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ABSTRACT: Ralph Johnson argues that mathematical proofs lack a dialectical tier, and thereby do not 

qualify as arguments. This paper argues that, despite this disavowal, Johnson's account provides a compel-

ling model of mathematical proof. The illative core of mathematical arguments is held to strict standards of 

rigour. However, compliance with these standards is itself a matter of argument, and susceptible to chal-

lenge. Hence much actual mathematical practice takes place in the dialectical tier. 
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1. THE DANCE OF MATHEMATICAL PRACTICE 

What is mathematics about? A standard answer has long been that mathematics is con-

cerned with the derivation of formal proofs. And yet, as the mathematician David Ruelle 

points out, truly formal proof has little to do with actual mathematical practice: 

Human mathematics consists in fact in talking about formal proofs, and not actually perform-

ing them. One argues quite convincingly that certain formal texts exist, and it would in fact 

not be impossible to write them down. But it is not done: it would be hard work, and useless 

because the human brain is not good at checking that a formal text is error-free. Human 

mathematics is a sort of dance around an unwritten formal text, which if written would be un-

readable. This may not seem very promising, but human mathematics has in fact been prodi-

giously successful. (Ruelle 2000: 254) 

Explaining that success poses a problem for philosophy of mathematics as traditionally 

conceived. If mathematical practice were ultimately reducible to formal proof, which has 

been analysed in great detail in mathematical logic, then actual practice would differ only 

in degree from the elementary and/or foundational work upon which most philosophers 

of mathematics concentrate. But if mathematical practice cannot be understood solely in 

such terms, then philosophy of mathematics needs to pay it much closer attention. 

 In recent decades, some philosophers of mathematics have indeed begun to take 

a broader range of mathematical practice into account. Important milestones include 

(Pólya 1954), (Lakatos 1976), and (Kitcher 1984). In the last decade the pace has quick-

ened. (Corfield 2002) is an explicit manifesto for a new, integrative field of research 

bringing together insights from philosophy of mathematics, history of mathematics, soci-

ology of mathematics, mathematics education, and mathematics itself. Corfield’s subse-

quent book, (Corfield 2003), makes good on some of this promise, which has been devel-

oped further by many authors, including contributors to (Hersh 2006), (Van Kerkhove 

and Van Bendegem 2007), (Van Kerkhove et al. 2010), and (Löwe and Müller 2010). 
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2. JOHNSON’S TWO TIER MODEL OF ARGUMENT 

In Manifest Rationality (2000), Ralph Johnson has provided a thoughtful and influential 

analysis of non-mathematical argument. He characterizes arguments as containing two 

levels—an ‘illative core’, in which the support that premisses provide for the conclusion 

is set out, and a ‘dialectical tier’, in which the proponent of the argument responds to po-

tential or actual criticism. Hans Hansen summarizes Johnson’s position as follows: The 

illative core comprises  

a thesis, T, supported by a set of reasons, R’, whereas the ‘dialectical tier must be a set of or-

dered pairs, with each pair consisting of an objection and one or more responses to the objec-

tion: thus: 

 

{⟨O1, {A1a, ..., A1n}⟩, ⟨O2, {A2a, ..., A2n}⟩, ..., ⟨ON, {ANa, ..., ANn}⟩} 

 

Now, in advancing a Johnson-argument, a proponent has to do two things: (i) he must assert 

T because R, and (ii) for every objection, Oi, to R-T, he is obligated to respond with one or 

more answers, Ai1 − Aij. (Hansen 2002: 271 f.) 

3. JOHNSON (AND HIS CRITICS) ON PROOF AND ARGUMENT 

Johnson contends that mathematical proofs do not qualify as arguments.
1
 This claim pro-

ceeds from his Principle of Vulnerability, that ‘if the arguer claims to have insulated the 

argument against all possible criticism, then this is no arguer and no argument’ (Johnson 

2000: 224). It follows from this principle that there cannot be any conclusive arguments, 

and yet proofs would seem to be clear examples of conclusive arguments. So, if John-

son’s principle is to survive, he must show that mathematical proofs are either not con-

clusive or not arguments. He defends the second of these alternatives, adducing four dif-

ferences between proof and argument: 

(P1) Proofs require axioms; arguments do not have axioms. 

(P2) Proofs must be deductive; arguments need not be.  

(P3) Proofs have necessarily true conclusions; almost all arguments have  

contingent conclusions.  

(P4) “[A]n argument requires a dialectical tier, whereas no mathematical proof has  

or needs to have such” (Johnson 2000: 232) 

I shall argue below that Johnson picked the wrong alternative. In his sense of ‘conclusive 

argument’, proofs are not conclusive, but they are arguments. Hence, suitably qualified, 

the Principle of Vulnerability may be preserved without jettisoning proof from the do-

main of argument. But first I should address some other criticism that Johnson’s position 

has attracted.
2
 

                                                 
1  Or at least, in his subsequent clarification, not paradigmatically (Johnson 2002: 316). 
2  I shall restrict my attention to critics who address Johnson directly. However, there are many other 

commentators who have made similar points. For example, Michael Crowe lists as ‘misconceptions’ 

several theses which closely resemble Johnson’s disanalogies, including ‘The methodology of mathe-

matics is deduction’, ‘Mathematics provides certain knowledge’, ‘Mathematical statements are invaria-
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3.1 The Four Colour Theorem 

The four colour theorem (4CT) states that four colours suffice to colour every planar map 

so that no neighbouring regions are the same colour. Johnson himself warns that the proof 

of 4CT ‘creates a potential problem’ for (P2), by undermining the position that proofs are 

necessarily deductive (Johnson 2000: 232). Presumably this problem arises because 4CT 

was the first and most widely discussed example of a theorem with a proof that can only be 

completed by computer. The proof involves a large set of configurations (633 in the most 

recent version) each of which has to be shown to possess a certain property (see Aberdein 

2007: 140, for a more detailed discussion). Each of these demonstrations was arrived at by 

a computer which had been programmed with a general method for their construction. This 

makes the full proof far too long to be verified by hand by any one human mathematician, 

although individual passages have been checked. Moreover, the whole proof has been in-

dependently shown to be error-free by a different computer program (Gonthier 2008). 

Hence it is a rare exception to Ruelle’s assertion that formal texts are not written down. 

 Of course, sceptics of computer-aided proof may very well ask why, if they did 

not trust the first computer program, they should be expected to trust the second. Nonethe-

less, the source of their anxiety is not, as Johnson would seem to imply, that the proof is 

non-deductive, but that it may be no proof at all. As Georges Gonthier, the architect of the 

computer-checked proof of 4CT, observes, “Coq [the proof assistant used] verifies that [the 

proof] strictly follows the rules of logic. Thus, our proof is more rigorous than a traditional 

one” (Gonthier 2008: 333). Gonthier is not begging the question against the sceptics when 

he insists that his proof is more rigorous; rather, he is identifying ‘rigour’ with deductive 

logic. It is still possible, if astronomically unlikely, that every program used either to prove 

4CT or to check the proof has run into undetectable bugs that have caused it to misfire. But 

otherwise, the proof was conducted in strict adherence with deductive logic. 

 4CT is not the only candidate for a non-deductive mathematical proof (for oth-

ers, see Baker 2009). However, although the existence of such a proof would contradict 

(P2), it is not clear why this should jeopardize Johnson’s position. He is not arguing that 

no arguments can be deductive, but rather that the relative importance of deductive argu-

mentation has been greatly overstated. So, since he concedes that there can be deductive 

arguments, the deductive nature of mathematical proofs may establish that they are an 

unusual sort of argument, but not that they are not arguments. 

3.2 Finocchiaro 

Maurice Finocchiaro observes of Johnson’s position that treating ‘geometrical proofs as 

not arguments but mere inferences or entailments ... would strike me as arbitrary insofar 

as Euclidean geometrical proofs are typically attempts to persuade oneself or others of the 

truth of the theorem in question by rational means’ (Finocchiaro 2003: 32). This would 

seem to be related to a point Finocchiaro made to Johnson on some earlier occasion: ‘Fi-

nocchiaro suggested that the difference between an argument and a proof is one of per-

spective. That is, a proof is an argument that has been found to have certain properties. I 

                                                                                                                                                  
bly correct’, ‘Mathematical proof is unproblematic’, and ‘The methodology of mathematics is radically 

different from the methodology of science’ (Crowe 1988: 260 ff.). 
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am not sure how to respond to this objection’ (Johnson 2000: 232). Johnson’s candour is 

striking and Finocchiaro’s point is a highly pertinent challenge to (P4), but as it stands, 

frustratingly condensed. His central idea seems to be that proofs are articulated in differ-

ent contexts, and often in a context in which the proof is intended to persuade. In this 

context, a dialectical tier is to be expected, but this need not be so in other contexts. 

3.3 Dove 

Ian Dove suggests a counterexample to (P1) and (P4): Cauchy’s proof of the Euler Con-

jecture (Dove 2007: 348). The Euler Conjecture expresses a relationship between the 

number of vertices (V), edges (E), and faces (F) of a polyhedron: V − E + F = 2. Imre 

Lakatos’s most celebrated work (Lakatos 1976) is a painstaking reconstruction of at-

tempts made by several nineteenth-century mathematicians to prove this conjecture. Cen-

tral to the story is Cauchy’s proof of 1813, to which a series of counterexamples was ad-

vanced by later mathematicians, resulting in a succession of reworked proofs and a sub-

stantial clarification of the original concepts. As Dove shows, Cauchy’s proof was not 

axiomatic, contrary to (P1), and in its subsequent history (as reconstructed by Lakatos) 

exhibited a sophisticated dialectical tier, contrary to (P4). 

 However, Lakatos’s reconstruction is not without its critics. As the editors of his 

posthumously published Proofs and Refutations (1976) observe, some mathematicians see 

the struggle to prove the Euler Conjecture as uncharacteristic of mathematical practice: 

‘while the method of proof-analysis described by Lakatos may be applicable to the study of 

polyhedra, a subject which is “near empirical” and where the counterexamples are easily vis-

ualisable, it may be inapplicable to “real” mathematics’ (Lakatos, 1976: ix). The editors do 

stress that Lakatos has other examples, and later writers have provided many more. Nonethe-

less, perhaps Johnson could preserve his characterization of proofs as not arguments by ex-

cluding these examples, and retreating to a statement about ‘typical proofs’, say.
3
 

3.4 Dufour 

Michel Dufour makes two criticisms of Johnson’s position. Firstly, he notes that some 

proofs ‘have been notoriously controversial, at least in their early days’ (Dufour 2011). 

This challenge to (P4) is similar to Dove’s, if much less explicit. Secondly, Dufour picks 

up on an important detail of Johnson’s presentation: 

Johnson adds an interesting epistemic comment about the relationship between proof and ar-

gument. ‘The proof that there is no greatest prime number is conclusive, meaning that anyone 

who knows anything about such matters sees that the conclusion must be true for the reasons 

given’ (Johnson, 2000: 232, Dufour’s emphasis). This is certainly true. But what happens 

when you just know some things, not any thing, in the mathematical field and you wonder if 

there is a greatest prime number? (Dufour 2011). 

                                                 
3  Such a move would be doubly ironic: Johnson would be exhibiting a strategy which Lakatos stigmatizes 

as ‘monster barring’, redefining a concept to exclude anomalous cases, as well as coming close to vio-

lating his own Principle of Vulnerability. 
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Like Finocchiaro, Dufour draws attention to the different sorts of context in which proofs 

may arise. Where there is an epistemic asymmetry, as in a classroom context, the dialec-

tical tier may be expected to play less of a role, since the student may take more on trust. 

4. PROOFS AND CONCLUSIVE ARGUMENTS 

In the last section we saw that there have been a number of piecemeal challenges to John-

son’s contention that proofs are not arguments. More systematic criticism will require 

analysis of his characterization of ‘conclusive argument’. Johnson states four properties 

that a conclusive argument must exhibit: 

(C1) ‘Its premises would have to be unimpeachable or uncriticizable.’ 

(C2) ‘The connection between the premises and the conclusion would have  

to be unimpeachable—the strongest possible.’ 

(C3) ‘A conclusive argument is one that can successfully (and rationally) resist  

every attempt at legitimate criticism.’ 

(C3) ‘The argument would be regarded as a conclusive argument.’  

(Johnson 2000: 233 f.) 

Johnson argues that no argument can satisfy all four criteria. He takes it that proofs, if 

they were arguments, would satisfy the criteria, but he denies that they are arguments. I 

shall argue that proofs cannot satisfy all of these criteria either, so there need be no objec-

tion to their being admitted as arguments in Johnson’s system. 

 Actually, only two of these criteria are at issue: Johnson states that conclusive 

arguments are impossible ‘principally because of the difficulty of satisfying (C1) but also 

because of (C3)’ (Johnson 2000: 234). The other two criteria provide no such obstacle. 

Of (C2), which corresponds to (P2), deductive inference being an unimpeachable connec-

tion, Johnson notes that there is ‘no problem with satisfying this requirement’, since ar-

guments may be deductive (Johnson 2000: 233). (C4) introduces a new point, but an un-

controversial one. In its defence, Johnson returns to mathematical proof, observing right-

ly that ‘[p]art of being a proof is being regarded as a proof’ (Johnson 2000: 234). 

 So what of (C1) and (C3)? (C1) corresponds to (P1): the axioms of mathematics 

would be unimpeachable premisses. However, Johnson’s demonstration that no argument 

satisfies (C1) also shows why (P1) is no obstacle to proofs being arguments. Considering 

the project of relativizing (C1) to a discourse community in which some premiss may be 

treated as unimpeachable, Johnson notes that ‘that would not confer on that premise the 

status of being uncriticizable. Someone from outside that community of discourse might 

well have a legitimate criticism of the statement’ (Johnson 2000: 233). But this is exactly 

the situation with axioms. By choosing to operate within a given axiomatic system, the 

mathematician undertakes to treat a set of axioms as uncriticizable. But other mathemati-

cians (or the same mathematician in other moods) may still challenge these axioms from 

the perspective of other systems. While this would be quixotic for the most firmly en-

trenched axioms, it is commonplace for more controversial cases, such as the Axiom of 

Choice, or large cardinal axioms. (C3) shares with (P4) a focus on the dialectical tier: 

according to (P4) mathematical proofs have no dialectical tier; according to (C3) conclu-

sive arguments would have an unbeatable dialectical tier. Johnson is right that (C3) sets a 
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standard that no argument can meet, so it is no discredit to their rigour that proofs do not 

meet it either. 

 

Type of  

Dialogue 

Initial  

Situation 

Main  

Goal 

Goal of  

Protagonist 

Goal of  

Interlocutor 

 

Inquiry 
Open-

mindedness 

Prove or  

disprove  

conjecture 

Contribute  

to outcome 

Obtain 

knowledge 

 

Deliberation 
Open-

mindedness 

Reach a  

provisional 

conclusion 

Contribute  

to outcome 

Obtain  

warranted  

belief 

 

Persuasion 
Difference  

of opinion 

Resolve  

difference  

of opinion 

with rigour 

Persuade  

interlocutor 

Persuade  

protagonist 

 

Negotiation 
Difference  

of opinion 

Exchange  

resources for  

a provisional 

conclusion 

Contribute  

to outcome 

Maximize  

value of  

exchange 

 

Debate  

(Eristic) 

Irreconcilable 

difference  

of opinion 

Reveal  

deeper conflict 

Clarify  

position 

Clarify  

position 

 

Information-

Seeking  

(Pedagogical) 

Interlocutor 

lacks  

information 

Transfer of 

knowledge 

Disseminate 

knowledge  

of results  

and methods 

Obtain 

knowledge 

 

 

Fig. 1. Some mathematical dialogue types 

We saw in the last section that (P4) may be challenged by drawing attention to the con-

text in which proofs are produced. I shall now make this challenge more precise. In 

Douglas Walton’s account of argument an important role is played by the ‘type of dia-

logue’. Dialogue types include persuasion, negotiation, inquiry, deliberation, information-

seeking, and quarrel. They may be distinguished in terms of their initial situation, and the 

shared and individual aims of their participants (see, for example Walton and Krabbe 

1995: 80). For Walton, different argumentational practices are legitimate in different 

types of dialogue, so the evaluation of arguments must have regard to the type of dia-

logue in which they are advanced. Elsewhere, I have argued that mathematical discourse 

also exhibits a diversity of dialogue types, similar to Walton’s, and that the analysis of 

proofs should have regard to the type of dialogue in which the proof arises (Aberdein 

2007: 144 ff.). Fig. 1 summarizes a variety of mathematical dialogue types, some of 

which are more appropriate for successful proof than others (cf. Walton and Krabbe 

1995: 66). Finocchiaro’s criticism can now be understood as the positive point that proofs 

are frequently advanced in persuasion dialogues, a context in which the interlocutor may 
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be expected to raise objections to which the protagonist should have replies if the proof is 

to be accepted. Examples of persuasion dialogues of this sort include the presentation of 

new work and journal refereeing. Conversely, Dufour alludes to pedagogical, infor-

mation-seeking dialogues, in which objections may also arise, but it may sometimes be 

admissible to ignore them (if, for example, a satisfactory answer would be unintelligible 

without a depth of knowledge that the student lacks). 

 Johnson, however, is sceptical about dialogue types, suspecting Walton of an 

unduly broad characterization of argument (Johnson 2000: 177). This has the effect of 

stranding him in a single type of dialogue. His conception of mathematical proof appears 

to be limited to an inquiry conducted by logically omniscient individuals. In such a con-

text objections would never be raised, so the dialectical tier would indeed be empty, but 

this is, of course, an idealized fiction. However, if Johnson’s account is augmented with 

Walton-style mathematical dialogue types, it becomes a supple and versatile instrument, 

that, as I shall argue in the next section, can contribute decisively to the understanding of 

mathematical practice. 

5. TIERS OF MATHEMATICAL REASONING 

Many mathematicians and philosophers of mathematics have observed the dual nature of 

mathematical proof: proofs must be both persuasive and rigorous. The passage from  

Ruelle quoted above is one example. Here is another from a more famous mathematician, 

G.H. Hardy: 

If we were to push it to its extreme we should be led to a rather paradoxical conclusion; that 

we can, in the last analysis, do nothing but point; that proofs are what Littlewood and I call 

gas, rhetorical flourishes designed to affect psychology, pictures on the board in the lecture, 

devices to stimulate the imagination of pupils. ... On the other hand it is not disputed that 

mathematics is full of proofs, of undeniable interest and importance, whose purpose is not in 

the least to secure conviction. Our interest in these proofs depends on their formal and aes-

thetic properties. Our object is both to exhibit the pattern and to obtain assent. (Hardy 1928: 

18, his emphasis) 

It follows from this account that ‘proof’ is ambiguous between two different activities: 

‘exhibiting the pattern’ and ‘obtaining assent’. In most circumstances both activities must 

be satisfactorily performed for the proof to be a success. There are some special cases, 

such as proofs that have been fully formalized, or have been reified as mathematical ob-

jects, where only the first activity is attempted. That sort of ‘proof’ may be harmlessly 

identified with its illative core. But in the more characteristic sense of ‘proof’ we need 

more than this; we need a dialectical interaction with the mathematical community. For 

Richard Epstein, proofs intended to obtain assent are arguments by means of which 

mathematicians convince each other that the corresponding inferences are valid. He rep-

resents this situation schematically (Fig. 2). 
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   A Mathematical Proof 

    Assumptions about how to reason and communicate 

 

     A Mathematical Inference 

      Premises 

 

        argument  

         necessity 

 

      Conclusion 

 

    The mathematical inference is valid 

Fig. 2. Epstein's picture of mathematical proof (Epstein 2008: 419) 

Proofs are typically made up of many steps, not all of which are necessarily developed with 

the same rigour. So closer examination of proofs will represent them not as single argu-

ments but as structures of arguments (technically trees, or directed acyclic graphs). Hence 

the construction of proofs requires the articulation of two parallel structures: an inferential 

structure of formal derivations linking formal statement to formal statement, and an argu-

mentational structure of arguments by which mathematicians attempt to convince each oth-

er of the soundness of the inferential structure. Fig. 3 summarizes this picture. 

 

 Argumentational Structure  Inferential Structure 

 Mathematical Proof, Pn   Mathematical Inference, In 

 Endoxa: Data accepted by   Premisses: Axioms or statements  

 mathematical community   formally derived from axioms 

 

    argument     derivation 

 

 

 Claim: In is sound    Conclusion: An additional formally  

       expressed statement 

Fig. 3. The parallel structure of mathematical proof 

The relationship between the corresponding steps in the inferential and argumentational 

structures is broadly that between illative core and dialectical tier. One might object that 

the argumentational structure contains more than just objections and replies: it has its 

own theses and reasons. There is a close overlap of content between the nodes of the two 

structures, since the nodes of the argumentational structure assert that the corresponding 

nodes of the inferential structure have been soundly derived. Nonetheless, the argumenta-

tional structure must contain additional data, namely facts about the acceptability of vari-

ous inferential moves within the mathematical community. However, this could in princi-

ple be couched in the form of answers to objections. Hence the presence of a dialectical 

tier should be seen as characteristic of mathematical proof, at least in the sense in which it 

is concerned with obtaining assent. Where the steps in the inferential structure are un-
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problematic—since they are fully worked out formal derivations, or more typically, it is 

clear how they could be—the argumentational structure can be very light; it need do no 

more than point (as Hardy puts it) at the steps of the inferential structure. But where the 

derivation is more complex or contested, much more of the burden of the proof rests on 

the argumentational structure. In those circumstances it becomes critical to track and pro-

vide responses to the objections that may be raised to the gaps in the inferential structure. 

 This account both conserves and transcends the conventional view of mathemat-

ical proof. The illative core of mathematical arguments is held to strict standards of rig-

our, without which the proof would not qualify as mathematical. However, the step-by-

step compliance of the proof with these standards is itself a matter of argument, and sus-

ceptible to challenge. Hence much actual mathematical practice takes place in the dialec-

tical tier. Careful demarcation of these two levels is essential to the proper understanding 

of mathematics; a virtue of Johnson’s account is that attention may be directed to the dia-

lectical tier without undermining the rigour of the illative core. If this account is correct, 

important concepts in the philosophy of mathematics, such as mathematical rigour and 

mathematical explanation, can only properly be addressed when both of the parallel struc-

tures are accounted for. Mathematicians have a sophisticated grasp of the inferential struc-

ture. But we still need a system for analysis and appraisal of the argumentational structure. 

Despite Johnson’s disavowal, his account may contribute significantly to this pursuit. 
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I am honoured to be asked to comment on the paper by Andrew Aberdein on the Dialec-

tical Tier of Mathematical Proof, for although I have been interested in this area for many 

years, I have not been active in it lately. 

 The paper addresses the question of what mathematics is about, and it does so in 

an interesting way. It is generally agreed that part of mathematical proof is to make sure 

that “everything is correct,” i.e. that all logical inferences, etc., are correct. But part of 

mathematical proof is to convince others—mathematicians, students and assorted others—

of the correctness of the proof, either just in its own right, or in defence against objections. 

 Aberdein mentions, inter alia, the famous four colour theorem. This is one of the 

most famous theorems that, so far at least, can only be proved with the aid of a computer, 

since a number of cases have to be dealt with, and these are too many and too complex to 

be done by hand. As Aberdein points out, this may be seen by sceptics as a problem—

why trust one computer program when another may have the same flaw?—but to com-

puter science people like myself, who can verify by hand that the computer codes of the 

two or more programs are truly independent, this does not seem like a serious objection.
1
  

 Some of us may remember Euclidean geometry, and proofs of such theorems as 

that of Pythagoras, or the theorem that asserts that, in any triangle, the lines from each angle 

to the mid-point of the opposite side, meet in one point. Aberdein comments on geometrical 

proofs, but I think he is right when he says that (geometrical) proofs are often articulated in 

a context in which the proof is intended to persuade: to make a geometric proof fully ‘wa-

tertight’ would require a lot of additional machinery. But that, surely, is part of the issue: per-

suading one's audience is part of the task, as well as making sure that the proof is correct. 

 Aberdein also mentions, and briefly discusses the Euler conjecture relating the 

number of vertices, edges and faces of a polyhedron. 

 A brief mention of the proof that there is no greatest prime number is of some 

interest. The proof is conclusive to those who know at least some things about number 

theory, but Aberdein wonders, with Dufour, what happens when “you just know some 

things...” Here it is a case of whom you’re trying to convince.
2
 Well, in the end I’m 

tempted to say, “tough.” 

                                                 
1
 When I was a graduate student at the University of Waterloo in the late 60s, the 4CT was still the four 

colour conjecture, and I and my fellow graduate students spent much time trying to prove the 4CT.  

Several of us independently re-discovered the five colour theorem. 
2
 The proof is one by contradiction: assume there is a greatest prime number, P. Then multiply all the 

prime numbers between 2 and P, and then add 1. The resulting number is clearly greater than P, and is 

prime, thereby contradicting the assumption that P is the greatest prime number. This proof, though 
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2 

 But now we really get to the crux of the matter: is a dialectical tier necessary 

and/or useful? And it strikes me that it is. 

 There is, clearly, a big difference between talking about mathematics and doing 

mathematics, and also between talking about mathematics and teaching mathematics. 

When a mathematician encounters a problem, he or she uses all the tools at his or her 

disposal to prove the conjecture
3
, and this almost certainly involves the dialectical tier. 

 But moreover, one needs to convince oneself and others of the correctness of the 

proof, and here's where the dialectical tier really “kicks in.” Once one is satisfied that the 

proof is correct, one can start worrying about the niceties of making sure all the details 

have been filled in.  

 As Aberdein points out, “ ‘proof’ is ambiguous between two different activities: 

‘exhibiting the pattern’ and ‘obtaining assent’. In most cases we need a “dialectical inter-

action with the mathematical community.” 

 The dialectical tier is important. 

                                                                                                                                                  
simple, is somewhat subtle and may not convince the mathematically uninitiated: it may need a lot of 

further explanation to convince the uninitiated. 
3
 Or to disprove it, as the case may be: one of my fellow graduate students in the late 60s tried for months 

to prove a conjecture by his supervisor. When he did not succeed, he tried to find a counter example, 

and he did find one in a matter of hours. 
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