Lewis and protic acid mediated Nicholas reactions of 3-acetoxycyclohept-1-en-4-ynedicobalt hexacarbonyl: site selectivity of nucleophile incorporation

Joseph DiMartino
James R. Green
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/chemistrybiochemistrypub
Part of the Chemistry Commons

Recommended Citation

DiMartino, Joseph and Green, James R.. (2006). Lewis and protic acid mediated Nicholas reactions of
3-acetoxycyclohept-1-en-4-ynedicobalt hexacarbonyl: site selectivity of nucleophile incorporation. Tetrahedron, 62 (7), 1402-1409.
http://scholar.uwindsor.ca/chemistrybiochemistrypub/8

Lewis and Protic Acid Mediated Nicholas Reactions of 3-Acetoxycyclohept-1-en-4-ynedicobalt Hexacarbonyl: Site Selectivity of Nucleophile Incorporation Joseph DiMartino and James R. Green*

Kinetic Product:
Predominantly γ -

Thermodynamic product:
Exclusively γ -

Lewis and Protic Acid Mediated Nicholas Reactions of 3-Acetoxycyclohept-1-en-4-

 ynedicobalt Hexacarbonyl: Site Selectivity of Nucleophile IncorporationJoseph DiMartino and James R. Green ${ }^{*}$
Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada

Keywords: Nicholas reaction, cobalt-alkyne complexes, cycloheptyne, propargyl cations

Abstract

Nicholas reactions on the cation derived from the cyclic allylic acetate alkynedicobalt complex 1 favour the γ - site kinetically for most nucleophiles, with increasing amounts of α products in cases with greater nucleophilicity. Some regiocontrol in introduction of a specific nucleophilic fragment is possible by using different nucleophiles. Under conditions where reversibility is possible, the thermodynamically favoured site is exclusively γ-.

1. Introduction

Propargyl cation dicobalt hexacarbonyl complexes are one of the most widely employed transition metal stabilized reactive intermediates in organic synthesis; their chemistry is often referred to as the Nicholas reaction. ${ }^{1}$ These cations, which may stem from alkynedicobalt complexes with propargylic leaving groups and a protic or Lewis acid, or from enyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes and an electrophile, ${ }^{2}$ normally substitute exclusively at the propargylic site, unless the

[^0]cation is also allylic. In these allylic/propargylic situations, substitution has been found to occur predominantly at the site remote to the alkyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ unit $\left(\gamma\right.$-site).${ }^{3}$ Exceptions exist however, particularly where intramolecular nucleophilic attack reactions are entropically driven towards the $\alpha-$ site; ${ }^{4}$ in some cases with nucleophiles which are oxygen based, α - substitution is also observed (Scheme 1). ${ }^{2 \mathrm{a}, 5}$

Scheme 1

While previous studies of Nicholas reactions of allylic substrates have been focussed on acyclic cations or cyclization reactions, the analogous question for cyclic cations has not been addressed to our knowledge. We have interest in this matter from several perspectives. Our group, and other groups, have been interested in the preparation and reactivity of cycloheptynedicobalt complexes. ${ }^{6,7,8}$ We have been able to incorporate nucleophiles γ - with respect to the alkynedicobalt unit in tandem $4+3$ cycloaddition / trapping reactions, but the list of participating nucleophiles in the process is quite restricted. ${ }^{6 a}$ Substitution at the remote $(\gamma-)$ position in the cycloheptenyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes (Scheme 2) would open up the ability to employ the now nucleophilic alkene function in annulation reactions with any highly electrophilic groups contained within the γ - substituent, ultimately giving fused 7,5-and 7,6-ring systems. In addition, we have an interest in clean α - substitution reactions on these complexes for facilitation of cycloaddition reactions employing the alkynedicobalt function. ${ }^{9}$ As a result, we
have deemed it of importance to study the Nicholas substitution reactions of cycloheptyne-allyl acetate complex 1, with a range of nucleophiles.

Scheme 2

2. Results and Discussion

Cycloheptyne-allyl acetate complex 1 was prepared in straightforward fashion from the known allyl propargyl alcohol 2 (Scheme 3). ${ }^{10}$ Standard acetylation of 2, affording acetate 3, followed by complexation with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, gave 4 (51 \% yield, two steps). Ring closing metathesis, employing $10 \mathrm{~mol} \%$ of $\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{CHPh}$ (Grubbs' I catalyst), afforded $\mathbf{1}$ in 80% yield. ${ }^{11}$

Scheme 3

With the desired substrate in hand, we chose to investigate its reaction with $1,3,5-$ trimethoxybenzene in order to optimize the conditions of reaction. In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent (0.05 M), and with excess $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ present (10 equiv), $\mathbf{1}$ underwent reaction with 1,3,5trimethoxybenzene at temperatures as low as $-30^{\circ} \mathrm{C}$ to give mixtures of the γ - substitution (C-7 substitution) product 5a and the α - substitution (C-3 substitution) product $\mathbf{5 b}$ (Figure 1). Variation of reaction temperature revealed that the γ - substitution product predominated in all
cases, with optimal yields of condensation products realized at $-10^{\circ} \mathrm{C}$ (Table 1) with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ as Lewis acid. Curiously, the amount of α - substitution decreased with increasing temperature, from 41% of the products $-30^{\circ} \mathrm{C}$ to 14% of the product composition at $23{ }^{\circ} \mathrm{C}$. Changing the Lewis acid from $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ to SnCl_{4} gave similar results at $-10{ }^{\circ} \mathrm{C}$, with a marginally inferior yield. Use of $\mathrm{Bu}_{2} \mathrm{BOTf}$ as Lewis acid, however, caused extensive unproductive decomposition, even at $-30^{\circ} \mathrm{C}$. As a result, the $-10{ }^{\circ} \mathrm{C}, \mathrm{BF}_{3}-\mathrm{OEt}_{2}$ combination was chosen as the standard set of conditions and applied in all other cases.

Figure 1. Nicholas reaction products of 1

Table 1. Reaction of $\mathbf{1}$ with 1,3,5-trimethoxybenzene

Conditions	Yield $\mathbf{5 a} / \mathbf{5 b}(\%)$	γ-: α - ratio
$\mathrm{BF}_{3}-\mathrm{OEt}_{2},-30{ }^{\circ} \mathrm{C}$	70	$59: 41$
$\mathrm{BF}_{3}-\mathrm{OEt}_{2},-10^{\circ} \mathrm{C}$	86	$70: 30$
$\mathrm{BF}_{3}-\mathrm{OEt}_{2}, 0{ }^{\circ} \mathrm{C}$	73	$81: 19$
$\mathrm{BF}_{3}-\mathrm{OEt}_{2}, 23{ }^{\circ} \mathrm{C}$	52	$86: 14$
$\mathrm{SnCl}_{4},-10{ }^{\circ} \mathrm{C}$	77	$76: 24$
$\mathrm{Bu}_{2} \mathrm{BOTf}^{\circ}-30{ }^{\circ} \mathrm{C}$	0	-

The change in isomer ratio towards increased amounts of the major, γ-substitution product at higher reaction temperatures suggested the possibility that the results with $1,3,5-$ trimethoxybenzene were not the consequence of purely kinetic reactivity of the propargyl allyl cation. Past work in our group has shown evidence of reversibility in Nicholas reactions involving this nucleophile, ${ }^{12}$ and these results would be consistent with that feature here. In fact, subjecting purified α-substitution product $\mathbf{5 b}$ to the $0^{\circ} \mathrm{C}$ conditions of reaction (without added 1,3,5-trimethoxybenzene) afforded a $\mathbf{5 a} / \mathbf{5 b}$ mixture ($23: 77,67 \%$ recovery) along with some decomposition. By contrast, subjecting 5a to these conditions gave only recovered $\mathbf{5 a}$. Consequently, allyltrimethylsilane was also investigated as a nucleophile with $\mathbf{1}$ under varying reaction temperatures (Table 2), as reversibility in this reaction is far less likely. Under analogous concentration and stoichiometry conditions, allyltrimethylsilane afforded γ substitution product $6 \mathbf{a}$ and α - substitution product $\mathbf{6 b}$. Once again the yield reached a maximum at $-10{ }^{\circ} \mathrm{C}$, but in these cases the $\alpha-: \gamma$ - product ratios remained relatively consistent (81:19 84:16) over the temperature range investigated.

Table 2. Reaction of 1 with allyltrimethylsilane

Conditions	Yield $\mathbf{6 a} / \mathbf{6 b}(\%)$	γ-: α - ratio
$\mathrm{BF}_{3}-\mathrm{OEt}_{2},-30^{\circ} \mathrm{C}$	68	$82: 18$
$\mathrm{BF}_{3}-\mathrm{OEt}_{2},-10^{\circ} \mathrm{C}$	83	$84: 16$
$\mathrm{BF}_{3}-\mathrm{OEt}_{2}, 0{ }^{\circ} \mathrm{C}$	77	$81: 19$
$\mathrm{BF}_{3}-\mathrm{OEt}_{2}, 23{ }^{\circ} \mathrm{C}$	56	$83: 17$

Several other carbon and hydride based nucleophiles were investigated (Table 3). Allyltributylstannane gave 6a and 6b in good yield (74\%), but with minimal γ - : α - selectivity $(\mathbf{6 a}: \mathbf{6 b}=50: 50)$. Conversely, furan gave condensation product $7 \mathbf{a}$ through its $\mathrm{C}-2$ site, with almost none of α - condensation product $7 \mathbf{b}$ in evidence $(62 \% \text { yield, } 7 \mathbf{a}: 7 \mathbf{b}=>96:<4)^{13}$. The overall reduction products $\mathbf{8 a}$ and $\mathbf{8 b}$ could be obtained in fair yield using triethylsilane (54\%, $\mathbf{8 a}: \mathbf{8 b}=63: 37)$ or triisopropylsilane $(62 \%$ yield, $\mathbf{8 a}: \mathbf{8 b}=84: 16)$. The 2-hydroxymethyl-, 2-chloromethyl-, and 2-acetoxymethyl- substituted allylsilanes (9a, 9b, and 9c, respectively) (Figure 2) afforded analogous products $\mathbf{1 0 a} / \mathbf{b}, \mathbf{1 1 a} / \mathbf{b}$, and $\mathbf{1 2 a} / \mathbf{b}$, respectively, with somewhat lower γ-: α - ratios (59:41-72:28) relative to allyltrimethylsilane itself. Homoenolate equivalent 1-trimethylsilylallyl acetate gave the enol acetate products $\mathbf{1 3 a}$ and 13b (as Z-/E- isomeric mixtures) with relatively high γ - selectivity (65% yield, $\mathbf{1 3 a}: \mathbf{1 3} \mathbf{b}=89: 11$), along with small amounts of elimination product 14 (7\%) and γ-acetoxy substitution product $\mathbf{1 5 a}(7 \%)$. To our knowledge, this is the first example of a discrete homoenolate equivalent participating directly in a Nicholas reaction, although the cyclization-rearrangement processes of Tanino ${ }^{14}$ and Magnus' cyclization-dyotropic rearrangements ${ }^{15}$ may be considered specialized cases of homoenolate equivalent reactivity. In addition, complexes with analogous functional group connectivity have been made by radical reactions on enyne complexes. ${ }^{16}$ Finally, two acetophenone enolate equivalents were introduced. The trimethylsilyl enol ether of acetophenone underwent reaction with 1 to give $\mathbf{1 6 a}$ and $\mathbf{1 6 b}$ in good yield (74\%), but the α - condensation product actually predominated slightly with this nucleophile $(\mathbf{1 6 a}: \mathbf{1 6 b}=44: 56)$. The enol acetate of acetophenone gave somewhat lower yields (61%, with 19% of $\mathbf{1 5 a}$), with the γ - product once again as the major regioisomer ($\mathbf{1 6 a}: \mathbf{1 6 b}=72: 28)$.

Table 3. Reaction of $\mathbf{1}$ with carbon and hydrogen nucleophiles ${ }^{\text {a }}$

Nucleophile	Product	Yield (\%)	$\gamma-: \alpha$ - ratio	15a (\%)	14 (\%)
1,3,5-trimethoxybenzene	5a/5b	86	70:30		
Allyltrimethylsilane	6a/6b	83	84:16		
Allyltributylstannane	6a/6b	74	50:50		
Furan	7a/7b	62	>96:4		
$\mathrm{Et}_{3} \mathrm{SiH}$	8a/8b	54	72:28		
${ }^{\text {i }} \mathrm{Pr}_{3} \mathrm{SiH}$	8a/8b	62	84:16	3.5	
9a	10a/10b	76	59:41		
9b	11a/11b	70	72:28		
9c	12a/12b	76	64:36		
1-Trimethylsilylallyl acetate	13a/13b	65	$89^{\text {b }}: 11^{\text {c }}$	7	7
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{Ph}$	16a/16b	74	44:56		
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{OAc}) \mathrm{Ph}$	16a/16b	61	72:28	19	

${ }^{a}$ Reaction conditions: Nucleophile, $1.5-2.0$ equiv; solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M})$; temperature, $-10^{\circ} \mathrm{C}$; Lewis acid, $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ (10 equiv); reaction time, 1 h .
${ }^{\mathrm{b}}$ 13a $(E-: Z-)=38: 62$
${ }^{\text {c }} \mathbf{1 3 b}(E-: Z-)=51: 49$

$9 \mathrm{a} X=\mathrm{OH}$
9b $\mathrm{X}=\mathrm{Cl}$
9c $X=O A c$

14

21

Figure 2

Investigation of heteroatom based nucleophiles was also warranted due to the likelihood of reversibility in the substitution process (Table 4). Under standard conditions, acetic acid could be incorporated with great facility to give 15a in good yield (79\%) exclusively as the γ substitution product. In this case, abandonment of the standard conditions in favour of neat acetic acid and $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave superior results (97% yield) for 15a. Under the standard conditions, methanol, 2-chloroethanol, and 4-chloro-2-buten-1-ol gave 17a (65\%), 18a (59\%), and 19a (68\%), each exclusively as the γ - substitution products. The latter two cases also gave modest amounts of elimination product 14 and γ-acetoxy substitution product 15a. Again, use of a large excess of nucleophile and $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave yield improvement for each of the commercially available
alcohols (17a, 87\%; 18a, 76\%). Attempts to incorporate a nitrogen based nucleophile, acetamide, met with little success under the standard reaction conditions. While a small amount of γ - substitution product 20a could be obtained (12% yield), the major resulting product was γ acetoxy substituted 15a (83\% yield); a small amount of elimination product $\mathbf{1 4}$ (5\% yield) also could be isolated. Conversely, good yields of 20a (85%) could be realized by resorting to the addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to a solution of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$. In no cases have we observed even traces of the heteroatom based α-condensation products $\mathbf{1}, \mathbf{1 7 b} \mathbf{- 2 0 b}$ as a result of these protic- or Lewis acid mediated reactions.

Table 4. Reaction of $\mathbf{1}$ with heteroatom nucleophiles ${ }^{\text {a }}$

Nucleophile	Product	Yield (\%)	15a (\%)	$\mathbf{1 4}$ (\%)
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathbf{1 5 a}$	79		
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathbf{1 5 a}$	97^{b}		
$\mathrm{CH}_{3} \mathrm{OH}$	$\mathbf{1 7 a}$	65		
$\mathrm{CH}_{3} \mathrm{OH}$	$\mathbf{1 7 a}$	87^{b}		
2-chloroethanol	$\mathbf{1 8 a}$	59	15	15
2-chloroethanol	$\mathbf{1 8 a}$	76^{b}		
4-chloro-2-buten-1-ol	$\mathbf{1 9 a}$	68	13	4
$\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$	$\mathbf{2 0 a}$	12	83	5
$\mathrm{CH}_{3} \mathrm{CN}$	$\mathbf{2 0 a}$	85^{b}		

${ }^{\text {a }}$ Reaction conditions, unless otherwise stated: Nucleophile,
$1.5-2.0$ equiv; solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M})$; temperature, $-10{ }^{\circ} \mathrm{C}$;
Lewis acid, $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ (10 equiv); reaction time, 1 h .
${ }^{\mathrm{b}}$ Using $\mathrm{H}_{2} \mathrm{SO}_{4}$ in place of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ and excess nucleophile.

With the ready availability of γ-acetoxy substitution product $\mathbf{1 5 a}$, and the belief that the same cation could be generated from this compound as from 1 , we briefly explored its $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ induced Nicholas reactions. Under the otherwise standard conditions, allyltrimethylsilane reacted with $\mathbf{1 5 a}$ to give $\mathbf{6 a}$ and $\mathbf{6 b}(81 \%$ yield $)$ in the same ratio as from $\mathbf{1}(\mathbf{6 a}: \mathbf{6 b}=84: 16)$, strongly suggesting an identical reactive intermediate from the two allyl acetate complexes. Compound $\mathbf{1 5 a}$ also reacted with 1,3,5-trimethoxybenzene, affording 5a and 5b in 80% yield (5a:5b $=$ 76:24).

The distinction of γ - from α-adducts was readily apparent from the ${ }^{1} \mathrm{H}$ NMR spectra. Noteworthy in this respect were the resonances attributable to the vinyl proton adjacent to the alkyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ unit in the γ-regioisomer, which appeared as a doublet $(\mathrm{J} \approx 10 \mathrm{~Hz})$ at 6.5-6.7 ppm , deshielded by $\geq 0.5 \mathrm{ppm}$ relative to the other alkene protons. The most distinctive features of the analogous spectra of the α - isomers were the allylic and propargylic methine protons (or methylene in $\mathbf{8 b}$), which resonated at 3.7-4.0 ppm (excepting $\mathbf{5 b}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$ was also noteworthy in that the resonances for two of the methoxy CH_{3} 's appeared as a broadened signal, which sharpened upon warming and decoalesced to two singlets at $-20{ }^{\circ} \mathrm{C}$. Variable temperature ${ }^{1} \mathrm{H}$ NMR studies established a coalescence T_{c} of $25^{\circ} \mathrm{C}$ for these methyl group resonances, and a barrier at coalescence of $\Delta \mathrm{G}_{\mathrm{c}}=15.2 \mathrm{kcal} / \mathrm{mol}$. This process was attributed to restricted rotation about the $\mathrm{C}_{\alpha^{-}}$aryl C bond, which interchanged the two aryl ortho methoxy functions.

Our analysis of the reactivity patterns in this system is as follows. The allyl propargyldicobalt cation 21 generated from either 1 or $15 a$ reacts in a kinetic fashion with nucleophiles predominantly, but not exclusively, at the site γ - with respect to the alkynedicobalt unit (C-7). We find it particularly instructive that a comparison the γ-: α - selectivities with Mayr's published N (nucleophilicity) values ${ }^{17}$ reveals that greater nucleophilicity results in greater amounts of α - attack (Table 5). While the exact correlation between N and γ-: α - ratios probably involves some coincidence and other factors likely contribute, ${ }^{18}$ a comparison between similar nucleophiles particularly supports this trend. For example, the less nucleophilic allyltrimethylsilane $(\mathrm{N}=1.79, \gamma-: \alpha-=84: 16)$ has a much greater preference for the γ - site than allyltributylstannane $(\mathrm{N}=5.46, \gamma-: \alpha-=50: 50)$. In addition, the less nucleophilic acetophenone enol acetate ${ }^{19}$ reacts with greater γ - selectivity $(\gamma-: \alpha-=72: 28)$ than the more nucleophilic
trimethylsilyl enol ether $(\mathrm{N}=6.22, \gamma-: \alpha-=44: 56)$. This is consistent with earlier work of Nicholas and Isobe on acyclic systems; low temperature reactions with alcohols and (to a small extent) enol acetates give α - attack kinetically, and these are the most reactive nucleophiles examined by these authors. The comparison of $\mathrm{Et}_{3} \mathrm{SiH}$ and ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiH}$ suggests that increased γ selectivity is encouraged by larger nucleophiles, likely as a consequence of the significant steric size of the alkyne- $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ unit.

Table 5. Nucleophile N values versus γ-: α - ratios		
Nucleophile a	N value	γ-: α - Ratio
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{Ph}$	6.22	$44: 56$
Allyltributylstannane	5.46	$50: 50$
Et_{3} SiH	3.64	$72: 28$
Allyltrimethylsilane	1.79	$84: 16$
Furan	1.36	$>96: 4$

${ }^{\text {a }} 1,3,5$-Trimethoxybenzene $(\mathrm{N}=3.40)$ is excluded
as it is likely not reacting at the kinetic limit

Conversely, the product of thermodynamic reaction, as with the heteroatom based nucleophiles, is clearly exclusively γ-. This is supported by the results of reaction of $\mathbf{5 b}$ and $\mathrm{BF}_{3^{-}}$ OEt_{2}, and also by the fact that methyl ether $\mathbf{1 7 a}$ underwent reaction with nucleophile 9 a (66%, 59:41 10a:10b) under the standard conditions. The conjugation between the alkene function and the complexed alkyne unit in the γ-products, and the assertion that the γ-products are more stable than the α-adducts, are also reflected by a shortened C-3/C-4 single bond length (1.450 £́) in $\mathbf{1 7 a}$ and a $6.7 \mathrm{kcal} / \mathrm{mol}(28.0 \mathrm{~kJ} / \mathrm{mol})$ energy difference between $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$ in DFT calculations (DFT B88-PW91, CAChe ${ }^{\circledR}$). ${ }^{20}$ The reaction of $\mathbf{1}$ with 1,3,5-trimethoxybenzene itself is neither at the kinetic nor thermodynamic limit.

In summary, the Nicholas reactions on the cation derived from the cyclic allylic acetate alkynedicobalt complex $\mathbf{1}$ kinetically favour the γ - site for most nucleophiles, with increasing amounts of α - products in cases with greater nucleophilicity. In the introduction of a
specific nucleophilic fragment, some regiocontrol is possible through variation of the nucleophile. The thermodynamically favoured site is exclusively γ-. Work on employing some of the γ-adducts for access to 7,5-and 7,6-ring systems containing the alkynedicobalt unit, by way of cyclization reactions using the alkene function, is in progress and will be reported in due course.

3. Experimental Section

3.1. General Methods

All reaction solvents were used after passage through a solvent purification system from Innovative Technologies. Commercial $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ was distilled and stored under nitrogen. All reactions were conducted under a nitrogen atmosphere unless otherwise noted. Flash chromatography was performed as described by Still using silica gel 60 (230-400 mesh). ${ }^{21}$

All new compounds are $>95 \%$ purity as determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Reported regioisomeric ratios are on based on the ${ }^{1} \mathrm{H}$ NMR spectra of crude reaction products. NMR spectra were run at 500 MHz or 300 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz or 75 MHz for ${ }^{13} \mathrm{C}$ in CDCl_{3}; chemical shifts are given in ppm and coupling constants (J) are given in Hz. High resolution mass spectra were run at the McMaster Regional Centre for Mass Spectrometry and the Ohio State Chemistry Mass Spectrometry Facility.

3.2. Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(3-acetoxynona-1,8-dien-4-yne)]dicobalt (4)

To a mixture of alcohol $2(0.3031 \mathrm{~g}, 2.23 \mathrm{mmol})$ and acetic anhydride $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added pyridine (1 mL). The solution was stirred over a 6 h period and allowed to come to room temperature. The volatiles were removed under reduced pressure, and the resulting residue containing 3 was dissolved in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. An excess amount of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ was added and the
solution stirred 12 h at room temperature. The removal of volatiles under reduced pressure followed by flash chromatography (100% petroleum ether $-10: 1$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) gave acetate complex $4\left(0.5239 \mathrm{~g}, 51 \%\right.$ yield) as a red-brown oil; IR (neat, $\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3085,2958$, 2093, 2050, 2020, 1746; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.48(\mathrm{~d}, J=6.5,1 \mathrm{H}), 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=17.0,1 \mathrm{H})$, $5.28(\mathrm{~d}, J=10.3,1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.1,1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.3,1 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.13 ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\delta 199.5,169.8,137.0,135.3,117.3,115.9,97.8,94.5,74.7,35.5,33.0$, 20.6. MS EI $m / e 408\left(\mathrm{M}^{+}-2 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Co}_{2} \mathrm{O}_{8}$ calcd $\left(\mathrm{M}^{+}-2 \mathrm{CO}\right) 407.9454$, found 407.9455 .

3.3. Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(3-acetoxycyclohept-1-en-4-yne) $]$ dicobalt (1)

To a solution of $4(0.0577 \mathrm{~g}, 0.124 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dichloro(phenylmethylene)bis(tricyclohexylphosphine)ruthenium (1 $1^{\text {st }}$ generation Grubbs' catalyst, $0.0102 \mathrm{~g}, 10.0 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The solution was stirred for 3 h , and subsequently concentrated under reduced pressure. Flash chromatography (20:1 petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) gave $1\left(0.0436 \mathrm{~g}, 80 \%\right.$) as a red-brown oil; IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$) $3035,2940,2093$, 2051, 2021, 1747; ${ }^{1} \mathrm{H}$ NMR $\delta 6.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{dt}, J=11.2,2.2,1 \mathrm{H}), 3.18(\mathrm{dt}$, $J=17.1,4.3,1 \mathrm{H}), 3.00(\mathrm{ddd}, J=3.7,11.4,17.1,1 \mathrm{H}), 2.25-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 199.3,170.4,134.3,130.4,98.0,93.0,73.9,33.2,27.2,20.6 . \operatorname{MS} m / e 408\left(\mathrm{M}^{+}-1 \mathrm{CO}\right)$, $380\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 352\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 324\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 296\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 268\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$; HRMS m / e for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Co}_{2} \mathrm{O}_{8}$ calcd $\left(\mathrm{M}^{+}-1 \mathrm{CO}\right) 407.9090$, found 407.9103 .

3.3. General Procedure: Reactions of the Cycloheptenyne Dicobalt Complex with Carbon-

 and Heteroatom-Based NucleophilesTo a solution of the nucleophile (1.5-2.0 equiv) and cycloheptenyne $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M})$ at $10^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ (10 equiv) over 30 min as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{M})$. The solution
was stirred for 1 h and followed by addition of aqueous sodium bicarbonate. A typical workup was performed. The crude product was purified by flash chromatography
3.3.1 Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(7-(2,4,6-trimethoxyphenyl)cyclohept-1-en-3-yne)] dicobalt (5a) and Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(3-(2,4,6-trimethoxyphenyl)cyclohept-1-en-4-yne)] dicobalt (5b)

A solution of cycloheptenyne $1(0.0385 \mathrm{~g}, 0.0883 \mathrm{mmol})$ and 1,3,5-trimethoxybenzene $(0.0297 \mathrm{~g}, 0.1766 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.11 \mathrm{~mL}, 0.88$ mmol) via the General Procedure. The product was purified by flash chromatography (25:1 petroleum ether: $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ gave $\mathbf{5 a}$ and $\mathbf{5 b}(0.0412 \mathrm{~g}, 86 \%, \mathbf{5 a}: 5 \mathbf{b}=70: 30)$ as a red-brown oil. Careful repeated TLC afforded (in order of elution) $\mathbf{5 b}$ followed by 5a. 5a IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$): 2925, 2851, 2087, 2017, 1609, 1385; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.46$ (d, $\left.J=9.8,1 \mathrm{H}\right), 6.14$ (s, 2H), 5.97 (dd, J $=2.7,9.9,1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 9 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \delta: 200.0,159.0,143.1,123.7,116.0,99.3,91.5,89.7,55.8,55.5,38.0,35.9,31.4,24.3 ;$ MS EI $m / e: 544\left(\mathrm{M}^{+}\right), 516\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 488\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 460\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 432\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 404$ $\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 376\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Co}_{2} \mathrm{O}_{9}$ calcd $\left(\mathrm{M}^{+}\right) 543.9615$, found 543.9609. 5b IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$): 2926, 2085, 2043, 2014, 1733, 1609; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.22(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~s}$, $2 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 2.41$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta: 200.3,160.4,137.4,128.4,111.0,101.0,100.2,91.2,90.2,55.5,54.3$, 38.5, 34.5, 27.3. MS EI $m / e: 544\left(\mathrm{M}^{+}\right), 516\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 488\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 460\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 432\left(\mathrm{M}^{+}\right.$ $-4 \mathrm{CO}), 404\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 376\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Co}_{2} \mathrm{O}_{9}$ calcd $\left(\mathrm{M}^{+}-\mathrm{CO}\right)$ 515.9666, found 515.9666.

Reaction of 5b with $\mathbf{B F}_{\mathbf{3}} \mathbf{-} \mathbf{O E t}_{\mathbf{2}}$

To a $0{ }^{\circ} \mathrm{C}$ solution of $\mathbf{5 b}(0.0281 \mathrm{~g}, 0.0517 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ ($65 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$). After stirring for 1 h at $0{ }^{\circ} \mathrm{C}, \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ was added and the reaction was
subjected to a conventional workup. Flash chromatography ($20: 1$ petroleum ether : $\mathrm{Et}_{2} \mathrm{O}$) gave $\mathbf{5 a}$ and 5b (0.0189, 67\% recovery, 5a:5b = 23:77).
3.3.2 Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(7-allylcyclohept-1-en-3-yne)]dicobalt (6a) and Hexacarbonyl $\left[\mu-\eta^{4}-(3-\right.$ allylcyclohept-1-en-4-yne)]dicobalt (6b)

A solution if cycloheptenyne $1(0.0817 \mathrm{~g}, 0.187 \mathrm{mmol})$ and allyltrimethylsilane ($45 \mu \mathrm{~L}$, $0.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.24 \mathrm{~mL}, 1.9 \mathrm{mmol})$ via the General Procedure. Flash chromatography ($25: 1$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) resulted in the coelution of $\mathbf{6 a}$ and $\mathbf{6 b}(0.0650 \mathrm{~g}, 83 \%, \mathbf{6 a}: \mathbf{6 b}=84: 16)$ as a red-brown oil. IR (neat, $\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3015, 2926, 2854, 2089, 2046, 2017, 1641, 1582; ${ }^{1} \mathrm{H}$ NMR 6a $\delta: 6.52(\mathrm{~d}, J=9.9,1 \mathrm{H}), 5.95(\mathrm{dd}$, $J=4.3,9.9,1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}$, $2 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H})$; resonances for $\mathbf{6 b}$ could be observed at $\delta 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.65$ $(\mathrm{m}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta: 200.1,139.7,136.3,126.4,117.2,98.1,87.5,41.0,40.6,33.4,30.3$; resonances for 6b could be observed at 136.1, 131.5, 41.8, 34.3, 30.1, 27.1. MS EI $m / e: 418\left(\mathrm{M}^{+}\right), 390\left(\mathrm{M}^{+}-\right.$ $1 \mathrm{CO}), 362\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 334\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 306\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 278\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 250\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Co}_{2} \mathrm{O}_{6}$ calcd $\left(\mathrm{M}^{+}\right) 417.9298$, found 417.9287 .

3.3.3 Hexacarbonyl $\left[\mu-\eta^{4}-(2-c y c l o h e p t-2-e n-4-y n y l f u r a n)\right] d i c o b a l t(\underline{7 a})$

A solution of cycloheptenyne $1(0.0540 \mathrm{~g}, 0.124 \mathrm{mmol})$ and furan $(0.136 \mathrm{~g}, 0.186 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.16 \mathrm{~mL}, 1.2 \mathrm{mmol})$ via the General Procedure. The crude product was purified by flash chromatography (100% petroleum ether) to yield $7 \mathbf{a}\left(0.0341 \mathrm{~g}, 62 \%\right.$) as a red-brown oil. IR (neat, $\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2927,2089,2048,2017$, 1622,$1428 ;{ }^{1} \mathrm{H}$ NMR $\delta: 7.35(\mathrm{~d}, J=1.8,1 \mathrm{H}), 6.71(\mathrm{~d}, J=9.9,1 \mathrm{H}), 6.28(\mathrm{dd}, J=1.8,3.1,1 \mathrm{H})$, $6.15(\mathrm{dd}, J=3.1,9.9,1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.2,1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 2.23$
(m, 1H), $2.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 199.9,155.8,141.7,133.7,127.8,110.1,106.3,98.1,86.8$, 41.1, 32.2, 30.1. MS EI $m / e: 444\left(\mathrm{M}^{+}\right), 416\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 388\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 360\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 332\left(\mathrm{M}^{+}\right.$ $-4 \mathrm{CO}), 304\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 276\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Co}_{2} \mathrm{O}_{7}$ calcd (M^{+}) 443.9091, found 443.9082 .
3.3.4 Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(cyclohept-1-en-3-yne) $]$ dicobalt (8а) and Hexacarbonyl $\left[\mu-\eta^{4}-\right.$ (cyclohept-1-en-4-yne)]dicobalt (8b)

A solution of cycloheptenyne $1(0.0500 \mathrm{~g}, 0.115 \mathrm{mmol})$ and triethylsilane (0.0200 g , $0.173 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.15 \mathrm{~mL}, 1.1 \mathrm{mmol})$ via the General Procedure. After flash chromatography (100\% petroleum ether), an inseparable mixture of $\mathbf{8 a}$ and $\mathbf{8 b}(0.0235 \mathrm{~g}, 54 \%, \mathbf{8 a}: \mathbf{8 b}=72: 28)$ was isolated. IR (neat, $\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2928$, 2089, 2046, 2016, 1581, 1385; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.54(\mathrm{~d}, J=9.7,1 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{t}, J=5.6$, $2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H})$; peaks for $\mathbf{8 b}$ could be observed at $\delta: 5.97(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{~m}$, $1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \delta: 199.5,135.1,127.1,97.9,89.4,35.7,30.9$, 24.9; resonances for $\mathbf{8 b}$ could be observed at $\delta: 199.5,132.4,130.2,98.1,89.6,34.5,33.6,27.2$. MS EI $m / e: 378\left(\mathrm{M}^{+}\right), 350\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 322\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 294\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 266\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 238$ $\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 210\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Co}_{2} \mathrm{O}_{6}$ calcd $\left(\mathrm{M}^{+}-\mathrm{CO}\right) 349.9030$, found 349.9008.
3.3.5 Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(2-cyclohept-2-en-4-ynylmethyl-prop-2-en-1-ol)] dicobalt (10a) and Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(2-cyclohept-2-ynyl-methyl-prop-2-en-1-ol)] dicobalt (10b)

A solution of cycloheptenyne $1(0.0776 \mathrm{~g}, 0.178 \mathrm{mmol})$ and 2-(trimethylsilylmethyl)-2-propen-1-ol (9a) ($0.0384 \mathrm{~g}, 0.266 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-$ $\mathrm{OEt}_{2}(0.23 \mathrm{~mL}, 1.8 \mathrm{mmol})$ via the General Procedure. Flash chromatography (3:1 petroleum
ether: $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ resulted in the isolation of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}(0.0607 \mathrm{~g}, 76 \%, \mathbf{1 0 a}: \mathbf{1 0 b}=59: 41)$ as a redbrown oil. Careful repeated TLC afforded (in order of elution) 10b followed by 10a. 10a: IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$) 3354, 2923, 2086, 2047, 2021, 1608, 1435, 1384; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.54$ (d, $J=9.9$, $1 \mathrm{H}), 5.96(\mathrm{dd}, J=3.8,9.9,1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~m}$, $1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 200.0$, $146.1,139.2,126.3,112.3,98.0,87.5,65.6,39.5,38.7,33.3,30.3$. MS EI $m / e: 448\left(\mathrm{M}^{+}\right)$, $420\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 392\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 364\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 336\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 308\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 280\left(\mathrm{M}^{+}-\right.$ 6CO). HRMS m / e for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Co}_{2} \mathrm{O}_{7}$ calcd $\left(\mathrm{M}^{+}-2 \mathrm{CO}\right) 391.9500$, found 391.9513. 10b: IR (neat, $\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3385,2925,2088,2046,2016,1608,1506,1093 ;{ }^{1} \mathrm{H}$ NMR for the $\delta: 5.95(\mathrm{~m}, 1 \mathrm{H})$, $5.67(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H})$, $2.35(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 199.9,146.1,135.9,131.4,112.2,100.9,99.9,65.9$, 40.4, 39.3, 34.2, 26.9; MS EI m/e: $448\left(\mathrm{M}^{+}\right), 420\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 392\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 364\left(\mathrm{M}^{+}-3 \mathrm{CO}\right)$, $336\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 308\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 280\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Co}_{2} \mathrm{O}_{7}$ calcd $\left(\mathrm{M}^{+}\right)$ 447.9403, found 447.9376.

3.3.6 Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(7-(2-chloromethylallyl)cyclohept-1-en-3-yne)]dicobalt (11a) and

 Hexacarbonyl $\left[\mu-\eta^{4}-(3-(2-c h l o r o m e t h y l a l l y l) c y c l o h e p t-1-e n-4-y n e)\right] d i c o b a l t ~(11 b) ~$A solution of cycloheptenyne $\mathbf{1}(0.0477 \mathrm{~g}, 0.109 \mathrm{mmol})$ and 2-chloromethyl-3-trimethylsilyl-1-propene (9b) $(0.030 \mathrm{~mL}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.14 \mathrm{~mL}, 1.1 \mathrm{mmol})$ via the General Procedure. Flash chromatography ($25: 1$ petroleum ether: $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ resulted in the co-elution of $11 \mathbf{a}$ and $\mathbf{1 1 b}(0.0358 \mathrm{~g}, 70 \%, 11 \mathrm{a}: 11 \mathrm{~b}=$ $72: 28$) as a red-brown oil. IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$): 2927, 2090, 2047, 2016, 2017, 1506, 1430; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.55(\mathrm{dd}, J=1.6,9.9,1 \mathrm{H}), 5.97(\mathrm{dd}, J=4.1,9.9,1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}$,
$2 H), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H})$; resonances for 11b could be observed at $\delta: 5.97(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=3.3,10.5,1 \mathrm{H}), 5.31(\mathrm{~s}$, $1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}$, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta: 199.9,142.5,138.8,126.7,117.1,96.3,86.2,47.8,39.6,38.5,33.3,30.3$; resonances for 11b could be observed at $\delta: 135.7,133.0,116.9,96.3,86.2,48.0,40.1,39.1,34.1$, 27.2. MS EI $m / e: 466\left(\mathrm{M}^{+}\right), 438\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 410\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 382\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 354\left(\mathrm{M}^{+}-4 \mathrm{CO}\right)$, $326\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 298\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m/e for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClCo}_{2} \mathrm{O}_{6}$ calcd $\left(\mathrm{M}^{+}\right) 465.9065$, found 465.9038.

3.3.7. Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(acetic acid 2-cyclohept-2-en-4-ynylmethylallyl ester)] dicobalt (12a) and Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(acetic acid 2-cyclohept-2-en-6-ynylmethylallyl ester)] dicobalt (12b)

A solution of cycloheptenyne $\mathbf{1}(0.0706 \mathrm{~g}, \quad 0.162 \mathrm{mmol})$ and $2-$ (acetoxymethyl)allyltrimethylsilane (9c) $(0.0509 \mathrm{~g}, 0.274 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.205 \mathrm{~mL}, 1.62 \mathrm{mmol})$ via the General Procedure. Flash chromatography ($25: 1$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) resulted in the co-elution of 12a and $\mathbf{1 2 b}(0.0606$ $\mathrm{g}, 76 \%, 12 \mathrm{a}: 12 \mathrm{~b}=64: 36$) as a red-brown oil. 12a $\mathrm{IR}\left(\right.$ neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$): 2927, 2089, 2048, 2018, 1747, 1053; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.54(\mathrm{dd}, J=1.9,9.8,1 \mathrm{H}), 5.94(\mathrm{dd}, J=4.3,9.8,1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.01$ $(\mathrm{s}, 1 \mathrm{H}), 4.55(1 / 2 \mathrm{ABq}, J=13.5,1 \mathrm{H}), 4.51(1 / 2 \mathrm{ABq}, J=13.5,1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H})$, $2.61(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H})$; resonances for $\mathbf{1 2 b}$ could be observed at ${ }^{1} \mathrm{H}$ NMR $\delta: 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{br} \mathrm{d}, J=10.5,1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H})$, $4.68(1 / 2 \mathrm{ABq}, J=13.2,1 \mathrm{H}), 4.59(1 / 2 \mathrm{ABq}, J=13.2,1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~m}$, 1H), $2.71(\mathrm{dd}, J=4.1,14.9,1 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 199.9$,
$170.7,156.1,141.2,138.9,126.5,115.35,97.9,87.4,66.6,39.7,38.6,33.2,30.1$; resonances for 12b could be observed at $\delta: 170.7,141.2,135.40,131.5,115.4,100.8,99.8,66.6,40.1,39.1$, 34.1, 30.3, 27.0, 20.8. MS EI $m / e: 434\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 406\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 378\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 350\left(\mathrm{M}^{+}-\right.$ 5CO), $322\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Co}_{2} \mathrm{O}_{8}$ calcd $\left(\mathrm{M}^{+}-2 \mathrm{CO}\right) 433.9605$, found 433.9636 .
3.3.8. Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(7-(3-acetoxypropen-2-yl)cyclohept-1-en-3-yne)] dicobalt (13a) and Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(3-(3-acetoxypropen-2-yl)cyclohept-1-en-4-yne)]dicobalt (13b)

A solution of cycloheptenyne $1(0.0524 \mathrm{~g}, 0.120 \mathrm{mmol})$ and 1-trimethylsilylallyl acetate $(0.0384 \mathrm{~g}, 0.223 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.15 \mathrm{~mL}, 1.2$ mmol) via the General Procedure. The crude product was purified by flash chromatography (25:1 petroleum ether: $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to yield of $\mathbf{1 3 a}$ and $\mathbf{1 3 b}(0.0369 \mathrm{~g}, 65 \%)$ as Z / E - isomeric mixtures as a red-brown oil. IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$): 2926, 2089, 2047, 2016, 1760, 1673, 1217; 13a ${ }^{1} \mathrm{H}$ NMR $\delta: 7.13$ (d, $J=6.8,1 \mathrm{H}, Z$-isomer) and $7.14(\mathrm{~d}, J=12.3,1 \mathrm{H}, E$-isomer), 6.55 (d, $J=9.9$, $1 \mathrm{H}), 5.97$ (dd, $J=4.4,10.0,1 \mathrm{H}, \mathrm{Z}$-isomer) and 5.95 (dd, $J=4.1,9.9,1 \mathrm{H}, E$-isomer), 4.89 (apparent q, $J=6.8,1 \mathrm{H}, Z$-isomer) and $5,41(\mathrm{dt}, J=12.3,7.8,1 \mathrm{H}, E$-isomer), $3.28(\mathrm{~m}, 1 \mathrm{H}), 3.12$ $(\mathrm{m}, 1 \mathrm{H}), 2.40-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Z}$-isomer) and $2.13(\mathrm{~s}, 3 \mathrm{H}$, E-isomer), $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H})$; absorptions for $\mathbf{1 3 b}$ could be observed at $5.67(\mathrm{~m}, 1 \mathrm{H})$, $5.56(\mathrm{dt}, J=12.5,7.5,1 \mathrm{H}, E$-isomer) and 5.08 (apparent $\mathrm{q}, J=7.0,1 \mathrm{H}, Z$-isomer), $3.22(\mathrm{~m}, 1 \mathrm{H})$, $3.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 200.1,168.4,168.2,139.3,139.1,137.2,135.8,126.9,126.7,112.3$, $111.4,98.3,87.0,41.3,41.2,34.1,33.2,30.9,30.3,30.1,29.9,20.9$. MS EI $m / e: 476\left(\mathrm{M}^{+}\right), 448$ $\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 420\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 392\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 364\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 336\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 308\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Co}_{2} \mathrm{O}_{8}$ calcd $\left(\mathrm{M}^{+}-2 \mathrm{CO}\right) 419.9449$, found 419.9455 .
3.3.9. Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(2-cyclohep-2-en-4-ynyl-1-phenylethanone)]dicobalt (16a) and Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(2-cyclohept-2-en-6-ynyl-1-phenylethanone)]dicobalt (16b)

A solution of cycloheptenyne $\mathbf{1}(0.0592 \mathrm{~g}, 0.135 \mathrm{mmol})$ and 1-phenyl-1(trimethylsiloxy)ethane $(0.0519 \mathrm{~g}, 0.270 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.17 \mathrm{~mL}, 1.3 \mathrm{mmol})$ via the General Procedure. The crude product was purified by flash chromatography ($25: 1$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) to yield $\mathbf{1 6 a}+\mathbf{1 6 b}(0.0496 \mathrm{~g}, 74 \%, 44: 56$ ratio) as a red-brown oil. Repeated TLC ($10: 1$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) allowed sequential isolation of α-16b and $\boldsymbol{\gamma - 1 6 a .}$ 16a: IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$): 3018, 2927, 2089, 2047, 2017, 1683; ${ }^{1} \mathrm{H}$ NMR $\delta: 8.03(\mathrm{~d}, J=7.8,2 \mathrm{H}), 7.40-7.60(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{dd}, J=9.8,1.4,1 \mathrm{H}), 6.02(\mathrm{dd}, J=9.8$, $4.5,1 \mathrm{H}), 3.10-3.30(\mathrm{~m}, 5 \mathrm{H}), 1.80-1.96(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR 199.8, 198.3, 138.7, 136.9, 133.3, 128.7, 128.0, 126.7, 97.8, 87.2, 44.0, 36.7, 32.9, 30.3. MS EI $m / e: 468\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 440\left(\mathrm{M}^{+}-\right.$ $2 \mathrm{CO}), 412\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 384\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 356\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 328\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for calcd $\left(\mathrm{M}^{+}-\mathrm{CO}\right) 467.9454$, found 467.9445. 16b: IR (neat, $\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3022,2930,2089,2046,2014$, $1688 ;{ }^{1} \mathrm{H}$ NMR $\delta: 7.96(\mathrm{~d}, J=7.8,2 \mathrm{H}), 7.40-7.60(\mathrm{~m}, 3 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=3.6,9.8$, 1H), $4.46(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=5.4,17.3,1 \mathrm{H}), 3.32(\mathrm{dd}, J=8.4,17.3,1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 3.03$ (m, 1H), 2.35-2.50 (m, 2H). ${ }^{13} \mathrm{C}$ NMR 199.9, 197.9, 136.7, 135.8, 133.3, 131.5, 128.7, 128.1, 100.3, 100.1, 45.7, 37.8, 34.0, 27.0. MS EI $m / e: 496\left(\mathrm{M}^{+}\right), 468\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 440\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 412$ $\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 384\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 356\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 328\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Co}_{2} \mathrm{O}_{7}$ calcd $\left(\mathrm{M}^{+}\right)$495.9403, found 495.9401.

3.3.10. Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(7-acetoxycyclohept-1-en-3-yne)] dicobalt (15a)

A solution of cycloheptenyne $1(0.0540 \mathrm{~g}, 0.124 \mathrm{mmol})$ and glacial acetic acid $(0.0149 \mathrm{~g}$, $0.248 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.16 \mathrm{~mL}, 1.3 \mathrm{mmol})$ via
the General Procedure. The crude product was purified by flash chromatography (10:1 petroleum ether: $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to yield the $\mathbf{1 5 a}(0.0427 \mathrm{~g}, 79 \%)$ as a red-brown oil: IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$): 2923, 2850, 2092, 2051, 2021, 1740, 1238; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.68(\mathrm{~d}, J=10.0,1 \mathrm{H}), 6.06(\mathrm{dd}, J=4.6$, $10.0,1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\delta: 199.4,170.0,133.2,128.6,96.6,85.0,72.4,30.3,30.1,21.0$. MS EI $m / e: 436\left(\mathrm{M}^{+}\right)$, $408\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 380\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 352\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 324\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 296\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 268\left(\mathrm{M}^{+}-\right.$ 6CO). HRMS m / e for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Co}_{2} \mathrm{O}_{8}$ calcd (M^{+}) 435.9040, found 435.9012.
$\mathbf{H}_{2} \mathbf{S O}_{4}$ conditions: To a solution of cycloheptyne $\mathbf{1}(0.1681 \mathrm{~g}, 0.386 \mathrm{mmol})$ in acetic acid (5 mL) was added $\mathrm{H}_{2} \mathrm{SO}_{4}$ (5 drops). The solution was stirred 1 h , at which point $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ was added and the mixture subjected to a conventional extractive workup. Flash chromatography as described above afforded $\mathbf{1 5 a}(0.1631 \mathrm{~g}, 97 \%)$.

3.3.11. Hexacarbonyl $\left[\mu-\eta^{4}-(7-\right.$ methoxy-cyclohept-1-en-3-yne)] dicobalt (Co-Co) (17a)

A solution of cycloheptenyne $1(0.0623 \mathrm{~g}, 0.143 \mathrm{mmol})$ and methanol $(7.0 \mu \mathrm{~L}, 0.17$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.9 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.18 \mathrm{~mL}, 1.4 \mathrm{mmol})$ via the General Procedure. The crude product was purified by flash chromatography (10:1 petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) to yield the $\mathbf{1 7 a}\left(0.0379 \mathrm{~g}, 65 \%\right.$) as a red-brown oil. IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$): 2923, 2090, 2048, 2017, 1615, 1430; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.61(\mathrm{~d}, J=10.0,1 \mathrm{H}), 6.17(\mathrm{dd}, J=3.9,10.0,1 \mathrm{H})$, $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 199.5,136.6$, 127.3, 97.2, 86.1, 79.8, 56.3, 30.8, 30.1. MS EI $m / e: 408\left(\mathrm{M}^{+}\right), 380\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 352\left(\mathrm{M}^{+}-2 \mathrm{CO}\right)$, $324\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 296\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 268\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 240\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m/e for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Co}_{2} \mathrm{O}_{7}$ calcd $\left(\mathrm{M}^{+}\right)$407.9091, found 407.9080.
$\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$ conditions: To a solution of cycloheptyne $\mathbf{1}(0.0540,0.124 \mathrm{mmol})$ in $\mathrm{MeOH}(2$ $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{H}_{2} \mathrm{SO}_{4}(2$ drops $)$. The ice bath was removed and the
reaction stirred for $1 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ was added and the reaction was subjected to a conventional workup. Flash chromatography as described above afforded $\mathbf{1 7 a}$ ($0.0442 \mathrm{~g}, 87 \%$).
3.3.12. Hexacarbonyl $\left[\mu-\eta^{4}-(7-(2-c h l o r o e t h o x y)-c y c l o h e p t-1-e n-3-y n e)\right] d i c o b a l t(\underline{18 a})$

A solution of cycloheptenyne $1(0.0510 \mathrm{~g}, 0.117 \mathrm{mmol})$ and 2-chloroethanol ($10.0 \mu \mathrm{~L}$, $0.150 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.15 \mathrm{~mL}, 1.2 \mathrm{mmol})$ via the General Procedure. The crude product was purified by flash chromatography (20:1 petroleum ether: $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to yield the $\mathbf{1 8 a}(0.0315 \mathrm{~g}, 59 \%)$ as a red-brown oil. IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$): 2927, 2856, 2091, 2050, 2021, 1612; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.63(\mathrm{~d}, J=9.9,1 \mathrm{H}), 6.16(\mathrm{dd}, J=4.0,10.0$, $1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=5.9,2 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta: 199.6,136.0,127.8,97.1,85.8,78.8,68.9,43.0,30.6,30.4$. MS EI $m / e: 456\left(\mathrm{M}^{+}\right)$, $400\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 372\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 344\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 316\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 288\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m / e for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClCo}_{2} \mathrm{O}_{7}$ calcd $\left(\mathrm{M}^{+}\right) 455.8857$, found 455.8841 .
$\mathbf{H}_{2} \mathbf{S O}_{\mathbf{4}}$ conditions: To a solution of cycloheptyne $\mathbf{1}(0.0858 \mathrm{~g}, 0.197 \mathrm{mmol})$ and 2 chloroethanol (1 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{H}_{2} \mathrm{SO}_{4}$ (3 drops). The solution was stirred for 1 h , at which point $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ was added and a standard workup performed. Flash chromatography as above afforded $18 \mathrm{a}(0.0679 \mathrm{~g}, 76 \%)$.

3.3.13. Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(7-(4-chlorobut-2-enyloxy)-cyclohept-1-en-3-yne)]dicobalt

 (19a)A solution of cycloheptenyne $1(0.0589 \mathrm{~g}, 0.135 \mathrm{mmol})$ and 4-chloro-2-buten-1-ol (0.022 g, 0.21 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.7 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ was subjected to $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.17 \mathrm{~mL}, 1.3 \mathrm{mmol})$ via the General Procedure. The crude product was purified by flash chromatography (25:1 petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$) to yield the $\mathbf{1 9 a}(0.0440 \mathrm{~g}, 68 \%)$ as a red-brown oil. IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$):

2925, 2091, 2051, 2021, 1457, 1054; ${ }^{1} \mathrm{H}$ NMR $\delta: 6.65(\mathrm{~d}, J=10.0,1 \mathrm{H}), 6.15(\mathrm{dd}, J=4.0,10.0$, $1 \mathrm{H}), 5.76(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=5.7,2 \mathrm{H}), 4.12(\mathrm{~d}, J=7.4,2 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.12$ (m, 1H), $2.04(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 199.7,136.1,131.0,128.1,127.9,97.1,85.9,63.7$, 48.6, 39.1, 30.6, 30.4. MS EI $m / e: 482\left(\mathrm{M}^{+}\right), 454\left(\mathrm{M}^{+}-1 \mathrm{CO}\right), 426\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 398\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 370$ $\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 342\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 314\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m/e for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClCo}_{2} \mathrm{O}_{7}$ calcd $\left(\mathrm{M}^{+}\right)$ 481.9014, found 481.9001.

3.3.14. Hexacarbonyl $\left[\mu-\eta^{4}\right.$-(cyclohept-2-en-4-ynylacetamide)]dicobalt (20a)

$\mathbf{H}_{2} \mathbf{S O}_{\mathbf{4}}$ conditions: Concentrated sulfuric acid was added dropwise (3 drops) to a solution of cycloheptenyne $1(0.0645 \mathrm{~g}, 0.148 \mathrm{mmol})$ in acetonitrile $(5 \mathrm{~mL})$. After ten minutes the aqueous sodium bicarbonate was added and a typical workup proceeded. The crude reaction product was purified by flash chromatography (1:2 petroleum ether: ethyl acetate) to yield the 20a ($0.0546 \mathrm{~g}, 85 \%$) as a red-brown oil. IR (neat, $\mathrm{KBr}, \mathrm{cm}^{-1}$) 2927, 2091, 2048, 2021, 1651, 1548,$1431 ;{ }^{1} \mathrm{H}$ NMR $\delta: 6.66(\mathrm{dd}, J=1.6,9.9,1 \mathrm{H}), 6.17(\mathrm{dd}, J=4.7,9.9,1 \mathrm{H}), 5.48(\mathrm{br} \mathrm{d}, \mathrm{J}=$ $7.2,1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}) 3.15-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta:$ 199.4, 168.9, 135.1, 128.1, 97.1, 85.5, 50.6, 31.1, 23.2. MS EI $m / e: 435\left(\mathrm{M}^{+}\right), 407\left(\mathrm{M}^{+}-1 \mathrm{CO}\right)$, $379\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 351\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 323\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 295\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 267\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$. HRMS m/e for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Co}_{2} \mathrm{NO}_{7}$ calcd ($\mathrm{M}^{+}-\mathrm{CO}$) 406.9250, found 406.9242.

Acknowledgments

We are grateful to NSERC (Canada) and the Ontario Research and Development Challenge Fund (ORDCF) for support of this research.

References and notes

1. (a) Green, J. R. Curr. Org. Chem. 2001, 5, 809. (b) Teobald, B. J. Tetrahedron 2002, 58, 4133.
2. Smit, W. A., Caple, R., Smoliakova, I. P. Chem. Rev. 1994, 94, 2359.
3. (a) Padmanabhan, S.; Nicholas, K. M. Tetrahedron Lett. 1982, 23, 2555. (b) Stuart, J. G.; Nicholas, K. M. Heterocycles 1991, 32, 949. (c) Shibuya, S.; Isobe, M. Tetrahedron 1998, 54, 6677. (d) Álvaro, E.; de la Torre, M. C.; Sierra, M. A. Org. Lett. 2003, 5, 2381; (e) Crisóstomo, F. P. R.; Carrillo, R.; Martín, T.; Martín, V. S. Tetrahedron Lett. 2005, 46, 2829.
4. (a) Isobe, M.; Hosokawa, S.; Kira, K. Chem. Lett. 1996, 473. (b) Yenjai, C.; Isobe, M. Tetrahedron 1998, 54, 2509.
5. (a) Tanaka, S.; Isobe, M. Tetrahedron Lett. 1994, 35, 7801. (b) Saeeng, R.; Isobe, M. Tetrahedron Lett. 1999, 40, 1911. (c) Review: Isobe, M.; Nishizawa, R.; Hosokawa, S.; Nishikawa, T. Chem. Commun. 1998, 2665.

6 (a) Lu, Y.; Green, J. R. Synlett 2001, 243. (b) Patel, M. M.; Green, J. R. Chem. Commun. 1999, 509. (c) Green, J. R. Chem. Commun. 1998, 1751.
7. (a) Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.;

Kuwajima, I. J. Am. Chem. Soc. 2003, 125, 1498. (b) Tanino, K.; Kondo, F.; Shimizu, T.; Miyashita, M. Org. Lett., 2002, 4, 2217. (c) Schreiber, S. L.; Sammakia, T.; Crowe, W. E. J. Am. Chem. Soc. 1986, 108, 3128. (d) Golovko, V. B.; Hope-Weeks, L. J.; Mays, M. J.; McPartlin, M.; Sloan, A. M.; Woods, A. D. New. J. Chem. 2004, 28, 527.
8. (a) Young, D. G. J.; Burlison, J. A.; Peters, U. J. Org. Chem. 2003, 68, 3494. (b) Green, J. R. Synlett 2001, 353. (c) Iwasawa, N.; Sakurada, F.; Iwamoto, M. Org. Lett. 2000, 2, 871.
9. (a) Mohamed, A. B.; Green, J. R. Chem. Commип. 2003, 2936. (b) Mohamed, A. B.; Green, J. R.; Masuda, J. Synlett 2005, 1543,
10. Priebe, H.; Hopf, H. Angew. Chem. Int. Ed. Engl. 1982, 21, 286.
11. Green, J. R. Synlett 2001, 353.
12. Gibe, R.; Green, J. R. Chem. Commun. 2002, 1550.
13. Reaction with furan at $-30^{\circ} \mathrm{C}$ gave no additional α - product $7 \mathbf{b}$, suggesting that the $-10^{\circ} \mathrm{C}$ conditions give kinetic products.
14. (a) Nakamura, T.; Matsui, T.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1997, 62, 3032. (b) Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T. Takahashi, Y.; Kuwajima, I. J. Am. Chem. Soc. 2003, 125, 1498.
15. (a) Magnus, P.; Carter, P.; Elliott, J.; Lewis, R.; Harling, J.; Pitterna, T.; Bauta, W. E.; Fortt, S. J. Am. Chem. Soc. 1992, 114, 2544. (b) Magnus, P.; Carter, R.; Davies, M.; Elliott, J.; Pitterna, T. Tetrahedron 1996, 52, 6283.
16. (a) Melikyan, G. G.; Vostrowsky, O.; Bauer, W.; Bestmann, H. J.; Khan, M.; Nicholas, K. M. J. Org. Chem. 1994, 59, 222. (b) Salazar, K. L.; Nicholas, K. M. Tetrahedron 2000, 56, 2211.
17. (a) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66. (b) Mayr, H.; Patz, M. Angew. Chem. Int. Ed. Engl. 1994, 33, 938.
18. In particular, the kinetic γ-: α - ratio for $1,3,5$, -trimethoxybenzene $(\mathrm{N}=3.40)$ can be no greater than 70:30, so that it likely does not fit the exact trend of the other entries of Table 5 .
19. The N value of acetophenone enol acetate is unpublished but is possibly comparable to α methylstyrene ($\mathrm{N}=2.35$); Noyce, D. S.; Pollack, R. M. J. Am. Chem. Soc. 1969, 91, 7158.
20. Attempts to isolate cation $\mathbf{2 1}$ for study of possible kinetic reactions with heteroatom nucleophiles resulted only in elimination product 14.
21. Still, W. C.; M. Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

Figure(s) (use if uploading high quality figure files)

Graphigal Abstrac
 Gapaphicaf Abstract

Lewis and Protic Acid Mediated Nicholas Reactions of 3-Acetoxycyclohept-1-en-4-ynedicobalt Hexacarbonyl: Site Selectivity of Nucleophile Incorporation Joseph DiMartino and James R. Green*

Kinetic Product:
Predominantly γ -

Thermodynamic product:
Exclusively γ -

[^0]: * Corresponding Author. Tel.: 519-253-3000, Ext. 3545; fax: 519-973-7098; e-mail: jgreen@uwindsor.ca

