the private key k is a positive
integer smaller than n; the corresponding public key K is a point on the curve E, where K =

kG and K is computed by point scalar multiplication. The encryption/decryption operations
can be described as follows:

(1) Alice (known as User A) selects an elliptic curve E, a base point G on E, and she de-
termines the key pair of private key k and public key K. She then sends curve E, base point

CHAPTER 2. MATHEMATICAL PRELIMINARIES 11

Figure 2.4: Computation structure of ECC over GF(2m)

G together with the public key K to Bob (known as User B) for private communication;
(2) If Bob has a message (known as the plaintext) and he wants to send it to Alice

privately. First, he maps or encodes the text to a point on E, denotes this point as M,
different mapping methods can be found from [11], [23], [26] and [31]. Second, Bob
chooses a random number r < n and encrypts M with public key K and base point G,
see equation (2.14). The two computed points (C1,C2) are knowns as the corresponding
ciphertext of M. Third, Bob now sends the ciphertext (C1,C2) to Alice and this process can
be described as encryption;

(3) Alice receives the ciphertext (C1,C2) sent from Bob and decrypt them with the
private key k, see equation (2.15), and finally she can read the secret message Bob sends.
This process can be described as decryption.

Fig 2.3 shows the process of ECC encryption and decryption.

C1 = M+ rK, C2 = rG (2.14)

C1−KC2 = M+ rK− k(rG) = M+ rK− r(kG) = M (2.15)

CHAPTER 2. MATHEMATICAL PRELIMINARIES 12

From the above brief introduction of the ECC encryption/decryption operations, we
could see that the key issue to break this cryptosystem is to resolving the value of the
private key k from the equation K = kG. The fact is that knowing k and G to compute
K is simple by calculating a set of point addition and point doubling operations, however,
knowing K and G to compute k is extremely hard when the size of the selected binary
field is large. For this reason, this type of cryptosystem relies for its security level on the
difficulty level of the elliptic curve discrete logarithm problem.

The computation of ECC contains four levels, see Fig 2.4. The top level is the ECC
itself. The major operation involved in ECC is the point scalar multiplication, and it is
the second level of ECC computation. A point scalar multiplication can be efficiently
calculated by a set of point doubling and point addition operations, for example 9P =

2(2(2P))+P can be decomposed into four point doubling operations plus one point addi-
tion operation. The computation of a point scalar multiplication is similar to the squaring-
multiplying algorithm when calculating an exponentiation operation. Thus, the point op-
erations are the third level of ECC computation. The coordinate computation of the point
operations, see equations (2.8) and (2.9), indicates that the basic operations of ECC com-
putation are finite field multiplication and finite field inversion.

Chapter 3

A Review of Existing Work

The existing Montgomery multipliers can be grouped into two types in terms of their archi-
tectures: general style including three sub-types: bit-serial [12], [22], [25], [28], bit-parallel
[12], [15], [25] and digit-level [12], [28]; and systolic style [18], [20], [16], [27]. Bit-serial
multipliers load one operand bit-by-bit and the other operand in parallel. They usually
have the lowest gate complexity but require the longest time to process one operation; in
contrast, bit-parallel multipliers could reach the fastest processing speed by loading and
calculating both operands in parallel, but cost the most gate count when implementing.
Digit-level multipliers allow us to combine the advantages of both and seek the balance
between area and speed by processing one operand by constant bits each clock cycle and
the other operand in parallel. Systolic style multipliers consist of matrix-like rows of data
processing units (cells) known as a systolic array. These units are similar to central process-
ing units, each unit shares the information with its neighbors. Systolic style architectures
are well suited to VLSI design due to the scalability, short inter-connection and highly
repetitive nature of the units. Our work will mainly focus on the architecture of digit-serial
Montgomery multipliers, and we will review some digit-serial polynomial multipliers and
digit-serial Montgomery multipliers first.

Montgomery multiplication was first applied to binary field multiplication in 1998 by
Koc [12], who reported the general algorithms of bit-serial (Table 3.1), bit-parallel (Ta-
ble 2.1) and digit-serial (Table 3.2) Montgomery multiplications. Koc [12] first showed
that by selecting the Montgomery factor R(x) = xm, the multiplication can be efficiently
implemented in both bit-serial and digit-serial architectures. Besides, he proved that us-

13

CHAPTER 3. A REVIEW OF EXISTING WORK 14

ing digit-level Montgomery method for finite field multiplication could offer a much faster
processing speed compared with the standard digit-level multiplication.

Table 3.1: Algorithm of Bit-Serial Montgomery Multiplication
Algorithm Bit-Serial Montgomery Multiplication
Inputs: A(x),B(x) ∈ GF(2m), f (x)
Outputs: C(x) = A(x)×B(x)× x−m mod f (x)
Step 1: C(x) = 0

for i = 0 to m−1 do
Step 2: C(x) =C(x)+aiB(x)
Step 3: C(x) =C(x)+ c0 f (x)
Step 4: C(x) =C(x)/x

Table 3.2: Algorithm of Digit-Serial Montgomery Multiplication, where d is the digit size,
f ′0(x) f0(x) = 1 mod xd , C0(x) and f0(x) are the least significant digits of C(x) and f (x),
respectively

Algorithm Digit-Serial Montgomery Multiplication
Inputs: A(x),B(x) ∈ GF(2m), f (x), f ′0(x)
Outputs: C(x) = A(x)×B(x)× x−m mod f (x)
Step 1: C(x) = 0

for i = 0 to s−1 do
Step 2: C(x) =C(x)+Ai(x)B(x)
Step 2: M(x) =C0(x) f ′0(x) mod xd

Step 3: C(x) =C(x)+M(x) f (x)
Step 4: C(x) =C(x)/xd

In 1998, Song proposed two different polynomial multiplier architectures: least signif-
icant digit (LSD) first and most significant digit (MSD) first, respectively. In 2005, Tang
reported a bit-parallel digit-serial multiplier in GF(2233), the architecture of the proposed
GF(2233) multiplier is shown in Fig 3.1. Tang’s architecture contains three main modules:
a multiplier module to generate the partial product A j×B, a register to store the value of
C30− j−1, and a constant multiplier to calculate the product of x8×C30− j−1. The register
module can be implemented by a D-flipflop array, and since Tang used an irreducible tri-
nomial to generate GF(2233), the constant multiplier can also be easily implemented. The
most complicated module would be the partial product multiplier which computes A j×B.
Fig 3.2(a) shows Tang’s design of this module. In Fig 3.2(a), we could see that Tang’s

CHAPTER 3. A REVIEW OF EXISTING WORK 15

structure of partial product multiplier includes an AND gate section to logic AND each bit
of the digit A j with operand B, a left-shift modular section to calculate the multiplied by xi

moduli operation, and finally an XOR tree section to add up all eight rows together. Tang’s
proposed digit-serial architecture can be treated as a landmark work since subsequent works
on digit-serial finite field multipliers are more or less optimizations or modifications of his
work.

Figure 3.1: (a)Tang’s architecture of GF(2233) multiplier [17] (b)Kumar’s architecture of
GF(2m) multiplier [19]

In 2006, Kumar proposed another polynomial multiplier in GF(2m) [19]. There are
two major differences between Kumar’s work and Tang’s: one is that in the partial prod-
uct generator unit, after logic AND each bit of the digit A j and left shift the bit-string by
corresponding i bits (0≤ i≤ d−1), Kumar directly added up all rows together with no re-
duction operations, thus, the data-flow during processing has m+d−1-bit bandwidth. As a
consequence, Kumar added an extra module called the final reduction unit to process mod-
ular f (x) operation when the whole computation operation is over. The other difference
is that Tang begins the multiplication from the most-significant-digit while Kumar begins
from the least-significant-digit. In that case, Kumar saves the cost of modular reduction

CHAPTER 3. A REVIEW OF EXISTING WORK 16

Figure 3.2: Tang’s architecture of partial product multiplier, generates the product of A j×B
[17]

operation for all d rows in the partial product module, but as a trade off, one extra clock
cycle would be needed to complete the multiplication, another register for storing the value
of Axd mod f (x) is required, and in addition, the bandwidth of the data-flow was enlarged
by d bits, see Fig 3.1(b).

In 2009, Meher [24] proposed a polynomial multiplier with a new structure of finite
field accumulator unit, which is the major difference between his work and the former
works reviewed. The block diagram of Meher’s work is presented in Fig 3.3. In the finite
field accumulator block, he used a T-flipflop array to implement the accumulate operation
instead of the structure using XOR gates and D-flipflop array. Besides, Meher also com-
bined the constant multiplier and partial product multiplier to generate Axd mod f (x) and
A×B j mod f (x) in parallel in order to further reduce the number of blocks. However, this
modification has not resulted in the reduction of gate count or critical path delay. Also in

CHAPTER 3. A REVIEW OF EXISTING WORK 17

the same year, Hariri [25] published his work proving that, besides R(x) = xm, R(x) = xm−1

could also be an efficient Montgomery factor in bit-serial structure, and later it was proved
by [28] that it can be applied to the digit-serial structure of Montgomery multiplications.

Figure 3.3: Meher’s block diagram of proposed field multiplier over GF(2m) [24]

The most recent digit-serial Montgomery multiplication architecture was that proposed
by [28] in 2011. A Linear Feedback Shift Register (LFSR) was used as the main building
block to implement the Montgomery multiplication. In this work, the cases when R(x) =

xm and R(x) = xm−1 are discussed. As reported, the proposed multipliers could adapt to
different classes of irreducible polynomials such as general cases, all one polynomials,
trinomials and pentanomials, by changing the value of digit size d, the reported multipliers
could also work as bit-serial multipliers or bit-parallel multipliers. The high flexibility of
their work is the critical contribution to the study of field multiplication. See Fig 3.4 of
[28]’s work.

In this thesis, a constraint condition is proposed to select the irreducible pentanomi-
als for the generation of finite field GF(2m). A most-significant-digit first and a least-
significant-digit first digit-serial Montgomery multiplications are also proposed. The ar-
chitectures proposed in this work have some similarities with the works reported in [17]
and [24]. However, these two architectures have two major differences compared with the
proposed works in this thesis. First, the algorithms in [17] and [24] are about polynomial
multiplication: they consider the product of A(x)×B(x) mod f (x) rather than the prod-
uct of A(x)×B(x)× x−m mod f (x) (or A(x)×B(x)× x−(m−1) mod f (x)). Second, we
proposed novel fixed elements R(x) which are different from xm and xm−1. By applying
the proposed constraint condition, the critical path delay of the architectures are found to

CHAPTER 3. A REVIEW OF EXISTING WORK 18

Figure 3.4: Work reported in [28], (a)R(x) = xm, (b)R(x) = xm−1

be as good as or better than the existing works for the fields generated by the irreducible
pentanomials.

Chapter 4

Proposed Digit-serial Montgomery
Multipliers

In this chapter, the detailed algorithm and architecture of the proposed digit-serial most-
significant-digit first and least-significant-digit first Montgomery multiplier will be intro-
duced. The finite field is generated by irreducible pentanomial polynomials. The parameter
selection of the irreducible pentanomials is discussed, and a general condition to further re-
duce the time delay of the multiplier is proposed. The gate count and time delay of the
multiplier will be considered and analyzed when R(x) = xu, where the value of u is dif-
ferent from m or m− 1. Further discussions are is included. After this, comparisons with
other types of digit-serial multipliers are provided. Finally, the FPGA implementation of
the proposed digit-serial Montgomery multipliers will be given, as well as its simulation
and compilation results.

4.1 Proposed Digit-Serial MSD First Montgomery Multi-
plier

In this section, a digit-serial MSD first Montgomery multiplier will be proposed. Two
different architectures of the proposed multiplier are presented. In the first architecture,
the multiplication and reduction operations are processed in separate units; in the latter
architecture, the multiplication and reduction operations are combined and implemented in

19

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 20

one circuit block, and the performance is proved to be more efficient than architecture 1.

4.1.1 Algorithm

Consider the field elements A, B, R, and their product C over GF(2m). Using the polyno-
mial representation, we have:

A(x) =
m−1

∑
i=0

aixi, B(x) =
m−1

∑
i=0

bixi, R(x) = xl, C(x) =
m−1

∑
i=0

cixi. (4.1)

Here we use irreducible pentanomial f (x) to generate GF(2m), and f (x) is represented
as:

f (x) = xm + xk3 + xk2 + xk1 +1 (4.2)

Since the idea in a digit-level multiplier is to compute a set of constant d bits from
B(x), where d usually equals to a power of two (2, 4, 8, etc.) in practice, neither one bit at
each clock cycle, nor all bits in parallel at the same time, we divide B(x) into blocks with
equal length d, such that B(x) has s blocks, s = dm/de. Thus the digit-level polynomial
representation of B(x) can be written as:

B(x) =
s−1

∑
i=0

Bi(x)xid =
s−1

∑
i=0

d−1

∑
j=0

bid+ jxid+ j (4.3)

Note that, due to the fact that m may not always divisible by d, terms that generated by
equation (4.3) with degree larger than m− 1 or smaller than 0 should be set to 0. For
example when m = 233, d = 8 and s = 30, when i = 29, B29(x)x232 = (b232 + b233x1 +

· · ·+b239x7)x232 = b232x232.
Using the digit-level representation of B(x), we can write C(x) as:

C(x) = A(x)×
s−1

∑
i=0

Bi(x)xid×R−1(x) mod f (x) (4.4)

Defining integer l as always satisfying 06 l 6 d−1, where d is the digit size, and R(x)= xl ,

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 21

then we could use equation (4.5) to compute C(x) :

C(x) =((A(x)Bs−1(x)x−lxd +A(x)Bs−2(x)x−l)xd + · · ·+A(x)B1(x)x−l)xd

+A(x)B0(x)x−l
(4.5)

Thus an algorithm of MSD-first Montgomery multiplication can be presented by Table 4.1.

Table 4.1: Digit-serial MSD-first Montgomery Multiplier (R(x) = xl), where 0 6 l 6 d−1
Algorithm I Digit-serial MSD-first Montgomery Multiplier
Inputs: A(x),B0(x),B1(x), . . . ,Bs−1(x), f (x)
Outputs: C(x) = A(x)B(x)x−l mod f (x), 0 6 l 6 d−1
Step 1: C(0)(x) = 0

For i = 0 to s−1
Step 2: T (x) = A(x)Bs−1−i(x)x−l mod f (x)
Step 3: C(i+1)(x) =C(i)(x)xd +T (x) mod f (x)
Step 4: C(x) =C(s)(x)

Step 1 is the initialization step, register C is set to zero, C(x)(0) = 0. In Step 2, the
product of A(x), Bs−i−1 and x−l is computed, and the reduction operation is also processed
in the same step. Then, in Step 3, the value generated in Step 2 is added with C(i)xd

mod f (x) and the result is stored back to the register. When i = s−1, C(s) will be obtained,
the multiplier will provide the final result. Step 2 and 3 are processed in the same cycle,
also note that the calculation of Step 2 and C(i)(x)xd in Step 3 can be done in parallel.

4.1.2 General Architecture

Fig 4.1 presents the block diagram of the proposed multiplier. The Multiplier Core unit
implements Step 2, also an XOR array is included in Multiply Core to implement the
addition operation in Step 3. Modular-Shift unit corresponds to C(i)xd mod f (x) in Step
3. The final result is provided in the register unit, REG C. By computing Step 2 in different
orders, different architectures of the proposed multiplier can be obtained. This subsection
will present a general architecture.

In Step 2, if the product of A(x) and Bs−i−1(x) is computed first, then the result times
x−l followed by the reduction operation mod f (x). The degree range of A(x)Bs−i−1(x)x−l

would be from −l to m+d− l−2, and the reduction operation needs to reduct the product

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 22

Figure 4.1: Block diagram of proposed digit-serial MSD-first Montgomery multiplier when
R(x) = xl

from [−l,m+d− l−2] to [0,m−1]. It is clearly a two-side reduction operation: both side
of polynomial A(x)Bs−i−1(x)x−l are beyond the bandwidth of GF(2m). To further analyze
the computation of Step 2, we let A(x)Bs−i−1(x)x−l = TH(x)+TM(x)+TL(x), the degree
range of TH(x),TM(x),TL(x) are [m,m+ d− 2− l], [0,m− 1], [−l,−1], respectively. The
reduction operation can be calculated as following equations:

Terms in TH(x) : xm+d−2−l mod f (x) =xk3+d−2−l + xk2+d−2−l + xk1+d−2−l

+ xd−2−l

...

xm+1 mod f (x) =xk3+1 + xk2+1 + xk1+1 + x

xm mod f (x) =xk3 + xk2 + xk1 +1

Terms in TL(x) : x−1 mod f (x) =xm−1 + xk3−1 + xk2−1 + xk1−1

x−2 mod f (x) =xm−2 + xk3−2 + xk2−2 + xk1−2

...

x−l mod f (x) =xm−l + xk3−l + xk2−l + xk1−l

(4.6)

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 23

Figure 4.2: General architecture of the proposed multiplier when R(x) = xu

According to equation (4.6), from TH(x) reduction, four extra bit-strings are generated,
the degree range of these are: [k3,k3 + d− 2− l], [k2,k2 + d− 2− l], [k1,k1 + d− 2− l],
[0,d−2− l]. Similarly, another four bit-strings are generated by TL(x) reduction operation:
[m− l,m−1], [k3− l,k3−1], [k2− l,k2−1], [k1− l,k1−1]. Especially, bit-string [k3,k3 +

d−2− l] and [k3− l,k3−1] can be combined into one bit-string with range [k3− l,k3+d−
2− l], in this way, all eight bit-strings can be transformed into five bit-string with degree
range equal to: [m− l,m− 1], [k3− l,k3 + d− 2− l], [k2− l,k2 + d− 2− l], [k1− l,k1 +

d− 2− l], [0,d− 2− l], respectively. In order to avoid further reduction operation, the
equations 4.6) must satisfy such conditions:

k3 +d−2− l 6 m−1

k1− l > 0
(4.7)

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 24

After simplifying equation (4.7):

k3 6 m+1+ l−d

k1 > l
(4.8)

From equation (4.6), we notice that we need to add up five bit-strings to TM(x), the gate
usage is a constant number which is equal to 4(d− 1). This fact indicates that the com-
putation of A(x)Bs−1−i(x)x−l mod f (x) will not generate extra gate delay when compared
with the computation of A(x)Bs−1−i(x) mod f (x). However, the time delay varies with
different value of k1,k2,k3. To have the minimum time delay TX , the five bit-strings should
have no overlapped parts, so the following conditions must be satisfied:

m− l > k3 +d−2− l

k3− l > k2 +d−2− l

k2− l > k1 +d−2− l

k1− l > d−2− l

(4.9)

To sum up, ki (i = 0,1,2,3) must satisfy:

ki+1− ki > d−1 (4.10)

Where k0 = 0 and k4 = m, this condition is denoted as Constraint Condition 1. Besides,
from equation (4.10), k1 > d− 1 > l, and m− k3 > d− 1 > d− 1− l, this fact implies
that if equation (4.10) is applied when selecting the irreducible pentanomials of GF(2m),
equation (4.8) will also be satisfied. The general architecture of the proposed multiplier is
presented in Fig 4.2.

In Multiply Core unit, the implementation of A(x)Bs−i−1(x) is simple: operand A(x) is
multiplied by each bit of Bs−1−i(x), and add up the terms with same degree. This block
costs totally md AND gates for the multiplication operation, and (m−1)(d−1) XOR gates
for the field addition operations. The critical path delay of this unit is log2dTX +TA. The
reduction operation costs 4(d−1) XOR gates and if Constraint Condition 1 is applied, the
time delay is TX . Also, the XOR array needs m XOR gates and time delay is TX . Where
TX and TA donate a two-input XOR gate and a two-input AND gate respectively. Thus, the

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 25

Multiply Core unit costs md AND gates, (md+3d−3) XOR gates, and critical path delay
is TA +(2+ log2d)TX

REG C unit updates the value of C(i)(x) every clock cycle. This unit is implemented by
a D-flipflop array, with m D-flipflops connected in parallel.

Modular-Shift unit computes the modular multiplication C(i)(x)xd mod f (x). If C(i)
d (x)

represents the most significant d bits of C(i), equation (4.11) can be used to present the
computation of C(i)(x)xd mod f (x).

C(i)(x)xd mod f (x) =C(i)
d (x)(xk3 + xk2 + xk1 +1)+

m−1

∑
i=d

c(i)i−dxi (4.11)

To add up the five bit-strings together, in total 3d XOR gates will be needed, see Fig 4.3 for
the implementation of equation (4.11) operation. By applying the condition obtained by
equation (4.10), when ki+1− ki > d, the four bit-strings, C(i)

d (x)xk3 , C(i)
d (x)xk2 , C(i)

d (x)xk1 ,
and C(i)

d (x) will share no terms with same degree, thus the time delay of this circuit would
be TX . For example, we let k2 = k3−d, so the degree range of C(i)

d (x)xk3 is [k3,k3 +d−1]
while the degree range of C(i)

d (x)xk2 is [k2,k2+d−1] which equals [k2,k3−1]. When ki+1−
ki = d − 1, the degree range of C(i)

d (x)xk3 , C(i)
d (x)xk2 , C(i)

d (x)xk1 , and C(i)
d (x) are [k3,m],

[k2,k3], [k1,k2] and [0,k1] respectively, it can be seen that each two of them having one
term with the same degree, thus the maximum depth of XORing these four bit strings is 2.
In addition, since the range of C(i)

d (x)xk3 is [k3,m], the term with degree m needs another
reduction operation and this will generate three more bits for XORing. As a consequence,
the maximum depth of the XOR tree involved in this unit is 4, the time delay of this unit is
maximumly log24TX = 2TX , gate count is 6 3d +3.

Figure 4.3: Implementation of equation (4.11)

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 26

The critical path of this architecture is: Multiply Core1→ REG C. The complexity
of each block is presented in Table 4.2, and the complexity of the proposed multiplier is
presented in Table 4.3. In the tables, TDFF represents the delay of a D-flipflop.

Table 4.2: Complexity of each block of the proposed MSD-first Montgomery multiplier
Block Gate Count Time Delay

Multiply Core md AND, md +3d−3 XOR TA +(2+ log2d)TX
REG C m D-flipflop TDFF

Modular-Shift 6 3d +3 XOR 6 2TX

Table 4.3: Complexity of proposed digit-serial MSD-first Montgomery multiplication (Al-
gorithm I, general architecture, when ki+1− ki > d−1,k0 = 0,k4 = m and 0 6 l 6 d−1)

Work #AND #XOR #FF/Reg #CLK Critical path delay
MSD(Arch.1) md 6 md +6d m s TA +(2+ log2d)TX +TDFF

4.1.3 Advanced Architecture

In this subsection, another architecture of the proposed multiplier one is introduced, the
structure of Multiply Core unit is different from the previous one.

If A(x)Bs−i−1(x)x−l mod f (x) is computed in a different order, see equation 4.12.
This indicates that A(x)x−l mod f (x), A(x)x−l+1 mod f (x), · · · , A(x)xd−l−1 mod f (x)

are computed first, then multiply each term with the corresponding bit of Bs−1−i(x).

A(x)Bs−i−1(x)x−l mod f (x)

=A(x)
d−1

∑
j=0

b(s−i−1)d+ jx
jx−l mod f (x)

=
d−1

∑
j=0

(A(x)x j−l mod f (x))b(s−i−1)d+ j

(4.12)

The reduction operation is provided in equation 4.6 Based on that equation, A(x)x

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 27

mod f (x) can be computed in this way:

A(x)x mod f (x) = am−1(xk3 + xk2 + xk1 +1)+
m−1

∑
i=1

ai−1xi (4.13)

Fig 4.4 is a circuit diagram which implements equation (4.13): when input A(x), it will
output A(x)x mod f (x). If we connect two of such models in serial, the final output would

Figure 4.4: Model 1: multiply by x structure

be A(x)x2 mod f (x), see Fig 4.5. In the same way, we could obtain each value of A(x)x j−l

mod f (x), when j = l +1, l +2, . . . ,d−1.
Similarly, the computation of A(x)/x mod f (x) is shown in equation (4.14)

A(x)/x mod f (x) = a0(xm + xk3 + xk2 + xk1)
m−2

∑
i=0

ai+1xi (4.14)

The implementation of equation (4.14) is shown in Fig 4.6. As a consequence, by combin-
ing multiples of the same circuit unit shown in Fig 4.6, each value of A(x)x j−l mod f (x)

can be obtained, where j = 0,1,2, . . . , l−1.
If we apply both Model 1 shown in Fig. 4.4 and Model 2 shown in Fig 4.6 to the

implementation of equation (4.12), then the reduction operation is divided into two separate
branches: one for the reduction of degrees larger than m− 1; another for the reduction of
degrees smaller than 0. The architecture is presented in Fig 4.7. Note that blocks marked

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 28

Figure 4.5: Implementation of computation A(x)x2 mod f (x)

with x represent the circuit structure of Model 1, and blocks marked with x−1 represent
Model 2. The architecture of the proposed multiplier is given in Fig 4.8. The depth of the
XOR tree is d +1, the XOR tree adds up all d products of A(x)x j−lb(s−1−i)d+ j mod f (x)

plus the value of REG C.
In order to have the least critical path delay of the Multiply Core unit, two groups of

conditions must be satisfied at the same time:
Condition 1:

m− l > k3−1

k3− l > k2−1

k2− l > k1−1

k1− l >−1

(4.15)

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 29

Figure 4.6: Model 2: multiply by x−1 structure

Condition 2:

m > k3 +d−2− l

k3 > k2 +d−2− l

k2 > k1 +d−2− l

k1 > d−2− l

(4.16)

To sum up, Condition 1 is ki+1−ki > l−1, and Condition 2 is ki+1−ki > d− l−2, where
i = 0,1,2,3, k0 = 0, k4 = m. Thus, to have the least time delay, k3,k2,k1 must satisfy:

ki+1− ki > max{l,d− l−1}, i = 0,1,2,3 and k0 = 0, k4 = m (4.17)

This condition is denoted as Constraint Condition 2. More specifically, when l > (d−1)/2,
ki+1− ki > l; when l < (d− 1)/2, ki+1− ki > d− l− 1; when l = (d− 1)/2, ki+1− ki >

d/2−1/2, since d usually an even number, ki+1− ki > d/2.
The remaining two units are completely the same with the architecture shown in Fig

4.2. REG C is implemented by a D-flipflop array, and Modular Shift unit costs a maximum
of 5d XOR gates, and 2TX time delay. The complexity of this architecture is shown in Table
4.4.

Comparing the general architecture with the advanced architecture, the gate count of

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 30

Figure 4.7: Implementation of A(x)Bs−i−1(x)x−l mod f (x)

Figure 4.8: Advanced architecture of proposed multiplier

both architectures are completely the same, and they all need s = dm/de clock cycles to
complete computation. However, the time delay of the latter one is shorter. Besides, the

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 31

Table 4.4: Complexity of proposed digit-serial MSD-first Montgomery multiplication (Al-
gorithm I, advanced architecture, when ki+1− ki > max{l,d− l− 1}, i = 0,1,2,3, k0 =
0, k4 = m and 0 6 l 6 d−1)

Work #AND #XOR #FF/Reg #CLK Critical path delay
MSD(Arch.2) md 6 md +8d−3 m s TA +(1+ log2(d +1))TX +TDFF

latter architecture further extends the constraint condition of ki from ki+1− ki > d− 1 to
ki+1− ki > max{l,d− l− 1}, which indicates that more irreducible pentanomials can be
applied to such Montgomery multiplication.

4.2 Proposed Digit-Serial LSD First Montgomery Multi-
plier

In this section, a digit-serial LSD first Montgomery Multiplier is proposed, and two dif-
ferent architectures are discussed when implementing the proposed multiplier. One of the
architectures uses separate multiplication and reduction units, while the other one uses a
linear-feedback-shift-register (LFSR) based structure.

4.2.1 Algorithm

Suppose A(x),B(x) ∈ GF(2m), in polynomial representation, B(x) is divided into digits of
the same size:

B(x) =
s−1

∑
i=0

xidBi(x), where s = dm/de (4.18)

Let C(x) be the product of A(x), B(x), and a fixed element R−1(x) = x−u = x−sl , where
l > 0, and l is an integer, the Montgomery multiplication can be computed by the way
shown in equation (4.19). Based on equation (4.19), an algorithm of digit-serial LSD-first
Montgomery multiplier can be proposed, see Table 4.5.

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 32

C(x) =A(x)
s−1

∑
i=0

xidBi(x)x−sl

=A(x)B0(x)x−sl +A(x)xdB1(x)x−sl +A(x)x2dB2(x)x−sl+

· · ·+A(x)x(s−1)dBs−1(x)x−sl

=A(x)B0(x)x−sl +A(x)xd−lB1(x)x−(s−1)l +A(x)x2(d−l)B2(x)x−(s−2)l+

· · ·+A(x)x(s−1)(d−l)Bs−1(x)x−l

=(((A(x)B0(x)x−l +A(x)xd−lB1(x))x−l +A(x)x2(d−l)B2(x))x−l+

· · ·+A(x)x(s−1)(d−l)Bs−1(x))x−l

(4.19)

Table 4.5: Digit-serial LSD-first Montgomery Multiplier (R(x) = xsl), where l > 0
Algorithm II Digit-serial LSD-first Montgomery Multiplier
Input: A(x), Bi(x), f (x), i = 0,1, . . . ,s−1
Outputs: C(x) = A(x)B(x)x−sl mod f (x), where s = dm/de
Step 1: A(0)(x) = A(x), C(0)(x) = 0

For i = 0 to s−1
Step 2: Ti(x) = A(i)(x)Bi(x)
Step 3: C(i+1)(x) = (C(i)(x)+Ti(x))/xl mod f (x)
Step 4: A(i+1)(x) = A(i)(x)xd−l mod f (x)
Step 5: C(x) =C(s)(x)

In Table 4.5, Step 1 is an initialization step, registers A and C are both set to zero; Step
2 computes the product of A(i)(x) and Bi(x); the result of Step 2 is forwarded to Step 3,
after adding the value of register C, a shift-to-right modulo operation is processed; Step 4
generates Ai+1(x) as the operand of next clock cycle; when i = s−1, register C will output
the final result at the end of the clock cycle.

4.2.2 General Architecture

The structure of the multiplier is shown in Fig 4.9. From top to bottom, block S1 computes
Step 4; REG A updates every clock cycle; the Multiply Core computes the product of
A(i)(x) and Bi(x), note that the output bandwidth of the core is m+d−1; the XOR symbol

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 33

represents the operation Ti(x)+C(i)(x); block S2 computes the operation multiply by x−l

modulo f (x); and finally, REG C stores the result of each clock cycle, and obtains the final
product.

Figure 4.9: General architecture of the proposed digit-serial LSD first multiplier

When 0 6 l 6 d−1, with the change of l, the complexity of block S1 and S2 will also
change, while the rest of the blocks remain the same. The implementation of Multiply Core
is simply logic AND each of the two operands, then add up the terms which have the same
degree. The two register unit includes only D-flipflops. Table 4.6 shows the complexity of
Multiply Core, REG A, REG C, and the XOR array: The same as the proposed MSD first

Table 4.6:
Block Gate Count Time Delay

Multiply Core & XOR array md AND, md−d +1 XOR TA + log2(d +1)TX
REG A m D-flipflop TDFF
REG C m D-flipflop TDFF

multiplier, the reduction operation in Step 3 is also a two-side reduction. The computation

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 34

equation is referred to equation (4.6):

xm+d−l−2 mod f (x) = xk3+d−l−2 + xk2+d−l−2 + xk1+d−l−2 + xd−l−2

...

xm mod f (x) = xk3 + xk2 + xk1 +1

x−1 mod f (x) = xm−1 + xk3−1 + xk2−1 + xk1−1

x−2 mod f (x) = xm−2 + xk3−2 + xk2−2 + xk1−2

...

x−l mod f (x) = xm−l + xk3−l + xk2−l + xk1−l

(4.20)

In order to further optimize the time delay, the condition of ki, i = 1,2,3, must be
satisfied, see equation (4.10) Specifically, when l = 0, the proposed multiplier would be a

Table 4.7: Complexity of digit-serial LSD Montgomery multiplication (Algorithm II, when
1 6 l 6 d−1 and ki+1− ki > d−1, k0 = 0, k4 = m)

Work #AND #XOR #FF/Reg #CLK Critical path delay
LSD(1 6 l 6 d−1) md md +3(2d− l−1) 2m s TA +(1+ log2(d +1))TX +TDFF

standard polynomial multiplier; when l = d−1, the XOR gate cost is the lowest, which is
equal to md +3d.

When l = d, the architecture of the multiplier can be further optimized: since d− l =

0, REG A and S1 can be saved, S2 computes multiply by x−d mod f (x), the reduction
operation is only one-side. Table 4.8 gives the complexity summary when l = d.

Table 4.8: Complexity of digit-level Montgomery multiplication (Algorithm II, when l = d,
and ki+1− ki > d−1, k0 = 0, k4 = m)

Work #AND #XOR #FF/Reg #CLK Critical path delay
LSD(l = d) md md +3d m s TA +(1+ log2(d +1))TX +TDFF

When l > d + 1, since l > l− d, we could predict that if we avoid multiple reduction
operations in block S2, we could also avoid the multiple reduction in block S1. Besides,
since l > d+1, the modulo f (x) operation is only one-side reduction. l must satisfy l 6 k1

to avoid multiple reduction.

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 35

Assume we divide (C(i)(x)+Ti(x))/xl into two parts:

(C(i)(x)+Ti(x))/xl = T (x)+TL(x) (4.21)

Then the reduction operation would be:

(C(i)(x)+Ti(x))/xl mod f (x) = TL(x)xm+TL(x)xk3 +TL(x)xk2 +TL(x)xk1 +T (x) (4.22)

The degree range of each product in equation (4.22) is presented in Table 4.9.

Table 4.9: Degree range of each term of equation (4.22)
Terms Degree Range

TL(x)xm [m− l,m−1]
TL(x)xk3 [k3− l,k3−1]
TL(x)xk2 [k2− l,k2−1]
TL(x)xk1 [k1− l,k1−1]

T (x) [0,m+d− l−2]

From Table 4.9, obviously, m+d− l−2 < m−1, thus, instead of using l XOR gates to
add term TL(x)xm−l to T (x), we only need d−1 XOR gates. Similarly, if m+d− l−2 <

k3− 1, the XOR gate count of block S2 can be further reduced. Here we use a table to
present this result, see Table 4.10

Table 4.10: Value of l in terms of XOR gate usage of block S1
Conditions XOR Gate Count of Block S1

d +1 6 l 6 min{m+d− k3−1,k1} 3l +d−1
m+d− k3 6 l 6 min{m+d− k2−1,k1} 2l +2(d−1)+(m− k3)
m+d− k2 6 l 6 min{m+d− k1−1,k1} l +3(d−1)+(m− k3)+(m− k2)

m+d− k1 6 l 6 k1 4(d−1)+(m− k3)+(m− k2)+(m− k1)

Considering the time delay of block S2, when conditions k3 < m− l+1, k2 < k3− l+1,
and k1 < k2− l +1 are all satisfied, the time delay is TX . To sum up, ki must satisfy:

ki+1− ki > l (4.23)

where i = 0,1,2,3 and k0 = 0, k4 = m. However, comparing with equation (4.10), equation

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 36

(4.23) has narrowed the condition. The complexities of the multiplier when l > d is referred
to Table 4.11.

Table 4.11: Complexity of digit-level Montgomery multiplication (Algorithm II, when l >
d, and ki+1− ki > l, k0 = 0, k4 = m)

Work #AND #XOR #FF/Reg #CLK Critical path delay
LSD(l > d) md 6 md +6l−3d 2m s TA +(1+ log2(d +1))TX +TDFF

4.2.3 LFSR-Based Architecture

When 0 6 l 6 d−1, a LFSR-based architecture can be provided.

Table 4.12: LFSR-Based Digit-serial LSD-first Montgomery Multiplier (R(x) = xsl), where
0 6 l 6 d−1

Algorithm III LFSR-Based Digit-serial LSD-first Montgomery Multiplier
Input: A(x), Bi(x), f (x), i = 0,1, . . . ,s−1
Outputs: C(x) = A(x)B(x)x−sl mod f (x), where s = dm/de
Step 1: A(0)(x) = A(x), C(0)(x) = 0

For i = 0 to s−1
Step 2: Ti(x) = A(i)(x)Bi(x)/xl mod f (x)
Step 3: C(i+1)(x) =C(i)(x)/xl mod f (x)+Ti(x)
Step 4: A(i+1)(x) = A(i)(x)xd−l mod f (x)
Step 5: C(x) =C(s)(x)

A minor change in Step 2 and 3 of Algorithm II is applied, and Table 4.12 presents the
new algorithm. In Algorithm III, Step 2 is computed as follows:

Ti(x) =
d−1

∑
j=0

A(i)x j−l mod f (x) ·bid+ j (4.24)

In equation (4.24), A(i)x j−l mod f (x) is computed first, then logic AND each bit of Bi(x).
Since j = 0,1,2, . . . ,d − 1, when j = d − 1, the corresponding term of A(i)x j−l equals
A(i)xd−l−1, also note that in Step 4 of Algorithm III, A(i)xd−l = A(i)xd−l−1 · x, thus, by
applying the circuit structure provided by Fig 4.4 and Fig 4.6, a LFSR based architecture
can be obtained, see Fig 4.10.

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 37

Figure 4.10: LFSR-based architecture of the proposed LSD Montgomery multiplier

In the architecture, register A and d− l Model 1 units consist of a linear feedback shift
circuit, in addition, multiplying x modular operation and multiplying x−1 modular operation
are divided into two separate parts. Each unit of Model 1 and Model 2 cost 3 XOR gates,
and in total, 3(d)dXOR gates. Thus, to have the minimum time delay of the architecture,
ki must satisfy:

ki+1− ki > max{l,d− l−1} (4.25)

where i = 0,1,2,3, k0 = 0, and k0 = m. By applying the condition described in equation
(4.25), the time delay of Multiply x−l mod f (x) will be TX , and costs 3l XOR gates. The
remaining blocks, REG A and REC C, have the same structure with as the general archi-
tecture reported in subsection 4.2.2. Table 4.13 gives the complexity of such architecture.
Compared with the general architecture, the proposed architecture in this subsection has

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 38

the same critical path delay. However, the LFSR-based architecture broadens the condi-
tion of irreducible pentanomial selection, the condition is extended from equation (4.10) to
equation (4.25), also note that if we change parameter l to u, equation (4.25) is completely
the same with equation (4.17).

Table 4.13: Complexity of digit-level Montgomery multiplication (Algorithm III, when
0 6 l 6 d−1, and ki+1− ki > max{l,d− l−1}, k0 = 0, k4 = m)

Work #AND #XOR #FF/Reg #CLK Critical path delay
LSD(LSFR) md md +3d +3l 2m s TA +(1+ log2(d +1))TX +TDFF

4.3 Complexity Analysis

In this section, complexities of the proposed work in terms of gate count and time delay
will be investigated and compared with several types of digit-level multipliers. Table 4.14
gives the practical time delay of 2-input AND gate and 2-input XOR gate at 25°C, 1.8V

based on CMOSP18 technology as a reference.

Table 4.14: Intrinsic delay of XOR2 and AND2 gate, we assume each gate could drive a
maximum of two gates (25°C, 1.8V , CMOSP18 Tech., Y = A ·B, or Y = A⊕B)

Description Delay of AND2(ns) Delay of XOR2(ns)
A→ Y ↑ 0.0720 0.1351
A→ Y ↓ 0.0970 0.1294
B→ Y ↑ 0.0763 0.1209
B→ Y ↓ 0.1091 0.1475

Table 4.15 gives the comparison result of the work reported in [28] and our proposed
work, both are digit-serial Montgomery multipliers. From the table, it can be seen that the
critical path delay of the proposed works are better then [28]. As a trade off, the XOR gate
count is greater than [28], except when the case l = d, our proposed works have even better
gate count than the works reported in [28].

The proposed works are Montgomery multiplier, the definition of which is different
from general polynomial basis multipliers. Since both multiplications can be done using
polynomial basis, and they are similar in architecture level, thus we consider they are com-
parable.

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 39

Table 4.15: Digit-serial Montgomery multipliers comparison (f (x) = xm+xk3 +xk2 +xk1 +
1, s = m/d)

Type Work #AND #XOR #DFF #CLK Critical path delay

MSD

f (x) for general irreducible pentanomials
[28](xm) md md +3d 2m s TA +(3+ dlog2de)TX +TDFF

[28](xm−1) md md +3d 2m s TA +(3+ dlog2de)TX +TDFF
f (x) satisfying ki+1− ki > d−1, i = 0,1,2,3, k0 = 0, k4 = m

Proposed(Arch.1,xl) md 6 md +6d m s TA +(2+ dlog2de)TX +TDFF
f (x) satisfying ki+1− ki > max{l,d− l−1}

Proposed(Arch.2,xl) md 6 md +8d−3 m s TA +(1+ dlog2(d +1)e)TX +TDFF

LSD

f (x) for general irreducible pentanomials
[12](xm) 2m2 +md 2m2 +md +4s2 4ms+2m s 4TA +7TX +4TDFF

f (x) satisfying ki+1− ki > d−1
Proposed(l < d,xsl) md md +3(2d− l−1) 2m s TA +(1+ dlog2(d +1)e)TX +TDFF
Proposed(l = d,xm) md md +3d m s TA +(1+ dlog2(d +1)e)TX +TDFF

f (x) satisfying ki+1− ki > max{l,d− l−1}
Proposed(LSFR, xsl) md md +3d +3l 2m s TA +(1+ dlog2(d +1)e)TX +TDFF

Table 4.16 shows the comparison between the proposed MSD first multipliers and a
group of MSD first Polynomial Basis finite field multipliers, and the field is generated by
irreducible pentanomials. The table implies that the proposed MSD first multipliers have
the smallest gate count. The time delay of the proposed multipliers are smaller than [17],
but larger than that of [13], however, [13]’s work need one extra clock cycle to obtain the
final result since a final reduction unit is applied in [13]’s proposed multiplier.

Table 4.16: Proposed multipliers compared with Polynomial Basis finite field multipliers
(MSD cases, f (x) = xm +xk3 +xk2 +xk1 +1, s = dm/de, TDFF represents the time delay of
a D-flipflop)

Work #AND #XOR #DFF #CLK Critical path delay
f (x) for general irreducible pentanomials

[13](MSD) md 2md−d +m m+d s+1 TA + dlog2(2d +1)eTX +TDFF
[17] md 3(d2 +d)/2+md m s TA +(3+ dlog2de)TX +TDFF

f (x) satisfying ki+1− ki > d−1, i = 0,1,2,3, k0 = 0, k4 = m
Proposed(Arch.1) md 6 md +6d m s TA +(2+ dlog2de)TX +TDFF

f (x) satisfying ki+1− ki > max{l,d− l−1}
Proposed(Arch.2) md 6 md +8d−3 m s TA +(1+ dlog2(d +1)e)TX +TDFF

Table 4.17 presents the comparison results between proposed LSD first multiplier and
LSD first PB multipliers. When l = d and l = d−1, the XOR gate usage of the proposed
LSD first multipliers is minimum. It can be seen the proposed works have the least usage
of AND gate, register and MUX cell, but the XOR gate usage is more than the architecture

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 40

reported in [24], that is because a T-flipflop is applied to implement the accumulator instead
of a D-flipflop and a XOR gate. Also, [19]’s work uses a final reduction unit to compute
the reduction operations instead of computing the reduction operation in each clock cycle,
the critical path delay of [19] is shorter than the proposed multipliers, but a one more clock
cycle is required before obtaining the final result. Therefore, by taking the both gate count
and time delay into consideration, the proposed LSD-first multipliers are still remarkable.

Table 4.17: Proposed multipliers compared with Polynomial Basis finite field multipliers
(LSD cases, TM represents the time delay of a 2×1 Multiplexer, TT FF represents the time
delay of a T-flipflop)

Work #AND #XOR #DFF/TFF #MUX #CLK Critical path delay
f (x) for general irreducible pentanomials

[13](LSD) md 2md−d +m 2m+d−1 m s+1 TA + dlog2(d +1)eTX +TDFF +TM
[19] md +8d−4 md +7d−4 2m+d−1 0 s+1 TA + dlog2(d +1)eTX +TDFF
[24] md m(d−1)+3(d2 +d)/2 2m+d 0 s TA +(2+ dlog2de)TX +TT FF

f (x) satisfying ki+1− ki > d−1, i = 0,1,2,3, k0 = 0, k4 = m
Proposed(l < d) md md +3(2d− l−1) 2m 0 s TA +(1+ dlog2(d +1)e)TX +TDFF
Proposed(l = d) md md +3d m 0 s TA +(1+ dlog2(d +1)e)TX +TDFF

f (x) satisfying ki+1− ki > max{l,d− l−1}
Proposed(LSFR) md md +3d +3l 2m 0 s TA +(1+ dlog2(d +1)e)TX +TDFF

If we let m= 233, d = 8 and l = 4, thus, s=m/d = 30, and consider the area and latency
by making the following assumptions: (1) The VLSI areas of an XOR gate is approximately
two times of the area of an AND gate 2AND=XOR, as well as the gate delay 2TA = TX ;
(2) The VLSI areas and time delay of an DFF is approximately three times of an AND gate
3AND=DFF, 3TA = TX ; (3) The VLSI areas and time delay of an TFF is approximately 3.5
times of an AND gate 3.5AND=TFF, 3.5TA = TX ; (4) The VLSI areas and time delay of
an 2X1 Multiplexer is approximately two times of an AND gate 2AND=MUX, 2TA = TM.
Based on these assumptions, we could use the gate count and delay of AND gate to estimate
the efficiency of the proposed and existing works. See Table 4.18 and Table 4.19.

In Table 4.18, use area and delay of AND gate to estimate the Montgomery multipliers,
and assume the area and time efficiency of the proposed MSD multiplier is 100%, then cal-
culate the efficiency of other proposed architecture and existing Montgomery multipliers.
Note that when value of efficiency less than 100% implies a improvement is applied. The
result shows when m = 233 and d = 8, the architecture of the proposed MSD and LSD-first
Montgomery multipliers could reduce the time delay compared with [28] and [12], also
with the reduced area cost.

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 41

Table 4.18: Efficiency of the proposed multipliers and existing Montgomery multipliers
(m = 233, d = 8, if l < d, then l = 4)

Work Area Area Efficiency Time Delay Time Efficiency
[12] 423804 6635.42% 30 214.29%

[28](xm) 7038 110.19% 16 114.29%
[28](xm−1) 7038 110.19% 16 114.29%

Proposed(MSD, Arch.1, xl) 6387 100% 14 100%
Proposed(MSD, Arch.1, xl) 6413 100.41% 14 100%
Proposed(LSD, l < d, xsl) 7056 110.47% 14 100%
Proposed(LSD, l = d, xsl) 6339 99.25% 14 100%
Proposed(LSD, LSFR, xsl) 7062 110.57% 14 100%

Table 4.19: Efficiency of the proposed multipliers and existing PB multipliers (m = 233,
d = 8, if l < d, then l = 4)

Work Area Area Efficiency Time Delay Time Efficiency
[13](MSD)* 10493 164.29% 14 100%
[13](LSD)* 11655 182.48% 14 100%

[17] 6483 101.50% 16 114.29%
[19]* 7175 112.34% 12 85.71%
[24] 6470 101.30% 14.5 103.57%

Proposed(MSD, Arch.1, xl) 6387 100% 14 100%
Proposed(MSD, Arch.1, xl) 6413 100.41% 14 100%
Proposed(LSD, l < d, xsl) 7056 110.47% 14 100%
Proposed(LSD, l = d, xsl) 6339 99.25% 14 100%
Proposed(LSD, LSFR, xsl) 7062 110.57% 14 100%

In Table 4.19, works mark with “*” need one extra clock cycle to obtain the final re-
sult. We assume the proposed MSD-first architecture has 100% efficiency and compare it
with other proposed Montgomery multipliers and existing PB multipliers. In general, the
proposed architectures further reduce the time delay, the area cost is within comparable
size.

According to these comparisons, by applying the proposed two classes of fields, the
proposed MSD-first digit-serial Montgomery multiplier and LSD-first digit-serial Mont-
gomery multiplier have less time delay than the existing digit-level Montgomery multipli-
ers, and less than most of the existing Polynomial Basis multipliers. The gate count of the
proposed multipliers is also comparable with the most existing works. The proposed work

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 42

is remarkable in terms of the further reduction of the critical path delay.

4.4 FPGA Implementation of the Proposed Multipliers

In this section, the proposed MSD-first and LSD-first Montgomery multipliers are imple-
mented using FPGA. The advanced architecture of the MSD-first multiplier is selected to
be implemented while the general architecture of the LSD-first multiplier is selected. The
finite field size is set to be m = 233, and polynomial f (x) = x233 + x185 + x121 + x105 +1 is
chosen to generate GF(2233). Digit size d = 8; integer u of the MSD-first multiplier and l

of the LSD-first multiplier equal 4 respectively. FPGA development tool: Quartus II v9.1
and ModelSim v6.5b. FPGA model: Stratix II, EP2S60F1020C3.

4.4.1 Summary of the MSD-First Multiplier Implementation

Table 4.20: Cells usage of compilation (m = 233, d = 8, u = 4)
Cells Usage

Total registers 233
Total pins 476

≤ 3-input combinational ALUT 0
4-input combinational ALUT 227
5-input combinational ALUT 436
6-input combinational ALUT 275
Total combinational functions 938

Table 4.21: Gate count of each module (m = 233, d = 8, u = 4)
Module #Logic combinational functions #Register
REG C 0 233

Multiply Core 959 0
Unit of Multiplied by xd 24 0

Top-level 983 233

Table 4.20 provides the usage of logic cells, including gates, pins as well as registers,
after compiling. The term logic unit in the table represents logic gates and other types of

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 43

Table 4.22: Time complexity of the design (m = 233, d = 8, u = 4)
Clock setup Restricted to 500.00MHz
Clock period 2.000ns

Number of clock cycles for one multiplication 30
Total time cost for one multiplication 60.0ns

logic cells which are involved in a FPGA device. Table 4.21 shows the gate count of each
module, since the compiler may optimize the structure when compiling, thus some modules
may contains fewer logic elements than the designed architecture. Table 4.22 is a summary
of time complexity of the design. Clock setup is the maximum operation speed the design
can reach. In this implementation, the maximum clock frequency of the selected FPGA is
500MHz. Also the number of cycles and processing time for one multiplication are also
included.

4.4.2 Summary of the LSD-First Multiplier Implementation

Table 4.23: Cells usage of compilation (m = 233, d = 8, l = 4)
Cells Usage

Total registers 466
Total pins 476

≤ 3-input combinational ALUT 12
4-input combinational ALUT 224
5-input combinational ALUT 451
6-input combinational ALUT 257
Total combinational functions 944

Table 4.24: Gate count of each module (m = 233, d = 8, l = 4)
Module #Logic combinational functions #Register
REG A 0 233
REG C 0 233

Multiply Core 911 0
S1 12 0
S2 21 0

Top-level 944 233

CHAPTER 4. PROPOSED DIGIT-SERIAL MONTGOMERY MULTIPLIERS 44

Table 4.25: Time complexity of the design (m = 233, d = 8, l = 4)
Clock setup 326.16MHz
Clock period 3.066ns

Number of clock cycles for one multiplication 30
Total time cost for one multiplication 91.98ns

Note that the fixed element R(x) of the proposed digit-serial LSD-first Montgomery
multiplier is R(x) = xsl . The compilation results shows that the proposed LSD-first mul-
tiplier doubles the usage of the register compared with the proposed MSD-first multiplier,
also the clock frequency is lower, however, the usage of logic element is less than the
proposed MSD-first one.

Chapter 5

FPGA Implementation of Inverse
Generator

In this chapter, we will introduce the FPGA implementation of a normal basis inverse gen-
erator. We first give the architecture of the inverse generator. Then, schemes for each
module of the generator are provided and explained respectively, as well as an algorithm of
the normal basis multiplication over GF(2m). We also obtain the simulation and compila-
tion result of our designed inverse generator, the gate usage and clock setup are included in
our implementation result. FPGA development tool: Quartus II v9.1 and ModelSim v6.5b.
FPGA model: Stratix II, EP2S60F1020C3.

5.1 The Design of Inverse Generator

Fig 5.1 presents the architecture of the designed normal basis inverse generator [30]. And
Fig 5.2 shows the block diagram for FPGA implementation. Comparing the previous two
figures, the REG2 and 2x-power blocks are replaced by a shift register block, since the 2x

exponentiation operation in normal basis is simply shift operation, see equation (5.1) as an
example. Besides, the normal basis multiplier module is implemented using a digit-level
structure in order to reduce the gate count, and the number of clock cycle will be increased
as a trade off. Also we add some control signals in order to control the operation of the
design: input ”clk” signal to provide system clock; ”clk1” signal to enable or disable REG1
and REG2 module; input ”rst” signal to restart or reset the inverse generator; output ”rdy”

45

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 46

Figure 5.1: Architecture of the designed inverse generator

signal to indicate the final result is generated; and finally, the output ”ctrl” takes the place
of select signal of MUX. In the following subsections, the design of each module will be
introduced.

(θ2i
)2x

= θ
2i·2x

= θ
2i+x

(5.1)

5.1.1 REG1 Module

See Fig 5.3 for the REG1 module. The module contains two 163-bit registers, say R0 and
R1, ”reg out0” is the output of R0 and ”reg out1” is the output of R1. For each positive
edge of ”clk1” signal, when ”rst” is logic one, REG1 will load the data from port ”reg init”
into R0; when ”rst” is logic zero, REG1 will load the data from ”reg in” into R0, then at
the same clock cycle, R0 passes its data to R1. ”rdy” acts as an enable signal, when ”rdy”
equals logic one, REG1 remains no change. ”ctrl” signal controls the data selection of

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 47

Figure 5.2: Block diagram of the inverse generator for FPGA implementation

MUX module: when ”rst” is one, ”ctrl” signal is set low-level voltage, which is logic zero,
and when ”rst” is zero, ”ctrl” jumps to the opposite voltage level for each positive clock
edge, for example, when ”rst” is zero, the output value of ”ctrl” will be: 1,0,1,0,

5.1.2 REG2 Module

See Fig 5.4 for the REG2 module. A counter is included in this module. ”clk1” inputs
the clock signal. When ”rst” is one, the register will load the data from ”reg init” and
circular left shift for one bit, then forward the result to output port ”reg out”, also ”rdy”,
”inverse out” and the counter are all set to zero. When ”rst” equals to zero, the register will
load the data from ”reg in”, circular left shift the data, then forward the data to the output
port ”reg out”, at the same time, the counter is increased by one. For the different value of
the counter increase from 0 to 8, the register shifts the input data by 1,3,3,9,9,27,27,81,1-
bit, respectively. When counter is equal to 9, ”rdy” signal is set to be logic one, the ”in-
verse out” output the final result α−1 of the normal basis inverse generator.

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 48

Figure 5.3: REG1 module

Figure 5.4: REG2 module

5.1.3 MUX Module

Fig 5.5 presents the multiplexer module. ”d 0” and ”d 1” are two data inputs. When ”ctrl”
equals to zero, ”q” select and output the data of ”d 0”; and when ”ctrl” is one, ”q” is equal
to the value of ”d 1”.

5.1.4 Digit-level Normal Basis Multiplier Module and Multiplication
Algorithm

Fig 5.6 is block diagram of the digit-level Normal Basis multiplier module, ”a in” and
”b in” are two operands of the multiplication operation, and ”out” port outputs the product
of finite field GF(2m) multiplication; ”rdy” could enable/disable the module, and ”rst” is a

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 49

Figure 5.5: MUX module

Figure 5.6: Digit-level normal basis multiplier module

reset signal, when ”rst” is equal to logic one, the module is reset to its initial state; ”clk” is
the clock signal and output signal ”clk1” is the drive signal of REG1 and REG2.

This module contains three sub-modules: Input Reg module, NB Multiplier module,
and Output Reg module, see Fig 5.7 for details. For each clock cycle, if ”rst” and ”rdy”
signals both are logic zero, the input reg module will do two alternative jobs: first, if the
inner counter equals to zero, the module sets ”clk1” to logic one, and reads the data from
”a in” and ”b in” and stores them in the register after circular left shift both two bit strings
by 5 bits (since 163 is not dividable by 8, the sixth bit of the least significant digit must be
the LSB of a in×b in, in that case, after right shift the bit string of the product a in×b in
for 21 times and 8 bits each time, we could finally get the right answer); second, for other
cases, the module will right shift the data by 8 bits, and ”clk1” is set to be logic zero.

The NB Multiplier module contains only combinational circuits, no drive signals, nor
control signals. The two inputs are both 163-bit and output is 8-bit. Which indicates the
multiplier needs 21 clock cycles to calculate all 163-bit consequences. The Output Reg
module stores the results of the NB multiplier module for each positive clock edge and
right shift by 8 bits.

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 50

Figure 5.7: Digit-level Normal Basis multiplier structure

Following by the structure of the multiplier module, an algorithm of normal basis mul-
tiplication is provided. Since the design is a normal basis multiplier over GF(2163), ac-
cording to [14], there should exist a type 4 (T = 4) Gaussian normal basis for GF(2163).
Here we first check the existence of this Gaussian normal basis for GF(2163) of given type
T = 4. The algorithm is given below:

Input: an integer m > 1 not divisible by 8; a positive integer T .
Output: if a type T Gaussian normal basis for GF(2m) exits, the message ”True”; other-
wise ”False”.

1. Set p← T m+1.
2. If p is not prime then output ”False” and stop.
3. Compute the order k of 2 module p.
4. Set h← T m/k.
5. Compute d := GCD(h,m).
6. If d = 1 then output ”True”; else output ”False”.

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 51

In this case, m = 163, T = 4, then get p = T m+1 = 653 is a prime number. After com-
puting, we know that 2 has the order of 652 module 653, thus h= 1, and d =GCD(1,163)=
1, so there does exist a Gaussian normal basis of type 4 for GF(2163). Therefore, we could
generate the first coordinate of the product of two elements which belong to the GF(2163)

type 4 Gaussian normal basis. The algorithm is given below [14]:

Input: integers m > 1 and T for which there exit a type T Gaussian normal basis G for
GF(2m), A, B ∈ GF(2m), A = (am−1am−2 . . .a1a0), B = (bm−1bm−2 . . .b1b0).
Output: an explicit formula for the first coordinate of the product of two elements with
respect to G.

1. Set p← T m+1.
2. Generate an integer u having order T modulo p.
3. Compute the sequence F(1), F(2), . . . , F(p−1) as follows:

3.1. Set w← 1.
3.2. For j from 0 to T −1 do

Set n← w

For i from 0 to m−1 do
Set F(n)← i

Set n← 2n mod p

Set w← uw mod p

4. If T is even, then set J← 0, else set

J :=
m/2

∑
k=1

(ak−1bm/2+k−1 +am/2+k−1bk−1)

5. Output the formula

c0 = J+
p−2

∑
k=1

aF(k+1)bF(p−k)

For T = 4 normal basis of GF(2163), we could calculate the value of p is equal to 653,
and u = 149 have the order 4 modulo 653. Since T = 4 is even, we have J = 0. Then we

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 52

use C-program to generate all the value of F(s), where s = 1, 2, . . . , p−1. Furthermore,
C-program is used to generate the VerilogHDL code of first coordinate c0, which can be
applied to FPGA implementation, see Appendix A and Appendix B. The other coordinates
of the product are obtained from the formula c0 by cycling the subscripts modulo m.

5.1.5 Top-Level

See Fig 5.2 for reference. The top-level module has three input ports: ”clk” is the designed
system clock signal, ”rst” is the reset signal, ”alpha” is the value of normal basis element
which is going to be inversed; two output ports: ”rdy” is a indicator signal to imply the
final result is ready, ”inverse alpha” is the value of the consequence. The top-level module
is also known as the design entity of the normal basis inverse generator.

5.2 Simulation and Compilation

5.2.1 Simulation Results

Table. 5.1 presents an operation description of each clock, also the change of all the signals
and registers involved in the generator is included.

Table 5.1: Description of Each Clock cycle

clock cycle# description

Initialization reg1 and reg2 read the data from port ”alpha”;
reg1 stores the data into register R0, and register R1 is set to zero;
MUX forwards the selected data into the multiplier as operand A;
reg2 module circular left shifts the input data and forwards it to the
multiplier as operand B.
all counters are set to zero (counter of reg2 and counter of nb multiplier)
rst <= 1, rdy <= 0, ctrl <= 0, clk1 <= 1
reg2/count <= 0, nb multiplier/count <= 0
al pha <= 163′h001

Continued on next page

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 53

Table 5.1 – continued from previous page
clock cycle# description

a in <= 163′h001
b in <= 163′h002
inverse al pha <= 163′h000000 . . .000000

1 ”rst” signal is set to zero;
input reg1 circular right shifts the two operands by 5 bits, then forwards
them to then to the nb multiplier;
nb multiplier stop loading data from reg1 and reg2;
nb multiplier compute the product and forwards it to output reg;
output reg stores the result at most significant 8 bits and left shift 8 bits;
counter of nb multiplier increased by 1;
all the another registers remain no change.
rst <= 0, rdy <= 0, ctrl <= 0, clk1 <= 0
reg2/count <= 0, nb multiplier/count <= 1
a out <= 163′h00000000000000000000000000000000000000020
b out <= 163′h00000000000000000000000000000000000000040
out put reg/reg in <= 8′h20
inverse al pha <= 163′h000000 . . .00000

2 input reg1 circular left shifts the two operands by 8 bits, then forwards
them to then to the nb multiplier;
output reg stores the result at most significant 8 bits and left shift 8 bits;
counter of nb multiplier increased by 1;
all the another registers remain no change.
reg2/count <= 0, nb multiplier/count <= 2
a out <= 163′h100
b out <= 163′h200
out put reg/reg in <= 8′h00

3 - # 21 same operation as clock cycle # 2.

22 ”clk1” signal is set to high voltage;
nb multiplier counter is set to zero;

Continued on next page

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 54

Table 5.1 – continued from previous page
clock cycle# description

reg2 counter increased by 1;
reg1 and reg2 load the data from output reg;
in reg1, R0 pass its previous value to R1;
”ctrl” signal jump to its opposite value;
input reg load two new operands from MUX and reg2.
rst <= 0, rdy <= 0, ctrl <= 1, clk1 <= 1
reg2/count <= 1, nb multiplier/count <= 0
reg out0 <= 163′h00000001000200000000000000000000000002001
reg out1 <= 163′h001
a in <= 163′h001
b in <= 163′h00000002000400000000000000000000000004002
inverse al pha <= 163′h000 . . .000000

23 - # 197 the system will repeat the operation from clock cycle # 1 to # 22.

198 ”rdy” signal jump to logic one;
”inverse alpha” output the final result;
all the modules are disabled until the next reset signal comes;
rst <= 0, rdy <= 1
reg2/count <= 9, nb multiplier/count <= 0
inverse al pha <=

163′h247b6d09c86737e79 f 68bb3a908196b768a7b1203

See Fig 5.8 for the simulation results. Vector signal ”alpha” is the input 163-bit data,
and ”inverse alpha” is the output data of the generator. In this simulation, we use al pha<=

163′h000000 . . .000000001.

5.2.2 Compilation Results

Fig 5.9 is the RTL of the design, and Fig 5.10 technology map view of the design. Note
that we have combine the REG2 and the 2x-power module into one shift register. From

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 55

Fig 5.9, we can see that the input normal basis element ”alpha” is loaded into REG1 and
REG2, respectively. REG1 send the data into the multiplexer and at the same moment
REG2 does a cyclic shifting operation. Then the NB-multipleir get the two operands from
both multiplexer and REG2 and calculate the product digit-by-digit.

Table 5.2: Cells usage of compilation
Total logic elements 3944

Total registers 1154
Total pins 329

≤2-input logic unit 184
3-input logic unit 507
4-input logic unit 2609

Table 5.3: Area cost of each module
module logic combinational functions register

reg1 164 327
reg2 663 331

input reg 342 333
multiplier 2131 0
output reg 0 163
top-level 3300 1154

Table 5.4: Operation delay of the design Inverse Generator over GF(2163)
Clock setup 130.28 MHz (period = 7.676 ns)
Clock period 7.676 ns

Number of cycles for one inversion 198
Total time for one inversion 1519.848 ns

Table 5.2, Table 5.3, and Table 5.4 present the cell usage, gate count of the each module
and time delay of the design normal basis inverse generator, respectively. Note that the data
of Clock Setup is the maximum clock frequency the system could reach.

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 56

Figure 5.8: Simulation result of the Inverse Generator

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 57

Figure 5.9: RTL of the design

CHAPTER 5. FPGA IMPLEMENTATION OF INVERSE GENERATOR 58

Figure 5.10: Technology map viewer of the design

Chapter 6

Conclusions

Cipher algorithms, especially for public key systems, are demanded for short key size as
well as fast processing speed with a high secure level due to the widely application on small
portable electronic devices, such as mobile phones, pads, and embedded systems, also the
increasing secure threat to the personal privacy plays a not negligible role. In this case,
Elliptic Curve Cryptosystems is studied extensively, since it seems the only suitable public
key cryptosystem by now. The study shows that the processing speed of elliptic curve
based cryptosystem is one of the bottleneck to implement fast ECC encryption/decryption,
in addition, field multiplication and field inversion are the two basic operations involved in
ECC. As the result of this situation, to speedup finite field computations could efficiently
speed up ECC algorithms.

In this thesis, a brief introduction of cryptography is provided in the first chapter. Then,
the mathematical backgrounds of finite field, Montgomery multiplications, field inversion
and the concept of elliptic curve encryption/decryption are included in Chapter 2. After
these, in Chapter 3 we have a brief review of the existing field multipliers, including bit-
serial, bit-parallel, digit-level and systolic style architectures. In Chapter 4 we reported a
digit-serial MSD-first and a LSD-first Montgomery multiplications, as well as their archi-
tectures and FPGA implementations. In Chapter 5, we reported a FPGA implementation
of finite field inverse generator using normal basis.

For the proposed Montgomery multiplication, we have provided the architectures for
different value of the Montgomery factor: R(x) = xu and R(x) = xsl . The main contribution
to the Montgomery multiplication is that we proposed two classes of finite fields GF(2m)

59

CHAPTER 6. CONCLUSIONS 60

for the multipliers with much reduced critical path delay. By applying the special fields, the
time delay of reduction operation can be reduced to one TX . The FPGA implementations
of the proposed architectures are presented for the field GF(2233) with digit size d = 8 to
further verify the correctness of it.

In Chapter 5 of this thesis, we provide an FPGA implementation of a novel finite field
GF(2163) inversion algorithm using normal basis. This architecture involves two registers,
one multiplexer and one normal basis multiplier core and we used a digit-serial architecture
to implement this multiplier core.

In the future study, how to apply these fast finite field operation architectures to the
higher level computation of ECC in point scalar multiplication is still a critical problem for
fast ECC algorithms processing. And how to take the advantages of Montgomery reduction
or Montgomery multiplication method on efficient implementation of point addition and
point doubling operations will be the next goal of our work.

Appendix A

C-code of F(s) and the First Coordinate
c0 Generation

i n c l u d e < s t d i o . h>
d e f i n e N 1000
d e f i n e M 300
FILE * fp ;
FILE * f p t ;
FILE * f p t f p ;
i n t c o u n t =0 ;

main () {
void w r i t e r e s u l t (i n t a , i n t b) ;
void w r i t e r e s u l t 1 (i n t a r r ay FN [N] , i n t p 1) ;
i n t f i n i t e f i e l d e x p (i n t p 0 , i n t Type) ;

i n t w=1;
i n t i , j , o , n , Fn , T , p , m, u , k ;
i n t a r r a y F n [N] ;
i n t c 0 [M] [M] ={0} ;

f p t f p = fopen (” c 0 . t x t ” , ”w”) ;

61

APPENDIX A. C-CODE OF F(S) AND THE FIRST COORDINATE C0 GENERATION62

f p t = fopen (”F (n) v a l u e . t x t ” , ”w”) ;
fp = fopen (”F (n) . t x t ” , ”w”) ;
p r i n t f (” i n p u t t h e f i e l d s i z e m=”) ;
s c a n f (”%d ” , &m) ;
p r i n t f (” i n p u t t h e ONB t y p e T=”) ;
s c a n f (”%d ” , &T) ;

p=T*m+1;
u= f i n i t e f i e l d e x p (p , T) ;

p r i n t f (”%d ” , u) ;
f o r (j =0 ; j<T ; j ++){

n=w;
f o r (i =0 ; i<m; i ++){

Fn= i ;
w r i t e r e s u l t (n , Fn) ;
a r r a y F n [n]= Fn ;
n=2*n%p ;

}
w=u*w%p ;

}

w r i t e r e s u l t 1 (a r r a y F n , p) ;

/ * J g e n e r a t o r * /

i f (T%2!=0){
f o r (k =1; k<=m/ 2 ; k ++){

i f (c 0 [k−1][m/2+ k−1]==0)
c 0 [k−1][m/2+ k−1]+=1;

e l s e
c 0 [k−1][m/2+ k−1]−=1;

i f (c 0 [m/2+ k−1][k−1]==0)

APPENDIX A. C-CODE OF F(S) AND THE FIRST COORDINATE C0 GENERATION63

c 0 [m/2+ k−1][k−1]+=1;
e l s e

c 0 [m/2+ k−1][k−1]−=1;
}

}

/ * g e n e r a t e c 0 * /

f o r (k =1; k<=(p−2); k ++){
i f (c 0 [a r r a y F n [k + 1]] [a r r a y F n [p−k]] = = 0)

c 0 [a r r a y F n [k + 1]] [a r r a y F n [p−k]] + = 1 ;
e l s e

c 0 [a r r a y F n [k + 1]] [a r r a y F n [p−k]]−=1;
a r r a y F n [k + 1] , a r r a y F n [p−k]) ;

}
f o r (o =0; o<m; o ++){

f p r i n t f (f p t f p , ” a s s i g n c[%d] =” , o) ;
f o r (i =0 ; i<m; i ++){

k =0;
f p r i n t f (f p t f p , ” (a[%d] & (” , (i +o)%m) ;
f o r (j =0 ; j<m; j ++){

i f (c 0 [i] [j] ! = 0){
i f (k ==0)

f p r i n t f (f p t f p , ” b[%d] ” , (j +o)%m) ;
e l s e

f p r i n t f (f p t f p , ” ˆ b[%d] ” , (j +o)%m) ;
k ++;

}
}
f p r i n t f (f p t f p , ”)) ”) ;
i f (i !=m−1)

f p r i n t f (f p t f p , ” ˆ ”) ;
e l s e f p r i n t f (f p t f p , ” ; ”) ;

APPENDIX A. C-CODE OF F(S) AND THE FIRST COORDINATE C0 GENERATION64

}
f p r i n t f (f p t f p , ”\n\n ”) ;

}
f c l o s e (f p t f p) ;
f c l o s e (f p t) ;
f c l o s e (fp) ;

}

void w r i t e r e s u l t (i n t a , i n t b){
f p r i n t f (f p t , ”F(%3d)=%3d , ” , a , b) ;
i f (c o u n t %10==9)

f p r i n t f (f p t , ”\n ”) ;
c o u n t ++;

}

void w r i t e r e s u l t 1 (i n t a r r ay FN [N] , i n t p 1){
i n t i ;
i n t temp =0;
f o r (i =1 ; i<p 1 ; i ++){

f p r i n t f (fp , ”F(%3d)=%3d , ” , i , a r r ay FN [i]) ;
i f (temp %10==9)

f p r i n t f (fp , ”\n ”) ;
temp ++;

}
}

i n t f i n i t e f i e l d e x p (i n t p 0 , i n t Type){
i n t i , n ;
i n t g =2;
i n t k =1;

whi le (k%Type !=0 | | g<p 0){

APPENDIX A. C-CODE OF F(S) AND THE FIRST COORDINATE C0 GENERATION65

k =1;
n=g ;
whi le (n>1){

n=n*g%p 0 ;
k ++;

}
g ++;

}
g−−;
n=g ;
f o r (i =1 ; i <(k / Type) ; i ++){

n=n*g%p 0 ;
}
re turn (n) ;

}

Appendix B

Generated VerilogHDL-code of the First
Coordinate c0

a s s i g n c [0] =(a [0] & (b [1]))
ˆ (a [1] & (b [0] ˆ b [1 3] ˆ b [1 1 7] ˆ b [1 3 2]))
ˆ (a [2] & (b [9 2] ˆ b [1 1 1] ˆ b [1 1 7] ˆ b [1 4 5]))
ˆ (a [3] & (b [9] ˆ b [7 1] ˆ b [8 9] ˆ b [1 2 5]))
ˆ (a [4] & (b [4 0] ˆ b [8 7] ˆ b [9 9] ˆ b [1 3 7]))
ˆ (a [5] & (b [1 7] ˆ b [6 0] ˆ b [1 0 5] ˆ b [1 2 1]))
ˆ (a [6] & (b [2 2] ˆ b [1 3 4] ˆ b [1 3 6] ˆ b [1 6 0]))
ˆ (a [7] & (b [2 1] ˆ b [4 3] ˆ b [5 8] ˆ b [9 0]))
ˆ (a [8] & (b [3 3] ˆ b [6 1] ˆ b [1 2 4] ˆ b [1 3 9]))
ˆ (a [9] & (b [3] ˆ b [2 0] ˆ b [7 3] ˆ b [9 3]))
ˆ (a [1 0] & (b [3 5] ˆ b [6 3] ˆ b [7 7] ˆ b [1 3 7]))
ˆ (a [1 1] & (b [5 4] ˆ b [1 0 1] ˆ b [1 3 0] ˆ b [1 5 4]))
ˆ (a [1 2] & (b [1 1 0] ˆ b [1 3 1] ˆ b [1 5 8] ˆ b [1 6 2]))
ˆ (a [1 3] & (b [1] ˆ b [5 1] ˆ b [8 2] ˆ b [8 3]))
ˆ (a [1 4] & (b [5 4] ˆ b [1 0 1] ˆ b [1 1 1] ˆ b [1 5 6]))
ˆ (a [1 5] & (b [6 0] ˆ b [1 2 1] ˆ b [1 2 8] ˆ b [1 2 9]))
ˆ (a [1 6] & (b [3 7] ˆ b [5 9] ˆ b [6 4] ˆ b [1 5 7]))
ˆ (a [1 7] & (b [5] ˆ b [5 5] ˆ b [7 9] ˆ b [8 8]))
ˆ (a [1 8] & (b [2 0] ˆ b [9 3] ˆ b [9 6] ˆ b [1 3 6]))

66

APPENDIX B. GENERATED VERILOGHDL-CODE OF THE FIRST COORDINATE C067

ˆ (a [1 9] & (b [7 2] ˆ b [7 4] ˆ b [1 0 7] ˆ b [1 3 5]))
ˆ (a [2 0] & (b [9] ˆ b [1 8] ˆ b [8 9] ˆ b [1 4 0]))
ˆ (a [2 1] & (b [7] ˆ b [6 3] ˆ b [1 3 5] ˆ b [1 4 7]))
ˆ (a [2 2] & (b [6] ˆ b [4 5] ˆ b [6 1] ˆ b [6 8]))
ˆ (a [2 3] & (b [4 3] ˆ b [9 8] ˆ b [1 1 9] ˆ b [1 4 1]))
ˆ (a [2 4] & (b [3 2] ˆ b [1 0 9] ˆ b [1 1 5] ˆ b [1 2 6]))
ˆ (a [2 5] & (b [8 5] ˆ b [9 1] ˆ b [1 5 3] ˆ b [1 5 5]))
ˆ (a [2 6] & (b [3 0] ˆ b [3 6] ˆ b [8 4] ˆ b [1 3 3]))
ˆ (a [2 7] & (b [3 3] ˆ b [4 5] ˆ b [6 1] ˆ b [1 1 3]))
ˆ (a [2 8] & (b [4 7] ˆ b [4 9] ˆ b [5 7] ˆ b [7 6]))
ˆ (a [2 9] & (b [3 5] ˆ b [6 3] ˆ b [7 4] ˆ b [1 3 5]))
ˆ (a [3 0] & (b [2 6] ˆ b [5 6] ˆ b [8 6] ˆ b [1 2 2]))
ˆ (a [3 1] & (b [3 2] ˆ b [1 1 3] ˆ b [1 1 4] ˆ b [1 2 6]))
ˆ (a [3 2] & (b [2 4] ˆ b [3 1] ˆ b [4 4] ˆ b [1 2 3]))
ˆ (a [3 3] & (b [8] ˆ b [2 7] ˆ b [4 4] ˆ b [8 5]))
ˆ (a [3 4] & (b [4 9] ˆ b [9 3] ˆ b [1 3 4] ˆ b [1 3 6]))
ˆ (a [3 5] & (b [1 0] ˆ b [2 9] ˆ b [5 0] ˆ b [9 4]))
ˆ (a [3 6] & (b [2 6] ˆ b [1 0 1] ˆ b [1 5 6] ˆ b [1 5 9]))
ˆ (a [3 7] & (b [1 6] ˆ b [6 1] ˆ b [6 8] ˆ b [1 2 4]))
ˆ (a [3 8] & (b [4 1] ˆ b [7 9] ˆ b [1 4 6] ˆ b [1 5 0]))
ˆ (a [3 9] & (b [4 7] ˆ b [7 6] ˆ b [9 8] ˆ b [1 4 1]))
ˆ (a [4 0] & (b [4] ˆ b [7 2] ˆ b [1 0 7] ˆ b [1 4 9]))
ˆ (a [4 1] & (b [3 8] ˆ b [7 1] ˆ b [1 0 5] ˆ b [1 2 5]))
ˆ (a [4 2] & (b [4 7] ˆ b [5 7] ˆ b [9 7] ˆ b [1 4 2]))
ˆ (a [4 3] & (b [7] ˆ b [2 3] ˆ b [1 4 7] ˆ b [1 5 2]))
ˆ (a [4 4] & (b [3 2] ˆ b [3 3] ˆ b [6 7] ˆ b [1 1 3]))
ˆ (a [4 5] & (b [2 2] ˆ b [2 7] ˆ b [1 3 4] ˆ b [1 4 8]))
ˆ (a [4 6] & (b [4 7] ˆ b [4 8] ˆ b [9 7] ˆ b [1 4 1]))
ˆ (a [4 7] & (b [2 8] ˆ b [3 9] ˆ b [4 2] ˆ b [4 6]))
ˆ (a [4 8] & (b [4 6] ˆ b [7 2] ˆ b [1 3 5] ˆ b [1 4 7]))
ˆ (a [4 9] & (b [2 8] ˆ b [3 4] ˆ b [8 0] ˆ b [1 0 6]))
ˆ (a [5 0] & (b [3 5] ˆ b [7 7] ˆ b [8 1] ˆ b [9 4]))

APPENDIX B. GENERATED VERILOGHDL-CODE OF THE FIRST COORDINATE C068

ˆ (a [5 1] & (b [1 3] ˆ b [1 1 1] ˆ b [1 1 7] ˆ b [1 5 6]))
ˆ (a [5 2] & (b [5 4] ˆ b [6 6] ˆ b [1 0 3] ˆ b [1 3 0]))
ˆ (a [5 3] & (b [6 5] ˆ b [1 4 4] ˆ b [1 5 3] ˆ b [1 5 5]))
ˆ (a [5 4] & (b [1 1] ˆ b [1 4] ˆ b [5 2] ˆ b [7 8]))
ˆ (a [5 5] & (b [1 7] ˆ b [1 2 1] ˆ b [1 4 4] ˆ b [1 5 8]))
ˆ (a [5 6] & (b [3 0] ˆ b [7 5] ˆ b [9 6] ˆ b [1 3 3]))
ˆ (a [5 7] & (b [2 8] ˆ b [4 2] ˆ b [1 0 6] ˆ b [1 1 4]))
ˆ (a [5 8] & (b [7] ˆ b [6 3] ˆ b [9 9] ˆ b [1 3 7]))
ˆ (a [5 9] & (b [1 6] ˆ b [1 2 4] ˆ b [1 2 8] ˆ b [1 2 9]))
ˆ (a [6 0] & (b [5] ˆ b [1 5] ˆ b [1 1 2] ˆ b [1 3 8]))
ˆ (a [6 1] & (b [8] ˆ b [2 2] ˆ b [2 7] ˆ b [3 7]))
ˆ (a [6 2] & (b [7 3] ˆ b [7 6] ˆ b [9 8] ˆ b [1 4 6]))
ˆ (a [6 3] & (b [1 0] ˆ b [2 1] ˆ b [2 9] ˆ b [5 8]))
ˆ (a [6 4] & (b [1 6] ˆ b [6 8] ˆ b [1 2 2] ˆ b [1 5 4]))
ˆ (a [6 5] & (b [5 3] ˆ b [8 8] ˆ b [1 0 4] ˆ b [1 2 7]))
ˆ (a [6 6] & (b [5 2] ˆ b [1 0 8] ˆ b [1 1 2] ˆ b [1 3 8]))
ˆ (a [6 7] & (b [4 4] ˆ b [8 5] ˆ b [1 2 3] ˆ b [1 5 3]))
ˆ (a [6 8] & (b [2 2] ˆ b [3 7] ˆ b [6 4] ˆ b [1 6 0]))
ˆ (a [6 9] & (b [1 0 4] ˆ b [1 1 9] ˆ b [1 4 3] ˆ b [1 5 0]))
ˆ (a [7 0] & (b [7 9] ˆ b [8 8] ˆ b [1 0 4] ˆ b [1 5 0]))
ˆ (a [7 1] & (b [3] ˆ b [4 1] ˆ b [7 3] ˆ b [1 4 6]))
ˆ (a [7 2] & (b [1 9] ˆ b [4 0] ˆ b [4 8] ˆ b [9 7]))
ˆ (a [7 3] & (b [9] ˆ b [6 2] ˆ b [7 1] ˆ b [8 0]))
ˆ (a [7 4] & (b [1 9] ˆ b [2 9] ˆ b [7 7] ˆ b [9 4]))
ˆ (a [7 5] & (b [5 6] ˆ b [9 2] ˆ b [1 4 0] ˆ b [1 4 5]))
ˆ (a [7 6] & (b [2 8] ˆ b [3 9] ˆ b [6 2] ˆ b [8 0]))
ˆ (a [7 7] & (b [1 0] ˆ b [5 0] ˆ b [7 4] ˆ b [1 0 7]))
ˆ (a [7 8] & (b [5 4] ˆ b [1 0 3] ˆ b [1 1 1] ˆ b [1 4 5]))
ˆ (a [7 9] & (b [1 7] ˆ b [3 8] ˆ b [7 0] ˆ b [1 0 5]))
ˆ (a [8 0] & (b [4 9] ˆ b [7 3] ˆ b [7 6] ˆ b [9 3]))
ˆ (a [8 1] & (b [5 0] ˆ b [9 4]))
ˆ (a [8 2] & (b [1 3] ˆ b [1 3 2]))

APPENDIX B. GENERATED VERILOGHDL-CODE OF THE FIRST COORDINATE C069

ˆ (a [8 3] & (b [1 3] ˆ b [1 3 2] ˆ b [1 5 6] ˆ b [1 5 9]))
ˆ (a [8 4] & (b [2 6] ˆ b [1 0 1] ˆ b [1 2 2] ˆ b [1 5 4]))
ˆ (a [8 5] & (b [2 5] ˆ b [3 3] ˆ b [6 7] ˆ b [1 3 9]))
ˆ (a [8 6] & (b [3 0] ˆ b [9 6] ˆ b [1 3 6] ˆ b [1 6 0]))
ˆ (a [8 7] & (b [4] ˆ b [1 1 5] ˆ b [1 2 6] ˆ b [1 4 9]))
ˆ (a [8 8] & (b [1 7] ˆ b [6 5] ˆ b [7 0] ˆ b [1 4 4]))
ˆ (a [8 9] & (b [3] ˆ b [2 0] ˆ b [1 0 8] ˆ b [1 1 8]))
ˆ (a [9 0] & (b [7] ˆ b [9 9] ˆ b [1 5 2] ˆ b [1 6 1]))
ˆ (a [9 1] & (b [2 5] ˆ b [1 1 0] ˆ b [1 3 1] ˆ b [1 3 9]))
ˆ (a [9 2] & (b [2] ˆ b [7 5] ˆ b [9 5] ˆ b [1 3 3]))
ˆ (a [9 3] & (b [9] ˆ b [1 8] ˆ b [3 4] ˆ b [8 0]))
ˆ (a [9 4] & (b [3 5] ˆ b [5 0] ˆ b [7 4] ˆ b [8 1]))
ˆ (a [9 5] & (b [9 2] ˆ b [1 1 7] ˆ b [1 3 2] ˆ b [1 5 9]))
ˆ (a [9 6] & (b [1 8] ˆ b [5 6] ˆ b [8 6] ˆ b [1 4 0]))
ˆ (a [9 7] & (b [4 2] ˆ b [4 6] ˆ b [7 2] ˆ b [1 4 9]))
ˆ (a [9 8] & (b [2 3] ˆ b [3 9] ˆ b [6 2] ˆ b [1 5 1]))
ˆ (a [9 9] & (b [4] ˆ b [5 8] ˆ b [9 0] ˆ b [1 1 5]))
ˆ (a [1 0 0] & (b [1 1 0] ˆ b [1 2 1] ˆ b [1 2 9] ˆ b [1 5 8]))
ˆ (a [1 0 1] & (b [1 1] ˆ b [1 4] ˆ b [3 6] ˆ b [8 4]))
ˆ (a [1 0 2] & (b [1 1 0] ˆ b [1 2 4] ˆ b [1 2 9] ˆ b [1 3 9]))
ˆ (a [1 0 3] & (b [5 2] ˆ b [7 8] ˆ b [1 0 8] ˆ b [1 1 8]))
ˆ (a [1 0 4] & (b [6 5] ˆ b [6 9] ˆ b [7 0] ˆ b [1 2 0]))
ˆ (a [1 0 5] & (b [5] ˆ b [4 1] ˆ b [7 9] ˆ b [1 1 2]))
ˆ (a [1 0 6] & (b [4 9] ˆ b [5 7] ˆ b [1 3 4] ˆ b [1 4 8]))
ˆ (a [1 0 7] & (b [1 9] ˆ b [4 0] ˆ b [7 7] ˆ b [1 3 7]))
ˆ (a [1 0 8] & (b [6 6] ˆ b [8 9] ˆ b [1 0 3] ˆ b [1 2 5]))
ˆ (a [1 0 9] & (b [2 4] ˆ b [1 2 0] ˆ b [1 2 3] ˆ b [1 6 1]))
ˆ (a [1 1 0] & (b [1 2] ˆ b [9 1] ˆ b [1 0 0] ˆ b [1 0 2]))
ˆ (a [1 1 1] & (b [2] ˆ b [1 4] ˆ b [5 1] ˆ b [7 8]))
ˆ (a [1 1 2] & (b [6 0] ˆ b [6 6] ˆ b [1 0 5] ˆ b [1 2 5]))
ˆ (a [1 1 3] & (b [2 7] ˆ b [3 1] ˆ b [4 4] ˆ b [1 4 8]))
ˆ (a [1 1 4] & (b [3 1] ˆ b [5 7] ˆ b [1 4 2] ˆ b [1 4 8]))

APPENDIX B. GENERATED VERILOGHDL-CODE OF THE FIRST COORDINATE C070

ˆ (a [1 1 5] & (b [2 4] ˆ b [8 7] ˆ b [9 9] ˆ b [1 6 1]))
ˆ (a [1 1 6] & (b [1 4 4] ˆ b [1 5 5] ˆ b [1 5 8] ˆ b [1 6 2]))
ˆ (a [1 1 7] & (b [1] ˆ b [2] ˆ b [5 1] ˆ b [9 5]))
ˆ (a [1 1 8] & (b [8 9] ˆ b [1 0 3] ˆ b [1 4 0] ˆ b [1 4 5]))
ˆ (a [1 1 9] & (b [2 3] ˆ b [6 9] ˆ b [1 5 1] ˆ b [1 5 2]))
ˆ (a [1 2 0] & (b [1 0 4] ˆ b [1 0 9] ˆ b [1 2 7] ˆ b [1 4 3]))
ˆ (a [1 2 1] & (b [5] ˆ b [1 5] ˆ b [5 5] ˆ b [1 0 0]))
ˆ (a [1 2 2] & (b [3 0] ˆ b [6 4] ˆ b [8 4] ˆ b [1 6 0]))
ˆ (a [1 2 3] & (b [3 2] ˆ b [6 7] ˆ b [1 0 9] ˆ b [1 2 7]))
ˆ (a [1 2 4] & (b [8] ˆ b [3 7] ˆ b [5 9] ˆ b [1 0 2]))
ˆ (a [1 2 5] & (b [3] ˆ b [4 1] ˆ b [1 0 8] ˆ b [1 1 2]))
ˆ (a [1 2 6] & (b [2 4] ˆ b [3 1] ˆ b [8 7] ˆ b [1 4 2]))
ˆ (a [1 2 7] & (b [6 5] ˆ b [1 2 0] ˆ b [1 2 3] ˆ b [1 5 3]))
ˆ (a [1 2 8] & (b [1 5] ˆ b [5 9] ˆ b [1 3 8] ˆ b [1 5 7]))
ˆ (a [1 2 9] & (b [1 5] ˆ b [5 9] ˆ b [1 0 0] ˆ b [1 0 2]))
ˆ (a [1 3 0] & (b [1 1] ˆ b [5 2] ˆ b [1 3 8] ˆ b [1 5 7]))
ˆ (a [1 3 1] & (b [1 2] ˆ b [9 1] ˆ b [1 5 5] ˆ b [1 6 2]))
ˆ (a [1 3 2] & (b [1] ˆ b [8 2] ˆ b [8 3] ˆ b [9 5]))
ˆ (a [1 3 3] & (b [2 6] ˆ b [5 6] ˆ b [9 2] ˆ b [1 5 9]))
ˆ (a [1 3 4] & (b [6] ˆ b [3 4] ˆ b [4 5] ˆ b [1 0 6]))
ˆ (a [1 3 5] & (b [1 9] ˆ b [2 1] ˆ b [2 9] ˆ b [4 8]))
ˆ (a [1 3 6] & (b [6] ˆ b [1 8] ˆ b [3 4] ˆ b [8 6]))
ˆ (a [1 3 7] & (b [4] ˆ b [1 0] ˆ b [5 8] ˆ b [1 0 7]))
ˆ (a [1 3 8] & (b [6 0] ˆ b [6 6] ˆ b [1 2 8] ˆ b [1 3 0]))
ˆ (a [1 3 9] & (b [8] ˆ b [8 5] ˆ b [9 1] ˆ b [1 0 2]))
ˆ (a [1 4 0] & (b [2 0] ˆ b [7 5] ˆ b [9 6] ˆ b [1 1 8]))
ˆ (a [1 4 1] & (b [2 3] ˆ b [3 9] ˆ b [4 6] ˆ b [1 4 7]))
ˆ (a [1 4 2] & (b [4 2] ˆ b [1 1 4] ˆ b [1 2 6] ˆ b [1 4 9]))
ˆ (a [1 4 3] & (b [6 9] ˆ b [1 2 0] ˆ b [1 5 2] ˆ b [1 6 1]))
ˆ (a [1 4 4] & (b [5 3] ˆ b [5 5] ˆ b [8 8] ˆ b [1 1 6]))
ˆ (a [1 4 5] & (b [2] ˆ b [7 5] ˆ b [7 8] ˆ b [1 1 8]))
ˆ (a [1 4 6] & (b [3 8] ˆ b [6 2] ˆ b [7 1] ˆ b [1 5 1]))

APPENDIX B. GENERATED VERILOGHDL-CODE OF THE FIRST COORDINATE C071

ˆ (a [1 4 7] & (b [2 1] ˆ b [4 3] ˆ b [4 8] ˆ b [1 4 1]))
ˆ (a [1 4 8] & (b [4 5] ˆ b [1 0 6] ˆ b [1 1 3] ˆ b [1 1 4]))
ˆ (a [1 4 9] & (b [4 0] ˆ b [8 7] ˆ b [9 7] ˆ b [1 4 2]))
ˆ (a [1 5 0] & (b [3 8] ˆ b [6 9] ˆ b [7 0] ˆ b [1 5 1]))
ˆ (a [1 5 1] & (b [9 8] ˆ b [1 1 9] ˆ b [1 4 6] ˆ b [1 5 0]))
ˆ (a [1 5 2] & (b [4 3] ˆ b [9 0] ˆ b [1 1 9] ˆ b [1 4 3]))
ˆ (a [1 5 3] & (b [2 5] ˆ b [5 3] ˆ b [6 7] ˆ b [1 2 7]))
ˆ (a [1 5 4] & (b [1 1] ˆ b [6 4] ˆ b [8 4] ˆ b [1 5 7]))
ˆ (a [1 5 5] & (b [2 5] ˆ b [5 3] ˆ b [1 1 6] ˆ b [1 3 1]))
ˆ (a [1 5 6] & (b [1 4] ˆ b [3 6] ˆ b [5 1] ˆ b [8 3]))
ˆ (a [1 5 7] & (b [1 6] ˆ b [1 2 8] ˆ b [1 3 0] ˆ b [1 5 4]))
ˆ (a [1 5 8] & (b [1 2] ˆ b [5 5] ˆ b [1 0 0] ˆ b [1 1 6]))
ˆ (a [1 5 9] & (b [3 6] ˆ b [8 3] ˆ b [9 5] ˆ b [1 3 3]))
ˆ (a [1 6 0] & (b [6] ˆ b [6 8] ˆ b [8 6] ˆ b [1 2 2]))
ˆ (a [1 6 1] & (b [9 0] ˆ b [1 0 9] ˆ b [1 1 5] ˆ b [1 4 3]))
ˆ (a [1 6 2] & (b [1 2] ˆ b [1 1 6] ˆ b [1 3 1] ˆ b [1 6 2])) ;

Bibliography

[1] D. Froomkin, Deciphering Encryption, Washington Post, May 1998, Retrieved 18
September 2013.

[2] D. Crawford and M. Esterl, “At Siemens, witnesses cite pattern of bribery”, The Wall

Street Journal, January 31, 2007.

[3] D. Kahn, The Codebreakers: The Story of Secret Writing, Rev Sub. Scribner, 1996.

[4] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thom, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev and P. Zimmer-
mann, “Factorization of a 768-bit RSA modulus”, Cryptology ePrint Archive: Report

2010/006, http://eprint.iacr.org/2010/006, February 2010.

[5] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra and P. L. Montgomery,
“PlayStation 3 Computing Breaks 260 Barrier 112-bit Prime ECDLP Solved”,
http://lacal.epfl.ch/112bit prime, 2009.

[6] W. Diffie and M. E. Hellman, “New Directions in Cryptography”, IEEE Transactions

on Information Theory, Vol. 22, pp. 644-654, 1976.

[7] R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-key Cryptosystems”, Comm. ACM, Vol. 21, No. 2, pp. 120-126, February
1978.

[8] N. Koblitz, “Elliptic Curve Cryptosystem”, Math. Comp., Vol. 48, pp. 203-209, 1987.

[9] V. Miller, “Uses of Elliptic Curves in Cryptography”, Advances in Cryptology: Pro-

ceedings of CRYPTO’85, H. C. Williams, Ed. 1985, No. 218 in Lecture Notes in
Computer Science, pp. 417-426, Springer-Verlag.

72

BIBLIOGRAPHY 73

[10] P. L. Montgomery, “Modular Multiplication Without Trial Division”, Mathematics of
Computation, Vol. 44, No. 170, pp. 519-521, 1985.

[11] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, 2nd
Edition, New York, 1994.

[12] C. K. Koc and T. Acar, “Montgomery Multiplication in GF(2k)”, Designs, Codes and

Cryptography, Vol. 14, pp. 57-69, 1998.

[13] L. Song and K. Parhi, “Low-energy digit-serial/parallel finite field multipliers”, The

Journal of VLSI Signal Processing, Vol. 19, No. 2, pp. 149-166, 1998.

[14] ”Standard Specifications for Public Key Cryptography, Annex A (informative)
Number-Theoretic Background,” IEEE P1363 / D9 (Draft Version 9), pp. 76-172,
February 1999.

[15] H. Wu, “Montgomery Multiplier and Squarer for a Class of Finite Fields”, IEEE

Transactions on Computers, Vol. 51, No. 5, pp. 521-529, May 2002.

[16] N. Mentens, S. B. Ors, B. Preneel and J. Vandewalle, “AN FPGA IMPLEMENTA-
TION OF A MONTGOMERY MULTIPLIER OVER GF(2M)”, Computing and In-

formatics, Vol. 23, pp. 487-499, 2004.

[17] W. Tang, H. Wu and M. Ahmadi, “VLSI implementation of bit-parallel word-serial
multiplier in GF(2233)”, IEEE-NEWCAS Conference, 2005. The 3rd International,
pp. 399-402, June 2005.

[18] C. Lee, J. Horng, I, Jou and E. Lu, “Low-complexity Bit Parallel Systolic Mont-
gomery Multipliers for Special Classes of GF(2m)”, Transactions on Computers,
Vol. 54, No. 9, pp. 1061-1070, 2005.

[19] S. Kumar, T. Wollinger and C. Paar, “Optimum Digit Serial GF(2m) Multipliers
for Curve-based Cryptography”, IEEE TRANSACTIONS ON COMPUTERS, Vol. 55,
No. 10, pp. 1306-1311, October 2006.

[20] C. Y. Lee, C. W. Chiou, J. M. Lin and C. C. Chang, “Scalable and Systolic Mont-
gomery Multiplier over GF(2m) Generated by Trinomials”, IET Circuits Devices Syst,
Vol. 1, No. 6, pp. 477-484, 2007.

BIBLIOGRAPHY 74

[21] B. A. Forouzan, Introduction to Cryptography and Network Security, McGraw-Hill,
1st edition, 2008.

[22] A. P. Fournaris and O. Koufopavlou, “Versatile Multiplier Architecture in GF(2k)

Fields Using the Montgomery Multiplication Algorithm”, INTEGRATION, the VLSI

journal, Vol. 41, pp. 371-384, 2008.

[23] B. King, “Mapping an Arbitrary Message to an Elliptic Curve when Defined over
GF(2n)”, International Journal of Network Security, Vol. 8, No. 2, pp. 169-176,
March 2009.

[24] P. K. Meher, “On Efficient Implementation of Accumulation in Finite Field Over
GF(2m) and its Applications”, IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, Vol. 17, No. 4, pp. 541-550, April 2009.

[25] A. Hariri and A. R. Masoleh, “Bit-Serial and Bit-Parallel Montgomery Multiplica-
tion and Squaring over GF(2m)”, IEEE Transactions on Computers, Vol. 58, No. 10,
pp, 1332-1345, October 2009.

[26] P. Bh, D. Chandravathi and P. P. Roja, “Encoding and Decoding of a Message in the
Implementation of Elliptic Curve Cryptography Using Koblitz’s Method”, Interna-

tional Journal on Computer Science and Engineering, Vol. 2, No. 5, pp. 1904-1907,
November 2010.

[27] S. Talapatra, H. Rahaman and J. mathew, “Low Complexity Digit Serial Systolic
Montgomery Multiplier for Special Class of GF(2m)”, Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 18, No. 5, pp. 847-852, May 2010.

[28] M. Morales-Sandoval, C. Feregrino-Uribe and P. Kitsos, “Bit-serial and Digit-serial
GF(2m) Montgomery Multipliers Using Linear Feedback Shift Registers”, Comput-

ers & Digital Techniques, IET, Vol. 5, No. 2, pp. 86-94, 2011.

[29] 0.18µm TSMC CMOS Technology, Standard Cell Library, September 1999, available
through Canadian Microelectronics Corporation.

[30] H. Wu, Personal communication, Dept. of E&CE, U. of Windsor, 2012.

BIBLIOGRAPHY 75

[31] R. Amiri and O. Elkeelany, “Concurrent Reconfigurable Architecture for Mapping
and Encrypting a Message in Elliptic Curve Cryptography”, IEEE SoutheastCon 2013

conference, pp. 1-6, April 2013.

Vita Auctoris

NAME: Wangchen DAI

PLACE OF BIRTH: Handan, Heibei, P.R.China

YEAR OF BIRTH: 1988

EDUCATION: Beijing Institute of Technology, B.Sc., Beijing, P.R.China, 2010

University of Windsor, M.A.Sc., Windsor, ON, CANADA, 2013

76

	University of Windsor
	Scholarship at UWindsor
	Winter 2014

	Efficient finite field computations for elliptic curve cryptography
	Wangchen Dai
	Recommended Citation

	tmp.1394640234.pdf.xfUo4

