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 7 

Abstract 8 

This article investigates the consistency of interval fuzzy preference relations based on interval 9 

arithmetic, and new definitions are introduced for additive consistent, multiplicative consistent 10 

and weakly transitive interval fuzzy preference relations. Transformation functions are put 11 

forward to convert normalized interval weights into consistent interval fuzzy preference relations. 12 

By analyzing the relationship between interval weights and consistent interval fuzzy preference 13 

relations, goal-programming-based models are developed for deriving interval weights from 14 

interval fuzzy preference relations for both individual and group decision-making situations. The 15 

proposed models are illustrated by a numerical example and an international exchange doctoral 16 

student selection problem. 17 

Keywords: Interval fuzzy preference relations, Additive transitivity, Multiplicative transitivity, 18 

Goal programming, Interval weights 19 

1. Introduction   20 

Since fuzzy logic was first introduced by Zadeh [63], it has become an alternative framework 21 

to tackle uncertainty and an indispensable tool in approximate reasoning and artificial 22 

intelligence [64, 65]. Along with other biology-inspired approaches such as artificial neural 23 

networks and evolutionary computing, fuzzy logic has greatly contributed to the flourishing 24 

development of soft computing technologies [25]. Recent years have witnessed numerous 25 

successful applications of soft computing tools in a host of areas ranging from intelligent systems 26 

design [25, 34], to environmental and water resources management [9, 29, 30, 33, 52, 53] as well 27 

as decision support [2, 36]. Among these applications, an important branch is to develop decision 28 

models within the fuzzy logic framework.  29 
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Preference relations are among the most common ways to represent information for decision 30 

making problems. In multiple attribute decision making (MADM), the decision-maker (DM) 31 

generally needs to compare a set of n decision alternatives with respect to each attribute and 32 

construct a preference relation, then certain techniques are applied to derive aggregated weights 33 

based on individual preference relations. One widely used preference relation takes the 34 

multiplicative form, which was introduced by Saaty [38] to represent pairwise comparison data 35 

in the analytic hierarchy process (AHP). Since its inception, AHP has emerged as a key MADM 36 

approach and has been extensively and intensively studied [43]. The AHP has also been 37 

extended to the fuzzy environment [13, 15, 26, 27, 44] and group decision making with 38 

information granularity [37] and been applied to such areas as safety management [13], risk 39 

management [3], military personnel assignment [26]. Another commonly used preference 40 

relation takes the fuzzy form, and significant research [1, 10-12, 14, 16-18, 20-24, 31, 32, 35, 37, 41 

42, 47, 48, 54, 59, 62] has been conducted to deal with fuzzy preference relations. One line of 42 

research on fuzzy preference relations is to investigate basic concepts and consistency properties 43 

and apply them to decision-making processes [10, 12, 18, 20-23, 35, 37, 42, 47, 59, 60]. Another 44 

active research topic is to examine the derivation of priority (weight) vectors based on fuzzy 45 

preference relations. For example, Xu and Da [62] propose a least deviation method to obtain a 46 

priority vector from a fuzzy preference relation; Wang and Fan [47] apply the logarithmic and 47 

geometric least squares methods to deal with the group decision analysis problems with fuzzy 48 

preference relations; Wang et al. [48] propose a chi-square method for obtaining a priority vector 49 

from multiplicative and fuzzy preference relations. 50 

Due to the complexity and uncertainty involved in many real-world decision problems, it is 51 

sometimes unrealistic or impossible to acquire exact judgment data. As such, researchers have 52 

extended the MADM framework to accommodate decision situations where judgment data are 53 

expressed as intervals, fuzzy intervals [7], intuitionistic fuzzy numbers [8, 28, 58], or interval-54 

valued intuitionistic fuzzy numbers [50, 51]. In the context of fuzzy preference relations, instead 55 

of demanding exact fuzzy numbers, a natural extension is to allow for interval fuzzy judgment. 56 

Researchers have started examining interval preference relations, such as interval multiplicative 57 

preference relations for pairwise comparison matrices [32, 39, 41, 46, 49] and interval fuzzy 58 

preference relations [1, 19, 20, 55, 57, 61].   59 

For interval multiplicative preference relations where pairwise comparison matrices consist 60 
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of interval values, a large body of literature has been developed over the years [4, 5, 32, 39, 41, 61 

45, 46, 48, 49]. As Wang and Elhag [46] point out, an interval comparison matrix is expected to 62 

yield an interval weight. By following this guideline, Wang and Elhag [46] put forward a goal-63 

programming approach to deriving interval weights based on a consistent or inconsistent interval 64 

comparison matrix. For an excellent overview of interval multiplicative preference relations, 65 

readers are referred to Wang and Elhag [46] and Xu [57]. 66 

For interval fuzzy preference relations where judgment data are expressed as interval fuzzy 67 

numbers, Xu [56] introduces the notion of compatibility degree and compatibility index for two 68 

interval fuzzy preference relations and analyzes the compatibility of interval fuzzy preference 69 

relations in group decision making. Herrera et al. [20] put forward an aggregation mechanism for 70 

group decision making that is able to handle hybrid information consisting of fuzzy binary 71 

preference relations, interval-valued preference relations and fuzzy linguistic relations. Xu and 72 

Chen [61] define additive and multiplicative consistent interval fuzzy preference relations based 73 

on crisp normalized weights, and establish some models for deriving priority weights from 74 

consistent or inconsistent interval fuzzy preference relations. 75 

It is well known that the definitions of consistency play an important role in MADM with 76 

preference relations. When crisp preference relations are concerned, crisp arithmetic is employed 77 

to examine their consistency and crisp weights are derived. If preference relations are interval-78 

valued, it is natural and logical to expect that interval arithmetic be used and interval weights be 79 

generated. As Wang and Elhag [46] and the literature review therein indicate, many existing 80 

approaches to handling interval data are only applicable to multiplicative preference relations. 81 

Although Xu and Chen’s approach [61] is able to obtain interval weights from consistent or 82 

inconsistent interval fuzzy preference relations, their consistency definitions are based on crisp 83 

weights and the interval weight derivation process requires solving 2n+1 linear programs (LPs). 84 

This paper focuses on interval fuzzy preference relations and employs interval arithmetic to 85 

define additive and multiplicative consistency of interval fuzzy preference relations. Based on 86 

the principle of minimizing deviations from additive and multiplicative consistency, two goal-87 

programming approaches are developed to derive interval priority weights for decision problems 88 

for a single DM, where only one LP model has to be solved in each case. These two approaches 89 

are then extended to group decision making situations.   90 

The rest of the paper is organized as follows. Section 2 provides preliminary background on 91 
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fuzzy preference relations, comparisons and ranking of interval weights. Section 3 introduces 92 

new definitions of additive and multiplicative consistent interval fuzzy preference relations and 93 

their properties. In Section 4, goal-programming models are developed for deriving interval 94 

weights based on interval fuzzy preference relations for both individual and group decision 95 

making problems. An illustrative example is presented and the ranking result is compared with 96 

an existing approach in Section 5. Section 6 furnishes a case study on the international exchange 97 

doctoral student selection problem. The paper concludes with some remarks in Section 7. 98 

2. Preliminaries 99 

2.1 Consistent fuzzy preference relations 100 

Consider an MADM problem with a finite set of n attributes or alternatives. Let 101 

1 2{ , ,..., }nX x x x  be a finite set of attributes or alternatives. Without loss of generality, hereafter 102 

we refer to X as an alternative set. Fuzzy preference relations provide a DM with values between 103 

0 and 1, representing the DM’s varying degrees of preference for one alternative over another. 104 

A fuzzy preference relation [35] R  on the set X  is a fuzzy subset of X X characterized by 105 

a complementary matrix ( )ij n nR r  with 106 

0 1, 1, 0.5ij ij ji iir r r r      for all , 1, 2,...,i j n                              (2.1) 107 

where ijr  represents the DM’s preference ratio of alternative ix over jx . Especially,  0.5ijr   108 

means that the DM is indifferent between ix and jx , 1ijr   indicates that ix  is definitely 109 

preferred to jx  and 0ijr   signifies that jx  is definitely preferred to ix , and 0.5ijr   shows that 110 

ix  is preferred to jx  to a certain degree. 111 

       Tanino [42] proposes the definition of consistency for fuzzy preference relations and 112 

introduces additive and multiplicative transitivity conditions.  113 

A fuzzy preference relation  ( )ij n nR r   is called additive consistent, if it satisfies [11, 23, 42, 114 

57]: 115 

0.5ij ik jkr r r              for all , , 1, 2,...,i j k n                                (2.2) 116 

   Since 1ij jir r   for all , 1, 2,...,i j n , one can obtain 117 

                    ij jk ki kj ji ikr r r r r r                     for all , , 1, 2,...,i j k n                          (2.3) 118 

 It has been found that, for a fuzzy preference relation ( )ij n nR r  , if there exists a weight 119 
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vector 1 2( , ,..., )T
n    , 

1

1
n

i
i




  and 0i   for 1, 2,...,i n , such that   120 

0.5( ) 0.5ij i jr             for all , 1, 2,...,i j n                               (2.4) 121 

then R is additive consistent [11, 31, 55, 57].  122 

A fuzzy preference relation  ( )ij n nR r   is called multiplicative consistent, if it satisfies [23, 123 

42, 57]: 124 

kj ijik

ki jk ji

r rr

r r r
             for all , , 1, 2,...,i j k n                                   (2.5) 125 

Similarly, it has been pointed out that if there exists a weight vector 1 2( , ,..., )T
nW    , 126 

1

1
n

i
i




  and 0i   for 1, 2,...,i n , such that   127 

i
ij

i j

r


 



                for all , 1, 2,...,i j n                                     (2.6) 128 

then R is multiplicative consistent [55, 57]. 129 

As 1ij jir r   for all , 1, 2,...,i j n , from (2.5), we have 130 

ji kj jk ijik ki

ij jk ki kj ji ik

r r r rr r

r r r r r r
                    for all , , 1, 2,...,i j k n            (2.7) 131 

   A fuzzy preference relation  ( )ij n nR r   is called weakly transitive if 0.5ijr   and 0.5jkr   132 

imply 0.5ikr   for all , , 1, 2,...,i j k n . 133 

2.2 Comparison and ranking of interval weights 134 

   The commonly used comparison of interval weights is based on interval arithmetic. Given 135 

any two interval numbers [ , ]a a a   and [ , ]b b b  , where , 0a b   , arithmetic operations 136 

of a  and b  can be summarized as follows: 137 

 (1) [ , ]a b a b a b       ; 138 

(2) [ , ]a b a b a b       ; 139 

(3) [ , ]a b a b a b      140 

(4) [ , ]
a aa

b b b

 

  . 141 

Let [ , ]i i i     be an interval weight, 1, 2,...,i n . To compare two interval weights, we 142 
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refer to the notion of likelihood of one interval weight being greater than another. Denote 143 

i j  , indicating that i  is no smaller than j . The likelihood of  i j   is defined as [49] 144 

max{0, } max{0, }
( ) i j i j

i j
i i j j

p
   

 
   

   

   

  
 

  
                                 (2.9)  145 

It is obvious that 0 ( ) 1i jp      and ( ) ( ) 1i j j ip p       . Especially, ( )i ip    146 

0.5 . 147 

The likelihood ( )i jp    possesses some useful properties as summarized below [49, 55, 148 

61]: 149 

(a) ( ) 1i jp     if and only if  i j   ; 150 

(b) ( ) 0i jp     if and only if  i j   ; 151 

(c) ( ) 0.5i jp     if and only if  
2 2

j ji i
      

 . Especially, ( ) 0.5i jp     if and 152 

only if 
2 2

j ji i
      

 ; 153 

        (d) Let ,i j   and k  be three interval weights, if ( ) 0.5i jp     and ( ) 0.5j kp    , 154 

then ( ) 0.5i kp    . 155 

Properties (a) and (b) show that if two interval weights do not overlap, then the one on the 156 

upper end will 100 percent dominate the one on the lower end. Property (c) demonstrates how to 157 

compare two interval weights when the two intervals overlap. Property (d) indicates that the 158 

likelihood concept is transitive. 159 

This likelihood makes it possible to compare any two interval weights, and the following 160 

steps are needed to rank a set of interval weights.  161 

Step 1. Calculate the likelihood ( )i jp    for interval weights i  and j  ( , 1, 2,...,i j n ) by 162 

using (2.9), and construct the likelihood matrix ( )ij n nP p  , ( )ij i jp p    . 163 

Step 2. Determine the optimal degree i  of membership for interval weights i  ( 1, 2,...,i n ) as 164 

per the following equation [45]: 165 

1

1
( 1)

( 1) 2

n

i ij
j

n
p

n n




  
                                                      (2.10) 166 

Step 3. Obtain a ranking for all interval weights i  ( 1, 2,...,i n ) according to a decreasing order 167 
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of i , and “interval weight i  being superior to j ” is denoted by
( )i jp

i j

 

 


 . 168 

3. Consistency of interval fuzzy preference relations 169 

This section puts forward the definitions of additive and multiplicative consistent interval 170 

fuzzy preference relations based on interval arithmetic and derives results to tell whether an 171 

interval fuzzy preference relation is additive or multiplicative consistent. The concept of weak 172 

transitivity is also defined for interval fuzzy preference relations and it is established that certain 173 

additive and multiplicative consistent preference relations are always weakly transitive. 174 

Let I  be the closed unit interval [0,1]I  , ( ) {[ , ] : , , }D I a a a a a a I        . For any175 

x I , define [ , ]x x x . 176 

Definition 3.1 [20, 56, 57] An interval fuzzy preference relation R  on the set X  is an 177 

interval-valued fuzzy subset of X X characterized by a matrix ( )ij n nR r   with 178 

[ , ] ([0,1]), 1 [1 ,1 ], [0.5,0.5],ij ij ij ji ij ij ij iir r r D r r r r r           , 1, 2,...,i j n          (3.1) 179 

where ijr  indicates the interval-valued fuzzy preference degree of alternative ix  over jx , and ijr180 

and ijr  are the lower and upper limits of ijr , respectively. 181 

Based on the description of consistent fuzzy preference relations and interval arithmetic 182 

given in Section 2, we extend the concept of consistency to the situations where the preference 183 

values provided by the DM are interval fuzzy numbers. 184 

Definition 3.2  An interval fuzzy preference relation ( )ij n nR r   is called additive consistent, 185 

if the following additive transitivity is satisfied 186 

            ij jk ki kj ji ikr r r r r r                     for all , , 1, 2,...,i j k n                           (3.2) 187 

Definition 3.3  An interval fuzzy preference relation ( )ij n nR r   is called multiplicative 188 

consistent, if the following multiplicative transitivity is satisfied 189 

ji kj jk ijik ki

ij jk ki kj ji ik

r r r rr r

r r r r r r

          
                               

      for all , , 1, 2,...,i j k n             (3.3) 190 

      Obviously, if all interval numbers ijr  ( , 1, 2,...,i j n ) are reduced to exact real numbers, i.e., 191 

ij ijr r  , then the interval fuzzy preference relation becomes a regular fuzzy preference relation, 192 

and Eqs. (3.2) and (3.3) are reduced to Eqs. (2.3) and (2.7), respectively. 193 
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Note that interval arithmetic is very different from crisp arithmetic in terms of subtraction 194 

and division, and many properties of crisp arithmetic do not hold true any more. More 195 

specifically, for any interval a , we often have 0a a   and 1
a

a
 . For instance, [0.2,0.4]196 

[0.2,0.4]  [ 0.2,0.2] 0   and 
[0.2,0.4] 2 4

[ , ] 1
[0.2,0.4] 4 2

  . Due to the fact that a a  does not always 197 

yield 0, from (3.1), we cannot derive 1ij jir r   any more. For example, let [0.1,0.2]ijr  , as per 198 

(3.1), we have 1 1 [0.1,0.2] [1,1] [0.1,0.2] [0.8,0.9]ji ijr r       , but [0.1,0.2]ij jir r    199 

[0.8,0.9] [0.9,1.1] [1,1] 1   .  200 

      Moreover, due to the possibility of 0a a  , which makes it impossible to manipulate an 201 

interval-valued equation by moving terms from one side to the other, (3.2) may not necessarily 202 

be able to produce equation 0.5ij ik jkr r r    in contrast to the case of regular fuzzy preference 203 

relations where these two expressions are equivalent. Consider, for example, the following 204 

interval fuzzy preference values: 12 13 23[0.4,0.5], [0.35,0.45], [0.4,0.5],r r r     based on (3.1), 205 

one can easily derive 21r  1 [0.4,0.5] [0.5,0.6],  31 32[0.55,0.65], [0.5,0.6].r r  By applying the 206 

interval addition, one can verify that 12 23 31 32 21 13[1.35,1.65]r r r r r r       , satisfying the 207 

additive transitivity condition (3.2). However, this condition does not lead to 13 23 0.5r r   208 

12[0.35,0.55] [0.4,0.5] r    any more . 209 

       Similarly, due to the possibility of 1
a

a
  for intervals, (3.3) is not equivalent to kjik

ki jk

rr

r r

  
       

 210 

ij

ji

r

r
  as in the case of regular fuzzy preference relations. For example, let 12

1 1
[ , ],
4 2

r 211 

13

1 2
[ , ],
5 5

r  23

1 1
[ , ],
3 2

r 
 
as per (3.1), we have 21 31

1 3 3 4
[ , ], [ , ],
2 4 5 5

r r  32

1 2
[ , ]
2 3

r  . It is easy to 212 

verify that the multiplicative transitivity condition (3.3) is satisfied, 32 1321

12 23 31

r rr

r r r

    
      

     
213 

23 3112

32 21 13

1
[ ,4]
4

r rr

r r r

    
      

    
, but 13 32 12

31 23 21

1 4 1
[ , ] [ ,1]
4 3 3

r r r

r r r

     
        

    
. 214 
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From Definition 3.1, we understand that ijr  gives the interval fuzzy preference degree of the 215 

alternative ix  over jx , the greater ijr , the stronger the preference of alternative ix  over jx ; 216 

[0.5,0.5]ijr   denotes indifference between ix  and jx . The preference information reflected in 217 

R  is a result of pairwise comparisons among n alternatives. A mechanism is needed to aggregate 218 

this pairwise comparison matrix into a priority weight vector so that the DM can rank the 219 

alternatives based on the aggregated weights. As the input information in R  is interval-valued, it 220 

is reasonable to expect that the aggregated weights be also interval-valued rather than real-valued 221 

[46].  222 

Let 1 2 1 1 2 2( , , , ) ([ , ],[ , ],...,[ , ])T T
n n n                 be a normalized interval weight vector 223 

[41] with 224 

1 1

0 1, 1, 1
n n

i i j i i j
j j
j i j i

          

 
 

                1,2,...,i n        (3.4) 225 

then the interval preference intensity of alternative ix  over alternative jx , ,ijp  is given by the 226 

following transformation function  227 

[0.5,0.5]

[0.5 0.5( ( , ) ( , )),( , )

0.5 0.5( ( , ) ( , ))]

i j j iij i j

i j j i

i j

p i j       

     

   

   

 
    
  

                   (3.5) 228 

where : [0,1] [0,1] [0,1]    satisfies (i) ( , ) 0.5, [0,1]x x x    , and (ii) ( , )    is nondecreasing in the 229 

first argument and nonincreasing in the second argument.  230 

Theorem 3.1 Assume that the elements of the transformation matrix ( )ij n nP p   are defined 231 

by (3.5), then P  is an interval fuzzy preference relation. 232 

  Proof. As 0 1i i     , 0 1j j      and ( , )    is nondecreasing in the first argument and 233 

nonincreasing in the second argument, it follows that ( , ) ( , )i j i j          and ( , )j i      234 

( , )j i    . Moreover, since 0 ( , ) 1    , we have ( , ) ( , ) 1i j j i            and ( , )i j      235 

( , ) 1j i     . Therefore, it is ascertained that  236 

0 0.5 0.5( ( , ) ( , )) 0.5 0.5( ( , ) ( , )) 1i j j i i j j i                         . 237 

So, we have ([0,1])ijp D . 238 
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      By applying the interval subtraction operation in Section 2, it is easy to verify that 239 

1ji ijp p  . 240 

As per Definition 3.1, ( )ij n nP p  is an interval fuzzy preference relation.                     ■ 241 

Let ( , ) 0.5 0.5( ( ) ( ))x y f x f y   , where ( )f   is a nondecreasing continuous function and242 

0 ( ) 1, [0,1]f z z    . It is apparent that ( , ) 0.5, [0,1]x x x    , and ( , )    is nondecreasing in the 243 

first argument and nonincreasing in the second argument. By using this function, (3.5) can be 244 

expressed as: 245 

[0.5,0.5]

[0.5 0.5( ( ) ( )),0.5 0.5( ( ) ( )]ij
i j i j

i j
p

f f f f i j      


      

                 (3.6) 246 

Theorem 3.2 Assume that the elements of the transformation matrix ( )ij n nP p   are defined 247 

by (3.6), then P  is an additive consistent interval fuzzy preference relation. 248 

Proof.  According to Theorem 3.1, it immediately follows that ( )ij n nP p   is an interval fuzzy 249 

preference relation. 250 

By applying the interval addition operation in Section 2, we have 251 

 

[1.5 0.5(( ( ) ( ) ( ) ( ) ( ) ( )),
1.5 0.5(( ( ) ( ) ( ) ( ) ( ) ( ))]

[1.5 0.5(( ( ) ( ) ( ) ( ) ( ) ( )),
1.5 0.5( ( ) ( ) ( )

ij jk ki i j j k k i

i j j k k i

i j k i j k

i j k

p p p f f f f f f
f f f f f f

f f f f f f
f f f

     
     
     

  

     

     

     

  

        
     

      
    ( ) ( ) ( ))]i j kf f f     

 252 

Similarly, 253 

[1.5 0.5(( ( ) ( ) ( ) ( ) ( ) ( )),
1.5 0.5(( ( ) ( ) ( ) ( ) ( ) ( ))]

[1.5 0.5(( ( ) ( ) ( ) ( ) ( ) ( )),
1.5 0.5( ( ) ( ) ( )

kj ji ik k j j i i k

k j j i i k

i j k i j k

i j k

p p p f f f f f f
f f f f f f

f f f f f f
f f f

     
     
     

  

     

     

     

  

        
     

      
    ( ) ( ) ( ))]i j kf f f     

 254 

As per Definition 3.2, it is verified that ( )ij n nP p   is additive consistent.         ■ 255 

On the other hand, if we let 256 

0.5 0, 0

( , ) ( )
Otherwise

( ) ( )

x y

x y s x

s x s y


 



 

  257 
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where ( )s   is a nondecreasing continuous function such that (0) 0s   and 0 ( ) 1, [0,1]s z z    .  258 

Then, one can verify that ( , ) 0.5, (0,1]x x x    , and ( , )    is nondecreasing in the first argument 259 

and nonincreasing in the second argument. In this case, (3.5) can be expressed as: 260 

[0.5,0.5]

( ) ( )
,

( ) ( ) ( ) ( )
ij i i

i j i j

i j

p s s
i j

s s s s

 
   

 

   



        

                                    (3.7) 261 

Theorem 3.3 Assume that the elements of the transformation matrix ( )ij n nP p   are defined by 262 

(3.7), then P  is a multiplicative consistent interval fuzzy preference relation. 263 

Proof.  By Theorem 3.1, we know that ( )ij n nP p   is an interval fuzzy preference relation. 264 

Since  265 

( ) ( ) ( ) ( ) ( ) ( )
, , ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) (

ji kj j jik k k i i

ij jk ki i i j j k k

i j k i j k

i j k

p p s sp s s s s

p p p s s s s s s

s s s s s s

s s s s

     
     

     
  

     

     

     

  

         
                             


) ( ) ( )i j ks s    

 
 
  

, 266 

On the other hand, 267 

( ) ( ) ( ) ( ) ( ) ( )
, , ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) (

jk ij j jki i i k k

kj ji ik k k j j i i

i j k i j k

i j k

p p s sp s s s s

p p p s s s s s s

s s s s s s

s s s s

     
     

     
  

     

     

     

  

         
                             


) ( ) ( )i j ks s    

 
 
  

 . 268 

By Definition 3.3, we know that ( )ij n nP p   is multiplicative consistent.                                 ■ 269 

Let ( )f x x  and ( )s x x , then ( )f x  and ( )s x  are apparently nondecreasing and continuous. 270 

Then, (3.6) and (3.7) can be rewritten as: 271 

[0.5,0.5]

[0.5 0.5( ),0.5 0.5( )]ij
i j i j

i j
p

i j      


      

                         (3.8) 272 

[0.5,0.5]

,ij i i

i j i j

i j

p
i j

 
   

 

   



        

                                                      (3.9) 273 
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    By Theorem 3.2, if the elements of ( )ij n nP p 
 
are defined by (3.8), then P  is an additive 274 

consistent interval fuzzy preference relation. As per Theorem 3.3, if the elements of ( )ij n nP p 
 

275 

are defined by (3.9), then P
 
is a multiplicative consistent interval fuzzy preference relation. 276 

It should be noted that if all interval weights i  ( 1, 2,...,i n ) are reduced to exact real values, 277 

i.e., i i   , the interval fuzzy preference relation becomes a regular fuzzy preference relation. 278 

In this case, (3.8) and (3.9) are simplified to (2.4) and (2.6), respectively, corresponding to 279 

additive and multiplicative consistent fuzzy preference relations.  280 

Based on the aforesaid discussions, we are now ready to introduce the following corollaries. 281 

Corollary 3.1 Let ( )ij n nR r   be an interval fuzzy preference relation, if there exists a 282 

normalized interval weight vector 1 2( , , , )T
n      such that  283 

[0.5,0.5]
[ , ]

[0.5 0.5( ),0.5 0.5( )]ij ij ij
i j i j

i j
r r r

i j   
 

   


       

                   (3.10) 284 

where   satisfies (3.4), then R  is an additive consistent interval fuzzy preference relation. 285 

Corollary 3.2 Let ( )ij n nR r   be an interval fuzzy preference relation, if there exists a 286 

normalized interval weight vector 1 2( , , , )T
n      such that  287 

[0.5,0.5]

[ , ]
[ , ]ij ij ij i i

i j i j

i j
r r r

i j
 

   

   

   


     

                           (3.11) 288 

where   satisfies (3.4), then R  is a multiplicative consistent interval fuzzy preference relation. 289 

Definition 3.4 An interval fuzzy preference relation ( )ij n nR r   is weakly transitive if 290 

( [0.5,0.5]) 0.5ijp r    and ( [0.5,0.5]) 0.5jkp r  
 
imply ( [0.5,0.5]) 0.5,ikp r    for all  , ,i j k 291 

1,2, ...,n . 292 

Theorem 3.4  If an interval fuzzy preference relation ( )ij n nR r   can be expressed as (3.10), 293 

then R is weakly transitive. 294 

Proof. If k i  or k j , it is obvious that ( [0.5,0.5]) 0.5ikp r   . 295 

           Let i j k  . According to property (c) of the likelihood concept in Section 2, if 296 

( [0.5,0.5]) 0.5ijp r    and ( [0.5,0.5]) 0.5jkp r   , we have 1ij ijr r    and 1jk jkr r   . Since R  297 
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can be expressed as (3.10), it follows that i i j j          and j j k k         . Therefore, 298 

we have   299 

1 0.5( ) 1i k i k           , 300 

which is  equivalent to 
0.5 0.5

2 2
ik ikr r  

 . By property (c) of the likelihood concept, the proof 301 

of Theorem 3.4 is completed.                             ■ 302 

Theorem 3.5  If an interval fuzzy preference relation ( )ij n nR r   can be expressed as (3.11), 303 

then R  is weakly transitive. 304 

Proof. If k i  or k j , it is obvious that ( [0.5,0.5]) 0.5ikp r   . 305 

Let i j k  . According to the likelihood property (c), if ( [0.5,0.5]) 0.5ijp r    and306 

( [0.5,0.5]) 0.5jkp r   , we have 1ij ijr r    and 1jk jkr r   . Since R  can be expressed as (3.11), 307 

from 1ij ijr r   , it follows that  308 

1

1

1 1

1 / 1 /

i i

i j i j

ji i

i j i j i j

j i i j

ji

j i

 
   

 
     

   


 

 

   

 

     

   



 

 
 

  
  


 



                   309 

   In the same way, from 1jk jkr r   , we have j k

k j

 
 

 

  . Multiplying these two inequalities, we 310 

have 311 

j ji k

j k j i

  
   

  

    . 312 

By cancelling j

j






  on both sides, we get  i k

k i

 
 

 

  . By reversing the aforesaid process of 313 

proving  ji

j i


 



  , one can get 314 
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1i i

i k i k

 
   

 

    
 

, 315 

implying 1ik ikr r   , or equivalently, 
0.5 0.5

2 2
ik ikr r  

 . As per the likelihood property (c), we 316 

have ([ , ] [0.5,0.5]) 0.5ik ikP r r    , the proof of Theorem 3.5 is thus completed.           ■ 317 

4. Goal programming models for generating interval weights 318 

This section develops some goal programming models for deriving interval weights from 319 

interval fuzzy preference relations. 320 

 4.1 Goal programming models based on additive transitivity 321 

        As per Corollary 3.1, if there exists a normalized interval weight vector 1 2( , , , )T
n       , 322 

satisfying (3.4) , such that ( )ij n nR r   can be expressed as (3.10), then R  is an additive 323 

consistent interval fuzzy preference relation. By Theorem 3.4, R  is also weakly transitive. 324 

However, in many real situations, preference relations provided by a DM are often not consistent 325 

and, hence, may not be expressed as (3.10). In this case, we turn to seek an interval weight vector 326 

1 2( , , , )T
n      such that the lower and upper bounds of  ijr  ( i j ) are as close to those of 327 

[0.5 0.5( ),0.5 0.5( )]i j i j           as possible, or equivalently, we intend to find an interval 328 

weight vector   such that the deviation of R  from an additive consistent interval fuzzy 329 

preference relation (3.10) is minimized. This modeling principle is consistent with the 330 

approaches for real-valued multiplicative and fuzzy preference relations [48, 62] as well as 331 

interval-valued multiplicative preference relations [46]. Consequently, the following multi-332 

objective programming model is constructed: 333 

1 1

, 1, 2,..., ,min (0.5 0.5( )) (0.5 0.5( ))

0 1, 1. . 1, 2,..., 1 ,
n n

i i j i i j
j j
j i

ij i j ij i j ij

j i

i j nJ r r i j

s t i n    

   

    

   



 

 

 

     

  

 

   



 
  (4.1) 334 

   Since 1ji ijr r  , i.e. 1ji ijr r    and 1ji ijr r   , one can obtain 335 

(0.5 0.5( )) (0.5 0.5( ))i j ij j i jir r                   for  , 1, 2,..., ,i j n i j  .  336 

Therefore, instead of examining the deviation from each off-diagonal interval element of R  in 337 

the objective function, we can simplify (4.1) by considering only the upper diagonal elements as 338 

shown below: 339 
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1 1

1, 2,..., 1,min (0.5 0.5( )) (0.5 0.5( )) 1,...,

. . 1,0 1, 1 2,..., 1 ,
n n

i i j i i j
j j
j i j i

ij i j ij i j ij
i nJ r r j i n

s t i n   

  

 

    

     

 
 

           

       
   (4.2) 340 

Let 341 

(0.5 0.5( ))ij i j ijr       , (0.5 0.5( ))ij i j ijr                    (4.3) 342 

                            
2

ij ij

ij

 
 


 , 

2
ij ij

ij

 
 


 , 

2
ij ij

ij

 



 , 

2
ij ij

ij

 
 


             (4.4) 343 

for 1, 2,..., 1, 1,...,i n j i n     344 

Based on the definitions of ij
  and ij

 , ij  and ij  can be expressed as ij ij ij      and345 

ij ij ij     , respectively, where 0ij ij     for 1, 2,..., 1, 1,...,i n j i n    . Similarly, ij  and 346 

ij  can be expressed as ij ij ij      and ij ij ij     , respectively, where 0ij ij     for 347 

1, 2,..., 1, 1,...,i n j i n     . Accordingly, the solution to the minimization problem (4.2) can be 348 

found by solving the following LP model: 349 

1

1 1

1

min ( )

(0.5 0.5( )) 0, 1, 2,..., 1, 1,...,

(0.5 0.5( )) 0, 1, 2,..., 1, 1,...,

. 0. 1, 1,

n n

ij ij ij ij ij
i j i

i j

n

i i

ij ij ij

i j ij ij ij

j i
j
j i

J

r i n j i n

r i n j i n

s t     

    

   

   


   

  
    

   

   






   

         

     

   

   



 

1

1, 2,...,

0, 0, 0, 0 1, 2,..., 1, 1,..

1

.,

,

ij ij ij ij

n

i j
j
j i

i n

i n j i n



  

 




   





 

       










         (4.5) 350 

where ij  is the weighting factor corresponding to the goal function ijJ  351 

( 1, 2,..., 1, 1,...,i n j i n    ).  352 

Assume that all individual goal functions (or deviation variables) are equally important, we 353 

can then set 1ij  , 1, 2,..., 1, 1,...,i n j i n    , and the optimization model (4.5) can be 354 

rewritten as 355 
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1

1 1

1

min ( )

(0.5 0.5( )) 0, 1, 2,..., 1, 1,...,

(0.5 0.5( )) 0, 1, 2,..., 1, 1,...

0 1, 1,

,

. .

n n

n

i i j i i
j
j i

ij ij ij ij
i j i

i j ij ij ij

i j ij ij ij

J

r i n j i n

r i n j i n

s t

   

   

  

   

 


   

  
    

   







   



   

         

         

     

 

1

1, 2,...,

0, 0, 0, 0 1, 2,..., 1, 1,...,

1,

ij i

n

j
j

ij i

i

j j

j

i n

i n j i n   








  







 

        


         (4.6) 356 

       Solving (4.6), an optimal interval weight vector * * * * * * * *
1 2 1 1 2 2( , , , ) ([ , ],[ , ], ,T

n              357 

* *[ , ])T
n n    is obtained for the underlying interval fuzzy preference relation. 358 

        For an interval fuzzy preference relation ( )ij n nR r   from which an optimal weight vector 359 

  is derived as given in (4.6), it is apparent that R  is additive consistent if the objective 360 

function value of (4.6) * 0J   in the optimal solution. This is natural because * 0J   and the 361 

non-negativity of the deviation variables, ij
 , ij

 , ij  and ij , imply that 0ij ij ij ij          . 362 

As such, the optimal weight vector obtained from (4.6) allows R  to be expressed as (3.10). As 363 

per Corollary 3.1, R  is additive consistent. 364 

   4.2 Goal programming models based on multiplicative transitivity 365 

By Corollary 3.2, if there exists an interval weight vector 1 2( , , , )T
n     , satisfying (3.4), 366 

such that  ( )ij n nR r   can be expressed as  367 

( ) , 1,2,..., ,ij i j ir i j n i j                                              (4.7) 368 

( ) , 1,2,..., ,ij i j ir i j n i j                                              (4.8) 369 

Then, R  is multiplicative consistent. Once again, the preference information provided by the 370 

DM may not always be consistent. As such, R   may not be expressed as (4.7) and (4.8). In this 371 

case, (4.7) and (4.8) are relaxed by allowing some deviation, and the deviation from consistency 372 

is then minimized. To this end, the following multi-objective programming model is established, 373 

where the objectives are to minimize the sum of absolute deviations from the lower and upper 374 

bounds of each off-diagonal element in R  and the constraints ensure that the weight vector 375 

satisfies (3.4): 376 
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0 1

, 1,2,..., ,min ( ) ( ))

. . 1, 2,, 1 ., 1 .. ,

ij i ij i j i ij

n n

i i j i i j
j i j i

i j
i j nJ r r i j

s t i n



    





          

     

 

    

     

 

 


        (4.9) 377 

As 1ji ijr r  , i.e. 1ji ijr r    and 1ji ijr r   , we have 378 

( ) ( )i ij i j j ji j ir r                  for , 1, 2,..., ,i j n i j  .  379 

Similar to the treatment in Section 4.1, (4.9) can be simplified as 380 

1,2,..., 1,min ( ) ( ) 1,...,

. . 1, 2,...1, 1, 1 ,0

ij i ij i j i ij

n n

i i j

i j

i i j
j i j i

i nJ r r j i n

s t i n  

    

 





      

     



 

 

     

     





 


        (4.10) 381 

Let 382 

( )ij i ij i jr         , ( )ij i ij i jr                                      (4.11) 383 

              
2

ij ij

ij

 
 



 

 ,
2

ij ij

ij

 
 



 

 , 
2

ij ij

ij

 




 

 , 
2

ij ij

ij

 
 



             (4.12) 384 

for 1, 2,..., 1, 1,...,i n j i n     385 

Therefore, we have ij ij ij        and ij ij ij       , where 0ij ij      for386 

1, 2,..., 1, 1,...,i n j i n    , and, ij ij ij        and ij ij ij       . By applying the same process 387 

as model (4.2), (4.10) can be rewritten as a linear program: 388 

1

1 1

1

min ( )

( ) 0, 1,2,..., 1, 1,...,

( ) 0, 1,2,..., 1, 1,...,

0 1, 1. . ,

n n

ij ij ij ij
i j i

i ij i j ij ij

i ij

n

i i j i i

i

j
j
j i

j ij ij

J

r i n j i n

r i n j i n

s t

   

    

    

          




   

  
     





    

   

  



     

    

        

 



   

 

 

1

1,2,...,

0, 0, 0, 0 1,2,..., 1, 1,...,

1,
n

j

ij ij

i

ij ij

j

i n

i n j i n     










 

       







   

                 (4.13) 389 

Solving this model, we can get the optimal interval weight vector ** ** ** **
1 2( , , , )T

n      390 

** ** ** ** ** **
1 1 2 2([ , ],[ , ], ,[ , ])T

n n             for the interval fuzzy preference relation R . 391 

        Similar to the argument in the last paragraph in Section 4.1, if the objective function value 392 

* 0J  , then ( )ij n nR r   is a multiplicative consistent interval fuzzy preference relation. 393 
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4.3 Goal programming models for group interval fuzzy preference relations 394 

     Consider now a group decision-making situation, where an interval fuzzy preference relation 395 

( ) ([ , ])k ijk n n ijk ijk n nR r r r 
    is provided by DM k to express his/her preference on an alternative 396 

set 1 2{ , ,..., },nX x x x 1, 2,...,k m . Let {1,2,..., }M m  be the set of DMs and 1 2( , ,..., )T
m     397 

be the normalized weight vector for the DMs such that 
1

1
m

k
k




  and 0k   for 1, 2,...,k m . 398 

       Due to the fact that different DMs usually have different preferences, it is nearly impossible 399 

to find a unified interval weight vector 1 2( , , , )T
n      that is able to characterize all DMs’ 400 

preferences. As such, the following additive transitivity equations (4.14) and (4.15) or 401 

multiplicative consistency equations  (4.16) and (4.17) may not hold true for all DMs. 402 

(0.5 0.5( ))ijk i jr       , 1, 2,..., 1, 1,..., , 1, 2,...,i n j i n k m                 (4.14) 403 

 (0.5 0.5( ))ijk i jr       , 1, 2,..., 1, 1,..., , 1, 2,...,i n j i n k m                   (4.15) 404 

( )ijk i j ir        , 1, 2,..., 1, 1,..., , 1, 2,...,i n j i n k m                             (4.16) 405 

                 ( )ijk i j ir        , 1, 2,..., 1, 1,..., , 1, 2,...,i n j i n k m                           (4.17) 406 

      In order to derive a unified interval weight vector from the collective interval fuzzy 407 

preference relations, the following two optimization models are established based on additive 408 

and multiplicative transitivity equations, respectively. The principle is, once again, to minimize 409 

the deviation from consistent relations. To differentiate the two goal programming models based 410 

on additive and multiplicative consistency, the following two objective functions are labeled 411 

with GA (goal-additive) and GM (goal-multiplicative) accordingly.  412 

1

1 1 1

1 1

min ( (0.5 0.5( )) (0.5 0.5( )) )

. . 1, 2,.0 1, 1 ,, ..1
n n

m n n

k i j ijk i j ijk
k

i i j i i j
j j
j i j i

i j i

GA r r

s t i n

  

 



  






     

   

     

 
 

       

       



 
      (4.18) 413 

1

1 1 1

1 1

0 1, 1

min ( ( ) ( ) )

. . 1, 2,...,, 1

m n n

k i ijk i j i ijk i j
k i j i

n n

i i j i i j
j j
j i j i

GM r r

s t i n

  



  





        

 


       

  

 



 

   





   

 

 
        (4.19) 414 

For (4.18), let 415 



19 
 

(0.5 0.5( ))ijk i j ijkr        , (0.5 0.5( ))ijk i j ijkr                     (4.20) 416 

2
ijk ijk

ijk

 
 


  , 

2
ijk ijk

ijk

 
 


 , 

2
ijk ijk

ijk

 



  , 

2
ijk ijk

ijk

 



           (4.21) 417 

for 1, 2,..., 1, 1,..., , 1, 2,...,i n j i n k m     . 418 

Then, the solution to (4.18) can be found by solving the following linear program: 419 

1

1 1 1

min ( )

(0.5 0.5( )) 0, 1,2,..., 1, 1,..., , 1,2,...,

(0.5 0.5( )) 0, 1,2,..., 1, 1,..., , 1

. .

m n n

k ijk ijk ijk ijk
k i j i

i j ijk ijk ijk

i j ijk ijk ijk

GA

r i n j i n k m

r i n j i n k

s t

    

   

   


   

   
    

    

   

          

          



1 1

,2,...,

1,2,...,

0, 0, 0, 0 1,2,..., 1, 1,..., , 1,2,..

0 1, 1,

.,

1,

ijk ijk

n n

i i j i i j

ijk ij

j
j i

k

j
j i

m

i n

i n j i n k m   

          

 






  





 

 

      

       

 
   (4.22) 420 

As (0.5 0.5( )) 0i j ijk ijk ijkr              ( 1, 2,..., 1, 1,..., , 1, 2,...,i n j i n k m     ) and421 

1

1
m

k
k




 , it is easy to verify that  422 

1 1 1

(0.5 0.5( )) 0
m m m

i j k ijk k ijk k ijk
k k k

r          

  

                           (4.23) 423 

     Similarly, from (0.5 0.5( )) 0i j ijk ijk ijkr              and
1

1
m

k
k




 , one can obtain 424 

1 1 1

(0.5 0.5( )) 0
m m m

i j k ijk k ijk k ijk
k k k

r          

  

                                (4.24) 425 

Let 
1 1 1

, ,
m m m

ij k ijk ij k ijk ij k ijk
k k k

             

  
        and 

1

m

ij k ijk
k

   


  , then (4.22) can be 426 

converted to the following linear program. 427 
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1

1 1

1

1

min ( )

(0.5 0.5( )) 0, 1,2,..., 1, 1,...,

(0.5 0.5( )) 0, 1,2,..., 1, 1,...,
.

0

.

n n

ij ij ij ij
i j i

m

i j k ijk ij ij
k

m

i j k ijk ij ij
k

i i

GA

r i n j i n

r i n j i n
s t

   

    

    

 


   

  

    



    



 

   

         

       

 

 







   

 

 

1 1

1,2,...,

0, 0, 0, 0 1,2,...,

1, 1, 1

1, 1,...,

,
n n

j i i j
j j
j i j i

ij ij ij ij

i n

i n j i n 

 







   

 


 



 







 



       

   



 

   

         (4.25) 428 

By solving (4.25), we can obtain a unified interval weight vector 429 

1 2 1 1( , , , ) ([ , ],T
n              2 2[ , ], ,[ , ])T

n n           for the collective interval fuzzy preference 430 

relations kR  ( 1, 2,...,k m ). 431 

In a similar way, for (4.19), let 432 

( )ijk i ijk i jr         ,  ( )ijk i ijk i jr                            (4.26) 433 

2

ijk ijk

ijk

 
 

 
   , 

2

ijk ijk

ijk

 
 

 
  , 

2
ijk ijk

ijk

 


 
   , 

2
ijk ijk

ijk

 


 
            (4.27) 434 

for 1, 2,..., 1, 1,..., , 1, 2,...,i n j i n k m      435 

Then, the solution to (4.19) can be found by solving the following linear program: 436 

1

1 1 1

min ( )

( ) 0, 1,2,..., 1, 1,..., , 1,2,...,

( ) 0, 1,2,..., 1, 1,..., , 1,2,.

. .

m n n

k ijk ijk ijk ijk
k i j i

i ijk i j ijk ijk

i ijk i j ijk ijk

GM

r i n j i n k m

r i n j i n k

s t

    

    

    


   

   
     

     

   

         

         

    

 

 

1 1

..,

1,2,...,

0, 0, 0, 0 1,2,..., 1, 1

0 1

,..., , 1,2,...

1,

,

, 1,

ijk ijk

n n

i i j i i j

ijk ij

j j
j i j i

k

m

i n

i n j i n k m   

     

 

     

 
 

 





 

         

      



 

   

        (4.28) 437 

From ( ) 0i ijk i j ijk ijkr                ( 1, 2,..., 1, 1,..., , 1, 2,...,i n j i n k m     ) and438 

1

1
m

k
k




 , it is easy to confirm that  439 

1 1 1

( ) 0
m m m

i k ijk i j k ijk k ijk
k k k

r            

  

                              (4.29) 440 
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     Similarly, as ( ) 0i ijk i j ijk ijkr                and
1

1
m

k
k




 , we have 441 

1 1 1

( ) 0
m m m

i k ijk i j k ijk k ijk
k k k

r            

  

                                (4.30) 442 

Let 
1 1 1

, ,
m m m

ij k ijk ij k ijk ij k ijk
k k k

             

  
           and 

1

m

ij k ijk
k

   


  , then (4.28) can be 443 

rewritten as 444 

1

1 1

1

1

min ( )

( ) 0, 1,2,..., 1, 1,...,

( ) 0, 1,2,

0 1,

..., 1, 1,...,
. .

n n

ij ij ij ij
i j i

m

i k ijk i j ij ij
k

m

i k ijk i j ij i
k

i i

j

GM

r i n j i n

r i n j i n
s t

   

     

   












   

  

     



     



 

   

        

        

  

 





   

 

 

1 1

1,2,...,

0, 0, 0, 0 1,2,..., 1

1, 1,

, 1,...,ij ij

n n

j i i j
j j
j i j i

ij ij

i n

i n j i n  

  



   

 


  





  







 



     



 

 

   

          (4.31) 445 

Solving this model, the optimal solution yields a unified interval weight vector 446 

1 2( , , , )T
n        1 1 2 2([ , ],[ , ], ,[ , ])T

n n                  for the collective interval fuzzy preference 447 

relations kR  ( 1, 2,...,k m ). 448 

5   A numerical example and comparative analysis 449 

This section presents a multiple criteria decision making problem to demonstrate how to 450 

apply the proposed models in Sections 4.1 and 4.2. 451 

Consider a multiple criteria decision making problem, consisting of four criteria ix452 

( 1, 2,3,4)i  . Assume that a DM conducts an exhaustive pairwise comparison of criteria ix  and jx , 453 

and the result is given as the following interval fuzzy preference relation:  454 

4 4

[0.50,0.50] [0.35,0.50] [0.50,0.60] [0.45,0.60]

[0.50,0.65] [0.50,0.50] [0.55,0.70] [0.50,0.70]
( )

[0.40,0.50] [0.30,0.45] [0.50,0.50] [0.40,0.55]

[0.40,0.55] [0.30,0.50] [0.45,0.60] [0.50,0.50]

ijR r 

 
 
  
 
 
 

 455 

This interval fuzzy preference relation matrix R reflects the DM’s judgment of the 456 

importance between each pair of criteria. The cells along the diagonal are always [0.50, 0.50], 457 

implying the DM’s indifference between any criterion and itself. The elements off the diagonal 458 
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give the DM’s pairwise comparison result between two criteria and any two elements symmetric 459 

about the diagonal are complementary in the sense of 1ji ijr r   as defined in Definition 3.1. For 460 

instance, 12 [0.35,0.50]r   indicates  that the DM’s preference of x1 over x2 is between 0.35 and 461 

0.50. The element symmetric about the diagonal, 21,r  is given as 21 121 [1 0.50,1 0.35]r r     462 

[0.50,0.65] , signifying the DM’s preference of  x2 over x1 is between 0.50 and 0.65. Remaining 463 

elements in R  can be interpreted similarly.  464 

Plugging the interval fuzzy preference relation R  into (4.6), and solving this model, one can 465 

obtain its optimal solution * 0J  , and the optimal interval weight vector as: 466 

1 2 3 4( , , , ) ([0.175,0.275],[0.275,0.475],[0.075,0.175],[0.075,0.275])T T       467 

As * 0J  , we know that R  is additive consistent. Based on the procedure of ranking interval 468 

weights described in the Section 2.2, the following likelihood matrix is derived. 469 

0.5 0 1 0.6667

1 0.5 1 1

0 0 0.5 0.3333

0.3333 0 0.6667 0.5

P

 
 
 
 
 
 

 470 

As per (2.10), we get 1 2 30.2639, 0.375, 0.1528      and 4 0.2083  . Then, we have471 

1 0.6667 0.6667

2 1 4 3      , which indicates that 2  is superior to 1  to the degree of 100%, 1  is 472 

superior to 4  to the degree of 66.67%, and 4  is superior to 3  to the degree of 66.67%.  473 

If we plug the interval fuzzy preference relation R  into (4.13) and solve this model, then it 474 

follows that * 0.0037J   and the interval weight vector as: 475 

1 2 3 4 [0.2143,0.2619] 0.2619,0.4074] [0.1746,0.2143( , , , ) ( ,[ , ,] [0.1746,0.2 19 )6 ]T T       476 

Once again, by following the procedure of ranking interval weights, the following 477 

likelihood matrix is obtained: 478 

0.5 0 1 0.6471

1 0.5 1 1

0 0 0.5 0.3126

0.3529 0 0.6874 0.5

P

 
 
 
 
 
 

 479 
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According to (2.10), one can have 1 2 30.2623, 0.375, 0.1511      and 4 0.2117  . As 480 

such, the ranking of the four interval weights is 
1 0.6471 0.6874

2 1 4 3      , meaning that 2  is 481 

superior to 1  to the degree of 100%, 1  is superior to 4  to the degree of 64.71%, and 4  is 482 

superior to 3  to the degree of 68.74%.  483 

The aforesaid analyses indicate that the rankings of interval weights obtained by (4.6) and 484 

(4.13) are consistent with slightly different likelihood. 485 

Next, models (M-3, M-4, M-5) and (M-11, M-12, M-13) in Xu and Chen [61] will be 486 

employed to derive interval priority weights based on the same interval fuzzy preference relation 487 

R , and the ranking results will be compared with those obtained using our proposed models. 488 

Using Xu and Chen’s model (M-3) [61], one can obtain an optimal objective function value 489 

of 0 with all deviation values being zero. Solving (M-4) and (M-5) with the deviation values 490 

being set at zero, we derive an interval weight vector as: 491 

1 2 3 4 0.150,0.350 0.275,0.525 0.050,0.( , 25, , ) ([ ],[ ], 0[ ], 0.075,0.325[ ])T T      . 492 

Based on the ranking procedure of interval weights, the following likelihood matrix is obtained: 493 

0.5 0.1667 0.75 0.6111

0.8333 0.5 1 0.9

0.25 0 0.5 0.3889

0.3889 0.1 0.6111 0.5

P

 
 
 
 
 
 

 494 

Thus, 
0.8333 0.6111 0.6111

2 1 4 3      . 495 

 Similarly, using Xu and Chen’s (M-11) [61], one can confirm an objective function value of 496 

0 with all deviation values being zero in the optimal solution. Solving (M-12) and (M-13) with 497 

all deviation values being set at zero leads to an interval weight vector  498 

 1 2 3 4 [0.1969,0.3000] 0.2619,0.4174 0.1579,0.247( , , , ) ([ ],[ ],[ ],[5 0.1651,0.28 ])70T T      .  499 

The ranking procedure of interval weights results in the following likelihood matrix: 500 

0.5 0.1473 0.7374 0.6

0.8527 0.5 1 0.9095

0.2626 0 0.5 0.3896

0.4 0.0905 0.6104 0.5

P

 
 
 
 
 
 

 501 

Thus, 
0.8527 0.6 0.6104

2 1 4 3      . 502 
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The ranking results based on the models in [61] and our proposed approaches are 503 

summarized in Table 1. 504 

Table 1. A comparative study for the interval fuzzy preference relation R  505 

Decision model Reference # of LP models to solve Ranking result 

M-3, M-4, M-5 Xu and Chen [61] 9 0.8333 0.6111 0.6111

2 1 4 3     

M-11, M-12, M-13 Xu and Chen [61] 9 0.8527 0.6 0.6104

2 1 4 3       

(4,6) This article 1 1 0.6667 0.6667

2 1 4 3       

(4.13) This article 1 1 0.6471 0.6874

2 1 4 3       

  506 

Table 1 demonstrates the overall consistency of the ranking results between the two 507 

different approaches, but our proposed framework significantly reduces the computation burden: 508 

our approach only requires solving one LP model, while the method reported in Xu and Chen [61] 509 

has to entertain 2 1n   LP models.  510 

To further verify the effectiveness of the proposed approaches in this article, substantial 511 

numerical experiments have been carried out by varying the pairwise comparison values in the 512 

interval fuzzy preference relation R . Our approaches generally produce ranking results that are 513 

consistent with those generated from Xu and Chen’s models [61]. 514 

6 An application to the international exchange doctoral  student selection problem 515 

In this section, the proposed models in Section 4.3 are applied to examine a two-level group 516 

decision making problem with a hierarchical structure. The purpose is to recommend highly 517 

competitive doctoral students for publicly-funded international exchange opportunities at the first 518 

author’s university, and both faculty-level and institution-level panels are convened to rank 519 

applicants for final recommendations. 520 

With the continuing internationalization of the Chinese higher education system, numerous 521 

universities and research institutions in China have established international partnerships for 522 

jointly training their postgraduate students with a focus at the doctoral level. Under this 523 

framework, a small proportion of these students, presumably of exceptional quality and 524 

potentials, are selected and sent to foreign institutions to work on joint research projects for one 525 

to two years. These students are expected to return to their home institutions in China after the 526 
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visit to complete their theses and defense. Although the number of scholarships to support 527 

Chinese students and scholars to conduct research abroad has dramatically increased over the 528 

past decade, the competition of getting such an award remains fierce given the size of the 529 

applicant pool.  530 

The first author of this article has been actively involved in a faculty-wide selection 531 

committee to rank their applicants and make recommendations to the university. A general 532 

practice at this university is to call for an institution-wide committee to come up with a criteria 533 

weighting scheme for assessing applications. This scheme has to follow the published guidelines 534 

from the granting agency but also reflects the committee members’ personal judgment on the 535 

importance of different criteria. Once the committee reaches a consensus on criteria weights, this 536 

information will be distributed to all faculties and schools on the campus for their evaluation 537 

process at the faculty level. Each faculty and school then strikes their selection committee to 538 

assess applications from their graduate students based on the weighting scheme provided by the 539 

university. This decision process involves two levels and each level can be treated as a group 540 

decision making problem. 541 

At the upper level, the institution-wide committee considers a well-defined list of criteria 542 

based on the guidelines from the granting agency. The criteria consist of the following four 543 

aspects: 544 

1c : Academic capability, achievements, and potentials as reflected in refereed publications 545 

and other research output. 546 

2c : Academic profile and prestige of the proposed foreign host institution.  547 

3c ：Communication skills and foreign language proficiency. 548 

4c : Academic background in the proposed area of study. 549 

The deliberation of this university committee is expected to generate a weighting scheme 550 

for these four criteria. At the lower level, the faculty selection committee is responsible for 551 

assessing applicants based on the weights determined by the committee at the university level. 552 

The hierarchical structure of this decision process is illustrated in Fig. 1. 553 
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 554 

Fig. 1 A hierarchical structure of the decision process 555 

For the sake of tractability and illustration, it is assumed that the university-level committee 556 

consists of four members and each member has an equal weight in determining the final criteria 557 

weights i.e., 0.25, ( 1,2,3,4)k k   . However, the approaches proposed in this article can 558 

conveniently handle any practical number of committee members as well as the case that certain 559 

committee members have more influence powers than others in determining criteria weights. 560 

Each committee member is asked to furnish his/her pairwise comparison results among the four 561 

criteria. In reality, it tends to be easier for a DM to provide an assessment falling within a range 562 

rather than an exact value. In this case, it is sensible to assume that each committee member’s 563 

assessments can be converted into an interval fuzzy preference relation as follows, where the 564 

subscript,  k = 1, 2, 3, 4, indicates a specific committee member: 565 

1

[0.50,0.50] [0.35,0.45] [0.40,0.55] [0.52,0.65]

[0.55,0.65] [0.50,0.50] [0.70,0.90] [0.65,0.75]

[0.45,0.60] [0.10,0.30] [0.50,0.50] [0.55,0.65]

[0.35,0.48] [0.25,0.35] [0.35,0.45] [0.50,0.50]

R 

 
 
 
 
 
 

 566 

2

[0.50,0.50] [0.75,0.85] [0.65,0.75] [0.35,0.45]

[0.15,0.25] [0.50,0.50] [0.50,0.65] [0.50,0.65]

[0.25,0.35] [0.35,0.50] [0.50,0.50] [0.62,0.75]

[0.55,0.65] [0.35,0.50] [0.25,0.38] [0.50,0.50]

R 

 
 
 
 
 
 

 567 

International exchange doctoral 
student selection 

C1: Academic 
credentials 

C2: Foreign 
host prestige 

C3: Communication 
and language skills 

C4 : 
Background 

Student 1x  Student 2x …  Student  nx  



27 
 

3

[0.50,0.50] [0.60,0.70] [0.75,0.85] [0.60,0.72]

[0.30,0.40] [0.50,0.50] [0.50,0.70] [0.55,0.70]

[0.15,0.25] [0.30,0.50] [0.50,0.50] [0.45,0.55]

[0.28,0.40] [0.30,0.45] [0.45,0.55] [0.50,0.50]

R

 
 
 
 
 
 

 568 

4

[0.50,0.50] [0.30,0.40] [0.45,0.65] [0.63,0.75]

[0.60,0.70] [0.50,0.50] [0.50,0.70] [0.68,0.76]

[0.35,0.55] [0.30,0.50] [0.50,0.50] [0.65,0.74]

[0.25,0.37] [0.24,0.32] [0.26,0.35] [0.50,0.50]

R

 
 
 
 
 
 

 569 

If the additive-transitivity based goal programming model (4.25) is employed, these four 570 

interval fuzzy preference relations, 1 2 3 4, , ,R R R R , would lead to the following normalized interval 571 

weight vector for the four criteria: 572 

1 2 3 4 1 1 2 2 3 3 4 4
[0.3583,0.5333],[

( , , , ) ([ , ],[
0.3333,0.43

, ],[
01],[0.1333,0.2333],

, ],[ , ]
[0.0001,0.14

)
( 33])

T T

T
                       573 

Based on the weighting scheme for the four criteria, a lower level committee is struck to 574 

evaluate applications from their individual faculty. Assume, once again, that the committee 575 

consists of four members and each member is equally important in evaluating the candidates. 576 

Without loss of generality and for the sake of tractability, consider the deliberation of four 577 

applicants. The application packages are distributed to the committee members, and each 578 

member is expected to provide his/her independent assessment of each candidate against the four 579 

criteria in terms of interval fuzzy preference relations to accommodate potential uncertainty in 580 

the judgment. These assumptions are reasonable representations of the first author’s experience 581 

while he serves on the selection committee in his school. 582 

To calibrate the models, each committee member’s assessments on the students against each 583 

criterion have to be obtained. This important decision information can be garnered by sitting in 584 

an official deliberation meeting as the first author has experienced. For the illustration purpose 585 

and without loss of generality, assume that committee member k’s assessment of the four 586 

candidates 1 2 3 4, , ,x x x x  with respect to criterion 1c  is given as an interval fuzzy preference 587 

relation 1c
kR  , k = 1, 2, 3, 4: 588 
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1
1

[0.50,0.50] [0.56,0.65] [0.45,0.55] [0.45,0.55]

[0.35,0.44] [0.50,0.50] [0.35,0.45] [0.35,0.46]

[0.45,0.55] [0.55,0.65] [0.50,0.50] [0.43,0.57]

[0.45,0.55] [0.54,0.65] [0.43,0.57] [0.50,0.50]

cR

 
 
 
 
 
 

 589 

1
2

[0.50,0.50] [0.65,0.75] [0.55,0.65] [0.53,0.66]

[0.25,0.34] [0.50,0.50] [0.24,0.36] [0.25,0.35]

[0.35,0.45] [0.64,0.76] [0.50,0.50] [0.53,0.66]

[0.34,0.47] [0.65,0.75] [0.34,0.47] [0.50,0.50]

cR

 
 
 
 
 
 

 590 

1
3

[0.50,0.50] [0.62,0.78] [0.45,0.60] [0.46,0.58]

[0.22,0.38] [0.50,0.50] [0.26,0.38] [0.38,0.45]

[0.40,0.55] [0.62,0.74] [0.50,0.50] [0.46,0.54]

[0.42,0.55] [0.55,0.62] [0.46,0.54] [0.50,0.50]

cR

 
 
 
 
 
 

 591 

1
4

[0.50,0.50] [0.60,0.76] [0.60,0.70] [0.58,0.72]

[0.24,0.40] [0.50,0.50] [0.36,0.44] [0.35,0.45]

[0.30,0.40] [0.56,0.64] [0.50,0.50] [0.57,0.71]

[0.28,0.42] [0.55,0.65] [0.29,0.43] [0.50,0.50]

cR

 
 
 
 
 
 

 592 

Committee member k’s assessment of the four candidates 1 2 3 4, , ,x x x x  with respect to 593 

criterion 2c  is given as an interval fuzzy preference relation 2c
kR  , k = 1, 2, 3, 4: 594 

2 2
1 2

[0.50,0.50] [0.25,0.45] [0.25,0.45] [0.10,0.30]

[0.55,0.75] [0.50,0.50] [0.35,0.50] [0.35,0.50]

[0.55,0.75] [0.50,0.65] [0.50,0.50] [0.45,0.65]

[0.70,0.90] [0.50,0.65] [0.35,0.55] [0.50,0.50]

c cR R

 
 
 
 
 
 

 595 

2 2
3 4

[0.50,0.50] [0.28,0.40] [0.29,0.39] [0.12,0.22]

[0.60,0.72] [0.50,0.50] [0.45,0.55] [0.30,0.40]

[0.61,0.71] [0.45,0.55] [0.50,0.50] [0.28,0.42]

[0.78,0.88] [0.60,0.70] [0.58,0.72] [0.50,0.50]

c cR R

 
 
 
 
 
 

 596 
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Committee member k’s assessment of the four candidates 1 2 3 4, , ,x x x x  with respect to 597 

criterion 3c  is given as an interval fuzzy preference relation 3c
kR  , k = 1, 2, 3, 4: 598 

3 3
1 2

[0.50,0.50] [0.35,0.55] [0.25,0.45] [0.15,0.30]

[0.45,0.65] [0.50,0.50] [0.35,0.50] [0.25,0.40]

[0.55,0.75] [0.50,0.65] [0.50,0.50] [0.25,0.55]

[0.70,0.85] [0.60,0.75] [0.45,0.75] [0.50,0.50]

c cR R

 
 
 
 
 
 

 599 

3 3
3 4

[0.50,0.50] [0.36,0.47] [0.27,0.39] [0.20,0.30]

[0.53,0.64] [0.50,0.50] [0.38,0.50] [0.28,0.38]

[0.61,0.73] [0.50,0.62] [0.50,0.50] [0.35,0.46]

[0.70,0.80] [0.62,0.72] [0.54,0.65] [0.50,0.50]

c cR R

 
 
 
 
 
 

 600 

Committee member k’s assessment of the four candidates 1 2 3 4, , ,x x x x  with respect to 601 

criterion 4c  is given as an interval fuzzy preference relation 4c
kR  , k = 1, 2, 3, 4: 602 

4 4
1 2

[0.50,0.50] [0.45,0.65] [0.50,0.60] [0.55,0.65]

[0.35,0.55] [0.50,0.50] [0.50,0.60] [0.55,0.65]

[0.40,0.50] [0.40,0.50] [0.50,0.50] [0.50,0.75]

[0.35,0.45] [0.35,0.45] [0.25,0.50] [0.50,0.50]

c cR R

 
 
 
 
 
 

 603 

4 4
3 4

[0.50,0.50] [0.45,0.70] [0.50,0.75] [0.55,0.65]

[0.30,0.55] [0.50,0.50] [0.50,0.60] [0.53,0.66]

[0.25,0.50] [0.40,0.50] [0.50,0.50] [0.50,0.60]

[0.35,0.45] [0.34,0.47] [0.40,0.50] [0.50,0.50]

c cR R

 
 
 
 
 
 

 604 

Similarly, if the additive-transitivity based goal programming model (4.25) is entertained, a 605 

normalized interval assessment of each alternative ix  with respect to each criterion jc , 606 

, 1,2,3,4,i j   denoted by ,ij ij ij       , can be obtained as shown in columns 1-4 in Table 2, 607 

where the first row lists the upper level criteria weights obtained earlier.  608 

609 
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Table 2. Interval weights for alternatives under each criterion based on (4.25) and the 610 

aggregated interval assessments 611 

1 2 3 4 Aggregated

[0.3583,0.5333] [0.3333,0.4301] [0.1333,0.2333] [0.0001,0.1433] interval weights

c c c c
612 

1

2

3

4

[0.3450, 0.4717] [0.0000, 0.0417] [0.0000, 0.0900] [0.2750, 0.5250] [0.1236, 0.2851]

[0.0000, 0.1267] [0.1917, 0.3167] [0.1000, 0.2500] [0.1750, 0.3750] [0.0772, 0.2481]

[0.3117, 0.3950] [0.2667, 0.3917] [0.2500, 0.43

x

x

x

x

00] [0.1750, 0.1750] [0.2691, 0.4021]

[0.2167, 0.3350] [0.4167, 0.5417] [0.4700, 0.6500] [0.0650, 0.1750] [0.2954, 0.4929]

 613 

If criteria weights and the assessment of each candidate against each criterion are real-614 

valued, the aggregation process is simply a sumproduct function. But in the interval-valued case, 615 

the interval arithmetic cannot be applied directly [40]. As such, LP models are proposed by 616 

Bryson and Mobolurin [6] to handle the aggregation process. This same procedure is also 617 

adopted by Wang and Elhag [46] in their research. The basic idea is to treat criteria weights as 618 

decision variables and obtain the lower and upper bounds of the aggregated assessment for each 619 

alternative ix , i = 1, 2, 3, 4, by constructing a pair of LP models.  620 

4

1

4

1

min

, 1,2,3,4

. .
1

ix ij j
j

j j j

j
j

j

s t
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                                                   (6.2) 622 

By applying (6.1) and (6.2), one can obtain the aggregated interval assessment for each 623 

alternative ix  ( 1, 2,3, 4i  ) as shown in the last column of Table 2. 624 

As per the interval ranking procedure in Section 2.2, the aggregated interval assessments 625 

can be translated to a final ranking of 
0.6772 0.9457 0.5442

4 3 1 2x x x x   , signifying that candidate 4x  is 626 

superior to 3x  to the degree of 67.72%, 3x  is superior to 1x  to the degree of 94.57%, and 1x  is 627 

superior to 2x  to the degree of 54.42%. 628 
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On the other hand, if the multiplicative-transitivity based goal programming model (4.31) 629 

is employed, the interval criteria weights and assessment of each candidate against each criterion 630 

are presented in Table 3 in a similar structure.  631 

Table 3. Interval weights for alternatives under each criterion based on (4.31) and 632 

aggregated interval assessments 633 

1 2 3 4 Aggregated 

[0.2992,0.3723] [0.2482,0.2992] [0.1596,0.2327] [0.1193,0.1689] interval weights

c c c c
634 

1

2

3

4

[0.2698, 0.3654] [0.0920, 0.1429] [0.1134, 0.1492] [0.2478, 0.4192] [0.1765, 0.2724]

[0.1317, 0.1620] [0.1934, 0.2552] [0.1733, 0.2060] [0.2195, 0.3028] [0.1689, 0.2538]

[0.2355, 0.3038] [0.2309, 0.2901] [0.2060, 0.32

x

x

x

x

27] [0.2018, 0.2478] [0.2216, 0.2977]

[0.2169, 0.2645] [0.3119, 0.4016] [0.3222, 0.4806] [0.1595, 0.2018] [0.2524, 0.3483]

635 

 636 

 Similarly, (6.1) and (6.2) are adopted to aggregate individual interval weights into overall 637 

interval assessments as shown in the last column of Table 3. Once again, the interval ranking 638 

process in Section 2.2 yields a final ranking of the four candidates as 
0.7366 0.7047 0.5723

4 3 1 2x x x x   , 639 

meaning that candidate 4x  is superior to 3x  to the degree of 73.66%, 3x  is superior to 1x  to the 640 

degree of 70.47%, and 1x  is superior to 2x  to the degree of 57.23%. 641 

This case study demonstrates the robustness of the ranking results based on additive and 642 

multiplicative transitivity approaches: the final ranking is basically the same, except slightly 643 

different degrees of possibility.  644 

7   CONCLUSIONS 645 

Based on interval arithmetic, this article introduces new definitions of additive and 646 

multiplicative consistency for interval fuzzy preference relations. Transformation functions are 647 

established to convert interval weights into additive and multiplicative consistent interval fuzzy 648 

preference relations. This inherent link allows us to develop goal-programming based models for 649 

deriving interval weights from both consistent and inconsistent interval fuzzy preference 650 

relations for individual and group decision making situations. The basic modeling principle is 651 

that the derived interval weight vector minimizes the deviation between the converted consistent 652 

fuzzy preference relation and the given interval fuzzy preference relation. Numerical examples 653 

demonstrate how the proposed framework can be applied in practice.  654 

Significant future work remains open. For instance, the proposed approaches assume that 655 

the preference relation provided by the DM is complete. In a real decision process, it is possible 656 
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that some pairwise comparison preference values are missing [1].  In this case, it becomes 657 

important to examine how the proposed models should be modified to accommodate incomplete 658 

interval-valued fuzzy preference relations. Another worthy topic is to extend these approaches to 659 

the case that the judgment matrix is given as complete or incomplete interval-valued 660 

intuitionistic fuzzy preference relations.   661 
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