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Abstract. Bounding the inefficiency of selfish routing has become an emerging research 

subject. A central result obtained in the literature is that the inefficiency of deterministic User 

Equilibrium (UE) is bounded and the bound is independent of network topology. This paper 

makes a contribution to the literature by bounding the inefficiency of the logit-based 

Stochastic User Equilibrium (SUE). In a stochastic environment there are two different 

definitions of system optimization: one is the traditional System Optimum (SO) which 

minimizes the total actual system travel time, and the other is the Stochastic System 

Optimum (SSO) which minimizes the total perceived travel time of all users. Thus there are 

two ways to define the inefficiency of SUE, i.e. to compare SUE with SO in terms of total 

actual system travel time, or to compare SUE with SSO in terms of total perceived travel time. 

We establish upper bounds on the inefficiency of SUE in both situations. 

 

Keywords: Transportation; Selfish routing; Inefficiency; Stochastic user equilibrium 

 

 

1. Introduction 
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A common behavioral assumption in traffic network modeling is that every user chooses a 

route that she perceives as being the shortest under the prevailing traffic conditions. In other 

words, every traveler tries to minimize her own (perceived) travel time. This selfish routing 

assumption leads to the deterministic user equilibrium (UE) traffic assignment when users are 

assumed to have perfect information, or their perceived travel times are exactly their actual 

ones. More realistically, the perceived travel time may be considered as a random variable 

distributed across the population of users, i.e. each user may perceive a different travel time 

over the same link. Then the selfish routing assumption results in the stochastic user 

equilibrium (SUE) traffic assignment (Sheffi, 1985). In contrast to uncoordinated selfish 

travel behaviors, system optimization is to minimize the total system travel time which 

measures the overall network performance under fixed demand. A system optimum (SO) flow 

pattern has the maximum efficiency by definition. Not surprisingly, selfish routing generally 

does not yield an SO flow pattern, which implies that UE and SUE are typically inefficient. 

 

There has been an increasing interest recently in trying to quantify and bound the inefficiency 

of Nash equilibrium or UE in transportation context. Koutsoupias and Papadimitriou (1999) 

proposed to analyze the inefficiency of equilibria from a worst-case perspective. The term 

“price of anarchy” was coined to characterize the degree of inefficiency (Papadimitriou, 

2001), which is the ratio of the worst social cost of a Nash Equilibrium to the cost of an 

optimal solution. Roughgarden (2003) proved that the worst-case inefficiency due to selfish 

routing is independent of the network topology. Several authors analyzed the bound on the 

inefficiency of equilibria for more general classes of cost functions and model features such 

as toll pricing (e.g. Chau and Sim, 2003; Correa et al, 2004; Roughgarden and Tardos, 2004; 

Han et al., 2008; Han and Yang, 2008; Yang et al., 2008). Roughgarden (2005) summarized 

the latest developments of this research subject. Nevertheless, in the context of traffic 

networks, the various studies up to date focused on the case of deterministic UE, the 

inefficiency of SUE was, however, ignored so far. 

 

This study is intended to make a contribution to the above emerging literature by determining 

the worst-case inefficiency of the logit-based SUE. The logit SUE model is an important one 

in transportation science that addresses suboptimal user route choices or difference in the 

costs perceived by different users. Before discussing the inefficiency of SUE, we should 

mention that there are two different system optimum definitions in a stochastic environment: 
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one is the aforementioned conventional SO which minimizes the total actual system travel 

time, and the other is the stochastic system optimum (SSO) which minimizes the total 

perceived travel time of all users (Maher et al., 2005; Stewart, 2007), or equivalently 

maximizes the net economic benefit (Yang, 1999). As a result, there are two ways to define 

the inefficiency of SUE, i.e. to compare SUE with SO in terms of total actual system travel 

time, or to compare SUE with SSO in terms of total perceived travel time (or equivalently in 

term of network economic benefit). We study the inefficiency of SUE in both situations. 

 

The remainder of the paper is organized as follows. For completeness, Section 2 gives a brief 

review of bounding the inefficiency of deterministic UE. In Sections 3 and 4, we make use of 

the equivalent variational inequality (VI) formulation of the logit-based SUE, and compare 

SUE with SO and SSO, respectively, to bound its inefficiency with the two alternative 

definitions of total system travel time. In Section 5, we discuss the tightness of the 

inefficiency bounds established. Some concluding remarks are given in Section 6. 

 

 

2. Review of bounding the inefficiency of deterministic UE 

 

We consider a transportation network described as a strongly connected, directed network 

 ,N A  where N  and A  denote the sets of nodes and links, respectively. Let W  denote 

the set of all Origin-Destination (OD) pairs, wR  be the set of all paths between OD pair 

w W , wd  be the travel demand between OD pair w W , rwf  be the flow on path 

wr R , w W , and av  be the flow on link a A . The following relationships and 

constraints hold 

 
w

a rw ar
w W r R

v f
 

   , a A   (1) 

 
w

w rw
r R

d f


  , w W   (2) 

 0rwf  , wr R , w W   (3) 

where ar  is equal to 1 if path r  uses link a  and 0 otherwise. Let link flow vector be 

 Τ,av a A v  and path flow vector be  Τ, ,rw wf r R w W  f , then the feasible set of 

link flows is given by   there exists an  such that (1)-(3) holdv  v f , and the feasible set 



 

4 

of path flows is given by  constraints (2)-(3) holdf  f . In this paper, we consider 

separable link cost (travel time) function  a at v , a A , which means that the travel time of 

one link depends on the flow on the link only. It is assumed that  a at v  is a nondecreasing 

function of av  for all a A . Let rwc  be the travel time along path wr R , w W , which 

is the sum of travel times on all links that constitute the path. We thus have 

  rw a a ar
a A

c t v


  , wr R , w W   (4) 

The total system travel time  T v  is given by 

    
w

a a a rw rw
a A w W r R

T t v v c f
  

   v   (5) 

 

It is well known (e.g., Smith, 1979; Dafermos, 1980) that the UE problem can be formulated 

as an equivalent VI problem, namely to find ue
vv  such that 

   ue ue 0a a a a
a A

t v v v


  , for any vv  (6) 

With the UE link flow solution ue ,v  the total system travel time under UE is given by 

   ue ue ue
UE a a aa A

T T t v v


 v . On the other hand, the SO problem that minimizes the total 

system travel time is given by 

  min  
v

a a a
a A

t v v





v
  (7) 

Let sov  denote the link flow solution to the SO problem, then the minimum system travel 

time is given by    so so so
SO a a aa A

T T t v v


 v . Define the following ratio 

 
 
 

ue

ue UE
so

SO

TT

T T
  

v

v
  (8) 

Clearly, it holds that ue 1  . This ratio is called the inefficiency, or price of anarchy, of the 

selfish user equilibria (Papadimitriou, 2001). 

 

The way to bound the inefficiency of UE is also used later when we analyze the SUE case. 

Therefore, for completeness, a brief outline of bounding ue  is given here, based on the 

geometric proof due to Correa et al (2005). 
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The bounding method is based on the VI formulation (6). Let vv  be an arbitrary 

feasible link flow, then from VI (6) it follows 

           ue ue ue ue
a a a a a a a a a a a a a a

a A a A a A a A

t v v t v v t v v t v t v v
   

        (9) 

 

We now consider how to upper bound the last term of the right-hand side of (9) in terms of 

the left-hand side of (9). Note that each link cost function is nondecreasing and thus 

    ue 0a a a a at v t v v   for ue ,a av v  we only need to focus on the term     ue
a a a a at v t v v  

for which ue
a av v . In this case,     ue

a a a a at v t v v  is equal to the area of the shaded 

rectangle in Figure 1, and  ue ue
a a at v v  is the area of the large rectangle in Figure 1. 

 

 

Flow

Travel Time

0

Free-flow
Travel Time

av

 a at v

 ue
a at v

Link Cost
Function

ue
av

0
at

 

Figure 1. Geometric illustration of the definition of     

 

We need to upper bound the area of the shaded rectangle in terms of the area of the large 

rectangle. To do this, for each link cost function  at   and nonnegative link flow 0,az   

we define the following parameter 

       
 0

, max
a

a a a a a
a a a

v
a a a

t z t v v
t z

t z z


  , a A  (10) 

Here, 0 0 0  by convention. Since       a a a a a a a at z t v v t z v   if 0 a av z   and 

     0a a a a at z t v v   if ,a av z  we have   0 , 1.a a at z    For a given class   of 
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link cost functions (e.g., polynomials of a certain degree), we let 

    
, 0

max ,
a a

a a a
t z

t z
 

  


 �   (11) 

With this definition, we have the following lemma. 

 

Lemma 1.  Let uev  be the UE link flow with separable link cost functions drawn from a 

given class ,  and let v  be an arbitrary nonnegative link flow. Then 

         ue ue
a a a a a

a A

t v t v v T


   v   (12) 

 

Proof.  From definitions (10) and (11), with az  replaced by ue
av , we have 

 
        

       

ue ue ue ue

ue ue ue

,

                                     

a a a a a a a a a a a
a A a A

a a a
a A

t v t v v t v t v v

t v v T

 



  

   

 

 v 
 

which completes the proof. ♦ 

 

With Lemma 1, substituting (12) into (9) gives rise to 

        ue ueT T T  v v v , for any vv  (13) 

Let sov v  in (13), we have the following theorem. 

 

Theorem 1.  Let uev  be the UE link flow with separable link cost functions drawn from a 

given class  , and sov  be an SO link flow, then 

 
 
   

ue

ue

so

1

1

T

T
  

 

v

v 
  (14) 

 

Theorem 1 simply states that the upper bound,    1
1


    on the inefficiency, ue , of UE, 

or the worst-case inefficiency of UE is independent of the network topology but dependent on 

the class of cost functions only. 

 

 

3. Bounding the inefficiency of SUE compared with SO 
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We now consider the case of stochastic user equilibrium. In a SUE model, each user is a 

utility-maximizer, and each path, r , wr R , w W , is an alternative associated with some 

random utility function rwU . A given path’s utility is primarily related to its travel time, then 

rwU  is given by 

 rw rw rw rwU C c      , wr R , w W  (15) 

where rwC  is the random perceived travel time along the path,   is a positive unit scaling 

parameter, rwc  is the actual travel time along the path as defined before, rwc  is the 

measured utility, and rw  is a random term associated with the path under consideration and 

can be considered to represent the unobservable or unmeasurable factors of utility. Let rwP  

denote the probability of users choosing path r , wr R , w W , which is also the share of 

users choosing the path, then the utility maximization (perceived travel time minimization) 

principle implies that 

  Pr ,  rw rw kw wP U U k R    , wr R , w W  (16) 

This choice probability has the following properties 

 0 1rwP  , wr R  and 1
w

rw
r R

P


 , w W  

 

If the random term rw  in (15) is assumed to be normally distributed, one would obtain the 

probit-based route choice model. However, the probit-based model does not entail a 

closed-form expression of the path choice probability and thus makes our subsequent analysis 

of inefficiency analytically intractable. Hence we consider the logit-based route choice model 

only. The logit-based model assumes that the random terms of the utility functions associated 

with all paths are independently and identically distributed Gumbel random variables. The 

choice probability is then given by 

 
 
 

exp

exp
w

rw
rw

kw
k R

c
P

c






, wr R , w W  (17) 

and the path flow assignment is given by 

 rw w rwf d P , wr R , w W   (18) 

 

It is well-known (Fisk, 1980) that the above logit-based SUE model can be formulated as the 

following equivalent minimization problem 
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  
0

1
min  ( )d ln

a

f
w

v

a rw rw
a A w W r R

Z t f f


  

  
 f

f  (19) 

 

Denote SUE path flow as sue
ff , and the corresponding SUE link flow sue

vv , the 

total system travel time under SUE is given by    sue sue sue sue
SUE

w

rw rw a a a
w W r R a A

T c f t v v
  

   f . 

Similar to that of UE, the inefficiency of SUE compared with SO is defined as 

 sue SUE

SO

T

T
    (20) 

To find an upper bound on the inefficiency of SUE (compared with SO here or compared 

with SSO later), we need the equivalent VI formulation for the logit-based SUE model, which 

is given in the following lemma. 

 

Lemma 2.  If the separable link cost function,   ,  ,a at v a A  is monotonically increasing 

with link flow, a logit-based SUE problem with fixed OD demand is equivalent to the 

following variational inequality, i.e., find sue
ff , such that 

    sue sue sue1
ln 0

w

rw rw rw rw
w W r R

c f f f
 

     
  f , for any ff  (21) 

 

Proof.  It suffices to prove that minimization problem (19) is equivalent to VI (21). With the 

assumption of monotonically increasing link cost function, problem (19) of minimizing a 

strictly convex function over a compact (closed and bounded) set guarantees the existence 

and uniqueness of a path flow solution sue
ff . In addition, the entropy-type objective 

function ensures that the optimum is achieved at an interior point. A necessary and sufficient 

condition for sue
ff  to be the unique optimal solution to problem (19) is that 

    T
sue sue 0Z    f f f f , for any ff  (22) 

Using ,
w

a rw arw W r R
v f

 
    substituting 

      T
sue sue sue sue sue1 1 1 1

, + ln + , , + ln + ,rw a a ar rw rw
a A

Z f t v f c


                  
f f f     

into (22), and in view of    sue1 1
0

w

rw rw w w
w W r R w W

f f d d
  

   
   , we have VI (21). This 

completes the proof.     ♦ 
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With the equivalent VI formulation of the logit-based SUE given in Lemma 2, we can move 

on to bound the inefficiency of SUE. Let so
ff  be a system-optimal path flow, and let 

sof f  in VI (21), we have 

    sue sue so sue1
ln 0

w

rw rw rw rw
w W r R

c f f f
 

     
  f   (23) 

Denote  sue sue
rw rwc c f  and  so so

rw rwc c f , (23) gives 

  sue sue sue so so sue sue1
ln

w w w

rw rw rw rw rw rw rw
w W r R w W r R w W r R

c f c f f f f
     

  
       

which is equivalent to 

    sue so so so sue sue
SUE SO

1
ln

w w

rw rw rw rw rw rw
w W r R w W r R

T T c c f f f f
   

    
     (24) 

In view of 

       sue so so sue so so

w

rw rw rw a a a a a
w W r R a A

c c f t v t v v
  

      

we can rewrite (24) as 

      sue so so so sue sue
SUE SO

1
ln

w

a a a a a rw rw rw
a A w W r R

T T t v t v v f f f
  

    
    (25) 

 
With parameters  ,a a at z , a A  and     defined by (10) and (11), respectively, we 

have similar result as in Lemma 1 

       sue
SUEa a a a a

a A

t v t v v T


    , for any 0v  (26) 

Let sov v  in (26), then we obtain 

      sue so so
SUEa a a a a

a A

t v t v v T


      (27) 

 
With (27), we have an upper bound on the second term of the right-hand side of (25) in terms 

of SUET . Now we seek an upper bound on the third term. 

 
Lemma 3.  Consider the following maximization problem 

   
1

max  , = ln
n

i i i
i

Z y x x


x y   (28) 

subject to 
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1

n

i
i

x d


  (29) 

1

n

i
i

y d


  (30) 

 , 0,  1,2, ,i ix y i n    (31) 

where 0d   is a constant. The optimal value of this problem is max ,Z kd  where k  

solves equation 1 1kke n   , with e  being the base of natural logarithm. 

 

Proof:  Note that the objective function (28) is linear in y , and in view of the constraints 

on y , it is not difficult to see that the optimal vector y  has one component equal to d  and 

the others equal to 0 (if the optimal vector y  is not unique, there exists such an optimal 

corner solution). Without loss of generality, let  T
,0,...,0dy  be an optimal y  vector, 

then the objective function (28) is simplified to be 

   1 1
2

max  = ln ln
n

i i
i

Z d x x x x


 x   (32) 

and the KKT necessary conditions for the optimality of x  are 

 
 

0
i

Z

x


  


x

, 0,ix   
 

0,i
i

Z
x

x

 
    

x
 1, 2,...i n  

where   is the Lagrange multiplier associated with the equality constraint (29). In view of 

  1 1 1ln 1Z x x d x     x  and   ln 1i iZ x x    x , 2,...i n , the optimal solution 

must have 0,  1, 2, , ,ix i n    because 0ix   would give   iZ x   x , which 

obviously violates the optimality condition. Then the KKT conditions reduce to 

1
1

ln 1 0
d

x
x

      , 1 0x    (33) 

ln 1 0ix     , 0ix  , 2, ,i n    (34) 

Combining (33) and (34), we have 

1

1 2

ln
xd

x x
   (35) 

2ix x , 3, ,i n    (36) 

Substituting (35) into objective function (32), we have the optimal objective value 

   max 1 1 2 2ln 1 lnZ d x x n x x      (37) 
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In view of   2 11n x d x   , and making use of (35), we obtain 

max
1

1
d

Z d
x

 
  

 
  (38) 

Let 1 1k d x  , then we have maxZ kd , and 

1

1

1
x d

k



, 

  2 1 1

k
x d

n k


 
  (39) 

Substituting (39) into (35) gives that k  solves 1 1kke n   . This completes the proof.    ♦ 

 

From Lemma 3, it follows immediately that 

 so sue sueln ,  
w

rw rw rw w w
r R

f f f k d w W


    (40) 

where wk  solves 1 1wk
w wk e R    and wR  is the number of feasible paths between OD 

pair .w W  Substituting (27) and (40) into (25) yields 

  SUE SO SUE

1
T T T kD   


  (41) 

where ww W
D d


  is the total traffic demand and k  is the average of ,  wk w W  

weighted by OD demand: 

 ,w
w

w W

d
k k

D

  
 

  where wk  solves 1 1wk
w wk e R      (42) 

 

If we define SOc T D  as the average travel time of all network users at system optimum, 

then (41) can be rewritten as 

  SUE SO SUE SO

1
T T T kT

c
   


  

which gives rise to 

 
 SUE SO

1 1
1

1
T k T

c

          
 (43) 

 

The term 1 c  in (43) needs to be further addressed. The logit model parameter ,  in its 

original meaning, is inversely proportional to the standard error of the distribution of the 

perceived path travel times (Sheffi, 1985), and the logit model assumes that all paths in the 
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network has the same standard error. Specifically,  6    , where   is the common 

standard deviation of the perceived path travel times. Then we have 

 
1 6

c c




 
  (44) 

To provide more sensible results, we define 0c  as the average free-flow travel time for all 

OD pairs, then it is clear that 0c c . Furthermore, we define a ratio 0c   . Then 

replacing c  with 0c  in (44) yields 

 
0

1 6 6

c c


  

  
  (45) 

where 0c    measures the standard deviation of perceived travel time as percentage of 

the average free-flow travel time. Intuitively, the ratio 0c    is like a coefficient of 

variance, which represents the relative travel time perception error of users. Considering that 

in reality, users’ absolute perception error   may increase as the path travel time increases, 

the relative error   may better reflect users’ perception randomness. 

 

Substituting (45) into (43), we have the following theorem. 

 

Theorem 2 Let SUET  be the total system travel time under logit-based stochastic user 

equilibrium, and SOT  be the minimum total system travel time, then 

 
 

sue SUE

SO

1 6
1

1

T
k

T

  
          

 (46) 

 

Comparing (46) with (14), we find that the bound of sue  is generally larger than the bound 

of ue , which means that the worst-case inefficiency of SUE is generally worse than that of 

UE. Note that this comparison is made in the respect of the worst-case inefficiency, a specific 

SUE can be more efficient than UE on a network. 

 

The bounding result given by (46) depends on three dimensionless parameters, namely    , 

k  and  . As mentioned for the deterministic UE case,     is defined exclusively by the 
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class of link cost functions, k  (or more essentially, wk ) is determined by the number of 

available paths and thus reflects the degree of network complexity, and   represents the 

relative travel time perception error of users. If users’ perception error is zero or the travel 

time is deterministic, then 0   and (46) becomes    1sue 1


     , thus we have the 

inefficiency bound of the standard deterministic UE. In addition, if 1wR   for all ,w W  

i.e. each OD pair has only one feasible path and hence travel time perception error has no 

effect on route choice, we have 0,  wk w W   from (42) and thus 0k  . In this case, we 

have    1sue 1


      as well. 

 

Whenever 1wR  , the value of wk  (and hence k ) is very limited. As seen in Table 1, wk  

is only marginally larger than 10log wR . For a sufficiently complex network with the number 

of paths between each OD pair being 100 1000wR  , wk  takes only a limited value 

between 2.63 and 4.42. This observation shows that the network size has very limited effect 

on the cost inefficiency bound of stochastic user equilibrium. 

 

Table 1. Numerical values of wk  with increasing wR  

wR  1 10 210  310  410  

wk  0 1.10 2.63 4.42 6.36 

 

 

4. Bounding the inefficiency of SUE compared with SSO 

 

In a stochastic traffic assignment environment, besides the total actual system travel time, the 

total perceived travel time of all users is also a useful system performance index, as it reflects 

the net economic benefit. For the logit-based stochastic traffic assignment model, the total 

perceived travel time of all users can be given in a closed-form expression as (Maher et al. 

2005) 

     1 1
ln ln

w

a a a rw rw w w
a A w W r R w W

F t v v f f d d
   

  
    f  (47) 
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and its opposite,  F f , can be regarded as the net economic benefit (the direct utility 

corresponding to the aggregate demand minus the total travel time incurred by all users in the 

network) (Yang, 1999). The stochastic system optimization (SSO) problem is to minimize the 

total perceived travel time (or equivalently, to maximize the net economic benefit), namely 

  min  
f

F
f

f   (48) 

Let sso
ff  solve the SSO problem (48), then  sso

SSOF F f  is the minimum total 

perceived travel time of all users, and correspondingly, SSOF  is the maximum net economic 

benefit (or consumer surplus) of the network. Specifically, 

  sso sso sso sso
SSO

1 1
ln ln

w

a a a rw rw w w
a A w W r R w W

F t v v f f d d
   

  
      (49) 

 

On the other hand, uncoordinated selfish travel behaviors of users will result in an SUE flow 

pattern sue
ff , with  sue

SUEF F f  being the total perceived travel time of all users at 

equilibrium. Specifically 

  sue sue sue sue
SUE

1 1
ln ln

w

a a a rw rw w w
a A w W r R w W

F t v v f f d d
   

  
      (50) 

 

By definition, we have SUE SSOF F . However, unlike the previous cases, in which we use the 

ratios UE SO 1T T   and SUE SO 1T T   to measure the inefficiency of UE and SUE compared 

with SO, here we can not use the ratio SUE SSOF F  to measure the inefficiency of SUE 

compared with SSO. The reason is that SUEF  and SSOF  may be negative as can be seen 

from (49)-(50), which means that the ratio SUE SSOF F  may be meaningless (consider the 

case SUE SSO0F F  ). Consequently, instead of using the ratio of SUEF  to SSOF , we shall 

use the difference between SUEF  and SSOF , namely the term SUE SSO 0F F  , which is the 

absolute efficiency loss of SUE compared with SSO. We can have a clearer understanding of 

the term  SUE SSOF F  from an economic viewpoint: since  SSOF  and  SUEF  are, 
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respectively, the maximum possible net economic benefit and the net economic benefit 

realized at equilibrium, the difference between the two, equal to  SUE SSOF F , naturally 

represents the welfare loss caused by uncoordinated selfish routing behaviors of users. 

 

To bound the inefficiency of SUE compared with SSO, we shall give an upper bound on the 

welfare loss  SUE SSOF F  in terms of some meaningful measure. To this end, we make use 

of the equivalent VI formulation of the logit-based SUE. The manipulation is quite similar to 

that in last section. Specifically, let ssof f  in VI (21), we have 

    sue sue sso sue1
ln 0

w

rw rw rw rw
w W r R

c f f f
 

     
  f   (51) 

Denote  sue sue
rw rwc c f  and  sso sso

rw rwc c f , (51) gives 

 sue sue sue sue sue sso sso sue1 1
ln ln

w w w w

rw rw rw rw rw rw rw rw
w W r R w W r R w W r R w W r R

c f f f c f f f
       

  
          

which is equivalent to 

    sue sso sso sso sue sso
SUE SSO

1
ln ln

w w

rw rw rw rw rw rw
w W r R w W r R

F F c c f f f f
   

    
     (52) 

In view of 

       sue sso sso sue sso sso

w

rw rw rw a a a a a
w W r R a A

c c f t v t v v
  

      

we can rewrite (52) as 

      sue sso sso sso sue sso
SUE SSO

1
ln ln

w

a a a a a rw rw rw
a A w W r R

F F t v t v v f f f
  

    
    (53) 

 

Now we only need to provide upper bounds on the two terms of the right-hand side of (53). 

For the first term, its upper bound can be obtained in the same way as we obtain (27) in last 

section. Specifically, let ssov v  in (26), we simply have 

      sue sso sso
SUEa a a a a

a A

t v t v v T


      (54) 

From Gibbs’ inequality (or the property of the Kullback-Leibler divergence between two 

discrete probability distributions), we readily have a zero upper bound of the second term of 
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the right-hand side of (53). Namely, the following inequality holds 

 sso sue ssoln ln 0,  
w

rw rw rw
r R

f f f w W


    (55) 

with equality if and only if sue sso ,  ,  rw rw wf f r R w W   . Substituting (54) and (55) into (53) 

gives the following theorem. 

 

Theorem 3 For a logit-based stochastic traffic assignment model, let SUET  and SUEF  be, 

respectively, the total actual system travel time and the total perceived travel time of all users 

under stochastic user equilibrium, and let SSOF  be the minimum possible total perceived 

travel time of all users, then 

 SUE SSO

SUE

F F

T


     (56) 

 

Theorem 3 states that the welfare loss, SUE SSOF F , of SUE compared with SSO is not larger 

than a fraction of the total actual system travel time, SUET , under SUE. Like the deterministic 

UE case, the fraction or     is independent of network topology, but depends solely on the 

class of link cost functions. 

 

 

5. On the tightness of the inefficiency bounds 

 

We begin with our discussion of the tightness of the inefficiency bounds by presenting all the 

results in Theorems 1-3 into the following similar expressions for a comparison. 

 

Theorem 1: bounding the efficiency loss of deterministic UE 

 UE SO

UE

T T

T


     (57) 

Theorem 2: bounding the efficiency loss of SUE compared with SO 
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 SUE SO

SUE

6

1 6

kT T

T k

   


  


  (58) 

Theorem 3: bounding the welfare loss of SUE compared with SSO 

 SUE SSO

SUE

F F

T


     (59) 

All the three major results involve the common parameter,    , that depends on the given 

class,  , of link cost functions under consideration. Specific expression of     can be 

obtained for the following practical class of link cost functions: 

   0 ,  
p

a a a a at v t v a A      (60) 

where 0
at  is a constant free-flow travel time, 0a   is a link-specific non-negative 

parameter, and 0p   reflects the degree of congestion sensitivity of the link costs. In this 

case one can easily obtain (Roughgarden, 2005) 

 
1

1

1 1

pp

p p

  
       
   (61) 

with   0   as 0p   (without traffic congestion), and   1   as p   (with 

severe congestion). For the widely used BPR type link cost function with 4,p   we have 

  0.5350  . 

 

The bound in (57) for the deterministic UE is tight and can be furnished by a simple example 

with one OD pair connected by two parallel links (Roughgarden, 2003). Let the link travel 

time functions be  1 1 1t v   and    2 2 2 ,  0
p

t v v p  , and let the OD demand be 

1 2 1.d v v    The UE solution is ue
1 0v   and ue

2 1v   with UE 1.T   The SO solution is 

  1so
1 1 1

p
v p

    and   1so
2 1

p
v p

   with   ( 1)

SO 1 1 1.
p p

T p p
      Therefore, 

 UE SO UET T T =   ( 1)
1

p p
p p

  , which is consistent with     given in (61).   
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The bound in (58) for SUE is somewhat complicated, because the system inefficiency under 

SUE is due to the combined effects of congestion externality and users’ perception 

randomness, which, in general, cannot be decoupled. This also renders that it is generally 

difficult to find a specific instance to furnish the established upper bound in a general 

congested network, which requires inequality (27) and (40) to take equality simultaneously. 

Nevertheless, we can shed some light on the tightness of the inefficiency bound by 

considering certain special cases. First, when users’ perception error is zero (   or 

0 0c    , as mentioned earlier), SUE reduces to the deterministic UE and the bound (58) 

reduces to (57), and hence it is tight. Second, in a network without congestion or when link 

costs are all constants, the system inefficiency due to congestion externality becomes 

immaterial and the system efficiency loss is solely due to users’ perception randomness. In 

this case we have   0   and the bound in (58) reduces to 

 SUE SO

6
1

k
T T

 
   

 (62) 

 

One can easily construct a simple example for which equality holds for (62). Consider a 

network having one OD pair connected by 10 parallel links as shown in Figure 2. In this case 

k  solves for 1 1kke n    with 10n   (or 1.101k  ). Suppose 0 0.5c     in the 

logit-based route choice model, where 0c , by definition, is the (minimum) free-flow OD 

travel time between the single OD pair. Without loss of generality, we can simply let link 1 

has the shortest constant travel time and let 1 1.0t  . Thus, 0 0.5c     and the logit 

model parameter  6 2.565     . Recall the proof of Lemma 3, to make (62) an 

equality it suffices to construct an appropriate constant travel time 2 3 10 1.0t t t     

such that the resulting SUE link flow equal to the optimal solution given by (39), i.e. 

 1 1v d k   and    2 3 10 1 1v v v d k n k      . Let the OD demand be 1d  , we 

have 1 0.4760v   and 2 3 10... 0.0582v v v    . Indeed this SUE link flow pattern can be 

generated by choosing 2 3 10 1.819t t t     with 2.565   in the logit model. The 
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corresponding SUE 1 1 2 29 1.429T v t v t   . In view of SO 1 1.0T t d   , we have 

SUE SO1.429T T . This exactly attains the equality in (62), which, in this specific example, is 

 SUE SO SO1 6 1.101 0.5 1.429T T T      . 

 

 

 

 

 

 

 

 

Figure 2. A network such that the bound in Theorem 2 is tight 

 

We now move on to examine the tightness of the bound given in (59), which compares SUE 

with SSO in terms of total perceived system travel time. We give the following corollary 

based on Theorem 3. 

 

Corollary 1.   SUE SSO SUEF F T     if and only if   0  . 

 

Proof: First if   0  , then Theorem 3 gives SUE SSO 0F F  . Note that we always have 

SUE SSOF F  by the definition of SSO. Thus we have SUE SSOF F , which simply gives 

 SUE SSO SUEF F T     in view of   0  . On the other hand, suppose that 

 SUE SSO SUEF F T     holds. From the derivation of Theorem 3,  SUE SSO SUEF F T     

means that inequality (55) takes equality, and thus sue ssof f  and SUE SSOF F , which simply 

gives   0   from   SUE SSO SUEF F T    . This completes the proof.    ♦ 

 

Corollary 1 states that the bound in (59) is tight if and only if link costs are constants or 

  0  . In this case, sue ssof f  or the SUE is fully efficient in terms of minimizing total 

10 1.819t   

2 1.819t   

1 1t   

... 

 O  D 
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perceived system travel time. This can be also seen from the SUE objective function (19) and 

the SSO objective function (47): when link costs are constants, the two objective functions 

are equivalent (the third term of (47) is constant and thus can be omitted). For a general class 

of link cost functions (networks with congestion effects),   0  , the inefficiency bound 

(59) is not tight or we always have  SUE SSO SUEF F T    . Even so, this bounding result is 

still attractive in view of the property that     is independence of network topology. 

 

We conclude this section by offering a remark on the choice of the two social optimum 

concepts (SO and SSO) and the corresponding SUE inefficiency bounds given by (58) and 

(59). Clearly, choice of either one depends on the source (or the analyst’s interpretation) of 

users’ perception randomness. If users’ perception randomness is due to imprecise 

information about the actual travel times, then the inefficiency or deviation of SUE should be 

measured against the deterministic SO. If, however, users’ perception randomness is due to 

their different tastes or preferences for diversity in route choice, then SSO should be taken as 

the optimum criterion, because users’ variety-seeking behaviors are considered as a fraction 

of the net economic benefit. 

 

 

6. Conclusion 

 

We have defined the inefficiency of SUE in two different ways, i.e. comparing SUE with SO 

in terms of total actual system travel time, or comparing SUE with SSO in terms of total 

perceived system travel time. For both notions, we provided upper bounds on the inefficiency 

of the logit-based SUE, based on its equivalent VI formulation and the properties of the 

divergence between two discrete path flow distributions.  

 

When comparing SUE with SO in terms of total actual system travel time, the inefficiency 

bound of SUE depends on both the class of cost functions and the degree of perception error 

and the network complexity. Nevertheless, it is found that the effect of network complexity in 

terms of number of available paths is rather limited. Unlike the price of anarchy of the 

deterministic UE established in the literature, the inefficiency bounds established for the SUE 

is generally not tight unless either the users’ perception error is zero or the network has 

constant link travel times. 
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When comparing SUE with SSO in terms of total perceived travel time (or equivalently net 

economic benefit), we established an upper bound on the welfare loss of SUE and found that 

the welfare loss is not larger than a fraction of the total actual system travel time under SUE, 

and the “fraction” is independent of network topology, but depends solely on the class of link 

cost functions. We also found that the established inefficiency bound is tight only when link 

costs are constants (in this case SUE coincides with SSO). 
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