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Quantum theory of longitudinal momentum transfer in above-threshold ionization

A. S. Titi* and G. W. F. Drake†

Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
(Received 29 January 2012; published 23 April 2012)

In the ionization process, longitudinal momentum along the direction of propagation is transferred to the
photoelectrons due to the action of the magnetic component of Lorentz force. In a recent experiment by Smeenk
et al. [Phys. Rev. Lett. 106, 193002 (2011)], such a transfer is observed in the ionization of argon and neon atoms
by circularly polarized light at 800 and 1400 nm in the intensity range of 1014–1015 W/cm2. They accounted
for the results by a purely classical model. We present a fully quantum-mechanical calculation of the transfer
of longitudinal momentum to the photoelectrons. The results are in agreement with the observations of Smeenk
et al. at high intensities, but clear evidence for additional Coulomb interactions emerges at low intensities.

DOI: 10.1103/PhysRevA.85.041404 PACS number(s): 32.80.Rm, 32.80.Wr

In the multiphoton ionization of atoms by a strong light
field, several photons are absorbed, resulting in the transfer of
the photon energy, linear and angular momenta to the electron-
ion system. Due to the smallness of the linear momentum
of a single visible photon, it is usually neglected. Recently,
however, the transfer of the photon linear momentum was
clearly observed in the experiment of Smeenk et al. [1]. It
is also known that a large number of photons can produce
the macroscopic effect of radiation pressure [2,3]. Recently,
the photon linear momentum transfer to the photoelectron,
i.e., radiation pressure, has been invoked to account for the
generation of terahertz radiation emitted by laser-generated
filaments [4–6]. Motivated by the observations of Smeenk et al.
[1], we present within the single active electron approximation,
a theoretical formulation for the simultaneous transfer of both
the photon linear and the angular momentum in the ionization
process. We then restrict attention to the transfer of photon
linear momentum.

In the dipole approximation, the expression eik·r = 1 +
ik · r + · · · is replaced by unity when the radiation wave-
length is large compared with a length characteristic of the
system. Here, k is the radiation-field propagation vector.
This makes the vector potential A space independent. To
obtain longitudinal momentum transfer effects, a nondipole
formulation is required. We start with the exact expression
for the time-reversed transition amplitude from a ground state
φi to a final continuum state �−

f [7] (atomic units are used
throughout),

(S − 1)fi = −i

∫ ∞

−∞
dt〈�−

f |VLφi〉. (1)

The final state �−
f is the solution of the time-dependent

Schrödinger equation for an atomic electron interacting with
a laser field,

(i∂t − H0 − VL − VA)�−
f (r,t) = 0. (2)

Here, H0 is the free Hamiltonian, VA is the atomic Coulomb
potential, and VL = 1

c
A(ϕ) · P̂ + A(ϕ)2

2c2 is the atom-laser in-
teraction Hamiltonian where P̂ = −i∇ is the momentum
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operator and A = A(ϕ) with ϕ = k · r − ωt is the vector
potential of the laser field.

To solve Eq. (2), we carry out the Henneberger unitary
transformation to the oscillating frame [8]. Let

�−
f = e−i

∫ t
dτ VL(τ )� = e−(iα·P̂+U )�−

f , (3)

with

α = 1

c

∫ t

dτ A(τ ) = −β

ω
, β = 1

c

∫ ϕ

A(ϕ′)dϕ′, (4)

U =
∫ t

dτ
A2(τ )

2c2
= − 1

ω

∫ ϕ

dϕ′ A
2(ϕ′)
c2

≡ − 1

ω
[U1(ϕ) + ϕUp], (5)

where Up = I/(4ω2) is the ponderomotive energy, I is the
intensity, and U1(ϕ) is a periodic function in ϕ.

In the oscillating frame, �−
f is the wave function for an

electron in an oscillating Coulomb center. For low-frequency
laser fields, as is the case in the experiment of Smeenk et al. [1],
the oscillating Coulomb center can be considered quasistatic,
and therefore, �−

f is given approximately by a Coulomb
scattering state wave function �−

A,p,

�−
f ≈ �−

A,p = eπa/2
(1 + ia)

(2π )3/2 1F1(−ia,1,−i(p · r + pr))

×eip·r−iEpt , (6)

where Ep = p2/2, a = Z/p, and Z is the effective atomic
core charge. Substituting Eq. (6) into Eq. (3), then the final-
state wave function �−

f is

�−
f ≈ e−i

∫ t
dτ VL(τ )�A,p ≈ e−i(α·P̂+U )�−

A,p. (7)

As we see, embedded in the final-state wave function as
given by Eq. (7) is a dependence on pz. Moreover, it treats
both the laser field and the Coulomb potential on equal footing
and, therefore, provides the most accurate account of Coulomb
effects in the final state. The recently observed low-energy
structures [9] and the observed shifts in the two-dimensional
momentum distributions in the polarization plane [10,11],
which are due to Coulomb effects, can be accounted for by
using the final-state wave function given by Eq. (7) [12,13].
The accurate representation of the Coulomb potential in the
final state comes with a price. The analytical evaluation of
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the transition amplitude given by Eq. (1) becomes more
difficult. This is because the Coulomb scattering state wave
function �−

A,p is not an eigenvector of the operator e−i(α·P̂+U ).
We begin by writing �A,p(r) = (2π )−3/2

∫
dq eiq·r�̃A,p(q)

and �i(r) = (2π )−3/2
∫

dq eiq·rφ̃i(q). Due to the transversality
condition (k is perpendicular to both A and α), the plane wave
eiq·r is an eigenvector of VL and e−i

∫ t
dt ′VL(t ′). Using Eqs. (4)

and (5) and the Fourier components introduced above, Eq. (1)
reads

(S − 1)fi

= −i

∫ ∞

−∞
dt

∫
dq

∫
dq′

∫
dr

eiETt

(2π )3
�̃∗

A,p(q)φ̃i(q′)

× exp

[
−i

Up

ω
(k · r − ωt)

]
exp

{
− i

ω
[β(ϕ) · q + U1(ϕ)]

}

×VL(q′,ϕ)ei(q′−q)·r, (8)

where ET = Ep + EB and EB is the ground-state binding
energy. Now, exp{− i

ω
[β(ϕ) · q + U1(ϕ)]}VL(q′,ϕ) is periodic

in ϕ with a period 2π . Thus, we write exp{− i
ω

[β(ϕ) ·
q + U1(ϕ)]}VL(q′,ϕ) = ∑

n an(q,q′) einϕ with the Fourier

components an(q,q′) = 1
2π

∫ 2π

0 exp{− i
ω

[β(ϕ) · q + U1(ϕ)]
− inϕ}VL(q′,ϕ)dϕ. With the definitions �(n) = nω − Up and
k̃(n) = 1

ω
�(n)k, the expression for the transition probability

then reads

(S − 1)fi = −i
∑

n

∫ ∞

−∞
dt

∫
dq

∫
dq′

∫
dr

ei(ET−�(n))t

(2π )3

× �̃∗
A,p(q)φ̃i(q′)an(q,q′)ei[q′−q+k̃(n)]·r. (9)

The temporal and spacial integrals yield the energy-conserving
δ function 2πδ(ET − �(n)) and the linear momentum conserv-
ing δ function (2π )3δ(q − q′ − k̃(n)), respectively. Using the
transversality condition and integrating by parts gives an(q′) =
−�(n)

2π

∫ 2π

0 dϕ exp{− i
ω

[β(ϕ) · q′ + U1(ϕ) + nϕ]}. Thus, the
expression for the transition amplitude becomes

(S − 1)fi = −2πi
∑

n

δ(ET − �(n))
�(n)

2π

∫ 2π

0
dϕ

× exp

{
− i

ω
[U1(ϕ) + nϕ]

} ∫
dq′�̃∗

A,p(q′ + k̃(n))

× φ̃i(q′)eiα·q′
, (10)

where we used α = −β/ω. Now, �̃A,p(q) is the Fourier
transform of the Coulomb scattering state, which, as a limiting
process, can be evaluated as a Nordsieck integral [14], thus,
yielding

�̃∗
A,p(q) = −
(1 − ia)eπa/2

2π2
lim
λ→0

∂

∂λ

1

(p − q)2 + λ2

×
[

q2 − (p − iλ)2

(p − q)2 + λ2

]−ia

(11)

evaluated at q = q′ + k̃(n). The value of the integral over q′ in
Eq. (10) is mainly determined by the poles of the integrand. The
poles are q ′ = |p − k̃(n)| + iλ and q ′ = iZ. Moreover, due to
the damping of the eiq′ ·α term in the integral, the contribution
due to the pole q ′ = |p − k̃(n)| + iλ is larger than the pole

q ′ = iZ. Furthermore, if we carry the process of differentiation
with respect to λ, we get a leading term which is identified as
a Dirac δ function, namely, limλ→0

1
π2

λ
[(p−q)2+λ2]2 = δ(p − q).

Therefore, the value of the above integral is largely due to
the pole q′ = p − k̃(n), and φ̃i(q′) is taken outside the integral
and is evaluated at q′ = p − k̃(n). Consequently, it is easy to
see that the integral over q′ equals (2π )3/2�

(−)
A,p(α). Therefore,

Eq. (10) now reads

(S − 1)fi = 2πieπa/2
(1 + ia)
∑

n

δ(ET − �(n))

× �(n)

2π
φ̃i(p − k(n))

∫ 2π

0
dϕ ei[p·α(ϕ)+U1(ϕ)+nϕ]

×1F1(−ia,1,−i[pα(ϕ) + p · α(ϕ)]). (12)

The probability amplitude as given by Eq. (12) is consistent
with the simultaneous transfer of linear and angular momenta
[12,13].

Smeenk et al. [1], on the basis of classical physics, obtained,
for the net longitudinal momentum after the pulse has passed,
pz = Ep/c. We interpret their result as coming from two con-
tributions. The first is due to a constant magnetic-field Lorentz
force (constant pulse envelope), representing the forward
momentum due to radiation pressure on the photoelectron.
The second contribution comes from the Lorentz force due to
the gradient of the pulse envelope, which results in a negative
force as the pulse passes over the electron. It removes part of
the forward momentum due to radiation pressure and transfers
it to the center of mass of the electron-ion system. The sum of
both contributions gives a net pz = Ep/c. The results of our
numerical calculations will prove this assertion. Of course,
to compare the results of our numerical calculations with the
experimental results of Smeenket al. [1], the pulse envelope
has to be taken into account via the space-time average over
the focal volume. This focal volume averaging, as we see, does
account for the Lorentz force due to the pulse envelope. In the
ionization process by a circularly polarized light field, unlike
the transfer of angular momentum, Coulomb effects for a first
approximation can be ignored in the transfer of longitudinal
momentum and are disregarded in our numerical calculations.
To this end, using Eq. (12) and ignoring Coulomb effects, the
ionization rate per unit of longitudinal momentum at a constant
intensity is

dW (I )

dpz

=
∞∑

n=n0

32Z5�(n)2
J 2

n

[
2
ω

√
Up

(
�(n) − EB − p2

z

2

)]
[
Z2 + 2(�(n) − EB) + �(n)2

c2 − 2
c
�(n)pz

]4
,

(13)

where n0 is the minimum number of photons required for
threshold ionization. Since dW/dpz is not an even function
of pz, then

∫ ∞
−∞ dpz

dW
dpz

pz 
= 0, implying a net longitudinal
momentum transfer (see Fig. 1).

For the case of ionization by a linearly polarized laser, the
Bessel function in Eq. (13) is replaced by a generalized Bessel
function. This implies that linearly and circularly polarized
pulses will transfer very different longitudinal momenta to
the photoelectron. (In circular polarization, photoelectrons are
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FIG. 1. (Color online) Number of electrons, in relative units,
according to Eq. (13) for Ne in circularly polarized light at 800 nm and
I = 8 × 1014 W/cm2. The curve resembles a Gaussian distribution
with a small offset of the center due to photon linear momentum (cf.
Fig. 1 of Smeenk et al. [1]).

more energetic, Ep ≈ Up, than those of linear polarization
where Ep is in the vicinity of the threshold.)

In the following, we confirm that the net longitudinal mo-
mentum transferred pz = Ep/c. From Eq. (12), the ionization
rate per unit energy to detect an electron, at constant intensity,
is

dW̄ (I )

dEp
= 32Z5

∞∑
n=n0

δ(ET − �(n))
√

2Ep

∫ π

0
dθ

× sin θ�(n)2
J 2

n

(
2
ω

√
UpEp sin θ

)
[
Z2 + 2Ep + 1

c2 �(n)2 − 2
c
�(n)

√
2Ep cos θ

]4 ,

(14)

where θ is the angle between p and k and Up = I
4w2 . For a

Gaussian pulse envelope, as in the case of the experiment of
Smeenk et al. [1], the intensity distribution within the focal
volume is [15]

I (ρ,z)

I0
=

(
ω0

ω(z)

)2

exp[−4 ln(2)(z − ct)2/(c2τ 2)

− 2ρ2/ω(z)2], (15)

where ω(z) = ω0[1 + (z/z0)2]1/2, ω0 = √
λz0/π is the

Rayleigh range, and τ is the temporal full width at half
maximum in intensity. The focal volume consists of surfaces
of constant intensity. The differential volume element is a
shell between two surfaces of constant intensity I and I + dI .
Atoms lying within a given differential volume element
are ionized at a constant intensity I . Then, within the focal
volume, the total number of electrons generated per unit of
energy is

dN

dEp
= 2πτρdz0ω

2
0

∫ I0

0

dI

I 5/2

√
I0 − I

dW̄ (I )

dEp

×
∫ 1

0
dη[I + (I0 − I )η2]

[
ln

I0

I + (I0 − I )η2

]1/2

,

(16)

where ρd is the atomic density. If Nt = ∫ ∞
0 dEp

dN
dEp

denotes
the total number of electrons with energy Ep � 0, then the

Iav (1014 W/cm2)

p
z

(a
.u

.)

Ar(1400) Ne(800)

Ar(800)

FIG. 2. (Color online) Solid curves: the results of theoretical
calculations with focal averaging and dashed curves: without focal
averaging superimposed on the experimental data (circles) of Smeenk
et al. [1]. The upper: blue, middle: black, and lower: red curves are
for Ar at 1400 nm, Ne at 800 nm, and Ar at 800 nm, respectively.

average kinetic energy of electrons is

Ēp = 1

Nt

∫ ∞

0
dEpEp

dN

dEp
=

∫ ∞
0 dEpEp

dN
dEp∫ ∞

0 dEp
dN
dEp

, (17)

where dN
dEp

is given by Eqs. (16) and (14).
In Fig. 2, the results of the theoretical calculations for pz

versus the average intensity at ionization Iav are superimposed
on the experimental data of Smeenk et al. [1]. The values used
for the binding energy are 21.5645 eV for Ne and 15.7596 eV
for Ar. The dashed curves are the results of the calculations
without focal averaging. In this case, it is clear that the dashed
curves are well above the experimental data. This implies that
the Lorentz force due to a constant pulse envelope alone does
not account for the experimental data. The solid curves are
the results of the calculations, including the focal volume
averaging.

The agreement between theory and experiment is satis-
factory in the case of Ar at 1400 nm (upper curve) and
Ne at 800 mn (middle curve), but the experimental points
fall progressively below theory for Ar at 800 nm (lower
curve), especially in the intensity range of 1 × 1014 to 1.5 ×
1014 W/cm2 where the experimental data exhibit a negative
pz. Thus, we conclude from the first two comparisons that
the focal volume averaging accounts for the Lorentz force due
to the gradient of the pulse envelope, producing a negative
force counteracting the force due to a constant envelope. We
attribute the poor agreement in the case of Ar(800) to Coulomb
effects, which are neglected in the numerical calculations. As
discussed by Reiss [7], Coulomb effects can be neglected
provided that the intensity parameter z1 = 2Up/EB satisfies
the condition z1 > 1. The actual values at the lowest intensity
I = 1 × 1014 W/cm2 in Fig. 2 are z1 = 2.322 for Ar(1400)
where agreement is good but z1 = 0.758 for Ar(800) where
agreement is poor. For Ne(800), z1 = 1.66 at the lowest
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measured intensity point of 3 × 1014 W/cm2 in harmony
with satisfactory agreement at higher intensities. However,
z1 would decrease linearly with intensity to only z1 = 0.553
at I = 1 × 1014 W/cm2. One would, therefore, expect to see
similarly significant deviations for Ne(800) at low intensities.
There may be some evidence for this at the low-intensity end in
Fig. 2. Further measurements for Ne(800) in the low-intensity
range would be very useful.

The results for Ar(800), thus, demonstrate the influence
of Coulomb effects at low intensities and especially, the
negative values of pz. The inclusion of Coulomb effects in
the numerical calculations would account for the attractive
Coulomb force along the z direction and would explain
negative values of pz. Similar to the low-energy structures
recently observed in ionization by linearly polarized light [9],
we believe that the experimental data for Ar(800) at low
intensities provide evidence of Coulomb effects in ionization
by circularly polarized light. This will be investigated further
in a future paper.

In conclusion, we have presented a quantum formulation
for the transfer of longitudinal momentum in the ionization
process. Nondipole effects account for the Lorentz magnetic
force due to a constant envelope, thus, giving rise to the
radiation pressure, which is the essential mechanism for the
transfer of longitudinal momentum. However, this by itself
is not sufficient to account for the experimental data. At
high intensities, the combined effect of both the nondipole
corrections and the pulse envelope accurately account for the
experimental data. In this limit, we have demonstrated the
validity of the assertion that pz = Ep/c. At low intensities,
where Coulomb effects cannot be ignored, pz is evidently
reduced by the work performed against the attractive Coulomb
force along the z axis and may even become negative.

We are grateful to Dr. Paul Corkum for drawing our atten-
tion to this problem. Research support by the Natural Sciences
and Engineering Research Council of Canada, SHARCNET,
and Compute/Calcul Canada is gratefully acknowledged.
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