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Abstract

For an atom there exists a critical nuclear charge Z. that is just sufficient to bind the
nucleus and its electrons into a stable configuration. A study of the critical charge for
two-electron atoms is presented with the purpose of improving accuracy for Z.. To this
end, high precision techniques involving the variational method with multiple basis sets in
Hylleraas coordinates are employed. The method is particularly well adapted to the case
where one electron is strongly bound and the other is at the limit of becoming unbound.
The results are analysed in terms of fractional powers of (Z — Z.) related to the analytic
structure of the energy F(Z) and a 1/Z expansion for the energy. This results in a Z.
of 0.911 028 08(5). Future work prompted by this study includes development of direct
techniques to determine Z. utilizing the method’s low-Z stability; developing the framework
and mathematical justification for a novel bootstrap analysis method used in curve-fitting;
and investigating the inclusion of finite nuclear mass, relativistic effects, and other higher

order corrections in the determination of Z..
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Chapter 1

Introduction

For an atom there exists a critical nuclear charge Z. that is just sufficient to bind the nucleus
and its electrons into a stable configuration. This work seeks to resolve the disagreement in
the value of Z, for the two-electron case as investigated by Baker [1] and Guevara [2] and
establish an associated interval of confidence.

The helium atom is a thoroughly studied example of the three-body problem, consisting
of a nucleus and two planet-like electrons. The interaction between constituent particles can
be modelled to a first approximation by considering the nucleus to be infinitely massive and
neglecting the interaction of the electrons with one another. With the electrons immersed
in the Coulomb field of the nucleus alone, and neglecting the Coulomb repulsion between
electrons, the energy of the system can be solved exactly with the use of the Schrodinger
Equation. The solution for this crude model yields energies that deviate by over 25%
(~ 30eV) from experimental observations which lie far beyond the range of accuracy needed
for this study.

The inclusion of the electron-electron interaction into the model greatly improves agree-
ment at the expense of increased computer time and mathematical analysis. An exact
analytic solution to yield the energy does not exist for this model but an essentially exact

numerical solution can be found which is accurate enough for all practical purposes. Such




1. INTRODUCTION

a solution is obtained through creative use of the Variational Method with specially con-
structed basis sets of functions. The basis sets proposed by Hylleraas [3] can be extended to
accurately describe both the long-range and short-range behaviour of the electrons. These
functions combined with methods developed by Drake et al. [4] give nonrelativistic energies
with accuracies better than 1 part in 10?V.

Future work could see the atomic model extended to include relativistic effects, finite
nuclear mass, and other higher order corrections. Exhaustive inclusion yields experimental
agreement in the peV range which even allows for nuclear fine structure comparisons from
these in-depth atomic calculations [5]. While this degree of accuracy is beyond the scope of
the present work, the study establishes a method which can be easily extended to include
an atomic model which considers these higher order perturbations.

With the model yielding sufficiently accurate energies (E) as a function of nuclear charge
(Z) the critical nuclear charge (or critical charge, Z.) can be investigated. The critical charge
is the nuclear charge at which one of the electrons is at the limit of becoming unbound to
the nucleus and the three-body atom ceases to be a stable configuration. The critical charge
can then be found through curve-fitting to a series expansion for E as a function of Z about
the point Z.. This motivates the evaluation of energy as close as possible to Z. to minimize
the uncertainty. Application of the variational method is not straightforward in this critical
charge limit where Guevara observes convergence issues [2]. The use of Hylleraas functions
are employed for this study and serve to alleviate convergence problems thus allowing for
energy evaluation much closer to Z.. Curve-fitting is performed using these high-accuracy
data points alongside the bootstrap method of sampling residuals to obtain the interval of
confidence for Z..

Z,. for the two-electron case case can be applied to all electronic configurations through
use of the ubiquitous 1/Z expansion. The value of Z, serves not only as the critical charge
for two-electron atoms but also as the radius of convergence for the 1/Z expansion [1].
This dictates the convergence of the series and lends to the investigation on the functional
dependence of atomic energy with charge F(Z). This function E(Z) can be studied in the

complex plane where its analytic structure can be explored. Investigations surrounding Z.
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also shed light onto the methods through which the wave functions are generated. Expected
wave function behaviour as the outer electron becomes unbound provides a meaningful way

to compare different methods of wave function generation in this critical charge limit.




Chapter 2

Theory

2.1 The Atomic Model and its solution

Modelling the helium atom as three nonrelativistic charged particles yields energies of suf-
ficient accuracy. Energies are obtained through solving the Schrodinger equation
[HY = (T + V)¥ = EV] for the three-particle system:
R _, R _, R _,
<_2MvR° T om VR T g, VR,
Ze? Ze? n e?
4dmeg|Ro — Ri|  4mep|Ro — Ro|  4meg|R1 — Ry

)qf = EV (2.1)

for nucleus of charge Ze, mass M, and position Ry and electrons of charge e, mass m, and

positions R; and Re. The remainder of this section will focus on solving this equation.

2.1.1 Change of Coordinates: restating the problem

Our first step in solving Eq. (2.1) is to describe the contained distances relative to the
system’s centre of mass as was done in Bohr’s treatment of the hydrogen problem. Solutions

are found in the centre of mass frame where the displacement of the centre of mass from
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the origin is written as

MRy + mRq +mRe

R= (M + 2m) ’

the distance between particles (Fig. 2.1) is written as

r1 = R; — Ry,
=Ry — ROa
ri2 = Ry — Ry,

and the differential operators are replaced with the square of the following operators [6]:

- M - - .

VR0 = 5 g, Y Rew ~ Vi T Ve
€

- m - -

VR, = vaCIM — Vi,

- Me -

VRZ MVRCM - Vrz.

This results in the transformation of Eq. (2.1) to the centre of mass Schrédinger Equation:

h? 1 5 T 1\ s 1T 1Y\
( 5 [<M+2m)vR+(M+m)vr1+<M+m>vr2

2 o - Ze? Ze? e?
——Vy -V — — v = FEU. 2.2
M T rl] Amegr;  4Amegra + 47‘(’607‘12) (2.2)

Simplification is performed by recognizing that V% is related to the system’s acceleration
which of course vanishes in the absence of external forces. For further simplification the re-
duced mass y = mM/(m+ M) and Bohr radius a, = (m/u)ag = 4regh? /pe? are introduced

so that the distances may be scaled accordingly:

Ty =iy,
Ve, =Ve, /ay,. (2.3)
These steps reduce Eq. (2.2) and give
e? 1 - z z 1
—-V? —fV V Ve ————+— |V =EV 2.4
dmegay, | 2 2 noVn T T (24)

where V; = V...
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It is here that a somewhat significant approximation is made; namely that the nuclear
mass is assumed infinitely heavy. This dismisses the mass-polarization ﬁrl . ﬁrl term as
w/M — 0. This assumption results in the infinite nuclear mass three-body Schrédinger

equation:

1, 1, 2Z2 Z 1
_Z B - — 4+ — A\ = FU 2.5
{ vi- V3 - T2+m} (2.5)

where the energy F is measured in units of e?/4mepa,, (atomic units).

2.1.2 The Variational Principal: method of solution

Solutions to Eq. (2.5) are obtained through application of Schrédinger’s Variational Prin-
cipal. This remarkably useful quantum mechanical tool is accurately described by Griffiths
[7] as “extraordinarily powerful and embarrassingly easy to use”. With a given Hamilto-
nian and any arbitrary normalizable wave function, the method will yield an energy that is
proven [8] to be an upper bound to the actual energy of the given system described in the

Hamiltonian:

H
Eiriat = M > Eactual (26)

(Y1)

This allows for the determination of optimum values for Energy, E.;q1, given the parametrized
(or trial) wave function, 1, by simply finding the lowest energy result. Trial wave functions
which bear closer resemblance to the true wave function will achieve a lower energy while
requiring less parameters and fewer numbers of terms (Sect. 2.1.3).

Since Fypiq (or simply E) will always be greater than or equal to the actual energy, the
minimization of E is the objective in the search for the optimal energy solution. To this
end the trial function ¢ (Eq. 2.8) is constructed with a set of parameters a; with respect to
which F will be minimized, resulting in a system of homogeneous equations:

OE
aai -

0. (2.7)
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2.1.3 Functional form of ¢

the solution

The trial function used in the evaluation of Eq. (2.6) is one adapted from Hylleraas [3] with

a doubled basis set as proposed by Drake [9] of functional form

2
P = Z Z aijknrirérﬁe*anrlfﬁnm (2.8)

n=1 ijk
with linear coefficients a;jiy, nonlinear parameters aq, 81, az, 82, and particle separations
r1, T2, and 7r12. The set of basis functions is doubled by introducing a second pair of
nonlinear parameters (g, B2) where each pair of parameters can be optimized to represent
different distance scales.

The total number of terms is given by the summation limits on integers 7, j, and k
which if allowed to sum to infinity is proven to ensure the spanning of Hilbert space for
¥ [10, 11]. Of course in practice the infinite horizon is unattainable so decisions need to
be made regarding which terms to include and which to omit. Three primary factors must
be considered when selecting terms; computation time, linear dependency, and effect on
energy. Computation time is minimized by minimizing the term count in the trial wave
function (V) since the time bottleneck in energy calculation is the diagonalization of N x N
matrices. Linear dependency issues arise when numerical evaluation of matrix elements for
different terms yield the same result to the precision of the memory registers. Computational
strategies can be employed to deal with these effects including the increase in register size
but the selection of appropriate terms resulting in the greatest change in final energy is the
best first step. A systematic guideline for choosing terms is the imposition of a maximum
exponent () (often called the Pekeris shell) and enforcement of exponent uniqueness to

establish the bounds
i+j+k<Q
1< 7, (2.9)

giving a total number of terms N ~ (24 1)(2+2)(£2+3)/3. This strategy has been shown

in practice to be an optimal choice for functions with a single pair of nonlinear parameters
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[4] but is not proven so. The best methods for choosing terms are found through simple
trial and error and sometimes aided by intuition. Such intuition proved fruitful with the
extension of term counts by increasing the number of nonlinear parameters. It should be
noted that lessons learned in picking terms for single basis sets do not always extend to
multiple basis sets and caution must be exercised in these regimes where linear dependencies
can creep into results.

Doubling of the basis functions through doubling of the nonlinear parameters allows
for better description of the actual wave function behaviour especially as electrons occupy
different regions of space. The nonlinear parameters dictate the radial decay in electron
probability and as such can be optimized to cover both long range and short range behaviour
when doubled. This allows for fewer terms to give the same energy precision thus lowering

computation time while avoiding numerical linear dependence.

2.1.4 Integrals and Operators

solution evaluation

The evaluation of Eq. (2.6) involves computation of volume integrals for the Hamiltonian
of Eq. (2.5) acting on the trial function ¢ of Eq. (2.8). This requires an expression for the
Laplacian and construction of integrals in the Hylleraas coordinate system (Fig. 2.1). The

Laplacian [12, 13] gives rise to the final Hamiltonian

9 (29 9 (2(0 0 (2 (9
H__arl " ory _87’2 "2 0ro _87’12 "2 Orig

27“% 27"% T‘%Q
rl_r%—l—r%—r%z o (0 r2_7‘%+7‘%-7'%2 o (0
_ 27’1 87’12 87'1 . 27’2 (97’12 87’2
12 T12
1 1 1
=+ == 2.1
(7"1 + T9 Z’r‘lg) ( O)

while simplification of the volume element and integration limits gives rise to the sum of
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Figure 2.1: Hylleraas coordinate system.

two triple integrals requiring evaluation [14]:

) o0 ro+71
{/ e_wrl’l“ld’l“l / 6_7T2T2d’l“2 / r19drio+
0 1 ro—r1

(e o] r1+72
/ 6_7T2T2d7"2 / 6_7r17"1d7"1 / 7“12d7‘12} . (2.11)
0 T2 r1—T2

These integrals are straightforward and easily implemented by machines through use of

oo n k
/ e arldy = 4~ lple= Z (7;;)) (2.12)
b k=0

which can be calculated as needed or pre-calculated and stored in tables [9] for even faster

run-time performance.
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2.2 Energy Extrapolation

The goal of this section is to estimate a value which is described exactly by an infinite
number of terms but where only a finite number of terms are feasibly attainable. The
case used in this study is the calculation of atomic energy whose computation time is
proportional to N3 (where N is the number of terms). It is this N3 time-dependence that
imposes the limitation on term count. Analysis of the first 20 term counts for the atomic
energy of H™ (Z = 1.0) shows the energy differences in successive term counts, Eq — Fq_1,

becoming increasingly smaller (Table 2.1). The rate at which these differences shrink (the

Table 2.1: Convergence of the atomic energy for the ground state of two-electron Hydrogen

Q N Eq Eq—Fq 1 R

189 —0.527 751 016 314 715 469
9 248 —0.527751 016 497 134 491 —0.000 000 000 182 419 022
10 317 —0.527 751 016 534 132 818 —0.000 000 000 036 998 326  4.930
11 398  —0.527 751 016 541 953 536 —0.000 000 000 007 820 717 4.730
12 490 —0.527 751 016 543 812 716 —0.000 000 000 001 859 180 4.206
13 596  —0.527 751 016 544 209 984 —0.000 000 000 000 397 267 4.679
14 714 —0.527 751 016 544 333 933 —0.000 000 000 000 123 949  3.205
15 848 —0.527 751 016 544 362 023 —0.000 000 000 000 028 090 4.412
16 995 —0.527 751016 544 372 770 —0.000 000 000 000 010 746  2.613
17 1160 —0.527751 016 544 375 399 —0.000 000 000 000 002 628  4.087
18 1339 —0.527 751016 544 376 603 —0.000 000 000 000 001 204 2.183
19 1538 —0.527 751016 544 376 933 —0.000 000 000 000 000 330  3.648
20 1752 —0.527 751016 544 377 097 —0.000 000 000 000 000 164  2.009

00 —0.527 751 016 544 377 32(6)

ratio of differences, R) is approximately constant and this constant shrinking is assumed to

continue to infinity. The series can be summed to infinity if R is constant and greater than

10
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1 using the geometric series. This is expressed with energy difference, D = E,, — E,,_1, and

. . . En 1—FEn_ .
difference ratio reciprocal, r = % = ﬁ"f, to give an extrapolated energy
n n—

o
Eoo=Ey+» Dr"!

n=1

D
=F e 2.13
20+1—r ( )

The average shrink ratio, (r), is used to extrapolate from the highest attained term count out

to the infinite term count and the standard deviation in the ratio (o, ) gives the extrapolated

uncertainty:

D D
T ey TG o (2.14)

§Ex

2.3 Computationally simplified nonlinear fit

This study requires fitting data to Puiseux expansion functions (33, a,T"* k € Z) of

different fractional powers and variable numbers of terms (INV):

B(Z: Z a1, ..;an) = —Z2 s+ a1(Z — Z)* + ag(Z — Z)P + -+ an(Z — Zo)/?

N
—Z2/2+ Y an(Z — Zo)", (2.15)

n=1
with N + 1 terms, 1/2-integer powers, and parameters ag ...ay and Z..! This function can
be transformed to a simple N-degree polynomial by applying two straightforward transfor-

mations to both the data and the function:

ZQ

Er(Z)=E(Z) + 707
(2.16)

X =(Z-2z)".

The current study analyzes full-integer, 1/o-integer, and !/3-integer power fittings for terms counts

from N = 2 to 20.

11



2. THEORY

This gives the transformed energy,

ZQ
ET(Z) = E(Z7 ZC7 al*) (RS} aN) + ?C
=a1(Z—2)"+ay(Z — Z)P + -+ an(Z — Z)?

:a1X1+a2X2+---+aNXN

N
Br(X;a1,..an) =Y anX", (2.17)
n=1

which is a simple polynomial of degree N with the constant term ag omitted. The trans-
formed data is then fit by the method of least squares to an IN-degree polynomial of form

N
Efi(X;co, - en) = Y eaX™, (2.18)

n=0
where the constant term ag is present. This fit will yield an optimized value of zero for pa-
rameter ag with the correct choice of Z.. Exploiting this property allows iterative deduction
of Z. through a successive trial and fitting procedure.

For this procedure Newton’s method is employed to find the z-intercept for ag as a
function of Z.. An initial guess of Z., Z.p, is made for which the data is transformed
according to Eq. (2.16) and fit by the method of least squares to an N-degree polynomial
in order to yield ag. The slope of ag(Z.) at Z.( is determined by repeating this fit at
both Z.o — 6Z and Z.o + 0Z for a 6Z = .0001 thus obtaining 2 more a¢ values from
which the slope is simply my = Aa/2az. The new z-intercept is then calculated from
Newton’s method to be Z.1 = Z.o—ao(Zc,0)/mo. This entire process is then repeated until
the difference between successive Z.,’s is sufficiently small, namely one thousandth of the

greatest uncertainty inherent in the data (approximately 10~'%).

2.4 Bootstrap standard error for curve fitting

The bootstrap is a method of resampling a finite data set to obtain statistics such as the
sample mean and associated interval of confidence. It is a straightforward brute force
method of great utility especially when analytic statistical inference requires a complex

derivation and all sources of uncertainty may not be known. This alternative method

12



2. THEORY

is used to generate sample statistics where computational power is replaced with careful
analytics to yield the same result giving a method which is mathematically justified [15]
with considerably less effort required for implementation.

The analysis of this study requires that an interval of confidence be established for a
parameter used in the fitting procedure of section 2.3, namely parameter Z.. The bootstrap
process for this boils down to an initial calculation followed by a repeated perturbation then
recalculation. First, the best fit is initially calculated using the given extrapolated energies
which results in residual differences between the fitted E(Z) and each energy data point (the
initial calculation). These residuals are randomly added or subtracted (with replacement)
to each energy point along with a random deviation within the point’s uncertainty (the
perturbation). The best fit is again calculated now with the perturbated data points where
the resulting Z. is included in a histogram of samples. This perturbation then calculation
procedure is repeated for roughly 300 iterations to gain reliable statistics resulting in the

critical nuclear charge and its associated interval of confidence.

13



Chapter 3

Method

Determination of the critical nuclear charge is a multistage process that can be broken down
into three fundamental steps: calculating energy, extrapolating results, and bootstrapping
the statistics. First a set of nuclear charges is slated for investigation and then the following

procedure is implemented:

3.1 Energy Calculation

Once a given charge is selected for energy calculation the variational method of section
2.1.2 is applied. The charge Z dictates the Hamiltonian (Eq. 2.5) and Q dictates the
number of terms in the wave function (Eq. 2.8). These calculations can take anywhere from
milliseconds in the case of ~ 200 terms (2 = 8) to several minutes in the case of ~ 1,800
terms (€2 = 20). Increasing €2 means increasing accuracy at the expense of computational
time so for infinite accuracy one would require infinite time. To overcome this hurdle
the infinite accuracy solution is estimated by extrapolation using the method described in
section 2.2. This requires converged energies for a set of Q0 (wave function term counts,
 =8...20 in our case) to yield energies with associated uncertainties which are then used

to determine the best fit for the parametrized F(Z, Z.) function.
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3. METHOD

3.2 Curve Fitting

The E(Z, Z.) functions used for fitting are Puiseux expansions of different fractional powers

and variable numbers of terms (IV):

B(Z: Zy a1, ...an) = —Z2Ja+ a1(Z — Zo) > + ag(Z — Z)P + -+ an(Z — Zo)™?

N
_Z62/2 + Z an(Z - Zc)n/2, (3.1)

n=1

with N + 1 terms, 1/2-integer powers, and parameters a; ...ay and Z..! This nonlinear fit
is arduous, time consuming (tens of minutes per fit), and includes terms with imaginary
numbers for Z < Z. but with some algebraic manipulation it can be modified into a form
which alleviates these computational headaches. The substitution of Er(Z) = E(Z)+ Z2 /2
and X = (Z — Z.)"* as described in section 2.3 yields a function that takes seconds to fit

thus allowing for a more practical implementation of bootstrap uncertainty analysis.

3.3 Bootstrap

The statistical method known as the bootstrap provides a straightforward procedure for
determining intervals of confidence for each Z. resulting from the varying Puiseux fits. The
process involves the curve fitting procedure of section 2.3 repeated for 300 perturbations
of the input data set described in section 2.4. It greatly simplifies the error analysis by
replacing a thorough mathematical treatment with brute force computation requiring only

minutes to perform.

'The current study analysis full-integer, 1/2-integer, and 1/3-integer power fittings for terms counts

from N = 2 to 20.
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Chapter 4

Computational Machinery

The method outlined in this study is implemented in practice with the use of computers.
Data is transferred between computational stages and visualized for analysis through the
programming of functions, modules, and scripts which are briefly described here. The
three primary stages of the implementation are atomic energy harvesting, atomic energy
refinement, and fitted curve extrapolation with quality control and analysis being performed
before, during, and after each phase. The programs are divided by file and briefly described
below and in Table 4.1 with the enveloping architecture outlined in Fig. 4.1.

The first stage controls the harvesting of atomic energies for selected nuclear charges.
The calculation of atomic energies and wave function parameters is done in the FORTRAN
program Dpoldlz.f which takes as input the wave function term count (£2), the nuclear
charge (Z), and optional initial guesses for nonlinear parameter values and their derivatives.
This is the machine implementation of Sect. 2.1. The program uses an iterative method
to optimize the nonlinear parameters and as a result will require less time to complete
if given good initial guesses. The code is borrowed from the machine implementation of
the Helium problem done in Dr. Gordon Drake’s research group which has evolved over
the years from its original punch-card version and has been modified in this work to allow

for non-integer Z. A large volume of data is generated in this process where collection is
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Figure 4.1: Visualization of computational programs and flow of data.
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valued for use in the final analysis as well as in quality assurance to ensure stability of
each individual resulting energy and parameter. Retention of this data is done through the
wrapper Python script DP.py which takes as input the wave function term count (€2) and
nuclear charge (7), subsequently executes Dpoldlz.f with these values, and then stores the
result of each iteration in a database. This allows for post-execution scrutiny over results
as well as the use of these results as the initial guesses for future calculation of atomic
energy for slightly different nuclear charge or term count. This script relies on a library of
functions to manage the database which can be found in dp_inc.py and is executed in mass
for a batch of nuclear charges and term counts through the Python script DPb.py which
also relies on the dp_inc.py library. This batch script takes as input a range of nuclear
charges (Z) and range of term counts (€2) for which the wrapper script DP.py is executed.
The database is searched for initial guesses which would best suit the desired calculation
and these results are served up as inputs for Dpoldlz.f. The major result from this section
of the computation is the array of atomic energies for different nuclear charges and different
wave function term counts. These will be used to estimate the uncertainty of the energy
for each nuclear charge.

The second stage computes the extrapolated atomic energy for each nuclear charge
from the collection of energies for each €. A table where each row corresponds to a nuclear
charge and each column corresponds to a value of € is constructed with the Python script
Zen.py from data in the atomic energy database. This table is piped to the Maple worksheet
EOcon.mw where a convergence table as described in Sect. 2.2 is constructed and visualized
for each nuclear charge. These convergence tables give the uncertainty bounds on each
nuclear charge which is then tabulated (Table A.1) and exported as a comma separated
value spreadsheet (file extension .csv) for input into the fitting and extrapolation routine.

The third and final stage performs the nonlinear fitting and extrapolation described in
Sect. 3.2 as well as the bootstrap uncertainty analysis described in Sect. 3.3. This is all
done in the python script EZDfit.py which relies on functions in the library ez_inc.py, the
linear least squares fitting module travfit.f, and other libraries written exclusively for this

project with plans for world-wide open source sharing and distribution. The program is
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4. COMPUTATIONAL MACHINERY

provided with input for the different subsets of nuclear charge data, the exponents for the
Puiseux fit function, a range for the number of terms in the Puiseux series, and the Atomic
energies with their uncertainties from the EOcon.mw worksheet. Each data set is fit with
the different Puiseux functions 300 times each with slightly perturbated input energy data
points in accordance with the bootstrap curve fitting method (Sect. 2.4) and found to require
4 iterations of a 3 point Newton’s method variant to sufficiently converge. This yields a set of
300 fit parameters for each of the different Puiseux function term lengths (from 2 to 20) and
fit powers (1/3,1/2, and 1) for each of the 18 isolated data subsets to be saved for analysis.
These resulting three million values (300 x (2 4+ 3 +4 + --- 4+ 20) x 3 x 18 ~ 3.4 x 10%)
are generated from roughly four million calls to the linear least squares fitting module
(300 x 3 x (20— 1) x 18 x 4 x 3 = 3693 600) and stored in a database where the primary
quantity of interest is Z.. The critical charge, Z., for each case is determined in the summary
and visualization phase by simply taking an average of the 300 bootstrap iterations while
computing the standard deviation yields the associated uncertainty.

Each of the thirteen primary modules and libraries developed for this project are written
in accordance with the PEP 8 Style Guide for Python Code [16] and other similar coding best
practices. These writing guidelines are followed with the aim of facilitating the readability,
simple usage, and future development of all code snippets. These programs make use of
many functions in the standard Python library, the Maple library of functions, and the
PyPI extended library[17] to avoid rewriting already-scrutinized code. In the case where
libraries of broad utility are needed but not found to be available in the literature or
through easily accessible or free open source collections, they are developed in this work and
coauthored with fellow research group member Travis Valdez. Two such modules, sigfig.py
and travfit.f, are developed with the intention of world-wide sharing through submission to
the PyPI library database with hopeful inclusion in the Python standard library in the case
of sigfig.py and hosting on to the research group’s website (http://drake.sharcnet.ca) for
both. Sigfig.py is a library of many functions, one of which rounds a value based on either
the given uncertainty of that value or the number of significant figures requested, while

Travfit.f is a FORTRAN program which uses quadruple precision arithmetic to perform
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4. COMPUTATIONAL MACHINERY

least squares fitting for a given polynomial and given set of input data points.

Table 4.1: List of program files ordered according to execution with length, revision number,

and brief description.

name length | rev. | description

Dpoldlz.f 3,767 lines | 3 Atomic Energy calculator for given 2, Z

DP.py 247 lines | 4 Input and output management for Dpoldlz.f

DPb.py 82 lines | 6 Q, Z range selector and iteration control for DP.py
dp_inc.py 438 lines | 2 Atomic Energy 1/O and database management library
Zen.py 37 lines | 2 Summary of Energy for each Z and each €2

EOcon.mw 47 lines | 4 Energy extrapolation for each Z

EZDfit.py 233 lines | 8 Extrapolation and curve fitting routine with bootstrapping
ez_inc.py 188 lines | 6 library of functions used in EZDfit.py

travfit.f 80 lines | 2 linear least squares fitting routine

mikez.py 214 lines | 5 library of broad useful functions

sigfig.py 448 lines | 9 library of functions used in number rounding and display
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Chapter 5

Results

In total 161 different nuclear charges were analyzed in the range Z = .915...1.500. The
resulting energies are plotted as a function of nuclear charge and displayed below in figure
5.1 with values in table A.1. The uncertainties are too small to be visible (at most O(10~13)
au corresponding to 10719% of the figure height or about 100 pm) yet result in significant
variations in Z. as will be shown later. Different data subsets are defined and also displayed
in figure 5.1 along with domain tabulation done in table 5.1. The total number of data sets
defined in table 5.1 is 18 which allows for analysis of Z,. as a function of input data range.

Each of the 18 subsets are fit with 3 separate Puiseux expansions (full-integer, 1/2-
integer, and 1/3-integer powers) with the number of terms in the expansions ranging from
2 to 20. This results in the calculation of 972 (18 x 3 x 18) unique Z, values (all 300 more
times each for uncertainty determination via the bootstrap method). An illustrative sample
of these results are displayed in this section while the exhaustive tabulation can be found

in the appendix.
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Figure 5.1: Ionization Energy versus Nuclear charge with labelled data subsets.

Table 5.1: Nuclear charge data subsets

Name Cardinality Domain Spacing further subdivision

Full 161 pts Z =0.9115...1.500  variable even, odd, equidistant (0.01)
High 60 pts Z =1.00... 1.50 0.01 even, odd

Low 101 pts Z =0.9115...1.000  variable even, odd, equidistant (0.001)
Midrange 30 pts Z =0.985... 1.000 0.0005  even, odd

Superlow 30 pts Z =09115...0.9260 0.0005 even, odd

Ultralow 20 pts Z =0.9115...0.9210 0.0005

22



5. RESULTS

The convergence of Z. as a function of Puiseux term count is observed in all fits for all

data sets. This behaviour is displayed for all fit powers and subdivisions of the Superlow

and Ultralow data sets in figure 5.2. Data sets with lower nuclear charge values closer

to the Z. expansion point yield lower and better Z. estimates. !/2-integer power fittings

performed the best followed closely by full-integer fittings; 1/3-integer power fittings were

found to perform significantly worse as displayed in figure 5.3. The resulting Z. is found

from the convergence of the 1/2-power-fit Ultralow and Superlow data sets to be

as displayed in figure 5.4 and partially tabulated in table 5.2.

0.9118

| Ze = 0.911 028 08(5) |

0.9116 even (1/3)rﬂ#’~

0.9114%ven (1/1)

full (1/1)
0.9112} A

0.9108f4q (1/3)_

0.9106

0.9104¢

0.9102 :

AN
odd (1/1)_ >~

ultralow (1/3)\

N\
< 5 9110Mltralow (1/1)

ultralow (1/2)\

AN
N\

odd (1/2)_ ™
Full (1/3)———

leven (1/2)

/

0

15

(5.1)

Figure 5.2: Critical Nuclear Charge versus the number of terms included in fitted Puiseux

expansion. Each series corresponds to a unique data set chosen from all divisions and fit

powers of the Ultralow and Superlow data sets.
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sets.
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Figure 5.4: Critical Nuclear Charge versus the number of terms included in fitted Puiseux
expansion for a narrowed range about Z.. Ultralow and Superlow data sets are included

with limited fit power to 1/2-integer and full-integer fittings.

Table 5.2: Critical Charge Z. from 1/2-power fit low Z data (summarized)

terms Ultralow (20) Superlow (30) Superlow (odd) (15) Superlow (even) (15)

6 0.911028175 (4
7 0911028125 (4
8 0.911028 126 (3
9 0.911028127 (3
10 0.911028 127 (3
11 0.911028 127 (3

)
)
)
)
)
)

0.911 028 305 (17)
0.911 028 085 (3)

0.911 028 092 4(29
0.911 028 093 6(27
0.911 028 093 8(28
0.911 028 093 8(27

)
)
)
)

0.911 028 332 (20)
0.911 028 060 9(24)
0.911 028 072 1(17)
0.911 028 074 0(15)
0.911 028 074 4(14)
0.911 028 074 4(15)

0.911 028 60 (4)

0.911 028 001 0(11)
0.911 028 027 9(20)
0.911 028 033 3(23)
0.911 028 033 9(24)
0.911 028 033 8(24)
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Chapter 6

Discussion

The largest source of uncertainty in Z. as seen in figure 5.4 is found to be the choice of input
data points used for fitting. Uncertainties from bootstrapping both energy deviations and
fit residuals are found to be a few parts in 10? while input data choice alters Z, by at least
five parts in 10%. This prompts a more complete application of the bootstrap which does
not yet exist in the literature and consequently lacks proper mathematical justification as

will be discussed in the following section.

6.1 Novel bootstrap curve fitting method

In the application of the bootstrap to curve fitting the residuals are resampled with replace-
ment as discussed in section 2.4. This ignores the case where alternate data at different
x-values are equally valid and yet would yield deviations in parameters of greater magni-
tude than simply resampling residuals in accordance with current standard practices. As an
illustrative example let us examine a case in this study; 1/2-integer fitting of the Superlow
data set. When all thirty points in this set are included the value of Z. is seen to converge
t0 0.911 028 094(3) as illustrated as the third line from the bottom of figure 5.4 (with tabu-

lation done in table 5.2). However, when only the odd values in this set are included Z. is
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seen to converge to 0.911 028 074(1) while even values produce a Z. of 0.911 028 033(2) (the
bottom two lines of figure 5.4). These values differ by parts in 108 while their uncertainties
from the conventional bootstrap method lie in the range of parts per 10°. If the selection
of data points were arbitrary then these 3 sets spanning the same range with similar or
equal density would yield the same result as the standard bootstrap curve fitting method
suggests. Clearly this is not the case and it is this that motivates the development and
mathematical justification for a novel curve fitting method proposed below.

This new method should draw samples of data points from the existing data set with
a weighted preference for data closer to the series expansion point, Z.. The size of the
subsets can be variable but adhering to subsets of half size will give sufficient statistics from
which to choose (in this study 30C15 ~ 155 x 10% possible subsets). This procedure bears
similarity to the delete-d jackknife which is viewed as an approximation to the bootstrap
[15] that is shown to lack in scope for the current study. Care will need to be taken to ensure
biasses from unrepresentative data sets do not skew results as the mathematical framework
is constructed. A fundamental limit to the spacing of data will need to be established where
the possible effects of linear dependency can be studied. Internal parameters can also be
studied and possibly used for extrapolation. For example, it would be interesting to see
if a parameter like Z. varied as a function of minimum Z or average Z or if perhaps the
uncertainty of Z. exhibited this behaviour and what implications this might have on the

method.

6.2 Propagation of Energy Uncertainty

The great precision to which the atomic energy is calculated minimizes the uncertainty of
Z. but at what order of magnitude does the energy uncertainty become a significant factor
in the Z_ result? This question can be addressed by artificially manipulating the energy by
factors of ten and observing the result. Perturbations of order 10~'? au were performed and
resulted in altering Z. by an amount up to 1072, This represents a significant fraction of the
total uncertainty from the bootstrap uncertainty analysis and a fruitful avenue to pursue

in order to gain precision in the final result. This factor will likely be less significant in the
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proposed jackknife-like analysis where the uncertainty of Z. will be in the 1078 range but
still remains a priority for future work to thoroughly establish a clear relationship between

0F and 6Z7.

Greater accuracy for the energy can be obtained through altering the parameters of

_ D B D
= te) 1=(r)—an)]

5 oo (2.14)

but at the cost of computation time. One low-cost method to yield an increase in precision
could be the calculation of Energy for €2 < 8. This could potentially see the deviation in
the convergence ratio (o, ) diminish thus diminishing § F' (Eq. 2.14) but this may not be the
case. A higher-cost method to unambiguously yield increased precision is the calculation of
Energy for 2 > 20. This is guaranteed to produce a decrease in §E by a factor of roughly
3.0 (typical R value) for each increment of maximum €2 since this is, by definition, the

projected shrinking of D in Eq. 2.14.

6.3 Wave function behaviour

Analysis of the wave function behaviour as it tends toward the critical charge illustrates
the utility of the double basis method. The reciprocals of the nonlinear parameters set the
distance scales for the wave function exhibited in Fig. 6.1. The doubled basis set allows for
simultaneous representation of both the short-range correlation and the long-range outer
electron behaviour. This is a critical feature of the physical model as Z approaches Z.
and the outer electron moves to infinite distance becoming unbound. Other single basis set
models require a single set of parameters to describe both the atom’s tightly bound hydro-
genic behaviour and long range ionization-limit behaviour. This will force the parameters
to take compromised values between the two extremes and require a far greater number of
terms in the wave function to achieve the same level of accuracy. As term counts inflate so
do the linear dependency and stability issues which arise from the diminishing numerical
differences between matrix elements. These problems can be alleviated in machines by arti-
ficially increasing the size of the floating point memory registers but this is at a high cost to

performance since memory register sizes are fixed in hardware and thus require emulation
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Figure 6.1: Reciprocal nonlinear parameters versus nuclear charge (2 = 20). 1/3, is observed

to increase in size as it approaches Z. but remain finite.

at the software level to increase in capacity. It it not surprising then that other studies have
taken far fewer points in the low-Z regime where these effects arising from poor multiple

range modelling are prevalent.

6.4 Direct Method of Z. Determination

An alternative method for obtaining Z. attempts to avoid extrapolation by simply calcu-
lating atomic energies for incrementally lower nuclear charges. The lowest nuclear charge

which does not fail to yield a bound state is taken as the critical charge where the uncer-
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tainty interval is the difference between the critical charge and highest failed charge. Z.
from this method should be treated as an upper-bound to the actual Z. since an atomic
calculation at Z < Z. will not return a bound state. This was thought to lead to com-
putational problems one might encounter when calculating energies beyond Z. as work by
Turbiner and Guevara indicates [2]. However, preliminary results show an absence of fea-
tures as the Z. threshold is crossed using the machine implementation and atomic model
in this study. A possible explanation for the lack of threshold effect is the existence of a
quasibound state just below Z.. Further investigation is beyond the scope of this work but
is essential for further refinement of the Z,. value.

The direct method employed by Baker et al. [1] is able to yield an upper-bound on Z.
of 0.911 03 beyond which no bound state is found. Using the doubled basis sets of this
study and thoughtful analysis of the practical implementation provides a promising avenue

for even greater precision in the search for Z..

6.5 Comparison with Z. in literature

The method employed by Guevara and Turbiner [2] extrapolates Z. from a data set of nine
atomic energies by fitting to a !/2-power Puiseux expansion (Eq. 2.15) up to power 7/2 and
omitting the 1/2-power term. The nine atomic energies are calculated using only eight signif-
icant digits from the atomic model outlined by Korobov [18] with a machine implementation
from Pachucki [19]. Korobov’s basis functions are of the form e~®n"1=fnr2=7nm12 for a set
of quasirandomly generated complex nonlinear parameters and no radial powers. Guevara
and Turbiner use nuclear charges Z € [1.35,1.30,1.25,1.2,1.15,1.10, 1.05, 1.00, 0.95] giving
a Z. of 0.910 850 with no stated uncertainty. These results have been reproduced with the
machine implementation and atomic model used in this study.

While the method serves as a good preliminary investigation using extrapolation to find
Z., it lacks atomic energy data close enough to the Z. expansion point to give a meaningful
estimate of the critical charge. Moreover, no clear method for determining a confidence
interval for the stated Z. is presented which leaves much work to be done in assessing its

validity. This study expands upon Guevara and Turbiner’s work by obtaining the required

30



6. DISCUSSION

low-Z data for meaningful calculation and establishing a method for the determination of
uncertainty for Z.. The increased precision of Z. to ten significant figures introduces the
need for increased precision of atomic energy (discussed in Sect. 6.2) where eight significant
figures in energy is shown to be insufficient for ten digits in critical charge. At this level
of precision a greater number of fitting terms is shown to also be required for adequate
representation as F(Z) is seen to stabilize beyond Puiseux power 8/2 (Fig. 5.4). These high
precision methodological advances combined with uncertainty estimation from an extension
of the bootstrap address the primary issues from this initiatory investigation.

Values of Z. in recent literature are presented in Fig. 6.2 where the upper bound
determined by Baker [1] (Sect. 6.4) is found to agree with the results of the current work.
Older studies not previously mentioned are Stillinger’s 1966 investigation estimating 7. =
0.8941 [20] and the work by Gustavo et al. estimating Z. = 0.9045(35) [21]. These works give
ratios of disagreement nearly one hundred times greater than that of Drake-Guevara and
thousands of times greater than Drake-Baker. The approach uses a method of extrapolation
from coefficients of the 1/Z expansion which may require a far greater number of terms to

yield results of sufficient accuracy.

0.910 850 0.911 028 08(5)
Gl}evara (2011) Drake (2013) \
0.910 85 0.91090 0.91095 0.911 00 0.911 05

Figure 6.2: Critical Nuclear Charge values in recent literature.

6.6 Future Work

The current study brings to light many promising areas of advancement in the hunt for
greater precision of Z..

Investigation into a systematic method for the determination of uncertainty is a path
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of paramount importance. A method like the extension to the delete-d jackknife discussed
in Sect. 6.1 should serve to give a strong interval of confidence for any study involving
extrapolation to find Z.. This proposed method is expected to answer how the critical
nuclear charge and its uncertainty change as a function of input atomic energy data.

Further expansion of the energy data set to values closer to Z. (Sect. 6.4) should prove
to be another encouraging avenue of exploration. Careful scrutiny and probable alteration
will be required for the methods used to generate these ionization-approaching energy cal-
culations. If this approach is shown to be valid it will likely pave the way for a method
of interpolation to determine Z.. Interpolation is a far superior method of analysis over
extrapolation and if possible should act to decrease the uncertainty on Z. by orders of
magnitude.

Advances in statistics and data point selection will necessitate the increase in input
atomic energy precision. This precision is achieved by the time-consuming process of col-
lecting energies for a full range of term counts up to perhaps = 25 (Sect. 6.2).

Scrutiny over the F(Z) fitting function is another possible pathway for Z. advance-
ment. The current machine implementation allows for straightforward evaluation of alter-
nate Puiseux powers with very little effort and small computation time. !/4-power fittings
are a worthwhile candidate for expansion since the current 1/2-power terms are a subset of
this series. These terms will either provide a better representation of the true charge-energy
relationship or add confidence to the current function as the full power and 1/3-power terms
have (Ch. 5). These same principals can be extended to an exponential fit or an attempted
fit with initial parameters far from expected values. If the parameters are observed to re-
turn to their converged values despite the attempted perturbation then increasing levels of

confidence are gained for the method.
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Chapter 7

Conclusions

The critical nuclear charge is found with a value of Z, = 0.91102808(5) where the confidence
interval is found to exclude all previous calculations in the literature [2, 1, 21, 20] but with
closer agreement to Baker et al. [1]. The increased proximity to Z. in input data facilitated
by the doubled basis set wave functions is shown to yield a sharpened resolution in the final
result. The gains in data precision require increased term counts in both the fitting function
and wave function to achieve proper convergence as the extrapolation method is pushed to
its limits. The bootstrap fitting method is found to be an essential tool for uncertainty
analysis and its continued development will give a systematic procedure to further refine

the interval of confidence for the critical nuclear charge.
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Appendix A

Tabulation

Table A.1: Atomic Energy as a function of nuclear charge for the two-electron system.

Z Eground Eionization
0.910 —0.413 799 211 37(1) 0.000 250 788 63(1)
0.911 00 —0.414 953 580 735 8(1) 0.000 006 919 264 2(1)
0.911 01 —0.414 965 142 110 3(1) 0.000 004 467 939 7(1)
0.911 020 —0.414 976 703 828 7(2) 0.000 002 016 371 3(2)
0.911 021 —0.414 977 860 019 4(1) 0.000 001 771 201 1(1)
0.911 022 —0.414 979 016 213 6(1) 0.000 001 526 028 4(1)
0.911 023 —0.414 980 172 411 2(2) 0.000 001 280 853 3(2)
0.911 024 —0.414 981 328 612 3(1) 0.000 001 035 675 7(1)
0.911 025 —0.414 982 484 816 8(1) 0.000 001 035 675 7(1)
0.911 026 —0.414 983 641 024 7(1) 0.000 001 035 675 7(1)
0.911 027 —0.414 984 797 236 0(1) 0.000 001 035 675 7(1)
0.911 0280 —0.414 985 953 450 8(1) 0.000 001 035 675 7(1)
0.9110281 —0.414 986 069 072 5(1) 0.000 001 035 675 7(1)
0.911 028 2 —0.414 986 184 694 2(2) 0.000 001 035 675 7(2)
0.911 028 3 —0.414 986 300 316 0(1) 0.000 001 035 675 7(1)
0.911 028 4 —0.414 986 415 937 7(2) 0.000 001 035 675 7(2)
0.911 028 5 —0.414 986 531 559 5(2) 0.000 001 035 675 7(2)
0.911 028 6 —0.414 986 647 181 4(1) 0.000 001 035 675 7(1)
0.9110287 —0.414 986 762 803 2(1) 0.000 001 035 675 7(1)
0.911 028 8 —0.414 986 878 425 2(1) 0.000 001 035 675 7(1)
0.911 028 9 —0.414 986 994 047 1(1) —0.000 000 165 729 5(1)
0.911 029 —0.414 987 109 669 1(1) —0.000 000 190 248 6(1)
0.911 03 —0.414 988 265 890 8(1) —0.000 000 435 440 8(1)
0.911 04 —0.414 999 828 296 4(1) —0.000 002 887 496 4(1)
0.911 05 —0.415 011 391 045 4(2) —0.000 005 339 795 4(2)
0.911 06 —0.415 022 954 137 7(2) —0.000 007 792 337 7(2)
0.911 07 —0.415 034 517 573 1(2) —0.000 010 245 123 1(2)
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Z Eg'r-ound Eionization
0.911 08 —0.415 046 081 351 3(1) —0.000 012 698 151 3(1)
0.911 09 —0.415 057 645 472 3(2) —0.000 015 151 422 3(2)
0.9111 —0.415 069 209 935 9(1) —0.000 017 604 935 9(1)
0.9115 —0.415 532 067 595 3(1) —0.000 115 942 595 3(1)
0.9120 —0.416 111 395 540 02(6) —0.000 239 395 540 02(6)
0.9125 —0.416 691 547 807 37(5) —0.000 363 422 807 37(5)
0.9130 —0.417 272 509 616 68(4) —0.000 488 009 616 68(4)
0.9135 —0.417 854 267 766 29(2) —0.000 613 142 766 29(2)
0.914 0 —0.418 436 810 346 72(2) —0.000 738 810 346 72(2)
0.914 5 —0.419 020 126 527 25(2) —0.000 865 001 527 25(2)
0.9150 —0.419 604 206 392 13(2) —0.000 991 706 392 13(2)
0.9155 —0.420 189 040 811 77(1) —0.001 118 915 811 77(1)
0.916 0 —0.420 774 621 339 39(1) —0.001 246 621 339 39(1)
0.916 5 —0.421 360 940 126 662(7) —0.001 374 815 126 662(7)
0.9170 —0.421 947 989 854 050(7) —0.001 503 489 854 050(7)
0.917 5 —0.422 535 763 672 369(5) —0.001 632 638 672 369(5)
0.918 0 —0.423 124 255 153 492(4) —0.001 762 255 153 492(4)
0.918 5 —0.423 713 458 248 168(4) —0.001 892 333 248 168(4)
0.9190 —0.424 303 367 249 812(3) —0.002 022 867 249 812(3)
0.9195 —0.424 893 976 763 070(3) —0.002 153 851 763 070(3)
0.920 0 —0.425 485 281 676 422(2) —0.002 285 281 676 422(2)
0.9205 —0.426 077 277 138 151(2) —0.002 417 152 138 151(2)
0.9210 —0.426 669 958 535 112(2) —0.002 549 458 535 112(2)
0.9215 —0.427 263 321 473 944(2) —0.002 682 196 473 944(2)
0.9220 —0.427 857 361 764 315(2) —0.002 815 361 764 315(2)
0.922 5 —0.428 452 075 403 954(2) —0.002 948 950 403 954(2)
0.9230 —0.429 047 458 565 205(1) —0.003 082 958 565 205(1)
0.923 5 —0.429 643 507 582 920(2) —0.003 217 382 582 920(2)
0.924 0 —0.430 240 218 943 511(1) —0.003 352 218 943 511(1)
0.924 5 —0.430 837 589 275 022(1) —0.003 487 464 275 022(1)
0.9250 —0.431 435 615 338 111(1) —0.003 623 115 338 111(1)
0.9255 —0.432 034 294 017 812(1) —0.003 759 169 017 812(1)
0.926 —0.432 633 622 316 015 1(9) —0.003 895 622 316 015 1(9)
0.927 —0.433 834 216 318 957 1(8) —0.004 169 716 318 957 1(8)
0.928 —0.435 037 375 450 742 4(7) —0.004 445 375 450 742 4(7)
0.929 —0.436 243 079 297 169 5(7) —0.004 722 579 297 169 5(7)
0.930 —0.437 451 308 772 304 7(5) —0.005 001 308 772 304 7(5)
0.931 —0.438 662 045 986 297 1(5) —0.005 281 545 986 297 1(5)
0.932 —0.439 875 274 130 956 3(5) —0.005 563 274 130 956 3(5)
0.933 —0.441 090 977 380 116 4(4) —0.005 846 477 380 116 4(4)
0.934 —0.442 309 140 802 391 1(4) —0.006 131 140 802 391 1(4)
0.935 —0.443 529 750 284 392 8(4) —0.006 417 250 284 392 8(4)
0.940 —0.449 669 043 929 678 9(3) —0.007 869 043 929 678 9(3)
0.945 —0.455 867 742 047 676 0(2) —0.009 355 242 047 676 0(2)
0.950 —0.462 124 699 683 824 4(2) —0.010 874 699 683 824 4(2)
0.955 —0.468 438 987 351 438 4(2) —0.012 426 487 351 438 4(2)
0.960 —0.474 809 835078 199 4(1) —0.014 009 835 078 199 4(1)
0.965 —0.481 236 594 641 898 2(1) —0.015 624 094 641 898 2(1)
0.970 —0.487 718 713 047 227 2(1) —0.017 268 713 047 227 2(1)
0.975 —0.494 255 713 290 746 99(9) —0.018 943 213 290 746 99(9)
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Z Eground Eionization
0.980 —0.500 847 180 037 978 13(8) ~ —0.020 647 180 037 978 13(8)
0.985 —0.507 492 748 719 098 95(7)  —0.022 380 248 719 098 95(7)
0.9855  —0.508 160 268 458 267 51(7)  —0.022 555 143 458 267 51(7)
0.986 0 —0.508 828 325 663 657 18(7) —0.022 730 325 663 657 18(7)
0.9865  —0.509 496 920 037 538 18(7)  —0.022 905 795 037 538 18(7)
0.9870  —0.510 166 051 285 607 39(7)  —0.023 081 551 285 607 39(7)
0.9875  —0.510835719 116 932 63(7)  —0.023 257 594 116 932 63(7)
0.9880  —0.511 505923 243 898 22(7)  —0.023 433 923 243 898 22(7)
0.9885  —0.512 176 663 382 151 75(9)  —0.023 610 538 382 151 75(9)
0.9890  —0.512 847939 250 551 71(7)  —0.023 787 439 250 551 71(7)
0.989 5 —0.513 519 750 571 116 84(7) —0.023 964 625 571 116 84(7)
0.9900  —0.514 192 097 068 975 76(7)  —0.024 142 097 068 975 76(7)
0.9905  —0.514 864 978 472318 24(7)  —0.024 319 853 472 318 24(7)
0.9910  —0.515538 394 512 347 26(7)  —0.024 497 894 512 347 26(7)
0.9915  —0.516 212344 923232 08(6)  —0.024 676 219 923 232 08(6)
0.992 0 —0.516 886 829 442 062 32(7) —0.024 854 829 442 062 32(7)
0.9925  —0.517 561 847 808 802 90(6)  —0.025 033 722 808 802 90(6)
0.9930  —0.518 237 399 766 250 07(6)  —0.025 212 899 766 250 07(6)
0.9935  —0.518 913 485 059 988 06(6)  —0.025 392 360 059 988 06(6)
0.9940  —0.519 590 103 438 346 86(6)  —0.025 572 103 438 346 86(6)
0.994 5 —0.520 267 254 652 360 75(6) —0.025 752 129 652 360 75(6)
0.9950  —0.520 944 938 455 727 60(6)  —0.025 932 438 455 727 60(6)
0.9955  —0.521 623 154 604 769 09(6)  —0.026 113 029 604 769 09(6)
0.9960  —0.522 301 902 858 391 61(6)  —0.026 293 902 858 391 61(6)
0.9965  —0.522 981 182978 047 86(2)  —0.026 475 057 978 047 86(2)
0.9970  —0.523 660 994 727 700 06(6)  —0.026 656 494 727 700 06(6)
0.9975  —0.524 341 337 873 781 65(6)  —0.026 838 212 873 781 65(6)
0.998 0 —0.525 022 212 185 162 70(6) —0.027 020 212 185 162 70(6)
0.9985  —0.525703 617433113 75(6)  —0.027 202 492 433 113 75(6)
0.9990  —0.526 385 553 391 271 25(6)  —0.027 385 053 391 271 25(6)
0.9995  —0.527 068 019 835 603 52(6)  —0.027 567 894 835 603 52(6)
1.00 —0.527 751 016 544 377 32(6)  —0.027 751 016 544 377 32(6)
1.01 —0.541 521 983 821 166 49(5) —0.031 471 983 821 166 49(5)
1.02 —0.555 503 408 151 640 55(5)  —0.035 303 408 151 640 55(5)
1.03 —0.569 693 974 922 935 21(4)  —0.039 243 974 922 935 21(4)
1.04 —0.584 092 583 817 748 60(4)  —0.043 292 583 817 748 60(4)
1.05 —0.598 698 303 952 974 89(3)  —0.047 448 303 952 974 89(3)
1.06 —0.613 510 340 534 909 42(3) —0.051 710 340 534 909 42(3)
1.07 —0.628 528 009 559 125 27(3)  —0.056 078 009 559 125 27(3)
1.08 —0.643 750 718 271 894 44(3) —0.060 550 718 271 894 44(3)
1.09 —0.659 177 949 847 755 90(3)  —0.065 127 949 847 755 90(3)
1.10 —0.674 809 251 210 729 44(2)  —0.069 809 251 210 729 44(2)
1.11 —0.690 644 223 238 443 26(2)  —0.074 594 223 238 443 26(2)
1.12 —0.706 682 512 799 104 81(2)  —0.079 482 512 799 104 81(2)
1.13 —0.722 923 806 216 715 18(2) —0.084 473 806 216 715 18(2)
1.14 —0.739 367 823 862 343 38(2)  —0.089 567 823 862 343 38(2)
1.15 —0.756 014 315 642 643 57(2)  —0.094 764 315 642 643 57(2)
1.16 —0.772 863 057 210 182 09(2)  —0.100 063 057 210 182 09(2)
1.17 —0.789 913 846 759 540 62(2)  —0.105 463 846 759 540 62(2)
1.18 —0.807 166 502 302 616 82(2) —0.110 966 502 302 616 82(2)
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Eground

Eionization

26
27
28
29
30
31
32
33
34
35
36
37
38
39
.40
41
.42
.43
.44
.45
.46
.47
.48
.49
.50

e e T T T e e R T e e e e e e e T o T T S O S

—0.
—0.
—0.
—0.
—-0.
—0.
—0.
—0.
—0.
—-0.
—1.
—1.
—1.
—1.
—1.
—1.
-1
—1.
-1
—1.
—1
—1.
—1
—1.
—1
—1.
—1.
—1.
—1.
—1.
—1.
—1.

824 620 859 338 826 73(1)
842 276 768 852 953 60(2)
860 134 095 586 550 08(1)
878 192 716 539 061 65(1)
896 452 519 662 907 41(1)
914 913 402 723 148 42(1)
933 575 272 297 479 85(1)
952 438 042 896 388 21(1)
971 501 636 186 636 79(1)
990 765 980 303 947 65(1)
010 231 009 242 963 24(1)
029 896 662 314 394 23(1)
049 762 883 660 769 31(1)
069 829 621 823 457 46(1)
090 096 829 354 681 08(1)
110 564 462 469 117 78(1)

.131 232 480 730 429 25(1)

152 100 846 768 681 704(9)

.173 169 526 025 154 175(9)

194 438 486 521 483 655(9)

.215 907 698 650 482 868(7)

237 577 134 986 298 412(9)

.259 446 770 111 862 198(8)

281 516 580 461 835 231(8)

.303 786 544 179 455 673(8)

326 256 640 985 887 663(8)
348 926 852 060 827 978(8)
371797 159 933 267 472(7)
394 867 548 381 426 545(8)
418 138 002 340 990 938(8)
441 608 507 820 868 133(8)
465 279 051 825 767 302(8)

—0.
—0
—-0.
—0.
—0.
—0.
—0.
—0.
—0.
—0.
—0.
—0.
—0.
—0.
—0.
—0.
-0
—0.
—0.
—0.
—0.
—0.
—0.
—0.
—-0.
—0.
—-0.
—0.
—0.
—0.
—0.
—-0.

116 570 859 338 826 73(1)

.122 276 768 852 953 60(2)

128 084 095 586 550 08(1)
133 992 716 539 061 65(1)
140 002 519 662 907 41(1)
146 113 402 723 148 42(1)
152 325 272 297 479 85(1)
158 638 042 896 388 21(1)
165 051 636 186 636 79(1)
171 565 980 303 947 65(1)
178 181 009 242 963 24(1)
184 896 662 314 394 23(1)
191 712 883 660 769 31(1)
198 629 621 823 457 46(1)
205 646 829 354 681 08(1)
212 764 462 469 117 78(1)

.219 982 480 730 429 25(1)

227 300 846 768 681 704(9)
234 719 526 025 154 175(9)
242 238 486 521 483 655(9)
249 857 698 650 482 868(7)
257 577 134 986 298 412(9)
265 396 770 111 862 198(8)
273 316 580 461 835 231(8)
281 336 544 179 455 673(8)
289 456 640 985 887 663(8)
297 676 852 060 827 978(8)
305 997 159 933 267 472(7)
314 417 548 381 426 545(8)
322 938 002 340 990 938(8)
331 558 507 820 868 133(8)
340 279 051 825 767 302(8)

Note that charge values below Z = 0.911 5 still require thorough analytic scrutiny and may not be

converging on the correct root as discussed in section 6.4. As such, energies for F(Z < 0.9115) are presented

only as preliminary calculations and are not used in this studies analysis to determine Z..
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Table A.2: Critical Charge Z,. from 1/2-power fit low Z data (complete).

terms

Ultralow (20)

Superlow (30)

Superlow (odd) (15)

Superlow (even) (15)

© 0 N O ks W N

[T S e T o S S SR
S © W N ? A W N O

0.910 77 (4)
0.911 069 (4)
0.911 032 07 (28)
0.911 028 91 (5)
0.911 028 175 (4)
0.911 028 125 (4)
0.911 028 126 (3)
0.911 028 127 (3)
0.911 028 127 (3)
0.911 028 127 (3)
0.911 028 127 (3)
0.911 028 127 (4)
0.911 028 126 (3)
0.911 028 126 (3)
0.911 028 127 (3)
0.911 028 127 (3)
0.911 028 126 6(29)
0.911 028 127 (3)

0.910 44 (7)

0.911 097 (5)

0.911 034 7(4)
0.911 029 78 (13)
0.911 028 305 (17)
0.911 028 085 (3)
0.911 028 092 4(29)
0.911 028 093 6(27)
0.911 028 093 8(28)
0.911 028 093 8(27)
0.911 028 094 1(27)
0.911 028 093 7(29)
0.911 028 093 7(27)
0.911 028 093 9(26)
0.911 028 093 8(26)
0.911 028 094 0(23)
0.911 028 094 0(27)
0.911 028 093 8(27)
0.911 028 093 9(28)

0.910 54 (9)

0.911 089 (6)

0.911 034 3(5)
0.911 029 82 (12)
0.911 028 332 (20)
0.911 028 060 9(24)
0.911 028 072 1(17)
0.911 028 074 0(15)
0.911 028 074 4(14)
0.911 028 074 4(15)
0.911 028 074 3(14)
0.911 028 074 6(15)
0.911 028 074 2(16)

0.910 31 (11)

0.911 126 (9)
0.911 038 3(6)
0.911 031 29 (20)
0.911 028 60 (4)
0.911 028 001 0(11)
0.911 028 027 9(20)
0.911 028 033 3(23)
0.911 028 033 9(24)
0.911 028 033 8(24)
0.911 028 033 8(22)
0.911 028 033 8(23)
0.911 028 033 9(25)

Table A.3: Critical Charge Z,. from 1/2-power fit high Z data.

terms Midrange (31) Mid (odd) (15) Mid (even) (16) Full (129) Full Odd (64) Full Even (65)
3 0.926 39 (5) 0.926 40 (7) 0.926 39 (8)
4 0.910 163 (4) 0.910 162 (5) 0.910 164 (6) 0.910 42 (6) 0.910 38 (9) 0.910 47 (9)
5 0.911 055 3(8) 0.911 055 2(1) 0.911 055 3(9) 0.911 007 (8) 0.911 002 (13) 0.911 010 (11)
6 0.911 369 9(4) 0.911 370 0(6) 0.911 369 9(6) 0.911 085 9(20) 0.911 094 6(26) 0.911 080 (3)
7 0.911678 1(16) 0.911 678 7(20) 0.911 678 0(22) 0.911 071 9(21) 0.911 082 (3) 0.911 067 1(25)
8 0.911 876 0(26) 0.911 877 (3) 0.911 876 (3) 0.911 054 7(13) 0.911 062 4(19) 0.911 051 7(18)
9 0.911978 (3) 0.911 979 (4) 0.911 978 (4) 0.911 041 8(8) 0.911 047 2(11) 0.911 040 4(10)
10 0.912 021 (3) 0.912 022 (4) 0.912 021 (4) 0.911 034 8(4) 0.911 037 9(7) 0.911 034 1(5)
11 0.912035 (3) 0.912 037 (4) 0.912 036 (4) 0.911 030 95 (20) 0.911 032 7(4) 0.911 030 71 (25)
12 0.912 040 (3) 0.912 041 (4) 0.912 040 (5) 0.911 028 96 (8) 0.911 029 71 (16) 0.911 028 89 (1)
13 0.912041 (4) 0.912 042 (4) 0.912 041 (4) 0.911028 114 (29)  0.911 028 34 (7) 0.911 028 10 (4)
14 0.912 041 (3) 0.912 042 (4) 0.912 041 (4) 0.911 027 783 (1) 0.911 027 696 (27)  0.911 027 765 (11)
15 0.912 042 (3) 0.912 041 (5) 0.911 027 886 (14)  0.911 027 93 (4) 0.911 027 865 (18)
16 0.912 041 (3) 0.911 028 017 (23)  0.911 028 19 (6) 0.911 027 988 (29)
17 0.912 041 (3) 0.911 027 791 (8) 0.911 027 666 (18)  0.911 027 773 (8)
18 0.912 041 (3) 0.911 027 839 (9) 0.911 027 787 (29) 0.911 027 820 (1)
19 0.912 041 (3) 0.911 027 899 (12)  0.911 027 92 (4) 0.911 027 876 (14)
20 0.912041 (3) 0.911 027 788 (8) 0.911 028 07 (5) 0.911 027 937 (20)
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Table A.4: Critical Charge Z, from full-power fit low Z data.

terms Ultralow (20) Superlow (30) Superlow (odd) (15) Superlow (even) (15)

2 0.9110313(5) 0.9110356(11) 0.911 034 5(1 6) 0.911 036 9(1 6)
3 0.911 028 62(7) 0.911 029 35(17)  0.911 029 12(21) 0.911 029 71(27)
4 0.911028 295(12) 0.911 028 46(4) 0.911 028 40(4) 0.911 028 57(5)
5 0.911 028 296(12) 0.911 028 45(4) 0.911 028 40(4) 0.911 028 57(6)
6 0.911028 206(14) 0.911 028 45(4) 0.911 028 40(4) 0.911 028 57(6)
7 0.911 028 296(12) 0.911 028 45(4) 0.911 028 40(4) 0.911 028 57(6)
8 0.911028 295(13) 0.911 028 45(4) 0.911 028 40(4) 0.911 028 57(5)
9 0.911 028 296(12) 0.911 028 46(4) 0.911 028 40(5) 0.911 028 57(6)
10 0.911 028 297(13) 0.911 028 46(4) 0.911 028 40(4) 0.911 028 57(6)
11 0.911 028 296(12) 0.911 028 46(4) 0.911 028 40(4) 0.911 028 57(6)
12 0.911 028 295(12) 0.911 028 46(4) 0.911 028 40(4) 0.911 028 57(6)
13 0.911 028 296(13) 0.911 028 46(4) 0.911 028 40(4) 0.911 028 57(6)
14 0.911 028 296(12) 0.911 028 46(4) 0.911 028 40(5) 0.911 028 57(6)
15 0.911 028 295 639 0(5) 0.911 028 46(4)

16 0.911 028 294(14) 0.911 028 45(4)

17 0.911 028 296(13) 0.911 028 45(4)

18 0.911 028 296(13) 0.911 028 45(4)

19 0.911 028 295(12) 0.911 028 45(4)

20 0.911 028 46(3)

Table A.5: Critical Charge Z. from full-power fit high Z data.

terms Midrange (31) Mid (odd) (15) Mid (even) (16) Full (102) Full Odd (51) Full Even (51)
2 0.912 427(6) 0.912 427(8) 0.912 426(8) 0.912 31(12) 0.912 34(17) 0.912 28(18)
3 0.9117559(25) 0.911 756(3) 0.911 756(4) 0.911 71(6) 0.911 7(1) 0.911 68(9)
4 0.9114482(13)  0.9114485(16) 0.9114480(18)  0.911 40(3) 0.911 42(5) 0.911 39(5)
5 0.9114578(14)  0.9114581(18)  0.9112913(10)  0.911 252(19) 0.911 259(26) 0.911 242(26)
6 0.911297 0(8) 0.911459 1(17)  0.9112969(10)  0.911 160(12) 0.911 168(17) 0.911 153(17)
7 0.911297 7(7) 0.9114590(19) 0.9112978(11)  0.911107(7) 0.911 110(11) 0.911 101(10)
8 0.9112977(8) 0.911 458 9(1 9) 0.911 298(1) 0.911 075(5) 0.911 078(6) 0.911 072(6)
9 0.911297 7(8) 0.9114591(18)  0.911 297 6(9) 0.911 059(3) 0.911 061(4) 0.911 056(4)
10 0.911 297 7(8) 0.9114591(19) 0.9112976(11)  0.9110484(21)  0.9110500(29)  0.911 046 4(2 9)
11 0.911 297 7(7) 0.9114588(18)  0.911 298(1) 0.9110422(13) 0.9110434(19)  0.911 040 6(1 9)
12 0.911 297 7(8) 0.911 459 0(1 8) 0.911 297 7(10) 0.911 037 9(10) 0.911 038 7(1 4) 0.911 036 7(1 3)
13 0.911 297 7(7) 0.9114590(19)  0.9112975(10)  0.911 035 1(7) 0.911 036(1) 0.911 034 2(9)
14 0.911297 7(8) 0.9114589(18) 0.9112978(11)  0.911 035 8(8) 0.911 036(1) 0.911 034 6(1 1)
15 0.911297 7(8) 0.911 297 7(1 0) 0.911 036 2(8) 0.9110370(1 1) 0.911 035(1)
16 0.911 297 7(8) 0.911 033 9(6) 0.9110374(13)  0.9110357(1 1)
17 0.911 297 7(7) 0.911 034 3(6) 0.911 034 8(9) 0.911 033 3(9)
18 0.911 297 7(8) 0.911 034 6(7) 0.911 035 1(9) 0.911 033 6(7)
19 0.911297 7(7) 0.911 034 9(6) 0.911 035 4(9) 0.911 033 9(9)
20 0.911297 7(8) 0.911 035 1(7) 0.911 035 7(9) 0.911 033 9(9)

41



A. TABULATION

Table A.6: Critical Charge Z,. from 1/3-power fit low Z data.

terms Ultralow (20) Superlow (30) Superlow (odd) (15) Superlow (even) (15)
2
3 0.911315(16) 0.911 67(3)
4 0.910 774(19) 0.910 53(3) 0.910 55(4) 0.910 29(6)
5 0.911 042 8(6) 0.9110525(12)  0.911 054 4(1 4) 0.911 070 8(2 2)
6 0.911029 73(9) 0.911 027 26(29)  0.911 026 2(4) 0.911 021 3(6)
7 0.91103184(10)  0.91103319(11)  0.911 034 16(9) 0.911 036 10(7)
8 0.911 031 66(8) 0.911 030 71(1) 0.911 031 95(11) 0.911 034 42(14)
9 0.911 029 67(6) 0.911 031 0(1) 0.911 032 2(1) 0.911 034 50(13)

0.911 029 80(6)
0.911 029 85(6)
0.911 029 86(6)
0.911 029 87(6)
0.911 029 86(6)
0.911 029 87(6)
0.911 029 86(6)
0.911 029 87(6)
0.911 029 87(6)
0.911 029 87(6)

0.911 031 1(1)
0.911 031 16(8)
0.911 031 18(8)
0.911 031 18(9)
0.911 031 18(9)
0.911 031 17(9)
0.911 031 18(9)
0.911 031 17(9)
0.911 031 18(9)
0.911 031 18(9)
0.911 031 18(9)

0.911 032 26(10)
0.911 032 30(9)
0.911 032 31(10)
0.911 032 32(8)
0.911 032 31(9)

0.911 034 47(12)
0.911 034 46(10)
0.911 034 43(10)
0.911 034 44(12)
0.911 034 45(10)

Table A.7: Critical Charge Z. from !/3-power fit high Z data.

terms

Midrange (31)

Mid (odd) (15)

Mid (even) (16)

Full (102)

Full Odd (51)

Full Even (51)

0.956 62(11)

0.927 71(4)
0.913 105(5)
0.898 00(5)

0.956 65(15)

0.927 73(5)
0.913 106(7)
0.897 99(7)

0.956 60(16)

0.927 71(5)
0.913 105(7)
0.898 01(7)

0.910 869(11)
0.910 687(16)
0.910 916(7)

0.911 016 9(1 4)

0.911 038 9(3)

0.911 043 88(20)

0.911 042 9(3)
0.911 038 0(4)

0.911 032 28(25)
0.911 034 26(28)
0.911 035 9(3)

0.911 031 29(20)
0.911 032 63(24)
0.911 033 81(23)
0.911 034 82(22)

0.910 880(20)
0.910 606(20)
0.910 858(12)
0.911 000 9(2 9)
0.911 036 0(9)
0.911 047 6(3)
0.911 051 3(4)
0.911 047 1(6)
0.911 048 1(5)
0.911 042 1(5)
0.911 043 9(5)
0.911 045 0(4)
0.911 039 3(5)
0.911 040 8(4)
0.911 042 0(5)

0.910 864(13)
0.910 714(18)
0.910 924(9)
0.911 017 5(1 8)
0.911 039 0(4)

0.911 044 63(20)

0.911 044 5(4)
0.911 039 9(5)

0.911 041 2(4)
0.911 035 9(4)
0.911 037 6(4)
0.911 032 58(28)
0.911 034 1(3)
0.911 035 4(3)
0.911 036 4(3)
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