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Abstract 

This thesis contains five major contributions to the field of plasmon-enhanced 

spectroscopy. We start with the report of a unique SERS study of the amino acid 

hydroxyproline and a deuterated analogue. Later, we move on to the exploration of a major 

new research path known as shell-isolated nanoparticle-enhanced fluorescence (SHINEF), 

consisting in the application of silica-shelled noble metal nanoparticles to achieve surface-

enhanced fluorescence. The proof of concept of this technique is explained in one chapter. 

The two following chapters are devoted to the exploration of the plasmonic properties of 

SHINEF: spectral profile modification showing the close relationship between the observed 

enhanced fluorescence and the nanoparticle scattering. The SHIN particles are employed 

to experimentally prove the relationship between the SEF and SERS enhancement factors, 

theoretically predicted before, but never verified experimentally until now. The thesis ends 

with an investigation, in aqueous solutions, of several different factors that play a role in 

the origin of SEF, showing greater enhancement for SHINEF after inducing nanoparticle 

aggregation.   
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1. Theoretical Background of Plasmon-Enhanced Raman and Fluorescence 

Chapter One 

Theoretical Background of Plasmon-
Enhanced Raman and Fluorescence 

1.1. Fluorescence Spectroscopy 

Fluorescence spectroscopy is a widely employed technique for chemical analysis, 

because of its inherent high sensitivity, and its large linear concentration ranges, often 

significantly larger than in absorption methods, but the latter find more applicability as 

relatively few species exhibit fluorescence.[1,2] 

1.1.1. History and Definition. 

Fluorescence was first observed by the Spanish botanist Nicolás Monardes in 1565,[3] 

in his infusions of a Mexican plant, but a correct interpretation was not provided. No new 

investigations were made until the nineteenth century, when Edward D. Clark in 1819 and 

later René Juste Haüy in 1823 described fluorescence in the mineral called fluorite. Later 

Sir David Brewster described it for chlorophyll in 1833 and Sir John Herschel for quinine in 

1845, but it was the English physicist Sir George Gabriel Stokes in 1852 who coined the 

term fluorescence, in his paper “On the Change of Refrangibility of Light”.[4] 

Fluorescence is the main variant in a group of phenomena called photoluminescence, 

grouping fluorescence and phosphorescence. Fluorescence happens in two stages: first, a 

photon must be absorbed by a fluorophore (the species that fluoresces; it is usually a 

molecule, although it can also be an atom and a nanostructure) and it must be of energy 

equal or higher to that of an electronic excitation. The molecule is excited from a ground 

state 𝑆0 to an excited state 𝑆2 or 𝑆1. Here the 𝑆 represents singlet states; ℎ𝜈 is the generic 

expression for a photon; ℎ is Planck’s constant and 𝜈 is the photon’s frequency.  
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Second, the fluorophore is said to relax, generally to the lowest vibrational level of 𝑆1; 

this is called internal conversion, and then the fluorophore emits a photon liberating energy 

as heat in the process so it goes back to the ground state 𝑆0. This is illustrated in the so-

called Jablonski diagram, like that shown in Figure 1.1. Not shown in the picture above is 

when the system goes from the state 𝑆1 to a triplet state 𝑇 in a process called intersystem 

crossing; this leads to the delayed emission called phosphorescence, which will not be 

discussed here. 

The emitted photon always has less energy than the absorbed, therefore it has a longer 

wavelength, and this change in energy is termed Stokes shift. The so-called Stokes and anti-

Stokes in Raman are named after their corresponding fluorescence analogue. 

Not all molecules do fluoresce; the phenomenon is restricted to the molecules that 

can: 1) absorb light at the excitation wavelength 2) relax by emitting a photon. This last 

condition is successfully met by molecules with a rigid structure like those with aromatic 

rings. This usually gives rise to transitions of the type 𝜋 → 𝜋∗ or 𝑛 → 𝜋∗. In theory it should 

be possible to achieve fluorescence with a 𝜎 → 𝜎∗ which would require wavelengths of less 

than 250 nm, but in practice the energy required for such transitions matches that 

necessary to produce bond ruptures and these processes happen before fluorescence can 

take place; therefore fluorescence is in practice restricted to the former type of transitions. 

Figure 1.1. Jablonski diagram for fluorescence. 

Internal conversion

Fluorescence
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1.1.2. Fluorescence Spectra 

Fluorescence spectra are always represented as a graph of emission intensity versus 

wavelength, usually in nanometres but sometimes expressed in absolute wavenumbers. 

A characteristic of fluorescence is that the fluorescence emission is independent of the 

excitation wavelength. It is only required that the excitation light has enough energy to 

achieve the excited states, but with higher energies the emission spectrum remains the 

same. This is because upon relaxation, all excess energy is dissipated rapidly leaving the 

fluorophore in the lowest vibrational state of 𝑆1 and the emission and relaxation proceeds 

from that state only; this is called Kasha’s rule. 

Also, it is experimentally observed that most molecules that do fluoresce follow the 

so-called mirror image rule: the emission spectrum is a mirror image of the absorption 

spectrum (Figure 1.2). This is because when the molecule relaxes and emits, it does not 

return to the lowest energy state, but to some excited vibrational ground state. Exceptions 

to the mirror-image rule are molecules like quinine, that show one less peak than that of 

its absorption spectrum. This is because in the absorption spectrum there is the second 

excited state 𝑆2, which at the moment of emission quickly relaxes back to the state 𝑆1. Then 

the emission spectrum is a mirror image of the 𝑆0-𝑆1 transition only.  

600 650 700 750 800 850 900 950 

Abs Fluo

Wavelength / nm

Figure 1.2. Fluorescence spectrum of octabutoxyphthalocyanine. 
The spectrum shows the mirror-image rule. 
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There are also molecules like pyrene and perylene, which have a planar structure that 

allows for easy interaction between the pi electron clouds in the molecule, allowing for the 

formation of complexes of the molecule that emits at a longer wavelength, however this 

complex only exists in the excited state. If this excited state complex is with a different 

molecule, the complex is called an exciplex; but the complex can also be formed among 

two identical molecules; the resulting excited state dimer is termed an excimer. The 

fluorescence coming out of these excited state complexes lacks all the peak structure of 

the monomers; it becomes a very broad peak very much redshifted in comparison to the 

fluorescence of the monomer. An example of that can be seen in the experiments with the 

excimer-showing perylene derivatives described in Chapters 4 and 6. 

1.1.3. Quantum Yield and Lifetime 

A measure of the efficiency of photophysical processes, fluorescence among them, is 

the quantum yield or quantum efficiency (Φ), which is defined as: 

Φ =
number of photons emitted

number of photons absorbed
 (1.1) 

It is equivalent to the ratio of the molecules that fluoresce to the total number of 

excited molecules. Molecules or systems that are highly fluorescent have a quantum yield 

approaching unity, while those that don’t fluoresce appreciably have a quantum yield 

approaching zero. 

The interval of time between the absorption of a photon and the emission of another 

is called the fluorescence lifetime (𝜏), and it represents for how long the molecule upholds 

the excited state. Typical fluorescence lifetime values are around 10−8 s. 

Lifetime and quantum yields are related to each other. We have to consider the 

following relationship: 

Φ =
Γ

Γ + 𝑘𝑛𝑟
 (1.2) 

where Γ is the emissive rate of the fluorophore and 𝑘𝑛𝑟 is the nonradiative decay rate to 

𝑆0. The latter accounts for the dissipation of energy to processes other than fluorescence, 

hence the name nonradiative. When 𝑘𝑛𝑟 is small, the quantum yield is high, and can be 

close to unity. 
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The lifetime in the absence of non-radiative processes, or intrinsic lifetime, can be 

expressed as: 

τ𝑛 =
1

Γ
 (1.3) 

When there are non-radiative processes included, this equation is converted to: 

τ =
1

Γ + 𝑘𝑛𝑟
 (1.4) 

Fluorescence is a random process and few molecules emit at precisely 𝜏; this value 

represents an average of the time spent in the excited state by a group of molecules. 

Also, fluorescence intensity can decrease by a variety of processes, which together 

they are called fluorescence quenching. The mechanisms through which quenching can 

occur are many; among the most notable are collisions with other molecules in gas phase 

or in solution, in which case the fluorophore returns to the ground state due to energy 

transfer. Metals, including metallic particles, have a lot of electrons in their surface and are 

an example of good fluorescence quenchers.[5] This is an important factor to take into 

account at the moment of discussing surface-enhanced fluorescence later. 

1.2. Raman Spectroscopy 

Like infrared (IR) absorption spectroscopy, Raman[6] allows for the identification of the 

vibrations in a molecule, and can be said to be complementary to infrared, but it can be 

more expensive and less sensitive when not enhanced.[1] Before we describe the plasmon 

enhancement causing the SERS effect, it is necessary to study the fundamentals of Raman 

spectroscopy. 

1.2.1. Molecular Vibrations 

When light interacts with matter, several things can happen: light can be reflected, 

absorbed or scattered. In the case when it is absorbed, photons are absorbed according to 

characteristic frequencies within the molecule. Classically, the way to describe the 

behaviour of chemical bonding between two atoms has been the harmonic oscillator; 

hence this approximation is then termed harmonic approximation. According to this, 
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atomic nuclei are modelled as balls united by springs undergoing simple harmonic motion, 

the springs representing the chemical bonds between the atoms in a molecule.[7] 

Under these premises, if there are 𝑁 atoms in a molecule, and the molecule is treated 

as a whole, the said molecule must have 3𝑁 − 6 degrees of freedom if the molecule is not 

linear, and 3𝑁 − 5 if it is. Then every degree of freedom is set in correspondence with the 

so called normal modes of vibration, and they correspond to motions where all the nuclei 

undergo harmonic motion, move in phase and have the same frequency of oscillation.[7] 

Differentiating the energy of a given bond, we can know the force 𝐹 of the bond, and this 

bond is treated as a spring: 

𝐹 = −𝑘(𝑅 − 𝑅𝑒𝑞) (1.5) 

where 𝑘 is the “spring” constant (from now on, the force constant of the bond), 𝑅 is the 

distance between the two atoms and 𝑅𝑒𝑞 is the equilibrium position for the vibration. Then 

the vibrational frequency (𝜈) is given by:  

𝜈 =
1

2𝜋
√

𝑘

𝜇
 (1.6) 

where 𝜇 is the reduced mass of the two atoms of masses 𝑚1 and 𝑚2; it is defined as 𝜇 =

𝑚1𝑚2

𝑚1+𝑚2
.  

Figure 1.3. Potential energy diagram for a molecular vibration. 
The green curve represents the harmonic potential and the blue curve 

is the Morse potential. 

En
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Equation (1.6) provides a rather rough but still useful estimate of the vibrational 

frequency; deviations to the harmonic behaviour are termed anharmonicity. A more 

accurate potential is the Morse potential, which is shown in comparison with the harmonic 

potential in Figure 1.3.  

The vibrations in a molecule give origin to the two major forms of vibrational 

spectroscopy: infrared absorption and Raman scattering spectroscopy. Both techniques 

take advantage of the same vibrations, but they appeal to phenomena having different 

physical origin. 

IR absorption will be mentioned here only briefly. In the case of IR absorption, this 

phenomenon occurs when a photon has a wavelength that matches that of the vibration 

of the molecule. When reaching the molecule, the photon is then absorbed and it induces 

a change in the dipole moment of the molecule. Molecular vibrations typically have 

absorption frequencies into the so-called mid-infrared part of the electromagnetic (EM) 

spectrum (200-4000 cm−1), hence the name. A plot of absorption vs. wavelength gives the 

IR spectrum for a molecule, which is unique for every molecule; it is then its fingerprint, 

and for that reason it constitutes a classical way to identify molecules, giving rise to the 

field of IR spectroscopy, which is one of the most common ways to identify molecules, in 

organic and inorganic chemistry.[8,9] 

 

Process Cross section of… 𝝈 (cm2)[10] 

Absorption Ultraviolet/visible 10−18 

Absorption Infrared 10−20 

Emission Fluorescence 10−19 

Scattering Rayleigh scattering 10−26 

Scattering Raman scattering 10−29 

Scattering Resonance Raman 10−24 

Scattering SERRS 10−17 

Scattering SERS 10−19 

 
Table 1.1. Typical cross-sections of processes for various possible interactions of molecules with incident 

electromagnetic radiation 

 

A typical way of measuring the efficiency of an optical process such as IR or Raman is 

the cross section (𝜎), which gives an idea of the probability for an event to occur; the higher 
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this value, the more efficient the process is. The theoretical concept of cross section comes 

from macroscopic objects and it refers to their literal cross section, which indicates how 

likely they are to be hit by a projectile. In a spectroscopy context, molecules and atoms are 

hit by photons, and while it is complicated to calculate exact cross sections for quantum 

objects like molecules, the concept remains useful. Typical cross sections for the most 

common optical processes are given in Table 1.1. 

1.2.2. Raman Scattering 

Having investigated scattered light since the early 1920s, in February 1928, Prof. Sir 

Chandrasehkara Venkata Raman in collaboration with his then-graduate student 

Kariamanickam Srinivasa Krishnan in Calcutta, India, published one of the most relevant 

findings in physics: the discovery of a new type of scattered radiation.[11,12] This radiation 

had been previously predicted theoretically by Adolf Smekal in 1923[13] and it was also 

reported experimentally two months after Raman, independently, by the Russian scientists 

Grigori Landsberg and Leonid Mandelstam in crystals.[14] However, it was Raman’s work 

that got better known, and after scientists in Germany were able to reproduce Raman’s 

findings, they started calling the phenomenon as the Raman effect, and for his work Raman 

received the Nobel Prize in Physics in 1930. A comprehensive account of the discovery is 

given by Rajinder Singh.[15] 

Raman scattering is defined as the inelastic scattering of light. As said at the beginning 

of section 1.2.1, radiation can be reflected, absorbed or scattered. From the fraction of 

photons that are scattered, most of them are scattered without loss of energy; such 

phenomenon is called elastic scattering, or Rayleigh scattering. But a small fraction of those 

scattered photons undergo an energy change that is equal to a vibrational quantum 

transition, i.e. the same energy that gives rise to IR absorption, those photons constitute 

the Raman scattering. The probability for the generation of a Raman-scattered photon is 

about 1 for every 107 photons scattered by the molecule. This means that the process is 

very inefficient and this can be verified by the low cross-section assigned to normal Raman 

scattering in several orders of magnitude lower than fluorescence or absorption.  
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Raman scattering can have either more energy than the original light, or less energy. 

The latter case is much more likely, and since it matches the Stokes shift of fluorescence, is 

termed Stokes Raman scattering, and the former case is the anti-Stokes Raman scattering. 

Raman scattering was initially described in terms of classical physics and was later 

further refined with a quantum-mechanical description. In this thesis we will describe only 

the classical treatment. Both treatments are based upon a property that describes its 

molecular response. That property is called polarizability, it is represented by the Greek 

letter alpha (𝛼) and it is always modelled in terms of the induced polarization (𝑝) that 

results of the interaction with an electric field 𝐸: 

𝑝 = 𝛼𝐸 (1.7) 

The polarizability is a description of the electron cloud that surrounds a molecule and 

essentially describes its deformability in the presence of an electric field. If the electric field, 

oscillating at a frequency 𝜈0, is given by 𝐸 = 𝐸0 cos 2𝜋𝜈0𝑡, or if we consider the angular 

frequency 𝜔 = 2𝜋𝜈, then 𝐸 = 𝐸0 cos 𝜔𝑡, the induced dipole will be: 

𝑝 = 𝛼𝐸0 cos 𝜔0𝑡 (1.8) 

At any one time the molecule is in a complex motion of vibrations which are 

approximated as the summation of normal vibrations. The polarizability is a function of the 

normal coordinate 𝑄 = 𝑄0 cos 𝜔𝑗𝑡, where 𝜔𝑗 is the frequency of the 𝑗-th vibration. That 

way the polarizability can be expanded as a Taylor series: 

𝛼 = 𝛼0 + (
𝜕𝛼

𝜕𝑄
)

0

𝑄 +
1

2
(

𝜕2𝛼

𝜕𝑄2
)

0

𝑄2 + ⋯  

Neglecting the contributions of second order terms and higher, and after replacing 

𝑄 = 𝑄0 cos 𝜔𝑗𝑡 as defined, the polarizability function looks like: 

𝛼 = 𝛼0 + (
𝜕𝛼

𝜕𝑄
)

0

𝑄0 cos 𝜔𝑗𝑡 (1.9) 

 Then, substituting (1.9) in (1.8), the induced dipole moment 𝑝 becomes: 

𝑝 = 𝛼0𝐸0𝑄0 cos 𝜔0𝑡 + (
𝜕𝛼

𝜕𝑄
)

0

𝐸0𝑄0 cos 𝜔𝑗𝑡 cos 𝜔0𝑡 (1.10) 

Finally, applying the trigonometric identity cos 𝛼 cos 𝛽 =  
1

2
[cos(𝛼 + 𝛽) + cos(𝛼 −

𝛽)] and rearranging, the equation above can be expressed as:  
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𝑝 = 𝛼0𝐸0 cos 𝜔0𝑡 +
1

2
(

𝜕𝛼

𝜕𝑄
)

0

𝑄0𝐸0 cos(𝜔0 − 𝜔𝑗)𝑡

+
1

2
(

𝜕𝛼

𝜕𝑄
)

0

𝑄0𝐸0 cos(𝜔0 + 𝜔𝑗)𝑡 

(1.11) 

 The equation above contains three terms, meaning that the induced dipole oscillation 

is comprised of three frequencies that correspond to elastic scattering (Rayleigh 

scattering), which is the first term, and inelastic scattering (Raman scattering) that gives the 

other two terms: photons with a lower frequency (termed Stokes Raman scattering) and 

others with a higher frequency (termed anti-Stokes Raman scattering). Those are illustrated 

in Figure 1.4. 

The main selection rule for Raman scattering results from the change in the 

polarizability during the motion of the vibration: 

(
𝜕𝛼

𝜕𝑄
)

0

≠ 0 (1.12) 

In practice, this means that the Raman or IR activity of each vibration depends on the 

symmetry of the molecule, as studied by group theory applied to molecular symmetry.[16,17] 
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1.2.3. Raman Spectra 

Let us recall that the Stokes and anti-Stokes in Raman are relative to the incident light 

(which has the same wavelength as Rayleigh scattering); it is very important to notice that 

Raman scattering follows the wavelength of the Rayleigh scattering. Like IR spectra, Raman 

spectra are usually plotted in wavenumbers; not in absolute wavenumbers but in relative 

wavenumbers. The absolute wavenumber of the Rayleigh light is assigned as zero, and the 

difference between the Raman bands and the Rayleigh is plotted; this is called Raman shift. 

Stokes Raman scattering implies a positive Raman shift, and the anti-Stokes has negative 

Raman shift. So the spectrum is usually plotted as Raman shift versus Raman intensity, 

which usually means counts per second in a charge-coupled device (CCD) camera (see 

section 2.5.1). Figure 1.5 shows the complete Raman spectrum for carbon tetrachloride, 

showing both Stokes and anti-Stokes. Since Stokes Raman is much more intense than anti-

Stokes, usually only the Stokes part is graphed and employed for analysis.  

Figure 1.4. Jablonski diagram for Raman scattering processes. 
S=Stokes, R=Rayleigh, AS=Anti-Stokes 

S R AS S R AS
Raman Resonance 

Raman
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Energy Levels

Virtual States
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With Raman cross sections being quite small for most molecules, especially those not 

having a rigid structure with aromatic rings, makes the technique not as practical as IR. 

However, in the IR water is a big interferent because it has a large IR cross section, which 

does not allow for the visualization of anything else when water is present. On the contrary, 

water is a very poor scatterer, and indeed Raman spectroscopy finds a lot of applications 

in aqueous solutions where IR cannot be employed. 

The low cross section problem can be circumvented in two ways: by employing 

resonance Raman scattering, by harnessing the plasmonic properties of metallic 

nanoparticles, i.e. doing SERS, and also by combining the two to obtain SERRS. All these are 

to be discussed in the following sections. 

1.2.4. Resonance Raman Scattering 

As we said before, when wavelength of the incident light matches that of an electronic 

transition, the scattered light is said to be resonance Raman scattering (RRS). 

Experimentally, the intensity of these spectra is much higher than those of regular Raman, 

in the order of 103-105 times as intense as regular Raman, thus increasing very much the 

sensitivity of the technique. It is also observed that the spectrum simplifies, for the 

enhancement only applies to the vibrations associated to the electronic transition. 

If we go back to the Jablonski diagram in Figure 1.4 (page 11), we see that hitting an 

electronic transition means that the excitation is no longer into a virtual state, but instead 

Figure 1.5. Complete Raman spectrum of carbon tetrachloride. 
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it goes directly into one of the excited states of the molecule. The Raman intensities, then, 

are determined by the properties of the excited state. 

The coupling of the vibrational modes of a molecule to its electronic transition depends 

strongly on the dimensionless displacement between the ground and excited electronic 

potential energy surfaces along a normal coordinate. The most common case of RRS occurs 

when a component of the normal coordinate of a vibration is in the same direction that the 

molecule expands (polarizes) during an electronic excitation, which leads to an increase in 

the polarizability and the dipole moment as well. This happens most of the time with big 

aromatic molecules like dyes. The ring stretching modes of extended aromatic systems 

benefit particularly from this form of RRS enhancement of the signal, which is termed 

Franck-Condon enhancement. The ring breathing modes of these molecules are along the 

same normal coordinates as the expansion of the molecule that occurs when 𝜋 → 𝜋∗ 

transitions are excited. Consequently, these modes are greatly enhanced, preferentially 

over the other vibrational modes of the molecule. 

Because of the above, RRS often happens in molecules that can also fluoresce. If the 

molecule can fluoresce, RRS and fluorescence can and will occur at the same time. If the 

fluorescence quantum yield is high, as is the case of molecules like octadecyl rhodamine B 

(R18, used in Chapters 4, 5 and 6) and the excitation light is in the vicinity of the spectrum 

(take the case of the laser line at 514.5 nm), the fluorescence falls in the same region as 

the RRS bands and fluorescence overpowers RRS, then only fluorescence is seen. But when 

the RRS bands are far apart from the fluorescence emission and the fluorescence quantum 

yield is not that high, as is the case for crystal violet in Chapter 6, both RRS and fluorescence 

appear in the same spectrum. 

It is important to mention that overtones and combinations are rarely seen in non-

resonant Raman scattering, but are allowed transitions in RRS, and are usually seen. 

Compare their complete absence in the SERS spectra for hydroxyproline in Chapter 3, and 

their easy observance in crystal violet and malachite green in Chapters 6 and 7. 
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1.3. Nanoparticles 

According to the IUPAC (International Union of Pure and Applied Chemistry) glossary 

of terms used in toxicology, a nanoparticle is a microscopic particle whose size is measured 

in nanometres, often restricted to nanosized particles, that is, with an aerodynamic 

diameter* of less than 100 nm, also called ultrafine particles.[18] Nanoparticles may adopt 

different shapes after synthesis, as a result of nucleation processes. An accurate description 

of these processes has been given by Sun.[19]  

The most common shape for nanoparticles, especially at sizes smaller than 50 nm, 

approximates a sphere. However, synthesis protocols have been described that allow the 

formation of nanoparticles of different shapes, and they are generally named after their 

apparent shape adding the “nano” prefix, thus we have nanospheres, nanorods, 

nanotriangles, etc. Nanoparticles of different shapes are shown in Figure 1.6. 

                                                      

* This aerodynamic diameter is, according to the same IUPAC Glossary, is defined as the diameter of a 
spherical particle, with a density equal to unity, that has the same deposition velocity in air than the particle 
into question. 
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Metallic nanoparticles like those employed in this thesis form what is known as a 

colloid or colloidal dispersion composed by two separate phases, namely, the dispersed 

phase and the continuous medium. In our case, the particles, which are nothing but solid 

metal particles, are the dispersed phase, and the liquid medium (water in our case) is the 

dispersant phase. Metallic nanoparticles at the colloidal state form a lyophobic colloid, 

word which means “which hates the solvent”. The dispersion is thermodynamically 

unstable, unlike what happens in a lyophilic colloid where the dispersion is more stable 

than the components. This means that, eventually, separation of phases will occur, that is, 

particles will aggregate. However, the speed of separation can be almost infinitely slow: 

the gold colloids fabricated by Michael Faraday are still conserved and exhibited in the 

British Museum. 

The stability of colloidal dispersion has been described in the classical theory called 

DLVO after the initials of its developers (Derjaguin, Landau, Verwey and Overbeek). This 

theory explains the stability as a function of the result of the particles being in a “tug-of-

war” between two forces: electrostatic repulsion forces, and van der Waals attraction 

Figure 1.6. SEM image of nanoparticles of different shapes and sizes. 
Here we see nanowires, nanopyramids, nanocubes and nanospheres. Image 

courtesy of Wenhao Chen. 
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forces. The latter is responsible of nucleation and growth, and also of aggregation, but for 

the particles to exist as such, the electrostatic repulsion must win in the end. DLVO forces 

and the exceptions to their rules are extensively described in Israelachvili’s textbook.[20] 

From there we can retrieve the most important equation for spherical particles: 

𝑈DLVO = 𝑈electrost + 𝑈vdW 

𝑈DLVO =
64𝜋𝑘𝐵𝑇𝑅𝑐Γ2

𝜅
𝑒−𝜅𝐷 −

𝐴𝑅

12𝐷
 

(1.13) 

Where 𝑘𝐵 is Boltzmann’s constant, 𝑇 is temperature in kelvins, 𝑅 is the radius of the 

particles, 𝑐 is the molar concentration of the particles, and Γ is a factor related to the 

surface potential of the particles. 𝐴 is Hamaker’s constant which is a number that 

characterizes the van der Waals interaction. Equation (1.13) offers several general cases of 

stability for a colloid. 𝜅 is a parameter related to the length of the electric double layer; 

𝜅−1 is the Debye length and represent the thickness of the electric double layer. 

DLVO theory offers a good explanation when there are no other forces involved aside 

from van der Waals’ attraction and electrostatic repulsion. However, there is an exception 

to the DLVO theory that comes for particles which are coated, especially with polymers; 

that is called steric stabilization. The adhesion forces may be stronger but if the particles 

are surrounded by a thick coating, like that provided by a polymer, the particle cores never 

really come into contact and they are harder to aggregate, thus providing a more stable 

colloid. 

1.4. Plasmons 

Nanosized particles of coinage (also called noble) metals like gold, and silver, and also 

copper, present the unique property of showing to the naked eye a colour that is 

remarkably different than that of the bulk metal. For example, gold has a characteristic 

“golden” colour when in the bulk, but in its nanoscale form it shows colours varying 

between orange-reddish and blue, depending on the size, as shown in Figure 1.7. Among 
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the first ones to study the subject was J. C. Maxwell Garnett†, who in 1904 published a 

paper that explained partly the colour of colloidal metal dispersions.[21] This early model is 

now better understood in a subset of physics called effective medium theory and used for 

other applications. 

The classical explanation for the colloids phenomenon was published in 1908, in a 

seminal paper by Gustav Mie,[22] where he solved Maxwell’s equations for spherical 

homogeneous particles with a plane monochromatic wave, thus describing the extinction 

(absorption plus scattering) spectrum for metal particles and explaining the colours seen. 

This and further related studies are usually called Mie theory, although the use of the term 

theory may be a bit inaccurate as he did not formulate any new equations. The subject has 

been of great interest, and over the years several reviews have been published on the linear 

                                                      

† Garnett’s father, having met the famous physicist James Clerk Maxwell, was so impressed with him, that he 
named his son James Clerk Maxwell Garnett, and this son later became a physicist himself. This is the author 
of the 1904 paper. 

Figure 1.7. Plasmon absorption of silver and gold colloids. 
The yellow curve shows the plasmon absorption of a silver colloid at slightly above 

400 nm and the red curve represents a gold colloid at above 500 nm. The inset shows 
photos of a silver colloid (above) and a gold colloid (below). In either case, particle 

sizes are around 50-60 nm. Sample spectra taken by the author. 

400 550 600 650 700 750 350 450 500 
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optical properties of isolated metallic particles of arbitrary shape, with diameters of up to 

a few hundred nanometres.[23] The original Mie paper assumed a spherical shape for the 

particles yielding an exact solution, but in reality particles may differ from a sphere, and 

this causes variations in their absorption and scattering. Gans[24,25] adapted Mie’s theory 

for its application in particles with different shapes, to include prolate and oblate ellipsoids 

smaller than the wavelength of light. Another problem of relevance for surface-enhanced 

spectroscopy is the coupling effect of interacting nanoparticles next to each other, which 

is approached under the extended Mie theory. 

Since Maxwell’s equations cannot be solved for arbitrary shapes, approximations are 

necessary. One of the most extended ways of performing the task of calculating absorption 

and scattering for nanostructures of different shapes is the so-called discrete dipole 

approximation (DDA). This method employs an arrangement of point dipoles that 

approximately match the shape of the nanostructure. With the advent of modern 

computers, the calculation of multiple dipoles becomes faster and feasible. 

The main consequence of Mie’s contribution is the concept, theory and study of 

plasmons. When a small spherical nanoparticle, much smaller than the wavelength of the 

incident light, is irradiated by a plane monochromatic wave, the oscillating electric field 

causes the electrons in the conduction band to oscillate coherently. These collective 

oscillations of the conduction electrons are called localized surface plasmon resonances 

(LSPR), usually shortened to plasmons.‡ These plasmons are radiative, meaning that they 

scatter the incoming light to their vicinity. How much is scattered is a property of both the 

wavelength of the incident light (here we will express it as angular frequency, 𝜔) and the 

nature of the material, as described in the dielectric function of the metal. This dielectric 

function is complex: 

                                                      

‡ These plasmons should not be confused with those arising from large flat metal surfaces, usually termed 
surface plasmon resonances, which are non-radiative. Those give origin to another field of study called 
surface plasmon spectroscopy, which has nothing to do with SERS or SEF. 
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𝜀(𝜔) = 𝜀′(𝜔) + 𝑖𝜀′′(𝜔) (1.14) 

Now, an incident electric field will induce a local electric field which in turn will be 

dependent on the shape and size of the particle, but most importantly on the dielectric 

function for the metal, and also that of the surrounding medium, and both of them are 

dependent on the wavelength of the light: 

𝐸 ∝
𝜀(𝜔) − 𝜀0(𝜔)

𝜀(𝜔) + 2𝜀0(𝜔)
 (1.15) 

where 𝜀 is the dielectric function of the metal and 𝜀0 is the dielectric function of the 

surrounding medium. From this, we deduce that the electric field is at a maximum (that is, 

the best scattering by nanoparticles) when the conditions are such that a resonance is 

found (when 𝜀′′ is negligible): 

Re[𝜀(𝜔)] = −2𝜀0 (1.16) 

 The real part of the dielectric function must be in that resonance condition with the 

incident light. This is called the Fröhlich condition. As shown in Table 1.2,[10,23,26] species 

fulfilling this condition are the well-known coinage or noble metals: silver (where the real 

part goes really close to −2 and the imaginary part is very close to zero), gold and copper 

to a lesser extent. Alkali metals also satisfy this, but they are not practical to work with, 

because they react violently with water. Other metals satisfy the conditions in different 

parts of the spectrum, either in the near IR or the UV.  

 The position of the absorption peak is dependent on the dielectric function of the 

metal, which is also modulated by the size and shape of the nanoparticle.[27] The fabrication 

of nanoparticles of different sizes and shapes gives the possibility of tuning the position of 

the plasmon absorption, and therefore scattering, to one’s particular needs. For our 

purposes, this means to tune where in the spectrum will SERS and/or SEF occur. 

 

Metal 𝜺′ 𝜺′′ Plasmon resonance (nm) 

Silver −2.029919 +0.60192 350 

Gold −2.546544 +3.37088 496 
 

Table 1.2. Dielectric function values for silver and gold 
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1.5. Surface-Enhanced Raman Scattering 

Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Fluorescence (SEF) 

represent the convergence of the paths of nanostructure development and of the 

analytical techniques of Raman and fluorescence spectroscopy, giving rise to new analytical 

techniques and new research avenues which find more and more applications every day 

because of their unique properties. The fundamentals of SERS have been extensively 

studied since its discovery, and the field has matured enough that today there are several 

textbooks on the subject.[10,26,28-30] Here we will present a brief summary with the essentials 

only. 

The amplification of Raman signals was observed for the first time in Dr. Martin 

Fleischmann’s laboratory in 1974.[31] The authors observed anomalously intense Raman 

spectra of pyridine coming from this substance in the vicinity of electrochemically 

roughened silver electrodes. The authors attributed the signal enhancement to a higher 

number of molecules placed near the electrodes. The interpretation of the phenomenon 

seemed strange since the beginning, and indeed, it was not long before it was challenged. 

It took the contributions of Jeanmaire and van Duyne,[32] and those of Albrecht and 

Creighton,[33] to set SERS in the right track: the augment in the signal could not be explained 

by the number of molecules alone, and the scientific community was in the presence of a 

new physical phenomenon. The history of the discovery has been told several times by its 

pioneers.[34-37] 

1.5.1. SERS Theory 

Creighton proposed that the roughened electrodes acted much like colloidal 

nanoparticles, and indeed when he prepared gold and silver sols he reproduced the 

enhanced Raman.[38] He went as far as to associate it to the Mie scattering of the silver and 

gold sols, having titled his paper “Plasma Resonance Enhancement of Raman Scattering by 

Pyridine…” However it was Dr. Rick van Duyne who coined the acronym SERS,[39] in light of 

the increase in surface provided by the particles, and this name has stuck until today, 

although it is well understood and agreed upon, that it is the plasmon which is responsible 
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for the phenomenon. Some publications now talk about plasmon-enhanced 

spectroscopy,[40] hence the title chosen for this thesis, but for historical reasons we will 

stick to the acronym SERS. 

The first SERS models were proposed by Moskovits in 1978,[41] Joel Gersten and 

Abraham Nitzan in 1980,[42] and by Milton Kerker in 1980[43] and 1984[44]. A comprehensive 

review is given by Moskovits again in 1985.[45] The models employ mostly classical 

electrodynamics to explain the phenomenon. First they used a single spherical nanoparticle 

and a molecule attached to it; this is the spherical model of SERS. Later Kerker refined his 

models to include other shapes also, like prolate spheroids. These early efforts already 

describe the fact that the EM enhancement accounts for most of what is seen, and allow 

to rationalize most of the experimental findings.  

To avoid misconceptions,[46] we will adopt Moskovits’s definition[47]: ‘‘As it is currently 

understood SERS is primarily a phenomenon associated with the enhancement of the 

electromagnetic field surrounding small metal (or other) objects optically excited near an 

intense and sharp (high Q), dipolar resonance such as a surface plasmon polariton. The 

enhanced re-radiated dipolar fields excite the adsorbate, and, if the resulting molecular 

radiation remains at or near resonance with the enhancing object, the scattered radiation 

will again be enhanced (hence the most intense SERS is really frequency-shifted elastic 

scattering by the metal). Under appropriate circumstances the field enhancement will scale 

as 𝐸4 where 𝐸 is the local optical field’’. 

The enhanced local field is illustrated in Figure 1.8. The enhanced Raman comes from 

the fact that in normal Raman the molecule has a very small cross section. In SERS, there 

are nanostructures with much higher cross section than the molecules, and therefore are 

much more efficient at capturing and scattering photons. 
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Not every metal gives this phenomenon, of course. The capability of giving SERS is 

associated to the particle’s capability of holding LSPR’s, that is, a radiative plasmon that 

scatters light to the vicinity of the nanoparticle (see section 1.4) and this is why the 

phenomenon is restricted to coinage metals (silver, gold and copper). 

At this point it is convenient to introduce the concept of enhancement factor (EF),[26] 

or how many times the signal is enhanced when compared to taking a Raman spectrum in 

the same conditions but without the presence of nanostructures. Experimentally, this is 

given by: 

SERS EF =
𝐼𝑆𝐸𝑅𝑆 𝑁𝑆𝐸𝑅𝑆⁄

𝐼𝑅𝑆 𝑁𝑅𝑆⁄
 (1.17) 

where 𝐼𝑆𝐸𝑅𝑆 is the intensity of Raman in SERS conditions, 𝐼𝑅𝑆 is the intensity in normal 

Raman conditions; 𝑁𝑆𝐸𝑅𝑆 and 𝑁𝑅𝑆 are the corresponding number of molecules for each 

condition. The intensities 𝐼 are usually calculated by fitting the area under the curve to 

theoretical Gaussian curves (usually a sum of them) and then calculating the area under 

the curve by integration. EF values for a SERS experiment may vary quite a bit; those 

reported in the earliest experiments were in the order of 105-106.[32] With better SERS 

substrates, and without considering RRS, those can be enhanced up to 108-1010 at best.[26] 

Either way, the characteristic of SERS is the enhancement by several orders of magnitude. 

Figure 1.8. Simple diagram illustrating SERS. 
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From a theoretical point of view, there are two major electromagnetic contributors to 

these enhancement factors.[26] We recall from basic electromagnetism that the intensity of 

the radiation in a certain point is always proportional to the square of the electric field in 

that point. Then the first enhancement term is called the local field intensity enhancement 

factor, and it is usually expressed as: 

𝐺𝑙𝑜𝑐 = |𝐸2| =
|𝐸𝑙𝑜𝑐(𝜔)|2

|𝐸𝑖𝑛𝑐|2
 (1.18) 

Here 𝐸𝑙𝑜𝑐(𝜔) is the local electric field caused by the nanoparticle excitation, and  𝐸𝑖𝑛𝑐 

is the incident electric field (say, the laser that illuminates the system). The idea is that the 

presence of the nanoparticle will make 𝐸𝑙𝑜𝑐(𝜔) much larger than 𝐸𝑖𝑛𝑐. 

The second is called the radiation enhancement factor, caused by the re-emission at a 

different wavelength in Raman scattering (the scattered field) which we will write as 𝐺𝑟𝑎𝑑.§ 

This factor can be hard to solve from a physics point of view,[26,48] and that is why a very 

comfortable approximation is usually employed, which is simply to assume that the Raman 

shift is negligible and therefore 𝐺𝑙𝑜𝑐 = 𝐺𝑟𝑎𝑑. Therefore, 

SERS EF = 𝐺𝑙𝑜𝑐𝐺𝑟𝑎𝑑 ≈ 𝐺𝑙𝑜𝑐𝐺𝑙𝑜𝑐 ≈ |𝐸4| ≈
|𝐸𝑙𝑜𝑐(𝜔)|4

|𝐸𝑖𝑛𝑐|4
 (1.19) 

From here comes the expression that the SERS enhancement is proportional to the 

fourth power of the electric field. It must be stressed that the expression above is an 

approximation only, being the so-called 𝐸𝟒 approximation. A more rigorous discussion of 

𝐺𝑙𝑜𝑐 and the validity of the 𝐸4 approximation has been done by Etchegoin and Le Ru.[26,48] 

The EF achieved is strictly dependent on the distance from the nanostructure to the 

molecule, as the electric field decreases as we move away from the surface of the 

nanostructure. If we consider a gold or silver nanosphere, it comes as obvious that the 

highest enhancement is obtained when the molecule is touching the surface of the 

nanoparticle, and that since the electric field decreases as we move the molecule away 

from the surface, the enhancement will decrease as well. The decrease in the SERS EM 

                                                      

§ Some literature write 𝑀 instead of 𝐺; here we will prefer 𝐺. 
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enhancement for such a nanosphere is |
𝑟

𝑟+𝑑
|
12

, 𝑟 being the nanoparticle radius and 𝑑 the 

distance from the molecule to the nanoparticle. 

This is the case for a nanosphere (spherical model), but real-life nanoparticles deviate 

from this shape. Indeed, to optimize the wavelengths at which light is better scattered by 

the nanoparticles, one may employ nanoparticles with shapes different than a sphere. 

It is also very important to discuss the contribution of more than one nanoparticle to 

the EM enhancement. When molecules are placed on arrays of nanostructures, like a silver 

island film, or even a colloidal dispersion cast over a surface, molecules often fall in regions 

where they receive the EM enhancement of several nanoparticles, all of them contributing 

their EM enhancement to the molecule. Such a region of space is called a hot spot, and the 

existence of hot spots is one of the major justifications of the high enhancement factors 

classically observed in SERS.[49,50] 

1.5.2. Interpretation of SERS spectra 

The interpretation of SERS spectra can be frustrating if all one wants is to rapidly 

achieve enhanced Raman spectra,[10] for in many occasions the normal Raman spectrum 

does not match exactly the SERS spectrum; this is seen very well in our own SERS 

investigations of hydroxyproline in Chapter 3. One must remember that in regular Raman 

the molecule is moving freely in a medium, but in SERS the molecule is not alone: now it is 

in the vicinity of a nanostructure, interacting with it, and the SERS spectrum reflects that. 

In most SERS experiments the molecule is directly adsorbed to a nanoparticle, either by 

simple van der Waals attraction, which is termed physisorption, or by interactions whose 

energy is comparable to regular chemical bonds, which are termed chemisorption. Either 

way, in many occasions the molecule can be considered to be forming a complex with the 

nanoparticle, and therefore it may lose the symmetry it had before the adsorption. In 

general, a molecule in liquid or gas phase has a random orientation, but the adsorption to 

the nanoparticle makes the molecule adopt a preferential spatial configuration; the 

freedom is abruptly restricted. Therefore the selection rules in SERS are different than 

those in Raman. This topic was addressed by Dr. Martin Moskovits in 1982 in his seminal 

paper “Surface Selection Rules”.[51] 
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The complexation with the nanoparticle brings a previously inexistent bonding 

between the molecule and the nanoparticle, thus changing the total number of vibrations, 

introducing new vibrations, introducing a new geometry (thus shifting the frequencies of 

existing vibrations), and also changing the electronic resonance frequencies of the 

molecule. This may account for part of the enhanced signal, thereby seeing resonance 

effects (surface-enhanced resonance Raman scattering, SERRS) that do not exist in the 

original molecule. It should be emphasized, however, that this is an effect of RRS and not 

part of the intrinsic EM enhancement brought about by the nanoparticle. This accounts for 

much of what has been broadly termed “chemical enhancement”, or spectral changes due 

to a chemical effect. One of the best examples of this effect is that of charge transfer in 

SERS experiments.[52] 

1.5.3. SERRS and Single-Molecule Detection 

SERS opened up the possibility for very sensitive detection of chemicals. The next 

question was, of course, how far could the sensitivity limit be pushed? It was left to the 

experimentalists to try to figure it out. 

In a paper from Katrin Kneipp’s group, one finds the first demonstration of SMD in 

aqueous solution. Independently, Shuming Nie and Emory in a Science paper in 1997[53,54] 

also reported SMD using SERS. As noted by Le Ru and Etchegoin,[26,55] the outlandishly high 

enhancement factors claimed in these papers arise not from electromagnetic SERS 

enhancement alone, but from the contribution of both SERS enhancement from the 

particles and the fact that the experiments were performed in resonance conditions 

(SERRS, for the Nie case). 

Possibly the most relevant way of achieving SMD for the purposes of this thesis is that 

first proposed in 2001 by Carlos J. L. Constantino and Aroca, where the analyte is placed in 

a matrix which is a Langmuir-Blodgett (LB) film[56] and using silver island films as the 

enhancing nanostructure. The hydrophobicity of the LB film and the ability of the technique 

to control very well the amount of molecules per unit of surface have made it possibly the 

most credible evidence for the detection of a single molecule. Many have indeed called 
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into question the proof for SMD; Etchegoin and Le Ru have described the advantages and 

disadvantages of using LB films, thus addressing the credibility of SMD claims.[55] 

1.6. Surface-Enhanced Fluorescence 

As its name suggests, surface-enhanced fluorescence (SEF) is an analogue to SERS, but 

with fluorescence. However, the processes at play make it operate in a different way. In 

SERS, the mechanisms make it clear that the best SERS enhancement is obtained with the 

molecule directly adsorbed to the noble metal nanostructure, but in order to enhance 

fluorescence, it is necessary to put the molecule a few nanometres away from the surface 

of the nanostructures[57] for, as it was mentioned before, noble metal nanostructures are 

well known fluorescence quenchers.  

SEF has been called the “poor cousin of SERS”[45] as its foundations do not allow it to 

achieve the spectacular EF values seen in SERS. The mechanism to achieve enhancement 

is still being researched upon, and is indeed the subject of Chapter 7 in this thesis. 

The first ones to report experimental observation of SEF (or “enhanced luminescence” 

as it was described at the time) were Glass, Liao, Bergman and Olson in 1980,[58] after a 

deliberate effort to see whether it was possible to achieve with fluorescence what had 

been done with Raman for SERS. The authors employed coinage metal films evaporated on 

top of glass, and then evaporated rhodamine dyes onto the films, obtaining enhanced 

fluorescence from the dye situated in between the particles. Later, the technique has been 

perfected to achieve better SEF by introducing spacer layers. 

The acronym SEF was given following the lines of SERS, but in more recent years, 

Lakowicz and Geddes have introduced a new name for the same phenomenon, “metal-

enhanced fluorescence” (MEF).[59] One should be careful with this denomination as bulk 

metals are well known quenchers, rather than enhancers, of fluorescence. Plus, today it is 

well known and agreed upon that the cause of the phenomenon is the plasmon, so 

probably the most accurate description would be plasmon-enhanced fluorescence (as we 

prefer and use occasionally here, especially for the titles) or plasmon-coupled 
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fluorescence.[60] Just like with SERS, for historical reasons we will employ the SEF 

denomination for most of this thesis, while acknowledging the limitation of the name. 

1.6.1. Theoretical Model 

The abundance of factors at play on the origin and mechanism of SEF, like the 

extinction coefficient of the molecule, its intrinsic quantum yield, the excitation power, and 

the presence or absence of hot spots, have made the subject quite difficult to study. The 

origin of SEF still has many things that have not been properly described, and that is the 

motivation of the research presented in Chapter 7.  

As with SERS, Gersten and Nitzan have first provided the first theoretical basis for the 

understanding of SEF.[61] In order to achieve the maximum enhancement, the target 

molecule must be placed a few nanometres away from the enhancing nanostructure, for it 

is well known that the enhancing nanostructure is also a fluorescence quencher. What 

happens is that the quenching (or Förster energy transfer) and the EM enhancement are 

in direct competition. The experimental SEF enhancement factor is defined analogously to 

the SERS EF: 

SEF EF =
𝐼𝑆𝐸𝐹 𝑁𝑆𝐸𝐹⁄

𝐼𝑅𝐹 𝑁𝑅𝐹⁄
 (1.20) 

Here the RF subindices mean ‘regular fluorescence’, the rest is analogous to equation 

(1.17) and the intensities are obtained from experimental data in the same way, except 

that fluorescence peaks are very broad and take up areas much larger than those of Raman, 

if they are viewed in the same spectral window. 

Fluorescence, however, is a process of several steps, and this means that the radiative 

component of the SEF EF can be due to a modification of the decay rates (radiative and 

non-radiative). Therefore, assuming an optimal radiative enhancement, from the 

theoretical point of view, the SEF EF can only benefit from the local electric field 

enhancement, and it looks like: 
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SEF EF = 𝐺𝑙𝑜𝑐 = |𝐸2| =
|𝐸𝑙𝑜𝑐(𝜔)|2

|𝐸𝑖𝑛𝑐|2
 (1.21) 

Therefore the EF is proportional only to the square of the electric field at the location 

where the molecule is placed. The relationship between the EFs of both SERS and SEF until 

very recently was only theorized, but now has been demonstrated experimentally by the 

author of this thesis, and it is the subject of the research presented in Chapter 6. 

In SEF the enhancement is dependent on the distance from the nanostructure, 

although not exactly in the same way as SERS. For illustrative purposes, let us consider a 

nanosphere of, say, 40 nm of radius, as illustrated in Figure 1.9. The EM enhancement for 

SEF decays as |
𝑟

𝑟+𝑑
|
6
, (the square root of that of SEF) where 𝑟 is the radius of the 

nanoparticle and 𝑑 is the distance from it; this is the blue line. The quenching, on the other 

hand, decays as 1

|𝑑3|
 (red line). Therefore, the total enhancement would be the difference 

between the two, | 𝑟

𝑟+𝑑
|
6

− 1

|𝑑3|
 (green line). The graph clearly shows that there is an optimal 

distance; the maximum effective EM enhancement happens at about 2.5 nm from the 

surface of the nanostructure and it decays when the molecule is placed further away. 

Between that maximum and the nanoparticle, quenching dominates. This is in qualitative 

agreement with experimental results; one must take into account that the actual maximum 

EF distance is affected by the fact that nanoparticles are not perfectly spherical, and also 

because of presence of hot spots. There are several papers documenting the experimental 

evidence for this optimal distance and how the enhancement decreases with the distance 

for both SERS and SEF.[62-66] 

This means now that in our experiments, in order to achieve a good SEF enhancement, 

we have to include a spacer layer between the molecule and the nanoparticle. In most 

cases this has been achieved by coating the enhancing nanostructures with a layer of silica 

(SiO2). In the early days of SEF, the nanostructures were usually affixed to a glass substrate 

and silica had to be evaporated on top of that, but recently we have employed wet 

chemistry methods to coat colloidal gold and silver with silica in the development of we 

have called SHINEF, as is shown in Chapters 4 to 7 of this thesis. 
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2. Experimental Methods and Instrumentation 

Chapter Two 

Experimental Methods and 
Instrumentation 

2.1. Colloidal Wet Chemistry Methods 

Most of the nanostructures fabricated in the following chapters are obtained by 

chemical reduction of oxidized salts of the coinage metals mentioned in Chapter 1, and the 

action of a stabilizing agent. 

2.1.1. Synthesis of Gold Nanospheres  

Forms of what we know today as colloidal gold had been known since Antiquity.[1] In 

Ancient Egypt colloidal gold was known for its supposed medicinal properties. In Rome, it 

was found the Lycurgus cup that has the unique property that when lit from the inside has 

a different colour than when lit from outside. 

Among the first methods developed to produce colloidal gold in the laboratory was 

that published by John Turkevich, then graduate student Peter Cooper Stevenson, and 

James Hillier in 1951.[2] In that paper, the authors use several reagents and protocols for 

the reduction of gold chloride, but the method that gave them the best results was that in 

which they used trisodium citrate as a reducing agent, and the paper is remembered mostly 

for establishing the citrate reduction as a method to obtain colloidal gold.[3] They obtained 

particles of about 20 nm, analyzed by then-recently invented TEM. Turkevich’s method was 

later perfected by Frens in 1973[4] having described that by varying the citrate-to-gold ratio, 

it was possible to produce nanoparticles of different sizes, while still having a reasonable 

dispersion in size. An example of this type of particles can be seen in Figure 2.1. 
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In citrate reduction, citrate is oxidized to acetonedicarboxylate, suffering the loss of 

the carboxyl adjacent to the hydroxyl; the latter is lost as CO2 which in turn lowers the pH. 

The reaction generates chloride ions which are neutralized by one of the sodium ions from 

the citrate. Also, acetonedicarboxylate continues to oxidize to formic acid and CO2. Then, 

Au3+ (as tetrachloroauric acid, HAuCl4) is reduced to metallic gold, Au0. Attraction forces 

(van der Waals) predominate, atoms aggregating to each other in a nucleation process. 

This nucleation process does not continue indefinitely. It has been described that part 

of the Au3+ is not completely reduced, but is left in the intermediate oxidation state (Au+). 

These Au+ atoms place themselves on top of the nanoparticle which then acquires a 

positive surface charge. This charge attracts electrostatically citrate molecules, which end 

up being adsorbed on the surface of the nanoparticle. Two of the carboxylic groups of 

citrate counter the surface positive charges; the remaining one looks outwards. The 

particles finally acquire negative charge and electrostatic repulsion becomes enough to 

counter the van der Waals adhesion, becoming nanoparticles (see section 1.3). Evidence 

supporting this explanation can be found in the work of Li and collaborators.[5] 

2.1.2. Synthesis of Silver Nanospheres 

Among the modern methods to obtain colloidal silver, one of the most cited 

publications is that of Lee and Meisel in 1982.[6] This paper is remarkable as it represents 

the first silver colloids synthesized specifically to produce a SERS substrate. It remains really 

Figure 2.1. Citrate-reduced gold colloid. 
Left: macroscopical view of the colloidal dispersion. Right: TEM image of the 

nanoparticles. Unpublished images taken by the author. 



35 
 

popular in literature. It is analogue to the gold-citrate reduction, with the difference that 

the synthesis starts from silver nitrate (AgNO3), and there cannot be a partial reduction of 

silver, however, there are probably some Ag+ ions incorporated into the nanoparticle, as 

well as some clusters composed of several Ag atoms like those described by Linnert and 

Mulvaney.[7] 

Another very popular reducing agent to produce colloidal silver is hydroxylamine 

(NH2OH). One of the better known papers where they employ this method is that of 

Leopold and Lendl.[8] 

2.1.3. Nanoparticles with different shapes 

After attempting to synthesize sphere-like particles, there were several attempts to 

synthesize particles with different shapes. Possibly the simplest shape to synthesize, after 

a sphere, is a rod-like particle. But the synthesis of such particles in high yield becomes 

hard; the addition of different salts becomes necessary to orient the nucleation in one 

direction rather than having the process completely random. 

The first published method to produce nanorods in high yield was done by Jana et al.[9] 

where they employ a two-pot reaction. They start by synthesizing very small silver 

nanoparticles (2-3 nm) reducing from silver nitrate with a strong reducing agent (sodium 

borohydride, NaBH4); this is called the seeds solution. Then an aliquot of this solution is 

placed over another solution (the growth solution) where there is silver nitrate with a 

weaker reducing agent (ascorbic acid); here the seeds are expected to grow linearly. The 

aspect ratio of the nanorods is controlled by how much seed solution is placed into the 

growth; the less seed is placed, the longer the rods that are produced. The rods are 

stabilized by the presence of the surfactant cetyltrimethylammonium bromide (CTAB), 

which adsorbs on the surface of the rods giving them a positive charge. 

Possibly the best known method to produce gold nanorods was published by Babak 

Nikobaakht and Mostafa El Sayed.[10] They built upon Jana’s method, and that is how this is 

also a seeded method. In their seeds, they start from the original HAuCl4 making small 

seeds of gold nanoparticles, always reducing with NaBH4, and then they pour a little of the 

seeds into a growth solution containing ascorbic acid. The main difference is that in their 
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method, they introduce another reagent (silver nitrate, AgNO3) to control the aspect ratio. 

They always employ CTAB to stabilize their nanorods. This method, with minor 

modifications, is the one we employed in Chapter 5. Prof. El Sayed’s group have very 

recently developed another method, this time a seedless method, to produce gold 

nanorods.[11] The reproducibility of this newer method has yet to be tested. 

It is possible to synthesize many different shapes but one of the main questions that 

appear at the moment of developing it is the yield, that is, of all the nanostructures 

produced, how many of them achieve the desired shape? Prof. El Sayed’s is the most used 

nanorod synthesis method because it achieves a very high yield, and the method is very 

reproducible. Many authors have tried variations on this synthesis to achieve different 

shapes, but it is very hard to obtain them in good yield. 

2.1.4. Coating with Silica 

In this thesis we employed two processes to coat our nanostructures with silica (silicon 

dioxide, SiO2), thus producing the so-called shell-isolated nanoparticles (SHINs). The 

general procedure to coat gold structures with silica evolved from the original research 

published by Werner Stöber in 1960[12] for the production of silica spheres and has been 

used since then by many, many others. In Stöber’s original paper they already used the 

reagent tetraethylorthosilicate (TEOS) still employed until now, which hydrolyzes to 

ethanol and silica. The final products in Stöber’s original paper were nanometric silica 

spheres, but soon it was discovered that when performing the same process in a metal 

colloid, the silica started to grow on top of the colloidal particles. Therefore the method 

resulted useful to coat the particles, and is usually dubbed as the Stöber method, after its 

discoverer. 

The Stöber method has the disadvantage of being somewhat slow, considering that in 

order to produce relatively thick coatings (greater than 10 nm) it needs a day, or maybe 

two. Plus the fact that TEOS does not dissolve in water, and therefore it is necessary to use 

a miscible co-solvent (usually ethanol or methanol) to dissolve the TEOS and let the 

reaction proceed. Luis Liz-Marzán and Paul Mulvaney have published another way to coat 

gold nanoparticles,[13,14] with a method that starts from citrate-reduced nanoparticles; then 
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employs 3-aminopropyl-trimethoxysilane (APTMS) as an anchor for the silica, and then 

sodium silicate solution (which is just silica plus other oxides) to grow that silica on the 

particles. This method has the particularity that the sodium silicate solution must be 

activated; the silicate solution is very alkaline and it must be acidified a little for the silicate 

to polymerize and grow on the particle; in order not to increase the volume by addition of, 

say, hydrochloric acid, this is done by passing the solution through an acidifying resin. In 

their SHINERS paper, Li et al.[15] have adapted this method with one modification: they have 

added heat, in the form of a water bath, to speed up the process, thus reducing the time 

to achieve a coating of about 2 nm to 15-20 minutes. We have employed this sped-up 

method in Chapter 5, but heating for longer times to produce thicker coatings.  

It is usually considered that just like in the Stöber method, the APTMS suffers hydrolysis 

of the methoxyl groups at the moment of silica growth, therefore yielding some methanol 

as a byproduct, and growing only silica on the particle. This is consistent with the fact that 

neither the SHINERS authors nor us attempting SHINEF have seen SERS of APTMS when 

employing SHIN particles. 

Figure 2.2. Silica-coated gold nanorods, coated using the 
Stöber method. 
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2.1.5. Other experimental details 

All aqueous solutions for reagents, and also the colloidal dispersions, were made using 

Milli-Q® water. This is obtained from filtering systems (branded Milli-Q) by Millipore, Inc. 

that guarantee water that is free from particulate material and ions, and for that reason it 

is sometimes branded as nanopure water. The presence of ions is regulated by measuring 

the resistivity of the water; the accepted value is 18.2 MΩ cm. We obtained our Milli-Q 

water from the filters available at the Stockroom in the Biology building at the University 

of Windsor. 

In order to remove the gold and silver debris from previous experiments, and before 

working with gold and silver again, all glassware was cleaned with aqua regia, a mixture of 

concentrated hydrochloric acid and nitric acid, 3:1 in volume. The glassware was left in 

aqua regia for at least 20 minutes. 

For glassware cleaning that required organic matter destruction, we employed Piranha 

solution, a mixture of concentrated sulfuric acid and hydrogen peroxide 30%, 7:3 in 

volume. 

After the treatment with these strong acid solutions, the glassware was rinsed at least 

six times with Milli-Q water. 

Unless otherwise specified, all reagents were purchased from Sigma-Aldrich and used 

without further purification. 

2.2. Electron Microscopy 

The nanostructures presented in the two previous subsections cannot be 

characterized morphologically (here morphology means size and shape of the particles) 

using traditional optical microscopy, as the size of the structures fall below the wavelength 

of visible light. In order to be able to resolve smaller objects, electron microscopy was 

invented.[16,17] 

As the name suggests, electron microscopy techniques employ electrons instead of 

photons of visible light to achieve that extra resolution; at high vacuum, an electron beam 

is directed to the sample. Since electrons are used, those electrons (unlike photons) have 
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all the same wavelength; this means that all electron microscopy images are necessarily 

black and white. It is possible to add colour using computer programs to better visualize 

images, but this is external to the technique. 

2.2.1. Transmission Electron Microscopy 

Transmission Electron Microscopy (TEM) is the oldest form of electron microscopy (it 

was invented in 1932 and improved upon in the rest of that decade) and it remains the 

technique of choice for characterization of the morphology of colloidal particles at the 

nanoscale. 

The characteristic of TEM is that an electron beam is made to pass through an ultra-

thin sample (electrons are transmitted), interacting with the sample as it passes through. 

The contrast in the image thus obtained is due to the absorption of electrons. This image 

is magnified by lenses (here those lenses are not crystals as when working with normal 

light; they are magnets that alter the path of the electrons) and then it is focused into an 

imaging device. In older days this used to be a fluorescent screen or a layer of photographic 

film, but in modern days a CCD camera (see section 2.5.1 for more details) is employed for 

digitalization of the image and control by computers. 

The main advantage of TEM as an imaging technique is its resolution. Modern high-

resolution TEM instruments allow for the visualization of structures at the nanoscale and 

even sub-nanoscale. It is often possible to visualize the crystal structure within a 

nanoparticle, identifying all the planes in it. Another feature of TEM is the possibility of 

obtaining electron diffraction patterns, which give more information on the crystal 

structure of the sample analyzed. Another technique associated with TEM is electron 

energy loss spectroscopy (EELS).  

The main disadvantage of TEM is that the images produced are essentially just a cross-

section of whatever is in the sample. It can also be argued that the sample preparation can 

be time-consuming and costly. In the particular case of nanoparticle systems, the colloidal 

dispersions are placed into a typical TEM copper grid, but one that is coated either with 

carbon or Formvar (polyvinyl formal). Then the particles get stuck into this Formvar 

polymer and then it is possible to see them in the microscope. Overall this is not very 
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complicated, but if what one wants to see is, say, a cell and its elements within, then it 

becomes necessary to use highly expensive machines to cut the sample and obtain an 

ultrathin slice; such devices are called ultramicrotomes. 

If what one needs is just a cross section, then TEM is the technique of choice, and that 

is how most papers involving nanoparticles include TEM images for the characterization of 

those nanoparticles. But if one desires to visualize things in 3D, it is necessary to employ 

other high-resolution microscopy techniques, like SEM and AFM, which are to be described 

next. 

 

Used for this thesis work: Most TEM images for this work (all of those included in this 

volume) were obtained with a high resolution TEM instrument FEI Titan 80-300 at the 

Canadian Centre for Electron Microscopy at McMaster University in Hamilton, Ontario, 

Canada. The instrument is shown in Figure 2.3. 

2.2.2. Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) was invented after TEM and it allows for the 

visualization of the shapes of micro and nanostructures. The difference with the TEM is 

Figure 2.3. FEI Titan 800B transmission electron microscope. 
This instrument is located at the Canadian Centre for Electron Microscopy, 

McMaster University. 
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that, as its name suggests, the electron beam is made to scan the surface in a rastering 

process, and it is the bouncing electrons that produce the image.  

The received electrons are mainly two types: the secondary electrons (SE) and the 

backscattered electrons (BSE). Secondary electrons are called so because they are 

generated by ionization of the sample (rather than being scattered by it) and they are 

usually the main way of visualizing images in SEM. The backscattered electrons, as the 

name suggests, are electrons that are scattered by the sample in the exactly opposite 

direction to the laser beam. 

The resulting images usually appear much like a black and white photo of the sample, 

especially for the SE image and when not much magnification is applied. The BSE image can 

be more useful to give an idea of the chemical composition, for it is a reflection of the 

electron density of the materials. That is why, for example, starting with Chapter 5, in the 

SEM images of SHINs it is possible to better observe the particle cores with the BSE image, 

while the silica shell is observed better with the SE image. Most of the images presented 

are a composite image of both SE and BSE. 

The main advantage of SEM imaging is how it allows to observe objects as if one were 

standing right in front of them, giving a sense of perspective to the captured images, still 

with very high resolution (while not as high as TEM) and nowadays, with a bit of 

computational aid, it is even possible to reconstruct the 3D image. It also has the advantage 

that the same instrumentation can allow to use the beam for energy-dispersive X-ray 

spectroscopy (EDX), a technique that allows for identification of the chemical elements 

present in a substance. 
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Disadvantages of SEM also have to do with sample preparation. Metallic surfaces 

require little to no preparation, but non-conductive samples like organic matter usually 

have the problem that when the electron beam hits them, electrostatic charge 

accumulates in their surface which causes image artifacts. Because of this, most organic 

samples have to be coated with some conductive material, like graphite or carbon. 

Sometimes to achieve a better effect, they are coated with gold. Of course, this introduces 

extra thickness in the image. For most biological samples where features are at the micro 

scale rather than at the nanoscale, the thin gold film is not a problem, but when employing 

SEM to characterize nanoparticles it is important to try not to coat them as the features 

might get a bit of distortion. In particular, we have noticed that in SHIN particles like those 

employed in Chapters 5-8 the silica shell usually appears thicker than in the TEM image. 

 

Used for this thesis work: All SEM images in this thesis were taken with a FEI Quanta 200 

Environmental scanning electron microscope equipped with an Everhart-Thornley 

secondary electron detector and a solid state backscattering detector, available at the 

Great Lakes Institute for Environmental Research (GLIER) at our University of Windsor with 

Figure 2.4. FEI Quanta 200 Environmental scanning electron microscope. 
This was the instrument employed in all the SEM work for this thesis. Image 

courtesy of Mrs. Sharon Lackie 
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the assistance of the resident technician Mrs. Sharon Lackie. The instrument is illustrated 

in Figure 2.4. 

2.3. Atomic Force Microscopy 

Atomic force microscopy (AFM) is a relatively new technique to explore matter at the 

nanoscale.[18] At present it is the most popular variant of the scanning probe microscopy 

(SPM) techniques. It is unique in the fact that it does not employ conventional optics and 

lenses to acquire images, but instead it employs a scanning probe that runs over the surface 

and gives account of the features found in it. The AFM was invented in 1985 and its 

description was published in 1986.[19] Its name comes from the fact that it was designed to 

study matter at the atomic and molecular scale by studying the forces between the probe 

and the surface. 

In general terms, the probe consists of a rectangular surface. On a side of this surface, 

a small piece is placed called cantilever, which is fabricated in different ways according to 

the mode used by the microscope. In the apex of the cantilever we find a tip, 

nanometrically sharp, facing downwards. This tip makes contact with the sample. A laser 

beam is directed to the cantilever zone located behind the tip (which faces upwards) and 

the reflection of the laser gets to a photodetection zone, usually a photodiode array. Then 

the probe is moved across the sample in a sweeping movement (scan) and the variations 

in the reflection of the laser beam, caused by the deflection of the cantilever, account for 

the features in the surface. 

The principle described here may sound really simple, and it is, but its application for 

nanoscale research with the invention of piezoelectric materials, that is, a material that can 

change its volume when different electrical potentials are applied (or vice versa, that 

generates a potential when compressed). By applying very small variations in the electric 

potentials, the movement generated to perform the sweeping movement can be very 

small, thus making the microscope very sensitive, all the way to the nanoscale. 

The scanning process usually proceeds in two major ways, namely contact and tapping 

mode. Contact mode is, as its name suggests, characterized by the tip being in an almost 
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perfect contact with the surface at all times when scanning, while recording the height and 

cantilever deflection and producing a 3D map of the sample. As a general rule, to add a 

better support, contact mode cantilevers usually have a triangular shape. 

In tapping mode, the probe is made to oscillate at near its resonance frequency (the 

frequency at which the oscillation amplitude is maximum) and when scanning, the tip is in 

intermittent contact with the sample, in a “tapping” fashion. The instrument is tuned to 

the oscillation frequency in such a manner that the instrument will record when the tip is 

in contact with the sample. Tapping mode cantilevers need to be more flexible and 

therefore they are usually linear for high-frequency operation. 

The major advantage of the technique is that unlike in electron microscopy, the 

sweeping method that gives the height produces a fully 3D map of the surface being 

scanned, thus giving an insight not possible with other techniques. Plus, for most 

applications it does not require any vacuum; the measurements are routinely done at room 

temperature and pressure, and with an accessory fluid cell, the measurements can even 

be performed in a liquid environment (thus allowing the measurements to be studied as a 

function of pH). Another advantage is the possibility of employing the AFM in what is called 

ramping mode, that is, no X-Y movement but only Z (up and down) movement; this allows 

to study the small forces between the tip and the surface (as variations in the expected 

cantilever deflection) in a technique called force spectroscopy.*[20] 

                                                      

* The name is somewhat misleading as it does not really involve interaction between light and matter, but 
this is the name that has prevailed in the literature. 



45 
 

The major disadvantages of AFM have to do with the fact that the 3D image generated 

only represents what the sharp tip can sense; and tips cannot be perfectly sharp, or have 

no width. If the surface has a hole where the tip cannot sink perfectly, the shape of the 

hole will be distorted. A similar situation happens for steep walls, the steepness cannot be 

fully resolved. There is also the fact that the scanning can be affected by hysteresis 

(especially when scanning areas of 1 µm  or less). Sometimes also the tip picks up debris in 

the surface that becomes permanently attached to the tip, and all images taken after that 

point will be distorted taking the shape of the impurity attached, thus producing artifacts. 

In general, the scanning takes way longer than in SEM, and therefore the image capturing 

process is longer. 

 

Used for this thesis work: AFM images employed for the characterization of particles in 

Chapter 3 were collected using a Digital Instruments Nanoscope IV scanning probe 

microscopy instrument in our laboratory, illustrated in Figure 2.5. This instrument is a tube-

scanning instrument, which means that the cantilever actually stays immobile over the 

surface, and it has a replaceable piezo-scanner where the sample is mounted, and that is 

the part that actually moves in contrary movement to what one expects it, so it can 

simulate that it is the tip moving across the surface. 

Figure 2.5. Nanoscope IV scanning probe microscope  
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2.4. Langmuir-Blodgett Filmmaking 

Langmuir-Blodgett (LB) films are films of organic molecules (especially fatty acids) that 

can be one molecule-thick, an LB monolayer. The physics that led to their discovery was 

developed by Irving Langmuir, after whom they are named.[21,22] But it was Langmuir’s 

research associate Katharine Blodgett who invented a device to transfer Langmuir films to 

solid substrates like glass.  

2.4.1. Theory 

When an amphiphilic substance (that is, one that has a hydrophilic side and a 

hydrophobic side) is placed on the surface of water, the molecules arrange in a fashion that 

the hydrophilic moiety faces down, towards the water, and the hydrophobic side faces 

upwards, in contact with the air above it. Also, the molecules spread all over the surface of 

the water, extending the coverage as much as possible. If there are enough molecules, they 

will form a layer that is exactly one-molecule thick, also called a monomolecular layer, or 
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by contraction, a monolayer. If there is less than a monolayer-like coverage, the molecules 

bounce trapped in the surface of the water. Water is usually employed to fill the device 

(usually a trough), but it can be other substances; the filling liquid is called the subphase. 

The bouncing molecules in the surface move and exert a “pressure” over the boundaries 

of the surface, this is called surface pressure (Π). 

Back in the 1930’s, Katharine Blodgett devised an instrument to transfer these 

monolayers to substrates, by measuring and keeping the surface pressure constant, using 

a trough that employed a barrier, which moved at the same speed. So, the surface area is 

reduced when the barrier is moved, and from there, the area per molecule is calculated by 

knowing exactly how much substance is added in terms of number of molecules 𝑁molecules , 

starting from the concentration of the solution that is spread on the subphase: 

𝑐 =
𝑁molecules

𝑁𝐴𝑉spread
 (2.1) 

where 𝑁𝐴 is Avogadro’s constant and 𝑉spread is the volume that has been spread. Once the 

amphiphilic fatty acid is added (dissolved in a volatile solvent that is later made to 

evaporate), the barriers are compressed, packing the molecules of fatty acid in the surface. 

If we measure the surface pressure as we compress and plot surface pressure versus area 

per molecule, we obtain a graph that is characteristic when temperature is conserved, 
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Figure 2.7. Z-deposition to a glass slide.  
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therefore it is called an isotherm, and a typical isotherm for arachidic acid is shown in Figure 

2.6. As compression proceeds, the diagram goes through three major regions, namely one 

where the molecules are very sparse, which is called the gas-like phase, then one where 

the molecules are more packed (a liquid-like phase), and then one even more packed, with 

an even higher slope, that allows for little to no movement of the molecules (solid-like 

phase). This last one is that which we desire, but in order to know the correct surface 

pressure we must plot the isotherm first. Once the surface pressure is known, the next step 

is to produce a Langmuir film on the water surface and transfer it into a solid substrate, 

usually glass. 

The most common way to proceed when one wants just one monolayer is to dip the 

substrate into the water, spread the amphiphiles on top, compress to the desired surface 

pressure, and then start pulling the substrate up while at the same time compressing with 

the barriers to keep the surface pressure constant. This is illustrated in Figure 2.7 and is 

called Z-deposition. It is possible to deposit only when the substrate is dipped and being 

compressed, that would be an X-deposition. When a bilayer is produced by combining the 

two processes above, a Y-deposition is obtained. 

2.4.2. Mixed LB films 

 Dr. Aroca’s group pioneered the use of LB films for ultrasensitive analysis since the 

1980s, having become their signature technique. The mixed monolayers are mixtures of 

commonly a fatty acid and Raman and/or fluorescence probes (most of the time dyes) in 

well-known concentrations and ratios, in such a manner that the area per molecule, and 

the number of molecules per area are always well known, thus allowing for the validation 

of the claims for single-molecule detection. In our case, the fatty acid molecule is arachidic 

acid, which has a very well-known area per molecule of 25 Å².[23] Knowing that, and 

assuming monolayer coverage, it is possible to calculate how many molecules are there in 

a given surface area, say, 1 µm² (4,000,000 molecules). Now, if we add a dye mixed at a 

given ratio to the arachidic acid, it is possible to calculate approximately the number of 

molecules of dye per surface area as expressed in Table 2.1. 
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 Approx. no. of molecules per 1 µm² 

Ratio Dye Arachidic acid 

1:1 2,000,000 2,000,000 

1:10 363,637 3,636,363 

1:100 39,604 3,960,396 

1:1000 3,996 3,996,004 

1:40,000 100 3,999,900 

1:400,000 10 3,999,990 

1:4,000,000 1 3,999,999 
 

Table 2.1. Probe molecule to fatty acid ratio with the approximate number of molecules 

 

Used for this thesis work: All LB films employed for the work presented in this thesis were 

made using the Nima film balance, model 302M, with dimensions 414×70 mm2, illustrated 

in Figure 2.8. This instrument is computer-controlled. 

  

Figure 2.8. Nima 302M LB film balance. 
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2.5. Spectroscopy Instrumentation 

2.5.1. Raman and Fluorescence Microscope 

All Raman and fluorescence spectra presented in this thesis were collected using the 

Renishaw inVia™ Raman microscope in our laboratory illustrated in Figure 2.9. 

The instrument is built by attaching a microscope (Leica DMLM) to the Renishaw 

spectrometer. Samples are usually mounted on standard microscope slides, and put into 

focus through the microscope objectives. For measurements, the incident laser light is 

directed through the objectives and focused in the sample. The Raman or fluorescence 

radiation coming out of the sample is captured by the same objective and directed into the 

spectrometer in the opposite direction; that is, the measurements proceed in a 

backscattering geometry (180°). 

When it becomes necessary to measure liquids in cuvettes, a special macro adapter is 

employed instead (pictured in Figure 2.9). Quartz cuvettes are employed in this case. 

Figure 2.9. Renishaw inVia Raman microscope 
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To explain it in simple terms, we will divide the instrument in three parts: the optics 

for light delivery, light dispersion and detection. For light delivery, the instrument employs 

the microscope part. Inside the spectrometer, the Raman or fluorescence light going in 

needs to be separated from the laser light; this is achieved using a filter called a 

beamsplitter. Then, since the Rayleigh-scattered light is too powerful, it is blocked using 

another filter, appropriately named Rayleigh filter. There are two types of Rayleigh filters, 

namely, ones called notch filters, and other called edge filters. If we make a graph of light 

allowed versus wavelength, we see that notch filters block only a small section of the visible 

spectrum (making a “notch”), while edge filters block everything from a certain wavelength 

downwards or upwards (a kind of “edge”). 

The detection device does not discriminate by wavelength, it just counts photons, so 

light must be diffracted to obtain a spectrum. So after the Raman or fluorescence light 

crosses the Rayleigh light filter, it goes through a diffraction grating which is a crystal with 

many grooves. The shorter the wavelength, the more grooves per unit of length are 

required to produce a good separation of wavelengths. In our case, we employ two 

diffraction gratings, one with 1800 grooves per millimetre, and one with 1200 grooves per 

millimetre (for our 785 nm laser). 

The diffraction grating sends the light to different parts of the detection device, which 

is a charge-coupled device (CCD). This is a camera-like device that generates electric 

charges when light hits it. The CCD within our inVia instrument has an area of 516 × 516 

pixels. Also, in order to eliminate thermal dark currents (which would give false readings of 

light) the device is cooled thermoelectrically† to −70°C. 

2.5.2. Lasers 

The Renishaw inVia spectrometer needs external lasers to excite the sample. In our 

laboratory we have three of them, with three different wavelengths, as detailed in Table 

2.2 below: 

 

                                                      

† Also said to be Peltier-cooled as it uses the Peltier effect 
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Laser type 
Wavelength 

(nm) 
Power (mW) 

Argon-ion 514.5 18 

Helium-neon (HeNe) 632.8 16 

Photodiode 785 18 

Table 2.2. List of lasers and their wavelength and power 
 

Gas lasers like the argon-ion 514.5 nm are well suited for Raman measurements because 

they are highly monochromatic, that is, the variation in wavelength is minimal. Their main 

disadvantages are that they are large and consume much power. They not only produce 

the wavelength they are characterized by, but they also produce light in several other 

wavelengths although in less intensity. In order to prevent that these additional laser lines 

cause more Raman scattering, an optical filter is placed at the gate of the laser, which is 

called a plasma line rejection filter (PLRF). 

 

2.5.3. UV-visible Absorption Spectrometer 

All absorption spectra presented in this thesis were collected using the Varian Cary 50 

instrument in our laboratory illustrated in Figure 2.10. It has a double-beam setup and has 

an effective measurement range between 190 and 1100 nm, and it is equipped with a 

durable xenon flash lamp. 

2.6. Computational Resources 

2.6.1. Computational Chemistry 

It is said that theoretical chemistry is the mathematical description of chemistry, and 

computational chemistry is when those mathematical methods are sufficiently well 

developed to be automated by their implementation in a computer program. A 

comprehensive description of computational chemistry can be found in the excellent books 
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by Young[24] and Jensen[25] as well as Wenjuan Huang’s Ph.D. thesis[26] in the Department 

of Chemistry at the University of Windsor. 

In this work, like most authors using IR and Raman spectroscopy, what we want to do 

when performing this type of calculations is to make a good assignment of the Raman 

bands, by comparing the experimental data to that predicted by theory. 

 

Used for this thesis work: To assign the Raman/SERS bands coming from the experiments 

described in Chapter 3 and the additional calculations of Chapter 6, we performed 

quantum mechanical calculations using the computational chemistry software 

Gaussian 09[27] (Gaussian, Inc.) running in clusters from the Shared Hierarchical Academic 

Research Computing Network (SHARCNET)‡ of Canada using up to 2 gigabytes (as shared 

memory) and up to 8 processors at a time. In every case, we performed geometry 

optimization followed by frequency calculations, at the levels of theory described in section 

3.2 of Chapter 3, and section 6.2 of Chapter 6.  

Molecular models for the optimized geometries were drawn using the 

ACD/Chemsketch Freeware program, and later to converted to Gaussian 09 input text, and 

                                                      

‡ We employed the supercluster for the Gaussian User Group, “Saw”. Full specifications of the system can be 
found at the website www.sharcnet.ca.  

Figure 2.10. Varian Cary 50 UV-vis spectrometer 

http://www.sharcnet.ca/
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the Gaussian output was read with the assistance of the GaussView 5.09 (Gaussian Inc.) 

program, which we also employed to generate the images of the calculated spectra. No 

scaling factor corrections were made. Additional lines to employ effective core potentials 

were added manually with text editors (Vim, Notepad++). 

2.6.2. Other Software 

Experimental Raman and fluorescence spectra were obtained using the Renishaw 

WiRE 3.2 software that controls the inVia microscope, and these spectra were later further 

processed using the Thermo Galactic GRAMS 8.00 software. This software allows for 

baseline correction, offset correction, smoothing, curve fitting and, by importing the 

displayed spectra into Microsoft PowerPoint, was used for the elaboration of most of the 

figures that display spectra.  
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3. Surface-Enhanced Raman Scattering of Hydroxyproline 

Chapter Three 

Surface-Enhanced Raman Scattering of 
Hydroxyproline 

The work presented in this chapter has been published by the author in the Journal of 

Raman Spectroscopy, in April 2012 under the same title.[1] This material has been adapted 

from that paper with permission* from John Wiley & Sons (see Permissions Obtained for 

Published Copyrighted Materials section, page 154.) 

3.1. Introduction 

Surface-Enhanced Raman Scattering (SERS) of amino acids has proven a difficult task. 

The SERS of biomolecules and the formation of a reliable (reproducible) SERS database for 

biomedical applications has shown to be a very challenging task for two reasons: First, the 

functional groups in proteins, lipid and sugars do not usually include aromatic moieties or 

chromophores absorbing in the visible (with intrinsic very large Raman cross sections), and 

therefore, large average enhancement factors are needed for ultrasensitive analysis. 

Second, the biomolecule-metal surface interaction leads to active surface photochemistry, 

photoisomerisation or photodissociation, thus hindering the reproducibility of the 

experiment. SERS measurements on silver colloids or silver surfaces lead to spectra 

showing this phenomenon.[2,3]  

In this work, we have developed an analytical protocol to obtain reproducible SERS 

spectra of 4-hydroxyproline (Hyp). Hydroxyproline is a non-essential amino acid, found in 

proteins like collagen, and its presence in proteins is the result of post-translational 

modification of proline. There are few studies of the vibrational spectroscopy of 

                                                      

* © 2012 John Wiley and Sons. 
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hydroxyproline. The Raman spectrum has been reported in a computational study and 

vibrational assignment of hydroxyproline in solid samples by Tarakeshwar and 

Manogaran[4]. István et al.[5] reported Raman and SERS of hydroxyproline as part of study 

of several amino acids in thin layer chromatography spots. The authors qualified their 

findings by saying: “It is shown, however, that due to severe adsorption-induced spectral 

distortions and increased sensitivity to microscopic inhomogeneity of the sample, none of 

the SERS spectra obtained with the dispersive Raman microscope operating in the visible 

region were superior to the best NIR normal FT-Raman spectra, as far as sample 

identification is concerned.”[5] Shortly after the publication of our present work at the 

Journal of Raman Spectroscopy, another study on proline and hydroxyproline was 

published by Cárcamo and collaborators.[6] This and our work are the only literature 

published about the SERS of Hyp. 

The problem of lack of reproducibility of the SERS spectra of amino acids in the visible 

region using silver is illustrated in the work of Aliaga et al.[2,3] In our own laboratory, we 

have used several Ag nanostructures (colloids, silver island films and commercial 

substrates) pursuing SERS of several amino acids and we encounter the same problems 

reported in the literature.  

In this investigation, the problem of SERS reproducibility is solved for Hyp using gold 

colloids instead of silver, avoiding reactivity on Ag which leads to photodissociation 

products, and also removing the colloid stabilizers to improve the adsorption of the 

molecule to the nanostructures. This gave a short colloid lifetime, but long enough to carry 

out a SERS experiment. The outline of the chapter is as follows. First, a complete 

assignment of the vibrational Raman spectrum is given using spectra in the solid state and 

in solution (at different pH values) supported by computational studies. A partially 

deuterated compound (trans-4-hydroxyproline-2,5,5-d3) was also studied to help 

vibrational interpretation and make a more complete study. Second, the SERS spectra 

obtained on Au colloids is presented and supported by computations including one Au+ ion 

interacting with the Hyp molecule. 
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3.2. Materials and Methods 

L-4-Hydroxyproline was purchased from Fluka and used without further purification. 

The deuterated analogue (trans-4-hydroxyproline-2,5,5-d3, d-Hyp) was purchased from 

CDN Chemicals and also used as received. All solutions were made using Milli-Q water. The 

concentration of the amino acid stock solution to mix with the colloid was 10-3 M. AFM 

images of the colloidal particles immobilized over a glass substrate were obtained with the 

Digital Instruments Nanoscope IV described in section 2.3, under tapping mode, using an 

aluminum-coated n+-silicon tip (Mikromasch, Inc.). Samples were prepared by treating a 

glass slide (cut to approx. 8 × 8 mm) with a diluted poly-L-lysine solution for 30 minutes, 

air-dried, and subsequently a droplet of the colloidal solution was applied and we waited 

for another 30 minutes, then rinsed and air-dried. 

Gold colloids were synthesized by modifying Lee and Meisel’s standard borohydride 

reduction procedure.[7] Briefly, we prepared 20 mL of a 5 × 10−3 M potassium 

tetrachloroaurate (KAuCl4, Sigma-Aldrich), stirred into an ice bath, and then very slowly 

poured 60 mL of an ice-cold 2 × 10−3 sodium borohydride (NaBH4) solution. No stabilizing 

agent was employed. Next, equal parts of the colloidal solution and the amino acid solution 

were mixed so the final concentration of the amino acid in the colloid was 5 × 10−4 M. The 

resulting colloid had a lifetime of around 2 hours before collapse in the cuvette, which was 

the allocated time to perform the Raman measurements. After that, the colloid was 

concentrated by centrifugation at 14,000 rpm for 7 minutes, and the sediments were 

collected for Raman measurements.  

Absorption spectra were recorded using the Cary 50 UV-vis spectrometer described in 

section 2.5.3. Raman spectra were recorded from our Renishaw inVia Raman microscope 

described in section 2.5.1 using the excitation of the 514.5, 632.8 and 785 nm laser lines. 

The measurements in aqueous solution were performed in a quartz cuvette using the 

optics adapter described in that section. For the measurements of 1 M aqueous solutions, 

we just placed 1 mL of the solution in the quartz cuvette. For the measurements of colloidal 

dispersions, the cuvette was washed with aqua regia and copious water between every 

measurement. Calculated Raman spectra and geometry optimizations were obtained using 
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the Gaussian 09[8] suite of programs, using density functional theory at the B3LYP/aug-cc-

pVTZ level of theory using the default solvation model (polarizable continuum model) with 

water as solvent, and in the case of the calculations using gold ions, we used the LANL2DZ 

basis set, with effective core potentials for the core electrons in the gold ion. No scaling 

factor correction was employed. Molecular models for the optimized geometries were 

obtained using the GaussView 5.0 program. 

3.3. Results and Discussion 

Typical plasmon absorption spectra of the colloids are shown in Figure 3.1. In the 

sample results for the colloids shown in the figure the maxima are located at 531 nm for 

both the bare colloid and that with Hyp dissolved. In the many repetitions of the 

experiment following the same procedure, the absorption maxima of the synthesized 

colloid varied between 530 and 531 nm. Because of the unstable nature of the colloid, the 

experiment had to be repeated many times in order to obtain meaningful results. It is 

possible to see that the incorporation of the amino acid into the colloidal solution causes a 

decrease in the bandwidth of the plasmon. While here we show a single pair of absorption 

spectra, this observation was seen in every replication of the experiment, without noticing 

a significant shift in the placement of the absorption maximum. The colloidal particles were 

further characterized by atomic force microscopy measurements, as shown in the right 

Figure 3.1. Absorption spectrum and AFM image of the particles. 
The white bar in the image represents 500 nm. 
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side of Figure 3.1. Particle diameters between 50 and 80 nm were observed, with 

approximately round shapes. Geometrical configuration of the molecules after 

optimization is shown in Figure 3.2. The neutral form of Hyp is also shown in its zwitterionic 

form, which given the pKa values for Hyp (1.94 for the carboxylic, 9.73 for the amino 

group)[9] which is the most likely configuration at neutral pH. Due to the acid pH of the gold 

colloid solution, the amino acid may be found in a protonated form, and for that reason we 

also performed calculations for that protonated configuration.  

In a theoretical and experimental study of proline, Kapitán et al.[10] showed that there 

are two major conformers for the proline ring, the main difference being the orientation in 

which the ring is bent, and it can be seen that the conformer of less energy is that oriented 

with the aliphatic portion of the ring bent in the opposite direction to the carboxylate. It 

was reasonable to assume a similar configuration for Hyp, with the 4-hydroxyl and the 

carboxylate in opposite sides of the ring plane, and this is the configuration to which we 

performed the optimization, as can be seen in Figure 3.2. We also performed the 

calculation using the alternative configuration but it has a higher energy (data not shown) 

Raman spectra for Hyp are shown in Figure 3.3. Calculated spectra are shown for the 

neutral and for the protonated form of Hyp (a and b). The normal Raman spectra of Hyp in 

solid and in solution at neutral pH show similar bands, and are consistent with a zwitterionic 

configuration for the neutral molecule.  

Figure 3.2. Optimized conformations for Hyp. 
Zwitterion (left), neutral form (centre) and protonated form (right) 
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Figure 3.3. Calculated and experimental Raman spectra for Hyp. 
a) Calculated Raman spectrum for the protonated form of Hyp; b) calculated Raman 

spectrum for the neutral form of Hyp; c) normal Raman spectrum of solid Hyp 

(LL = 514.5 nm); d) normal Raman spectrum of a 1 M solution of Hyp at neutral pH 

(LL = 514.5 nm); e) normal Raman spectrum of a 1 M solution of Hyp at pH = 1 
(LL = 514.5 nm). 
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Figure 3.4. Optimized conformation for Hyp with one Au+ ion 
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Figure 3.5. Calculated and experimental SERS spectra. 
a) Calculated spectrum of Hyp with one Au+ ion added. b) and c), 

experimental SERS spectra of Hyp in gold colloids, at a concentration of 
5×10−4 M, two replicas of the experiment (LL=785nm) 
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Table 3.1. Band assignment for the normal, non-protonated Raman spectra. 
 

 

Calculated 
frequency 

(cm−1) 

Observed 
frequency 

in solid 
(cm−1) 

Observed 
frequency 
in solution 

(cm−1) 

Assignment 

205   Ring vibration 

264 257  OH bending 

299 345  Ring bending 

392 395  Ring bending 

406   Ring bending 

450 465 477 Ring vibration 

604 618 619 Ring bending 

704 698 696 
Ring torsion and COO− symmetric 
stretching 

752 757 757 Ring bending 

779   
Ring torsion and COO− symmetric 
stretching 

827 
852 854 

Ring stretching 

843 Ring stretching 

877 879 878 Ring stretching 

919 920  Ring stretching 

943 
959 964 

Ring stretching 

951 Ring stretching 

1002 1035 1027 C-N stretching 

1043 1058 
1066 

C-C stretching 

1065 1066 C-C stretching 

1083 1089 1088 C-C stretching 

1191 1185 
1182 

CH and NH bending 

1201 1208 CH2, NH2 twisting and OH bending 

1222 1225 1222 CH2 and NH2 twisting 

1256 1262 1271 CH, NH and OH bending 

1305 1325 1287 CH and NH bending 

1339 

1328 1324 

CH and OH bending 

1342 CH bending 

1348 CH bending 
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1363 1353 1364 
COO− symmetric stretching and NH, CH 
bending 

1384 

1392 1406 

NH2 twisting, CH bending and CH2 wagging 

1394 
COO− symmetric stretching and CH 
bending 

1415 1438  CH and OH bending 

1483 1464 1450 CH2 scissoring 

1498 1482 1486 CH2 scissoring 

1627 1606 

~1635 

COO− antisymmetric stretching and NH2 
scissoring 

1655 1639 
COO− antisymmetric stretching and NH2 
scissoring 

3071   CH stretching 

3082 2864 2881 CH stretching 

3104 2957 ~2960 CH2 symmetric stretching 

3118   CH stretching 

3140 2987 

2992 

CH stretching 

3161 
2997 

CH2 asymmetric stretching 

3180 NH stretching 

3518 3038 3038 NH stretching 

3799 3137  OH stretching 
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Table 3.2. Assignment for the SERS spectra of Hyp 
 

Calculated 
frequency 

(cm-1) 

Observed 
frequency 

in 
solution 
(cm-1) 

Assignment 

273  Ring shaking 

296  OH bending 

308  NH2 bending and OH bending 

403  Ring bending 

413  Ring bending 

548 560 Ring torsion and O-Au stretching 

602  Ring bending 

705  Ring torsion 

743 774 Ring and carboxylate torsion 

784 784 Ring and carboxylate torsion 

835 
841 

Ring stretching 

852 Ring stretching 

870 ~860 Ring stretching 

916 
904 

Ring torsion 

957 Ring stretching 

960  Ring stretching 

1014 967 Ring torsion 

1034 987 Ring torsion 

1071 1035 Ring torsion 

1092 1080 Ring bending 

1203 1166 CH, NH and OH bending 

1205  CH2 twisting 

1243 1219 Ring bending and CH2 twist 

1266 1242 CH2 and OH bending 

1301 ~1265 CH2 wagging, CH bending and NH bending 

1321  HCCH scissoring 

1338 1285 HCCH rocking 

1358  CH bending modes 

1377 1306 NH bending 

1391  NH2 and CH2 wagging 
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1408 1337 NH2 twisting and COO− symmetric stretching 

1429  OH and CH bending 

1484 
1436 

CH2 scissoring 

1497 CH2 scissoring 

1634 
1634 

NH2 scissoring 

1667 NH2 scissoring and COO− antisymmetric stretching 

3065  CH stretching 

3074  CH stretching 

3120  CH2 symmetric stretching 

3127  CH stretching 

3139  CH  stretching 

3180  CH2 antisymmetric stretching 

3314  NH stretching 

3503  NH stretching 

3799  OH stretching 
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The calculated bands at 817 and 843 cm−1, which correspond to the ring breathing 

modes, are seen to overlap in the experimental spectra giving one single strong peak at 

852 cm−1 in the solid and at 854 cm−1 in the solution. The bandwidth also increases for the 

spectrum of Hyp in solution. This is due to the increased concentration. The peaks of the 

carboxylate can be clearly appreciated, namely the COO− symmetric stretching at 1395 

cm−1 in the solid and at 1408 cm−1 in the solution. The antisymmetric stretching can be 

clearly seen in the solution spectrum as the broad peak at 1632 cm−1. The full band 

assignments for these spectra can be found in Table 3.1. 

The normal Raman spectrum of Hyp in solution at pH 1 shows clearly the C=O 

stretching mode at 1742 cm−1 and does not show the peak at 1408 cm−1, thus making clear 

the presence of the protonated form of the molecule. The ring breathing mode at 846 cm−1 

is seen blue shifted with respect to the neutral form, but in general the same bands are 

seen.  

For the assignment of the SERS spectra of Hyp we modeled the molecule including one 

Au+ ion as shown in Figure 3.4, and the calculated spectrum is compared to the 

experimental SERS spectra in Figure 3.5. The two traces b) and c) correspond to two 

replicas of the experiment carried out at two different times, and they show exactly the 

same Raman bands thus proving the reproducibility of the method presented here. 

The SERS spectra show distinctive bands of hydroxyproline. The pH of the colloidal 

solution is 2.93, so it would be expected to see an acidic configuration of the amino acid. 

However, the C=O stretching at 1742 cm−1 (which is seen in the Raman spectrum of the 

acidic 1 M solution) is not seen, and also the presence the COO− antisymmetric stretching 

mode at 1631 cm−1 suggests that that the adsorption on the colloidal surface would be 

through the carboxylate moiety. 
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Figure 3.7. Calculated and experimental Raman spectra for d-Hyp. 
a) Calculated spectrum of Hyp with one Au+ ion added. b) and c), experimental SERS 
spectra of Hyp in gold colloids, at a concentration of 5×10−4 M, two replicas of the 

experiment (LL=785nm) 

Figure 3.6. Optimized conformations for d-Hyp. 
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Table 3.3. Assignment for the spectra of d-Hyp in solid and solution 
 

Calculated 
frequency 

(cm−1) 

Observed 
frequency 

in solid 
(cm−1) 

Observed 
frequency 
in solution 

(cm−1) 

Assignment 

206 209  Ring vibration 

301 319  OH and ring bending 

325 334  OH bending 

354 361  Ring bending 

406 411 417 Ring bending 

450 459 459 Ring bending and COO− torsion 

599 609  Ring bending and COO− torsion 

663 660  Ring torsion 

712 736 727 Ring stretching and NH2 rocking 

744 ~780  Ring torsion and COO− symmetric stretching 

780 807 

815 

Ring stretching 

792 
828 

Ring stretching and COO− symmetric 
stretching 

827 Ring stretching 

833   
Ring stretching and COO− symmetric 
stretching 

867   Ring stretching 

890 898 891 Ring stretching and CD2 twisting 

918 920 917 C-C stretching 

944 961 949 C-N stretching and CD bending 

998 1014 
1017 

C-C stretching 

1020 1029 C-N stretching 

1078 1075,1086 1084 C-C stretching and ring bending 

1104 
1098,1107 1109 

CH2 scissoring 

1107 C-Cα-N stretching 

1123 1131 1123 Ring bending 

1164 1162 1162 Ring torsion 

1215 1222 1220 CH and OH bending 

1238 1252  CH2 twisting 

1287 1278 1274 NH bending 

1336 1318 1322 NH and CH bending 
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1340 NH2 twisting, CH bending and OH bending 

1347 1340 

1404 

COO− symm. stretching, CH bending and NH2 
wag 

1377 1392 
COO− symm. stretching, CH bending and NH2 
wag 

1406 1421 CH and OH bending 

1487 1451 1452 CH2 scissoring 

1617 1601 

1634 

COO− antisymmetric stretching and NH2 
scissoring 

1652 1644 
COO− antisymmetric stretching and NH2 
scissoring 

2253 2153 2150 CD2 symmetric stretching 

2302 2203 2203 CD stretching 

2348 2228 2234 CD2 antisymmetric stretching 

3066 ~2870 ~2890 CH stretching 

3078 2963 2967 CH stretching 

3132 2993 3014 NH stretching 

3134   CH2 antisymmetric stretching 

3515 3144  NH stretching 

3795 3294  OH stretching 
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The d-Hyp geometry optimization gives the configuration shown in Figure 3.6, and the 

corresponding Raman spectra are shown in Figure 3.7. Calculated spectra are shown for 

the zwitterionic neutral form of d-Hyp. The normal Raman spectra of d-Hyp in solid and in 

solution atneutral pH show similar bands, and are also consistent with a zwitterionic 

configuration. The calculated bands at 780 and 792 cm−1, which correspond to the ring 

breathing modes, are seen to overlap in the experimental spectra giving one single strong 

peak at 828 cm−1 in the solid and at 815 cm−1 in the solution. The full width at half maximum 

increases for the spectrum in solution due to the high concentration of Hyp; this is 

consistent with previous investigations[11,12]. The peaks of the carboxylate can be clearly 

seen, namely the COO− symmetric stretching at 1392 cm−1 in the solid and at 1403 cm−1 in 

the solution. The antisymmetric stretching can be clearly seen in the solid at 1644 cm−1 and 

in the solution as the broad peak at 1634 cm−1. 

In the case of the d-Hyp, the spectra are slightly altered to the prediction in terms of 

the bands expected in the regions from 1100-1200 cm−1 and in the C-D region from 2100 

to 2250 cm−1. This is undoubtedly due to a partial N-deuteration in the purchased 

1200 1400 1600 1800 2000 2200 

Calculated normal d-Hyp

Calculated N-deuterated d-Hyp

Experimental d-Hyp solid

Raman shift (cm-1)
Figure 3.8. Additional calculations for d-Hyp compared to experiment. 

The experimental spectrum for d-Hyp shows elements seen in the calculations for 
both the N-deuterated and regular d-Hyp; the actual compound is only partially N-

deuterated 
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deuterated analogue, thus causing extra peaks in the fingerprint region and one extra peak 

in the C-D region. An additional quantum mechanical calculation performed for the N-

deuterated compound confirms this assumption, as shown in Figure 3.8. 

To help the interpretation of the SERS spectra of the deuterated analogue, we 

modelled again this interaction using one Au+ ion, and the calculated spectrum in Figure 

3.9 is compared to two replicas of the SERS experiment. We followed the same protocol as 

for normal Hyp. 

The calculated spectrum is still useful in the prediction and interpretation of vibrational 

modes, although the agreement with experiment in terms of the band relative intensity is 

poor. However, that is expected since SERS relative intensities are modulated by surface 

selection rules and molecular orientation. Most important is the fact that repeated 

experiments showed little variations in the SERS spectrum, thus proving the method 

reproducible. The N-D and C-D stretching bands arising from a partial deuteration are 

clearly seen in the SERS spectrum. However, the C-H and N-H are very weak in the SERS 

spectrum of Hyp.  
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Figure 3.9. SERS spectra of d-Hyp  
a) Calculated SERS spectrum of Hyp with one Au+ ion added. b) and c), experimental 

SERS spectra of Hyp in gold colloids, at a concentration of 5 × 10−4 M, different 
repetitions of the experiment (LL=785nm). 
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Table 3.4. Assignment for the spectra of d-Hyp in solid and solution 
 

Calculated 
frequency 

(cm−1) 

Observed 
frequency 
in solution 

(cm−1) 

Assignment 

278  OH bending 

282  Ring bending 

307  Ring bending and OH bending 

353  CD2 rocking 

412  CH2 rocking 

560 561 Ring torsion and O-Au stretching 

596  Ring bending 

661 675 Ring torsion 

714  NH2 rocking 

747 753 Ring and carboxylate torsion 

779  Ring torsion 

804 820 Ring stretching 

826  Ring stretching 

837 855 Ring stretching 

879 882 Ring stretching 

898 898 Ring stretching 

920  C-C stretching 

945  C-N-C stretching 

997 967 C-C stretching 

1031 988 C-C stretching 

1084 1067 C-C stretching 

1103  CD2 scissoring 

1111 
1098 

CH2 and NH2 rocking, and CD bending 

1122 Ring bending 

1164 1151 Ring torsion 

1213 1263 CH and OH bending 

1241 1295 CH2 twisting 

1288  NH2 twisting 

1339  C-C stretching 

1345  CH2 wagging 
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1361 ~1400 COO− symmetric stretching and NH2 twisting 

1380  NH2 wagging 

1408  CH and OH bending 

1483  CH2 scissoring 

1635  NH2 scissoring 

1669 1613 COO− antisymmetric stretching and NH2 scissoring 

2263 2118 CD2 symmetric stretching 

2308 2173 CD stretching 

2359 2260 CD2 antisymmetric stretching 

3073  CH stretching 

3084  CH stretching 

3146  CH2 antisymmetric stretching 

3321  NH stretching 

3503  NH stretching 

3798  OH stretching 
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3.4. Conclusions 

In conclusion, an experimental procedure is presented to demonstrate the acquisition 

of reproducible SERS spectra of hydroxyproline. The study of molecules, such as the amino 

acids, with inherent low Raman cross section and photosensitive on silver surfaces, may 

require special protocols to attain reproducible analytical results using SERS. 
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4. Surface-Enhanced Fluorescence with Shell-Isolated Nanoparticles: SHINEF 

Chapter Four 

Surface-Enhanced Fluorescence with 
Shell-Isolated Nanoparticles: SHINEF 

This work has been published in the journal Angewandte Chemie, in both 

International[1] and German[2] editions, in January 2011, under the same title. This material 

has been adapted from that paper with permission* from John Wiley & Sons (see 

Permissions Obtained for Published Copyrighted Materials section, page 154.). 

This work has meant recognition for the author and his advisor from the University 

(see section Vita Auctoris, in the last pages of this thesis) in February 2012.  

4.1. Introduction 

In a 2010 report by then-graduate student Jian-Feng Li from Dr. Zhongqun Tian’s 

group[3] in Xiamen, China, a new approach for SERS was described, which was termed shell-

isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). The plasmon-enhanced 

Raman signal is provided by gold nanoparticles with an ultrathin silica shell (2 to 4 nm). The 

enhancing coated Au nanoparticles can be spread as ‘smart dust’ over the surface, and the 

coating separates them from direct contact with the probed material. The authors also 

pointed out that the SERS signal disappeared when changing the shell thickness from 2 to 

20 nm. In SHINERS, working with an ultrathin shell for the Au@SiO2 nanoparticles is 

essential to expose the adsorbate to the maximum electromagnetic field from the Au core 

(enhancement factor of 85 at 4 nm for particles with a diameter of 55 nm). 

However, for a fluorophore located on an enhancing nanostructure, increasing the 

spacer layer (shell thickness) will make obvious a continuous transition from fluorescence 

                                                      

* ©2011 John Wiley & Sons Inc. 
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quenching to fluorescence enhancement. Therefore, shell-isolated nanoparticles (SHINs) 

with thicker coatings could be ideal substrates for SEF.[4-6]  

Here we demonstrate the application of the SHINs for SEF (shell-isolated nanoparticle 

enhanced fluorescence, SHINEF) using a single Langmuir-Blodgett (LB) monolayer 

containing fluorescent probes. The enhanced fluorescence cross section is one of the 

highest in molecular spectroscopy with values in the order of 10−17 cm2/molecule and, 

correspondingly, there is a rainbow of applications for this very strong spectroscopic 

signal.[6-8] A maximum fluorescence enhancement is achieved at a certain distance from 

the nanostructure surface, and this property has been demonstrated using silver island 

films and SiOx as spacer layers by Wokaun et al.[9], and also using the LB technique to 

separate the metal from the probe molecule.[10] 

Recently, the continuous transition from quenching to SEF for a single molecule on 

gold has been reported.[11] In this study it is shown that for molecule-gold distances shorter 

than 5 nm the fluorescence is quenched. Since it is possible to control the shell thickness 

of the shell-isolated nanoparticles[12], it is evident that they are ideal SEF enhancing 

nanostructures with a broad range of potential applications: “expanding versatility”[13] of 

SEF with portable nanostructures. The dipole emission can be strongly modified by the 

coupling of an excited molecule and the surface states of a metal. This interaction has been 

discussed in an early paper by Philpott in 1975,[14] exploring the idea of using fluorescence 

to probe the surface-plasmon polaritons in metals. 

Presently, plasmonics[15,16] provides the reference for plasmon-enhanced 

spectroscopies, and central to SERS and SEF are the surface-plasmon polaritons observed 

in nanostructures, or localized surface plasmon resonances (LSPR)[17]. Gersten and Nitzan[5] 

provided the first complete electromagnetic  study for a molecule-particle system in terms 

of a modified local electromagnetic field. The plasmon resonance connection was first 

pointed out by Moskovits in 1978.[18] 
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4.2. Materials and Methods 

Solutions were prepared mixing (1:10) octadecyl rhodamine B (R18) with n-eicosanoic 

acid (C20H40O2) or arachidic acid (AA), and (1:10 and 1:100) bis(n-butylimido)perylene 

(nBPTCD) with arachidic acid. The concentration of the dye was 10−4 M and that of the 

arachidic acid was 10−3 M, and the solvent was dichloromethane. To improve solubility of 

nBPTCD, three drops of trifluoroacetic acid were added and then the solution was 

sonicated for 5 minutes. The solutions were covered in aluminum foil to protect them from 

light.  

4.2.1. SHIN Particle Synthesis 

SHIN particles were synthesized adapting the method described by Li et al.[3] The gold 

core was synthesized by gold citrate reduction of tetrachloroauric acid (HAuCl4) based upon 

existing protocols.[19,20] 50 mL of 0.01% HAuCl4 solution was brought to boiling. A solution 

of 1% sodium citrate (667 µL) was added. Boiling was continued for 10 minutes and then 

removed from heat, while the stirring was continued for 15 minutes. 

Later, to produce the silica coating, to the resulting solution we added 3 mL of a 1 mM 

aqueous solution of 3-aminopropyl-trimethoxysilane (APTMS) under vigorous stirring, and 

then allowed to stand. The resulting solution was heated in a water bath to a temperature 

between 90-95°C; when reaching this range, we added 9 mL of activated 0.54% aqueous 

sodium silicate solution to get the silica coating, then allowed the solution to stand at this 

temperature for 2 hours and let cool down. The samples were filtered using 0.20 µm pore 

polyethersulfone filters (Sarstedt), and later centrifuged at 4000 rpm for 30 minutes, 

recovering the sediment. 

4.2.2. Electron Microscopy 

SEM images were taken with the FEI Quanta 200 described in section 2.2.2. TEM 

images were obtained with the high resolution TEM instrument FEI Titan 80-300 described 

in section 2.2.1. 
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4.2.3. LB Filmmaking 

Langmuir monolayers of R18 and nBPTCD mixtures were prepared at the air-water 

interface of the Nima film balance described in section 2.4, in order to obtain the surface 

pressure-area isotherms and perform the depositions over glass slides. The solutions were 

spread on the aqueous surface using a Hamilton microsyringe held very close to the 

aqueous surface and then the solvent was allowed to evaporate completely over a period 

of time at least 25 minutes. The subphase was ultrapure Milli-Q water at a constant 

temperature of 23°C. The monolayer was then compressed at a fixed barrier speed of 

10 cm2/min to record the surface pressure-area (π-A) isotherm. The Langmuir-Blodgett 

monolayers on Corning glass slides were fabricated by Z-deposition at a constant surface 

pressure of 25 mN/m. To perform the SHINEF experiments, a drop of 5 µL of the SHIN 

particles was deposited over the LB monolayer (on the glass slide) and allowed to dry under 

warm air. 

4.2.4. Spectroscopic measurements 

UV-visible absorption spectra were recorded for the solutions employing the Varian 

Cary 50 spectrophotometer described in Chapter 2. 

Fluorescence and Raman spectra were acquired by point-by-point mapping of a 

section of the LB surface with the 50× objective (1 μm2 spatial resolution), with the 

Renishaw inVia micro-Raman system using the 514.5 nm laser line, described in section 2.5. 
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4.3. Results and Discussion 

The plasmon absorption of the shell-isolated nanoparticles and the electronic 

absorption spectra of two dyes (R18 and nBPTCD) in solution are shown in Figure 4.1. 

Notably, the absorption of the nanoparticles and the dyes is in resonance with the 514.5 

nm laser line, and this line has been used to demonstrate the “smart dust” SEF. The 

scanning electron microscopy (SEM) and the transmission electron microscopy (TEM) 

images of the SHIN nanoparticles in the smart dust are also shown in Figure 4.1, where the 

brightness is due to the gold core. The plasmon absorption of the shell-isolated 

nanoparticles (SHIN), selected in our work for the proof of concept, is relatively narrow 

(FWHM† of 88 nm) with a gold core of ca. 50 nm and the thickness of the coating is ca. 

20 nm, a coating that prevent the observation of SERS[3]. The R18 reference fluorescence 

                                                      

† The full width at half maximum (FWHM) is defined as the the width of a band (can be either transmittance, 
absorbance or scattering) measured at half of the maximum transmittance (absorbance or scattering) value. 
It is the most common way in spectroscopy to express how broad a band is. 
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Figure 4.1. Absorption spectra of the SHINs’ plasmon, R18 and nBPTCD dyes, and 
SEM and TEM images of the SHINs. 
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of a 10−4 M solution and that of a mixed LB monolayer R18-arachidic acid (1:10 ratio) is 

shown in Figure 4.2. The solution emission of R18 shows a maximum at 589 nm and a 

shoulder at 618 nm. The LB fluorescence of R18 is quite similar showing a maximum at 586 

nm. The arachidic acid is used here to facilitate the transfer of the monolayer to solid 

substrates[21]. The surface enhanced fluorescence induced by the SHIN nanoparticles is 

shown in Figure 4.3. The SEF in that figure corresponds to an “average SEF enhancement” 

(similar to the definition used for average SERS)[22] over the probe surface. It simply means 

that there is a distribution of enhancement factors (EF) contributing to the observed 

enhanced signal, and some localized spots may have a fairly large enhancement factor 

compared to observed average.  
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Figure 4.2. Reference fluorescence spectra of R18 and nBPTCD in 
solution and of one LB monolayer on glass. 
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Figure 4.4. Reference fluorescence and SHINEF of a mixed LB monolayer (1:10) of nBPTCD 
and arachidic acid. 
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The reference fluorescence spectra of nBPTCD in dilute solutions is the mirror image 

of the absorption spectrum shown in Figure 4.1 with maxima at 540, 578 and 623 nm. From 

several previous studies,[22,23] it is known that the PTCD dyes, in addition to the monomer 

emission (nBPTCD in solution in Figure 4.2), they produce a very strong red-shifted excimer 

emission in the solid state, and particularly in “concentrated” LB films due to the formation 

of aggregates. In the 1:10 (nBPTCD:AA) mixed film, the broad (structureless) excimer 

emission prevails in the fluorescent spectrum as can be seen in Figure 4.2b (bottom trace). 

The SHINEF at two points of the monolayer covered with SHINs is given in Figure 4.4. A 

mapping of the small surface area shows enhancement factors in the 1-20 range for the 

integrated intensity of the excimer emission. The presence of the monomer is occasionally 

seen in the multifile of the mixed film.  

Experiments were also carried out with a dilute mixed monolayer (1:1000 nBPTCD:AA) 

and the results are illustrated in Figure 4.5. The reference spectrum of the dilute mixed 
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Figure 4.5. Reference fluorescence and SHINEF of a mixed LB 
monolayer (1:1000) of nBPTCD and arachidic acid. 

The spectra in yellow and brown are three points in the mapping 
where SHINEF is observed. 
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monolayer shows the typical bands of the monomer at 547 nm and 589 nm, and 

correspondingly the SHINEF shows similar structure. However, the enhancement produces 

an overlap of the main peaks as can be seen in Figure 4.5. It should be pointed out that 

when LB monolayers of PTCD derivatives are transferred directly onto silver or gold 

nanostructures and excited with the 514.5 nm laser line, the fluorescence is almost 

completely quenched and surface-enhanced resonance Raman scattering (SERRS) is 

observed.[23,24] In the present work with the thick coating of the SHIN used, we do not 

observe SERRS. At the time of publishing of the paper associated with this article, synthesis 

of SHINs with variable core (size and shape) and coating thicknesses were in progress for 

plasmonic manipulation, focusing on thickness coatings between around 10 nm or below 

for SHINEF applications[25,26] and they are detailed in the following chapters of this thesis. 

Although SHINEF was shown for specific SHINs of a thick coating ca. 20 nm, SHINEF can also 

be attained with thinner coatings. Coatings of about 10 nm produce SHINEF as shown in 

Figure 4.7. For practical applications a coating of ca. 6 nm or more is recommended to 

maximize SEF and avoid any SERS signal. For instance, when a section of the LB monolayer 

is covered with the stock “naked” nanoparticles, fluorescence is partially quenched and 

SERRS is observed (Figure 4.6). However, the section of the LB surface covered with SHINs 

gives only SHINEF. 
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The SERRS spectrum has been plotted separately, after subtracting the 
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As an addition to the data published in the 2011 Angewandte Chemie paper, we can 

say something about the batch of SHINs employed to obtain most of the results of the 

paper. We have recently discovered that they are still in very good condition, proving that 

the particles are stable even 3 years after their synthesis. We show this data in Figures 4.8 

to 4.10. 

 

 

Figure 4.8. SEM images of the SHIN particles used for most of the results of the Angewandte Chemie paper 
(codenamed “code B”). Images taken 3 years after they were synthesized and used for the results of the 

paper. 
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Figure 4.9. Absorption spectrum of the SHIN particles in 2013. 
The absorption spectrum has barely changed at all between 2010 and 2013; after a 

simple Gaussian fit in GRAMS, the maximum is still at 551 nm, exactly where it was back 
in 2010 (see Figure 4.1) 
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the fluorescence of the reference LB film. Spectra acquired on April 2013 (originals are from June 
2010) 
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4.4. Conclusions 

In conclusion, average surface-enhanced fluorescence is demonstrated with silica 

coated gold nanoparticles (SHINEF) acting as smart dust on the surface of single Langmuir-

Blodgett (LB) monolayer, and this project serves as the proof-of-concept for it. Coating gold 

and silver nanoparticles of different sizes and shapes (different plasmon absorptions) opens 

a wide scope of applications for SEF, where the shape of the core and the thickness of the 

coating can be tuned for specific tasks. The technique of spreading the enhancing 

nanostructure provides a new approach to experimental SEF. 
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5. Plasmon-Enhanced Fluorescence and Spectral Modification in SHINEF 

Chapter Five 

Plasmon-Enhanced Fluorescence and 
Spectral Modification in SHINEF 

This work has been published in the Journal of Physical Chemistry C in April 2011 under 

the same title.[1] The materials presented here have been adapted with permission* (see 

Permissions Obtained for Published Copyrighted Materials section, page 154.). 

5.1. Introduction 

The introduction of shell-isolated gold nanoparticles to obtain enhanced fluorescence, 

called SHINEF,[2,3] invites the question of fine tuning the properties of the coated 

nanoparticles for maximum enhancement, such as the core size and shape as well as shell 

thickness. In addition, the versatility provided by the easy use of the SHINs, offers a unique 

opportunity to investigate the question of spectral profile modification and extract further 

understanding of the nature of plasmon enhanced fluorescence. Here, we present 

experimental results with SHINs of different sizes and shell thickness, and the 

interpretation of results is helped by computational modeling using finite-difference time-

domain and DDA methods. In addition, the question of spectral profile modification[4,5] is 

examined using well defined two dimensional structures or Langmuir-Blodgett monolayers 

of two emitters (monomer and excimer) of the same fluorophore. 

                                                      

* Adapted with permission from: Plasmon-Enhanced Fluorescence and Spectral Modification in SHINEF. 
Aroca, R. F.; Teo, G. Y.; Mohan, H.; Guerrero, A. R.; Albella, P.; Moreno, F. J. Phys. Chem. C 2011, 115, 20419. 
Copyright © 2011 American Chemical Society 

For this chapter, Geok Yi Teo and Haider Mohan performed synthesis of the spherical nanoparticles; 
Pablo Albella and Fernando Moreno provided the supporting theoretical calculations. The author performed 
synthesis and spectroscopy work with silica-coated gold nanorods showing spectral profile modification. 
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The emission of the fluorophore is strongly affected by its interactions with the 

electromagnetic environment. The fluorophore can completely lose its ability to emit by 

transferring its excitation energy to a metal surface[6] (fluorescence quenching). However, 

some metals nanostructures sustaining localized surface plasmon resonances(LSPR)[7,8] can 

enhance the emission under the right conditions of excitation, geometry and metal-

molecule spacing, producing surface enhanced fluorescence (SEF). Once the LSPR is 

excited, the key parameter is the metal-molecule separation.  In SHINEF, a plasmon 

enhancing nanostructure with a built in spacer is used for practical applications.  In surface-

enhanced Raman scattering (SERS),[8-10] the highest enhancement comes from molecules 

either directly attached to the metal nanostructure or very close to it[11] and consequently, 

the spectral properties (wavenumber and relative intensities) of the species adsorbed onto 

the metal nanoparticles may change on account of the chemical or physical interactions 

with the nanostructure, and, correspondingly, the far field scattering of 

electromagnetically enhanced SERS spectrum will contain the information that shed light 

on these molecule-nanostructure interactions. The spectral modification in SERS due to the 

properties of the far field scattering itself is difficult to separate in the observed SERS 

spectra, although it has been identified by several groups.[12,13] For physisorbed molecules 

and submonolayer surface coverage the plasmon effects can be clearly captured in the far 

field scattering.[14]  In SHINEF (or SEF in general) the molecule is about 10 nm away from 

the metal surface, and the spectral modification is almost entirely due to the plasmonic 

modification of the observed enhanced spectrum. 

5.2. Materials and Methods 

All glassware used was cleaned with aqua regia (1:3 ratio of HNO3: HCl) and rinsed 

thoroughly with ultrapure (Milli-Q, 18.2 MΩ cm) water. The solvent used in all solutions 

preparation is ultrapure Milli-Q water unless stated otherwise. Tetrachloroauric acid 

(HAuCl4.3H2O), cetyltrimethyl-ammonium bromide (CTAB), sodium borohydride (NaBH4), 

ascorbic acid, tetraethylorthosilicate (TEOS) and arachidic acid (AA) were purchased from 

Sigma-Aldrich and used without further purification. 
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SHIN particle synthesis. SHINs were prepared according to the method described by 

Grabar et al.[15] and Li et al.[11] with slight modifications.  First, the gold core is prepared by 

the sodium citrate reduction method of tetrachloroauric acid. In a round-bottom flask 

equipped with a condenser, 250 mL of 5 × 10−4 M HAuCl4, is brought to boil with vigorous 

magnetic stirring. An addition of 12.5 mL of 38.8 mM sodium citrate is made rapidly and 

the resulting solution is reddish-purple in colour. The solution is then boiled for another 10 

minutes, removed from heat and stirring was continued for another 15 minutes. The 

solution was then cooled to room temperature and then characterized by its absorption 

maximum.  

To coat the gold cores with silica, 3 mL of a freshly prepared 1 mM APTMS solution 

was added to 50 mL of the gold-citrate colloid under vigorous stirring for 10 minutes. The 

mixture of APTMS and gold colloid was then heated in a water bath to a temperature of 

between 90-95°C. Once it reached this temperature range, 6 mL of activated 0.54% 

aqueous sodium silicate solution (pH 10-11) was added to begin silica coating on the gold 

particles. Samples of 1mL each were collected every 15 minutes up until 3 hours. The 

samples were made concentrate by centrifugation at 12,000 rpm for 7 minutes and 

removing most of the supernatant. The unused portion of the gold-citrate colloid was kept 

and stored in the dark in case of future use. A second batch of 150 mL of 5 × 10−4 M HAuCl4 

gold cores was also prepared by the same method but only 3.4 mL of 38.8 mM of sodium 

citrate was added as a smaller volume was used. To silica coat the gold cores, the same 

procedure was followed but only 25 mL of the gold-citrate colloid was coated and samples 

were taken every 15 minutes up until 2 hours only.  The TEM images of small and large 

coated gold nanoparticles are shown in Figure 5.1a.  The gold nanoparticles used in spectral 

profile modification experiments were made from a third batch following the same method 

described above. A 50 mL solution of 0.01% HAuCl4 was reacted with 800 μL 1% sodium 

citrate; the resulting gold nanoparticles had plasmon absorption with maximum at 531 nm, 

the silica shell was ca. 11 nm. 

Synthesis of nanorods. Nanorods are synthesized adapting the method proposed 

originally by Nikobaakht and El-Sayed.[16] A seed solution is prepared by adding, under 
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constant stirring at 28°C, 50 µL of a 0.05 M HAuCl4 solution into a flask containing 10 mL of 

a 0.100 M CTAB solution. To this solution we add 600 µL of a freshly-prepared ice-cold 

solution of NaBH4 10 mM. Upon addition of NaBH4, the solution turns yellow-brownish. 

This solution was left undisturbed for a minute before use. A growth solution is prepared, 

in parallel to the seeds, by adding consecutively and under constant stirring at 28°C, 10 mL 

of a 0.100 M CTAB solution, 100 µL of a 0.004 M AgNO3 solution, 100 µL of a 0.05 M HAuCl4 

solution, and 100 µL of 0.1 M ascorbic acid solution. The growth solution turns from yellow 

to colourless upon addition of ascorbic acid. After this was completed, 24 µL of the seeds 

solution were added to the growth solution, always stirring at 28°C. The solution started 

fading very slowly to blue, and the reaction is completed after about 30 minutes. 

The silica-coating of this solution was done following Gautier et al.[17] The resulting 

nanorods solution was alkalinized by adding tiny droplets of a 1 M NaOH solution until the 

pH reaches 10.5. At this point, three additions of TEOS 20%v/v in methanol were made with 

intervals of 30 minutes, adding 50 µL of TEOS every time. After the third addition, the 

solution was left to stand for 12 hours. After this, the solution was filtered through a 

Whatman No. 1 paper to remove the excess of CTAB, and concentrated by centrifugation 

at 12000 rpm, collecting the sediment. 3 µL of this concentrated solution was cast over the 

glass slide containing the mixed chloro-PTCD-arachidic acid LB film. 

SEM images were taken with a FEI Quanta 200 Environmental scanning electron 

microscope equipped with an Everhart-Thornley secondary electron detector and a solid 

state backscatter detector. TEM images were obtained with a high resolution TEM 

instrument FEI Titan 80-300. UV-visible absorption spectra were recorded employing a Cary 

50 scan UV-visible spectrophotometer. All fluorescence experiments were conducted using 

our micro-Raman Renishaw inVia system, with laser excitation at 514.5 and ca. 20 µW at 

the sample.  All measurements were made in a backscattering geometry, using a 20× 

microscope objective probing an area of ca. 5 µm2. 2D mapping results were collected 

through the rastering of a computer controlled 3-axis encoded (XYZ) motorized stage, with 

a step of 5 µm.  
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Langmuir monolayers of Octadecylrhodamine B dye (R18) and bis(3,4-

dichlorobenzylimido)perylene (Cl-PTCD) mixtures with arachidic acid (n-eicosanoic acid) 

were prepared at the air-water interface of our Nima film balance (model 302M) described 

in section 2.4.  Langmuir films were made in the air-water interface by spreading a solution 

in dichloromethane containing one part of the dye and 10 of arachidic acid on the surface 

of ultra-pure Milli-Q water subphase. The Langmuir film was left for ca. 30 minutes to 

ensure a complete evaporation of the solvent. The film was then compressed by a couple 

of moving barriers at a speed of 10 cm2/min. The Langmuir film is deposited onto a clean 

Corning glass slide under constant pressure to form the Langmuir-Blodgett (LB) film for 

SHINEF experiments.  

Numerical solution of the far field (scattering cross section) and near field for SHINs 

are obtained by solving Maxwell’s equations for a plane wave incident on the exact 

geometry of the SHIN (single, dimer and trimer). The simulations have been performed 

with use of finite-difference time-domain software (Lumerical) using optical data from 

Johnson and Christy[18]. This numerical method is broadly established in computational 

electromagnetism to calculate the optical response of different nanostructures. It consists 

of a direct implementation of the Maxwell time-dependent curl equations to solve the 

temporal variations of electromagnetic waves within a finite space that contains a metal 

nanoparticle.[12]  In practice, the space including the scatterer is discretized into a grid that 

contains the basic element and the results depend both on the number of the cells used in 

the simulation and the simulation time. The results are fully convergent, and they may be 

considered an accurate solution of Maxwell’s equations. Additionally, the results shown 

here have been tested with another solving method, the discrete dipole approximation[19] 

(DDA), producing very good agreement. 

5.3. Results and Discussion 

For a molecule placed near field of a laser-irradiated gold nanostructure, the observed 

emission is a function of the metal-molecule distance[20]. This distance dependence is the 

most important property of SEF, and by varying the distance between molecule and 
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nanostructure a continuous transition from fluorescence quenching to fluorescence 

enhancement has been experimentally demonstrated.[20-23]  In practice, SEF is clearly 

observed when the metal-molecule separation is about 5 nm or more.[21] The power of the 

observed fluorescence for a neat molecular compound is directly proportional to 

absorption rate (𝜅0), the number of the absorbing species (𝑛0) and the quantum yield (Φ𝑓): 

𝑃 ∝ 𝜅0𝑛0Φ𝑓 (5.1) 

For simplicity, let’s make a distinction between two contributions to the observed SEF 

intensity. First, the absorption rate of a molecule located in the near field of nanostructure 

supporting can be modified, and simultaneously it can be an increase or decrease in the 

quantum yield, since both the radiative and non-radiative decays can be modified. There is 

abundant supporting experimental evidence that measured lifetimes decrease for 

molecules at or near metal nanostructures, changing Φ𝑓.[23]  The second contribution to 

the measured SEF is the re-radiated emission by the excited nanostructure. Notably the 

first contribution (near field) may enhance the absorption and the quantum yield; but since 

the molecule is at a distance from the metal, one does not expect dramatic changes in the 

spectral profile of the emission. However, the re-radiated emission carries the signature of 

the far field scattering of the nanostructure used to obtain SEF, i.e., the fluorescence 

enhancement factor (EF) has a strong frequency dependence can be simplified as the 

product of the two contributions:[24] 

𝐸𝐹fluorescence(𝜔)𝑠 = 𝐺𝑟𝑎𝑑
∗ (𝜔𝑠)𝐺𝑙𝑜𝑐(𝜔𝐿) (5.2) 

The subindex s is used to indicate the frequency dependence of the enhancement to 

the red of the excitation. The 𝐺𝑙𝑜𝑐(𝜔𝐿) is the local field enhancement factor that modifies 

both the molecular absorption and the quantum yield.  The modified radiative rate, 

𝐺𝑟𝑎𝑑
∗ (𝜔𝑠), adapted from Etchegoin et. al.[4] and properly normalized, carries the strong 

frequency dependence due to LSPRs in the nanostructure. 

5.3.1. Spherical Particles: Effect of the Core and Shell Sizes 

SHINEF is a versatile experimental approach that permits to test the optical properties 

of simple model described above. First, we discuss the tuning of SHIN nanoparticles for 

maximum enhancement. 
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SHINEF was recorded for two distinct gold core size and variable SiO2 shell thickness 

spread onto a fluorophore R18 forming a mixed LB monolayer. The transmission electron 

microscopy of the SHIN particles is shown in Figure 5.1a for small core particles, with an 

average diameter of 16 nm. Figure 5.1b shows the large SHINs with an average diameter 

of 40 nm. A scanning electron microscopy image of the large SHINs is shown in Figure 5.2. 

The corresponding surface plasmon absorptions can be seen in Figure 5.1c. The molecular 

electronic absorption of R18 in solution, the absorption of the LB monolayer and the 

reference fluorescence spectrum of the monolayer is shown in Figure 5.1d. The uncoated 

colloids spread over the LB monolayer containing the R18 dye quench the fluorescence as 

expected. All coated gold nanoparticles or SHINs produce SHINEF.  
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Figure 5.1. Characterization of the sphere-like Au SHINs to study the effect of the core size. 
a) TEM of small SHINs with absorption at 525 nm and b) SHINs with plasmon absorption at 
539 nm. c) Absorption of small and large SHINs, and d) Absorption of the R18 in solution, 

and fluorescence of R18 in solution and of the LB film. Scalebars represent 100 nm. 
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Figure 5.2. SEM image of the large SHINs. 

Figure 5.3. SHINEF from small core gold SHINs with different shell thickness. 
The LB reference fluorescence and the quenching effect of uncoated colloids are 

also included. 
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The SHINEF results for the small core SHINs with different coatings are shown in Figure 

5.3. The best enhancement factor (EF ~4) was found for SHINs with a SiO2 coating of ca. 6 

to 7 nm. The spectral profile of the enhanced fluorescence spectrum of the R18 in the LB 

monolayer (Figure 5.3) is practically the same compared to the reference LB spectrum (with 

a very small “blue” shift in the band maximum).  

Similarly, the SHINEF of large diameter SHINs is recorded by spreading the SHINs over 

the mixed R18 LB monolayer and the results can be seen in Figure 5.4. Again, the uncoated 

colloids produce quenching, while all coated gold nanoparticles give SHINEF. However, the 

best absolute average enhancement (EF ~10) is obtained for SHINs with an average core of 

ca. 40 nm and a coating thickness of 11 nm of SiO2. Once more, the spectral profile of R18 
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Figure 5.4. SHINEF from large core gold SHINs with different shell thickness. 
The LB reference fluorescence and the quenching effect of uncoated colloids are also 

included. 
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SHINEF is the same as that of the reference LB fluorescence. Notably, the absolute 

enhancement factor of the large coated SHINs was consistently higher than that of the 

corresponding small SHINs. 

The experimental results are supported by the computational results indicating that 

the large core particles have a higher local field enhancement compare to the small SHINs 

as illustrated in Figure 5.5. The top of the figure shows near field relative intensity (|𝐸|2 =

|𝐸𝑙𝑜𝑐 𝐸0⁄ |2) patterns corresponding to small nanoshells (left) and larger nanoshells (right) 

respectively. Both patterns have been calculated by means of the FDTD method. Two areas 

of enhancement can be seen. One inside the particle, close to the metallic surface, which 

is “refracted” producing the other area of enhancement outside the particle. This external 

enhancement is what is seen by the fluorescent molecules. According to the numerical 

results, the ratio between these external enhancements for large and small SHINs is of the 

order of 2. 

In addition, we also show in Figure 5.5 plots of the far field scattering cross sections 

corresponding to the same SHINs which again demonstrate that larger SHINs scatter light 

more efficiently than smaller ones. Notably, the far field scattering contribution from SHIN-
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Figure 5.5. Calculated near field enhancement of small and large SHINs at 515 nm 
excitation and far field scattering of the small and large SHIN particles. 
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dimers and also SHIN-trimers it is even more intense than that of SHIN monomers; 

however, all scatterings have the same spectral profile. 

In summary, both the near field contribution and the re-radiated emission are 

generously proportioned for the large SHINs and they are more efficient enhancers of 

fluorescence. In both cases, the almost negligible spectral profile modification of R18 is 

seen as a minor blue shift (5 nm) of the centre of the fluorescence band. It is important to 

point out that the optimum shell thickness is found not to be the same for small (ca. 6 nm) 

and large SHINs (ca. 11 nm).  

5.3.2. Nanorods and Spectral Profile Modification 

The fluorophore used to study the spectral profile modification is Cl-PTCD, shown in 

Figure 5.6. The fluorescence spectra of the solution and that of the mixed LB monolayer 

are also given in the figure. The fluorophore sample presents two very distinct emitters: 

the monomer emission and the excimer emission that is prominent in aggregated samples 

Figure 5.6. Fluorescence spectrum of the Cl-PTCD solution (monomer) 
and fluorescence from the Cl-PTCD mixed LB showing the monomer 

and excimer components of the emission. 
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such as the LB monolayer. It is important to notice here that the spectral profile of the 

fluorescence of the mixed LB monolayer Cl-PTCD/arachidic acid is the result of the 

superposition of two spectra: the fluorescence of the monomer (dominant in dilute 

solutions), and that of the excimer dominant in aggregated samples. This spectral profile 

can be changed by varying the mole ratio in the mixed film. In the series of 3,4,9,10-

perylenetetracarboxylic diimide (PTCD) derivatives planar 𝜋-stacking[25] is an important 

model that helps to understand the excimer formation. For this particular PTCD derivative 

with a bulky substituent on the PTCD chromophore, the 1:10 ratio of Cl-PTCD:AA provided 

a spectral profile where the emission of both monomer and excimer are clearly seen (Figure 

5.6), a condition for a good reference point to study the effect of the far field scattering of 

SHIN nanoparticles against that of SHIN nanorods. In other words, to observe the effect of 

the re-radiated emission from the nanostructure, we employed SHINs with a far field 

scattering profile closely matching the fluorescence shape (spectral profile) of each one of 

the emitters.  
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Figure 5.7. TEM of SHINs particles with absorption at 531 nm and SHIN nanorods 
with plasmon absorption at 685 nm. Scale bars represent 100 nm. 
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The TEM of the SHINs are shown in Figure 5.7. The round SHINs correspond to the 

large core gold nanoparticles discussed above and their scattering is the 500-600 nm region 

of the spectrum. The SHIN nanorods absorb around 685 nm and their scattering would be 

around the 700 nm spectral region. The SHINEF results illustrating the spectral profile 

modification are presented in Figure 5.8. We selected for the figure one representative 

SHINEF spectrum from the point-by-point mapping of the SHINEF spectra obtained by 

spreading the SHIN particles onto the LB monolayer. The complete series of the spectra 

from each map are shown in Figures 5.9 and 5.10. It is seen that when round SHINs are 

used the spectrum of the monomer in the monolayer is preferentially enhanced, since the 

monomer emission is in close match with the far-field scattering of the nanoparticles. On 

the other hand, when the nanorods are used for SHINEF, the excimer component in the 

fluorescence spectrum becomes prominent, changing the profile of the observed 

spectrum. It should be pointed out that each SHINEF spectrum is an average fluorescence 

spectrum collected using a microscope objective that collect the emitted light from a 

surface area of ca. 5 µm². Therefore, these spectra represent the emission collected from 
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Figure 5.8. Spectral profile modification in SHINEF with shelled nanospheres and nanorods. 
The former enhance preferently the monomer and the latter the excimer, the 

emissions.from a mixed Cl-PTCD/AA (1:10 molar ratio). 
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a “large” surface area of the monolayer, avoiding the problem of points with hefty 

aggregation or extreme dilution.  
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Figure 5.9 All spectra in the map with spherical AuSHINs on a Cl-PTCD:AA 1:10 LB film. 
It is hardly possible to see the emission of the excimer 

Figure 5.10. All spectra in the mapping with AuSHIN nanorods on a Cl-PTCD:AA 1:10 LB film. 
The emission of the excimer is clearly seen due to the spectral profile modification induced by 

the nanorods. 
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5.4. Conclusions 

The versatility of SHINEF is demonstrated for two different SHIN sizes. Small gold 

particles of about 16 nm diameters can be used for SHINEF with shell thickness between 6 

to 7 nm, although thinner coating down to 4 nm and thicker coating will also render the 

effect. The SHINEF efficiency increases with increasing core size. Core gold sizes of ca. 40 

nm and shell thickness around 11 nm gave higher enhancement. These SHIN particles seem 

to have ideal dimensions for practical applications. The plasmonic effect leading to spectral 

profile modification is demonstrated with SHINs of different shapes. In other words, 

observed enhanced fluorescence will show a spectral profile modification modulated by 

the unique far field scattering of nanostructure. In this respect the use of SHINs of different 

shapes, such as rods, can help produce SHINEF in specific spectral regions, or target specific 

analytes in the visible or near infrared spectrum. 
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6. Plasmon Enhanced Raman-Fluorescence Ratio with Shell-Isolated Silver Nanoparticles 

Chapter Six 

Plasmon Enhanced Raman-
Fluorescence Ratio with Shell-Isolated 
Silver Nanoparticles 

This work has been published in the journal Small, in October 2012 under the title 

“Experimental Confirmation of Local Field Enhancement Determining Far Field 

Measurements with Shell-Isolated Silver Nanoparticles”[1] This material has been adapted 

from that paper with permission* from John Wiley & Sons (see Permissions Obtained for 

Published Copyrighted Materials section, page 154.). 

6.1. Introduction 

The plasmonic enhancement of fluorescence or scattering involves the same 

enhancement mechanism[2,3] which is governed by the local field enhancements in 

nanostructures sustaining localized surface plasmon resonances (LSPR).[2,4] It is the 

localized field enhancement that is responsible for surface-enhanced spectroscopic 

processes such as SHINERS[5] and SHINEF.[6,7]  

As was first pointed out by Gersten and Nitzan,[8,9] and later also by Kerker et al.,[2] the 

Raman benefits from the enhancement of both incident and scattered fields, and the 

enhancement factor for nanospheres is approximately: EF ≈
𝐸𝑙𝑜𝑐

2 𝐸′
𝑙𝑜𝑐
2

𝐸0
4 = 16|𝑔|2|𝑔′|2 , 

where 𝐸0 is the incident field and 𝐸𝑙𝑜𝑐 the enhanced local field, that leads to a Raman 

enhancement proportional to the fourth power of the factor |𝐸𝑙𝑜𝑐 𝐸0⁄ |, i.e., gives the 

                                                      

* © 2012 John Wiley and Sons. 
Yun Zhang contributed to this project by performing most of the synthesis work of the Ag SHINs that were 
employed in this paper. 
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|𝐸|4 = |𝐸𝑙𝑜𝑐 𝐸0⁄ |4 approximation, extensively discussed and used even for nanostructures 

other than spheres.[10] However, surface enhanced fluorescence (SEF) can only benefit 

from the enhanced local field and should be proportional to |𝐸|2 = |𝐸𝑙𝑜𝑐 𝐸0⁄ |2, with EFs 

(commonly between 1 and 100) much more modest than those commonly observed in 

SERS.[10,11] Experimentally, a direct comparison between these EFs has not been possible 

for molecules directly adsorbed onto metallic nanostructures due to the “first layer” 

effects: a) the chemical interaction of the molecule with the metal nanoparticle may 

change the nature of the adsorbate (formation of surface complex) giving a different 

vibrational Raman signature; b) in the case of SEF, fluorescence quenching becomes 

overriding for such small distances and the particle surface is well approximated by a plane 

boundary.[12-14] 

However, with the advent of new shell-isolated nanostructures (SHINs), one could 

compare the local field enhancement at a fixed distance (greater than 5 nm)[10] from the 

metal surface with measurements carried out in the far field.[15] Therefore, eliminating the 

“first layer effects” that may dramatically change the corresponding spectra, it would be 

possible to extract the local field factor |𝐸| common to these two enhancements measured 

in the far field. The used of shell-isolated nanoparticles (SHIN) guarantee a separation 

between the target molecule and the metal surface. In this report, we first extend our 

previous work on gold-SHINs introducing the fabrication of shell isolated silver 

nanoparticles (Ag-SHINs). The next step is to find a molecule that would simultaneously 

render SHINERS and SHINEF in the same spectrum. To explore the evaluation of the |𝐸| 

factor, we choose the crystal violet (CV) molecule, which has a low quantum yield, allowing 

the Raman and the fluorescence to be observed in the same spectrum by selecting the 

appropriate laser line (see Figure 6.1). Therefore, with Ag-SHINs, the plasmon enhanced 

vibrational Raman is observed “unperturbed” from the reference spectrum in solution and 

the SHINEF is collected for molecules located outside the zone of strong quenching or 

dramatic changes in the lifetime. In addition, by working in solution we are measuring 

reproducible average properties. The experimental results confirm that the plasmon-

enhanced fluorescence is proportional to the square of the local field enhancement while 
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the plasmon-enhanced Raman scattering is given by the fourth power of the local field 

enhancement. 

6.2. Materials and Methods 

AgNO3 and tetraethylorthosilicate (TEOS, 98%) were purchased from Sigma-Aldrich 

and used without further purification. Crystal violet (CV) was purchased from Fisher 

Scientific and Octadecyl Rhodamine B (R18) was obtained from Invitrogen. Unless 

otherwise specified, solutions are aqueous and the water employed is Milli-Q quality (18.2 

MΩ cm). All glassware was cleaned using aqua regia and rinsed with abundant Milli-Q 

water. The core silver colloids were prepared according to the method of Leopold and 

Lendl[16] by reduction of silver nitrate with hydroxylamine at alkaline pH. Briefly, 

hydroxylamine solution 1.5×10−3 m (45ml) was added to the beaker and droplets of a 1 M 

NaOH solution to adjust the hydroxylamine solution to pH 10.5. Then, 1  10−2 M (1 mL) 

AgNO3 solution was added dropwise and it was stirred for 25 minutes. To coat the silver 

colloids we followed the procedure reported by Wang et al.[17] with minor modifications. 

Briefly, to the silver nanoparticles solution described above we added 150 mL ethanol, 

then we adjusted the pH back to 10.5 with the same NaOH solution, and then we added 

200 µL of TEOS to the mixture. The mixture was allowed to stand at room temperature for 

1 hour, and then it was centrifuged at 11000 rpm for 7 minutes, to concentrate the 

particles. SEM images were taken with the FEI Quanta 200 Environmental scanning 

electron microscope described at section 2.2.2. TEM images were obtained with the high 

resolution TEM instrument FEI Titan 80-300 described in section 2.2.1. 

Langmuir monolayers of Octadecylrhodamine B dye (R18) mixtures with arachidic acid 

(n-eicosanoic acid) were prepared at the air-water interface of our Nima film balance 

(model 302M) described in section 2.4. We used a 1:10 mixture with arachidic acid as 

described in section 2.4.2 and as done previously.[6,7,18]  The Langmuir film was allowed to 

sit for ca. 30 minutes to ensure a complete evaporation of the solvent. The film was then 

compressed by a couple of moving barriers at a speed of 10 cm2/min. The Langmuir film is 

deposited onto a quartz slide under constant pressure to form the Langmuir-Blodgett (LB) 
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film for SHINEF experiments. The slides were cleaned using Piranha solution (7:3 mixture 

of sulfuric acid and hydrogen peroxide). UV-visible absorption spectra were recorded 

employing our Cary 50 scan UV-visible spectrophotometer described in section.  

All Raman and fluorescence experiments were conducted using our micro-Raman 

Renishaw inVia system, with laser excitation at 514.5 and ca. 20 µW at the sample as 

described in sections 2.5.1 and 2.5.2. All measurements were made in a backscattering 

geometry, using either a 20× microscope objective probing an area of ca. 5 µm², or a macro 

objective with an adapter for measurement in quartz cuvettes. 2D mapping results were 

collected through the rastering of a computer-controlled 3-axis encoded (XYZ) motorized 

stage, with a step of 5 µm. For the solution measurements, the concentration of CV was 

always 1.2 × 10−5 M, with a total of 1 mL being measured. We used increasing amounts of 

the concentrated nanoparticle (SHINs) solution until achieving a maximum SHINEF signal. 

For the enhancement factor calculations, we fit the Raman and fluorescence bands using 

the peak fitting function of the GRAMS program (Thermo Galactic Inc.), using one Gaussian 

curve for the Raman peaks and two for the fluorescence peaks, having previously done 

baseline and offset corrections. 

Geometry optimizations and calculated Raman spectra were obtained using the 

Gaussian 09[19] suite of programs, using density functional theory at the B3LYP/6-

311+G(d,p) level of theory. No scaling factor correction was employed.  
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6.3. Results and Discussion 

6.3.1. Ag-SHINs.  

The plasmon absorption spectra of the silver SHINs before and after coating are shown 

in Figure 6.1, where the insets illustrate SEM and TEM images for the Ag-SHINs. Absorption 

peaks are due to the plasmon of the nanoparticles. The red shift of the absorption peak 

from 400 to 417 nm is consistent with a change in the dielectric medium due to the silica 

coating and the presence of ethanol. Electron microscopy images show particles deviating 

slightly from the spherical shape, to varying degrees of modification of the aspect ratio, but 
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Figure 6.1. Characterization of the SHIN particles and the dyes employed. 
Absorption spectra of the silver particles before and after coating, along with the 

absorption  and normal fluorescence spectra in aqueous solution of CV and the laser line 
excitation at 514.5nm. Inset: SEM and TEM images of the coated particles. The bar in the 

images represents 100 nm in each case. 
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always within 50-80 nm in diameter. SEM images clearly show that the particles are coated 

with silica. The TEM images confirm the SEM results for the silver cores with homogeneous 

silica coating around the silver nanoparticles, giving a shell thickness of approximately 6 nm 

in average. 

 The newly synthesized silver SHINs were first tested for SHINEF in conditions similar 

to our previous work.[6,7,18,20] Namely, drops of the Ag-SHIN solution nanoparticles are cast 

onto a Langmuir-Blodgett film of R18 formed on a glass slide. The reference fluorescence 

and the SHINEF are shown in Figure 6.2, resulting in a maximum EF of 94, for SHINEF. Since 

casting does not provide a homogenous spreading, the EF varies on different sections of 

Figure 6.2. SHINEF of a R18:arachidic acid 1:10 mixed LB film using our silver SHINs, 
showing the maximum EF of  94. 
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the LB films covered with Ag-SHINs, and 94 is an upper cotta. Given that R18 has a high 

intrinsic quantum yield, the strong fluorescence signal (SHINEF) does not allow seeing 

SHINERS for R18. 

In a later repetition of this experiment (done long after the publication of our Small 

paper) in the same conditions using similar SHINs, we obtained a maximum enhancement 

factor of 100. This is shown in Figure 6.4. Repetition of the LB test for SHINEF with a mixed 

R18:AA LB film.Figure 6.4. 
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6.3.2. Local field enhancement in SHINERS and SHINEF.  

The absorption and normal fluorescence of CV in aqueous solution, with a maximum 

absorbance peak at 590 nm and a “mirror image” fluorescence peak at 644 nm can be seen 

in Figure 6.1. As expected, the absorbance peak of CV shows a shoulder at around 550 

which has been recently explained in terms of splitting of the E-symmetry of optically active 

states in polar solvents.[21] The same experimental procedure was followed for all 

SHINERS/SHINEF measurements in solution: a volume of the CV solution was first measured 

(reference), and then aliquots of the Ag-SHIN solution were added until a plateau of 

enhanced intensity was achieved, and that is shown in Figure 6.3. The reference Raman 

scattering and fluorescence spectra of CV solutions without SHINs are also included in 

Figure 6.3. The advantage of exciting with the 514.5 nm laser line is that CV’s low quantum 

yield (~5×10−5 in water)[22-24] allows the observation of both Raman scattering and 

fluorescence in the same spectrum. There is a spectral window to observe the normal 
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Figure 6.4. Repetition of the LB test for SHINEF with a mixed R18:AA LB film. 
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Raman and SHINERS spectra between 514.5 nm and 600 nm (19436 cm−1 and 16436 cm−1), 

after that the fluorescence or SHINEF spectra are recorded. At this point the Raman 

scattering of water in these aqueous solutions is prominent and interferes with the 

measurement at the beginning of the fluorescence bands, therefore it was removed from 

Figure 6.3 by spectral subtraction using the GRAMS software. 

The normal Raman spectrum of CV shows all the corresponding bands of CV as 

previously investigated,[21,25] which also agree very well with our own theoretical 

calculations (Figure 6.5), and the SHINERS spectrum does not show any significant 

modifications when compared to normal Raman spectrum. In the same manner, the 

fluorescence spectrum of CV shows a broad asymmetric peak with a maximum at ~650 nm 

with a FWHM of 119 nm, while the SHINEF spectrum shows a maximum at 670 nm with a 

FWHM of 106 nm.  

The EF calculations were obtained by dividing the integrated areas under the 

vibrational band at 1374 cm−1 in SHINERS over regular Raman, and similarly the integrated 

SHINEF band over that of the unenhanced fluorescence. The integration is performed using 
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a Gaussian fit to the experimental spectra. Taking the fourth root of the SHINERS EF and 

the square root of the SHINEF EF yields comparable numbers: 2.48 and 2.44 respectively, 

as shown in Figure 6.6, which corresponds to the local field enhancement factor |𝐸|. 

Notably, separate measurements of SHINERS and SHINEF with increasing concentrations 

of Ag-SHINs in solution always produce a field enhancement factor |𝐸| in keeping with the 

𝐸2/𝐸4 relationship, with minor differences well within the experimental error. Several 

examples are given in Table 6.1 (for the data published in our Small paper), and even more 

examples in Chapter 7 of this thesis. 

 

SHINERS EF 𝑬𝒍𝒐𝒄 = √SHINERS EF
𝟒

 SHINEF EF 𝑬𝒍𝒐𝒄 = √SHINEF EF 

38.12 2.48 5.96 2.44 
237.56 3.92 15.07 3.88 
14.53 1.95 3.66 1.91 
19.48 2.10 5.23 2.28 

 

Table 6.1. Calculations for different repetitions of the SHINERS/SHINEF experiment. 
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Figure 6.6. Theoretical fits and EF calculations for both SHINERS and SHINEF. 
The result proves the known 𝐸2 𝐸4⁄  relationship for SEF/SERS enhancement factors. 
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It is important to reiterate that these results are for experiments carried out in solution 

(aqueous), a state that avoids clustering of nanoparticles and plasmon coupling, and, 

correspondingly, gives average values of the local field enhancement. The averaging in the 

solution measurements helps to obtain reproducible results in the far field that appear to 

reflect the local field enhancement at the Ag-SHINs. The selection of the 514.5 nm laser 

line that allows for the perfect separation of the SHINEF and SHINERS spectra is also in 

resonance with the tail of the plasmon and the molecular electronic absorption (Figure 

6.1). In Chapter 7 we employ Malachite Green as a dye and excite with the 632.8 nm laser 

line; the SHINERS and SHINEF spectra overlap. 

When casting the CV solutions, including the SHINs, over a quartz slide both SHINERS 

and SHINEF are still observed, as shown in Figure 6.7. However, the evaluation of the EF is 

complicated due to the lack of proper reference spectra, for when casting a CV solution 
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Figure 6.7. SHINERS and SHINEF spectra for a mix of SHINs and CV solution cast 
over a quartz slide. 
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one cannot obtain a homogeneous coverage like in an LB film, and here LB is out of the 

question because CV is soluble in water. 

As an addition to the results presented in our Small paper, in Figures 6.8, 6.9 and 6.10 

we show the spectra of SERS when using uncoated silver nanoparticles, with both the 514.5 

nm and 632.8 nm laser lines, nBPTCD molecules, showing spectral profile modification in a 

similar way to that shown in Chapter 5, and we also show SHINEF with CV obtained with 

gold SHINs, that do not give anywhere near as much SHINEF/SHINERS when in aqueous 

solution.  

 

 

Figure 6.8. Spectra taken with uncoated Ag colloids. 
The spectrum in red was taken with the 514.5 nm Ar-ion laser line, and that below was taken with the 632.8 
nm He-Ne laser line. The spectrum in green shows good SERS of CV but little fluorescence, which has been 

quenched by the naked nanoparticles. The red spectrum below also shows the SERS on top of the 
fluorescence band region. 
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Figure 6.9. SHINEF of a LB film of nBPTCD:AA 1:10 with the new Ag-SHINs. 

This is similar to that presented in Chapter 4, but this time with Ag SHINs. The presence of the excimer is 
rarely encountered in the SHINEF (we show one example there) but it is always seen in the LB film without 

SHINs. This is another example of the spectral profile modification described in Chapter 5 

 

 
Figure 6.10. SHINEF of CV in aqueous solution with Au SHINs. 

The Au SHINs used here are the “code B” particles used for our Angewandte Chemie paper (see Chapter 4). 
The SHINEF EF cannot reach the values obtained with silver, because silver is a better EM enhancer than 
gold (section 1.4). Note also how the Raman scattering of water has not been subtracted here, showing a 

maximum at about 625 nm 
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6.4. Conclusions 

Simultaneous recording of SHINERS and SHINEF for a low quantum yield molecule and 

experimental measurements in solution, provide direct evidence for a local field 

enhancement factor |𝐸| that in the far field gives surface enhanced fluorescence 

proportional to |𝐸|2 = |𝐸𝑙𝑜𝑐 𝐸0⁄ |2, and surface enhanced Raman scattering proportional 

to |𝐸|4 = |𝐸𝑙𝑜𝑐 𝐸0⁄ |4. In addition, it is shown that Ag-SHINs may provide larger 

enhancement factors that may help future developments in SHINEF applications. 
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7. Exploring the Origin of the Observed SEF: A Study in Aqueous Solutions 

Chapter Seven 

Exploring the Origin of the Observed 
SEF: A Study in Aqueous Solutions 

The results presented in this chapter have not been published yet at the moment this 

thesis was submitted. The aggregation results are to be published soon. 

7.1. Introduction 

While not as ubiquitous as SERS, SEF does indeed generate quite a bit of research 

worldwide. A quick literature search using Web of Knowledge (Thomson Reuters Inc) for 

the keywords surface-enhanced fluorescence, metal-enhanced fluorescence, plasmon-

enhanced fluorescence, and surface-enhanced phosphorescence (encompassing all 

plasmon-enhanced luminescence) yields the results shown below:  

 

Figure 7.1. Number of results of plasmon-enhanced luminescence, separated by keyword. 
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More than thirty years after its first observation,[1] the precise contributions that make 

up the observed SEF signal still generates an animated discussion. It is known that it is 

caused by the same plasmonic enhancement generating SERS, but it is clear that there are 

different processes at play, for in Raman there is no quenching or lifetimes of the processes. 

Then the question is not yet settled as to what is the origin of the radiation measured in 

the far field. Is it the fluorophore? Is it the radiating nanostructure? If both, what are the 

factors that control the magnitude of their contributions? 

Let us recall again Moskovits (and collaborators’) definition of SERS: ‘‘As it is currently 

understood SERS is primarily a phenomenon associated with the enhancement of the 

electromagnetic field surrounding small metal (or other) objects optically excited near an 

intense and sharp dipolar resonance such as a surface plasmon polariton. The enhanced re-

radiated dipolar fields excite the adsorbate, and if the resulting molecular radiation remains 

at or near resonance with the enhancing object, the scattered radiation will again be 

enhanced (hence the most intense SERS is really frequency-shifted elastic scattering by the 

metal). Under appropriate circumstances the field enhancement will scale as 𝐸4 where 𝐸 is 

the local optical field.’’[2] This is extended to SEF in the sense that we are observing the 

elastic scattering (of fluorescence) by the metal. Like its cousin SERS, SEF also has a 

component due to the re-radiated dipolar field. But there are several aspects in the 

observed SEF that require special attention. 

7.1.1. Properties of the Fluorophore 

We start this discussion with the characteristic properties of a fluorophore, namely the 

fluorescence lifetime and the quantum yield. Before the discovery of SEF, it was Chance, 

Prock and Silbey[3] who in 1978 first described theoretically the interaction of molecules 

with metallic surfaces. The quenching of the fluorescence signals is accompanied by a 

significant reduction in the fluorescence lifetimes. “The decrease in the lifetime when the 

distance become small is due to nonradiative transfer of energy from the excited molecule 

to the metal. (...) It has been shown that the surface-plasmon modes of the metal dielectric 

interface are those that couple to the near field of the emitting molecule”.[3] Therefore, the 
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most relevant idea in this classical report is the coupling of excited molecules to surface 

plasmons. Their model explained well the observations previously made by Drexhage[4] of 

a fluorescent europium complex, separated from the metallic surface by several 

monolayers of fatty acids delivered by LB deposition. 

When changing from plane metallic surfaces to coinage metal nanoparticles to 

produce SEF, we switch from plane metal surface plasmons to localized surface plasmon 

resonances (LSPR),[5] which we discussed previously. The reduction in the lifetime remains 

a consistent observation in almost every SEF experiment in the literature. For instance, 

looking at the SEF reports published between 2011 and 2013,[6-37] in almost all cases, the 

lifetime decreases when compared to the normal (in the absence of nanostructures) 

fluorescence lifetime. This is usually described relating it to the quantum yield. Let us recall 

from Chapter 1 the expressions for both: 

Φ =
Γ

Γ + 𝑘𝑛𝑟
 (7.1) 

τ =
1

Γ + 𝑘𝑛𝑟
 (7.2) 

where Γ is the radiative decay rate and 𝑘𝑛𝑟 is the non-radiative decay. The difference is 

that in metallic surfaces the plasmons are non-radiative and result in fluorescence 

quenching, while in the case of metallic nanostructures the plasmons are radiative and the 

fluorescence can be enhanced.[38] This quenching of the molecular fluorescence leads to 

the fundamental property of the observed SEF, the molecule-metal distance 

dependence.[39,40] In Chapter 6[41] we demonstrated using far field measurements of 

scattering and fluorescence from the same molecular system that the scattering scales as 

the fourth power of the local field enhancement while the fluorescence is proportional to 

the square of the local field enhancement. These results can only be obtained at a metal-

molecule separation where the quenching is negligible. 

For the isolated molecule, the quantum yield determines what portion of this energy 

is reemitted as fluorescence (chapter 1), and the observed light intensity is:[42] 

𝐼0 = 𝐼𝑒𝑥𝑐 ∙ 𝜀(𝜔) ∙ Φ0 (7.3) 
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Electromagnetic coupling between the fluorophore and the nanostructure modulates 

the decay rate Γ by a factor 𝜒, which we append to the decay rate in equations (7.1) and 

(7.2). The presence of the metal will change the quantum yield, giving: 

Φ𝑆𝐸𝐹 =
𝜒Γ

𝜒Γ + 𝑘𝑛𝑟
 (7.4) 

𝜏𝑆𝐸𝐹 =
1

𝜒Γ + 𝑘𝑛𝑟
 (7.5) 

In the case of excitation of LSPR, the local field enhancement (Chapter 6) is: |𝐸| =

|𝐸𝑙𝑜𝑐 𝐸0⁄ |. For our shell-isolated nanoparticles (SHINs), the nrk remains unchanged due to 

the silica coating. Therefore, the observed fluorescence ratio would be:[42] 

𝐼𝑆𝐸𝐹

𝐼0
= 〈|𝐸|2〉

Φ𝑆𝐸𝐹

Φ0
= 〈|𝐸|2〉

𝜒(Γ + 𝑘𝑛𝑟)

𝜒Γ + 𝑘𝑛𝑟
 (7.6) 

Equation (7.6) can be used to discuss the results obtained in SHINEF, that is, the regime 

when metal quenching is not a major factor.  There are, however, experimental results that 

may require further refinements of the theory for a full understanding of the components 

that make up the observed enhanced signal. 

From these expressions one obtains that in SEF the quantum yield Φ increases and the 

lifetime 𝜏 decreases. The problem is that these expressions set a limit as to how much 

fluorescence can be enhanced, that being the intrinsic quantum yield of the fluorophore; 

it cannot emit more photons than it absorbs. This would imply that fluorophores with a low 

quantum yield like crystal violet would be the most benefited from SEF, and those with a 

quantum yield approaching unity, like Rhodamine 6G, should not be very likely to produce 

any SEF. However, this is in open contradiction with experimental evidence: published data 

indicates that both high and low quantum yield molecules can produce SEF, case in point 

our own reports from Chapters 4 and 5. In those cases the enhancing nanostructure must 

play a role not accounted for in this description. 

There are also reports of enhanced excitation of the molecule by the nanoparticle that 

leads to enhanced absorption.[43] More absorption may lead to more emission. 
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7.1.2. Role of the nanostructure 

The nanostructure is, of course, at the heart of SEF observation. Probably the most 

important property to discuss is the effect that comes from the contribution of spatial 

locations with extremely high concentration of the local field, what constitutes a hot 

spot.[44] There is experimental evidence that hot spots may bring about unusually high 

enhancement factors in SEF, similar to their known effect for SERS. Gill and Le Ru[45] have 

described it for nanoparticle aggregates in a silver island film, with EF values of up to 740 

for Rhodamine 6G-labeled DNA. They also make the case that under the conditions of hot 

spots it should be possible to obtain high EF values even for high quantum yield molecules. 

Kinkhabwala et al. has also observed large enhancements from bowtie-like nanoparticles[46] 

reporting an EF of 1,340 for dye in the near infrared, and Zhang et al. have even reported 

an EF of 2,970 for indocyanine green using a nanopillared architecture device.[47] 

It has also been demonstrated experimentally that the nanostructure can modify the 

spectral profile of the observed enhanced fluorescence, giving rise to what has been 

termed spectral profile modification (SPM). Le Ru and Etchegoin observed that for several 

fluorophores, their emission profile is modified by the plasmon that enhances it, to the 

point that the original shape of the fluorophore may not be recognized, using differently-

shaped nanolithographic substrates.[48] Indeed this motivated our own investigation into 

that subject, which was described in Chapter 5, and indeed we showed the spectral profile 

modification of the fluorescence of a perylene dye when enhanced by two different 

nanoparticles with different plasmon absorptions and scattering.[49] Similarly, plasmon and 

emission tuning is recommended to maximize the enhancement efficiency.[50] LSPR have 

normally a much broader FWHM than molecular bands.  

In our own previous report[41] (Chapter 6 of this thesis) we demonstrated for 

experiments carried out in aqueous solution, using far field measurements of scattering 

and fluorescence from the same molecular system, that the scattering scales as the fourth 

power of the local field enhancement while the fluorescence is proportional to the square 

of the local field enhancement. 
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In this Chapter we discuss the results of our study of several factors affecting the 

observed SEF, using as enhancing nanostructures the shell-isolated nanoparticles (SHINs) 

described first in Chapter 4,[51,52] performing all the study in aqueous solution, in a similar 

fashion to what we described in Chapter 6.[41] 

7.2. Materials and Methods 

Crystal violet (CV, total dye content 90%) was purchased from Fisher Scientific. 

Malachite green, Eosin Y and Pyronin Y (Total dye content 50%) were purchased from 

Sigma-Aldrich and used as received. Unless otherwise specified, solutions are aqueous and 

the water employed is Milli-Q quality (18.2 MΩ·cm). All glassware was cleaned using aqua 

regia and rinsed with abundant Milli-Q water. 

The core silver colloids were prepared by reduction of silver nitrate with sodium 

citrate, similarly to the classical Lee-Meisel method.[53] 18 mg of AgNO3 were dissolved in 

100 mL of water, and the solution was brought to a vigorous boil for approximately one 

hour. After that, the solution was removed from the heat and 6 mL of a 1 mM solution of 

3-aminopropyltriethoxysilane (APTES) was added. Then it was let to stir for approximately 

half an hour, and then it was brought to a boil and was added 24 mL of activated sodium 

silicate solution 0.54% w/v. The activation is done by bringing the pH of the solution down 

from its original pH (>11) to 10.5 by adding the beads of an acidifying resin (Amberlite IR-

120). The boiling was continued for 3 hours. Finally, the resulting SHIN particles were 

centrifuged at 12000 rpm for 7 minutes, to concentrate the particles, reducing 36 mL of 

the original colloid to two 1.5 mL microcentrifuge tubes. Aliquots of this concentrated 

dispersion were used for the solution SHINEF experiments. For the experiment with 

Sulforhodamine B, since the dye has a negative charge we further functionalized the SHINs, 

taking 50 mL of the original colloidal solution and adding 3 mL more of APTES 1 mM 

solution, and then we filtered and centrifuged the solution in the same manner described. 

UV-visible absorption spectra were recorded employing our Varian Cary 50 scan UV-

visible spectrophotometer described in section 2.5.3 of Chapter 2.  
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All Raman and fluorescence experiments were conducted using our micro-Raman 

Renishaw inVia system, with laser excitation at 514.5 nm. All measurements were made in 

a backscattering geometry, using a macro objective with an adapter for measurement in 

quartz cuvettes, displayed in Chapter 2 section 2.5.1. The mount for the cuvette was fixed 

to the microscope stage to make sure the focusing of the laser was the same for all 

measurements, and ensure their reproducibility. 

For the experiments with dyes, the concentration of the dye was always constant, with 

a total of 1 mL being measured. In this case, for different experiments we used different 

concentrations of dye, but for a same set of experiments, the concentration was kept 

constant. We used increasing amounts of the concentrated nanoparticle (SHINs) adding 

various amounts. 

For the enhancement factor and quantum yield calculations, we fit the absorption, 

Raman and fluorescence bands using the peak fitting function of the GRAMS program 

(Thermo Galactic Inc.), using one Gaussian curve for the Raman peaks and three for the 

absorption and fluorescence peaks, having previously done baseline and offset corrections. 

The calculation of quantum yield was done using the comparative method used 

typically,[54,55] using aqueous solutions of Eosin Y dissolved in a 0.1 M NaOH solution as a 

comparison standard, which has a known literature value of 0.19.[55,56] In the experiments 

where we calculated quantum yield we employed the formula: 

Φ𝑠𝑎𝑚𝑝𝑙𝑒 = Φ𝑟𝑒𝑓 ×
𝐼𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑟𝑒𝑓
×

ℰ𝑟𝑒𝑓

ℰ𝑠𝑎𝑚𝑝𝑙𝑒
×

𝑛𝑠𝑎𝑚𝑝𝑙𝑒
2

𝑛𝑟𝑒𝑓
2  (7.7) 

where Φ are the quantum yields for the sample and the reference, 𝐼 are the fluorescence 

intensities (expressed as area-under-the-curve; we obtained these by peak-fitting Gaussian 

curves in GRAMS), and ℰ* are the extinction values for the molecules. We took these as the 

areas under the curve for the fluorescent molecules also, which we always ran between 

300 and 800 nm; finally, 𝑛 are the refractive indices of the solvents for the sample and the 

reference. Since we always used water as solvent, we took these these values as equal. 

Indeed the difference between the refractive index of water and that of a 0.1 M NaOH 

                                                      

* Here we employed handwritten uppercase to distinguish it from the electric field. 
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solution is negligible (0.72% difference from distilled water, as measured by Panda et al.[57]). 

The measurements were done in a quartz cuvette (Hellma Analytics), recording first the 

absorption spectrum in our Varian Cary 50 spectrometer and then taken immediately to 

our Renishaw inVia instrument for the measurement of fluorescence. Between 

measurements the cuvette was cleaned with copious Milli-Q water and then blow-dried 

with air. 

7.3. Results and Discussion 

7.3.1. Characterization of the SHINs and absorption of MG and CV 

Sample absorption spectra of the SHINs employed for the experiments in this chapter 

are shown in Figure 7.2, compared to the absorption spectra of the low-quantum yield 

dyes, crystal violet (CV) and malachite green (MG). The first batch of SHINs with the 

maximum at 404 and a shoulder at ca. 450 was employed for the excitation power 

comparison and quantum yield measurements. The second batch with a maximum at 424 

nm was that employed in the NaCl aggregation experiments (section 7.3.6). SEM images 

for both batches are very similar; the particle size was at an average of ca. 75 nm but there 

were many outliers in terms of sizes and shapes. This is a characteristic of the silver-citrate 

reduction method. For this set of experiments, we preferred this method over the silver-

hydroxylamine method we had used previously, as this method gives more stable particles 

that can be used for more experiments. We synthesized a new batch for the aggregated 

colloid experiments, as the first batch was used in its entirety. The coatings were more 

regular though, being around 10 nm for the two batches synthesized using the same 

procedure.  

CV shows a maximum of extinction at 591 nm and MG at 617. The 514.5 nm laser line 

excitation falls right at the beginning of the absorption peak making the excitation right in 

resonance. It falls slightly off the absorption peak of MG, but it is well in resonance with 

the excitation of the 632.8 nm laser line 
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7.3.2. Local field SERS/SEF relationship 

First, we added increasing amounts of the solution of CV, in a similar way as we did in 

our previous report (Chapter 6[41]). The concentration of CV in solution at all times was 

1.2 × 10−5 M. Figure 7.3 shows the spectra of the SHINEF obtained, and Table 7.1 shows 

the enhancement factors and the fulfillment of the 𝐸2 𝐸4⁄  relationship as described 

before. 
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Figure 7.2. Characterization of the Ag SHINs and the CV and MG dyes. 
The yellow traces are the two batches of colloids, the violet line is CV, and the cyan 

trace is MG. Inset: SEM picture of the SHIN particles employed. The scale bar 
represents 100 nm. 
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Figure 7.3. SHINEF of CV in solution with increasing amounts of SHINs, using the 514.5 nm laser line. 

 

µL 
SHINs 
added 

SHINERS 
EF 

𝐸𝑙𝑜𝑐

= √SERS EF
4

 

SHINEF 
EF 

𝐸𝑙𝑜𝑐

= √SEF EF 

𝐸𝒍𝒐𝒄 
percent 

diff. 

10 4.23 1.43 1.62 1.27 11.8 

20 7.71 1.67 2.38 1.54 7.72 

40 13.7 1.92 3.43 1.85 3.74 

80 18.3 2.06 4.53 2.13 2.69 

160 25.1 2.24 5.31 2.30 2.90 

320 24.0 2.22 5.07 2.25 1.73 

640 60.4 2.79 7.61 2.76 1.05 

900 65.2 2.84 7.92 2.81 0.979 

 
Table 7.1. SHINERS and SHINEF enhancement factors and local field calculations for CV. LL=514.5 nm. 

 

The agreement between the two calculated 𝐸𝒍𝒐𝒄 is good, with the percent difference 

between the two ((𝑎 − 𝑏) (𝑎+𝑏)
2

⁄ × 100) diminishing dramatically after 40 µL of SHINs are 

added. 
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We also performed the same experiment using malachite green, at a concentration of 

4 × 10−5 M that was kept constant for the full series of experiments. In this case, we 

employed both 514.5 nm and 632.8 laser lines, which gave different results. These are 

shown in Figures 7.4 and 7.5, and Tables 7.2 and 7.3. With the 514.5 nm laser line, the SEF 

enhancement was comparable to that obtained for CV, but the Raman enhancement was 

much higher. This is explained by the fact that the excitation laser line is further away from 

the centre of the absorption peak. The local field relationship is not held. However, the 

situation is different when exciting with the 632.8 nm laser line. 

 

µL SHINs 
added 

SHINERS EF 
𝐸𝑙𝑜𝑐

= √SERS EF
4

 
SEF EF 

𝐸𝑙𝑜𝑐

= √SEF EF 
𝐸𝑙𝑜𝑐 

percent diff. 

10 8.33 1.70 1.41 1.19 35.6 

20 29.1 2.32 1.94 1.39 50.2 

40 47.4 2.62 3.63 1.91 31.7 

80 124 3.34 7.19 2.68 21.8 

160 88.8 3.07 4.09 2.02 41.1 

320 21.4 2.15 0.61 0.78 93.5 

 
Table 7.2. SHINERS and SHINEF enhancement factors and local field calculations for MG. LL=514.5 nm. 
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Figure 7.4. SHINEF of MG in solution with increasing amounts of SHINs, using the 
514.5 nm laser line. 
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µL SHINs 
added 

SHINERS 
EF 

𝐸𝑙𝑜𝑐

= √SERS EF
4

 

SHINEF 
EF 

𝐸𝑙𝑜𝑐

= √SEF EF 
𝐸𝒍𝒐𝒄 

percent diff. 

10 3.73 1.39 1.37 1.17 16.9 

20 11.1 1.82 1.88 1.372 28.4 

40 27.6 2.29 3.91 1.98 14.8 

80 65.4 2.84 8.21 2.87 0.765 

160 49.3 2.65 6.15 2.48 6.65 

320 36.5 2.45 4.58 2.14 13.8 
 

Table 7.3. SHINERS and SHINEF enhancement factors and local field calculations for MG. LL=632.8 nm. 
 

At the point of maximum enhancement, the percent difference between the two local 

field calculations is very small indeed; therefore one observes that the 𝐸2 𝐸4⁄  relationship 

holds when the excitation laser line is in resonance with the electronic absorption of the 

molecule. 
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Figure 7.5. SHINEF of MG in solution with increasing amounts of SHINs, using the 
632.8 nm laser line. 
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7.3.3. Excitation power 

We performed the experiment of CV SHINEF with the 514.5 nm laser line at 

different powers, to see whether they had any impact in the SEF EF. The result is shown in 

Table 7.4. 
 

  Excitation power  (µW) 

  21.6 40.3 134 1410 
µ

L 
p

ar
ti

cl
es

 a
d

d
ed

 

10 2.19 1.40 1.54 1.62 

20 2.52 2.52 2.89 2.38 

40 3.84 3.20 4.04 3.43 

80 4.00 4.04 4.67 4.52 

160 5.17 5.17 5.37 5.31 

320 5.65 4.59 5.34 5.07 

640 7.44 6.93 8.19 7.61 

900 7.54 6.55 8.13 7.92 
 

Table 7.4. SHINEF EF as a function of the amount of SHINs added and excitation power. 
 

The EF values do not show a noticeable trend; the fairest conclusion is that the 

excitation power does not seem to have much of an impact in the enhancement factor that 

is possible to achieve. The result helps to understand the factor of direct excitation. If direct 

excitation plays a key role in the observed SHINEF, there should be a direct correlation 

between incident power and observed enhancement. 

7.3.4. Quantum Yield and Absorption Enhancement 

We performed first these measurements with CV, in similar conditions to the previous 

experiment, only we adjusted the concentrations of both the standard and the sample 

fluorophore so we could measure correctly the absorption and the fluorescence using the 

same excitation power. For that reason, in this part we worked with CV at half of the 

concentration of the previous experiments, that is, at 6 × 10−5 M. In these cases we 

measured both absorption and fluorescence for the solutions. 
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The plot of the extinction spectra for the CV with SHINs is shown in Figure 7.6. When 

adding the SHINs to the dye solution, the high extinction coefficient of the nanoparticles 

saturate quickly the spectrometer, and because of that we diluted the solutions where the 

absorption was too intense. That intensity also makes it hard to see the CV at all beyond 

80 µL of SHINs added; after that, only the SHINs’ extinction is seen. Indeed, if we subtract 

the absorption of the SHINs (Figure 7.7), it is possible to see what happens to the CV dye. 

The secondary peak of CV, the “shoulder” becomes much more prominent when CV is 

adsorbed to the SHINs. But between 20 and 40 µL of SHINs added, the area under the curve 

is very similar indeed, which shows the way to conclude that most likely there is no 

enhancement of the absorption detected in the SHINEF in solution for CV. 
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Figure 7.6. Extinction spectra of CV 6×10−6 M with SHINs added, to study 
the effect of quantum yield. 
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Figure 7.8. Fluorescence spectra of CV 6 × 10−6 M measuring quantum yield. 
The gray trace is the fluorescence of Eosin Y. 
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Figure 7.7. Extinction spectra of CV 6×10−6 M with 20 and 40 µL of SHINs 
added, after subtraction of the SHINs. 
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Fluorescence spectra of CV 6 × 10−6 M are plotted in Figure 7.8. The quantum yield can 

be reliably calculated only for 20 and 40 µL of SHINs added, after subtracting the extinction 

of the SHIN particles. Beyond that, the nanoparticles’ extinction overwhelms that of CV and 

the quantum yield cannot be calculated reliably. The values provided below for quantum 

yield assume the average of the area under the curve for the absorption of CV, for 20 and 

40 µL of SHINs added. Since those values are very similar, it could be reasonable to assume 

the same area to calculate the quantum yield in the rest of the solutions. 

 

µL added SHINEF EF QY QY EF 

0 (ref CV) - 2.57 × 10−5 - 
20 8.79 1.78 × 10−4 6.94 
40 13.6 2.80 × 10−4 10.9 
80 19.7 4.06 × 10−4 15.8 

160 24.7 5.09 × 10−4 19.8 
320 28.7 5.92 × 10−4 23.0 
640 33.8 6.97 × 10−4 27.1 

 
Table 7.5. CV SHINEF EF, quantum yields and QY enhancement factors with 

increasing amounts of SHINs added. 
Results with 80 µL and above are greyed out as the quantum yield was 

calculated with an estimated area. 

 

The calculated quantum yield for CV of 2.57×10−5 is in fair (given how low it is) 

agreement with the literature value of ~5×10−5.[58-60] It is noticeable that the increase in 

quantum yield (QY) follows closely the SHINEF EF, and the discrepancy may be due only to 

the ascent of the shoulder of CV when adsorbed to silica. 

We performed a similar experiment with MG to measure the QY. This time we excited 

with the 514.5 nm laser line only, because that is the one that excites the reference Eosin 

Y, at the concentration of 2 × 10−4 M. This is shown in Figures 7.9 to 7.11 and Table 7.6. As 

we can see in Figure 7.10, after the subtraction of the SHINs, the area under the curve is 

almost exactly the same as that of MG alone. The picture here is clearer because there is 

less overlap between the extinction of the SHINs and that of the dye. For the same reason, 

this time the SEF EF matches much more closely to the QY EF, they are indeed the same. 
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Figure 7.9. Extinction spectra of MG with SHINs added, to study the effect of quantum yield 

 

 

 

Figure 7.10. Extinction spectra of MG 2×10−5 M with 20 and 40 µL of SHINs added, after subtraction of the 
SHINs. 
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Figure 7.11. Fluorescence spectra of MG 2×10−5 M measuring quantum yield. 
The gray trace is the fluorescence of the standard Eosin Y. 

 

µL added SHINEF EF QY QY EF 

0 (ref CV) - 7.25 × 10−5 - 
20 7.10 5.06 × 10−4 6.98 
40 11.2 8.43 × 10−4 11.6 
80 14.8 1.07 × 10−3 14.7 

160 24.6 1.78 × 10−3 24.6 

 
Table 7.6. MG SEF EF, quantum yields and QY EFs with increasing amounts of SHINs added. 

 

The calculated quantum yield for MG of 7.25 × 10−5 is also quite close to that reported 

previously of 7.9 × 10−5.[61] There was no change in the area under the curve for the dye 

extinction in the first points before 80 µL. To summarize, here we find no evidence of 

enhanced absorption. 

7.3.5. High Quantum Yield Dyes 

We tried a set of experiments in solution using dyes with higher intrinsic quantum 

yields, in this case Pyronin Y and Sulforhodamine B. For the former we calculated a 

quantum yield of 0.32 (somewhat below the literature value of 0.47[62]) and for the latter 

0.23 (reference literature value is 0.27[63]). We did not observe SHINEF of the dyes, as 

shown in Figure 7.12 and Figure 7.13. 
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Figure 7.12. Fluorescence of Pyronin Y with increasing SHINs added. 
No enhancement was observed, only quenching. 

 

 

Figure 7.13. Fluorescence of Sulforhodamine B with increasing APTES-Ag SHINs added. 
Again, no enhancement was observed, only quenching. 
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7.3.6. Enhancement by Nanoparticle Aggregates 

It is well known that it is possible to induce partial aggregation in a colloidal dispersion 

by adding electrolytes like NaCl, and these aggregates provide the hot spots that are 

associated with the large enhancement factors in SERS. Indeed this is how Kneipp in 1997 

obtained single-molecule detection.[64] As we mentioned, recently, Furtaw and 

collaborators[65] have demonstrated SEF in the near infrared using nanoparticle aggregates 

in solution. This is the first time, however, that we attempt this with our SHIN particles to 

obtain SEF. The results are shown in Figures 7.14 and 7.15, and Table 7.7. 

The spectra clearly show the presence of partial aggregation of the SHINs, seen in the 

increase of absorption in the region between 650 and 800 nm, and the decrease of the 

peak at 424 for the non-aggregated SHINs. 
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Figure 7.14. Extinction spectra for CV with 100 µL of SHINs and increasing 
concentrations of NaCl 
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Figure 7.15. Fluorescence spectra for CV with 100 µL of SHINs and increasing concentrations of NaCl. 

 

NaCl conc. / M EF 

0 (only SHINs) 7.09 
0.01 9.51 
0.02 19.0 
0.03 34.6 
0.05 43.0 
0.08 55.9 

 
Table 7.7. Enhancement factors for CV with 100 µL of SHINs and increasing 

concentrations of NaCl 

 

The maximum enhancement factor obtained for CV of almost 56 is a clear evidence 

that particle aggregates giving rise to hot spots give much more enhancement than 

individual particles, which was the case in all SERS experiments using silver or gold colloids. 

NaCl 0.08 M was the concentration at which we observed the highest enhancement factor. 

Beyond this (0.1 M and above) we observed a decrease in the enhancement (data not 

shown). 
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For completeness, we also attempted this experiment with MG. With the 514.5 nm 

laser line, we obtained even more enhancement. We performed the experiment in a 

different order, though. In the case of the CV, we added first the dye, then the SHINs, then 

the NaCl, then completing with water up to 1 mL, yielding the result shown above. When 

performing that strategy with MG, no SEF enhancement was obtained; indeed the 

fluorescence was quenched (data not shown). However, if one aggregates the colloid first, 

by adding the SHINs first, then the NaCl to aggregate them, and only then the MG dye, and 

finally the water, then the SHINEF was augmented as expected. We obtained the maximum 

EF at a concentration of 0.01M of NaCl, as shown in Figure 7.17. Again, the absorption 

spectrum shows clearly the presence of SHIN aggregates in the 650-800 nm region. 
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Figure 7.16. Extinction spectra for MG with 50 µL of SHINs and NaCl 0.01 M 
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Figure 7.17. Fluorescence spectra for MG with 50 µL of SHINs and NaCl 0.01 M, with 
the 514.5 nm laser line. 

The maximum enhancement factor recorded for MG was 66.5, with 0.01 M of NaCl. 

 

 

Figure 7.18. Fluorescence spectra for MG with 50 µL of SHINs and NaCl 0.01 M, with 
the 632.8 nm laser line. 

The maximum enhancement factor recorded for MG was 25.3, with 0.01 M of NaCl. 

 

0

5000

10000

15000

550 600 650 700 750 800 850 

C
o

u
n

ts
/s

Wavelength / nm

N

N
+

CH3

CH3

CH3

CH3

Cl
-

― reference MG 2.5×10−5 M
― with 50 µL of AgSHINs
― with 50 µL of AgSHINs in NaCl 0.01M

5000

10000

15000

20000

650 750 850 900 

0

25000

700 800 

C
o

u
n

ts
/s

Wavelength / nm

N

N
+

CH3

CH3

CH3

CH3

Cl
-

― reference MG 2.5×10−5 M
― with 50 µL of AgSHINs
― with 50 µL of AgSHINs in NaCl 0.01M



146 
 

The enhancement factors obtained here are the highest we have ever recorded in 

aqueous solution, being much higher than those without NaCl. Indeed the EF values 

obtained in this way are now comparable to those we have previously obtained in our 

group for mixed LB films using Ag SHINs.[41,66-68] Clearly this enhancement is due to the 

presence of hot spots in the SHIN aggregates. 

7.4. Conclusions 

Perhaps the most important piece of evidence presented here is the role of SHIN’s 

aggregation, which is necessary to achieve larger enhancements. These results open the 

door for further investigation of aggregation in solution using inorganic salts (also organics 

or surfactants) to tune SHINEF applications in solution. The second interesting result is the 

lack of a direct correlation between the power of the incident radiation and the observed 

SHINEF intensity, casting doubt on the suggestion that SEF is simply due to enhanced 

excitation of the molecule by the nanoparticle. 

The question of high quantum yield versus low quantum yield is still open. The results 

presented here, in solution, with a limited number of high QY molecules is in favor of the 

low QY molecules. Indeed, there are many reports of SEF and SHINEF using high quantum 

yield dyes, especially our own studies presented in Chapters 4[51,52] and 5.[49] However, we 

have to remember that all of those studies were performed in solid state, with the 

nanostructures and the excited molecules forming thin layers. The solid state has little 

mobility, while in solution the molecules are moving constantly in Brownian motion. Future 

work in this area, including hot spots, will help to clarify the regimes of solid and liquid and 

the role of different contributing factors. 
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8. Concluding Remarks 

Chapter Eight 

Concluding Remarks 

We have come a long way exploring plasmon-enhanced spectroscopy, crossing the 

paths of SERS and SEF through naked and shelled, gold and silver nanoparticles. In Chapter 

3[1] we reported SERS of hydroxyproline, after overcoming many difficulties related to the 

reproducibility of the SERS spectra of amino acids. In order to do this, we employed gold 

colloidal nanoparticles, without stabilizing agent, in order to improve the adsorption of the 

amino acid. The result was a protocol that allowed us to obtain SERS spectra of 

hydroxyproline with negligible variations in different trials. We were able to provide the full 

characterization for an amino acid not previously described in the literature. Indeed the 

next report on hydroxyproline was only published one month after the publication of ours 

(Cárcamo et al.[2]). 

The research developed in Chapters 4 to 7 has yielded a whole new avenue of 

research, which we have called SHINEF. First we provided the proof of concept for their 

use, using the signature technique of our lab, plasmon-enhanced spectroscopy on 

Langmuir-Blodgett films.[3,4] Later we investigated the plasmonic properties of SHINEF, 

studying the effects of the core size, shell size and shape.[5] The exploration of SHINEF in 

aqueous solution, and using silver nanoparticles instead of gold has provided with the 

experimental confirmation of the long hypothesized 𝐸2 𝐸4⁄  relationship, as well as yielding 

enhancement factors much larger than those obtained from gold nanoparticles.[6] Finally, 

we have explored several different factors that play a role in the origin of SEF, showing 

greater enhancement for SHINEF after inducing nanoparticle aggregation. As we discussed 

at the end of Chapter 7, the results of SHINEF in aqueous solution and in solid state for high 

and low quantum yield molecules are not in agreement, and further work in the subject is 

necessary. 
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The versatility of the SHINEF and SHINERS techniques is not trivial, and will be 

harnessed in future work for many potential applications.[7]  The great enhancement of the 

fluorescence signal provided by the technique should allow for applications in many fields: 

everyone who needs enhanced sensitivity in fluorescence and Raman should be able to 

take advantage of SHINEF and SHINERS. We look forward especially to applications in 

biomedical science. Fluorescent probes are routinely used for biological analyses; one 

could imagine multiple scenarios where SHINs could be used to enhance the sensitivity 

ranges of the fluorescence assays. In vitro and ex vivo analyses are always a possibility for 

the direct application of SHINEF; however, toxicity tests of the SHIN particles would need 

to be performed in order to assess for possible direct in vivo use. 

Another pending issue that needs to be solved towards the application of SHINEF is 

the effective delivery of SHINs to a substrate producing a homogeneous, reproducible 

coverage. Our work in dry substrates was performed all by casting droplets of our SHIN 

colloidal dispersions on glass, but this provides a coverage that is quite imperfect. Haider 

Mohan’s thesis paved the way through the spraying of concentrated SHIN solutions,[8] and 

further research is already being carried out in our group towards a better implementation 

of that idea. 

The ultimate possibilities of SHINEF are yet to be explored. We look forward to a 

brighter future where plasmonics will have a positive, much larger impact in our everyday 

lives. 
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