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An OWA-TOPSIS method for multiple criteria
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Ye Chena∗, Kevin W. Lib, Si-feng Liua
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Astronautics, Najing, Jiangsu, 210016, China
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Abstract

A hybrid approach integrating OWA (Ordered Weighted Averaging) aggregation into TOPSIS
(technique for order performance by similarity to ideal solution) is proposed to tackle multiple
criteria decision analysis (MCDA) problems. First, the setting of extreme points (ideal and
anti-ideal points) in TOPSIS is redefined and extended for handling the multiple extreme
points situation where a decision maker (DM) or multiple DMs can provide more than one
pair of extreme points. Next, three different aggregation schemes are designed to integrate
OWA into the TOPSIS analysis procedure. A numerical example is provided to demonstrate
the proposed approach and the results are compared for different aggregation settings and
confirm the robustness of rankings from different scenarios.

Key words: Multiple criteria decision analysis, TOPSIS, OWA, distance-based ranking,
decision aggregation

1 Introduction

Due to ever increasing complexity of human society, people often need to consider
multiple criteria (attributes, factors, objectives) to make decisions. The research area
of multiple criteria decision analysis (MCDA) is developed to provide decision aid for
complex decision situations. MCDA aims to furnish a set of decision analysis techniques
to help decision makers (DMs) logically identify, compare, and evaluate alternatives
according to diverse, usually conflicting, criteria arising from societal, economic, and
environmental considerations. This body of literature has also been interexchangeably
referred to as multiple criteria (attribute) decision aid (making) [11].

∗ Corresponding author. E-mail:chenye@nuaa.edu.cn;Phone:+86-25-84895760;Fax:+86-25-
84895760.
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MCDA provides a systematic framework to investigate complex decision problems con-
taining multiple intertwining criteria. MCDA concentrates on decision analysis with
a finite set of alternatives and offers a host of methods for preference elicitation and
aggregation. A unique feature of MCDA is preference-based aggregation. To reach a
final recommendation, it is inevitable that an aggregation procedure is required to
synthesize alternatives’ performances over different criteria. To achieve this more effec-
tively, the aggregation in MCDA is based on DMs’ preferences instead of relying on
traditional cost-benefit analysis in which all criteria have to be converted to monetised
measures [10].

Roy [21] suggests three problématiques (fundamental problems) for MCDA, whereby a
set of alternatives, A, is evaluated to produce a final decision result:

∙ Choice. Choose the best alternative from A.
∙ Sorting. Sort the alternatives of A into relatively homogeneous groups in a preference
order.

∙ Ranking. Rank the alternatives of A from best to worst.

Among the above three types of decision problems, ranking produces the most com-
prehensive information with a full preference order of alternatives. Obviously, the best
alternative (choice) can be conveniently identified if a full ranking is obtained. Also, a
sorting problem can be addressed by applying a logical assignment procedure to the
generated ranking results [4]. Various MCDA approaches are developed to handle dif-
ferent types of MCDA problems, including multiattribute utility theory (MAUT) [18],
outranking methods [21] and analytic hierarchy process (AHP) [22], to name a few.
A recent state-of-the-art review of MCDA [11] summarizes a wide variety of MCDA
approaches.

The TOPSIS (technique for order performance by similarity to ideal solution) method
[13] constitutes a useful technique in solving ranking problems. The basic idea of the
TOPSIS is simple and intuitive: measure alternatives’ distances to pre-defined ideal and
anti-ideal points first and, then, aggregate the separate distance information to reach
overall evaluation results. Some features of TOPSIS, as summarized in [19,23], include
clear and easily understandable geometric meaning, simultaneously consideration from
both best and worst points of view, and convenient calculation and implementation.
Different methods have thus been developed to extend the original TOPSIS idea [2, 3,
9, 14, 16, 20, 23, 25].

The Ordered Weighted Averaging aggregation operators, commonly known as OWA
operators, are introduced by Yager [28] to provide a parameterized class of mean-type
aggregation operators. Many notable mean operators, such as the Max, arithmetic aver-
age, median, and Min, are members of this class. OWA operators have been widely used
in computational intelligence due to their flexibility in modeling linguistically expressed
aggregation instructions [8]. A comprehensive literature review and summary of OWA
operators with diverse applications is provided in [24, 30].
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TOPSIS and OWA methods become increasingly popular research topic in several aca-
demic fields. For example, within the journal of Expert Systems with Applications, a
search on the keywords “TOPSIS” through ScienceDirect identifies 105 papers. Es-
pecially there is a significant increase in 2009: over 80 papers has been published or
accepted for publication. In this paper a hybrid approach of OWA aggregation and
TOPSIS is designed to incorporate the unique features from both methods to provide
additional flexibility for MCDA. The remainder of the paper is organized as follows:
overviews of MCDA, OWA, and TOPSIS are given in Section 2; next, in Section 3 a
hybrid method, integrating the OWA aggregation into the TOPSIS, is constructed and
explained in detail; then, Section 4 presents a numerical example adapted from [23] to
demonstrate the proposed method and, finally, some concluding remarks are furnished
in Section 5.

2 Overviews of MCDA, OWA and TOPSIS

2.1 An overview of MCDA

The analysis of an MCDA problem can be summarized as the following three steps [7]:
(1) Problem construction, in which the DM’s objectives are defined, all possible alter-
natives are identified, and criteria are determined whereby successes in achieving the
objectives are measured; (2) Preference elicitation and aggregation, in which the DM’s
preferences within and across criteria are obtained and aggregated; (3) Implementation,
in which a constructed preference model is utilized to evaluate all alternatives, thereby
the ‘problématique’ selected by the DM can be solved. The analysis results can be
employed as an aid to the actual decision making process.

Step (1) aims to structure an MCDA problem. Let the set of alternatives be A =
{a1, ⋅ ⋅ ⋅ , ai, ⋅ ⋅ ⋅ , a∣A∣} and the set of criteria be C = {c1, ⋅ ⋅ ⋅ , cj, ⋅ ⋅ ⋅ , c∣C∣}, where ∣X∣
represents the cardinality of a set X. When step (1) is completed, the consequence of al-
ternative ai on criterion cj , denoted by mi

j , will be measured for every i = 1, . . . , ∣A∣ and
j = 1, . . . , ∣C∣, constituting the (i, j)-entry of a ∣A∣ × ∣C∣ matrix called the information
(or performance) matrix. The structure of this matrix is shown in Figure 1. Note that a
consequence is a direct measurement of an alternative according to a criterion (e.g. cost
in dollars). Generally speaking, a consequence is an objective physical measurement.

The DM’s preferences are crucial in reaching a final recommendation for an MCDA
problem, and different approaches to modeling preferences of the same problem may
lead to different conclusions. Formally, as we interpret MCDA procedures, a DM may
have preferences on consequences, called values, and preferences over criteria, referred
to as weights.

Preferences on consequences, or “values,” are refined data obtained by processing conse-
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Fig. 1. Performance Matrix in MCDA, adapted from [7]

quences (original and raw information) according to the needs and objectives of the DM.
This is a necessary step to convert and normalize consequences into a common compar-
ative ground as consequences on different criteria often assume significantly different
formats. The general relationship between consequences and values can be expressed as
a mapping from consequences to values, vij = fj(m

i
j), where vj(a

i) and mi
j are a value

and a consequence measurement, respectively. The DM’s values over all criteria for al-
ternative ai constitute a value vector, v(ai) =

(

v1(a
i), ⋅ ⋅ ⋅ , v∣C∣(a

i)
)

. It is often assumed

that criteria are preference monotonic along consequences: (1) benefit criteria: the larger
the consequence value, the better; (2) cost criteria: the smaller the consequence value,
the better.

Preferences on criteria, or “weights,” refer to expressions of the relative importance of
criteria. The weight for criterion cj ∈ C is denoted by wj ∈ ℝ

+. Usually it is required

that
∣C∣
∑

j=1
wj = 1, and the DM’s weight vector is denoted by w = (w1, ⋅ ⋅ ⋅ , wj, ⋅ ⋅ ⋅ , w∣C∣).

After an MCDA problem is structured and preferences are obtained, a global model is
required to aggregate preferences and solve the specified problématique. For ai ∈ A, the
overall evaluation of alternative ai is denoted by V (ai) ∈ ℝ, where V (ai) = F

(

v(ai),w
)

.

Here, F (⋅) is a real-valued mapping from the value vector v(ai) and the weight vector w
to a numerical evaluation of ai. A typical example is the linear additive value function,

V (ai) =
∣C∣
∑

j=1
wj ⋅ vj(a

i) [13].

2.2 OWA aggregation operators

An OWA operator is a process to aggregate a set of data, B = {b1, ⋅ ⋅ ⋅ , b∣B∣}, into a
representative datum, i.e. ℝ∣B∣ → ℝ, with an associated weight vector Q=(q1, ⋅ ⋅ ⋅ , q∣B∣),

(∣B∣ = ∣Q∣) such that
∣B∣
∑

j=1
qj = 1, 0 ≤ qj ≤ 1, and OWA∣Q∣(b

1, ⋅ ⋅ ⋅ , b∣B∣) =
∣B∣
∑

i=1
qjb

�(j),

where {�(1), ⋅ ⋅ ⋅ , �(∣B∣)} is a permutation of {1, ⋅ ⋅ ⋅ , ∣B∣} such that b�(j−1) ≥ b�(j), for
all j = {2, ⋅ ⋅ ⋅ , ∣B∣}, i.e. b�(j) is the jth largest element in B [24]. Hence, an important
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feature of OWA operators is the re-ordering of the elements that makes it a nonlinear
operator, and the vector ofQ is not the representation of relative importance of different
types of information in B, but a mechanism to smoothly achieve any kind of averaging
between Max and Min for B.

Two important features called the dispersion (entropy) and the “orness” are defined as

Disp(Q) = −
∣B∣
∑

i=1
qjlnqj and orness(Q) =

1

∣B∣ − 1

∣B∣
∑

j=1

(∣B∣ − j)qj , respectively [28]. The

dispersion gauges the degree to which all data are equally aggregated. The orness is a
value between 0 and 1 that represents the degree to which the aggregation is like an
“OR” operation, and can be viewed as an optimism indicator of a decision maker. Some
well-known averaging decision rules can be expressed as OWA operations below [26]:

∙ OWA∗: Set Q = (1, 0, ⋅ ⋅ ⋅ , 0), then OWA∗(b1, ⋅ ⋅ ⋅ , b∣B∣) = max
∣B∣
i=1(b

i), representing
the most optimistic decision (maximax, “OR” decision) and orness(Q) = 1;

∙ OWA∗: Set Q = (0, 0, ⋅ ⋅ ⋅ , 1), then OWA∗(b
1, ⋅ ⋅ ⋅ , b∣B∣) = min

∣B∣
i=1(b

i), representing
the most pessimistic decision (minimin, “AND” decision) and orness(Q) = 0;

∙ OWAaverage: Set Q = (1/∣B∣, ..., 1/∣B∣), then OWAaverage(b
1, ⋅ ⋅ ⋅ , b∣B∣) =

1

∣B∣

∣B∣
∑

i=1

bi,

yielding the equally likely decision and orness(Q) = 0.5.
Various approaches have been suggested for OWA weight generation, which can

be generally divided into two categories: fuzzy linguistic quantifier approaches and
optimization-based methods. Fuzzy linguistic quantifier approaches focus on the con-
struction of regular increasing monotonic functions and the utilization of fuzzy linguis-
tic quantifiers to obtain different weight information [17, 29, 30]. Optimization-based
methods aim to incorporate optimization into determining the ordered weights by
maximizing the entropy value of ordered weights or minimizing the variance of or-
dered weights under a given level of orness [15,26,27]. In this paper, a fuzzy linguistic
quantifier approach is utilized due to its easy-to-understand meaning. The details are
provided in Section 4.3.

2.3 The TOPSIS method

The TOPSIS analysis procedure can be summarized as the following steps [23]:

∙ Construct a performance matrix: establish a ∣A∣ × ∣C∣ matrix called the performance
(information, decision) matrix as shown in Figure 1.

∙ Normalize the performance matrix: Apply a normalization process to the performance
matrix to convert the original consequence data to values. Assume that ∀mi

j ∈ ℝ
+,

three widely used normalization functions, mapping from mi
j to vij (0 ≤ vij ≤ 1), are

listed below [5, 6, 23]:
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(1) Vector normalization: vij =
mi

j
√

∑∣A∣
i=1(m

i
j)

2
;

(2) Sum-based normalization: vij =
mi

j
∑∣A∣

i=1(m
i
j)
.

(3) Min-Max-based normalization: vij =
mi

j

max
∣A∣
i=1m

i
j

(cj is a benefit criterion) and vij =

min
∣A∣
i=1m

i
j

mi
j

(cj is a cost criterion);

∙ Define ideal and anti-ideal points: Set an ideal point, a+, and an anti-ideal point, a−,
as the combination of maximum or minimum values of vj(a

i) for all ai ∈ A and cj ∈
C, respectively. For example, for a benefit criterion cj , using vector normalization,

vj(a
+) = max

∣A∣
i=1 v

i
j and vj(a

−) = min
∣A∣
i=1 v

i
j.

∙ Assign weights to criteria: Set wj (wj ∈ ℝ
+ and

∑∣C∣
j=1wj = 1) to represent the relative

importance of the criterion, cj .
∙ Calculate the distances from ai to a+ and a−: the p-norm distance functions,

D(ai)+ =

⎧

⎨

⎩

∣C∣
∑

j=1

wj

∣

∣

∣

∣

(vj(a
+)− vj(a

i)
∣

∣

∣

∣

p
⎫

⎬

⎭

1/p

, (1)

and

D(ai)− =

⎧

⎨

⎩

∣C∣
∑

j=1

wj

∣

∣

∣

∣

(vj(a
i)− vj(a

−)
∣

∣

∣

∣

p
⎫

⎬

⎭

1/p

, (2)

are often employed, where p is a pre-defined distance norm, usually set as 1 or 2; and
∣x∣ represents the absolute value of x.

∙ Obtain an overall assessment of ai: Construct an overall distance function for ai

to aggregate the aforesaid two distances into a final evaluation result. The overall
distance D(ai) can be expressed as [13]

D(ai) =
D(ai)−

D(ai)− +D(ai)+
. (3)

Obviously, a larger value of D(ai) represents a better overall performance.

3 An OWA-TOPSIS method

3.1 Flexible settings of a+ and a−

As described in Section 2.3, the setting of ideal and anti-ideal points in TOPSIS is based
upon value data, i.e. normalized and refined consequence data. According to the DM’s
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preference directions over different criteria, a+ and a− are set as the combinations of
either maximum or minimum values of vij (∀cj ∈ C and ∀ai ∈ A). In practice, a DM
often has ideal or anti-ideal alternatives (points) directly given as consequence data.
For example, in business analysis various benchmarks have been proposed for company
performance evaluations [1]. The current TOPSIS method does not provide a flexible
mechanism to allow a DM to specify a+ and a− in the consequence data space directly,
but the DM may feel much easier and more meaningful compared to discussions in the
value data space [5, 6].

To improve the setting flexibility, this article allows a DM to define a+ and a− in the
consequence data space directly as long as the following conditions are satisfied [5]:

(1) For a benefit criterion, cg ∈ C, and an alternative, ai ∈ A, mg(a
+) ≥ mg(a

i) and
mg(a

−) ≤ mg(a
i).

(2) For a cost criterion, cℎ ∈ C, and an alternative, ai ∈ A, mℎ(a
+) ≤ mℎ(a

i) and
mℎ(a

−) ≥ mℎ(a
i).

It is trivial to verify that the setting of a+ and a− in the original TOPSIS method
satisfies the above conditions. Hence, our new setting of a+ and a− can be regarded as
a logical extension of that in the original TOPSIS method.

Additionally, in the original TOPSIS method, a DM only sets one pair of extreme points,
a+ and a−. As an interesting extension, multiple extreme points may occur in a TOPSIS
analysis, where a DM provides more than one pair of extreme points over different
criteria or as a group decision support procedure, various extreme points suggested by
different participants must be considered. Formally, let O = {(o1+, o

1
−), ⋅ ⋅ ⋅ , (o

∣O∣
+ , o

∣O∣
− )}

be a set of ideal and anti-ideal point pairs. Furthermore, let O+ = {o1+, ⋅ ⋅ ⋅ , o
∣O∣
+ } and

O− = {o1−, ⋅ ⋅ ⋅ , o
∣O∣
− } be a set of ideal points and anti-ideal points, respectively. Similarly,

the setting of O+ and O− over the criterion set C satisfies the following conditions:

(1) For a benefit criterion, cg ∈ C, and an alternative, ai ∈ A, mg(o
k
+) ≥ mg(a

i) and
mg(o

k
−) ≤ mg(a

i), where ok+ ∈ O+ and ok− ∈ O−.
(2) For a cost criterion, cℎ ∈ C, and an alternative, ai ∈ A, mℎ(o

k
+) ≤ mℎ(a

i) and
mℎ(o

k
−) ≥ mℎ(a

i), where ok+ ∈ O+ and ok− ∈ O−.

3.2 Distance aggregations

For each cj ∈ C, in the consequence space the distances from ai to an ideal point, ok+ ∈
O+ and an anti-ideal point, ol− ∈ O− are measured by mj(o

k
+)−mj(a

i) and mj(a
i) −

mj(o
l
−), respectively. Then, any aforementioned normalization function in Section 2.3

can be utilized to obtain the normalized distances of ai to ok+ and ol− in the value
space, denoted as dj(a

i)k+ and dj(a
i)l−, respectively. The detailed normalization process

is omitted here.
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To facilitate further discussions, the following notation is introduced:

∙ Let dj(a
i)+ and dj(a

i)− be the aggregated distances between ai and the ideal and
anti-ideal points set, O+ and O−, over the criterion cj , respectively.

∙ let D(ai)k+ and D(ai)l− be the aggregated distances between ai and ok+ and ol− over
the criterion set C, respectively. The values of D(ai)k+ and D(ai)l− can be obtained
by Eqs. (1) and (2) where the p-norm distance function needs to be pre-defined by a
DM.

∙ Let D(ai)+ and D(ai)− represent the overall distances of ai to O+ and O−, respec-
tively.

∙ Let D(ai)k be the overall performance distance between ai and a pair of ideal and
anti-ideal points, (ok+, o

k
−), and let D(ai) be the overall performance distance of ai to

O. The calculation of D(ai)k or D(ai) is determined by Eq. (3).

To obtain the final distance performance of ai, D(ai), beginning with dj(a
i)k+ and

dj(a
i)l−, two kinds of information aggregation are needed:

∙ Preference aggregation over the criterion set C: Distances of an alternative over dif-
ferent criteria have to be aggregated based on the preferences over criteria or weights
w. This type of information aggregation is commonly studied in MCDA and, hence,
is denoted as MCDAw.

∙ Source aggregation over the ideal and anti-ideal point sets, O+ and O−: Similarly,
different distance information between an alternative and various ideal or anti-ideal
points within O+ and O−, has to be aggregated to reflect different opinions from
distinct ideal and anti-ideal points of view. Here, the OWA aggregation associated
with a set of weights, Q, is used to achieve this operation. This type of aggregation
is denoted as OWAQ.

Next, three aggregation scenarios that integrate OWA into TOPSIS are designed as
follows:

∙ Internal aggregation: The overall information process of an internal aggregation is
shown below:
{

dj(a
i)k+
}OWAQ
−−−−−→ {dj(a

i)+}
MCDAw
−−−−−−→ {D(ai)+}

{

dj(a
i)k−
}OWAQ
−−−−−→ {dj(a

i)−}
MCDAw
−−−−−−→ {D(ai)−}

⎫



⎬



⎭

D(ai)

First, the distances between ai and different ideal and anti-ideal points, ok+ and ok−
over a criterion cj, ∀cj ∈ C, are aggregated through OWAP; then the generated
dj(a

i)+ and dj(a
i)− are aggregated through MCDAw over the criterion set C to

produce D(ai)+ and D(ai)−; finally, D(ai) is calculated using the aforementioned
TOPSIS distance aggregation procedure in Eq. (3).

∙ External aggregation I: The overall information process of an external aggregation I
is shown below:
{

dj(a
i)k+
}MCDAw
−−−−−−→

{

D(ai)k+
}

{

dj(a
i)k−
}MCDAw
−−−−−−→

{

D(ai)k−
}

⎫



⎬



⎭

{

D(ai)k
}OWAQ
−−−−−→D(ai)
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First, the distances between ai and the pair of (ok+, o
k
−) over the criterion set C are

aggregated through MCDAw; then the generated D(ai)k+ and D(ai)k− are aggregated
through Eq. (3) to produce D(ai)k; finally, D(ai) is obtained through OWAQ.

∙ External aggregation II: The general information process of an external aggregation
II is shown below:
{

dj(a
i)k+
}MCDAw
−−−−−−→

{

D(ai)k+
}OWAQ
−−−−−→ {D(ai)+}

{

dj(a
i)k−
}MCDAw
−−−−−−→

{

D(ai)k−
}OWAQ
−−−−−→ {D(ai)−}

⎫



⎬



⎭

D(ai)

First, the distances between ai and the pair of (ok+, o
k
−) over the criterion set C are

aggregated through MCDAw; then the generated D(ai)k+ and D(ai)k− are aggregated
through OWAQ to produce D(ai)+ and D(ai)−; finally, D(ai) is obtained using Eq.
(3).

The difference between the internal aggregation and the two external aggregations is
the order of applying MCDAw and OWAQ. In the internal aggregation, the OWAQ

is applied first to aggregate distances from different sources (both ideal or anti-ideal
points), then MCDAw is used to aggregate different information over various criteria.
Such an information processing approach is appropriate for a single DM with multiple
pairs of extreme points.

In the two external aggregations, MCDAw is entertained first to aggregate different
information over all criteria for each pair of extreme points. Different weight sets may be
used in MCDAw aggregations. Then, OWAQ is utilized to aggregate the obtained in-
formation from different pairs of extreme points. These information processing schemes
can be applied to a group decision support procedure where multiple participants pro-
vide different pairs of extreme points and different weight information. A case study
adapted from [23] in which Shih et al. extended the TOPSIS method for group deci-
sion making, is explored in the next section to demonstrate the proposed method and
compare the results from the above three aggregation scenarios.

4 A numerical example

4.1 Background information

A local chemical company is recruiting an on-site business manager [23]. 17 qualified
candidates (alternatives) (labelled as a1-a17) compete for this position, and four decision
makers (labelled as DM1-DM4) constitute the search committee. The human resources
department provides some relevant selection tests: three knowledge tests covering lan-

guage, professional and safety rules knowledge and two skill tests evaluating professional
and computer skills, as well as two interviews involving panel interview with the search
committee and 1-on-1 interview with individual committee members. These tests and
interviews form the criterion set C and are labelled as c1 − c7 sequentially according to
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the aforesaid order.

Obviously, the first five criteria, c1 to c5, provide relative objective measurements, while
c6 and c7 rely on the DMs’ subjective judgements for each candidate or alternative. The
basic consequence information of these 17 alternatives over the seven criteria is listed
in Table 1. Note that DMs differ in their subjective judgements for the alternatives
according to the last two criteria, c6 and c7. Also, DMs have different settings of the
relative importance of criteria which are shown in Table 2.

Table 1
Basic information [23]

Alternative
Criteria DM1 DM2 DM3 DM4

c1 c2 c3 c4 c5 c6 c7 c6 c7 c6 c7 c6 c7

a1 80 70 87 77 76 80 75 85 80 75 70 90 85

a2 85 65 76 80 75 65 75 60 70 70 77 60 70

a3 78 90 72 80 85 90 85 80 85 80 90 90 95

a4 75 84 69 85 65 65 70 55 60 68 72 62 72

a5 84 67 60 75 85 75 80 75 80 50 55 70 75

a6 85 78 82 81 79 80 80 75 85 77 82 75 75

a7 77 83 74 70 71 65 70 70 60 65 72 67 75

a8 78 82 72 80 78 70 60 75 65 75 67 82 85

a9 85 90 80 88 90 80 85 95 85 90 85 90 92

a10 89 75 79 67 77 70 75 75 80 68 78 65 70

a11 65 55 68 62 70 50 60 62 65 60 65 65 70

a12 70 64 65 65 60 60 65 65 75 50 60 45 50

a13 95 80 70 75 70 75 75 80 80 65 75 70 75

a14 70 80 79 80 85 80 70 75 72 80 70 75 75

a15 60 78 87 70 66 70 65 75 70 65 70 60 65

a16 92 85 88 90 85 90 95 92 90 85 80 88 90

a17 86 87 80 70 72 80 85 70 75 75 80 70 75

Table 2
Weight information from DMs [23]

c1 c2 c3 c4 c5 c6 c7

DM1 0.066 0.196 0.066 0.130 0.130 0.216 0.196

DM2 0.042 0.112 0.082 0.176 0.118 0.215 0.255

DM3 0.060 0.134 0.051 0.167 0.100 0.203 0.285

DM4 0.047 0.109 0.037 0.133 0.081 0.267 0.326

4.2 The setting of ideal and anti-ideal sets

Here, the same preference assumptions in Shih et al. [23] are employed for conducting
an OWA-TOPSIS analysis. The details are given below:
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∙ All criteria are benefit and, hence, preference monotonic.
∙ The four pairs of extreme points provided by the four DMs constitute O. The set-
tings of ok+ and ok− follow the rule that ∀cj ∈ C, mj(o

k
+) = max17i=1mj(a

i), and
mj(o

k
−) = min17

i=1mj(a
i), and are shown in Table 3. Note that there is no explicit

account for multiple pairs of extreme points in [23], although the four DMs have
different extreme point settings regarding c6 and c7. As an extension of Shih et al.’s
method, the proposed OWA-TOPSIS method provides a general framework of infor-
mation aggregation regarding multiple pairs of extreme points and multiple criteria.

∙ The vector normalization is used to normalize the data.

Table 3
Ideal and anti-ideal points setting for DMs [23]

DMs (ok+, o
k
−) c1 c2 c3 c4 c5 c6 c7

DM1
o1+ 95 90 88 90 90 90 95

o1− 60 55 60 62 60 50 60

DM2
o2+ 95 90 88 90 90 95 90

o2− 60 55 60 62 60 55 60

DM3
o3+ 95 90 88 90 90 90 90

o3− 60 55 60 62 60 50 55

DM4
o4+ 95 90 88 90 90 90 95

o4− 60 55 60 62 60 45 50

4.3 The setting of OWAQ

The fuzzy linguistic quantifiers approach [28] to determining the ordered weights pro-

vides various information regarding decision behaviors. Let qi =

(

i

∣B∣

)�

−

(

i− 1

∣B∣

)�

, for

i = 1, ..., ∣B∣, where � indicates the degree of inclusion for different elements. By chang-
ing the � value, different decision strategies are induced [17]. Table 4 demonstrates
weight settings for different fuzzy linguistic quantifiers under ∣B∣ = 4. For example,
� = 0 (at least one) indicates that an DM will get absolutely no satisfaction if there
is no satisfaction for the DM from any of four pieces of information, i.e. this setting
of � achieves the “OR” operation. Subsequently, � = 0.1, 0.5, 1, 2, 10, 1000 represent
the linguistic words of “few”, “some”, “half (average)”, “many”, “most”, and “all”,
respectively.

4.4 Internal and external aggregations

It is assumed that the distance norm, p, is set at p = 1 and the weight information in
Table 2 is used for MCDAw aggregation. The weight information in Table 4 is applied
for OWAQ aggregation. Then, the aforementioned three aggregation processes, internal

11



Table 4
Order Weights for Selected Linguistic Quantifiers [28]

Linguistic quantifier At least one Few Some Half (Average) Many Most All

� 0 0.1 0.5 1 2 10 1000

q1 1.0000 0.8706 0.5000 0.2500 0.0625 0.0000 0.0000

q2 0.0000 0.0625 0.2071 0.2500 0.1875 0.0010 0.0000

q3 0.0000 0.0386 0.1589 0.2500 0.3125 0.0553 0.0000

q4 0.0000 0.0284 0.1340 0.2500 0.4375 0.9437 1.0000

aggregation, external aggregation I, and external aggregation II as discussed in Section
3.2, are conducted and the results are shown in Tables 5, 6 and 7, respectively, where
R1-R7 refer to different alternative rankings based on the seven predefined � values in
Table 4. Note that in the internal aggregation (one DM with multiple pairs of extreme
points) as shown in Table 5, the weight information from DM1, (0.0660, 0.1960, 0.0660,
0.1300, 0.1300, 0.2160, 0.1960) in Table 4 is used for MCDAw aggregation, and in the
two external aggregations (multiple DMs with multiple pairs of extreme points) as given
in Tables 6 and 7, different criterion weight information shown in Table 2 is employed
for MCDAw aggregations.

Table 5
Final distance performance and rankings of alternative in internal aggregation

A
� = 0 � = 0.1 � = 0.5 � = 1 � = 2 � = 10 � = 1000

D(ai) R1 D(ai) R2 D(ai) R3 D(ai) R4 D(ai) R5 D(ai) R6 D(ai) R7

a1 0.5620 7 0.6032 5 0.5687 7 0.5740 7 0.5817 7 0.6001 5 0.6022 5

a2 0.4346 11 0.4292 12 0.4247 13 0.4191 14 0.4144 14 0.4114 11 0.4113 11

a3 0.7434 3 0.7549 3 0.7716 3 0.7908 3 0.8123 3 0.8299 3 0.8297 3

a4 0.4257 12 0.4211 14 0.4333 11 0.4342 11 0.4276 11 0.3902 13 0.3855 13

a5 0.4011 14 0.4962 11 0.4208 14 0.4275 12 0.4214 13 0.3553 15 0.3462 15

a6 0.6192 4 0.6584 4 0.6338 4 0.6425 4 0.6510 4 0.6576 4 0.6578 4

a7 0.4207 13 0.4247 13 0.4257 12 0.4263 13 0.4223 12 0.4019 12 0.3996 12

a8 0.5469 8 0.5553 9 0.5408 8 0.5396 8 0.5439 8 0.5730 8 0.5769 8

a9 0.8457 2 0.9146 2 0.8788 2 0.8975 2 0.9134 2 0.9240 2 0.9246 2

a10 0.4799 10 0.5213 10 0.4839 10 0.4857 10 0.4867 10 0.4851 10 0.4849 10

a11 0.1903 16 0.1961 17 0.1647 16 0.1459 16 0.1219 16 0.0796 17 0.0757 17

a12 0.1900 17 0.2193 16 0.1616 17 0.1423 17 0.1208 17 0.0976 16 0.0964 16

a13 0.5268 9 0.5741 7 0.5277 9 0.5286 9 0.5299 9 0.5328 9 0.5330 9

a14 0.5842 5 0.5876 6 0.5885 5 0.5910 5 0.5934 5 0.5954 6 0.5954 6

a15 0.3861 15 0.4127 15 0.3799 15 0.3756 15 0.3702 15 0.3589 14 0.3576 14

a16 0.8605 1 0.9208 1 0.8842 1 0.8990 1 0.9143 1 0.9283 1 0.9288 1

a17 0.5748 6 0.5728 8 0.5790 6 0.5824 6 0.5870 6 0.5943 7 0.5947 7
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Table 6
Final distance performance and rankings of alternatives in external aggregation I

A
� = 0 � = 0.1 � = 0.5 � = 1 � = 2 � = 10 � = 1000

D(ai) R1 D(ai) R2 D(ai) R3 D(ai) R4 D(ai) R5 D(ai) R6 D(ai) R7

a1 0.7059 4 0.6889 4 0.6365 5 0.5951 5 0.5528 6 0.5089 6 0.5068 6

a2 0.5227 10 0.5077 11 0.4635 12 0.4311 11 0.4017 11 0.3777 11 0.3765 11

a3 0.8814 3 0.8684 3 0.8291 3 0.7987 3 0.7673 3 0.7201 3 0.7156 3

a4 0.5118 12 0.4994 12 0.4597 13 0.4252 13 0.3822 12 0.2936 14 0.2843 14

a5 0.5078 13 0.4983 13 0.4642 11 0.4287 12 0.3747 14 0.2415 15 0.2274 15

a6 0.6831 6 0.6781 5 0.6616 4 0.6466 4 0.6274 4 0.5899 4 0.5863 4

a7 0.4584 14 0.4511 14 0.4271 14 0.4050 14 0.3759 13 0.3159 12 0.3099 13

a8 0.6922 5 0.6660 6 0.5887 7 0.5330 8 0.4846 9 0.4550 9 0.4545 9

a9 0.9344 2 0.9286 2 0.9103 2 0.8945 2 0.8751 2 0.8358 2 0.8317 2

a10 0.5141 11 0.5088 10 0.4912 10 0.4749 10 0.4536 10 0.4136 10 0.4099 10

a11 0.2667 16 0.2504 16 0.2008 16 0.1621 16 0.1220 16 0.0686 16 0.0642 16

a12 0.2432 17 0.2273 17 0.1784 17 0.1401 17 0.1007 17 0.0541 17 0.0509 17

a13 0.5614 9 0.5554 9 0.5374 9 0.5237 9 0.5108 8 0.4999 7 0.4994 7

a14 0.5903 8 0.5887 8 0.5832 8 0.5779 6 0.5706 5 0.5555 5 0.5540 5

a15 0.4035 15 0.3977 15 0.3796 15 0.3643 15 0.3464 15 0.3158 13 0.3130 12

a16 0.9391 1 0.9346 1 0.9189 1 0.9036 1 0.8825 1 0.8418 1 0.8382 1

a17 0.6465 7 0.6338 7 0.5936 6 0.5603 7 0.5239 7 0.4840 8 0.4822 8

Table 7
Final distance performance and rankings of alternatives in external aggregation II

A
� = 0 � = 0.1 � = 0.5 � = 1 � = 2 � = 10 � = 1000

D(ai) R1 D(ai) R2 D(ai) R3 D(ai) R4 D(ai) R5 D(ai) R6 D(ai) R7

a1 0.5769 5 0.5787 5 0.7647 5 0.5939 5 0.6071 5 0.6405 4 0.6440 4

a2 0.4584 11 0.4537 11 0.6213 13 0.4310 11 0.4261 11 0.4368 11 0.4385 11

a3 0.7452 3 0.7526 3 0.9013 3 0.7975 3 0.8207 3 0.8604 3 0.8647 3

a4 0.4191 12 0.4210 12 0.6329 12 0.4256 13 0.4174 13 0.3719 12 0.3659 12

a5 0.3917 14 0.3986 14 0.6468 11 0.4279 12 0.4211 12 0.3330 15 0.3203 15

a6 0.6831 4 0.6762 4 0.7807 4 0.6466 4 0.6405 4 0.6395 5 0.6389 5

a7 0.4021 13 0.4034 13 0.6020 14 0.4052 14 0.3979 14 0.3650 13 0.3611 13

a8 0.5560 7 0.5513 8 0.7179 8 0.5322 8 0.5364 8 0.5908 6 0.5984 6

a9 0.8446 2 0.8523 2 0.9542 2 0.8941 2 0.9110 2 0.9282 2 0.9297 2

a10 0.4593 10 0.4621 10 0.6600 10 0.4745 10 0.4759 10 0.4653 10 0.4639 10

a11 0.2205 16 0.2128 16 0.3322 16 0.1620 16 0.1324 16 0.0854 16 0.0811 16

a12 0.1912 17 0.1843 17 0.2968 17 0.1381 17 0.1107 17 0.0710 17 0.0680 17

a13 0.5279 9 0.5269 9 0.6947 9 0.5237 9 0.5250 9 0.5324 9 0.5331 9

a14 0.5706 6 0.5718 6 0.7377 6 0.5779 6 0.5797 6 0.5789 7 0.5787 7

a15 0.3603 15 0.3612 15 0.5511 15 0.3638 15 0.3620 15 0.3543 14 0.3537 14

a16 0.8533 1 0.8609 1 0.9601 1 0.9036 1 0.9211 1 0.9320 1 0.9321 1

a17 0.5543 8 0.5548 7 0.7359 7 0.5601 7 0.5655 7 0.5770 8 0.5779 8
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4.5 Result comparison

Tables 5, 6, and 7 clearly indicate the 21 rankings resulted from the three aggregation
scenarios under the seven � settings unanimously identify the first three candidates: a16,
a9, and a3. For remaining candidates, rankings are slightly different. Next, Friedman
tests [12] are carried out to detect ordinal ranking differences under different � settings
of OWA and internal and external aggregation schemes. The Friedman test is a non-
parametric statistical test that is developed by a Nobel Laureate economist, Milton
Friedman. A classic example is that given the rankings (or ratings) of k different wines
by n wine judges, the Friedman test can assess whether the judgements are consistent
from a statistical point of view [12]. Therefore, it is appropriate to employ this technique
to investigate the consistency of rankings under different settings as shown in Tables 5,
6, and 7.

In the case of internal aggregation, the hypotheses is:

∙ H0: The 7 rankings (� = 0, 0.1, 0.5, 1, 2, 10, 1000) of 17 alternatives are the same.
∙ H1: At least two rankings are different.

The test result listed in Table 8 indicates that one should not reject H0 in favour of H1

at the 5% significance level. In the context of this test, there is no sufficient statistical
evidence to infer that the 7 ranking results are different. In other words, although the
7 approaches based on various � values generate slightly different ranking orders, the
Friedman test shows that the rankings are not significantly different and there exists
overall consistency in the rankings based on the seven � settings for internal aggregation.

Table 8
Friedman Test Result I

Q (observed value) 1.205

Q (critical value) 12.592

DF 6

One-tailed p-value 0.977

Alpha 0.05

Similarly, the Friedman test confirms that the total 14 different � settings for external
aggregation I and II (each aggregation contains 7 settings of �) also produce overall
consistent rankings of alternatives. The test result is shown in Table 9.

Table 9
Friedman Test Result II

Q (observed value) 0.861

Q (critical value) 22.362

DF 13

One-tailed p-value 1.000

Alpha 0.05
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5 Conclusions

In this paper, a hybrid approach is designed to integrate OWA operators into the
TOPSIS analysis procedure to achieve diverse information aggregations for multiple
criteria decision analysis. The proposed method can be regarded as an extension of
the approach by Shih et al. [23] and information aggregations are categorized in two
groups: preference and source aggregations. The preference aggregation is attained by
aggregating information over different criteria; the source aggregation is fulfilled by
OWA operators over different pairs of extreme points. Given different combinations
of these two information aggregations, three scenarios (internal aggregation, external
aggregation I, and external aggregation II) are devised to generate final rankings. A
numerical example demonstrates the approach and comparative results confirm the
statistical consistency of the ranking results by the three aggregation scenarios with
different � settings.
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