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Lifetime of the 2p state in He 11

G. W. F. Drake*
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

J. Patel and A. van Wijngaarden
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
(Received 29 July 1983)

When a beam of spin-polarized metastable He*(2s,,,) ions is quenched by an electric field E, the

emitted radiation intensity contains an asymmetry term proportional to (k-E)B-k X E), where P is

the spin-polarization vector and k is the direction of observation. The resulting asymmetry is nearly

proportional to the level width of the 2p,, state in He®.

The measured asymmetry

0.007 602 7+0.000020 3 corresponds to a lifetime 75, =(0.9992+0.0026) X 10~° sec, in fair agree-
ment with the theoretical value 75, =0.9972 X 10~ sec.

I. INTRODUCTION

Although the lifetimes of hydrogenic energy levels can
be calculated from first principles to high precision, there
have been no experimental checks at significantly better
than the +1% level of accuracy.! The purpose of this pa-
per is to report a measurement of the 2p lifetime in He™
at the £0.26% level of accuracy. The result provides the
most precise test of theory to date in an atomic system
where the theoretical lifetime is accurately known. The
method of measurement is closely related to the anisotro-
py method of measuring the Lamb shift as discussed pre-
viously.>3 The present experiment is sensitive to the
width of the 2p state, rather than the Lamb shift.

The results have a direct bearing on the recent high pre-
cision (+0.1%) measurements of lifetimes in neutral Li
and Na by Gaupp et al.* Their values are about 0.8%
larger than the best theoretical calculations. Assuming
that their experimental values are correct, the agreement
with theory obtained in the present experiment suggests
that the source of the discrepancy lies in the accuracy of
the many-electron wave functions used for Li and Na,
rather than basic radiation theory.

The method of measurement uszd in the present work is
novel in that it exploits an interference effect in the elec-
tric field quench radiation of a beam of spin-polarized
He* ions in the metastable 2s,,, state. The angular dis-
tribution of the Stark-induced Ly-a quenching radiation
possesses an anisotropy of about 1.5% which is propor-
tional to the level width I" of the 2p state. The experi-
ment, therefore, consists of measuring an intensity ratio in
two perpendicular directions at a single point along the
ion beam, rather than measuring an exponential decay
curve as a function of position along the beam. Thus the
accuracy is not limited by unknown cascade contributions
or beam-bending effects, as is sometimes the case in
beam-foil measurements of atomic lifetimes.

In the following section, the theory of angular distribu-
tions of Ly-a quenching radiation and its relationship to
the 2p-level width is briefly reviewed. This is followed by
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Secs. III and IV dealing with the experimental details and
the analysis of systematic errors. Finally, Secs. V and VI
present the results and discussion.

II. THEORY

A. Basic formalism

The theory of angular distributions in the electric field
quenching radiation of hydrogenic ions has been described
in detail previously, and is only briefly summarized
here.>® If the quench radiation is observed with photon
polarization insensitive detectors, then the emitted intensi-
ty depends only upon the relative orientations of the three
vectors K, P and E, where K is the photon wave vector
(] K | =w/c) pointing in the direction of propagation, Pis
the electron spin-polarization vector of the ion beam
(|P| <1), and E is the electric field vector. £ and k are
the corresponding unit vectors. The emitted intensity per
unit solid angle in an arbitrary observation direction kis
then

1(1?)— [Jo(1€>—31m(V';,2V3,2>u€E)(P kxE)
+MRe(2V, 5+ V3 ,,)(P-k X E)
+2MIm(V, ), — V3 ) k-E)], 2.1)

where

Jok)=1 | Vip+2V3p |1—(k-EP]

+ 1 | Vip=Vip | A1+(E-EV]+M?, (22)

v,— |E| (1s|z|2p){2p |z |2s) , j=1,2

3 E(2s1,)—E(2pj)+iT/2"°
2.3)
3340 ©1983 The American Physical Society
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in the limit of weak fields where first-order perturbation
theory applies and M =(1s |M |2s) is the matrix ele-
ment of the relativistic magnetic dipole operator. Equa-
tions (2.1) and (2.2) do not include negligibly small contri-
butions from magnetic quadrupole transitions via the
2p3,, state or other relativistic corrections of relative or-
der (aZ)™

The terms in (2.1) are written in order of decreasing
magnitude. The first two terms in J, are the dominant
electric field quenching terms, while the last one gives a
very small contribution from spontaneous magnetic dipole
transitions to the ground state, which we neglect. The
present experiment is designed to measure the second term
in (2.1), which we refer to as the E 1-E 1 damping term.
Since it depends on the imaginary part of V7 ,V3,,, it is
proportional to the level width T of the 2p state. The rel-
atively small contributions from the last two terms of (2.1)
average to zero under reversal of the electric field direc-
tion, and so do not contribute to the field-averaged signal.
The terms of interest which remain after field averaging
are therefore

~ k A A A A A A
1(k)=%’;[10(k)—31m< Vi, Vi) k-E)P-kxE)] .

(2.4)

B. Angular distributions

The geometry of the experiment is such that P and E
are orthogonal, and k lies in the perpendicular plane
through E as shown in Fig. 1. Let 0 be the angle between

k and E as shown in the figure. If the intensity in the
direction 8=m/2 is renormalized to unity, then the J,
term of (2.4) has the angular distribution

Z(0)=1+[2R /(1—R)]cos’0, (2.5)
where R is the anisotropy
R = L)L (w/2) (2.6)

T L)+ L(w/2)

used previously to measure the Lamb shift. Using the in-

my

beam axis

FIG. 1. Geometry of the experiment showing the electric
field vector E in the z direction, the spin-polarization vector Pin

the negative y direction, and the direction of observation K in the
xz plane.
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TABLE 1. Input data for the calculation of the damping
asymmetry.
E(2s1)—E(2p1p)

E(2p3,)—E(2p12)
'(2p)

14042.05 MHz
175594.0 MHz
1.0028 < 10'° sec~!

put data in Table I, and including small field-dependent
corrections,’ it has the value R =0.118 003 at our operat-
ing field of E =246.71 V/cm. Thus

F(6)=1+0.26758cos?d . 2.7

With the same normalization, the E1-E'1 damping term
in (2.4) has the angular distribution

y(6)=+0.017282 | P | cosfsing . (2.8)

The (—) sign applies if P is oriented as shown in Fig. 1,
and the ( + ) sign applies if P is reversed. The total-field
reversed average intensity is

1()=2L(0)+v(6) .

Polar diagrams for .£(6) and y(0) are shown in Fig. 2,
where the anisotropy in .£°(6) and the relative magnitude
of 7(6) have been greatly exaggerated. The He™ ion beam
passes through the origin into the page, and P is either
parallel or antiparallel to the beam velocity as shown. The
four channeltrons labeled A4,B,C,D view the radiation
simultaneously in all four directions. The radiation pat-
terns are invariant under reversal of E, but v(0) reverses
sign if E is rotated by 7/2 or P is reversed. .£(8) is in-
variant under both these operations along the channeltron
viewing axes at 0=m/4, 3w /4, 57 /4, and 77 /4.

(2.9)

C. The E 1-E 1 damping signal

The above analysis shows that the intensity difference
between any pair of adjacent counters is sensitive only to
the y(0) term in (2.9). Using (2.4), the anisotropy, defined
by

_ I(m/4)—1(31/4)

= 2.10
I(mw/4)+1(37/4) ( )
is
3Im(Vi V.
_ m 1/2 3/2) (211)
210(#/4)
In the limit of weak fields, this reduces to
3I[E(2 )—E (2, )
[ P32 p1/2)] (2.12)

T 4AY,,—2A,pAs,+7A3 ,+11T2/4

independent of ]_E| Here Aj=E(2s,,,)—E(2p;). For
the input data in Table I, the theoretical value of 4 at
zero field strength is 0.007 6209. The small finite electric
field correction at 246.71 V/cm reduces this to
0.0076182. Relativistic corrections are of the order
0.01%, and are too small to affect the present results.
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FIG. 2. Polar diagrams for two electric field directions of the
two main contributions (not to scale) to the quench radiation for
a spin-polarized He*(2s) beam traveling through the origin, into
the page of the paper, for (a) a spin-polarization vector P paral-
lel to the beam velocity, and (b) a spin-polarization vector P
antiparallel to the beam velocity. In arbitrary intensity units the
distributions .£(0)=1+0.26758cos’60 and y(6)=1.7282
X 1072 ]i"| cosfsinf represent the main quench radiation and
the E 1-E 1 damping radiation.

Also, an axial magnetic field of 12.9 G was applied to the
ion beam during the course of the experiment. The direct
effect on 4 was calculated and found to be a negligible
—0.005%. However, it has an indirect effect on the data
analysis as discussed in Sec. IV.

G. W. F. DRAKE, J. PATEL, AND A. van WIINGAARDEN 28

The quantity directly measured in the experiment is the
intensity ratio

I(w/4)

r= 106m/4) (2.13)

Since it is related to 4 by 4 =(r —1)/(r 4 1), its theoreti-
cal value is r =1.015353. The relationship between the
relative errors in r and 4 is

64

A

8r

r

ri—1
2r

20.01528—‘4 .

1 (2.14)

Thus a measurement of 4 (i.e., I') to an accuracy of 0.1%
requires a measurement of  to 15 parts per million.

III. EXPERIMENTAL

A. Overall plan

The apparatus shown in Fig. 3 is similar to that in our
previous® experiments but the observation region has been
substantially modified with the view of reducing systemat-
ic errors. Briefly, a 126-keV He%(2s,,,) ion beam, after
passing a prequencher and a collimator, enters into the
quenching cell proper and is then monitored with a Fara-
day cup. The collimator limits the beam diameter to 1.5
mm but still allows radial fluctuations of +0.25 mm from
the central axis. The quenching cell consists of four metal
rods mounted on insulators in a quadrupole arrangement.
The static electric quenching field, which always makes
an angle of either 7/4 or 3w /4 with any of the observa-

PREQUENCHER

Spin-polarized

Beam of He'(2s)
Ions

c

FIG. 3. Schematic diagram of the apparatus. Dimensions are given in the text.
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tion axes (see Fig. 2), is obtained by grounding two of the
diagonally located opposite quadrupole rods and by apply-
ing opposite polarities to the other. Care was taken in the
construction of the Faraday cup. Repeller plates suppress
the escape of secondary electrons and a beryllium plate for
the beam dump at the back of the cup reduces back-
scattering of primary ions to a minimum.

The prequencher potentials are only switched on for
noise determinations. They are sufficiently strong to de-
stroy virtually all the metastable He*(2s,,,) ions in the
beam by quenching.

With the aid of a spin polarizer, the spin-polarization
vector can be set at either P= +5 or P=—{ to a high de-
gree of precision. To prevent disorientation of the spin
direction, the earth’s magnetic field perpendicular to the
beam direction is canceled with Helmholtz coils, and to
ensure a sharp definition of the y axis a relatively strong
magnetic field of 12.9 G (on the average) is applied paral-
lel to the beam direction over the regions of the collimator
and quenching cell.

B. Electric field; beam deflection

As the beam traverses the quenching cell it experiences

a transverse electric field along the beam or y axis which

reaches a maximum (E,) in the observation region at

y =y,. The method® for calculating the field has been

previously described and Fig. 4 shows the y dependence of

the field for our dipole geometry. The field E, in the ob-
servation region is given by

E0=(O.6264i0.0001);V (3.1

in V/cm. Here a =2.032 cm is half the distance between

the centers of adjacent rods, each with a diameter of 1.270

1.0

0.8

0.21-

o 1 1 1 1
0.2 0.4 0.6 0.8 1o

Y/Yo

FIG. 4. y dependence of the electric field on the beam axis in
the quenching cell. E is the electric field in the observation re-
gion centered about y,.
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cm, and V is the magnitude of the potential in volts for
the opposite polarities on two diagonally located rods. At
our operating potential of 800.3 V, the field has the value
E,=246.7 V/cm.

In the observation region the beam has obtained a trans-
verse velocity component in the direction of the field
given by

v E 1
S IR (3.2)
vy 2Va Y0 | E, Yo

The value of the integral is 0.8493 and at y;=7.620 cm
one finds that for a beam energy eV, =126 keV corre-
sponding to a beam velocity v,=2.46X10® cm/sec,
v, =1.56X10° cm/sec. At y, the beam deflection is 0.21
mm.

C. Photon-detection system

The Ly-a quench radiation (304 A) is simultaneously
observed in four perpendicular directions by photon
counters 4, B, C, and D (Fig. 3). Counting times are nor-
malized to a preset beam flux, using the output current of
the Faraday cup. The photon collimator is shown in Fig.
5. The dimensions of the beam diameter 8, the width a of
rectangular slit S, the diameter d of aperture S,, and the
other dimensions are

6=0.15+0.03 ,
a=0.635+0.001,
d =1.01610.002 ,
a=7.112+0.002 ,
b =21.895+0.005 ,

all measured in cm.

In our earlier work® the photon counters consisted of
channeltron detectors which were found to become non-
linear at high counting rates due to saturation effects. A
new photon counter was developed which consists of a

Detector
c N Ya ) Sp
b
— — S,
o ke
a
ts Beam

FIG. 5. Schematic diagram of the detector slit system of Fig.
3. The dimensions are given in the text.
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compact electron multiplier (Schlumberger, Model 510-
00-16-M2) whose conversion dynode has been replaced by
a highly uniform custom-built (Galileo Optics) channel-
tron cone. The detectors are insensitive to photon polari-
zation and are highly linear. The entrance apertures to
the channeltron cones are covered with thin aluminum
foils which are transparent to the radiation but stop low-
energy particles that are formed by the interaction of the
fast ion beam with the remaining gas in the quenching
cell. The foils reduce the noise counting rate by about a
factor of 50. The remaining noise is proportional to the
residual pressure and at the operating pressure of 5X 103
Torr the signal-to-noise ratio is 100:1. Since most of the
noise arises from the relatively strong component of
ground-state He™ ions, the signal-to-noise ratio improves
rapidly with increasing field strength.

IV. SYSTEMATIC ERRORS AND DATA
ANALYSIS

A complete experimental cycle consists of simultane-
ously recording the total number of counts in a prescribed
time period for each of the four counters and for each of
the four electric field orientations (see Fig. 2). A study of
the systematic effects discussed below defines a unique
way of combining the resulting 16 independent measure-
ments (plus 16 more with P reversed) so that all but axial
magnetic field corrections cancel out to first order. Such
complete cancellations can only be achieved with the use
of a four-detector system.

A. Systematic asymmetries

1. Angular uncertainties in detector position

The machining tolerance used in the construction of the
quenching cell leads to angular uncertainties in the loca-
tion of the detectors of A6~0.02°. The corresponding un-
certainty in 7 is

6r /r~0.00408 A8

=8.2%x1073 4.1)

and is invariant under rotation of E by 90°. The corre-
sponding uncertainty in 4 is +0.5%. However, the sign
of the error reverses when P reverses, and hence the error
cancels out to first order in Af. Second-order effects are
negligibly small.

2. Small stray fields

The same analysis applies as above, provided that the
stray field does not reverse when P reverses. Specific
magnetic field corrections that are invariant under rever-

sal of P are discussed separately below.

3. Ion-beam drift

Although the ion beam is well collimated along the cen-
tral axis of the quenching cell, beam drift and machining
tolerances introduce angular uncertainties as large as

G. W. F. DRAKE, J. PATEL, AND A. van WIJNGAARDEN 28

A6~0.01° which do not cancel out under reversal of P or
field rotation. However, with four counters, the error
does cancel out to first order when signals are averaged
over pairs of opposite counters.

4. Variations in measured ion-beam current

The last two terms in Eq. (2.1), which reverse sign
under reversal of E, cancel out of the field-reversed aver-
age count rate only if the two signals are properly normal-
ized. One cannot safely use the total beam current mea-
sured in the Faraday cup to define equal counting periods
because the beam strikes a different spot on the beryllium
back plate under field reversal and, after prolonged bom-
bardment, different spots acquire slightly different sensi-
tivities. The correct procedure is to count for equal time
periods with sufficiently frequent reversals of field direc-
tion that small beam current fluctuations average out.

5. Axial magnetic field effects

The direction of the axial magnetic field B in the
quenching cell defmmg the direction of the spin-
polarization vector P was always set parallel to P, and so
reversed when P reversed. The magnitude of B was varied
from one run to another from 10 to 20 G with a weighted
average value of 12.9 G.

Although a magnetic field of this magnitude has a
negligible direct effect on the damping anisotropy, it has a
number of indirect effects. Firstly, since the ion beam ac-
quires a small transverse velocity v, [see Eq. (3.2)] in the
direction of E, it experiences an additional v X B field of

E, =vB/c (4.2)

which is perpendicular to E such that the total electric
field is always rotated counterclockwise by a small angle
when B is parallel to the beam velocity and clockwise
when B is reversed. Secondly, the B field is not quite
homogeneous, but has a small divergence in the beam
direction of 0B, /dy=—0.50 G/cm. The resulting elec-
tric field in the rest frame of the He™ ions at a distance R
from the y axis equal to the beam deflection in the obser-
vation region is

1% 3B
2 ¢ 9y

This field always points in the opposite direction to E,,.
With E,, =0.201 V/cm and E(R)=0.013 V/cm, the net
rotation angle is

E(R)= (4.3)

A6=[E,,—E(R)]/|E|

=0.0437°. (4.4)

Thirdly, the B field slightly perturbs the axial symmetry
of the channeltron cones of the photon detectors. Conse-
quently, photoelectrons released from one side of the cone
may be more efficiently collected than from the other.
This effect is equivalent to a slight angular displacement
of the detector.
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The corrections introduced by the above three effects
are all invariant under reversals of E and P (since B re-
verses with P) and so do not cancel out. While the first
two can be accurately calculated, the third cannot. There-
fore, all three are lumped together and measured directly

as a residual instrumental asymmetry, as described in Sec.
IVC.

B. Method of data analysis

We now combine the data in such a way that all sys-
tematic errors but residual magnetic field effects cancel
out to first order. The four counters are labeled 4,B,C,D
as shown in Fig. 2, and for compactness of notation,
(A4 /B)g denotes the intensity ratio I, /Ig, and 0 specifies
the direction of E relative to its starting position between
counters A and D, as shown in the upper-left corner of
Fig. 2. Thus 6=0,7/2,7,37 /2 for the four field orienta-
tions.

Starting with counters 4 and B, first form the product

=(4/B)(B/A),, . 4.5)

Then 72 is independent of the relative efficiencies of
counters 4 and B, and is a first approximation to the true
experimental value of r2. Second, average over all field
orientations to obtain

L o_1||4a| B 4| |B
AB = y - o -
2 B 0 4 m/2 B A 3m/2
172
Llal B L4l |E ]
B T A 1r/ B 4 3m/2
172
_al e fa] ]2 |2 H
2 B 0 B T A A 3n/2
(4.6)

Next, construct analogous averages for the other counter
pairs and form

ry=3rag+rac+rep+rps) 4.7

for a given orientation of P. Finally, average over reversal
of P to find

ro=(r +r_)/2. (4.8)

Equation (4.8) must still be corrected for noise by sub-
tracting the noise counts for each detector from the corre-
sponding signals. The noise is defined as the signal still
observed after the beam of metastables is destroyed with
the prequencher.

C. Residual instrumental asymmetry measurement

The residual systematic asymmetries for the apparatus
due to the axial magnetic field can be measured by repeat-
ing the experiment with an unpolarized ion beam. Since r
should then theoretically be unity, the instrumental
correction A is determined from

Tinst = 1 +A. 4.9)
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The quantity A should then be subtracted from r; to ob-
tain

r=ro—A. (4.10)

The statistical error in 7 (or 7;,,) from photon counting
is

&r = 1+E(1+x/‘ (N7 4+ N5 '+ Nz 4 N51)' 72,

r
2

(4.11)

where the N’s are the numbers of signal counts for each
detector, p is the fractional noise, and n is the number of
successive signal measurements between each noise mea-
surement. It follows that a statistical uncertainty of
Brmst—4><10‘ requires 6 10® counts per detector for
each B direction. At our counting rate of 2 10° sec™!
per detector, this would take a few thousand hours.

However, since A scales linearly with |§ |, the count-
ing time was reduced by a factor of 4 by roughly doubling
|B| from 12.9 to 23.45 G. The results shown in Table II
were then rescaled back to the actual magnetic fields used
in the different runs to measure r,. The A values for both
B directions were each measured several times with an
average of 7.35% 10° photon counts per measurement, for
a combined total of 1.72x 10° counts. The standard devi-
ation 8A.p, in the result. is in agreement with Eq. (4.11)
for a noise level of 0.65%. This level is a factor of 2
lower than that for a spin-polarized beam because one of
the mszi% components is missing in the latter case.
The agreement between the standard deviations shows
that errors are no worse than can be expected from count-
ing statistics alone. The magnetic-field-induced rotation
of E discussed in Sec. IVAS predicts the value
A=65x%107. The difference of about 18 X 10~ between
this value and the ones from Table II is due to the mag-
netic field effect on the detectors and can be accounted for
if the field rotates the center gravity for photon detection
by 0.02°. This rotation is small compared to the accep-
tance angle A6@=2.5° of the channeltron cones.

The actual measurements on the damping ratio were ob-
tained in several runs on different days with different
magnetic field settings. Thus the scaled A corrections
that were subtracted from r, differed from one run to
another. The scaled average values correspondmg to a
12.9 G average field for B=+6and B=—#pare

A, =(27.06+3.87)x10~°
A_=(25.22+3.76)x 10~°

respectively.
TABLE II. Results for the
Finst = 1 +A at B =23.45G.

Number of A
measurements (average)

instrumental asymmetry

(8A )expt (A )theor

+7.0%x1073
+6.9% 1073

+6.9%x 1073
+6.9%x 1073

48.2x107°
46.0x10~°

=0 1149
=—0 1192
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D. Dead-time correction

The electronic dead time 7 for the photon counting sys-
tem results in a loss of counts. The corresponding frac-
tional decrease in the asymmetry is given by?

84 _1 [n\ . .
A_27<T>(1 A2)

where (n/T) is the total counting rate for a pair of
counters, averaged over a complete measurement. Using
Eq. (2.14) and the theoretical value r =1.015 35, the de-
crease in the damping ratio becomes

(4.12)

5r =7.74X 10-%(%) : (4.13)
The dead time for each of the four photon counters was
set at the same value. For the majority of the runs
7=(40%1) nsec. The dead-time correction was applied to
each measurement separately. The weighted-average
correction is

8r =(0.17+0.02)x 10~°

for the average counting rate (n /T ) =5365 sec™! in adja-
cent pairs of detectors.

E. Pressure correction

Exchange of electrons between the spin-polarized ions
in the beam and the residual gas along the 120-cm-long
flight path from the spin polarizer to the observation re-
gion destroys the spin-polarization vector and lowers the
observed damping ratio. To measure the correction, the
pressure was raised with hydrogen gas by a factor 15 from
the normal operating pressure of 5X10™% Torr to
7.5% 107 Torr and, as expected, the noise level increased
by the same factor. Damping ratios were then measured
in two separate runs, one for each of the spin-polarization
vectors, with each run containing 200 separate measure-
ments and 1.5X 10% photon counts. The two results were
then used to extrapolate the precision measurements at
5% 1078 Torr to zero pressure. The resulting corrections,

Ar, =(1.3£1.0)x10~%,
Ar_=(1.8+1.3)x107°,

are consistent with each other.
correction becomes

Ar=(1.55+0.82)x 1077 .

The average-pressure

(4.14)

F. Solid-angle correction

The correction factor for the solid angle by which the
observed asymmetry must be multiplied is similar to that
for our earlier’ work on the Lamb shift and is given by

LA
6b2 ' 8b?

deay g EEEE
=Aobs | 1A= 0y

(4.15)
Here R =0.118 is the 0°—90° Lamb-shift asymmetry and
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the other parameters refer to the photon slit system of
Fig. 5. Their substitution into the previous equation
yields the correction factor 1.000671 for A. Using Eq.
(2.14) this factor corresponds to a correction

Ar=1.038x 1073 (4.16)

for an r value 7., =1.015 35.

V. EXPERIMENTAL DATA AND STATISTICAL
ANALYSIS

In all 3120 individual measurements of r, were made
for P=+0 and 3281 for P=—¢ in 30 different runs on
different days. Each measurement contains on the aver-
age 7.78X10° photon counts for a combined total of
4.98 < 10° counts. The mean and standard deviation from
counting statistics of all the measurements for each spin-
polarization vector weighted by the number of counts in
each measurement are

P I (5.1)
i=1 Mr
and
oo [§ nmrin | (52)
i=1 nT(N—l) ’ )

where n; is the number of counts in the ith measurement,
nr is the total number of counts, and N is the number of

measurements. The experimental values for P=+0 and
P= —{ are (including the A correction)

r, =1.0153745+(0.000043 6:+0.0000003) ,
r_=1.0152174+(0.000042 7+0.0000005) .

The experimental standard deviations are the ones from
counting statistics alone, and do not include the errors in
the A corrections. The errors on the standard deviations
themselves were found using the “bootstrap” method of
Diaconis and Efron.” The corresponding theoretical er-
rors from Eq. (4.11) for a noise level p =1.2%, which was
determined after n =3 successive signal measurements,
are

0, =0.0000432+0.0000003 ,
0 _=0.0000421+0.0000003 ,

in satisfactory agreement with the experimental values. It
is indeed satisfying that despite the large variations in the
magnetic field correction A, the fluctuations in data are
no worse than what can be expected from counting statis-
tics alone.

Figures 6(a) and 6(b) compare the histograms of the ex-
perimental data distributions with the theoretically expect-
ed histograms for Gaussian distributions. The X? test of
the fits with the mean and the standard deviations as the
only adjustable parameters yields X i =38.4 for 52 degrees
of freedom and X2 =41.9 for 51 degrees of freedom, cor-
responding to confidence levels of 92% ang 81%, respec-
tively. The results of runs tests’ are given in Table IIL
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FIG. 6. Histograms for the distribution of the experimental
data about the mean in units of the observed standard deviation
for each point, for (a) the spin-polarization vector parallel to the
beam velocity, and (b) the spin-polarization vector opposite to
the beam velocity. The solid circles show the expected bar
heights for a Gaussian distribution with the same mean and unit
half-width.

The theoretical distribution is based on the assumption
that the probability for a measurement to fall above the
mean and the probability to fall below the mean are the
same (7). None of these tests reveals statistically signifi-
cant anomalies in the data.

To account for the large difference,

r, —r_=0.000157

of nearly four standard deviations, we tabulate in Table IV
the ratio measurements for adjacent pairs of photon
counters [see Eq. (4.6)]. The statistical error for each ratio
is nearly the same with an uncertainty of +6 in the last
significant figure. One finds that the r values lower sub-
stantially when P is switched from 48 to —5. An anom-
aly of this type is expected if, on average, the photon-
detection system is rotated with respect to the quadrupole
assembly from its proper position through an angle
A6=0.019°, which falls within the construction tolerances
of A6=0.02°.
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TABLE III. Comparison of the observed numbers of low and
high runs with the expected number of runs for (a) P=+# and
®P=—0.

Expected
Run length Low runs High runs number
(a)
1 379 371 390+17
2 208 210 195+13
3 86 103 98+ 9
4 45 41 49+ 6
5 27 25 24+ 5
6 15 7 12+ 3
7 3 4 6.1+ 2.4
8 3 4 3.0 1.7
9 4 4 1.5+ 1.2
10 1 2 0.8+ 0.9
11 0 0 0.38+ 0.61
12 1 1 0.19+ 0.44
13 0 0 0.10+ 0.31
Total 772 772 780+ 14
(b)
1 408 391 410+18
2 212 231 205+13
3 105 111 103+ 9
4 47 45 51+ 7
5 24 24 26 5
6 17 12 13+ 3
7 3 3 6.4+ 2.4
8 4 2 32+ 1.7
9 0 0 1.6+ 1.2
10 2 2 0.8+ 0.9
11 0 1 0.40+ 0.63
12 1 0 0.20+ 0.45
13 0 1 0.10+ 0.32
Total 823 823 820+ 14

Upon inclusion of the errors in the systematic correc-
tions A and the other systematic effects summarized in
Table V, the damping ratios become

r, =1.0154004+0.0000590 ,
r_=1.0152433+0.0000575 .

Averaging these eliminates field-rotation errors to first or-
der and yields

r=1.0153219+0.0000412 .

The corresponding‘value of 4 is 0.007 602 7+0.000020 3,
in agreement with the theoretical value 0.007 618 2.

TABLE IV. Ratio measurements for adjacent pairs of photon detectors.

T4B rsc

rcp T4p

1.01546 (+6)
1.01521 (+6)

ol 'ildl
+
< S

1.01552 (+6)
1.01541 (£6)

1.01528 (+6) 1.01523 (£6)
1.01523 (+6) 1.01502 (+6)
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TABLE V. Summary of experimental data and of systematic corrections.

-

P=0

—
P=-90

r—A
Finite pressure
Solid angle

Dead time 0.000001 7 (£0.02% 105)
Total 1.0154004 (+5.90% 10~°)
Average

A

1.0153728 (+5.84x 107%)
0.0000155 (+0.82% 1075)
0.0000104 (+0.01x 10~%)

1.0152157 (£5.69x10~%)
0.0000155 (+0.82x 10~%)
0.0000104 (+0.01x10~3)
0.000001 7 (+0.02 10~%)
1.0152433 (£5.75X1079)
1.0153219 (+4.12x10~%)

0.0076027 (+£2.03x107%)

VI. DISCUSSION

Using Eq. (2.12) and assuming that the energy differ-
ences in Table I are correct, the experimental value of 4
corresponds to a lifetime 7=1/(2#T") for the 2p state of
Texpt=(0.999210.0026) X 10~ sec. This falls within one
standard deviation of the theoretical value 0.9972x 10~ 1°
sec. It is a considerable improvement over the beam-foil
result of (0.98+0.05)% 107 !° sec by Lundin et al.® and
over our own previous measurement of
(0.988+0.013)x 10~ 1% sec.

The high-precision lifetime measurements of Gaupp
et al.* for neutral Li and Na generally lie about 0.8%
above theory. Although our result also lies above theory
by (0.20+0.26)%, a discrepancy as large as 0.8% can al-

most certainly be ruled out. Our result confirms basic ra-
diation theory at the +0.2% level, and the source of the
discrepancies for Li and Na must be sought elsewhere.
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