Bethe logarithms for hydrogen up to $\mathrm{n}=20$, and approximations for two-electron atoms

Gordon W.F.Drake
University of Windsor
R.A. Swainson

Follow this and additional works at: http://scholar.uwindsor.ca/physicspub
Part of the Physics Commons

Recommended Citation

Drake, Gordon W. F. and Swainson, R. A.. (1990). Bethe logarithms for hydrogen up to n=20, and approximations for two-electron atoms. Physical Review A, 41 (3), 1243-1246.
http://scholar.uwindsor.ca/physicspub/84

Bethe logarithms for hydrogen up to $\boldsymbol{n}=20$, and approximations for two-electron atoms

G. W. F. Drake and Robin A. Swainson
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

(Received 11 September 1989)

Abstract

Bethe logarithms accurate to 14 or 15 places to the right of the decimal are tabulated for all states of hydrogen up to $n=20$. Approximation methods for Rydberg states of two-electron atoms are discussed.

I. INTRODUCTION

The Bethe logarithm (BL) represents the essentially nonrelativistic part of the Lamb shift arising from lowest-order quantum electrodynamic (QED) effects in hydrogen and other one-electron ions. ${ }^{1}$ The one-electron BL also plays an important role in approximation schemes for many-electron atoms. ${ }^{2,3}$ BL's have been calculated by many authors ${ }^{4-9}$ in the years since Bethe's ${ }^{10}$ original work on the $2 s-2 p$ Lamb shift in hydrogen, the most extensive tabulation being that of Klarsfeld and Maquet ${ }^{8}$ for all states up to $n=8$. Subsequently, Haywood and Morgan ${ }^{11}$ obtained higher precision for the $1 s$ and $2 s$ states by the application of finite basis-set methods. Baker, Hill, and Morgan ${ }^{12}$ have recently further improved the $1 s$ value to 17 places to the right of the decimal.

Recent high-precision measurements of transition frequencies among the $n=10$ Rydberg states of helium ${ }^{13}$ raise once again the need for a more extensive tabulation of BL's. For example, the one-electron Lamb shift contributes about 13 kHz to the $1 s 10 g-1 s 10 h$ manifold of transitions, ${ }^{14}$ which is much larger than the $\pm 2-\mathrm{kHz}$ accuracy of the measurements. The purpose of this paper is to tabulate BL's for all one-electron states up to $n=20$, and to discuss screened hydrogenic values for the corresponding Rydberg states of helium. The one-electron values are believed to be accurate to 14 or 15 places to the right of the decimal, which substantially exceeds any previous tabulation.

The lowest-order QED shift for an electron with quantum numbers n, l, j in a point Coulomb field of charge Ze and infinite mass is ${ }^{1,15}$ (in atomic units)

$$
\begin{align*}
\Delta E_{L}(n l j)=\frac{4}{3} Z \alpha^{3}\left(Z^{3} / \pi n^{3}\right)[& \delta_{l, 0}\left[\ln (Z \alpha)^{-2}+\frac{11}{24}-\frac{1}{5}\right] \\
& -\ln \left[k_{0}(n l) / Z^{2} R_{\infty}\right] \\
& \left.+\frac{3}{8} \frac{c_{l j}}{(2 l+1)}\right] \tag{1}
\end{align*}
$$

where $c_{l j}=\delta_{j, l+1 / 2} /(l+1)-\delta_{j, l-1 / 2} / l$. The terms $\frac{11}{24}$ and $-\frac{1}{5}$ come from electron self-energy and vacuum polarization corrections, respectively, and the last term containing $c_{l j}$ is the anomalous magnetic-moment correction. Bethe's mean excitation energy $k_{0}(n l)$ is defined by

$$
\begin{equation*}
\ln \left[k_{0}(n l) / R_{\infty}\right]=\sum_{n^{\prime}} g\left(n l, n^{\prime}\right) \ln \left|\omega\left(n^{\prime}, n\right)\right|, \tag{2}
\end{equation*}
$$

where $\omega\left(n^{\prime}, n\right)=\left(E_{n^{\prime}}-E_{n}\right) / R_{\infty}$ and the sum includes all discrete states and an integration over the continuous spectrum. The $g\left(n l, n^{\prime}\right)$ are related to oscillator strengths for transitions $n l \rightarrow n^{\prime} l \pm 1$ by

$$
\begin{equation*}
g\left(n l, n^{\prime}\right)=\left(3 n^{3} / 16\right) f\left(n l, n^{\prime}\right) \omega^{2}\left(n^{\prime}, n\right) \tag{3}
\end{equation*}
$$

II. COMPUTATIONAL METHOD

Previous evaluations of $\ln k_{0}$ have used either an explicit summation of the terms in Eq. (2), ${ }^{4,8,10}$ or implicit summation methods based on the Coulomb Green function. ${ }^{5-9,12}$ In the present work, we have found that results approaching machine accuracy (about 16 figures in double precision) can readily be obtained by direct summation, using Gordon's formula ${ }^{1}$ for bound-state transition integrals, and an equivalent formula derived by Karzas and Latter ${ }^{16}$ for continuum transition integrals which avoids complex variables. In view of the rather modest accuracy achieved in the past by this method, it seems worthwhile to describe the computational details used here. We first write Eq. (2) in the form

$$
\begin{equation*}
\ln \left[k_{0}(n l) / R_{\infty}\right]=B+C, \tag{4}
\end{equation*}
$$

where B is the bound-state contribution and C the continuum contribution, and define the partial sum

$$
\begin{equation*}
B_{N}=\sum_{n^{\prime}=l}^{N} b_{n^{\prime}}, \tag{5}
\end{equation*}
$$

with $b_{n^{\prime}}=g\left(n l, n^{\prime}\right) \ln \left|\omega\left(n^{\prime}, n\right)\right|$. The $b_{n^{\prime}}$ have the asymptotic expansion

$$
\begin{equation*}
b_{n^{\prime}}=\beta / n^{\prime 3}+\gamma / n^{\prime 5}+\cdots \tag{6}
\end{equation*}
$$

Analytic expressions for β and γ could be derived, but it is computationally simpler to estimate them from the last two terms included in (5) according to

$$
\begin{equation*}
\gamma_{N}=\frac{N^{2}(N-1)^{2}}{2 N-1}\left[(N-1)^{3} b_{N-1}-N^{3} b_{N}\right] \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{N}=N^{3} b_{N}-\gamma_{N} / N^{2}, \tag{8}
\end{equation*}
$$

obtained by solving two equations in two unknowns. Then $\gamma_{N} \rightarrow \gamma$ and $\beta_{N} \rightarrow \beta$ as $N \rightarrow \infty$. The complete sum over bound states is then approximated by

TABLE I. Bethe logarithms for hydrogen. For two-electron atoms, see Eq. (20).

n	$\ln \left[k_{0}(n l) / R_{\infty}\right]$			
$l=0$				
1	2.984128555765498	$l=1$		
2	2.811769893120563	-0.030 016708630213	$l=2$	
3	2.767663612491822	-0.038 190229385312	-0.005 232148140883	$l=3$
4	2.749811840454057	-0.041 954894598086	-0.006 740938876975	-0.001733661 482126
5	2.740823727854572	-0.044 034695591878	-0.007600 751257947	-0.002 202168381486
6	2.735664206935105	-0.045 312197688974	-0.008 147203962354	-0.002 502179760279
7	2.732429129187092	-0.046155 177262915	-0.008 519223293658	-0.002 709095727000
8	2.730267260690589	-0.046 741352003557	-0.008 785042984125	-0.002 859114559296
9	2.728751166038614	-0.047 165699952735	-0.008 982032293858	-0.002 971901488037
10	2.727646938659466	-0.047 482893356678	-0.009 132272249044	-0.003 059094278891
11	2.726817782527157	-0.047 726268148058	-0.009 249570815264	-0.003 128021134523
12	2.72617934063548	-0.047 917111573660	-0.009 342953986099	-0.003 18351909874
13	2.72567729053702	-0.048 06954364571	-0.009 41853764670	-0.003 22890166923
14	2.72527536517299	-0.048 19323384814	-0.009 48059142045	-0.003 26650823662
15	2.72494860040885	-0.048 29498639714	-0.009 53217241471	-0.003 29803252708
16	2.72467935591128	-0.048 37970297899	-0.009 57551777068	-0.003 32472730068
17	2.72445487973829	-0.048 45098778185	-0.009 61229597753	-0.003 34753641973
18	2.72426576814135	-0.048 51153918483	-0.009 64377240277	-0.003 36718258753
19	2.72410496327095	-0.048 56341001721	-0.009 67092105436	-0.003 38422712123
20	2.72396708429302	-0.048 60818451461	-0.009 69450170445	-0.003 39911157410

$$
\begin{aligned}
& l=4 \\
& \text {-0.000 } 772098901537 \\
& \text { - } 0.000962797424841 \\
& \text { - } 0.001094472739370 \\
& \text { - } 0.001190432043318 \\
& \text { - } 0.001263094507064 \\
& \text { - } 0.001319718057354 \\
& \text { - } 0.001364844849466 \\
& -0.00140146873172 \\
& \text { - } 0.00143164426575 \\
& -0.00145682761898 \\
& \text { - } 0.00147807845794 \\
& -0.00149618512695 \\
& \text { - } 0.00151174524880 \\
& \text { - } 0.00152521928783 \\
& \text { - } 0.00153696711249 \\
& \text { - } 0.00154727353558 \\
& l=5 \\
& \text { - } 0.000407926168297 \\
& \text { - } 0.000499701854766 \\
& \text { - } 0.00056653272412 \\
& -0.00061723417118 \\
& \text { - } 0.00065688601624 \\
& \text { - } 0.00068863081303 \\
& \text { - } 0.00071452350024 \\
& \text { - } 0.00073596779662 \\
& \text { - } 0.00075395663821 \\
& \text { - } 0.00076921261849 \\
& -0.00078227410215 \\
& \text { - } 0.00079355021275 \\
& -0.00080335716281 \\
& -0.00081194296168 \\
& -0.00081950464104
\end{aligned}
$$

$$
l=8
$$

-0.00010414809250
$10 \quad-0.00012228463082$
$11-0.00013680819563$
$12-0.00014868892563$
$13-0.00015857661033$
$14-0.00016692282560$
$15 \quad-0.00017405151401$
$16-0.00018020144952$
$17-0.00018555275778$
$18-0.00019024404952$
$19 \quad-0.00019438383167$
$20 \quad-0.00019805831653$

$$
\begin{gathered}
l=9 \\
-0.000073724978585 \\
-0.00008563246591 \\
-0.00009536161293 \\
-0.00010345384466 \\
-0.00011028419041 \\
-0.00011612052704 \\
-0.00012115942212 \\
-0.00012554854294 \\
-0.00012940110787 \\
-0.00013280547683 \\
-0.00013583168502
\end{gathered}
$$

$$
l=6
$$

- 0.000240908258717
- 0.000290426172391
- 0.00032794390064
-0.00035729864948
- 0.00038084096325
-0.00040009350539
- 0.00041608853673
-0.00042955224314
-0.00044101122681
-0.00045085708266
- 0.00045938721808
-0.00046683159097
-0.00047337076731
-0.00047914844237

$$
l=10
$$

- 0.000054079265232
- 0.00006221798559
- 0.00006898023223
- 0.00007468441841
- 0.00007955746481
-0.00008376533993
- 0.00008743227314
- 0.00009065317376
- 0.00009350187064
-0.00009603671401

$$
l=7
$$

-0.000153864500961 - 0.000182899145591

- 0.000205584988395
- 0.000223775429151
-0.00023866289256
- 0.00025104985796
- 0.00026149716138
-0.00027040933242
-0.00027808598383
- 0.00028475403272
-0.00029058863345
- 0.00029572720673
-0.00030027910137

$$
l=11
$$

-0.00004083367938 - 0.00004658413594 - 0.00005143030899
-0.00005556781106
-0.00005913949075

- 0.00006225200458
- 0.00006498659835
- 0.00006740628241
-0.00006956071371

TABLE I. (Continued).

n	$\ln \left[k_{0}(n l) / R_{\infty}\right]$			
$l=12$				
13	-0.000 03158151892	$l=13$		
14	-0.000 03575924653	-0.000 02492497382	$l=14$	
15	-0.000 03932310108	-0.000 02803289620	-0.000 020014384873	$l=15$
16	-0.000 04239777652	-0.000 03071225325	-0.000 02237414460	-0.000 01631305376
17	-0.000 04507627868	-0.000 03304509067	-0.000 02442737556	-0.000 01813688868
18	-0.000 04742931985	-0.000 03509374713	-0.000 02622956648	-0.000 01973679595
19	-0.000 04951161178	-0.000 03690638555	-0.000 02782357179	-0.000 02115121800
20	-0.000 05136616273	-0.000 03852079422	-0.000 02924297794	-0.000 02241027806
$l=16$				
17	-0.000 01347063545	$l=17$		
18	-0.000 01490244573	-0.000 01125182940	$l=18$	
19	-0.000 01616759563	-0.000 01239153091	-0.000 00949462018	$l=19$
20	-0.000 01729329047	-0.000 01340512623	-0.000 01041306329	-0.00000808497784

$$
\begin{equation*}
B=B_{N}+\beta_{N} \zeta_{N}(3)+\gamma_{N} \zeta_{N}(5) \tag{9}
\end{equation*}
$$

where $\zeta_{N}(k)=\zeta(k)-\sum_{j=1}^{N} j^{-k}$ is the N-times-subtracted Riemann ζ function. Loss of precision in making the subtractions can be avoided by starting from

$$
\begin{aligned}
& \zeta_{6}(3)=0.01176523649292761873, \\
& \zeta_{6}(5)=0.00013736548287609917,
\end{aligned}
$$

so that $\zeta_{N}(k)=\zeta_{6}(k)-\sum_{j=7}^{N} j^{-k}$. Complete stability to 16 figures in B is easily obtained for all states studied with N no more than 10000 for the highest states, and much less for the lower states.

A similar strategy was applied to the continuum part

$$
\begin{equation*}
C=\int_{0}^{\infty} u(v) d v, \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
u(v)=\left(v-E_{n}\right)^{2} \ln \left(v-E_{n}\right) \frac{d f}{d v} \tag{11}
\end{equation*}
$$

Since $u(v)$ has the asymptotic expansion

$$
\begin{equation*}
u(v) \sim \ln v\left(\widetilde{\beta} / v^{3 / 2}+\widetilde{\gamma} / v^{2}\right) \tag{12}
\end{equation*}
$$

C is approximated by

$$
\begin{equation*}
C=C_{N}+\widetilde{\beta}_{N} I_{E(N)}\left(\frac{3}{2}\right)+\widetilde{\gamma}_{N} I_{E(N)}(2), \tag{13}
\end{equation*}
$$

where
$I_{E}(k)=\int_{E}^{\infty} v^{-k} \ln v d v=\frac{\ln E}{(k-1) E^{k-1}}+\frac{1}{(k-1)^{2} E^{k-1}}$
and C_{N} is evaluated by numerical Romberg integration in a number of subintervals according to

$$
\begin{equation*}
C_{N}=\sum_{i=1}^{N} \int_{E(i-1)}^{E(i)} u(v) d v+E(0) u[E(0)] \tag{15}
\end{equation*}
$$

with $E(i)=2^{i-13} R_{\infty}$ for $i \geq 1$ and $E(0)=10^{-13} R_{\infty}$. The last term in (15) is the small contribution to the integral from the interval $0 \leq v \leq E(0)$. The $\widetilde{\beta}_{N}$ and $\widetilde{\gamma}_{N}$ are calculated as in Eqs. (7) and (8) from $u(E)$ evaluated at $E(N)$ and $E(N-1)$, and N increased until C becomes stable to machine precision. This requires $N \simeq 50$ for $l=0$ and $N \simeq 20$ for $l \neq 0$. The entire calculation takes less than a minute per state on an IBM PC/AT.

The above method was used to calculate simultaneously the check sums

$$
\begin{align*}
& \sum_{n^{\prime}} f\left(n l, n^{\prime}\right)=1, \tag{16}\\
& \sum_{n^{\prime}} g\left(n l, n^{\prime}\right)=\delta_{l, 0} . \tag{17}
\end{align*}
$$

The largest deviations for $12 \leq n \leq 20$ were 4×10^{-14} for Eq. (16) and 2×10^{-15} for Eq. (17). For $n \leq 11$, the largest deviations were 8×10^{-15} and 1×10^{-15}, respectively. The check sums for each state were used to assess the accuracy of the corresponding BL.

III. RESULTS

The final results for the Bethe logarithms are listed in Table I. All are believed to be accurate to within ± 1 in the final figure quoted. For the lower states, the results agree exactly with the 11 figure (for $n \leq 4$) and 8 figure (for $n \leq 8$) tabulations of Klarsfeld and Maquet ${ }^{8}$ to the number of figures they quote. The values for the $1 s$ and $2 s$ states verify the 14 figure results of Haywood and Morgan ${ }^{11}$ to within the $\pm 2 \times 10^{-13}$ uncertainty of their finite basis-set calculation. The one previous calculation which exceeds the accuracy of the present work by two figures is the $1 s$ result of Baker, Hill, and Morgan. ${ }^{12}$ They obtain (after adding $\ln 2$ to convert from a.u. to rydbergs)

$$
\ln \left[k_{0}(1 s) / R_{\infty}\right]=2.98412855576549761
$$

in agreement with our value.
The two-electron BL is defined by an expression exactly analogous to Eq. (2) except that the one-electron transition integrals and frequencies are replaced by the corresponding two-electron quantities. ${ }^{1}$ Although direct calculations of the two-electron BL are difficult and have only been carried out for the ground state, ${ }^{17}$ they can be estimated from the data in Table I as follows. Inserting Z^{-1} expansions for the two-electron wave functions and energies into Eq. (2) yields, for singly excited states,

$$
\begin{align*}
& \ln \left[\frac{k_{0}\left(1 s, n L ;^{2 S+1} L\right)}{Z^{2} R_{\infty}}\right] \\
& \quad=\ln \left[\frac{k_{0}^{0}(1 s, n L)}{R_{\infty}}\right)-\frac{2 \sigma}{Z}+O\left(Z^{-2}\right) \\
& \quad=\ln \left[\frac{k_{0}^{0}(1 s, n L)(Z-\sigma)^{2}}{Z^{2} R_{\infty}}\right]+O\left(Z^{-2}\right) \tag{18}
\end{align*}
$$

where
$\ln \left(\frac{k_{0}^{0}(1 s, n L)}{R_{\infty}}\right)$

$$
\begin{equation*}
=\frac{\ln \left[k_{0}(1 s) / R_{\infty}\right]+n^{-3} \ln \left[k_{0}(n L) / R_{\infty}\right]}{1+n^{-3} \delta_{L, 0}} \tag{19}
\end{equation*}
$$

is the leading term, and σ can be expressed in terms of perturbation sums over intermediate states. ${ }^{2,3}$ Values of σ have only been calculated for states up to $n=2$ with the results ${ }^{3}$

$$
\begin{aligned}
& \sigma\left(1^{1} S\right)=0.00615, \quad \sigma\left(2{ }^{1} S\right)=-0.02040 \\
& \sigma\left(2^{3} S\right)=-0.01388, \quad \sigma\left(2{ }^{1} P\right)=-0.00600 \\
& \sigma\left(2{ }^{3} P\right)=-0.00475
\end{aligned}
$$

For the high $n L$ states, a useful approximation to the two-electron BL can be obtained by calculating the mean
excitation energy for the $1 s$ electron as if the outer electron were not present, and the $n L$ electron for an effective nuclear charge $Z_{\text {eff }}=Z-1$. The first corresponds to virtual excitations of the form $1 s, n L \rightarrow n^{\prime} p, n L$ and the second to virtual excitations of the form $1 s, n L \rightarrow 1 s, n^{\prime \prime} L \pm 1$, summed over n^{\prime} with $Z_{\text {eff }}=Z$ and $n^{\prime \prime}$ with $Z_{\text {eff }}=Z-1$. Since the one-electron oscillator strengths are independent of Z while the transition energies scale as Z^{2} or $(Z-1)^{2}$, respectively, for the two cases, the result is [using Eq. (17)]

$$
\begin{align*}
& \ln \left(\frac{k_{0}(1 s, n L)}{Z^{2} R_{\infty}}\right) \\
& \quad=\ln \left(\frac{k_{0}(1 s)}{R_{\infty}}\right)+\frac{1}{n^{3}}\left(\frac{Z-1}{Z}\right)^{4} \ln \left(\frac{k_{0}(n L)}{R_{\infty}}\right) \tag{20}
\end{align*}
$$

for $L>0$. Comparing with Eq. (18) yields

$$
\begin{equation*}
\bar{\sigma}(n L)=\left(2 / n^{3}\right) \ln \left[k_{0}(n L)\right] . \tag{21}
\end{equation*}
$$

For the $1 s 2 p$ state, this gives $\bar{\sigma}(2 p)=-0.0075$, which is in reasonable accord with the exact values above for the $1 s 2 p{ }^{1} P$ and ${ }^{3} P$ states. For the high $n L$ states, one would expect $\bar{\sigma}(n L) \rightarrow \sigma(n L)$.

Since $\ln k_{0}(1 s, n L)$ can easily be calculated from Eq. (20) and the results in Table I, this quantity is not separately tabulated. Values for $n=10$ are given in Ref. 12. The results for the $1 s 10 f-1 s 10 g$ and $1 s 10 g-1 s 10 h$ transition frequencies of helium are in close agreement with experiment. ${ }^{12}$

ACKNOWLEDGMENTS

Research support by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.
${ }^{1}$ H. A. Bethe and E. E. Salpeter, Quantum Mechanics of Oneand Two-Electron Atoms (Academic, New York, 1957).
${ }^{2}$ A. M. Ermolaev and R. A. Swainson, J. Phys. B 16, L35 (1983), and earlier references therein.
${ }^{3}$ S. P. Goldman and G. W. F. Drake, J. Phys. B 17, L197 (1984).
${ }^{4}$ J. M. Harriman, Phys. Rev. 101, 594 (1956).
${ }^{5}$ C. Schwartz and J. J. Tiemann, Ann. Phys. (N.Y.) 2, 178 (1959).
${ }^{6}$ M. Lieber, Phys. Rev. 174, 2037 (1968).
${ }^{7}$ R. W. Huff, Phys. Rev. 186, 1367 (1969).
${ }^{8}$ S. Klarsfeld and A. Maquet, Phys. Lett. 43B, 201 (1973).
${ }^{9}$ I. Shimamura, J. Phys. Soc. Jpn. 40, 239 (1976).
${ }^{10}$ H. A. Bethe, Phys. Rev. 72, 339 (1947); H. A. Bethe, L. M. Brown, and J. R. Stehn, ibid. 77, 370 (1950).
${ }^{11}$ S. E. Haywood and J. D. Morgan III, Phys. Rev. A 32, 3179 (1985). See also J. T. Broad, Phys. Rev. A 31, 1494 (1985) for
a selection of less accurate BL's up to $n=25$.
${ }^{12}$ J. D. Baker, R. N. Hill, and J. D. Morgan III, in Relativistic, Quantum Electrodynamic and Weak Interaction Effects in Atomic Physics, Proceedings of the Program held at the Physics Institute of Theoretical Physics, Santa Barbara, California, 1988, AIP Conf. Proc. No. 189, edited by W. Johnson, P. Mohr, and J. Sucher (AIP, New York, 1989), p. 123. See Table VIII.
${ }^{13}$ E. A. Hessels, F. J. Deck, P. W. Arcuni, and S. R. Lundeen (unpublished).
${ }^{14}$ G. W. F. Drake, J. Phys. B 22, L651 (1989).
${ }^{15}$ G. W. F. Drake, Adv. At. Mol. Phys. 18, 399 (1982), and earlier references therein.
${ }^{16}$ W. J. Karzas and R. Latter, Astrophys. J. Suppl. 6, 167 (1961).
${ }^{17}$ C. Schwartz, Phys. Rev. 123, 1700 (1961).

