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PHYSICAL REVIEW A, VOLUME 65, 054501

Ground-state energies for helium, H, and Ps

G. W. F. Drake, Mark M. Cassar, and Razvan A. Nistor
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
(Received 12 November 2001; published 15 April 2002

A triple basis set in Hylleraas coordinates is used to obtain improved variational bounds for the nonrelativ-
istic energy and other properties of He; Hand PS. The accuracy, numerical stability, and computational
efficiency are compared with recent work based on quasirandom basis sets. The Kato cusp conditions are used
to assess the accuracy of the wave functions at short distances.

DOI: 10.1103/PhysRevA.65.054501 PACS nuntber31.15.Pf, 31.25.Eb

[. INTRODUCTION The purpose of this Brief Report is to extend our previous
results for double basis sets in Hylleraas coordinpt€s13]
Calculations of the ground-state energies for helium, H to triple basis sets. For sufficiently large basis sets, it be-
and PS by variational and other means continue to providecomes advantageous to include each combination of powers
benchmark tests of the relative accuracies and efficiencies ¢f,j,k} in Eq. (1) three times with three independently opti-
various methods of calculation. Traditionally, the best resultsnized sets of exponential scale factors. This strategy yields
have been obtained by variational calculations in Hylleraabetter convergence and lower eigenvalues for a given size of
coordinates in which the trial wave function is written in the basis set than simply increasigy to include more powers.
form The result is a new lowest upper bound for the ground state
of three-body systems.

ritk=a - The stability and computational efficiency of the method
W(ry,ra)= Ek Qjjl 1 51 18X —ary— Bro) will be compared with the quasirandom method. The Kato
hh cusp conditions will be used to test the accuracy of the wave
+ (exchangg, (1) function itself at short distances. As has recently been dis-

cussed 18], an accurate variational energy does not neces-
wherer ;,=|r;—r,| is the interelectron coordinate, tfag sarily guarantee an accurate wave function at short distances
are linear variational parameters determined by matrix diagofor the calculation of relativistic and QED effects.
nalization, ande and 8 are nonlinear scale factors that can
be s.,eparaftely vgried to minimize the energy. The.size of.the Il. CALCULATIONS
basis set is typically controlled by progressively increasing
the value ofQ). Calculations of increasing size and sophisti- For a triple basis set, the complete trial function becomes
cation(sometimes including logarithmic terms and fractional
powers have been done by many authors since the early  W(ry,r;)=aggo(Z,r1) po(Z—1r,)

days of quantum mechani¢d—13], resulting in progres- 3 itj+k=0

sively lower upper bounds on the ground-state energy. The n 2 2 Pl k

best results so far have been obtained with “double” basis = T ijk7172712

sets in which each combination of powgrsj,k} is included

twice with different exponential scale factoes;, 8, and xexp(—aPry— BP)r,) + (exchangg, (3)
az, B2 [10].

There has recently been considerable interest in a rath&¥here the sum ovep covers the three sets of nonlinear pa-

different kind of trial function which can be expressed in therametersa®, g1, o, g and o), G for the
form [14-17] asymptotic, intermediate, and short-range sectors, respec-

tively. The screened hydrogenic term for nuclear chatge

N included for completeness on the right-hand side since it is
W(ry,ry)= 2 aiexp(—air 1= Bir ;= il 1) important for Rydberg states. However, it makes little differ-

' ence for the ground state of helium, and it must be omitted

+ (exchangg, (20 for the negative ions where it is not defined.

If all terms withi+j+k=<( were included in each sec-

where{a;, B;, v} are triplets of numbergéincluding com-  tor, then the number of terms per sector would ke (
plex ;) that are chosen in a quasirandom fashion. The resuft 1)(2+2)(€2+3)/6. However, since the optimized
is a kind of Monte Carlo calculation with a random distribu- @™, 8P pairs are nearly equal, terms with<j can and
tion of exponential scale factors and no powers of the radiaghould be omitted in order to preserve numerical stability.
coordinates at all. Recent refinements to the quasirandorhhe number of terms in theth sector having) = is then
distribution of scale factors have yielded an improved uppethe integer closest to

bound to the ground-state energy of various three-body sys-

tems[16]. N(Qp) = 55(Qp+1)(Qp+ 1) (Q,+3) (4

1050-2947/2002/65)/0545014)/$20.00 65 054501-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW A 65 054501

TABLE I. Convergence study for the nonrelativistic energy of H — EQ=0, whereH is the Hamiltonian matrix an® is the
the ground state ofHe (infinite nuclear mags () is the highest overlap matrix. The matrix elements bf can be easily cal-
power in the tr_iple l_:)asis set, arid is the total number of terms. o 5ted from the explicitly Hermitian form given by Eq.
Units are atomic units. (11.33 of Ref. [20]. The optimization of thex, B(P) is
efficiently accomplished by simultaneously calculating the

e N E() Ratid® energy derivatives

8 269 —2.903724 377029560058 400

9 347  —2.903724 377 033543 320 480 JE _ (V|(H=E)ry|¥®) "

10 443  —2.903 724377 034047 783 838 7.90 ga® (v|w) ’ ©

11 549 —2.903724377 034104634696 8.87

12 676 —2.903724377034116 928328 4.62 whereW® denotes the part of the wave function that de-
13 814 —2.903724377034119224401 5.35 pends explicitly ona®, and similarly for thes® deriva-

14 976 —2.903724 377034119539 797 7.28 tive. There is no contribution from terms arising from
15 1150 —2.903 724 377 034 119 585 888 6.84 daP/aal® or sa/ap® because of the variational stabil-
16 1351 —2.903724 377034119596 137 450 ity of the wave function. The final step is then to change the
17 1565 —2.903 724377 034119597 856 506 aPsandBPs in the directions indicated by the derivatives,
18 1809 —2.903724 377034119598 206 4.90 resolve the generalized eigenvalue problem, recalculate the
19 2067 —2.903724377034 119598 286 4.44 derivatives, and locate their zeros by Newton’s method.

20 2358 —2.903724 377034119 598 305 4.02 All calculations were done in quadruple precisi@bout
Extrap. —2.903 724 377034 119 598 311(1) 32 decimal digit arithmetic on a Compag alpha workstation.
b 2200 —2.903724 377 034 119 598 296 For the largest basis setabout 2300 terms a complete

c ~2.903 724 377 034 119 598 306(10) iteration, incuding the galculanon of derivatives, takes about
d 8066 —2.903 724 377034 110 593 82 1 h. Since good starting values for thép) and BP are

e 24497 —2.903 724377034119 589(5) a!ways available fror_’n previous calculayons with smaller ba-
f 476 —2.903 724377 034 118 4 sis sets, only a few iterations are required.

®Ratio is the ratio of successive differencEE(Q—1)—E(Q . RESULTS

—2)IE(Q)~E(Q-1)]. Tables I, Il, and 11l show the convergence pattern for the

b . .
Korobov variational bound16]. ground states ofHe, “H™, and Ps, and comparisons with

. :
Korobov extrapolatiori 16]. other calculations. The numbers in the last column of each

d . .
Goldman variational boun{2]. table give the values of the ratios of successive differences
®Burgerset al. variational bound11]. defined by

fBakeret al. variational bound7].

E(Q-1)-E(Q-2)
for both even and od€,. In addition, we employed a form R(Q)= EQ)—EQ=1) (7)
of truncation first suggested by Kono and HattftB] in

which terms withi +j +k+[i —j|>Q, andk=k are omitted I R(Q) were a constant, then the series would be a geomet-
in sectors 2 and &he intermediate and short-range segtors ric series with the limit

This is not an absolute truncation—the omitted terms even-

tually reappear a€) increases. With the defi_niticﬁfﬂp E(oe) = E(Q) + E(Q)-E(Q-1) . ®

—k, the number of terms omitted for a givéh, is R-1

Since the actual values &{((1) show some scatter and tend
to decrease witl), we fit them to the functional forra/QP
#(Qp+1)(Qp+2)(Q,+3) for Q, odd. and sum the series of differences numerically to obtain the
(5)  extrapolated value. The uncertainty is derived from the un-
certainty in the values of the fitting parameters&ndb. In
For helium, we sef);=Q,=0;= and, after some experi- each of the three cases, the largest basis set gives the lowest

mentation, found that one can det 4 without significantly ~upper bound obtained so far, and the extrapolated result is
affecting the convergence. The total number of terms for thénore accurate than Korobov's res{ii6] by about an order
triple basis set is theig=3N(Q)—2N(Q—4). For H- of magnitude. However, it is satisfying that all the results
and Ps we found that troélatively few terms aré needed inadree to within their estimated accuracies, even though they

— ) were obtained with quite different strategies for the construc-
sector 3, but that should be increased to 7. We therefore Settion of basis sets. q g

0;=0,=0Q, 03=0-8, andk=7. The total number of The complete wave functions can be immediately regen-

terms is then RI(Q)+N(Q—-8)—N(Q—-7)—N(Q—15). erated from the values of the optimized scale factdP$ and
Having constructed the basis set, the principal computag® listed in Table IV for “He and PS. The optimization

tional step is to solve the generalized eigenvalue problenproduces a natural partition of the basis set into three distinct

— | #0,Q,+2)(Qp+4) for 0, even
N(Qp)=

054501-2
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TABLE Il. Convergence study for the nonrelativistic energy of ~ TABLE IV. Optimized scale factors fofHe and Ps. Units are
*H™ (infinite nuclear mags Units are atomic units. nZl(mag), whereay is the Bohr radius?Z is the nuclear charge, and
w is the reduced electron mass.

Q N E(Q) Ratio

QoD gL a® B a® Bg®
10 324 —0.527 751016537 120298 160
11 411 —0.527 751016543 123297 506 “He
12 512 —0.527751016544 190011531 5.63 8 121777 1.20001 1.85016 1.97943 4.25238 4.31299
13 630 —0.527 751016544 351 706 935 6.60 9 1.23688 1.19568 2.18250 1.99695 6.10187 5.00238
14 764 —0.527751016 544 373661 892 7.36 10 1.23962 1.21820 2.44611 2.13763 5.86517 5.93225
15 918 —0.527751016 544 376556 281 7.59 11 1.27502 1.22772 2.61005 2.26721 6.40723 6.43719
16 1089 —0.527751016544 377083777 549 12 1.29248 1.23926 2.75348 2.45520 6.89081 6.89404
17 1283 —0.527751016 544377 173 607 5.87 13 1.31207 1.23779 3.06598 2.57349 9.14484 9.16608
18 1495 —0.527751016544 377191103 5.13 14 1.32660 1.28516 2.88397 3.17126 11.19373 11.80603
19 1733 —0.527751016544 377 195175 430 15 1.34479 1.28821 2.96136 3.41583 12.26294 12.34119
20 1990 —0.527751016544 377 196 198 3.98 16 1.36322 1.28998 3.10455 3.79791 14.28326 15.38464
21 2276 —0.527 751016 544 377 196 503 3.34 17 1.38293 1.30011 3.30933 4.07678 17.85199 18.23389
Extrap. —0.527 751 016 544 377 196 613(22) 18 1.38538 1.29974 3.45605 4.36401 19.09064 21.02399

19 1.40027 1.29938 3.86536 4.67114 22.55658 24.47534

) 1 1 o . 20 1.46490 1.32837 3.99603 4.77319 25.82043 26.85577
distance scales with?), B(Y) describing the asymptotic be- Ps

havior of the wave functiona®, g®) the intermediate 1, 93016 058521 1.80109 182599 732904 8.99072
range behavior, and®, B the short-range behavior. Note 11 (99719 058942 181085 207086 630688 820807
that the latter two continue mcreasmg approximately linearly, 1'024 35 0'603 03 1'884 29 2'074 95 7'436 29 5'615 36
with Q such that the function®exd —a(Q)r] peaks at about 1'037 a1 0.604 80 1.963 75 2.263 43 8'901 18 8'781 13
”}ef sante d'Sta”“‘ET %/]“(Qgt’ ”}depe”de”ém'.Thesg Sfts ol4 103558 0.60773 221021 2.29553 9.50635 9.43018
of functions can be thought of as spreading INwards ‘0 €y, 4ee g1 061078 2.23547 2.36737 11.44220 11.43518

scribe complex correlation effects at progressively shorte 106787 0.61237 245520 231769 1156488 1155054
distance scales. This linear increase withis essential in ) : ' ' : :
1.09808 0.61987 2.48291 2.35236 11.46637 11.70068

order to avoid problems with numerical linear dependence i

the basis set. Provided that this precaution is observed, i 1.11371 0.63000 2.56525 2.49872 13.62488 14.22284
method has good numerical stability with standard quadruplé® 1.16467 0.64319 2.80725 261176 15.99127 15.81677
precision arithmetic. In comparison, the quaswandomzo 1.15796 0.64001 2.80731 2.71350 15.77960 16.35992
60-figure extended precision arithmetic in order to maintair?2 1.19226 0.66333 2.86182 2.87915 17.55219 18.03955
numerical stability.

TABLE lll. Convergence study for the nonrelativistic energy of ~ The Kato cusp conditions provide a useful test of the ac-
Ps”, with mass polarizatio(specific mass shifincluded. Units are  curacy of the variational wave function near the electron-

atomic units. electron and electron-nucleus coalescence points. With the
definition

Q N E(Q) Ratio

10 324 —0.262 005070 206 699 500 141 (e (atary)) ©

11 411 —0.262 005 070 227 775 783 440 ! (8(rij))

12 512 —0.262 005070232 069 520 272 4.91

13 630 —0.262 005 070 232 832 810 937 5.63 the exact cusp values afe2]

14 764 —0.262 005070232959 187 559 6.04

15 918 —0.262 005070232977 195563 7.02 0= qiq m;m; (10)

16 1089 —0.262005070232979519 328 7.75 " P+ mJ

17 1283 —0.262 005070232980 001 224 4.82

18 1495 —0.262 005070232 980 080 426 6.08 whereq; andq; are the charges amd; andm; the masses of

19 1733 —0.262 005070232980 101 597 3.74 the particles. The quantit€;;=1— v, /v(JO) then measures

20 1990 —0.262 005070232980 106 481 4.33 the relative departure of the calculated value from the exact

21 2276 —0.262 005 070232980107 412 5.25 value. The results for the electron-nucleus cusp @gg

22 2528 —0.262 005070232980 107 627 4.33 =0.1, 0.9, and 2 pplparts per billion for He, H™, and Ps,

Extrap. —0.262 005 070 232 980 107 696(12) respectively. For the electron-electron cusp, the values are

Korobov[16] —0.262 005070232980 107 4 Ce=8, 100, and 200 ppb, respectively. The values for Ps

Extrap.[16] —0.262 005 070 232 980 107(3) are about a factor of 100 smaller than those reported by

Frolov [23]. They indicate that the present wave functions

054501-3
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TABLE V. Expectation values of various operators for Fa

atomic units.

Operator Expectation value
(1hr2) 0.279 326 542 225 016)

(1l ) 0.339 821 023 059 220 362b)
(rqy) 5.489 633 252 359 44877)
(r3) 48.418 937 226 238(5)

(1ir2)) 0.036 022 058 454 5770)
(1hr 1) 0.155 631 905 652 480 4(b)
(rip) 8.548 580 655 099 1827)
(r3, 93.178 633847 981(4)

(ry-ry) 1.829 620302 247 299)

(1l 41 5) 0.060 697 690 288 582 15
(1hr 11 1) 0.090 935 346 529 989 42E3)
(8(ry)) 0.020 733 198 005 1653)
(8(r9)) 0.000 170996 756 7120)
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curacy of recent calculations for three-body systems based
on quasirandom Monte Carlo methods, while using basis sets
of about the same size. The excellent numerical stability re-
sulting from the use of multiple basis sets obviates the need
for extended precision arithmetic beyond standard quadruple
precision, at least up to current levels of accuracy. In addition
to its numerical stability, the current method is computation-
ally much more efficient than the “booster” form of the qua-
sirandom method recently employed by Froldv], and it
provides a well-defined convergence pattern that can be used
to assess the accuracy of the results. In addition, the small
table of optimized scale factors in Table IV provides suffi-
cient information to regenerate the entire sequence of pro-
gressively larger wave functions.

The 22-figure accuracy of the present nonrelativistic ei-
genvalues of course goes well beyond the accuracy war-
ranted by the uncertainty in the Rydberg constant itself.
However, this extraordinary accuracy is a consequence of the
variational stability of the energy eigenvalue. As illustrated

are well suited to the calculation of expectation values forby the Kato cusp conditions, other quantities are typically
the highly singular operators appearing in relativistic andaccurate to less than half as many significant figures, and it is

QED corrections.

for the determination of these and other quantities related to

Finally, the expectation values of various operators areelativistic and QED effects that the present results are physi-
listed in Table V for PS, including their uncertainties ob- cally important.
tained from the convergence pattern with increadingin
several cases, the last one or two figures quoted by Frologalcuations for helium by V.I. Koroboyunpublished and
[23] are in disagreement with the present results. However.H. Sims and S.A. Hagstrotmnpublishedl The former ob-
no uncertainty estimates are given by Frolov. A similar tabletains an improved variational bound by extending the work

of high precision expectation values f6iHe and “H™ has

been published previous[y0].

IV. DISCUSSION

Note added in proofVe have recently learned of two new

in [16] to larger basis sets.
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