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The Uses of Argument in Mathematics

ANDREW ABERDEIN

Humanities and Communication,
Florida Institute of Technology,
150 West University Blvd,
Melbourne, Florida 32901-6975, U.S.A.
aberdein@fit.edu

ABSTRACT. Stephen Toulmin once observed that ‘it has never been customary for philosophers to pay much attention to
the rhetoric of mathematical debate’ (Toulmin& al., 1979, p. 89). Might the application of Toulmin’s layout of arguments to
mathematics remedy this oversight?

Toulmin’s critics fault the layout as requiring so much abstraction as to permit incompatible reconstructions. Mathematical
proofs may indeed be represented by fundamentally distinct layouts. However, cases of genuine conflict characteristically reflect an
underlying disagreement about the nature of the proof in question.

KEY WORDS: Euclid, mathematical argumentation, proof, rebuttal, Stephen Toulmin, undercutter

Modern formal logic’s earliest successes were in the analysis of mathematical argument. However, formal
logic has long been recognized as useful elsewhere, and is now the dominant means of logical analysis in
all fields of discourse. Informal logicians claim that this mathematical success has been bought at the cost
of broader application. They have proposed methods of argument analysis complementary to that of formal
logic, providing for the pragmatic treatment of features of argumentation which cannot be reduced to logical
form. Characteristically, informal logicians have conceded mathematics to formal logic, while stressing the
superiority of their own systems as analyses of argumentation in natural language. My contention is that
this is an unnecessary concession: both systems have lessons for mathematics, just as they do for natural
language argumentation.

In this paper I exhibit some aspects of mathematical argumentation which can best be captured by
informal logic. Specifically I investigate the applicability of Toulmin’s layout of arguments to mathematics. I
demonstrate how the layout may be used to represent the structure of both ‘regular’ and ‘critical’ arguments
in mathematics. Mathematical proof is typically regular argumentation, and it is this which I address most
closely.

1. TOULMIN ’ S LAYOUT

Toulmin’sThe Uses of Argumentis perhaps the single most influential work in modern argumentation theory
(Toulmin, 1958). Especially widely cited is the general account it offers of the structure of arguments.
Toulmin begins with the thought that an argument is a claim (C) derived from data (D) in accordance
with a warrant (W ). While this is superficially similar to the treatment of arguments in deductive logic,
greater generality is achieved through additional components of the layout. The argument may have a modal
qualifier (Q), such as ‘necessarily’ or ‘presumably’, which explicates the force of the warrant. If the warrant
does not provide necessity, its conditions of exception or rebuttal (R) may be noted. We may also keep track
of the backing (B) which supports the warrant. The overall layout is often set out graphically, as in Figure 1.

While philosophers attackedThe Uses of Argumentas ‘Toulmin’s anti-logic book’, rhetoricians,
communication theorists and subsequently computer scientists have found its account of argumentation
deeply insightful (Shapin, 2002). Although it traduces Toulmin to characterize him as ‘anti-logic’, his
motivation was indeed to critique formal logic, specifically its claim to represent all the significant content
of non-mathematical argument. Mathematics, as the discourse for which formal logic is best suited, was
exempt from this critique. Nevertheless, Toulmin’s layout is intended to encompass all forms of argument,
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Figure 1. Toulmin’s layout (Toulmin, 1958, p. 104).

mathematics included, as he makes clear in a later work (Toulmin& al., 1979, p. 89). In the remainder of
this paper we will see how well it accomplishes this task, and whether it has advantages over formal logic
alone in this discourse too.

One significant problem which critics of Toulmin have raised is that the degree of abstraction neces-
sary to use the layout at all can make different, incompatible, reconstructions possible (Willard, 1976). This
would seem to imply that use of the layout must risk distorting the original argument to an unacceptable
degree. I shall explore whether this criticism undermines the application of Toulmin’s layout to mathematics
below, but first I must address an important distinction.

2. REGULAR AND CRITICAL ARGUMENTS

In discussing scientific arguments, Toulmin distinguishes between arguments that are conducted within,
or as applications of, a scientific theory and arguments which challenge a prevailing theory or seek to
motivate an alternative (Toulmin& al., 1979, p. 247). The former he terms ‘regular arguments’, the latter
‘critical arguments’. This distinction echoes the familiar one between normal and revolutionary science
promoted by Thomas Kuhn, although Toulmin rejects Kuhn’s hard and fast distinction between these two
modes (Toulmin, 1970). Hence critical arguments are always available to scientists, not just in revolutionary
phases, although they may not always have cause to use them. Moreover, critical arguments are more broadly
conceived than scientific revolutions, since they do not necessarily require the overthrow of the prior theory
in order to succeed. As Toulmin observes, ‘[c]omplete immutability in our rational procedures and standards
of judgment is not to be found even in . . . pure mathematics. The standards of rigour relied on in the judging
of mathematical arguments have had their own history’ (Toulmin& al., 1979, p. 133). Even commentators
who deny that there can be revolutions in mathematics on the grounds that it is a purely cumulative discipline
concede that there can be revolutions in mathematical rigour.1 Thus even the most conservative history of
mathematics must consider mathematical critical arguments. Furthermore, when we apply Toulmin’s layout
to regular mathematical argumentation, we shall see how it may be used to keep track of the changing
standards of rigour to which critical argumentation can give rise.

A good example of a mathematical critical argument is that offered by Ernst Zermelo and others
for admitting the Axiom of Choice as one of the axioms of set theory. This is discussed by Jesús Alcolea
Banegas, one of the few people to specifically address the application of informal logic to mathematics
(Alcolea, 1998).2 I have reproduced his reconstruction of the layout of this argument as Figure 2. However,
mathematical critical arguments are argumentsaboutmathematics, not argumentsin mathematics, For this
reason, mathematical critical arguments are much like the critical arguments of any other discipline: there is
nothing specifically mathematical about the warrant invoked, or any other aspect of their structure. Indeed,

1 For example, (Crowe, 1975, p. 19). Positions for and against mathematical revolutions are explored at length in (Gillies, 1992).
2 I am grateful to Miguel Gimenez of the University of Edinburgh for translating this paper from the original Catalan.
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There are many prob-
lems and phenomena that
can be treated with the
axiom of choice.

Therefore,

Despite the presence of undemon-
strated principles, an axiomatic set
theory that makes sense of mathe-
matical phenomena deserves to be
accepted in view of the facts.

Our mathematical theories must ex-
plain the biggest possible area of the
mathematical universe.

In the light of
the facts.

The axiom of
choice is indis-
pensable.

Unless a contradiction is found as a
consequence of the axiom.

D
Q

C

R

W

B

Figure 2. Alcolea’s analysis of Zermelo’s argument for the adoption of the axiom of choice (Alcolea, 1998, p. 143).

there cannot be, since they are appealing to the extra-mathematical in order to settle a dispute which cannot
be resolved by purely mathematical means.

The characteristic content of mathematics is mathematical proof. Proofs are regular arguments—
they may inspire criticism of underlying principles, but the criticism must take place outside the proof itself.
In the next section we will examine how closely Toulmin’s layout models the work of mathematical proof.

3. PROOFS

Toulmin’s own example applying his layout to mathematics is Theaetetus’s proof that there are exactly five
platonic solids. This result is recorded by Euclid as the final proposition of Book XIII of hisElements, where
the proof reads:

I say next thatno other figure, besides the said five figures, can be constructed which is contained by
equilateral and equiangular figures equal to one another.

For a solid angle cannot be constructed with two triangles, or indeed planes.
With three triangles the angle of the pyramid is constructed, with four the angle of the octahedron,

and with five the angle of the icosahedron; but a solid angle cannot be formed by six equilateral and
equiangular triangles placed together at one point, for, the angle of the equilateral triangle being two
thirds of a right angle, the six will be equal to four right angles: which is impossible, for any solid angle
is contained by angles less than four right angles [XI.21].

For the same reason, neither can a solid angle be constructed by more than six plane angles.
By three squares the angle of the cube is contained, but by four it is impossible for a solid angle to

be contained, for they will again be four right angles.
By three equilateral and equiangular pentagons the angle of the dodecahedron is contained; but by

four such it is impossible for any solid angle to be contained, for, the angle of the equilateral pentagon
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being a right angle and a fifth, the four angles will be greater than the four right angles: which is
impossible.

Neither again will a solid angle be contained by other polygonal figures by reason of the same
absurdity.

Q.E.D. (Heath, 1956, Vol. 3, pp. 507 f.)

In the tetrahedronthe faces joining at
each vertex are3 equilateral triangles,
with angles totaling3×60◦ = 180◦; in
the octahedron4 equilateral triangles,
totaling4 × 60◦ = 240◦; in the icosa-
hedron, 5, totaling5× 60◦ = 300◦. In
thecubethey are3 squares, with angles
totaling 3 × 90◦ = 270◦, and in the
dodecahedron, they are3 pentagons to-
taling 3 × 108◦ = 324◦. No other set
of equal angles at the vertex of a solid
adds up to less than360◦.

So,

Any regular convex solid has equilateral plane fig-
ures as its faces, and the angles at any vertex will
add up to less than360◦.

Given the axioms, postulates, and definitions of
three-dimensional Euclidean geometry,

with strict
geometrical
necessity,

There are five and
only five regular
convex solids.

No rebuttals or exceptions
available within the bounds of
Euclidean geometry.

D

Q C

R

W

B

Figure 3. Toulmin’s analysis of Theaetetus’s proof that the platonic solids are exactly five in number (Toulmin& al., 1979, Fig. 7.4,
p. 89).

Toulmin’s layout of this proof, slightly adapted for consistency of notation, is reproduced as Fig-
ure 3. We can see that it is an essentially faithful reproduction of Euclid’s argument, but it will be profitable
to compare the two more closely. Firstly, there is a harmless simplificiation, but slight loss of rigour, in
Toulmin’s omission of the statement that a solid angle cannot be constructed from two planes (a consequence
of Euclid’s Def. 11, Book XI). Most of the remainder of Euclid’s proof becomes Toulmin’s data,D, the
claim,C, is essentially the same in both presentations, and Toulmin’s warrant,W , combines the definition
of a regular convex polyhedron with the essential prior result on which the proof depends, Euclid’s Prop.
21, Book XI. Other parts of the layout are more novel:Q, a characterization of the rigour of the proof,
makes explicit something implicit in Euclid, andR is not there at all, since on Toulmin’s account the proof
cannot be rebutted. All of these identifications seem reasonable, and there does not seem to be any scope for
pernicious ambiguity. However, this is an elementary proof—problems may yet arise in more complicated
cases.

One obvious way in which Theaetetus’s proof is untypical of mathematical proofs is that it has
only one step. Most proofs, indeed most proofs in Euclid, constitute a sequence of steps, from the initial
premisses, through one intermediate result after another to the eventual conclusion. How might Toulmin’s
layout be applied to these multi-step proofs? The most thorough method would be to diagram each step of
the proof separately, perhaps linking them together in a sort of sorites. If the fine detail of the proof is of
particular interest this would be the best approach, but typically we would prefer something more coarse-
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grained. A useful maxim that applies to any modeling process is that a model should be as detailed as we
need it to be,but no more so. In most multi-step mathematical proofs the qualifier (and rebuttal) will be the
same at every step. This allows us to merge the layouts for the separate steps into one, by combining the
given components of the data, the warrants (and if necessary the backing) of each step to produce a single
layout for the whole proof.3 Where different steps have different qualifiers, the qualifier for the whole proof
would represent the degree of certainty of the least certain step.

√
2
√

2
√

2
= 2

(
√

2
√

2 ∈ Q) ∨
(
√

2
√

2 6∈ Q)

Classical logic
(specifically LEM)

EITHERαβ ∈ Q, where
α = β =

√
2 OR αβ ∈

Q, whereα =
√

2
√

2 6∈
Q andβ =

√
2.

ClassicallySo,

Each case is a construction of
a rational number expressible
asαβ , for irrationalα andβ.

Intuitionistic logic
(specifically CD)

αβ ∈ Q for
someα, β 6∈ Q

ConstructivelySo,

D1

W1

B1

Q1

C1 (or D2)

W2

B2

Q2
C2

Figure 4. Classical proof that there are irrational numbersα andβ such thatαβ is rational.

One source of examples of this phenomenon is the class of constructively invalid classical proofs.
Characteristically, most of the steps of these proofsareconstructively valid, making it important to identify
the ones that are not. Here a fine-grained application of Toulmin layouts can make the guilty steps explicit,
unlike a single layout in which the qualifier for the whole proof would merely indicate that the result is
classically, but not constructively, valid. For instance, Figure 4 lays out a familiar classical proof that there
are irrational numbersα andβ such thatαβ is rational. (The rebuttal components have been omitted for
simplicity.) This decomposition of the proof into its separate steps clearly exhibits the dependencies of each
step: whereas the second step relies on the constructively acceptable inference rule of constructive dilemma
(CD), the first step employs the non-constructive law of excluded middle (LEM). We can see immediately
that the proof could be transformed into a constructive proof if a constructive derivation ofC1 from D1

could be found to replace the first step. This can be done, since there is a constructive proof that
√

2
√

2

is irrational: substituting this statement forW1, and its proof forB1, yields a wholly constructive proof.4

The Intermediate Value Theorem, which states that iff is a continuous real-valued function,u < v and
f(u) < m < f(v), then there must be a numberw such thatu < w < v andf(w) = m, provides a
more protracted example of a non-constructive classical proof. The sketch of this proof laid out in Figure 5,
has four steps, of which three are constructive. However, the last step, that of Trichotomy, is irredeemably
classical. The constructivist has to choose between strengthening the hypotheses of the proof to rule out
Brouwerian counterexamples to Trichotomy, and accepting a weaker result, thatf(w) andm are arbitrarily
close, rather than equal (George & Velleman, 2002, p. 140 f.). These examples suggest that, providing
individual proof steps may be represented unambiguously, longer sequences of steps, whether represented
separately or in combination, should also be unambiguous.

3 This is a simplification, but more technical details are not required to establish this point.
4 Albeit a rather cumbersome proof, since the constructive proof that

√
2
√

2 is irrational relies on the deep Gelfond-Schneider
Theorem. There are much simpler constructive proofs thatαβ may be rational for irrationalα, β.
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However, there are circumstances where ambiguity of layout would seem to be a genuine risk. To
begin with we shall look at another example from Euclid. In 1879, Charles Dodgson, better known as Lewis
Carroll, produced a diagram exhibiting the logical interdependency of the propositions of Book I (Carroll,
1973, frontispiece). A similarly motivated but distinct diagram for Book I (and diagrams for the other books,
all inspired by the work of Ian Mueller (Mueller, 1981)) is provided in the most recent scholarly edition of
theElements(Vitrac, 1990, p. 518). Both diagrams omit some detail to maintain readability, and most of the
differences between the two can be explained as contrasted editing choices. However, there are some points
at which they are explicitly at odds. For example, for Mueller and Vitrac Proposition I.12 follows from
I.8 and I.10, whereas for Carroll I.12 follows from I.9 alone. Following Toulmin’s practice of identifying
the previously established propositions employed in a proof as its warrant, two separate layouts for the
proof of I.12 could be constructed, with distinct warrants. One possible explanation for the difference would
be that Carroll was in error, or was working from a corrupt text: Johan Ludvig Heiberg’s much improved
edition of theElementsonly became available in Greek in 1883 and in English in 1908. This text supports
Mueller/Vitrac over Carroll (Heath, 1956, Vol. 1, pp. 270 ff.). If the difference can be resolved in this way it
is obvious which layout is correct.

However, there are more persistent types of disagreement, one of which may provide an alternative
account of this difference. Any modeling process will make explicit ambiguities which had been ignored
in the original context. For example, propositional logic forces us to choose betweenA ∧ (B ∨ C) and
(A ∧B) ∨ C as formalizations of English sentences of the form “A andB or C”. We should be astonished
to find an ambiguity of this kind in thestatementsof a mathematical proof, since it would compromise
the proof in a fashion any mathematician should be expected to spot. Much less attention has been paid to
the dialectic of mathematical proofs. In rendering it explicit through the formalism of the Toulmin layout
we should not be surprised if we occasionally uncover a dialectical ambiguity: an argument which bears
reconstruction in two distinct ways. Where such ambiguities have gone uncorrected it is likely that they are
sound arguments both ways. This difference would be interesting, but benign. If one or even both of the
resolutions of a dialectical ambiguity is unsound, then the close reading required for the application of the
Toulmin layout has performed a genuine service in demonstrating that the proof is at best poorly phrased
and at worst fallacious.

A more profound sort of disagreement may arise where there is no dispute over what the proof says,
but there is a dispute over what it ought to say. Some of the best known propositions of Euclid, such as
I.5, thepons asinorum, and I.47, Pythagoras’s theorem, have many independent proofs, of which Euclid’s
is not necessarily the most rigorous, or the clearest. Presumably, the different proofs will have different
layouts, but there is no inconsistency in this. A more fundamental example from theElements, is the proof
of Proposition I.4, that two triangles are equal if they have two sides and the enclosed angle equal, which
makes use of the principle of superposition. This principle, expressed in one of Euclid’s axioms, Common
Notion 4, as ‘things which coincide with one another are equal to one another’, is used sparingly by Euclid,
and has long been suspected as too empirical in character for geometrical proof (Heath, 1956, Vol. 1, pp. 224
ff.). Many modern axiomatizations of geometry take I.4 as an axiom, not a theorem (Heath, 1956, Vol. 1, p.
249).

All of the sources of conflict considered so far reflect an ambiguity in the proof under analysis, either
because the text of the proof is in dispute, or is ambiguously expressed, or because there are multiple distinct
proofs of the same proposition. All of these cases may give rise to a choice of different layouts, but in so
doing they are faithfully reproducing an ambiguity in the source material. This is a useful service, especially
if a concealed ambiguity is brought to light. Could a mathematical proof be represented by fundamentally
distinct layouts in some other, harmful way?
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4. THE FOUR COLOUR THEOREM

Alcolea, whose analysis of a critical mathematical argument I reproduced in Section 2, also has a case study
of a regular mathematical argument, Kenneth Appel and Wolfgang Haken’s computer assisted proof of the
four colour conjecture. The conjecture states that four colours may be assigned to the regions of any planar
map in such a way that no adjacent regions receive the same colour. A partial proof published by Alfred
Kempe in 1879 was taken as decisive for a decade until the discovery of counterexamples demonstrating its
limitations. The conjecture has proved resistant to straightforward methods of proof, and in 1976 was con-
firmed by a computer assisted proof, which remains controversial in some quarters since the full details are
too protracted for human inspection. Alcolea reconstructs the central argument of the proof as a derivation
from the dataD1–D3

(D1) Any planar map can be coloured with five colours.
(D2) There are some maps for which three colours are insufficient.
(D3) A computer has analysed every type of planar map and verified that each of them is 4-colorable.

of the claimC, that

(C) Four colours suffice to colour any planar map.

by employment of the warrantW ,

(W ) The computer has been properly programmed and its hardware has no defects.

which has backingB

(B) Technology and computer programming are sufficiently reliable. (Alcolea, 1998, pp. 142f.)

We can see at a glance that the warrant and backing of this proof are very different from those of Theaetetus’s
proof. The dependence on apparently extra-mathematical methods is made explicit. Alcolea draws the moral
that the proof lacks mathematical rigour, and may even hide an unforeseen counterexample (Alcolea, 1998,
p. 143).

However, as I have argued elsewhere, this is not the only way of representing Appel and Haken’s
proof within Toulmin’s layout (Aberdein, 2005). We might also represent it as:

Given that (D) the elements of the setU are reducible, we can (Q) almost certainly claim that (C)
four colours suffice to colour any planar map, since (W ) U is an unavoidable set (on account of (B)
conventional mathematical techniques), unless (R) there has been an error in either (i) our mathematical
reasoning, or (ii) the hardware or firmware of all the computers on which the algorithm establishingD
has been run.

This analysis requires some unpacking. I have gone further into the details of the proof than Alcolea, in the
hope of making the nature of its dependency on the computer precise. The concepts of unavoidability and
reducibility originate with Kempe’s first, unsuccessful attempt to prove the conjecture. An unavoidable set
is a set of configurations—regions or clusters of neighbouring regions—such that every planar map must
contain at least one member. A configuration is reducible if it can be shown that all planar maps containing
that configuration are four-colourable. Kempe correctly demonstrated that the two-sided, three-sided, four-
sided and five-sided regions together constitute an unavoidable set. He also believed that he had shown all of
these configurations to be reducible, which would have proved the conjecture. Unfortunately, the five-sided
region is not reducible. Appel and Haken’s proof is similar in nature to Kempe’s, but much greater in scale:
they derived an unavoidable set of reducible configurations with 1,482 members. Although the set was found
by a computer search, its unavoidability could be verified by hand. However, confirmation of the reducibility
of each of its members is too formidable a task for human proof checking. Our confidence in the proof rests
on the reliability of the methods programmed into the computer.
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5. REFUTATIONS

The fundamental difference between these two layouts of the Four Colour Theorem lies in the rebuttal
component,R. Alcolea does not offer one, in accordance with Toulmin’s injunction that ‘a mathematical
inference . . . leaves no room for “exceptions” or “rebuttals”; and indeed to raise the question of possible
rebuttals would be to challenge the status of the entire argument’ (Toulmin& al., 1979, p. 254). On my
reconstruction, the rebuttal forms the largest part of the layout. What has happened here?

As the second part of this quotation from Toulmin makes clear, his account of rebuttal is not intended
to permit challenges to the soundness of the argument, but rather to index possible exceptions allowed for
by the choice of qualifier. This distinction between the different ways in which an argument may be defeated
has been developed at length in various places, often as a distinction between rebuttals and undercutters.5

Intuitively, an argument may be rebutted by offering independent reasons to disbelieve its conclusion, or
undercut by challenging its soundness. Most species of argument may be rebutted, undercut, or both. In
empirical science both defeaters occur, but as the result of very different work: an empirical study could
be rebutted by an independent study, or undercut by a challenge to its methodology. A paper which does
the former might also do the latter, but need not. Mathematics is different: proofs may be rebutted and
undercut or just undercut, but not just rebutted. Kempe’s failed proof of the Four Colour Conjecture was
undercut when counterexamples to it were discovered, but not rebutted since the counterexamples did not
challenge the conjecture, which eventually turned out to be true. Other failed proofs have been undercut and
rebutted, when it has transpired that the ‘theorem’ in question is not merely unproven but false. But this
is the only way a proof can be rebutted. While we could accept that two empirical studies had conflicting
results, despite both having sound methodologies, we could not accept that a mathematical conjecture could
be independently proven to be both true and false: at least one of the ‘proofs’ must fail.

Toulmin, however, does not admit undercutters into his layout. Hence, the only sort of defeater
he can accept is rebuttal without undercutting, which is precisely the sort of defeater which mathematical
proofs cannot have. In the light of his own definitions, Toulmin is right to say that mathematical proofs
cannot be rebutted. But should we accept these definitions? Toulmin’s motivation seems to be the thought
that an undercutter cannot be part of a regular argument, but must instead reopen the issue ‘from a new,
critical standpoint’ (Toulmin& al., 1979, p. 254). Is this what happens when a proof is undercut?

Undercutters for mathematical proofs have been described as ‘inferential gaps’ (Fallis, 2003, p. 51).
In terms of my application of Toulmin’s layout to multi-step proofs, an inferential gap would be a step in
the proof in which the data and warrant do not support the claim. The data represents the point the proof
had reached when the (first) gap arises, the claim the point from which the remainder of the proof proceeds,
and the warrant contains the mathematical results and definitions used to derive the claim from the data. The
failure of this inferential step might be attributable to the failure of the warrant. Something like this happens
when standards of rigour change, as in the criticism of Euclid’s proposition I.4 discussed in Section 3. This
would indeed open up a new critical argument. However, what is far more typical of inferential gaps is that
there is nothing wrong with the warrant—it just does not warrant the claim on the basis of the data. It may be
that the warrant needs to be supplemented, or that the claim is false, because the proof has been rebuttedand
undercut, or has simply taken a wrong turning. These are not grounds for a critical argument ‘challeng[ing]

5 What follows is loosely derived from John Pollock’s account. He offers a general definition of a defeater as “IfP is a reason
for S to believeQ, R is a defeater for this reason if and only ifR is logically consistent withP and(P ∧ R) is not a reason forS
to believeQ”, and then defines rebutting and undercutting defeaters as:

If P is aprima faciereason forS to believeQ, R is a rebuttingdefeater for this reason if and only ifR is a defeater (forP
as a reason forS to believeQ) andR is a reason forS to believe not-Q;

If P is aprima faciereason forS to believeQ, R is anundercuttingdefeater for this reason if and only ifR is a defeater
(for P as a reason forS to believeQ) andR is a reason to deny thatP would not be true unlessQ were true (Pollock, 1986,
pp. 38 f.).
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the credentials of current ideas’, but evidence of human error in the conduct of a regular argument. In the
light of this observation, it seems more helpful to treat all defeaters alike, and admit them all into Toulmin’s
layout, generalizing his conception of ‘rebuttal’.6

We can now understand the difference between the two reconstructions of the four colour theorem.
Alcolea sticks to Toulmin’s narrow account of rebuttal, and produces a reconstruction with an emphatically
non-mathematical warrant. I offered instead a layout with a mathematical warrant, but a slightly more
cautious qualifier than normal, admitting of two sources of rebuttal: human error and computer error. I
have argued elsewhere that in this case the likelihood of the former is orders of magnitude greater than
the likelihood of the latter, and that this is why mathematicians are right to regard the proof with as much
confidence as they do more orthodox proofs (Aberdein, 2005).

The underlying problem here is that of rational reconstruction, a familiar one in the history and
philosophy of mathematics. Mathematical textbooks unselfconsciously rewrite the proofs of past mathe-
maticians, happily introducing anachronistic notation and standards of rigour. Historians try to be more
sensitive, but there is often a tension between doing justice to the context of discovery, by reproducing the
twists and turns which led to the result, and doing justice to the context of justification by providing a sound
proof (Ṕolya, 1968, p. 159). This tension provides sufficient room for substantive disagreement about how
best to reconstruct contentious proofs. Toulmin’s layout may bring these disagreements into sharper focus,
but it can hardly be blamed for them. As with the simpler sources of ambiguity discussed in Section 3, the
layout’s capacity to represent proofs in different ways turns out not to be a handicap, but perhaps its most
valuable feature.
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