Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis

Gordon W.F.Drake
University of Windsor
Z. C. Yan

Follow this and additional works at: http://scholar.uwindsor.ca/physicspub
Part of the Physics Commons

Recommended Citation

Drake, Gordon W. F. and Yan, Z. C.. (1992). Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis. Physical Review A, 46 (5), 2378-2409.
http://scholar.uwindsor.ca/physicspub/75

Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis

G. W. F. Drake and Zong-Chao Yan
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

(Received 9 March 1992)

Abstract

The results of an extended series of high-precision variational calculations for all states of helium up to $n=10$ and $L=7$ (excluding S states above $n=2$) are presented. Convergence of the nonrelativistic eigenvalues ranges from five parts in 10^{15} for the $2 P$ states to four parts in 10^{19} for the 10 K states. Relativistic and quantum electrodynamic corrections of order $\alpha^{2}, \alpha^{3}, \alpha^{2} \mu / M, \alpha^{2}(\mu / M)^{2}$, and $\alpha^{3} \mu / M$ are included and the required matrix elements listed for each state. For the $1 s 2 p^{3} P_{J}$ states, the lowest-order spindependent matrix elements of the Breit interaction are determined to an accuracy of three parts in 10^{9}, which, together with higher-order corrections, would be sufficient to allow an improved measurement of the fine-structure constant. Methods of asymptotic analysis are extended to provide improved precision for the relativistic and relativistic-recoil corrections. A comparison with the variational results for the high-angular-momentum states shows that the "standard-atomic-theory" and "long-range-interaction" pictures discussed by Hessels et al. [Phys. Rev. Lett. 65, 2765 (1990)] come into agreement, thereby resolving what appeared to be a discrepancy. The comparison shows that the asymptotic expansions for the total energies are accurate to better than $\pm 100 \mathrm{~Hz}$ for $L>7$, and results are presented for the $9 L$, $10 L$, and $10 M$ states (i.e., angular momentum $L=8$ and 9). Significant discrepancies with experiment persist for transitions among the $n=10$ states, which cannot be easily accommodated by supposed higher-order corrections or additional terms. Finally, the asymptotic analysis indicates that a revision to the quantum-defect method is required for the analysis of high-precision data.

PACS number(s): 31.20.Di, 31.15.+q, 31.30.Jv

I. INTRODUCTION

Transition frequencies among the $n=10$ manifold of states of helium have recently attracted much attention because of the high precision that has been achieved, both experimentally [1,2] and theoretically [3-6]. A comparison between the two appears to show welldefined systematic discrepancies that are much larger than the estimated uncertainties in either. A unique feature of the comparison is that the precision is sufficient to be sensitive to quantum electrodynamic (QED) effects of both the Lamb shift [3-6] and long-range Casimir-Polder-retardation types [7-12]. The latter arises (in lowest order) from corrections to short-range approximations made in the usual form of the retarded Breit electron-electron interaction [13]. The result is a form appropriate for low-lying states in the following sense. For a Rydberg electron with radial coordinate x in the range $a_{0} \ll x<a_{0} / \alpha$, the retardation terms are proportional to $e^{2} \alpha^{2} a_{0}^{3} / x^{4}$; but for $x \gg a_{0} / \alpha$, the power-law dependence changes to $e^{2} \alpha a_{0}^{4} / x^{5}$. The change in powerlaw dependence is a unique signature of Casimir effects in their many forms [12], but no precise confirmation yet exists. Since the effect can now, in principle, be detected as a residual energy shift in the Rydberg states of helium, it is essential to verify that all other aspects of the theory are correct and under good numerical control.

The experiment of Hessels et al. [1,2] referred to above consists of measuring the frequencies for the sequence of transitions $10 F-10 G, 10 G-10 H, \ldots, 10 K-10 L$. For these
transitions, there are two very different theoretical approaches with overlapping ranges of validity, which can be checked against each other. A demonstrated agreement between the two would provide a strong confirmation of both, assuming of course that the underlying formulation of quantum electrodynamics is correct. In historical order, the asymptotic-expansion (AE) method [14-21], valid for high angular momentum L, regards the Rydberg electron as moving in the field of a polarizable core consisting of the inner $1 s$ electron and the nucleus with charge Z. This gives rise to an asymptotic expansion for the effective nonrelativistic potential experienced by the Rydberg electron of the form

$$
\begin{equation*}
V(x)=-\frac{Z-1}{x}-\frac{\alpha_{1}}{2 x^{4}}-\frac{\alpha_{2}-6 \beta_{1}}{2 x^{6}}-\cdots \tag{1}
\end{equation*}
$$

together with corresponding asymptotic expansions for the relativistic and other higher-order corrections. Here, x is the radial coordinate for the Rydberg electron, $Z-1$ is the screened nuclear charge, α_{1} is the dipole polarizability of the core, α_{2} is the quadrupole polarizability, and β_{1} is a nonadiabatic correction to the dipole term. This method has been developed to a high degree of refinement by Drachman [18-21], with the terms in (1) now being known in their entirety up to x^{-10} [21]. The major limitation of (1) is that the series is an asymptotic one which eventually diverges and so must be terminated after a finite number of terms, depending on the value of L. Its great virtue is that the results are entirely analytic
and cover all high- L states.
The second method, valid for both low- and high- L states, consists of finding high-precision variational solutions to the complete nonrelativistic Schrödinger equation, using correlated basis sets [22-24,6]. The relativistic corrections are then determined directly from matrix elements of the Breit interaction, including finite nuclear mass, anomalous magnetic moment, and Lamb-shift corrections. In their presentation of experimental data, Hessels et al. [1] and Lundeen [2] refer to this approach as "standard atomic theory" (SAT). They also introduce a hybrid "long-range-interaction" (LRI) picture in which the nonrelativistic variational eigenvalues are used, together with the AE results for the relativistic corrections and an approximate version of the Lamb shift. A slight additional complication is that the LRI results also contain the retardation terms and their modifications due to the Casimir-Polder effect [9-11]. However, the shortrange form of the retardation terms is already included in SAT. If the small residual Casimir-Polder modifications, denoted by Au and Mesa [11] as $\Delta V_{\text {ret }}^{\prime \prime}$, are added to SAT, then one would expect it to come into agreement with LRI, at least in the asymptotic limit of high L. The results presented by Hessels et al. [1] indicate that they do not agree, with differences of the same order of magnitude as $\Delta V_{\text {ret }}^{\prime \prime}$ itself. Since the primary purpose of their experiment is to observe the effects of $\Delta V_{\text {ret }}^{\prime \prime}$, it is essential to resolve this theoretical discrepancy.

An important result of this paper is to show that if higher-order terms in the asymptotic expansion for the relativistic corrections are included in LRI, and the same expression for the Lamb-shift terms is used, then SAT and LRI come into close agreement for high L. What is left is a much larger discrepancy between both theories and experiment for the transition frequencies. However, the main purpose of this paper is to present a detailed listing and asymptotic analysis of high-precision variational calculations to supplement the results already given in Ref. [5]. Except for details of the variational calculations described there and in previous work [22-24], the present paper is reasonably self-contained. In Sec. II, the basic theory of asymptotic expansions is reviewed, and contributions to the nonrelativistic energy discussed. Section III first discusses the relativistic terms of relative order $\alpha^{2} Z^{2}$, and their finite-nuclear-mass (relativisticrecoil) corrections of order $\alpha^{2} Z^{2} \mu / M$; and then extends the asymptotic expansion for these terms to higher order in $1 / x$. Section IV compares the AE results with the variationally determined matrix elements. This section presents a complete tabulation of the necessary matrix elements for all states up to $n=10$ and $1 \leq L \leq 7$, together with the $1 s 2 s{ }^{1} S$ and ${ }^{3} S$ states. A comparison with the AE results for the total energies clearly shows that there is no fundamental difference between SAT and LRI. For low L, the differences are due entirely to the lack of convergence in the asymptotic expansions. Section V presents a brief update of the comparison with experiment, especially for transitions among the $n=10$ states. Section VI describes an important modification that should be made to the quantum-defect method due to terms quadratic in the reduced mass ratio $y=\mu / M$. Fi-
nally, Sec. VII summarizes the results and presents conclusions.

II. ASYMPTOTIC EXPANSION THEORY

The aim of this section is to review asymptoticexpansion theory and the contributions to the nonrelativistic energy, including new terms recently derived by Drachman [21]. Since the effects of mass polarization on both the nonrelativistic energy and the relativistic corrections can be obtained in parallel with little extra effort, these will also be included in both this section and the next.

The basic starting point is the three-particle nonrelativistic Schrödinger equation

$$
\begin{align*}
\left(-\frac{\hbar^{2}}{2 M} \nabla_{R_{0}}^{2}\right. & -\frac{\hbar^{2}}{2 m} \nabla_{R_{1}}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{R_{2}}^{2}-\frac{Z e^{2}}{\left|\mathbf{R}_{0}-\mathbf{R}_{1}\right|} \\
& \left.-\frac{Z e^{2}}{\left|\mathbf{R}_{0}-\mathbf{R}_{2}\right|}+\frac{e^{2}}{\left|\mathbf{R}_{1}-\mathbf{R}_{2}\right|}\right) \Psi=E_{\mathrm{NR}} \Psi \tag{2}
\end{align*}
$$

where \mathbf{R}_{0} is the position vector of the nucleus of mass M, and \mathbf{R}_{1} and \mathbf{R}_{2} are the position vectors of the two electrons of mass m. The standard transformation to center-of-mass and relative coordinates [25] generates a masspolarization term of the form $-(\mu / M) \nabla_{1} \cdot \nabla_{2}$, where $\mu=m M /(m+M)$ is the reduced mass. This could be treated by perturbation theory; but as pointed out by Drachman [20,21], it is simpler to use instead Jacobi coordinates defined by

$$
\begin{align*}
& \mathbf{r}=\left(\mathbf{R}_{1}-\mathbf{R}_{0}\right) / a_{\mu} \tag{3}\\
& \mathbf{x}=\Lambda\left[\mathbf{R}_{2}-\mathbf{R}_{0}-\boldsymbol{y}\left(\mathbf{R}_{1}-\mathbf{R}_{0}\right)\right] / a_{\mu} \tag{4}\\
& \mathbf{X}=\Lambda\left[\mathbf{R}_{0}+y\left(\mathbf{R}_{1}+\mathbf{R}_{2}-\mathbf{R}_{0}\right)\right] / a_{\mu} \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
y=\mu / M, \quad \Lambda=1 /\left(1-y^{2}\right) \tag{6}
\end{equation*}
$$

and $a_{\mu}=(m / \mu) a_{0}$ is the reduced Bohr radius. The derivatives in (2) transform according to

$$
\begin{aligned}
& \nabla_{R_{1}}=a_{\mu}^{-1}\left(\nabla_{r}-\Lambda y \nabla_{x}+\Lambda y \nabla_{X}\right), \\
& \nabla_{R_{2}}=a_{\mu}^{-1}\left(\Lambda \nabla_{x}+\Lambda y \nabla_{X}\right), \\
& \nabla_{R_{0}}=-a_{\mu}^{-1}\left[\nabla_{r}+\Lambda(1-y)\left(\nabla_{x}-\nabla_{X}\right)\right] .
\end{aligned}
$$

Since X is an ignorable coordinate, the Hamiltonian becomes

$$
\begin{align*}
H & =\left(-\frac{1}{2} \nabla_{r}^{2}-\frac{Z}{r}\right]+\Lambda\left[-\frac{1}{2} \nabla_{x}^{2}-\frac{Z-1}{x}\right]+V(\mathbf{r}, \mathbf{x}) \\
& \equiv h_{r}+\Lambda h_{x}+V(\mathbf{r}, \mathbf{x}) \tag{7}
\end{align*}
$$

with
$V(\mathbf{r}, \mathbf{x})=\Lambda\left[\frac{Z-1}{x}-\frac{Z}{|\mathbf{x}+\Lambda y \mathbf{r}|}+\frac{1}{|\mathbf{x}-\Lambda(1-y) \mathbf{r}|}\right]$
in units of e^{2} / a_{μ} throughout. In the above, adding and
subtracting the term $-\Lambda(Z-1) / x$ gives the screened hydrogenic form for $h_{r}+\Lambda h_{x}$, leaving a perturbation $V(\mathbf{r}, \mathbf{x})$ which becomes asymptotically small. Equation (7) immediately implies that the screened hydrogenic energies for a $1 \operatorname{snL} L$ configuration are [20]

$$
\begin{equation*}
E_{0}=-Z^{2} / 2-\Lambda(Z-1)^{2} /\left(2 n^{2}\right) \tag{9}
\end{equation*}
$$

This differs from the $y=0$ case by

$$
\begin{align*}
\Delta E_{M}^{(2)} & =-(\Lambda-1)(Z-1)^{2} /\left(2 n^{2}\right) \\
& \simeq-\left(y^{2}+y^{4}\right)(Z-1)^{2} /\left(2 n^{2}\right), \tag{10}
\end{align*}
$$

which gives in a trivial way the leading term in the second-order mass-polarization correction.

Equation (7) has the important advantage that there is no "mass-polarization" term in the kinetic-energy part, but at the expense of making the potential more complicated. This is not a disadvantage for the polarization model because the multipole expansion of $V(\mathbf{r}, \mathbf{x})$ still has the simple form [20]

$$
\begin{equation*}
V(\mathbf{r}, \mathbf{x})=\frac{1}{x} \sum_{l=1}^{\infty} C_{l}\left(\frac{r}{x}\right]^{l} P_{l}(\hat{\mathbf{r}} \cdot \widehat{\mathbf{x}}) \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{l}=\frac{(1-y)^{l}-Z(-y)^{l}}{\left(1-y^{2}\right)^{l+1}} . \tag{12}
\end{equation*}
$$

It is then a simple matter to incorporate the effects of finite mass as follows. Each coefficient in the asymptotic potential (1) is multiplied by combinations of C_{l} factors according to the combinations of multipolarities that contribute. For example, the 2^{l}-pole polarizability α_{l} is quadratic in C_{l}, and so is replaced by $C_{l}^{2} \alpha_{l}$. The same is true of β_{l}. Provided that μ / M is small, the C_{l} factors can be expanded according to

$$
\begin{align*}
& C_{1}=1+(Z-1) y+2 y^{2}+\cdots, \\
& C_{2}=1-2 y+(4-Z) y^{2}+\cdots, \\
& C_{3}=1-3 y+7 y^{2}+\cdots, \tag{13}\\
& C_{4}=1-4 y+11 y^{2}+\cdots
\end{align*}
$$

Thus, for example, the leading term $-\alpha_{1}\left\langle x^{-4}\right\rangle_{n L} / 2$ in the asymptotic potential (1) becomes $-\alpha_{1} C_{1}^{2}\left\langle x^{-4}\right\rangle_{n L} / 2$ because α_{1} involves two dipole interactions. The difference $-\alpha_{1}\left(C_{1}^{2}-1\right)\left\langle x^{-4}\right\rangle_{n L} / 2$, together with Eq. (10), are the leading terms in the mass-polarization correction to the energy. The expansions in (13) allow the first- and second-order contributions to the corresponding mass-polarization energy coefficients $\varepsilon_{M}^{(1)}$ and $\varepsilon_{M}^{(2)}$ to be separated. Terms of order $\left\langle x^{-9}\right\rangle_{n L}$ and $\left\langle x^{-10}\right\rangle_{n L}$ have recently been evaluated by Drachman [21], and additional nonadiabatic corrections by Drake [26]. Combining these and separating the mass dependence, the result is

$$
\begin{align*}
\varepsilon_{M}^{(1)}= & -(Z-1) \alpha_{1}\left\langle x^{-4}\right\rangle_{n L}+\left[2 \alpha_{2}+6(Z-1) \beta_{1}\right]\left\langle x^{-6}\right\rangle_{n L}+\left[(Z-2) \delta+\frac{16}{5}(Z-1)^{2} \gamma\right]\left\langle x^{-7}\right\rangle_{n L} \\
& +\left\{3 \alpha_{3}-30 \beta_{2}+2(Z-1)\left(\alpha_{1} \beta_{1}-\epsilon\right)-72(Z-1) \gamma[1+L(L+1) / 10]\right\}\left\langle x^{-8}\right\rangle_{n L}+\frac{1}{2} c_{9}^{(1)}\left\langle x^{-9}\right\rangle_{n L} \\
& +\frac{1}{2} c_{10}^{(1)}\left\langle x^{-10}\right\rangle_{n L}+4(Z-1) e_{2,0}^{(1,1)}+2\left[(Z-3)-12(Z-1) \beta_{1} / \alpha_{2}\right] e_{2,0}^{(1,2)}, \tag{14}\\
\varepsilon_{M}^{(2)}= & -\frac{1}{2}(Z-1)^{2} n^{-2}-\frac{1}{2}[5+Z(Z-2)] \alpha_{1}\left\langle x^{-4}\right\rangle_{n L}-\left\{(6-Z) \alpha_{2}-3[5+Z(Z-2)] \beta_{1}\right\}\left\langle x^{-6}\right\rangle_{n L} \\
+ & \left\{\frac{1}{2}[3+(Z-2)(Z-5)] \delta+\frac{8}{5}(Z-1)[5+Z(Z-2)]\right\}\left\langle x^{-7}\right\rangle_{n L} \\
+ & \left\{-\frac{23}{2} \alpha_{3}+15(6-Z) \beta_{2}+[7+3 Z(Z-2)]\left(\alpha_{1} \beta_{1}-\epsilon\right)\right. \\
& -36[5+Z(Z-2)] \gamma[1+L(L+1) / 10]\}\left\langle x^{-8}\right\rangle_{n L}+2[7+3(Z-2)] e_{2,0}^{(1,1)}, \tag{15}
\end{align*}
$$

where
$e_{2,0}^{(j, k)}=-\frac{1}{2} \alpha_{j} \alpha_{k}\left(2-\delta_{j, k}\right)\left\langle\phi_{1}^{(2 j+2)}\right| x^{-2 k-2}\left|\phi_{0}\right\rangle_{n L}$
is a second-order adiabatic polarization energy in which $\phi_{1}^{(i)}$ satisfies a first-order hydrogenic perturbation equation for the Rydberg electron with $-1 /\left(2 x^{i}\right)$ as the perturbation. Closed-form analytic expressions are known for $e_{2,0}^{(1,1)}$ and $e_{2,0}^{(1,2)}$ [27,28], and numerical values are tabulated by Drachman [19,21]. Numerical values for the quantities $\alpha_{i}, \beta_{i}, \gamma, \delta$, and ϵ in Eqs. (14) and (15) are listed by Drachman [18], and by Drake and Swainson [27]. The $c_{j}^{(1)}$ in Eq. (14) represent collections of several coefficients $[21,26]$ multiplied by the terms linear in y in

Eq. (13). The final result is

$$
\begin{equation*}
c_{9}^{(1)}=-Z^{-10}\left[\frac{7581}{4}+\frac{80637}{14}(\boldsymbol{Z}-1)+\frac{493323}{252}(\boldsymbol{Z}-1)^{2}\right] \tag{17}
\end{equation*}
$$

$$
\begin{align*}
c_{10}^{(1)}= & Z^{-12}\left[31422+\frac{26677}{32}(Z-1)\right. \\
& \left.\quad+\frac{71445}{4} Z^{2}+\frac{48365}{2}(Z-1) Z^{2}\right] \\
+ & Z^{-10} L(L+1)\left[\frac{35985}{42}+\frac{145095}{28}(Z-1)\right] . \tag{18}
\end{align*}
$$

Similar results can be obtained for $c_{9}^{(2)}$ and $c_{10}^{(2)}$ [26] and a contribution $\frac{1}{2} c_{9}^{(2)}\left\langle x^{-9}\right\rangle_{n L}+\frac{1}{2} c_{10}^{(2)}\left\langle x^{-10}\right\rangle_{n L}$ added to Eq. (15) for $\varepsilon_{M}^{(2)}$, but the change is too small to be impor-
tant. The asymptotic mass-polarization correction to the energy is then

$$
\begin{equation*}
\Delta E_{\mathrm{mp}}=y \varepsilon_{M}^{(1)}+y^{2} \varepsilon_{M}^{(2)}+\cdots \tag{19}
\end{equation*}
$$

Detailed numerical comparisons with variational calculations for the Rydberg states of helium will be discussed in Sec. IV A. Note that $\boldsymbol{y}^{2} \varepsilon_{M}^{(2)}$ eventually becomes larger than $y \varepsilon_{M}^{(1)}$ because of the n^{-2} term in (15). However, this does not indicate poor convergence, it merely indicates an even-odd alternation in the magnitudes of the terms.

III. RELATIVISTIC CORRECTIONS

A. Standard formulation

This section reviews the standard formulation for the Breit interaction operators and their finite-mass corrections, expressed in terms of conventional coordinates r_{1} and \mathbf{r}_{2} for the positions of the two electrons relative to the nucleus. Starting from the Dirac Hamiltonian summed over particles, and the Breit interaction summed over all pairwise interactions, the terms in the center-ofmass frame are [25,29] (in units of e^{2} / a_{μ})

$M_{5}=\frac{1}{4} g_{e}^{2} \alpha^{2}\left(\frac{\mu}{m}\right)^{2} \nabla_{1} \cdot\left[\left(\nabla_{2} r_{12}^{-1}\right) \cdot \mathbf{s}_{1}\right] \mathbf{s}_{2}$,
$M_{6}=-\frac{8}{3} \pi \alpha^{2}\left(\frac{\mu}{m}\right)^{2} \delta\left(\mathbf{r}_{12}\right) \mathbf{s}_{1} \cdot \mathbf{s}_{2}$,
where

$$
V=-Z / r_{1}-Z / r_{2}+1 / r_{12}
$$

$\gamma_{e} \simeq \alpha / 2 \pi$ is the electron anomalous magnetic moment, $g_{e}=2\left(1+\gamma_{e}\right)$, and $r_{12}=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$. The H_{i} are the Dirac terms and the M_{i} are the Breit interaction terms, numbered in accordance with the convention of the Bethe and Salpeter [25]. The terms are written out in detail because the origin of all the finite-mass corrections is not evident from the derivation of Bethe and Salpeter.
For purposes of numerical calculation, it is usual to transform together the two terms $H_{1}+H_{4}$ to a form in which the singular matrix elements $\left(\Psi, \nabla_{1}^{4} \Psi\right)+\left(\Psi, \nabla_{2}^{4} \Psi\right)$
are replaced by the less singular form $\left(\nabla_{2}^{2} \Psi, \nabla_{1}^{2} \Psi\right)[25,30]$. With the use of arguments similar to those of Bethe and Salpeter [25], the result for the finite-nuclear-mass case is [5,24]

$$
\begin{align*}
\left\langle H_{1}+H_{4}\right\rangle= & -\frac{\alpha^{2}}{4}\left[\frac{\mu}{m}\right)^{3}\left\langle 2 f^{2}-4 y f \mathbf{p}_{1} \cdot \mathbf{p}_{2}\right. \\
& \left.+2\left(y \mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}-p_{1}^{2} p_{2}^{2}\right\rangle
\end{align*}
$$

where

$$
\begin{align*}
f & =E-V \\
& =E+Z / r_{1}+Z / r_{2}-1 / r_{12} . \tag{29}
\end{align*}
$$

The $-4 y f \mathbf{p}_{1} \cdot \mathbf{p}_{2}+2\left(y \mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}$ terms are additional contributions which do not appear in standard treatments. Only the first part linear in y is included in the variational results presented previously [3-5,22-24]. The very small correction of order $\alpha^{2} y^{2}$ from the second part is further discussed in Sec. IV B in terms of its asymptotic expansion.

To facilitate a systematic presentation of the results, the terms H_{1} to H_{4} and M_{2} to M_{6} are now separated into terms of lowest order α^{2}, relativistic reduced-mass corrections of order $\alpha^{2} y$, and anomalous magneticmoment corrections of order α^{3}. Collecting terms of similar type, the lowest-order Pauli form of the Breit interaction is

$$
\begin{align*}
& B_{1}=-\frac{\alpha^{2}}{8}\left(\nabla_{1}^{4}+\nabla_{2}^{4}\right) \tag{30}\\
& B_{2}=\frac{\alpha^{2}}{2}\left[\frac{1}{r_{12}} \nabla_{1} \cdot \nabla_{2}+\frac{1}{r_{12}^{3}} \mathbf{r}_{12} \cdot\left(\mathbf{r}_{12} \cdot \boldsymbol{\nabla}_{1}\right) \nabla_{2}\right], \tag{31}\\
& B_{4}=\alpha^{2} \pi\left[\frac{Z}{2} \delta\left(\mathbf{r}_{1}\right)+\frac{Z}{2} \delta\left(\mathbf{r}_{2}\right)-\delta\left(\mathbf{r}_{12}\right)\right] \tag{32}
\end{align*}
$$

The spin-dependent terms are

$$
\begin{equation*}
B_{3}=B_{3, Z}+B_{3, e} \tag{33}
\end{equation*}
$$

with

$$
\begin{gather*}
B_{3, Z}=\frac{\boldsymbol{Z} \alpha^{2}}{2}\left[\frac{1}{r_{1}^{3}}\left(\mathbf{r}_{1} \times \mathbf{p}_{1}\right) \cdot \mathbf{s}_{1}+\frac{1}{r_{2}^{3}}\left(\mathbf{r}_{2} \times \mathbf{p}_{2}\right) \cdot \mathbf{s}_{2}\right], \tag{34}\\
B_{3, e}=\frac{\alpha^{2}}{2 r_{12}^{3}}\left\{\left[\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) \times \mathbf{p}_{1}\right] \cdot\left(\mathbf{s}_{1}+2 \mathbf{s}_{2}\right)\right. \\
\left.+\left[\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \times \mathbf{p}_{2}\right] \cdot\left(\mathbf{s}_{2}+2 \mathbf{s}_{1}\right)\right\}, \tag{35}
\end{gather*}
$$

and

$$
\begin{align*}
\boldsymbol{B}_{5} & =\alpha^{2} \boldsymbol{\nabla}_{1} \cdot\left[\left(\boldsymbol{\nabla}_{2} r_{12}^{-1}\right) \cdot \mathbf{s}_{1}\right] \mathbf{s}_{2} \\
& =\alpha^{2}\left[\frac{1}{r_{12}^{3}} \mathbf{s}_{1} \cdot \mathbf{s}_{2}-\frac{3}{r_{12}^{5}}\left(\mathbf{s}_{1} \cdot \mathbf{r}_{12}\right)\left(\mathbf{s}_{2} \cdot \mathbf{r}_{12}\right)\right], \tag{36}\\
\boldsymbol{B}_{6} & =-\frac{8}{3} \pi \alpha^{2} \delta\left(\mathbf{r}_{12}\right) \mathbf{s}_{1} \cdot \mathbf{s}_{2}, \tag{37}
\end{align*}
$$

all in units of e^{2} / a_{μ}, and expectation values are assumed with respect to Ψ_{∞} satisfying the nonrelativistic Schrödinger equation for infinite nuclear mass. B_{5} vanishes for singlet states because the operator can be written as the tensor product of orbital and spin parts of rank two. Because of the $\delta\left(\mathbf{r}_{12}\right)$ factor, B_{6} only contributes for singlet states, where

$$
\begin{equation*}
\left\langle\mathbf{s}_{1} \cdot \mathbf{s}_{2}\right\rangle=\frac{1}{2}\left\langle S^{2}-s_{1}^{2}-s_{2}^{2}\right\rangle=-\frac{3}{4} \tag{38}
\end{equation*}
$$

In summary, the lowest-order relativistic correction is

$$
\begin{align*}
\Delta E_{\mathrm{rel}}= & \left\langle B_{1}\right\rangle+\left\langle B_{2}\right\rangle+\left\langle B_{3}\right\rangle+\left\langle B_{5}\right\rangle \\
& +\pi \alpha^{2}\left\langle\boldsymbol{Z} \delta\left(r_{1}\right)+\delta\left(r_{12}\right)\right\rangle, \tag{39}
\end{align*}
$$

where the contributions involving δ functions in B_{4} and B_{6} have been combined to give the last term.

The finite-mass corrections can now be simply expressed in terms of the above. With the use of

$$
\begin{equation*}
\left(\frac{\mu}{m}\right)^{n} \simeq 1-n y \tag{40}
\end{equation*}
$$

in Eqs. (20)-(27), the results are

$$
\begin{align*}
& B_{1}^{M}=-3 y B_{1} \tag{41}\\
& B_{2}^{M}=-2 y B_{2}+\Delta_{2}, \tag{42}\\
& B_{3}^{M}=-2 y B_{3, e}+\Delta_{3} \tag{43}\\
& B_{4}^{M}=-2 y B_{4}, \tag{44}\\
& B_{5}^{M}=-2 y B_{5}, \tag{45}\\
& B_{6}^{M}=-2 y B_{6} \tag{46}
\end{align*}
$$

where, from (23) and (24),

$$
\begin{align*}
& \Delta_{2}=\frac{1}{2} Z \alpha^{2} y\left(\frac{1}{r_{1}}\left(\nabla_{1}+\nabla_{2}\right) \cdot \nabla_{1}+\frac{1}{r_{1}^{3}} \mathbf{r}_{1} \cdot\left[\mathbf{r}_{1} \cdot\left(\nabla_{1}+\nabla_{2}\right)\right] \nabla_{1}\right] \\
&+\frac{1}{2} Z \alpha^{2} y(\frac{1}{r_{2}}\left(\nabla_{1}+\nabla_{2}\right) \cdot \nabla_{2} \\
&\left.+\frac{1}{r_{2}^{3}} \mathbf{r}_{2} \cdot\left[\mathbf{r}_{2} \cdot\left(\nabla_{1}+\nabla_{2}\right)\right] \nabla_{2}\right), \tag{47}
\end{align*}
$$

$\Delta_{3}=Z \alpha^{2} y\left[\frac{1}{r_{1}^{3}}\left(\mathbf{r}_{1} \times \mathbf{p}_{2}\right) \cdot \mathbf{s}_{1}+\frac{1}{r_{2}^{3}}\left(\mathbf{r}_{2} \times \mathbf{p}_{1}\right) \cdot \mathbf{s}_{2}\right)$.
Notice that the term $-2 y B_{3, Z}$ that would otherwise appear in Eq. (43) cancels with similar terms that would otherwise appear in the definition of Δ_{3}; i.e., $\left(\mathbf{r}_{1} \times \mathbf{p}_{1}\right) \cdot \mathbf{s}_{1}$ and $\left(\mathbf{r}_{2} \times \mathbf{p}_{2}\right) \cdot \mathbf{s}_{2}$ terms. (Δ_{3} corresponds to Δ_{1} of Stone [29] and our previous work. The notation has been changed to emphasize the connection with B_{3}.) The total relativistic-recoil correction due to the explicit reducedmass dependence of the Breit interaction is

$$
\begin{equation*}
\left(\Delta E_{\mathrm{RR}}\right)_{M}=\sum_{i=1}^{6}\left\langle B_{i}^{M}\right\rangle \tag{49}
\end{equation*}
$$

The above correction reduces to a well-known result in the one-electron case. In this limit, Δ_{3} does not contribute and Δ_{2} reduces to

$$
\begin{equation*}
\Delta_{2}=\frac{Z \alpha^{2}}{2 r} y\left(\nabla^{2}+\nabla_{r}^{2}\right) \tag{50}
\end{equation*}
$$

where $\nabla_{r}^{2}=r^{-2} \mathbf{r} \cdot(\mathbf{r} \cdot \nabla) \nabla$. This term, when combined with the others in Eq. (49), gives the operator

$$
\begin{equation*}
H_{b}=\alpha^{2} y\left[\frac{3}{8} \nabla^{4}+\frac{Z}{2 r}\left(\nabla^{2}+\nabla_{r}^{2}\right)+\frac{1}{2} Z \nabla^{2}\left(r^{-1}\right)\right] \tag{51}
\end{equation*}
$$

As shown by Bethe and Salpeter [25] (see Eq. 42.7, p. 195), the expectation value of H_{b} reduces to the oneelectron relativistic reduced-mass shift

$$
\begin{equation*}
E_{b}=-\left(\frac{Z \alpha}{2 n}\right)^{2} y\left|E_{\mathrm{NR}}\right| \tag{52}
\end{equation*}
$$

where $E_{\mathrm{NR}}=-1 /\left(2 n^{2}\right)$. This is in addition to the mass shift already contained implicitly in Eq. (39) due to the use of the reduced-mass Rydberg. A corresponding limit can be expected for Rydberg states of two-electron atoms (see Sec. III B 2).

Second-order cross terms with the mass-polarization operator produce further corrections of order $\alpha^{2} y$ in the two-electron case. Denoting these relativistic recoil terms by $B_{i}^{\mathrm{X}}(i=1, \ldots, 6)$, they can each be expressed in the form

$$
\begin{align*}
B_{i}^{\mathrm{X}} & =2\left\langle\delta \Psi_{\infty}\right| B_{i}\left|\Psi_{\infty}\right\rangle \\
& =2 y \sum_{k \neq 0} \frac{\left\langle\Psi_{\infty}\right| \mathbf{p}_{1} \cdot \mathbf{p}_{2}|k\rangle\langle k| B_{i}\left|\Psi_{\infty}\right\rangle}{E_{\infty}(0)-E_{\infty}(k)}, \tag{53}
\end{align*}
$$

where $k=0$ denotes the unperturbed state Ψ_{∞}, and $\delta \Psi_{\infty}$ is the perturbation due to mass polarization. The perturbation sum can be calculated explicitly by solving a firstorder perturbation equation, as done by Lewis and Serafino [31], or implicitly by recalculating the matrix elements of the B_{i} with respect to the Ψ_{M} solutions of the finite-mass Schrödinger equation (i.e., with mass polarization included) and writing

$$
\begin{align*}
B_{i}^{\mathrm{X}} \simeq & \left\langle\Psi_{M}\right| B_{i}\left|\Psi_{M}\right\rangle-\left\langle\Psi_{\infty}\right| B_{i}\left|\Psi_{\infty}\right\rangle \\
& +\alpha^{2} y\left\langle\Psi_{M}\right| f \mathbf{p}_{1} \cdot \mathbf{p}_{2}\left|\Psi_{M}\right\rangle \delta_{i, 1} \tag{54}
\end{align*}
$$

The last term is the $y=\mu / M$ correction in (28) for $i=1$. This procedure automatically includes higher-order terms in the $(\mu / M) \mathbf{p}_{1} \cdot \mathbf{p}_{2}$ perturbation series, but since μ / M is small, it gives the coefficient of the $\alpha^{2} \mu / M$ cross term to sufficient accuracy that isotope shifts can be calculated without redoing the calculations for each nuclear mass. However, higher-order terms quadratic in μ / M affect the comparison with asymptotic expansions, as further discussed in Sec. IV B. The total correction due to second-order cross terms is

$$
\begin{equation*}
\left(\Delta E_{\mathrm{RR}}\right)_{\mathrm{X}}=\sum_{i=1}^{6}\left\langle B_{i}^{\mathrm{X}}\right\rangle \tag{55}
\end{equation*}
$$

The spin-dependent anomalous magnetic moment corrections only affect B_{3} and B_{5}. The terms are

$$
\begin{align*}
& \boldsymbol{B}_{3, Z}^{A}=2 \gamma_{e} \boldsymbol{B}_{3, Z}, \tag{56}\\
& \boldsymbol{B}_{3, e}^{A}=2 \gamma_{e} \frac{\alpha^{2}}{2 r_{12}^{3}}\left\{\left[\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) \times \mathbf{p}_{1}\right] \cdot\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)\right. \\
& \tag{57}\\
& \left.\quad+\left[\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \times \mathbf{p}_{2}\right] \cdot\left(\mathbf{s}_{2}+\mathbf{s}_{1}\right)\right\}, \tag{58}\\
& \boldsymbol{B}_{5}^{A}=2 \gamma_{e} \boldsymbol{B}_{5} .
\end{align*}
$$

Comparing with Eq. (35) and using

$$
\begin{equation*}
\mathbf{s}_{1}+\mathbf{s}_{2}=\frac{2}{3}\left(\mathbf{s}_{1}+2 \mathbf{s}_{2}\right)+\frac{1}{3}\left(\mathbf{s}_{1}-\mathbf{s}_{2}\right), \tag{59}
\end{equation*}
$$

it can be seen that the matrix elements of $B_{3, e}^{A}$ between states with different total spin $S=s_{1}+s_{2}$ are

$$
\begin{equation*}
\left\langle a^{\prime} S^{\prime}\right| B_{3, e}^{A}|a S\rangle=\frac{4}{3} \gamma_{e} \delta_{S, S^{\prime}}\left\langle a^{\prime} S^{\prime}\right| B_{3, e}|a S\rangle, \tag{60}
\end{equation*}
$$

and the right-hand side is zero if $S=0$. Thus, only the diagonal matrix elements are nonvanishing in $L S$ coupling, and only then for triplet states. The total anomalous magnetic-moment matrix elements in $L S$ coupling are thus

$$
\begin{align*}
& \left\langle a^{\prime} S^{\prime}\right| \Delta H_{\mathrm{anom}}|a S\rangle \\
& \quad=2 \gamma_{e}\left\langle a^{\prime} S^{\prime}\right| B_{3, Z}+\frac{2}{3} \delta_{S, S^{\prime}} B_{3, e}+B_{5}|a S\rangle \tag{61}
\end{align*}
$$

excluding δ-function terms. For consistency, these will be included along with other QED corrections of the same order [see Eqs. (118) and (134) to follow]. The corresponding energy change is $\Delta E_{\text {anom }}$.

B. Asymptotic expansions

This section applies the asymptotic expansion methods introduced in Sec. II to the calculation of the relativistic terms contained in the Breit interaction and their finitemass corrections. The results substantially extend the known terms due to the one-electron Dirac energy and relativistic polarizability discussed previously by Drachman [19].

1. Spin-independent terms

Consider first the spin-independent parts of the Breit interaction. As discussed, for example, by Drachman [19] and Drake [5], the asymptotic limit for $\left\langle B_{1}+B_{4}\right\rangle$ is (in units of e^{2} / a_{μ} throughout)
$\left\langle B_{1}+B_{4}\right\rangle \rightarrow-\alpha^{2} Z^{4} / 8+h_{1}(n L)+\Delta B_{1}\left(\alpha_{\mathrm{rel}}\right)+\Delta B_{1}\left(\phi_{1}\right)$,
where

$$
\begin{align*}
& h_{1}(n L)=\frac{\alpha^{2}(Z-1)^{4}}{2 n^{3}}\left[\frac{3}{4 n}-\frac{1}{L+\frac{1}{2}}\right] \tag{63}\\
& \begin{aligned}
\Delta B_{1}\left(\alpha_{\text {rel }}\right)=\frac{1}{2}(Z \alpha)^{2}[& \alpha_{1, \text { rel }}\left\langle x^{-4}\right\rangle \\
& \left.\quad+\left(\alpha_{2, \text { rel }}-6 \beta_{1, \text { rel }}\right)\left\langle x^{-6}\right\rangle+\cdots\right]
\end{aligned}
\end{align*}
$$

$\Delta B_{1}\left(\phi_{1}\right)=-\frac{1}{4} \alpha^{2}\left\langle\phi_{1}\right| p^{4}\left|\phi_{0}\right\rangle_{n L}$,
and expectation values are with respect to the Rydberg electron. Equation (63) is just the Pauli approximation for the one-electron relativistic correction (in $L S$ coupling), and $\Delta B_{1}\left(\alpha_{\text {rel }}\right)$ is the energy shift due to the relativistic correction $(Z \alpha)^{2} \alpha_{\text {rel }}$ to the multipole polarizabilities [19], with $\quad \alpha_{1}=9 /\left(2 Z^{4}\right), \quad \alpha_{1, \text { rel }}=14 /\left(3 Z^{4}\right), \quad \alpha_{2 \text {, rel }}$ $=879 /\left(40 Z^{6}\right)$, and $\beta_{1, \text { rel }}=2063 /\left(288 Z^{6}\right)$. The last is the nonadiabatic correction to $\alpha_{1 \text {, rel }}$ recently obtained by Hessels [32]. The term $\Delta B_{1}\left(\phi_{1}\right)$ defined by (65) represents the correction to the lowest-order matrix element $-\alpha^{2}\left\langle p^{4}\right\rangle_{n L} / 8$ due to the perturbing effect of the $-\alpha_{1} /\left(2 x^{4}\right)$ polarization potential on the Rydberg electron [5]. Thus ϕ_{1} satisfies the perturbation equation

$$
\begin{equation*}
\left(\frac{1}{2} p^{2}+V_{0}-E_{0}\right)\left|\phi_{1}\right\rangle+\left(V_{1}-E_{1}\right)\left|\phi_{0}\right\rangle=0, \tag{66}
\end{equation*}
$$

with

$$
\begin{aligned}
& V_{0}=-(Z-1) / x, \quad E_{0}=-(Z-1)^{2} /\left(2 n^{2}\right) \\
& V_{1}=-\alpha_{1} /\left(2 x^{4}\right), \quad E_{1}=-\alpha_{1}\left\langle x^{-4}\right\rangle / 2
\end{aligned}
$$

This equation can be solved analytically as a finite power-series expansion for an arbitrary $n L$ state, as discussed by Drake and Swainson [27]. Then, integrating by parts and using

$$
\begin{equation*}
p^{2} \phi_{0}=2\left(E_{0}-V_{0}\right) \phi_{0} \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{2} \phi_{1}=2\left(E_{0}-V_{0}\right) \phi_{1}+2\left(E_{1}-V_{1}\right) \phi_{0} \tag{68}
\end{equation*}
$$

it follows that, for $Z=2$,

$$
\begin{align*}
\Delta B_{1}\left(\phi_{1}\right)=\alpha^{2} & {[}
\end{aligned} \begin{aligned}
& \\
& \tag{69}\\
& \\
& \left.\left.\left.+\frac{1}{2} \right\rvert\, x_{1}\left\langle\phi_{0}\right| x^{-4}\left(n^{-2}-x^{-1}\right)\left|\phi_{0}\right\rangle_{n L}\right)\left|\phi_{0}\right\rangle_{n L}\right]
\end{align*}
$$

For arbitrary Z and $\alpha_{1}, \Delta B_{1}\left(\phi_{1}\right)$ scales in proportion to $\alpha_{1}(Z-1)^{6}$.

A general formula for the integrals involving ϕ_{1} in the first term of (69) can be derived by applications of the Dalgarno interchange theorem as follows. The integral involving x^{-1} can be obtained by considering an equation parallel to (66) with the perturbation being a change in the nuclear charge. If $\boldsymbol{Z} \rightarrow \boldsymbol{Z}+\boldsymbol{\epsilon}$, then, up to first order in ϵ,

$$
\begin{equation*}
\phi_{0}(Z+\epsilon)=\phi_{0}(Z)+\epsilon \phi_{1}^{\prime}(Z) \tag{70}
\end{equation*}
$$

where $\phi_{1}^{\prime}(Z)$ satisfies

$$
\begin{equation*}
\left(\frac{1}{2} p^{2}+V_{0}-E_{0}\right)\left|\phi_{1}^{\prime}\right\rangle-\left(x^{-1}-\left\langle x^{-1}\right\rangle\right)\left|\phi_{0}\right\rangle=0 \tag{71}
\end{equation*}
$$

It is clear from Eq. (70) that

$$
\begin{equation*}
\phi_{1}^{\prime}(Z)=\frac{d \phi_{0}(Z)}{d Z} \tag{72}
\end{equation*}
$$

Multiply (71) by $\left\langle\phi_{1}\right|$, (66) by $\left\langle\phi_{1}^{\prime}\right|$, and subtract to obtain

$$
\begin{equation*}
\left\langle\phi_{1}\right| x^{-1}\left|\phi_{0}\right\rangle_{n L}=\frac{1}{2} \alpha_{1}\left\langle\phi_{1}^{\prime}\right| x^{-4}\left|\phi_{0}\right\rangle_{n L} \tag{73}
\end{equation*}
$$

Using Eq. (72) for ϕ_{1}^{\prime} and taking the $d / d Z$ operation outside the integral gives the final result

$$
\begin{align*}
\left\langle\phi_{1}\right| x^{-1}\left|\phi_{0}\right\rangle_{n L} & =\frac{1}{4} \alpha_{1} \frac{d}{d Z}\left\langle\phi_{0}\right| x^{-4}\left|\phi_{0}\right\rangle_{n L} \\
& =\frac{\alpha_{1}}{Z-1}\left\langle x^{-4}\right\rangle_{n L} \tag{74}
\end{align*}
$$

where

$$
\left\langle x^{-4}\right\rangle_{n L}=\frac{16(Z-1)^{4}\left[3 n^{2}-L(L+1)\right]}{n^{5}(2 L-1)(2 L)(2 L+1)(2 L+2)(2 L+3)} .
$$

The integral containing x^{-2} can be obtained in a completely analogous way by considering the perturbation resulting from the change $L \rightarrow L+\epsilon$ to the centrifugal barrier term $L(L+1) / 2 x^{2}$ in the effective radial potential. The result is
$\left\langle\phi_{1}\right| x^{-2}\left|\phi_{0}\right\rangle_{n L}=-\frac{\alpha_{1}}{2(2 L+1)} \frac{d}{d L}\left\langle x^{-4}\right\rangle_{n L}=\left\langle x^{-4}\right\rangle_{n L} \frac{\alpha_{1}}{2(2 L+1)}\left(\sum_{j=2 L-1}^{2 L+3} \frac{2}{j}+\frac{9 n-5 L(L+1) / n+2 L+1}{3 n^{2}-L(L+1)}\right)$.
The one additional subtlety in evaluating the above derivative with respect to L arises from the fact that n and L are connected by the equation $n=N+L+1$, where N is the fixed number of nodes, in order to preserve the boundary condition at infinity for ϕ_{0}. Thus n must change in step with L such that $d n / d L=1$. Otherwise, the integral is no longer defined. The above integrals have been checked numerically. Collecting results and using

$$
\sum_{j=2 L-1}^{2 L+3} \frac{2}{j}=\frac{4(2 L-2)!}{(2 L+3)!}\left(40 f_{2}+70 f_{1}-3\right)
$$

where $f_{1}=L(L+1)$ and $f_{2}=(L-1) L(L+1)(L+2)$, the final result is

$$
\begin{align*}
& \Delta B_{1}\left(\phi_{1}\right)=\frac{1}{2} \alpha^{2} \alpha_{1}\left\{3\left(\frac{Z-1}{n}\right)^{2}\left\langle x^{-4}\right\rangle-(Z-1)\left\langle x^{-5}\right\rangle\right. \\
&\left.-4 \frac{(2 L-2)!}{(2 L+3)!}\left[4\left[\frac{Z-1}{n}\right)^{6}\left[n+\frac{9 n^{2}-5 f_{1}}{2 L+1}\right]+(Z-1)^{2}\left\langle x^{-4}\right\rangle\left(\frac{40 f_{2}+70 f_{1}-3}{2 L+1}\right]\right)\right\} \tag{76}
\end{align*}
$$

Except for the additional $\Delta B_{1}\left(\phi_{1}\right)$ and $\beta_{1, \text { rel }}$ contributions, Eq. (62) corresponds to the spin-independent relativistic corrections discussed by Drachman [19]. A comparison with variational calculations is given in the following section.

Drachman [21] has obtained the leading term in the
asymptotic expansion of $\left\langle B_{2}\right\rangle$ by a direct perturbation calculation, in agreement with the limit deduced from variational calculations [3,4]. Higher-order extensions have recently been obtained by Hessels [32] with the result

$$
\begin{align*}
\left\langle B_{2}\right\rangle \rightarrow \frac{\alpha^{2}}{Z^{2}}\left\{\left\langle x^{-4}\right\rangle\right. & +\frac{3(Z-1)}{Z^{2}}\left\langle x^{-5}\right\rangle \\
& -\frac{1}{Z^{2}}\left[\frac{51}{4}-\frac{27(Z-1)}{2 Z}\right. \\
& \left.\left.+\frac{3 L(L+1)}{4}\right]\left\langle x^{-6}\right\rangle\right\} \tag{77}
\end{align*}
$$

The operator B_{2} scales nominally as Z^{3} with nuclear charge [see Eq. (31)], but the leading term in a Z^{-1} expansion of $\left\langle B_{2}\right\rangle$ vanishes exactly, resulting in the overall $(Z-1)^{4} / Z^{2} \simeq Z^{2}$ scaling of (77) due to correlation effects. Aside from the nonrelativistic energy, the differences between the left- and right-hand sides of (62) and (77) are the dominant sources of error in the asymptotic-expansion method. The differences are not fundamental, they merely represent the degree of convergence of the asymptotic expansion.

2. Relativistic-recoil corrections

The asymptotic expansion corresponding to the relativistic-recoil terms represented by Eq. (55) can be obtained in a fairly simple way by transforming to Jacobi coordinates. Starting from Eqs. (20) and (22), and keeping terms up to order $(\alpha y)^{2}$, the operators H_{1} and H_{4} in Jacobi coordinates are

$$
\begin{align*}
& H_{1}=-\frac{1}{8}(1-y)^{3} \alpha^{2}\left[\nabla_{r}^{4}-4 \Lambda y \nabla_{r} \cdot \nabla_{x} \nabla_{r}^{2}+2 \Lambda^{2} y^{2} \nabla_{r}^{2} \nabla_{x}^{2}\right. \\
&\left.+4 \Lambda^{2} y^{2}\left(\nabla_{r} \cdot \nabla_{x}\right)^{2}+\Lambda^{4} \nabla_{x}^{4}\right] \tag{78}\\
& H_{4}= \pi Z \alpha^{2}(1-y)^{2}[\delta(\mathbf{r})+\delta(\mathbf{x}+\Lambda y \mathbf{r})] . \tag{79}
\end{align*}
$$

The second δ function in (79) gives a negligibly small contribution for high- L states and can be neglected. The factors of $(1-y)^{3}$ and $(1-y)^{2}$ produce the reduced-mass corrections B_{1}^{M} and B_{4}^{M} [see Eqs. (41) and (44)], which are counted separately. What remains are the recoil terms

$$
\begin{equation*}
H_{1}^{\prime}+H_{4}^{\prime}=T_{1}+T_{2}+T_{3}+T_{4} \tag{80}
\end{equation*}
$$

with

$$
\begin{align*}
& T_{1}=\alpha^{2}\left[-\frac{1}{8} \nabla_{r}^{4}+\pi Z \delta(\mathbf{r})\right], \\
& T_{2}=-\frac{1}{8} \alpha^{2} \Lambda^{4} \nabla_{x}^{4} \\
& T_{3}=\frac{1}{2} \alpha^{2} \Lambda y \nabla_{r} \cdot \nabla_{x} \nabla_{r}^{2}, \tag{81}\\
& T_{4}=-\frac{1}{4} \alpha^{2} \cdot y^{2} \Lambda^{2}\left[\nabla_{r}^{2} \nabla_{x}^{2}+2\left(\nabla_{r} \cdot \nabla_{x}\right)^{2}\right] .
\end{align*}
$$

$$
\begin{equation*}
\left\langle T_{3}^{\mathrm{X}}\right\rangle_{1 s n L}=2 \sum_{n^{\prime}, n^{\prime \prime}} \frac{\langle 1 s n L| V_{1}\left|n^{\prime} p n^{\prime \prime} L \pm 1\right\rangle\left\langle n^{\prime} p n^{\prime \prime} L \pm 1\right|\left(h_{x}-e_{n}\right) T_{3}|1 s n L\rangle}{\left(E_{1 s}-E_{n^{\prime}}\right)^{2}} \tag{87}
\end{equation*}
$$

where $V_{1}=r \cos (\hat{\mathbf{r}} \cdot \hat{\mathbf{x}}) / x^{2}$ is the dipole term in Eq. (11), $E_{n^{\prime}}=-Z^{2} /\left(2 n^{\prime 2}\right)$, and $e_{n}=-(Z-1)^{2} /\left(2 n^{2}\right)$. The sums over intermediate states can be efficiently evaluated using the method of Dalgarno and Lewis [33] (see also Drach$\operatorname{man}[18,19,21]$). To this end, we define an operator $G_{1}^{(2)}$

For a $1 s n L$ configuration, T_{1} gives the asymptotic contributions

$$
\begin{align*}
\left\langle T_{1}\right\rangle_{1 s n L}=\alpha^{2} Z^{2} & {\left[-\frac{Z^{2}}{8}+\frac{1}{2} \alpha_{1, \mathrm{rel}}\left\langle x^{-4}\right\rangle_{n L}\right.} \\
& \left.+O\left(\left\langle x^{-6}\right\rangle_{n L}\right)\right] \tag{82}
\end{align*}
$$

where the first term is the relativistic energy for the $1 s$ electron, the second term is the relativistic polarizability discussed by Drachman [19], and the third term contains the relativistic quadrupole polarizability and nonadiabatic corrections. Since the transformation to Jacobi coordinates changes $\alpha_{1, \text { rel }}$ in the same way as α_{1} (i.e., by a factor of C_{1}^{2}), the mass-polarization correction is

$$
\begin{equation*}
\left\langle T_{1}^{\mathrm{X}}\right\rangle_{1 s n L}=\alpha^{2} Z^{2} y(Z-1) \alpha_{1, \mathrm{rel}}\left\langle x^{-4}\right\rangle_{n L} \tag{83}
\end{equation*}
$$

T_{2} gives the corresponding terms in Eq. (62) for the Rydberg electron

$$
\begin{equation*}
\left\langle T_{2}\right\rangle_{1 s n L}=\Lambda^{4}\left[h_{1}(n L)+\Delta B_{1}\left(\phi_{1}\right)\right] \tag{84}
\end{equation*}
$$

Expanding $\Lambda^{4} \simeq 1+4 y^{2}$, and remembering that ϕ_{1} changes in proportion to α_{1}, the only significant masspolarization terms are

$$
\begin{equation*}
\left\langle T_{2}^{\mathrm{X}}\right\rangle_{1 s n L}=2 y(Z-1) \Delta B_{1}\left(\phi_{1}\right)+4 y^{2} h_{1}(n L) \tag{85}
\end{equation*}
$$

T_{4} can also be simply evaluated, using the virial theorem to obtain

$$
\left\langle\nabla_{r}^{2} \nabla_{x}^{2}\right\rangle_{1 s n L}=Z^{2}(Z-1)^{2} / n^{2}
$$

and

$$
\left\langle\left(\nabla_{r} \cdot \nabla_{x}\right)^{2}\right\rangle_{1 s n L}=\frac{1}{3} Z^{2}(Z-1)^{2} / n^{2}
$$

with the result

$$
\begin{equation*}
\left\langle T_{4}^{\mathrm{X}}\right\rangle_{1 s n L}=-\frac{5}{12} \alpha^{2} y^{2}\left(\frac{Z(Z-1)}{n}\right)^{2} \tag{86}
\end{equation*}
$$

T_{3} is more difficult to calculate because the matrix element vanishes in a one-electron approximation, as does the adiabatic perturbation correction due to the leading dipole polarization term in Eq. (11). However, the nonadiabatic correction does not vanish. Introducing sums over intermediate states, the leading contribution is
by

$$
\begin{equation*}
V_{1}|1 s\rangle=\left[h_{r},\left[h_{r}, G_{1}^{(2)}\right]\right]|1 s\rangle . \tag{88}
\end{equation*}
$$

Substituting (88) into (87) gives a factor of $\left(E_{1 s}-E_{n^{\prime}}\right)^{2} G_{1}^{(2)}$ in the numerator which cancels the cor-
responding factor in the denominator, and the sums can be completed by closure. Commuting $\left(h_{x}-e_{n}\right)$ to the right then yields

$$
\begin{equation*}
\left\langle T_{3}^{\mathrm{X}}\right\rangle_{1 \operatorname{snL}}=2\langle 1 \operatorname{sn} L| G_{1}^{(2)}\left[h_{x}, T_{3}\right]|1 \operatorname{sn} L\rangle \tag{89}
\end{equation*}
$$

The solution to (88) is

$$
\begin{equation*}
G_{1}^{(2)}=\frac{\mathbf{r} \cdot \hat{\mathbf{x}}}{Z^{4} x^{2}}\left[\frac{11}{6}+\frac{11}{12} Z r+\frac{1}{6}(Z r)^{2}\right] \tag{90}
\end{equation*}
$$

and the commutator in (89) is

$$
\begin{align*}
& {\left[h_{x}, T_{3}\right]|1 \operatorname{sn} L\rangle} \\
& \qquad=\frac{1}{2} y \alpha^{2} Z^{3}(Z-1) \frac{\hat{\mathbf{r}} \cdot \hat{\mathbf{x}}}{x^{2}}\left[1-\frac{2}{Z r}-\frac{2}{Z^{2} r^{2}}\right]|1 \operatorname{sn} L\rangle \tag{91}
\end{align*}
$$

Substituting (90) and (91) into (89) and performing the integrations gives the final result

$$
\begin{equation*}
\left\langle T_{3}^{\mathrm{X}}\right\rangle_{1 s n L}=-y \alpha^{2}(Z-1) \frac{20}{9}\left\langle x^{-4}\right\rangle_{n L} . \tag{92}
\end{equation*}
$$

The sum of $\left\langle T_{1}^{X}\right\rangle$ to $\left\langle T_{4}^{X}\right\rangle$ from Eqs. (83), (85), (86), and (92) yields the asymptotic matrix element

$$
\begin{gather*}
\left\langle B_{1}^{\mathrm{X}}+B_{4}^{\mathrm{X}}\right\rangle \rightarrow \\
+ \\
+2(Z \alpha)^{2}(Z-1)\left(\alpha_{1, \mathrm{rel}}-\frac{20}{9 Z^{4}}\right)\left\langle x^{-4}\right\rangle_{n L} \\
+y^{2}\left[-\frac{5}{12}\left[\frac{\alpha Z(Z-1)}{n}\right]^{2}+4 h_{1}(n L)\right. \tag{93}\\
\left.+O\left(\alpha_{1}\left\langle x^{-4}\right\rangle_{n L}\right)\right]
\end{gather*}
$$

It is necessary to include the terms of order $(\alpha y)^{2}$ because the leading $1 / n^{2}$ term is in fact the dominant contribution for Rydberg states down as far as $4 F$. All other terms decrease as $1 / n^{3}$.

The asymptotic limits for the spin-independent recoil terms are

$$
\begin{equation*}
\left\langle B_{2}^{\mathrm{X}}\right\rangle \rightarrow-y h_{2}(n L) \tag{94}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle\Delta_{2}\right\rangle \rightarrow y\left[-\alpha^{2} Z^{4}+Z h_{2}(n L)\right], \tag{95}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{2}(n L)=\frac{\alpha^{2}(Z-1)^{3}}{n^{3}}\left(\frac{1}{n}-\frac{3}{2\left(L+\frac{1}{2}\right)}\right) \tag{96}
\end{equation*}
$$

is the expectation value of

$$
\frac{1}{2} \frac{\alpha^{2}}{r}\left(\nabla^{2}+\nabla_{r}^{2}\right)
$$

[see Eq. (50)]. The two terms combine to give

$$
\begin{equation*}
\left\langle B_{2}^{\mathrm{X}}+\Delta_{2}\right\rangle \rightarrow-y\left[\alpha^{2} Z^{4}+(Z-1) h_{2}(n L)\right] \tag{97}
\end{equation*}
$$

in agreement with the recent discussion of these terms from quite a different point of view by Au, Feinberg, and Sucher [34]. Note that $\left\langle B_{2}^{\mathrm{X}}\right\rangle$ asymptotically becomes much larger than $\left\langle B_{2}\right\rangle$ [see Eq. (94)], even though the former contains an extra factor of y. This is because $\left\langle B_{2}^{X}\right\rangle$ does not vanish in a one-electron approximation, while $\left\langle B_{2}\right\rangle$ does.

The asymptotic expansion for the matrix element of the δ function is known to be [35]

$$
\begin{align*}
\pi\left\langle\delta\left(\mathbf{r}_{1}\right)\right\rangle= & Z^{3} / 2-\frac{31}{4 Z^{3}}\left\langle x^{-4}\right\rangle_{n L}+\frac{1447}{32 Z^{5}}\left\langle x^{-6}\right\rangle_{n L}+O\left(\left\langle x^{-7}\right\rangle_{n L}\right) \\
& +y\left[-\frac{31}{2 Z^{3}}(Z-1)\left\langle x^{-4}\right\rangle_{n L}+\frac{1}{16 Z^{5}}[4789+2561(Z-2)]\left\langle x^{-6}\right\rangle_{n L}\right] a_{\mu}^{-3} \tag{98}
\end{align*}
$$

This is useful in calculating QED corrections, as well as matrix elements of the Breit interaction. The polarization corrections to $\left\langle B_{2}^{\mathrm{X}}\right\rangle$ and $\left\langle\Delta_{2}\right\rangle$ of order $\left\langle x^{-4}\right\rangle_{n L}$ have not been derived, but the variational results for helium are well represented by

$$
\begin{align*}
& \left\langle B_{2}^{\mathrm{X}}\right\rangle \rightarrow-y\left[h_{2}(n L)-\frac{25}{16 Z^{2}}\left\langle x^{-4}\right\rangle_{n L}\right) \tag{99}\\
& \left\langle\Delta_{2}\right\rangle \rightarrow y\left(-\alpha^{2} Z^{4}+Z h_{2}(n L)+\frac{325}{16 Z^{2}} \alpha^{2} f(Z)\left\langle x^{-4}\right\rangle_{n L}\right] \tag{100}
\end{align*}
$$

The Z scaling of the coefficient $\frac{325}{16}$ in (100) has the form

$$
\begin{equation*}
f(Z)=1+b(Z-2) \tag{101}
\end{equation*}
$$

because of the multiplicity of terms which contribute to Δ_{2} [see Eq. (47)]. From the variational calculations, $b \simeq \frac{1}{6}$.
Adding the B_{1}^{M}, B_{2}^{M}, and B_{4}^{M} reduced-mass terms from Eqs. (41)-(44) to the above B_{2}^{X} and Δ_{2} term gives
$\left\langle-y\left(3 B_{1}+2 B_{2}+2 B_{4}\right)+B_{2}^{\mathbf{X}}+\Delta_{2}\right\rangle \rightarrow-\frac{1}{8} y \alpha^{2} Z^{4}-\frac{1}{8} y\left(\frac{(Z-1)^{2} \alpha}{n^{2}}\right)^{2}+\alpha^{2} y Z^{-2}\left\langle x^{-4}\right\rangle_{n L}\left[-7-\frac{31}{4}-2+\frac{25}{16}+\frac{325}{16} f(Z)\right]$.

The first two terms are the one-electron relativistic reduced-mass shifts expected from Eq. (52), with the second term coming from the combination $y\left[-3 h_{1}(n L)+(Z-1) h_{2}(n L)\right]$. The remaining terms proportional to $\left\langle x^{-4}\right\rangle_{n L}$ come from $\alpha_{1, \text { rel }},\left\langle\delta\left(\mathrm{r}_{1}\right)\right\rangle, B_{2}$, B_{2}^{X}, and Δ_{2}, respectively. This, together with (93), gives the total spin-independent part of the relativistic-recoil shift. For $L \geq 4$, the asymptotic expansions are at least as accurate as the variational calculations.

3. Spin-dependent terms

Turning now to the spin-dependent terms, the matrix elements $\left\langle B_{3}\right\rangle,\left\langle\Delta_{3}\right\rangle$, and $\left\langle B_{5}\right\rangle$ can all be simply expressed to high accuracy in terms of the single matrix element $\left\langle x^{-3}\right\rangle_{n L}[36]$ given by

$$
\begin{equation*}
\left\langle x^{-3}\right\rangle_{n L}=\frac{(Z-1)^{3}}{n^{3} L(L+1 / 2)(L+1)} . \tag{103}
\end{equation*}
$$

Defining $T_{n L}(J)$ by

$$
\begin{align*}
& T_{n L}(L-1)=-\alpha^{2}(L+1)\left\langle x^{-3}\right\rangle_{n L} / 4, \\
& T_{n L}(L)=-\alpha^{2}\left\langle x^{-3}\right\rangle_{n L} / 4, \tag{104}\\
& T_{n L}(L+1)=\alpha^{2} L\left\langle x^{-3}\right\rangle_{n L} / 4,
\end{align*}
$$

together with

$$
S_{L}(J)=\left\{\begin{array}{l}
1 \text { for } J=L \tag{105}\\
\pm 1 /(2 J+1) \text { for } J=L \pm 1
\end{array}\right.
$$

the results for the diagonal matrix elements are

$$
\begin{align*}
& \left\langle n L^{3} L_{J}\right| B_{3, Z}\left|n L^{3} L_{J}\right\rangle \rightarrow Z T_{n L}(J), \\
& \left\langle n L^{3} L_{J}\right| B_{3, e}\left|n L^{3} L_{J}\right\rangle \rightarrow-3 T_{n L}(J), \\
& \left\langle n L^{3} L_{J}\right| B_{5}\left|n L^{3} L_{J}\right\rangle \rightarrow 2 S_{L}(J) T_{n L}(J), \\
& \left\langle n L^{3} L_{J}\right| B_{3, Z}^{\mathrm{X}}\left|n L^{3} L_{J}\right\rangle \rightarrow y T_{n L}(J), \tag{106}\\
& \left\langle n L^{3} L_{J}\right| B_{3, e}^{\mathrm{X}}\left|n L^{3} L_{J}\right\rangle \rightarrow-3 y T_{n L}(J), \\
& \left\langle n L^{3} L_{J}\right| \Delta_{3}\left|n L^{3} L_{J}\right\rangle \rightarrow-2 y T_{n L}(J), \\
& \left\langle n L^{3} L_{J}\right| B_{5}^{X}\left|n L^{3} L_{J}\right\rangle \rightarrow 0+O\left[(\alpha y)^{2}\right] .
\end{align*}
$$

The off-diagonal matrix elements are

$$
\begin{align*}
& \left\langle n L^{3} L_{L}\right| B_{3, Z}\left|n L^{1} L_{L}\right\rangle \rightarrow Z T_{n L}(L)[L(L+1)]^{1 / 2}, \\
& \left\langle n L^{3} L_{L}\right| B_{3, e}\left|n L^{1} L_{L}\right\rangle \rightarrow T_{n L}(L)[L(L+1)]^{1 / 2} \\
& \left\langle n L^{3} L_{L}\right| B_{3, Z}^{\mathrm{X}}\left|n L^{1} L_{L}\right\rangle \rightarrow-y T_{n L}(L)[L(L+1)]^{1 / 2}, \\
& \left\langle n L^{3} L_{L}\right| B_{3, e}^{\mathrm{X}}\left|n L^{1} L_{L}\right\rangle \rightarrow-y T_{n L}(L)[L(L+1)]^{1 / 2}, \\
& \left\langle n L^{3} L_{L}\right| \Delta_{3}\left|n L^{1} L_{L}\right\rangle \rightarrow 2 y T_{n L}(L)[L(L+1)]^{1 / 2} \tag{107}
\end{align*}
$$

The complete matrix elements, including the reducedmass and anomalous-magnetic-moment corrections from Eqs. (49) and (61), are thus

$$
\left\langle n L^{3} L_{J}\right| B_{3}+B_{5}+B_{3}^{\mathrm{X}}+B_{5}^{\mathrm{X}}+B_{3}^{M}+B_{5}^{M}+\Delta_{3}+B_{3}^{A}+B_{5}^{A}\left|n L^{3} L_{J}\right\rangle
$$

$$
\begin{equation*}
\rightarrow T_{n L}(J)\left[Z-3+2 S_{L}(J)+\frac{\mu}{M}\left[2-4 S_{L}(J)\right]+2 \gamma_{e}\left[Z-2+\left(2+\gamma_{e}\right) S_{L}(J)\right]\right) \tag{108}
\end{equation*}
$$

and

$$
\begin{align*}
\left\langle n L^{3} L_{L}\right| B_{3} & +B_{3}^{\mathrm{X}}+B_{3}^{M}+\Delta_{3}+B_{3}^{A}\left|n L^{1} L_{L}\right\rangle \\
& \rightarrow T_{n L}(L)\left(Z+1-2 \frac{\mu}{M}+2 \gamma_{e} Z\right)[L(L+1)]^{1 / 2} \tag{109}
\end{align*}
$$

in units of e^{2} / a_{μ}, with $\gamma_{e} \simeq \alpha / 2 \pi-0.32848(\alpha / \pi)^{2}$. It is interesting that the Z dependence of the relativistic-recoil plus reduced-mass terms cancels in the asymptotic limit.

The above matrix elements of $B_{3, Z}, B_{3, e}$, and B_{5} follow in a simple way from the asymptotic forms of the operators themselves. Concerning Δ_{3}, its matrix elements seem surprising at first sight because the expectation values of $\mathbf{r}_{1} \times \mathbf{p}_{2}$ and $\mathbf{r}_{2} \times \mathbf{p}_{1}$ [see Eq. (48)] vanish in any one-
electron approximation. However, nonvanishing contributions proportional to $T_{n L}(J)$ come from first-order polarization corrections to the wave functions, as can be shown by a direct perturbation calculation (see the Appendix). Since the matrix elements vanish in lowest order, the Z scaling of $\left\langle\Delta_{3}\right\rangle$ is one power of Z lower than the nominal Z^{4} scaling indicated by Eq. (48). Furthermore, a transformation to Jacobi coordinates shows that in the asymptotic limit, $\Delta_{3} \rightarrow-2 B_{3, Z}^{X}$ (see the Appendix). This establishes the correct Z scaling of $B_{3, Z}^{\mathrm{X}}$ and ties together the relative signs of the off-diagonal matrix elements. A comparison with the derivation of Au, Feinberg, and Sucher [34] is not meaningful for this case because their effective two-body formalism does not contain a complete representation of the spin-dependent interactions. The derivation of Hessels et al. [36] corresponds to replacing Δ_{3} and B_{3}^{M} by $\widetilde{\Delta}_{3}=\Delta_{3}+2 y B_{3, Z}$ and
$\widetilde{B}_{3}^{M}=B_{3}^{M}-2 y B_{3, Z}$, which restores the terms that were canceled in deriving Δ_{3} [see the discussion following Eq. (48)], and then neglecting the contributions from $\widetilde{\Delta}_{3}$, $B_{3, Z}^{\mathrm{X}}$, and $B_{3, e}^{\mathrm{X}}$. The neglected terms sum to zero (asymp-
totically) for the off-diagonal matrix element.
For completeness, the finite-mass corrections to the anomalous-magnetic-moment terms can be extracted directly from Eqs. (25)-(27). They are

$$
\begin{align*}
-2 \gamma_{e} y\left\langle B_{3, Z}+\frac{4}{3} \delta_{S, S^{\prime}} B_{3, e}+2 B_{5}\right\rangle+\gamma_{e}\left\langle 2 B_{3, Z}^{\mathrm{X}}+\frac{4}{3} \delta_{S, S^{\prime}} B_{3, e}^{\mathrm{X}}\right. & \left.+\Delta_{3}+2 B_{5}^{\mathrm{X}}\right\rangle \\
& \rightarrow\left\{\begin{array}{l}
-2 \gamma_{e} y\left[Z-2+4 S_{L}(J)\right] T_{n L}(J) \text { for } S=S^{\prime}=1 \\
-2 \gamma_{e} y Z T_{n L}(L)[L(L+1)]^{1 / 2} \text { for } S=1, \quad S^{\prime}=0
\end{array}\right. \tag{110}
\end{align*}
$$

The only term not included so far in the asymptotic expansions is the term proportional to $\pi\left\langle\delta\left(\mathbf{r}_{12}\right)\right\rangle$ in Eq. (39). In a simple screening approximation, with $R_{n L}(r, Z)$ the hydrogenic radial wave function for nuclear charge Z, the matrix element is given by

$$
\begin{align*}
\pi\left\langle\delta\left(\mathbf{r}_{12}\right)\right\rangle & =\frac{1}{2} \int_{0}^{\infty}\left|R_{1 s}(r, Z)\right|^{2}\left|R_{n L}(r, Z-1)\right|^{2} r^{2} d r \\
& =\frac{2 Z^{3}(n+L)!}{(2 L+1)!(n-L-1)!}\left(\frac{Z-1}{n Z}\right)^{2 L+4}\left(\frac{Z L+1}{Z-1}\right) e^{-2(Z-1) / Z} \tag{111}
\end{align*}
$$

and so decreases exponentially with L. However, the above is asymptotically larger than the actual variational matrix elements (see Sec. IV) by approximately a factor of 4 for helium. As a function of Z, the required asymptotic correction factor is approximately

$$
\begin{equation*}
g(Z)=\left(\frac{Z-1}{Z}\right)^{2} \tag{112}
\end{equation*}
$$

With $g(Z)$ included, the above reproduces the variational calculations to within 18% for $L \geq 4$. For the low- L states of helium, the correction factors are $2.07 \mathrm{~g}(\boldsymbol{Z})$, $1.58 g(Z), 1.32 g(Z), 1.18 g(Z)$, and $1.08 g(Z)$, respectively, for $L=1,2,3,4$, and 5 , with little dependence on n. That $g(Z)$ is substantially smaller than unity indicates that correlation effects and the "Coulomb hole" [37] about the point $\mathbf{r}_{12}=\mathbf{0}$ continue to play an important role, even in the asymptotic limit.

IV. COMPARISON WITH VARIATIONAL CALCULATIONS

A comparison of the asymptotic expansions with matrix elements obtained from high-precision variational wave functions serves two purposes. First, for low to moderate L, it allows a precise assessment of the accuracy of the truncated asymptotic expansions. Second, for high L, the comparison should be regarded instead as a test of the variational results. Since the rate of convergence of the asymptotic expansions rapidly improves with increasing L, the expansions eventually exceed the accuracy of the variational matrix elements.

A. Nonrelativistic energies

Tables I and II summarize the nonrelativistic energies for infinite nuclear mass, together with the first- and second-order mass-polarization corrections. This and the subsequent tables include the $2 S$ states and all higher- L states up to $n=10$ and $L=7$. As an example of the spectroscopic notation, $2 P$ means $1 s 2 p{ }^{1} P$ or ${ }^{3} P$. A full dis-
cussion of the double basis-set variational methods and convergence studies for each state can be found in Ref. [5], together with comparisons with previous work. Detailed comparisons with the asymptotic expansions for the nonrelativistic energies have been presented previously $[4,21]$ and will not be repeated here. However, comparisons with the asymptotic expansions for the first- and second-order mass-polarization corrections (in units of e^{2} / a_{μ})

$$
\begin{equation*}
\varepsilon_{M}^{(1)}=\left\langle\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right\rangle \tag{113}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{M}^{(2)} \simeq\left[E_{M}-E_{\infty}-y \varepsilon_{M}^{(1)}\right] / y^{2} \tag{114}
\end{equation*}
$$

to the nonrelativistic energies provide important tests of the variational results. In Eq. (114), E_{∞} is the energy for infinite nuclear mass, and E_{M} is the energy corresponding to ${ }^{4} \mathrm{He}$ obtained by explicitly including the $y \mathbf{p}_{1} \cdot \mathbf{p}_{2}$ mass-polarization term in the Hamiltonian ($y=1.370745620 \times 10^{-4}$). The $\varepsilon_{M}^{(2)}$ comparison is particularly interesting because it provides a profound test of the variational calculations to the full extent of their estimated convergence. The extreme sensitivity follows from the fact that the terms $E_{\infty}+y \varepsilon_{M}^{(1)}$ in Eq. (114) account for the first nine significant figures of E_{M}, and so the first significant figure of $\varepsilon_{M}^{(2)}$ is determined by the tenth significant figure of E_{M}. A failure of the variational basis sets to converge to the correct answer (relative to E_{∞}) is immediately revealed by a comparison with the asymptotic $\varepsilon_{M}^{(2)}$ from Eq. (18). The one slight complication is that the variational estimate of $\varepsilon_{M}^{(2)}$ from Eq. (114) is contaminated by terms of higher order in y. For the present levels of accuracy, the only significant such term is the contribution $-y^{4}(Z-1)^{2} /\left(2 n^{2}\right)$ in Eq. (10) to $y^{2} \varepsilon_{M}^{(2)}$. The asymptotic $\varepsilon_{M}^{(2)}$ is therefore modified to be

$$
\begin{equation*}
\widetilde{\varepsilon}_{M}^{(2)}(y)=\varepsilon_{M}^{(2)}-y^{2}(Z-1)^{2} /\left(2 n^{2}\right) \tag{115}
\end{equation*}
$$

in order to compare with the variational values from Eq.
(114) for ${ }^{4} \mathrm{He}$. The small-y dependence of $\varepsilon_{M}^{(2)}$ should be taken into account for very-high-precision applications to isotope shifts, etc.

Table III shows the comparison for $\varepsilon_{M}^{(1)}$. The asymptotic expansion for the H, I, and K states includes the new Drachman [21] terms of order $\left\langle x^{-9}\right\rangle_{n L}$ and $\left\langle x^{-10}\right\rangle_{n L}$ shown in Eq. (14). As recommended by him, the quantity added is $\frac{1}{4}\left(c_{9}^{(1)}\left\langle x^{-9}\right\rangle_{n L}+c_{10}^{(1)}\left\langle x^{-10}\right\rangle_{n L}\right)$ with $\pm \frac{1}{4}\left(c_{9}^{(1)}\left\langle x^{-9}\right\rangle_{n L}+c_{10}^{(1)}\left\langle x^{-10}\right\rangle_{n L}\right)$ regarded as the uncertainty. These terms improve the agreement with the variational results by about one significant figure. In
every case, the actual differences are close to the uncertainty estimate for the asymptotic expansion.

As discussed above, the comparison for $\widetilde{\varepsilon}_{M}^{(2)}(y)$ in Table IV provides instead a test of the variational results. For $L>3$, the asymptotic expansion (15) [including Eq. (115)] becomes the more accurate of the two. The differences are in reasonably good accord with the accuracies estimated from the apparent convergence of the variational calculations [5]. At present levels of accuracy, terms beyond $\left\langle x^{-8}\right\rangle_{n L}$ in the asymptotic expansion are not necessary, although they are known [26] and are included

TABLE I. Nonrelativistic variational energies $E_{\infty}=-2-1 /\left(2 n^{2}\right)+\Delta E_{\infty}$ for infinite nuclear mass, and first- and second-order mass-polarization coefficients $\varepsilon_{M}^{(1)}$ and $\varepsilon_{M}^{(2)}$ for the singlet states of helium (in units of 10^{-3} a.u.).

State	$\Delta E_{\infty}\left(n^{1} L\right)$	$\varepsilon_{M}^{(1)}\left(n^{1} L\right)$	$\varepsilon_{M}^{(2)}\left(n^{1} L\right)$
$2 S$	-20.974 046054 43(5)	9.5038644190 (2)	-135.276 89(2)
$2 P$	$1.156913501908(8)$	46.044524 94(1)	-168.271 40(5)
$3 P$	0.409193463 61(3)	$14.548047097(1)$	-66.047 859(3)
$4 P$	$0.18034954976(3)$	6.254923554 3(1)	-35.159 71(6)
$5 P$	0.094010099 17(2)	3.230021 84(2)	-21.847 6(3)
$6 P$	0.054909217 15(2)	1.878058 536(1)	- 14.902 86(9)
78	0.034767103 30(2)	1.186152 30(1)	-10.818 6(2)
$8 P$	$0.02337286678(2)$	0.796195 83(5)	-8.211 7(5)
$9 P$	0.016454853 31(5)	$0.559978028(2)$	-6.445 7(2)
10 P	$0.01201619778(4)$	0.408649 426(2)	-5.197 (1)
3 D	-0.065 177296 690(6)	-0.249 $3999921(1)$	-57.201 299(9)
$4 D$	-0.029 846178 687(7)	-0.129 1751887 (8)	-32.150 91(2)
$5 D$	-0.015 836159 984(4)	-0.071 883131 (6)	- 20.510 1(2)
$6 D$	-0.009 338535 397(5)	-0.043 412268 9(9)	-14.199 4(2)
$7 D$	-0.005 946825 32(1)	-0.028 027840 (2)	-10.405 09(3)
8 D	- 0.004012563 811(7)	- 0.019076 181(1)	-7.950 7(4)
$9 D$	-0.002 831931 468(6)	-0.013 542 185(3)	-6.270 99(7)
10 D	-0.002 071654 250(6)	-0.009 9475060 (6)	-5.072 4(4)
$4 F$	-0.005 144381 749(1)	-0.010 024269 4(2)	- 31.274 336(4)
$5 F$	-0.0029371587427(5)	-0.005 704294 6(4)	- 20.013 498(6)
$6 F$	-0.001 794926 6608(3)	-0.003 482 257(7)	-13.896 984(2)
$7 F$	-0.001 166441 3586(3)	-0.002 26200 (4)	-10.209 2(3)
$8 F$	-0.000 $7971150141(6)$	-0.001545 48(1)	-7.815 9(3)
$9 F$	-0.000 567391 1518(8)	-0.001 0999671 (3)	-6.175 20(1)
10 F	-0.000 417564 669(2)	-0.000 809 442(9)	-5.001 76(2)
$5 G$	-0.000 710898584714 (7)	-0.001 404413 64(4)	-20.003 560 85(5)
$6 G$	-0.000 $45649842434(3)$	-0.000 898579 9(7)	$-13.891179(6)$
$7 G$	-0.000 304592119 49(7)	-0.000 5983963 (3)	- 10.205 61(5)
$8 G$	-0.000 211494024 1(1)	-0.000 $41500403(5)$	-7.813 563(1)
$9 G$	-0.000 152121413 5(1)	-0.000 298267 2(1)	-6.173579 6(1)
$10 G$	-0.000 $1127643182(4)$	-0.000 220 982(2)	-5.000 55(2)
6H	-0.000 145865390 8318(7)	-0.000 290347 0899(3)	-13.889 619 06(3)
7H	-0.000 $10117382898(2)$	-0.000 201097 79(3)	-10.204 590(2)
8H	-0.000 $07182865581(1)$	-0.000 142649 2(3)	-7.812 855(4)
9 H	-0.000 $05239744630(2)$	-0.000 104002 216(2)	-6.173 104(2)
10 H	-0.000 $03921439452(2)$	-0.000 $07780668(4)$	-5.000 193 5(2)
$7 I$	-0.000 038973538 2601(1)	-0.000 077775 526(3)	- 10.20427673 (2)
$8 I$	-0.000 0285495845853 (4)	-0.000 056935 91(1)	-7.812 642 88(1)
9 I	-0.000 021226209733 (1)	-0.000 042313 59(3)	-6.172 9459 9(1)
10 I	-0.000 $016086516194(2)$	-0.000 0320590 (1)	-5.000 0803 (4)
8 K	-0.000 0125702293050 (0)	-0.000 0251113316 (0)	-7.812563 02(1)
9K	-0.000 0095901569404 (1)	-0.000 $0191516195(1)$	-6.172 $88759(1)$
10 K	-0.000 007388375 8771(7)	-0.000 014751 409(2)	-5.000 $03693(5)$

in the tabulated values. Even for the P states, where only the leading two terms of Eq. (15) are nondivergent, deviations from a systematic trend in the differences can indicate errors in the variational eigenvalues as small as 10^{-13} a.u. For example, for the $10 P$ state in Table IV, a change of 0.01×10^{-3} in the "difference" of $0.078(1) \times 10^{-3}$ would correspond to an energy change of $0.01 \times 10^{-3} y^{2}=1.88 \times 10^{-13}$ a.u. The eventual dominance of $y^{2} \varepsilon_{M}^{(2)}$ over $y \varepsilon_{M}^{(1)}$ for sufficiently high L is evident from the table.

B. Relativistic corrections

Aside from the nonrelativistic energy, the largest source of error in the asymptotic-expansion method is the
lowest-order relativistic correction. Beginning with the spin-independent part given by Eq. (62), the variational matrix elements $-\frac{1}{8}\left\langle p_{1}^{4}+p_{2}^{4}\right\rangle$ are listed for the singlet and triplet states in Table V . The matrix elements $\pi\left\langle\delta\left(\mathbf{r}_{1}\right)\right\rangle$ are given separately in Table VI for L up to 2. This completes the tabulation of these matrix elements given previously for $3 \leq L \leq 7$ [35]. The left-hand side of Eq. (62) also contains the term $\alpha^{2}\left\langle\pi \delta\left(\mathrm{r}_{12}\right)\right\rangle$, but as shown in Eq. (111) (see also Table VII), this decreases exponentially with L, and is negligible for $L>3$.

The comparison in Table VIII with the asymptotic expansion shows that the $\Delta B_{1}\left(\phi_{1}\right)$ term removes what would otherwise be a significant discrepancy with the

TABLE II. Same as Table I for the triplet states of helium (in units of 10^{-3} a.u.).

State	$\Delta E_{\infty}\left(n^{3} L\right)$	$\varepsilon_{M}^{(1)}\left(n^{3} L\right)$	$\varepsilon_{M}^{(2)}\left(n^{3} L\right)$
$2 S$	-50.229 $3782367912(1)$	$7.442130705(1)$	- 57.495840 (8)
$2 P$	-8.164 190779 27(1)	-64.572 425 024(3)	-204.959 93(2)
$3 P$	-2.525 $52871872(4)$	-18.369 001 636(2)	- 70.292 710(2)
$4 P$	-1.074 354296 62(2)	-7.555 178 98(1)	-36.129 973(2)
$5 P$	-0.551 $18725625(1)$	-3.810911 035(1)	- 22.166 61(9)
$6 P$	-0.319 $06988485(1)$	-2.184 346 463(1)	-15.033 58(5)
$7 P$	-0.200 878375 28(2)	- 1.3665008 (3)	-10.879 (2)
$8 P$	-0.134 513771 12(1)	-0.911 053 5(3)	-8.248 7(6)
$9 P$	-0.094 427860 24(4)	-0.637531 359(5)	-6.464 937(1)
10 P	-0.068 8054978 (1)	-0.463 433 718(8)	-5.206 7(1)
3 D	-0.080 753897 706(4)	0.025322 839(1)	-54.737 73(1)
$4 D$	-0.038 847501 795(3)	0.029442651 (2)	- 30.747 891(7)
$5 D$	-0.021 027446 911(5)	0.019568 85(1)	-19.7062(2)
$6 D$	-0.012 526564903 (7)	$0.01274222(3)$	-13.707 27(1)
$7 D$	-0.008 024322 942(2)	0.008563121 (3)	-10.085 212(1)
$8 D$	-0.005 434711706 (3)	0.005971123 4(3)	-7.731 59(2)
$9 D$	-0.003 845378 524(2)	$0.004306538(6)$	-6.115 2(1)
10 D	-0.002 818080 232(8)	0.003198 298(8)	-4.958 0(8)
$4 F$	-0.005 168403 2456(6)	-0.009 669639 550(9)	-31.277 992 1(3)
$5 F$	-0.002 957377 3694(4)	-0.005 4064900 (5)	-20.016 561(4)
$6 F$	-0.001 809459 6431(2)	-0.003 268458 6(8)	-13.899 22(3)
$7 F$	-0.001 176742 2112(2)	-0.002 110 58(3)	-10.210 7(3)
$8 F$	-0.000 $8045350908(5)$	-0.001 $436452(2)$	-7.817 0(2)
$9 F$	-0.000 572858 8702(7)	-0.001 019 651(2)	-6.176 0254(7)
10 F	-0.000 421686 604(1)	-0.000 $7489264(2)$	-5.002 386(2)
$5 G$	-0.000 710925343 925(4)	-0.001 404001 25(2)	-20.003 564 58(5)
$6 G$	-0.000 $45652806407(3)$	-0.000 8981237 (7)	-13.891 184(8)
$7 G$	-0.000 $30461756487(6)$	-0.000 598005 (1)	- 10.20561 (5)
$8 G$	-0.000 211514424 82(9)	-0.000 41469037 (1)	-7.813 568(2)
$9 G$	-0.000 152137492 2(3)	-0.000 298019 82(6)	-6.173 592(4)
$10 G$	-0.000 112777003 3(6)	-0.000 220 785(3)	-5.000 55(2)
6H	-0.000 145865412 6648(6)	-0.000 2903467263 (1)	-13.889 618 97(3)
7H	-0.000 $101173858985(8)$	-0.000 201097 257(7)	-10.204 587(2)
8H	-0.000 07182868573 (1)	-0.000 $1426487(2)$	-7.812 859(5)
9 H	-0.000 052397473 04(2)	-0.000 $10400189(2)$	-6.173 101(2)
10 H	-0.000 $03921441741(2)$	-0.000 077806 22(1)	-5.000 193 46(7)
71	-0.000 038973538 2737(1)	-0.000 077775 520(3)	- 10.204276 78(1)
8 I	-0.000 028549584608 (1)	-0.000 056935 91(2)	-7.81264294(4)
9 I	-0.000 0212262097577 (6)	-0.000 042313 62(5)	-6.1729460(2)
10 I	-0.000 016086516 219(2)	-0.000 032058 9(2)	-5.000 081(1)
8 K	-0.000 0125702293050 (0)	-0.000 $0251113317(0)$	-7.812 563 02(1)
9 K	-0.000 0095901569404 (1)	-0.000 0191516197 (3)	-6.172 887 59(1)
10 K	-0.000 0073883758771 (7)	-0.000 014751413 (6)	-5.000 $03683(2)$

variational matrix elements. The residual differences decrease more rapidly with L than $\left\langle x^{-6}\right\rangle_{n L}$ since the relativistic quadrupole polarizability [19] and nonadiabatic correction terms [32] are included. The close agreement leaves little room for doubt that the variational results are correct.
The above does not include the contribution from $\left\langle B_{2}\right\rangle$ because this corresponds asymptotically to the largest part of what is called the retardation term in the asymptotic expansion and LRI pictures [see Eq. (120) below]. Table IX lists the variational matrix elements, and Table X shows the good agreement that is obtained with the asymptotic expansion (77) for high L, provided that the higher-order corrections in (77) are included.

Turning now to the relativistic-recoil terms, the asymptotic expansion Eq. (93) does not quite correspond to the variational matrix elements because of terms of or$\operatorname{der} \alpha^{2} y^{2}$. Although the mass-polarization operator is included to all orders in the variational matrix elements, the term $-y^{2}\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2} / 2$, which was dropped from Eq. (28), contributes to the $1 / n^{2}$ term. Its expectation value is asymptotically
$-(\alpha y)^{2}\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2} / 2 \rightarrow-(\alpha y)^{2}[Z(Z-1) / n]^{2} / 6$,
and this is precisely the difference between Eq. (93) and the high- L limit of the variational results. If this term is of importance ($-4.39 / n^{2} \mathrm{kHz}$ for ${ }^{4} \mathrm{He}$), then it should be added to $\left(\Delta E_{R R}\right)_{\mathrm{X}}$ [see Eqs. (54) and (55)] and the total energy obtained from the variational matrix elements. Table XI compares the two methods of calculation, with the missing term in Eq. (116) subtracted from the asymptotic expansion. The variational results correspond to the quantity (in a.u.)

$$
\left\langle B_{1}^{X}+B_{4}^{X}\right\rangle=\alpha^{2}(\mu / M)\left(p_{4}^{X}+Z d_{1}^{X}\right)
$$

with p_{4}^{X} from Table V and d_{1}^{X} from Table VI (or Table IV of Ref. [35] for $L>2$). For consistency with the asymptotic expansions, the small $-d_{12}^{X}$ term [see Eq. (32)] listed in Table VII is not included. For $L \geq 4$, the asymptotic expansion becomes comparable in accuracy to the variational results owing to loss of precision in the latter due to the differencing of nearly equal numbers [see Eq. (114)]. In addition, there is severe cancellation between the singlet and triplet D states on taking the spin average.

TABLE III. Comparison of spin-averaged variational matrix elements with the asymptotic values [see Eq. (14)] for the first-order mass-polarization coefficient $\varepsilon_{M}^{(1)}$ (in units of 10^{-3} a.u.).

State	Variational	Asymptotic	Difference
3D	-0.112038 577(1)	-0.10(6)	-0.01(6)
4D	-0.049 866 269(2)	-0.04(3)	-0.01(3)
$5 D$	-0.026 15714 (2)	-0.02(2)	-0.00(2)
6 D	-0.015 335 02(3)	-0.01(1)	-0.00(1)
7 D	-0.009 732 359(4)	-0.008(8)	-0.002(8)
8 D	-0.006 $552529(1)$	-0.005(5)	-0.001(5)
9 D	-0.004 617823 (6)	-0.004(4)	-0.001(4)
10D	-0.003 374 604(8)	-0.003(3)	-0.001(3)
$4 F$	-0.009 846954 5(2)	-0.010 1(4)	0.0003 (4)
$5 F$	-0.005 555392 3(6)	-0.005 7(3)	$0.0002(3)$
$6 F$	-0.003 375 358(7)	-0.003 5(2)	$0.0001(2)$
$7 F$	-0.002 186 29(5)	-0.002 3(1)	0.0001 1(1)
$8 F$	-0.001 $49097(1)$	-0.001 55(9)	0.000 06(9)
$9 F$	-0.001 059 809(2)	-0.00110(7)	$0.00004(7)$
10F	-0.000 779 184(9)	-0.000 81(5)	0.000 03(5)
$5 G$	$-0.00140420744(5)$	-0.001 403 7(9)	-0.000000 5(9)
$6 G$	-0.000 $898352(1)$	-0.000 898(1)	-0.000 000(1)
7 G	-0.000 598 201(1)	-0.000 5978 (8)	-0.000 000 4(8)
$8 G$	-0.000 414847 20(5)	-0.000 4146 (6)	-0.000 0002 (6)
$9 G$	-0.000 2981435 (1)	-0.000 2979 (5)	-0.000 0002 (5)
10G	-0.000 220883 (3)	-0.0002207(4)	-0.000 000 2(4)
6H	-0.000 2903469081 (3)	-0.000 $290348(3)$	$0.000000001(2)$
7H	-0.000 $20109752(3)$	-0.000 201 098(3)	0.000000001 (3)
8H	-0.000 1426489 9(4)	-0.000 142650 (3)	$0.000000001(3)$
9H	-0.000 $10400205(2)$	-0.000 104003 (3)	$0.000000001(3)$
10H	-0.000 077806 45(4)	-0.000 077 807(2)	$0.000000001(2)$
71	-0.000 077775 523(4)	-0.000 077775 54(3)	$0.00000000002(3)$
$8 I$	-0.000 05693591 (2)	-0.000 $05693594(5)$	$0.00000000003(5)$
9 I	-0.000 042313 60(6)	-0.000 $04231367(5)$	$0.00000000006(8)$
10I	-0.000 032058 9(3)	-0.000 $03205900(5)$	0.0000000000 (3)
8 K	-0.000 025111331 651(1)	-0.000 025111 332(1)	$0.000000000001(1)$
9 K	-0.000 019151619 6(3)	-0.000 019151 621(2)	$0.000000000002(2)$
10 K	$-0.000014751411(7)$	-0.000 014751 390(2)	-0.000 000000021 (7)

For the F states, there is severe cancellation between the positive terms of order $\alpha^{2} y$ and the negative terms of order $\alpha^{2} y^{2}$ in Eq. (93). For higher L, the latter terms become dominant, which explains the changes in sign evident in Table XI and p_{4}^{X} in Table V. The residual differences in the last column are approximately $-4 \alpha^{2} y\left\langle x^{-6}\right\rangle_{n L}$ a.u., which is taken to be the uncertainty in the asymptotic values. Matrix elements of the remaining recoil term Δ_{2} are listed in Table XII. The asymptotic form is given by Eq. (100).

For completeness, Table XIII lists the variational values for the Q matrix elements defined by

$$
\begin{equation*}
Q=\frac{1}{4 \pi} \lim _{a \rightarrow 0}\left\langle r_{12}^{-3}(a)+4 \pi(\gamma+\ln a) \delta\left(\mathbf{r}_{12}\right)\right\rangle \tag{117}
\end{equation*}
$$

where γ is Euler's constant and a is the radius of a sphere centered at $r_{12}=0$ which is excluded from the integration over r_{12}. This is required in the calculation of the ArakiSucher electron-electron QED contribution to the energy given by $[38,39]$
$\Delta E_{L, 2}(n L S)=\alpha^{3}\left(\frac{14}{3} \ln \alpha+\frac{164}{15}\right)\left\langle\delta\left(\mathbf{r}_{12}\right)\right\rangle-\frac{14}{3} \alpha^{3} Q$.
The above contains contributions from one- and twophoton exchange, vertex terms, vacuum-polarization terms, anomalous-magnetic-moment terms, and Coulomb corrections. For Rydberg states $\left\langle\delta\left(\mathbf{r}_{12}\right)\right\rangle$ decreases exponentially with L and can be neglected (see Table VII). The Q term is well approximated by its asymptotic expansion

TABLE IV. Comparison of spin-averaged variational matrix elements with the asymptotic values [see Eq. (15)] for the secondorder mass-polarization coefficient $\varepsilon_{M}^{(2)}$ (in units of 10^{-3} a.u.).

State	Variational	Asymptotic	Difference
$2 P$	-86.615 66(6)	-54.2969	32.3188
$3 P$	-68.170 284(4)	-65.200 6	-2.969 7
$4 P$	-35.644 84(6)	-35.4614	-0.183 4
$5 P$	-22.0071(3)	-22.190 0	0.182 9(3)
$6 P$	-14.968 2(1)	-15.1669	0.198 6(1)
$7 P$	-10.849(2)	-11.0129	0.164(2)
$8 P$	-8.230 2(8)	-8.3561	0.1258 (8)
$9 P$	-6.455 3(2)	-6.555 5	0.1001 (2)
10 P	-5.202(1)	-5.279 4	0.078(1)
$3 D$	-55.969 51(2)	-55.94(2)	-0.03(2)
$4 D$	-31.449 40(2)	-31.43(1)	-0.02(1)
$5 D$	-20.1081(2)	-20.098(7)	-0.011(7)
$6 D$	-13.953 3(3)	-13.947(4)	-0.006(4)
$7 D$	-10.245 15(3)	-10.241(3)	-0.004(3)
$8 D$	-7.841 2(4)	-7.838(2)	-0.004(2)
$9 D$	-6.1931(1)	-6.191(1)	-0.003(1)
10 D	-5.015 2(9)	-5.013(1)	-0.002(1)
$4 F$	-31.276164(4)	-31.2761(1)	-0.000 0(1)
$5 F$	-20.015 030(7)	-20.014 96(9)	-0.000 07(9)
$6 F$	-13.898 10(3)	-13.898 05(6)	-0.000 05(7)
$7 F$	-10.209 9(4)	$10.21004(4)$	0.0001 (4)
$8 F$	-7.816 5(3)	-7.81657(3)	0.0001 (3)
$9 F$	-6.175 61(1)	-6.175 74(2)	$0.00013(3)$
10 F	-5.002 07(2)	-5.002 14(2)	$0.00006(2)$
$5 G$	-20.003 562 72(7)	-20.003 568(3)	$0.000005(3)$
$6 G$	-13.891 18(1)	-13.891 183(3)	0.00000 (1)
$7 G$	-10.20561(7)	-10.205 613(2)	$0.00000(7)$
$8 G$	-7.813 566(3)	-7.813 564(2)	$-0.000002(3)$
$9 G$	-6.173586(4)	-6.173605(1)	$0.000019(5)$
$10 G$	-5.00055(3)	-5.000 568(1)	0.000 02(3)
6 H	-13.889 619 02(4)	-13.889 619 36(7)	$0.00000034(8)$
7H	-10.204 589(2)	-10.204 588 49(8)	$-0.000000(2)$
8H	-7.812 857(6)	-7.812 859 93(7)	$0.000003(6)$
9 H	-6.173 103(3)	-6.173 102 12(6)	$-0.000000(3)$
10 H	-5.000 193 5(2)	-5.000 196 56(5)	$0.0000031(2)$
71	-10.204 $27676(2)$	-10.204 276 794(4)	$0.00000004(2)$
8 I	-7.812642 91(4)	-7.812642 992(5)	$0.00000008(4)$
9 I	-6.172 945 9(2)	-6.172 945 836(5)	$-0.0000001(2)$
10 I	-5.000 081(1)	-5.000 080 594(4)	$-0.000000(1)$
$8 K$	-7.812563 02(1)	-7.812 563 0145(4)	$-0.00000001(1)$
9 K	-6.17288759(1)	-6.172 887 5893(5)	$-0.00000000(1)$
10 K	-5.000 $03688(5)$	-5.000037 0503(5)	$0.00000017(5)$

$$
\begin{equation*}
Q=\frac{1}{4 \pi}\left(\left\langle x^{-3}\right\rangle_{n L}+3 Z^{-2}\left\langle x^{-5}\right\rangle_{n L}\right) \tag{119}
\end{equation*}
$$

where the second term follows simply from a multipole expansion of $1 /|\mathbf{r}-\mathbf{x}|^{3}$. In the LRI picture, substituting the leading term of (119) in (118) gives the second term in

$$
\begin{equation*}
\Delta V_{\mathrm{ret}}=\frac{\alpha^{2}}{Z^{2}}\left\langle x^{-4}\right\rangle_{n L}-\frac{7 \alpha^{3}}{6 \pi}\left\langle x^{-3}\right\rangle_{n L} \tag{120}
\end{equation*}
$$

which is the short-range form of the asymptotic expansion for the retardation terms [9-11] (see Ref. [5] for a full discussion). The leading term is related to $\left\langle B_{2}\right\rangle$ through Eq. (77).

The spin-dependent matrix elements are listed in

Tables XIV-XVII. In each case, the matrix element refers to the $J=L$ component of the triplet. The $J=L \pm 1$ components are obtained from the tabulated quantities according to

$$
\begin{align*}
& \left\langle n^{3} L_{J}\right| B_{3}\left|n^{3} L_{J}\right\rangle=t_{L}(J)\left\langle n^{3} L_{L}\right| B_{3}\left|n^{3} L_{L}\right\rangle, \tag{121}\\
& \left\langle n^{3} L_{J}\right| \Delta_{3}\left|n^{3} L_{J}\right\rangle=t_{L}(J)\left\langle n^{3} L_{L}\right| \Delta_{3}\left|n^{3} L_{L}\right\rangle \tag{122}\\
& \left\langle n^{3} L_{J}\right| B_{5}\left|n^{3} L_{J}\right\rangle=S_{L}(J) t_{L}(J)\left\langle n^{3} L_{L}\right| B_{5}\left|n^{3} L_{L}\right\rangle \tag{123}
\end{align*}
$$

where $t_{L}(L)=1$,

$$
\begin{equation*}
t_{L}(J)=\frac{1}{2} \mp\left(L+\frac{1}{2}\right) \tag{124}
\end{equation*}
$$

TABLE V. Variational matrix elements $-\langle n L| p_{1}^{4}+p_{2}^{4}|n L\rangle / 8+10=p_{4}+(\mu / M) p_{4}^{\mathrm{X}}$ (in units of 10^{-3} a.u.).

State	$p_{4}\left(n^{1} L\right)$	$p_{4}^{\mathrm{X}}\left(n^{1} L\right)$	$p_{4}\left(n^{3} L\right)$	$p_{4}\left(n^{3} L\right)$
$2 S$	-279.668 907(5)	40.057 (3)	-458.885 204 60(2)	1.118 52(6)
$2 P$	- 29.251 357(5)	-262.585 0(7)	87.906284 33(5)	472.640 5(2)
$3 P$	-11.372 887(6)	-71.319 7(3)	21.921 78(2)	85.562 9(5)
$4 P$	-5.316 142(5)	-29.255 6(3)	$8.420154(3)$	28.446(2)
$5 P$	-2.877 712 9(6)	-14.827(7)	4.071 218(4)	12.783(6)
$6 P$	-1.725 117 5(3)	-8.555(1)	2.267 379(2)	6.824(2)
7 P	-1.113 216(2)	-5.37(2)	1.389 223(3)	4.06(2)
$8 P$	-0.759 251(2)	-3.61(1)	0.9117219 9(7)	2.65(2)
$9 P$	-0.540 617(1)	-2.542(1)	$0.6301753(4)$	1.798(3)
10 P	-0.398 414(1)	-1.86(1)	0.4535629 9(4)	1.284(2)
3 D	-1.682 462(2)	4.207 2(3)	-1.413 358(2)	-1.035 5(7)
$4 D$	-1.1647169(3)	2.18(1)	-1.012 563 12(2)	-0.804(5)
$5 D$	-0.738 29278 (4)	1.222(3)	-0.651 406(1)	-0.494 3(1)
6 D	-0.482554 5(4)	0.7161 (1)	-0.429 472(1)	-0.331(8)
$7 D$	-0.328 9251 (2)	0.472 (1)	-0.294 438 673(7)	-0.206(1)
8 D	-0.232 997 11(4)	0.315 5(6)	-0.209 433 9(5)	-0.148(8)
9 D	-0.170 5743 (5)	0.237(6)	-0.153 8036 (4)	-0.096(4)
10 D	-0.128 397(5)	0.11(4)	-0.116 059(2)	-0.10(1)
$4 F$	-0.677 0027 (3)	0.148(7)	-0.676 447 81(7)	0.153(7)
$5 F$	-0.491578 2(6)	0.082(5)	-0.491 112 3(9)	0.087(5)
$6 F$	-0.340 764 3(2)	0.049(4)	-0.340 432 21(4)	0.052(4)
$7 F$	-0.240 021 7(5)	0.032(2)	-0.239 786 61(5)	0.034(2)
$8 F$	-0.173 612 82(8)	0.021(2)	-0.173 443 7(2)	0.023(2)
9F	-0.128 9514 (2)	0.015(1)	-0.128 827 14(3)	0.016(1)
10F	-0.098 107 2(7)	0.011(1)	-0.098 013 0(4)	0.012(1)
	-0.276 268 92(3)	0.016 36(2)	-0.276 268 027(2)	0.016 37(2)
$6 G$	-0.216969 3(2)	0.010 07(2)	-0.2169687(3)	0.010 08(2)
$7 G$	-0.162 3681 (5)	$0.00641(2)$	-0.162 3686 (8)	0.006 41(2)
$8 G$	-0.121 7248 (1)	0.00423 (2)	-0.121 723 9(2)	0.004 23(2)
${ }^{9} G$	-0.092 573 5620(9)	$0.00288(1)$	-0.092 573 040(3)	$0.00288(1)$
10G	-0.071620 616(4)	$0.00186(1)$	-0.071 620 320(6)	$0.00198(2)$
	$-0.1289236(4)$	$0.0007097(6)$		$0.0007097(6)$
7H	-0.107 055 52(3)	0.000 313(1)	-0.107 055 48(3)	$0.00031300(7)$
8H	-0.084 726 80(3)	$0.000061(4)$	-0.084 72683 (3)	0.000 062(5)
9H	-0.066 6174 (5)	-0.000 0964 (6)	-0.066 617 0(3)	-0.000 094(1)
10 H	-0.052 7125 (1)	-0.000 172(2)	-0.052 7127 (1)	-0.000 175 3(5)
71	-0.067 384 60(2)	-0.001 602(1)	-0.067 384 60(2)	-0.0016017(6)
8 I	-0.058 $17827(2)$	-0.001 274(2)	-0.058 178 27(5)	-0.001 $27208(5)$
9 I	-0.047 $98427(8)$	-0.001 049 0(2)	-0.047 984 27(6)	$-0.00104926(5)$
10 I	-0.039 136 33(2)	-0.000 88554 (5)	-0.039 $13632(2)$	-0.000 8846 (3)
8 K	-0.038 430866 (6)	-0.001 763 99(3)	-0.038 430 866(5)	
${ }^{9} \mathbf{9}$ K	-0.034 122 1966(7)	-0.001 407 02(2)	-0.034 122 194(1)	-0.001 $40704(2)$
10 K	-0.029 034 706(6)	-0.001 167(4)	-0.029 034 709(6)	-0.001 15(2)

TABLE VI. Variational matrix elements $\pi\left\langle\delta\left(\mathbf{r}_{1}\right)\right\rangle-4=d_{1}+(\mu / M) d_{1}^{\mathrm{X}}$ (in units of 10^{-3} a.u.).

State	$d_{1}\left(n^{1} L\right)$	$d_{1}^{\mathrm{X}}\left(n^{1} L\right)$	$d_{1}\left(n^{3} L\right)$	$d_{1}^{\mathrm{X}}\left(n^{3} L\right)$
$2 S$	$113.792370(1)$	$-1.26231(5)$	$148.017828713(3)$	6.838 86(4)
$2 P$	3.623 328(3)	123.774 8(3)	-45.172 $772175(1)$	-225.207 82(8)
$3 P$	1.218 155(3)	$35.4318(1)$	-12.936 273(9)	-45.9080(2)
$4 P$	0.522 308(2)	14.740 1(1)	-5.344 949(2)	-16.242 3(6)
$5 P$	0.268418 8(3)	7.500(3)	-2.702 571(2)	-7.554 (2)
$6 P$	0.155519 4(1)	$4.3277(1)$	-1.5512150 (9)	-4.118 8(8)
$7 P$	0.097 985(1)	2.72(1)	-0.971 255(1)	-2.49(1)
$8 P$	0.065 659(1)	1.822(6)	-0.647908 00(5)	-1.628(4)
$9 P$	0.0461228 (6)	1.280 5(5)	-0.453 5665 (2)	-1.117(1)
$10 P$	$0.0336288(6)$	0.934(6)	-0.329 79899 (2)	-0.801 2(9)
$3 D$	-0.437798(1)	$-1.8161(1)$	-0.539 7661 (8)	$0.3347(2)$
$4 D$	$-0.2000157(2)$	-0.944(7)	-0.257910150(7)	0.287(3)
$5 D$	-0.106 073 39(1)	-0.528(2)	-0.139 1815 (6)	0.180 5(1)
6 D	-0.062 5417 (2)	-0.313 6(1)	-0.0827791(5)	0.120(4)
$7 D$	-0.039 824 4(1)	$-0.2050(5)$	-0.052974 123(3)	0.0763 (5)
8 D	-0.026 870 38(1)	-0.1381(3)	-0.0358551 (3)	0.054(4)
$9 D$	-0.0189636(2)	-0.101(3)	-0.025 3579 (2)	0.036(2)
10 D	-0.013 874(2)	-0.06(2)	-0.018578 2(9)	0.034(6)

for $J=L \pm 1$, and $S_{L}(J)$ is given by Eq. (105). The offdiagonal matrix elements $n^{3} L_{L}-n^{1} L_{L}$ are also tabulated. It is evident from the tables that the asymptotic limits contained in Eqs. (106) and (107) are satisfied.

For all the above terms, the corrections to the leading asymptotic values given in Eqs. (106) and (107) arise from
short-range effects involving overlap integrals with the inner $1 s$ electron [36,40], rather than long-range polarization terms proportional to $\left\langle x^{-4}\right\rangle_{n L}$. Since the shortrange effects decrease exponentially with L, the leading asymptotic term alone rapidly improves in accuracy as illustrated previously for the $n=10$ states of helium (see

TABLE VII. Variational matrix elements $\pi\left\langle\delta\left(\mathbf{r}_{12}\right)\right\rangle=d_{12}+(\mu / M) d_{12}^{\mathrm{X}}$ (in units of 10^{-6} a.u.).

State	$d_{12}\left(n^{1} L\right)$	$d_{12}^{X}\left(n^{1} L\right)$	State	$d_{12}\left(n^{1} L\right)$	$d_{12}^{\mathrm{X}}\left(n^{1} L\right)$
$2 S$	27169.868 (4)	5 550.(3)	$5 G$	0.000015 868(4)	-0.000 128 3(2)
			$6 G$	0.000017 666(1)	-0.000 15(3)
$2 P$	2309.6018 (8)	-10 854.41(1)	$7 G$	0.000015 209(2)	-0.000 2(1)
$3 P$	791.729(2)	-3 367.130(2)	$8 G$	0.000012 211(1)	-0.000 091 64(1)
$4 P$	350.176(2)	-1419.69(2)	$9 G$	0.000009 635(3)	-0.000 064(2)
$5 P$	183.2091(1)	-723.(1)	$10 G$	0.000007 607(3)	-0.000 046(5)
$6 P$	107.283 31(8)	-415.2(8)			
$7 P$	68.048 56(2)	-256.14(6)	6H	$0.00000001371(1)$	-0.000 000 1864(1)
$8 P$	45.804 1(1)	-171.3(9)	7H	0.000000018 886(4)	$-0.00000007(8)$
$9 P$	32.276 24(8)	-121.(2)	8H	0.000000018 91(3)	-0.000 $0002(5)$
$10 P$	23.5858 (4)	-90.(2)	9H	$0.00000001700(9)$	-0.000 000 139(1)
			10 H	0.000000014 481(8)	$-0.0000001(2)$
$3 D$	$7.18637(1)$	-30.59(8)			
$4 D$	$4.23074(8)$	-17.787(6)	$7 I$	$0.0000000000093(2)$	$-0.0000000003(2)$
$5 D$	2.461 13(4)	-10.333(6)	8 I	$0.0000000000152(4)$	-0.000 $0000010(7)$
$6 D$	1.518 51(2)	-6.17(5)	9 I	$0.0000000000174(4)$	-0.000 $0000008(3)$
$7 D$	$0.99234(8)$	-4.10(7)	10 I	$0.0000000000174(4)$	$0.000000000(3)$
8 D	0.680 57(5)	-2.9(2)			
9 D	0.485 58(2)	-2.08(6)			
$10 D$	0.357 98(1)	-1.36(7)			
$4 F$	0.013 053(1)	$-0.0827(9)$			
$5 F$	0.011079 8(7)	-0.065 289(1)			
$6 F$	$0.0080014(2)$	-0.047(2)			
7 F	0.005687 46(1)	-0.034(1)			
$8 F$	0.0041041 (4)	-0.025(1)			
$9 F$	0.003028 0(6)	-0.020(2)			
10 F	0.0022847 (7)	-0.014(1)			

Table 19 of Ref. [5]). As a consequence, high accuracy can be expected from multiconfiguration Hartree-Fock calculations for these terms [41,42]. However, the same is not true for the spin-independent terms where polarization effects are important.

The spin-dependent matrix elements for the $2{ }^{3} P_{J}$ states are of particular interest because comparisons with high-precision measurements of the fine-structure splittings may eventually lead to an atomic-physics value for the fine-structure constant. This was the motivation for a long sequence of calculations beginning with Schwartz [43], continuing with the operators for the higher-order spin-dependent terms derived by Douglas and Kroll [44], and culminating with the second-order terms evaluated by Lewis and Serafino [31]. However, the accuracy of neither theory nor experiment was sufficient to compete
with α obtained from the quantum Hall effect or the electron magnetic moment [45]. The convergence study presented in Table XVIII shows that the lowest-order matrix elements are now known to an accuracy of about 3 parts in 10^{9} for the sum of the three terms. This improves by 3 orders of magnitude the previous results of Schwartz [43], who evidently overestimated the accuracy of his calculation (see the table). In the present work, the entire amount of the extrapolation is taken as a conservative estimate of the uncertainty.

Further work is in progress to achieve a similar improvement in the higher-order corrections. Lewis and Serafino [31] have considered all contributions to the fine-structure splittings up to order α^{4} a.u. To this order, self-energy and vacuum-polarization effects are spin independent, and so do not contribute. However, self-

TABLE VIII. Comparison of spin-averaged variational matrix elements with the asymptotic values [see Eq. (62)] for $\left\langle B_{1}+B_{4}\right\rangle$ (in units of MHz, with $\alpha^{2} e^{2} / a_{\mu}=350329.1022 \pm 0.031 \mathrm{MHz}$).

State	Variational	U_{1}^{a}	$U_{2}^{\text {b }}$	$U_{1}+U_{2}$	Difference
$3 D$	-884.747(1)	-875.024 601	-17.480 413	-893(14)	8(14)
$4 D$	-541.807 0(1)	-536.491751	-10.060 415	-547(8)	5(8)
$5 D$	-329.345 8(4)	-326.370 636	-5.773 710	-332(5)	3(5)
6 D	-210.664 8(4)	-208.877 304	-3.525 309	-212(3)	2(3)
7 D	$141.70124(8)$	-140.555 999	-2.284 442	-143(2)	1(2)
8 D	-99.472 8(2)	-98.699 621	-1.555 854	-100(1)	$1(1)$
$9 D$	-72.346 6(2)	-71.801 756	-1.103 714	-72.9(9)	0.6(9)
10 D	-54.189(2)	-53.792 219	-0.809 667	-54.6(7)	0.4(7)
$4 F$	-261.802 89(9)	-261.293 690	-0.479 545	-261.77(9)	-0.03(9)
$5 F$	-186.245 6(4)	-185.884 412	-0.343 251	-186.23(7)	-0.02(7)
$6 F$	-127.945 86(6)	-127.705 314	-0.229 536	-127.93(4)	-0.01(4)
$7 F$	-89.650 0(2)	-89.486 953	-0.155 930	-89.64(3)	-0.01(3)
$8 F$	-64.622 14(7)	-64.508 075	-0.109 177	-64.62(2)	-0.00(2)
$9 F$	-47.880 09(7)	-47.797871	-0.078 818	-47.88(2)	-0.00(2)
10 F	-36.359 7(3)	-36.298 548	-0.058500	-36.36(1)	-0.00(1)
$5 G$	-100.20873(1)	-100.171288	-0.035 532	-100.207(3)	-0.002(3)
$6 G$	-78.2077(1)	-78.177 231	-0.028 672	-78.206(3)	-0.002(3)
7 G	-58.347 9(3)	-58.325 471	-0.021 194	-58.347(2)	-0.001(2)
$8 G$	-43.661 03(8)	-43.644 573	-0.015 547	-43.660(1)	-0.001(1)
$9 G$	- 33.162 870(1)	-33.150 664	-0.011550	-33.162(1)	-0.001(1)
$10 G$	-25.633 080(3)	-25.623 809	-0.008 737	-25.6325(8)	-0.0005(8)
6H	-45.869 1 (2)	-45.864 402	-0.004 557	-45.869 0(2)	-0.0002(3)
7H	-37.992 42(1)	-37.988 312	-0.003 954	-37.992 3(2)	-0.000 2(2)
8H	-30.028 50(1)	-30.025 238	-0.003 133	-30.028 4(2)	-0.000 1(2)
9 H	-23.590 4(2)	-23.587765	-0.002 433	-23.590 2(1)	-0.000 2(2)
10 H	-18.655 72(6)	-18.653703	-0.001893	-18.655 6(1)	-0.000 1(1)
71	-23.794 82(1)	-23.793 961	-0.000 833	-23.794 79(3)	-0.000 02(3)
8 I	-20.519 26(2)	-20.518484	-0.000 757	-20.519 24(3)	-0.00002(3)
9 I	-16.912 66(3)	-16.912000	-0.000 631	-16.912 63(2)	-0.000 03(2)
10 I	-13.788 19(1)	-13.787661	-0.000 512	-13.788 17(2)	-0.000 01(2)
$8 K$	-13.524 110(3)	-13.523911	-0.000 195	-13.524 106(7)	-0.000 004(6)
9 K	-12.000 2753(5)	-12.000 090	-0.000 183	-12.000 273(7)	-0.000 002(5)
10 K	-10.207 353(3)	-10.207 192	-0.000 158	-10.207 351(6)	-0.000 003(5)

[^0]energy terms of order $\alpha^{5} Z^{6} \ln (Z \alpha)^{-2}$ in the one-electron Lamb shift [46-48] become spin dependent for p states. The spin dependence follows from the fact that the small component of the $p_{1 / 2}$ state is s-like, and so does not vanish at the origin, while the small component of $p_{3 / 2}$ is d like which does vanish at the origin. The spin dependence carries over to the two-electron case where, in an unscreened hydrogenic approximation, it contributes at the $\pm 0.5-\mathrm{MHz}$ level of accuracy [5]. This is undoubtedly an overestimate, but a proper two-electron treatment will be required for a high-precision comparison with experimental fine-structure splittings in helium.

C. Total energies

The main purpose of this work is to present a tabulation of energy levels for all states of helium up to $n=10$ which systematically includes all contributions of orders $\alpha^{2}, \alpha^{3}, \alpha^{2} \mu / M,(\mu / M)^{2}$, and $\alpha^{3} \mu / M$. Because of the nonperturbative method of treating mass polarization, the results actually contain terms of all orders in μ / M, along with the major part of the $(\alpha \mu / M)^{2}$ term. Collecting the results of the preceding sections, the total energy is

TABLE IX. Variational matrix elements $\left\langle B_{2}\right\rangle=b_{2}+(\mu / M) b_{2}^{\mathrm{X}}$ (in units of $10^{-3} \alpha^{2}$ a.u.).

State	$b_{2}\left(n^{1} L\right)$	$b_{2}^{\mathrm{X}}\left(n^{1} L\right)$	$b_{2}\left(n^{3} L\right)$	$b_{2}^{\mathrm{X}}\left(n^{3} L\right)$
$2 S$	-9.253 $04619(5)$	$142.25741(4)$	-1.628 430061 (2)	23.528198 5(5)
$2 P$	-20.330 474 10(2)	104.505 483(2)	35.08088683 (4)	152.372 647(1)
$3 P$	-6.697368 94(7)	35.411026 6(5)	$10.344716185(4)$	42.7319904 (3)
$4 P$	-2.918 278 35(6)	15.815361 4(7)	4.309336988 0(9)	17.857171 3(1)
$5 P$	- 1.516084 310(6)	8.369 76(3)	2.186478 863(2)	9.148 602(1)
$6 P$	-0.884 359 852(3)	4.950 67(2)	1.257237441 8(6)	5.309 512(3)
$7 P$	-0.559 6288972 2(3)	$3.16644(1)$	0.788014 456(2)	3.354 20(7)
$8 P$	-0.376 116 535(8)	2.146 28(7)	0.526022 75(3)	2.253 5(2)
$9 P$	-0.264 755 498(5)	1.521 15(5)	0.368407 518(3)	1.586 935(1)
10 P	-0.193 325 91(2)	1.117 1(1)	0.267963 890(5)	1.159 526(2)
$3 D$	$0.1216490302(4)$	10.925 689(2)	0.132279499 5(6)	$9.34509(4)$
$4 D$	$0.055448022(9)$	6.045 59(1)	0.061389 771(6)	$5.13767(9)$
$5 D$	0.029361923 (2)	3.526 993(1)	$0.0327326860217(2)$	3.004 600(3)
$6 D$	0.017296269 4(8)	2.205 24(1)	0.0193470963 (4)	1.884 821(3)
$7 D$	0.011007 287(7)	$1.461824(2)$	0.0123360114 (3)	1.2531580 (1)
$8 D$	0.007423 938(5)	$1.01578(1)$	$0.00833002781(9)$	0.872 981(5)
$9 D$	$0.005238034(1)$	0.733 23(1)	$0.00588199656(4)$	0.631 483(2)
10 D	$0.0038309874(6)$	0.5460017 (8)	$0.00430435354(3)$	0.471092 2(7)
$4 F$	$0.0095026657(1)$	2.806007 514(1)	$0.009503888432(4)$	2.8058263483 (4)
$5 F$	$0.00542077450(8)$	1.837601740 (2)	0.005421752 71(2)	1.837454 27(1)
$6 F$	$0.00331048611(4)$	1.218026103 7(1)	$0.003311168732(5)$	1.2179220 (1)
$7 F$	$0.002150350885(8)$	$0.836551(1)$	$0.00215082582(4)$	0.836 479(1)
$8 F$	$0.00146902493(8)$	0.5953424 (2)	$0.00146936272(3)$	$0.59529001(7)$
$9 F$	0.001045422 2(3)	0.4371982 (7)	0.001045669 1(1)	0.437159 6(6)
10F	0.0007692367 (1)	0.329839 2(6)	$0.00076942145(5)$	$0.3298087(6)$
$5 G$	0.0012981292938 8(3)	1.068750148 3(3)	$0.00129812060498(4)$	$1.06875025139(2)$
$6 G$	0.000834020379 6(1)	0.772941 70(3)	0.000834010759 18(8)	0.772941 81(3)
$7 G$	$0.000556538867(1)$	0.5562145 (2)	$0.000556530613(2)$	0.556214 6(2)
$8 G$	$0.0003864277507(1)$	0.407518081 (8)	$0.000386421130026(5)$	0.407518 152(4)
$9 G$	0.000277934 795(7)	0.305274 487(3)	0.000277929582 2(2)	0.305274562 0(4)
$10 G$	0.000206018 195(2)	0.2336610 (1)	0.000206014 077(6)	0.233661 12(5)
6H	0.000264234003 215(1)	$0.49143779006(2)$	0.000264233989 965(3)	0.491437790 28(3)
7H	0.000183406809 88(1)	0.378919 171(9)	$0.000183406791504(4)$	$0.3789191559(2)$
8 H	0.000130247632 43(2)	0.288734 98(2)	$0.0001302476144(1)$	$0.288734984(7)$
9H	0.000095025 244(1)	0.221845 25(2)	0.000095025 229(5)	0.221845 230(6)
10 H	0.0000711217277 (6)	0.1728390828 (6)	0.000071121713 8(3)	0.1728390823 (2)
71	$0.00007024025453(6)$	0.2564128190 (5)	$0.00007024025465(7)$	0.2564128181 (4)
8 I	$0.00005148618650(4)$	$0.20666070864(3)$	$0.00005148618649(5)$	$0.2066607089(2)$
9 I	$0.00003829088484(4)$	$0.16419970653(1)$	$0.00003829088482(4)$	$0.1641997069(3)$
10 I	0.000029023920 14(8)	0.1308144090 (9)	0.0000290239201 (1)	0.130814 406(4)
$8 K$	0.000022579147 920(0)	$0.14651923607(0)$	0.000022579147 920(0)	$0.14651923607(0)$
9 K	$0.000017235050114(0)$	$0.12195925172(0)$	$0.000017235050114(0)$	$0.12195925176(5)$
10 K	0.000013281713 075(1)	0.1000205149 (9)	0.000013281713 10(1)	$0.1000205146(1)$

$$
\begin{align*}
E_{\mathrm{tot}}= & E_{\mathrm{NR}}+\Delta E_{M}^{(1)}+\Delta E_{M}^{(2)}+\Delta E_{\mathrm{rel}} \\
& +\Delta E_{\mathrm{anom}}+\Delta E_{s t}+\left(\Delta E_{\mathrm{RR}}\right)_{M} \\
& +\left(\Delta E_{\mathrm{RR}}\right)_{\mathrm{X}}+\Delta E_{\mathrm{nuc}}+\Delta E_{L, 1}+\Delta E_{L, 2} \tag{125}
\end{align*}
$$

The meaning of each of the terms is defined below, and, as an aid in identifying the physical effects included, each term is expressed in terms of its corresponding asymptotic expansion. All terms are expressed relative to $\mathrm{He}^{+}(1 s)$ (where applicable), so that each is a contribution to the negative ionization energy.
E_{NR} is the nonrelativistic energy without mass polarization, expressed in the form

$$
\begin{equation*}
E_{\mathrm{NR}}=-\left(4+1 / n^{2}\right) R_{M}+\Delta E_{\mathrm{NR}}, \tag{126}
\end{equation*}
$$

where $R_{M}=(1-y) R_{\infty}$ is the finite-mass Rydberg. To save tabulating excessively many figures, only ΔE_{NR} is given in the tables. For convenience, the values of R_{M} / n^{2} which must be added to ΔE_{NR} and $\Delta E_{\text {tot }}$ are listed in Table XIX. The asymptotic expansion for ΔE_{NR} has recently been worked out by Drachman [21] up to terms of order $\left\langle x^{-10}\right\rangle_{n L}$. For completeness, the

TABLE X. Comparison of spin-averaged variational matrix elements with the asymptotic values [see Eq. (77)] for $\left\langle B_{2}\right\rangle$, in MHz.

State	Variational	Asymptotic	Difference
$3 D$	44.479277	$48 .(6)$.	$-4 .(6)$.
$4 D$	$20.465840(4)$	$23 .(3)$.	$-2 .(3)$.
$5 D$	$10.876774(1)$	$12 .(2)$.	$-1 .(2)$.
$6 D$	6.418619	$7 .(1)$.	$-1 .(1)$.
$7 D$	$4.088918(2)$	$4.7(8)$	$-0.6(8)$
$8 D$	$2.759536(2)$	$3.2(5)$	$-0.4(5)$
$9 D$	$1.947835(1)$	$2.2(4)$	$-0.3(4)$
$10 D$	1.425023	$1.6(3)$	$-0.2(3)$
$4 F$	3.329275	$3.3(2)$	$0.1(2)$
$5 F$	1.899226	$1.9(1)$	$0.0(1)$
$6 F$	1.159879	$1.14(7)$	$0.02(7)$
$7 F$	0.753414	$0.74(5)$	$0.01(5)$
$8 F$	0.514701	$0.51(3)$	$0.01(3)$
$9 F$	0.366285	$0.36(2)$	$0.00(2)$
$10 F$	0.269518	$0.27(2)$	$0.00(2)$
$5 G$	0.454771	$0.44(1)$	$0.01(1)$
$6 G$	0.292180	$0.286(9)$	$0.006(9)$
$7 G$	0.194970	$0.191(6)$	$0.004(6)$
$8 G$	0.135376	$0.133(4)$	$0.003(4)$
$9 G$	0.097368	$0.095(3)$	$0.002(3)$
$10 G$	0.072173	$0.071(2)$	$0.001(2)$
$6 H$	0.092569	$0.091(2)$	$0.002(2)$
$7 H$	0.064253	$0.063(1)$	$0.001(1)$
$8 H$	0.045630	$0.0449(9)$	$0.0008(9)$
$9 H$	0.033290	$0.0327(7)$	$0.0006(7)$
$10 H$	0.024916	$0.0245(5)$	$0.0004(5)$
$7 I$	0.024607	$0.0243(3)$	$0.0003(3)$
$8 I$	0.018037	$0.0178(2)$	$0.0002(2)$
$9 I$	0.013414	$0.0132(2)$	$0.0002(2)$
$10 I$	0.010168	$0.0100(1)$	$0.0001(1)$
$8 K$	0.007910	$0.00783(7)$	$0.00008(7)$
$9 K$	0.006038	$0.00598(6)$	$0.00006(6)$
$10 K$	0.004653	$0.00460(5)$	$0.00005(5)$

coefficients of $\frac{1}{2}\left\langle x^{-9}\right\rangle_{n L}$ and $\frac{1}{2}\left\langle x^{-10}\right\rangle_{n L}$ are [26]

$$
\begin{aligned}
& c_{9}^{(0)}=-Z^{10}\left[\frac{921873}{1008}(Z-1)+\frac{14307}{8}\right], \\
& c_{10}^{(0)}=Z^{-12}\left[-\frac{436835}{128}+\frac{33295}{4} Z^{2}+\frac{33275}{4} Z^{2} L(L+1)\right]
\end{aligned}
$$

[cf. Eq. (14)], and the total energy contains the secondorder term $\left(1-6 \beta_{2} / \alpha_{1}\right) e_{2,0}^{(1,2)}$, where $e_{2,0}^{(1,2)}$ is defined in Eq. (16), and the multiplying factor is a nonadiabatic correction.
$\Delta E_{M}^{(1)}$ and $\Delta E_{M}^{(2)}$ are the first- and second-order masspolarization corrections with asymptotic expansions corresponding to Eqs. (14) and (15) [including the small y dependence expressed by Eq. (115)].
$\Delta E_{\text {rel }}$ is the relativistic correction of order α^{2} defined by Eq. (39), with the $\mathrm{He}^{+}(1 s)$ contribution of $-\alpha^{2} Z^{4} / 8$ a.u. subtracted. From Eqs. (62), (77), and (106) the asymptotic value is thus

$$
\begin{align*}
\Delta E_{\mathrm{rel}} \rightarrow & h_{1}(n L)+\Delta B_{1}\left(\alpha_{\mathrm{rel}}\right)+\Delta B_{1}\left(\phi_{1}\right)+\left\langle B_{2}\right\rangle \\
& +\left[Z-3+2 S_{L}(J)\right] T_{n L}(J) \delta_{S, 1} . \tag{127}
\end{align*}
$$

TABLE XI. Comparison of spin-averaged variational matrix elements with the asymptotic values [see Eq. (93)] for $\left\langle B_{1}^{\mathrm{X}}+B_{4}^{\mathrm{X}}\right\rangle$, in kHz.

State Variational		Asymptotic	Difference
$3 D$	$5.01(4)$	$11(23)$	$-5(23)$
$4 D$	$1.5(7)$	$4(14)$	$-3(14)$
$5 D$	$0.8(1)$	$2(8)$	$-1(8)$
$6 D$	$-0.1(4)$	$1(5)$	$-1(5)$
$7 D$	$0.20(7)$	$1(3)$	$-1(3)$
$8 D$	$-0.0(4)$	$1(2)$	$-1(2)$
$9 D$	$0.3(3)$	$0(2)$	$-0(2)$
$10 D$	$-1(2)$	$0(1)$	$-1(2)$
$4 F$	$0.6(5)$	$0.5(1)$	$0.1(5)$
$5 F$	$0.3(4)$	$0.3(1)$	$0.1(4)$
$6 F$	$0.2(2)$	$0.13(7)$	$0.0(3)$
$7 F$	$0.1(2)$	$0.07(5)$	$0.0(2)$
$8 F$	$0.1(1)$	$0.03(4)$	$0.0(1)$
$9 F$	$0.03(9)$	$0.01(3)$	$0.01(9)$
$10 F$	$0.04(7)$	$0.00(2)$	$0.04(8)$
$5 G$	$-0.137(2)$	$-0.132(5)$	$-0.005(5)$
$6 G$	$-0.105(2)$	$-0.101(4)$	$-0.004(5)$
$7 G$	$-0.084(1)$	$-0.081(3)$	$-0.003(4)$
$8 G$	$-0.068(1)$	$-0.066(2)$	$-0.003(3)$
$9 G$	$-0.0568(9)$	$-0.055(2)$	$-0.002(2)$
$10 G$	$-0.052(1)$	$-0.046(1)$	$-0.006(2)$
$6 H$	$-0.15752(4)$	$-0.1571(4)$	$-0.0005(4)$
$7 H$	$-0.11757(6)$	$-0.1171(4)$	$-0.0004(4)$
$8 H$	$-0.0910(3)$	$-0.0909(3)$	$-0.0001(4)$
$9 H$	$-0.07309(6)$	$-0.0727(2)$	$-0.0003(2)$
$10 H$	$-0.05958(9)$	$-0.0595(2)$	$-0.0000(2)$
$7 I$	$-0.12832(6)$	$-0.12822(5)$	$-0.00010(7)$
$8 I$	$-0.09874(9)$	$-0.09864(5)$	$-0.0001(1)$
$9 I$	$-0.078325(8)$	$-0.07828(4)$	$-0.00005(4)$
$10 I$	$-0.06367(1)$	$-0.06364(3)$	$-0.00003(3)$
$8 K$	$-0.101313(2)$	$-0.101298(8)$	$-0.000014(8)$
$9 K$	$-0.080228(1)$	$-0.080216(8)$	$-0.000012(8)$
$10 K$	$-0.0655(8)$	$-0.065093(7)$	$-0.0004(8)$

In this and the following terms, the J-dependent part sums to zero on taking a statistically weighted spin average of the energies.
$\Delta E_{\text {anom }}$ is the J-dependent part of the anomalous magnetic-moment correction [see Eq. (61)], including finite-mass contributions. From Eqs. (109) and (110), the asymptotic form is

$$
\begin{align*}
\Delta E_{\text {anom }} \rightarrow 2 \gamma_{e}\{ & Z-2+\left(2+\gamma_{e}\right) S_{L}(J) \\
& \left.-y\left[Z-2+4 S_{L}(J)\right]\right\} T_{n L}(J) . \tag{128}
\end{align*}
$$

$\Delta E_{s t}$ is the singlet-triplet mixing term obtained by diagonalizing all other contributions in the $n^{3} L_{L}, n^{1} L_{L}$ two-dimensional subset of states. From Eqs. (109) and (110), the total off-diagonal matrix element is asymptotically

$$
\begin{aligned}
\left\langle n^{3} L_{L}\right| B_{\mathrm{tot}}\left|n^{1} L_{L}\right\rangle \rightarrow & \left(Z+1-2 y+2 \gamma_{e} Z-2 \gamma_{e} y Z\right) \\
& \times[L(L+1)]^{1 / 2} T_{n L}(J),
\end{aligned}
$$

and the diagonal singlet-triplet splitting 2κ can be estimated to sufficient accuracy from the variational results to be

$$
\begin{equation*}
2 \kappa=\left[1+\left(\frac{3}{2 L-1}\right)^{1 / 2}\right] \pi\left\langle\delta\left(\mathbf{r}_{12}\right)\right\rangle_{\text {singlet }} \tag{130}
\end{equation*}
$$

with $\pi\left\langle\delta\left(\mathrm{r}_{12}\right)\right\rangle$ given by Eq. (111), including $g(Z)$ (cf. Table 5 of Ref. [5]).
$\left(\Delta E_{\mathrm{RR}}\right)_{M}$ is the relativistic reduced-mass correction given by [cf. Eq. (49)]

$$
\begin{align*}
\left(\Delta E_{\mathrm{RR}}\right)_{M}= & -y\left\langle 3\left(B_{1}+B_{4}\right)+2 B_{2}-B_{4}\right\rangle+\Delta_{2} \\
& -2 y\left\langle B_{3, e}+B_{5}+B_{6}\right\rangle+\Delta_{3} . \tag{131}
\end{align*}
$$

With the use of Eqs. (62), (77), (98), (100), and (106), the asymptotic form is thus

$$
\begin{align*}
\left(\Delta E_{\mathrm{RR}}\right)_{M} \rightarrow & -3 y\left[h_{1}(n L)+\Delta B_{1}\left(\alpha_{\mathrm{rel}}\right)+\Delta B_{1}\left(\phi_{1}\right)\right]+y\left(Z h_{2}(n L)+\frac{325}{16 Z^{2}} \alpha^{2}[1+(Z-2) / 6]\left\langle x^{-4}\right\rangle_{n L}\right) \\
& +y \alpha^{2}\left(-\frac{31}{4 Z^{2}}\left\langle x^{-4}\right\rangle_{n L}+\frac{1447}{32 Z^{4}}\left\langle x^{-6}\right\rangle_{n L}\right)-2 y\left\{\left\langle B_{2}\right\rangle+\left[Z-3+1+2 S_{L}(J)\right] T_{n L}(J) \delta_{S, 1}\right\} \tag{132}
\end{align*}
$$

$\left(\Delta E_{R R}\right)_{\mathrm{X}}$ is the relativistic-recoil cross term between relativistic operators and the mass-polarization operator given

TABLE XII. Variational matrix elements $\left\langle\Delta_{2}\right\rangle+16 \alpha^{2} \mu / M$ (in units of $10^{-3} \alpha^{2} \mu / M$ a.u.).

State	$\Delta_{2}\left(n^{1} L\right)$	$\Delta_{2}\left(n^{3} L\right)$	State	$\Delta_{2}\left(n^{1} L\right)$	$\Delta_{2}\left(n^{3} L\right)$
$2 S$	-656.864 09(1)	905.330873 70(4)	$5 G$	-2.107 7957 (1)	-2.107 794 69(1)
			$6 G$	-1.526864 3(3)	-1.526 864(1)
$2 P$	-286.504 04(2)	241.317789 40(9)	$7 G$	-1.099 758(2)	-1.099 759(3)
$3 P$	- $101.71088(2)$	55.401 39(7)	$8 G$	-0.8062474(5)	-0.8062461(8)
$4 P$	-46.113 51(2)	19.947 44(1)	$9 G$	-0.604 $231276(1)$	-0.604 230 69(2)
$5 P$	-24.555 659(2)	9.193 57(1)	10G	-0.462 $6418(4)$	-0.462 640966 (1)
$6 P$	-14.567 3604 (6)	4.937 295(9)			
78	-9.331 936(8)	2.940 36(1)	6H	-0.976 763(2)	-0.976 763(1)
$8 P$	-6.330 439(9)	1.886 296(1)	7H	-0.7536047(1)	-0.7536046(1)
$9 P$	-4.488 790(6)	1.279 749(2)	8H	-0.574 $4669(1)$	-0.574 4670 (1)
10 P	-3.297113(9)	0.906915 2(8)	9H	-0.441503(2)	-0.441502(1)
			10 H	-0.344 0410 (5)	-0.344040 4(5)
$3 D$	-17.271 572(9)	-17.493 370(6)			
$4 D$	-9.774 938(1)	-9.911584 94(2)	71	-0.511 $19101(6)$	-0.511 $19100(9)$
$5 D$	-5.776 394211 (3)	-5.857 236(4)	8 I	-0.412 124 96(9)	-0.412 1250 (2)
$6 D$	- 3.642 282(1)	- 3.692 528(4)	9 I	-0.327510 5(3)	-0.327510 5(2)
$7 D$	-2.428 937(1)	-2.461 89036 (1)	10 I	-0.260955 26(7)	-0.260955 2(1)
$8 D$	-1.695359 6(3)	- 1.717 997(2)			
$9 D$	-1.228 027(2)	-1.244 191(2)	$8 K$	-0.292511 07(2)	-0.292511 07(2)
10 D	-0.917 02(2)	-0.928 949(9)	9K	-0.243516 326(3)	-0.243 516321 (5)
			10K	-0.199 $73130(2)$	-0.199 $73130(3)$
$4 F$	-5.398 868(1)	-5.398 6036 (3)			
$5 F$	-3.554 138(3)	-3.553 919(3)			
$6 F$	-2.362 249 4(6)	-2.362 0976 (2)			
$7 F$	-1.625 210(2)	-1.625 1037 (5)			
$8 F$	-1.1579841(2)	- 1.1579075 (9)			
$9 F$	-0.851 1329 (5)	-0.851 076 6(1)			
10 F	-0.642 563(3)	-0.642520 (2)			

by Eqs. (54) and (55). With use of Eqs. (93), (99), and (106), the asymptotic form is

$$
\begin{align*}
\left(\Delta E_{\mathrm{RR}}\right)_{\mathrm{X}} \rightarrow & y \alpha^{2}\left[Z^{2}(Z-1) \alpha_{1, \mathrm{rel}}-\frac{20}{9 Z^{2}}+\frac{25}{16 Z^{2}}\right]\left\langle x^{-4}\right\rangle_{n L}-y h_{2}(n L) \\
& +2 y(Z-1) \Delta B_{1}\left(\phi_{1}\right)-(4 \pm 1) y \alpha^{2}\left\langle x^{-6}\right\rangle_{n L}-2 y T_{n L}(J)+y^{2}\left[-\frac{5}{12}\left[\frac{\alpha Z(Z-1)}{n}\right)^{2}+4 h_{1}(n L)\right]+\left(\delta E_{\mathrm{RR}}\right)_{\mathrm{X}} \tag{133}
\end{align*}
$$

The term $\left(\delta E_{\mathrm{RR}}\right)_{\mathrm{X}}$ is introduced because of the term defined in Eq. (116) which was not included in the variational calculations. Thus the correct value is zero, but the variational calculations correspond to the value

$$
\begin{equation*}
\left(\delta E_{\mathrm{RR}}\right)_{\mathrm{X}}=\frac{1}{6} y^{2}\left[\frac{\alpha Z(Z-1)}{n}\right]^{2} \tag{134}
\end{equation*}
$$

In other words, $\left(\delta E_{R R}\right)_{X} \simeq 4.39 / n^{2} \mathrm{kHz}$ should be subtracted from the tabulated variational energies to make them asymptotically correct. This has no effect on $\Delta n=0$ transitions, and is otherwise negligible at current levels of accuracy. The sum $\left(\Delta E_{R R}\right)_{M}+\left(\Delta E_{R R}\right)_{\mathrm{X}}$ is asymptotically small and nearly independent of L for a given n, as expected from Eqs. (52) and (102).
$\Delta E_{\text {nuc }}$ is the finite-nuclear-size correction given by

$$
\begin{aligned}
\Delta E_{\mathrm{nuc}} & =\frac{2}{3} \pi Z\left(R / a_{0}\right)^{2}\left[\left\langle\delta\left(\mathrm{r}_{1}\right)+\delta\left(\mathrm{r}_{2}\right)\right\rangle-Z^{3} / \pi\right] \\
& \rightarrow \frac{2}{3}\left(R / a_{0}\right)^{2}\left[-\frac{31}{2 Z^{2}}\left\langle x^{-4}\right\rangle_{n L}+\frac{1447}{16 Z^{4}}\left\langle x^{-6}\right\rangle_{n L}\right]
\end{aligned}
$$

(135)
where R is the rms nuclear radius. For ${ }^{4} \mathrm{He}$, $R=1.673 \pm 0.001 \mathrm{fm}$ [49].
$\Delta E_{L, 1}$ is the essentially one-electron part of the Lamb shift, including two-electron corrections to the Bethe logarithm and to the electron density at the nucleus. Goldman and Drake [6] have recently calculated the correction of order $\left\langle x^{-4}\right\rangle_{n L}$ in the asymptotic expansion of the Bethe logarithm due to the electric-field perturbation of the Rydberg electron on the Lamb shift of the $1 s$ electron. For $L \geq 1$, the additional contribution to the energy is

TABLE XIII. Variational Q matrix elements (in units of $10^{-3} \alpha^{3}$ a.u.).

State	$Q\left(n^{1} L\right)$	$Q\left(n^{3} L\right)$	State	$Q\left(n^{1} L\right)$	$Q\left(n^{3} L\right)$
$2 S$	5.406 997(6)	3.092498767 110(6)	$5 G$	0.007094112 708(3)	0.007094109818 41(4)
			$6 G$	0.0041083742401 (6)	0.004108371038 98(3)
$2 P$	$3.3744964(9)$	3.813917 912(5)	$7 G$	0.0025883211850 (8)	0.002588318434 03(5)
$3 P$	0.997 136(3)	$1.037395044(4)$	$8 G$	$0.0017344580241(5)$	0.001734455813 1(2)
$4 P$	$0.421013(2)$	0.422102 578(1)	9G	$0.001218397474(2)$	$0.00121839572976(4)$
$5 P$	$0.2157564(2)$	0.211998588 365(1)	$10 G$	0.000888332 186(2)	$0.00088833080835(9)$
$6 P$	0.124953 24(9)	0.121250612 6(1)			
$7 P$	0.078735 46(2)	0.075758 038(3)	6 H	0.002235437758 45(0)	0.002235437755 820(1)
$8 P$	0.052772 0(1)	0.050468 431(3)	7 H	0.001408142065 24(0)	0.001408142061 610(2)
$9 P$	0.037078 02(8)	0.035297693 6(2)	8 H	$0.000943519269346(1)$	0.000943519265740 (3)
$10 P$	0.027038 9(4)	0.0256489441 (5)	9H	0.000662747169 313(0)	0.000662747166 06(5)
			10H	$0.000483186017671(1)$	0.000483186014 925(1)
$3 D$	$0.20596601(1)$	$0.20527901703(3)$			
$4 D$	0.087663 07(7)	0.087241332 6(7)	$7 I$	0.000850311944 538(0)	0.000850311944 532(6)
$5 D$	0.045054 99(3)	$0.0448040167(2)$	$8 I$	0.000569717408 995(0)	0.000569717408 993(0)
6 D	$0.02612508(1)$	$0.0259679777(1)$	9 I	$0.000400166633183(1)$	$0.000400166633180(1)$
$7 D$	0.016470 86(7)	$0.0163671582(9)$	10 I	$0.000291740127913(0)$	$0.000291740127910(1)$
$8 D$	0.011042 15(4)	$0.0109705203(3)$			
9D	0.007758 99(1)	0.007707590 8(4)	$8 K$	0.000370171398 911(0)	0.000370171398 911(0)
10 D	0.005658 19(1)	$0.0056201391(2)$	$9 K$ $10 K$	$0.000260000663720(0)$ $0.000189549557(1)$	$\begin{aligned} & 0.000260000663720(0) \\ & 0.000189549559(2) \end{aligned}$
$4 F$	0.029888 962(1)	0.029886876 415(8)			
$5 F$	0.015339669 3(5)	0.015337900 34(1)			
$6 F$	0.008888452 9(2)	0.008887176 000(4)			
$7 F$	0.005601647 51(1)	0.005600739 943(3)			
$8 F$	0.003754498 3(3)	0.003753842 921(6)			
$9 F$	$0.0026377782(5)$	0.00263729460 (1)			
10F	$0.0019233924(5)$	0.001923027 260(9)			

$$
\begin{align*}
\Delta E_{L, \beta} & =-\frac{4 \alpha^{3}}{3 Z^{5}}\left\langle\delta\left(\mathbf{r}_{1}\right)+\delta\left(\mathbf{r}_{2}\right)\right\rangle 0.31626\left\langle x^{-4}\right\rangle_{n L} \\
& \rightarrow-\frac{4 \alpha^{3}}{3 \pi Z^{2}} 0.31626\left\langle x^{-4}\right\rangle_{n L} . \tag{136}
\end{align*}
$$

For $L=1$, the value is taken to be $0.5 \Delta E_{L, \beta}$ with
$\pm 0.5 \Delta E_{L, \beta}$ as the uncertainty. For $L>1$, the values are $\Delta E_{L, \beta}$ with $\pm 1.5 \Delta E_{L, \beta}\left\langle x^{-6}\right\rangle_{n L} /\left\langle x^{-4}\right\rangle_{n L}$ as an estimate of the contribution from higher-order terms. This substantially reduces the previous theoretical uncertainties [4], which were taken to be 4% of $\Delta E_{L, 1}$. Including this term, the full asymptotic expansion for $\Delta E_{L, 1}$ is

$$
\begin{align*}
& \Delta E_{L, 1} \rightarrow \frac{4 \alpha^{3} Z}{3 \pi}\left\{\begin{array}{l}
\left(Z^{3}-\frac{31}{2} Z^{-3}\left\langle x^{-4}\right\rangle_{n L}+\frac{1447}{16} Z^{-5}\left\langle x^{-6}\right\rangle_{n L}\right) \\
\\
\times
\end{array}\right. \\
& \quad\left[\ln (Z \alpha)^{-2}+\frac{19}{30}-\beta_{1 s}-\left(\frac{Z-1}{Z}\right]^{4} n^{-3} \beta_{n L}-0.31626 Z^{-6}\left\langle x^{-4}\right\rangle_{n L}\right. \\
&\left.\left.+2.296 \pi \alpha Z+O\left(\alpha^{2} Z^{2}\right)+y C_{M}\right]\right\}-\Delta E_{L}(1 s) \tag{137}
\end{align*}
$$

TABLE XIV. Variational matrix elements $\left\langle B_{3, Z}\right\rangle=b_{3, Z}+(\mu / M) b_{3, Z}$ (in units of $10^{-3} \alpha^{2}$ a.u.).

State	$b_{3, Z}\left(n^{3} L_{L}\right)$	$b_{3, Z}^{\mathrm{X}}\left(n^{3} L_{L}\right)$	$b_{3,2}\left(n^{3} L_{L}-n^{1} L_{L}\right)$	$b_{3, Z}^{\mathrm{X}}\left(n^{3} L_{L}-n^{1} L_{L}\right)$
$2 P$	-34.659 207 46(2)	-116.450 8(3)	-17.886579 99(3)	9.162 33(5)
$3 P$	- 10.052576 79(9)	-27.604 94(7)	-5.24803680(5)	3.712 21(6)
$4 P$	-4.177 955 98(4)	-10.455 5(3)	-2.201449 16(5)	1.675 1(1)
$5 P$	-2.118552 751(5)	-5.035 4(8)	-1.123 0906978 (3)	0.878 8(5)
$6 P$	-1.217922 615(1)	-2.802 74(7)	-0.648 $33108961(3)$	0.51411 (3)
$7 P$	-0.763 303 32(5)	-1.718 2(3)	-0.40754330(3)	0.325 8(1)
$8 P$	-0.509 $50454(2)$	-1.129(2)	-0.272648 06(1)	0.219 1(6)
$9 P$	-0.356 830058 2(2)	-0.781 13(6)	-0.191 $283118(3)$	0.154110 (4)
10 P	-0.259539 25(2)	-0.562 5(2)	-0.139 324 18(4)	0.112 46(5)
$3 D$	-1.253 936 932(3)	-0.568 432(3)	-0.882 271 458(1)	0.418403 043(9)
$4 D$	-0.530 39601280 (3)	-0.229 403(6)	-0.372636705 2(2)	0.175 223(3)
$5 D$	-0.271 843 243(1)	-0.115033 05(6)	-0.190 $8640374(2)$	0.089 422(2)
$6 D$	-0.157 392 102(2)	-0.065 820(6)	-0.110 469 724(2)	$0.051657(6)$
$7 D$	-0.099 $1400595(1)$	-0.041 175(2)	-0.069 57052334(6)	$0.032500(4)$
$8 D$	-0.066 424942 115(2)	-0.027 463 9(7)	-0.046607359 14(6)	0.021 760(3)
$9 D$	-0.046655 828 77(1)	-0.019 233 8(5)	-0.032 $7336325(2)$	0.015 2789(1)
10 D	-0.034 013509850 (2)	-0.013 9916 (2)	-0.023 862475 2(3)	0.011133369 3(1)
$4 F$	-0.186288 156 35(8)	-0.093 802 25(5)	-0.131681 $44279(3)$	0.065366 845(7)
$5 F$	-0.095 $404200928(6)$	-0.048 084 42(1)	-0.067 429304485 (3)	0.033429 09(2)
$6 F$	-0.055 217756 03(1)	-0.027 842 55(7)	-0.039 023628 20(1)	0.019333 992(8)
$7 F$	-0.034 775098501 (6)	-0.017 538 6(4)	-0.024 575228 10(3)	0.0121710 (2)
$8 F$	-0.023 297542 106(9)	-0.011751 514(5)	-0.016 463661 10(1)	0.008151918 5(9)
$9 F$	-0.016 363016 854(3)	-0.008 254 35(3)	-0.011563 $00792645(2)$	$0.005724550(6)$
10 F	-0.011 928829 58(3)	-0.006 017 92(4)	-0.008 42944380 (1)	0.004172 80(2)
$5 G$	-0.044 457362 185(8)	-0.022 280 002(1)	-0.031434295 887(6)	$0.015686016(7)$
$6 G$	-0.025 728898 919(3)	-0.012 89766 (2)	-0.018 191585105 6(9)	0.009075 4430(3)
$7 G$	-0.016 202894 306(3)	-0.008 123 68(3)	-0.011 $456060115(2)$	0.005714 41(4)
$8 G$	-0.010 854849 186(3)	-0.005 442831 (1)	- 0.007674711 800(2)	$0.003827879(3)$
$9 G$	-0.007623 785 564(1)	-0.003 822959 4(4)	-0.005 390212644 8(2)	$0.00268829775(5)$
$10 G$	-0.005 $5577771324(8)$	-0.002 787064 52(5)	-0.003 9294715568 (4)	0.001959689 30(8)
6 H	-0.014 03032160004	-0.007 02453377	-0.009 $92079160146(2)$	0.004955211 453(7)
$7{ }^{\text {H }}$	-0.008 8355355517 (3)	-0.004 423 990(6)	-0.006 $2475373312(4)$	0.0031202943 (8)
8 H	-0.005919 1648868 (3)	-0.002963 890(9)	-0.004 185377073 9(4)	$0.002090274(6)$
9 H	-0.004 157239 529(1)	-0.002081 715(3)	-0.002939530 1520 (8)	$0.001468034(2)$
10 H	-0.003 030637776 9(4)	-0.0015176040(4)	-0.002 142920068 8(2)	0.001070175 6(1)
$7 I$	-0.005 3398078656 (1)	-0.0026728163(2)	-0.003 $77579654013(8)$	0.001886367 6(1)
$8 I$	-0.003 5772692842 (1)	-0.001790 628(2)	-0.002529 $49442501(8)$	0.0012636943 (5)
9 I	-0.002 $5124374367(1)$	-0.001 257638 89(9)	-0.001 $77654714804(8)$	0.00088752090 (6)
10 I	-0.001 831570275 6(3)	-0.000 916832 4(1)	-0.001 295103928 6(2)	0.000646998 1(2)
$8 K$	-0.002 325176073824	-0.001 16376586744	-0.001 644144756049	0.00082146678810
9 K	-0.001633 048129 96(1)	-0.000 817358 79(3)	-0.001 15473643790	0.00057693803850
10 K	-0.001 $19049340044(2)$	-0.000 595858 9(1)	-0.000 84180333198	$0.0004205857(1)$

where the $\beta_{n L}$ are hydrogen-atom Bethe logarithms [50], the term $y C_{M}$ denotes finite-mass corrections [5,46-48], and $\Delta E_{L}(1 s)$ is the $\mathrm{He}^{+}(1 s)$ Lamb shift which is subtracted. For $L \leq 3$, the asymptotic expansion represented by first group of terms in parentheses should be replaced by the correct matrix element $\left\langle\delta\left(r_{1}\right)+\delta\left(r_{2}\right)\right\rangle$. For lowlying states, the corrections of relative $O\left(\alpha^{2} Z^{2}\right)$ are also important, and are included in the calculations in a oneelectron approximation as described in Ref. [5]. Equation (136) does not apply to S states. In this case, a $1 / Z$ expansion is used instead for the Bethe logarithm $[5,23,51,52]$. Very accurate values for the $1{ }^{1} S$ and $2{ }^{1} S$ states have recently been calculated by Baker et al. [53].

Finally, $\Delta E_{L, 2}$ denotes the Araki-Sucher electronelectron QED energy shift given by Eq. (118). The asymptotic expansion follows simply by inserting Eq. (119) for Q, and neglecting the $\left\langle\delta\left(\mathrm{r}_{12}\right)\right\rangle$ terms.

The result of adding all the above contributions is summarized in Table XX for the states up to $n=10$ and $L=7$. A detailed listing of the individual terms in Eq. (125) is given in Ref. [5]. The $2{ }^{1} S$ and $2{ }^{3} S$ states are renormalized to the high-precision measurements of the $2{ }^{1} S_{0}-n^{1} D_{2}$ [54] and $2{ }^{3} S_{1}-n^{3} D_{1}$ [55] transition frequencies. The comparison with theory allows a precise determination of the S-state energies because the theoretical uncertainties are relatively much smaller for the D states

TABLE XV. Variational matrix elements $\left\langle B_{3, e}\right\rangle=b_{3, e}+(\mu / M) b_{3, e}^{\mathrm{X}}$ (in units of $10^{-3} \alpha^{2}$ a.u.).

State	$b_{3, e}\left(n^{3} L_{L}\right)$	$b_{3, e}^{\mathrm{X}}\left(n^{3} L_{L}\right)$	$b_{3, e\left(n^{3} L_{L}-n^{1} L_{L}\right)}$	$b_{3, e}^{\mathrm{X}}\left(n^{3} L_{L}-n^{1} L_{L}\right)$
$2 P$	51.478075 56(4)	159.911 91(2)	-6.460 $340383(6)$	5.340187 27(2)
$3 P$	14.6976631019 9(3)	36.691 06(1)	-1.796214099(5)	1.774 3914(2)
$4 P$	6.072474 598(1)	13.723 36(4)	-0.739 628 814(2)	0.761 251(5)
$5 P$	3.070671 52(7)	6.566 6(1)	-0.374 $1322165(2)$	0.390876 (9)
$6 P$	1.762603 91(4)	3.640 28(1)	-0.2149869172(7)	$0.22618(1)$
7 P	$1.10365755(2)$	2.225 5(2)	-0.134 769 320(4)	0.142 344(1)
$8 P$	0.736252928 9467(4)	1.460(1)	-0.090 000 449(6)	0.095 25(5)
$9 P$	0.515422 689(3)	1.008 35(6)	-0.063 065 064(4)	$0.06687(1)$
10 P	$0.37478201(8)$	0.725 4(2)	-0.045 894449(7)	$0.04871(1)$
$3 D$	$10.8776152411(9)$	$1.741123(2)$	-0.433 637925 51(2)	0.425325 98(6)
$4 D$	0.794033 195(3)	$0.713162(3)$	-0.182 1171930 (1)	0.178 131(2)
$5 D$	0.406931042 4233(7)	0.360 153(6)	-0.093 0329550 (2)	0.090887 16(9)
$6 D$	0.235595491 4(7)	0.206878 6(8)	-0.053 7682643 (1)	0.0524967 (3)
$7 D$	$0.148396142(7)$	0.1297040 (2)	-0.033 831935 5(2)	0.033 021(2)
8 D	0.099425 529(2)	0.086 63(2)	-0.022 6520830 (2)	0.022104 45(5)
9 D	$0.069834185(2)$	$0.060728(1)$	-0.015 902947 9(3)	$0.01551762(3)$
10 D	$0.050910856(1)$	0.044 218(2)	-0.011 5898291 (3)	$0.0113064757(3)$
$4 F$	0.279250206049 5(4)	0.279873 44(3)	-0.065 749728 329(5)	0.065604 96(2)
$5 F$	$0.14297629447(3)$	$0.14328235(6)$	-0.033 648680 555(7)	0.033571 08(2)
$6 F$	$0.08273964627(2)$	0.082908 1(3)	-0.019 467347 857(3)	0.019421 76(4)
$7 F$	$0.05210336716(4)$	0.052204 6(4)	-0.012 257182 505(2)	0.0122283 (1)
$8 F$	$0.03490463245(2)$	0.034 970(1)	-0.008 210376 17(1)	$0.00819106(7)$
$9 F$	$0.02451430091(9)$	0.024558 9(3)	-0.005 765918 23(3)	0.005752381 2(6)
10F	0.017870713 95(4)	0.0179029 (4)	-0.004 $203088674(8)$	0.004193 25(3)
$5 G$	0.066678518297 69(2)	0.0667402003404	-0.015 $71369225067(2)$	0.0157015518030
$6 G$	0.0385870858526 (4)	0.038625415 6(9)	-0.009 092914312 22(2)	0.009085 836(1)
$7 G$	0.024299646815 6(4)	0.024324 63(3)	-0.005 $7258714362(2)$	0.005721 425(5)
$8 G$	0.016278795 107(1)	0.016295 878(6)	-0.003 $83575593503(3)$	$0.0038327959(6)$
9 G	0.0114330722451 (1)	0.011445 238(2)	-0.00269390745148(1)	0.002691840 1(3)
$10 G$	0.008334680 076(2)	$0.008343593385(1)$	-0.001 963822214 4(1)	0.001962325 8(1)
6H	0.0021044897027262	0.0210566524671	-0.004 960127672240	0.0049575564513
7H	0.013252773943 91(1)	0.013260432 63(3)	-0.003 123526153029	0.0031219003041
8H	0.008878320097 77(4)	0.0088835514 4(3)	-0.002 092492807 42(1)	0.0020914042489
9H	$0.0062355234242(9)$	0.006239238 6(5)	-0.001 469611196255	0.001468848 2(1)
10 H	0.004545692830 407(2)	0.004548422 6(2)	-0.001 071339154 86(2)	$0.001070784242(9)$
71	0.008009639945 31(1)	$0.0080133525(1)$	-0.001 887865368769	0.00188701519656
8 I	0.005365835473893	0.00536835725704	-0.001 264715866287	0.00126414513318
9 I	$0.00376859792847(1)$	0.00377038430 (5)	-0.000 $88824690951(0)$	0.000887845 947(5)
10 I	0.002747307540 223(3)	$0.00274861703(2)$	-0.000 647530040294	$0.00064723786(1)$
$8 K$	0.003487751991873	0.00348926170351	-0.000 822066829645	0.00082171526394
9 K	0.002449560245702	0.00245062670542	-0.000 577362748041	0.00057711556821
10 K	0.001785729532702	0.00178651002563	-0.000 420896827379	0.000420716 574(8)

TABLE XVI. Variational matrix elements $\left\langle B_{5}\right\rangle=b_{5}+(\mu / M) b_{5}^{\mathrm{X}}$ (in units of $10^{-3} \alpha^{2}$ a.u.).

State	$b_{5}\left(n^{3} L_{L}\right)$	$b_{5}^{\mathrm{X}}\left(n^{3} L_{L}\right)$	State	$b_{5}\left(n^{3} L_{L}\right)$	$b_{5}^{\mathrm{X}}\left(n^{3} L_{L}\right)$
$2 P$	-22.520 165 85(1)	-54.068 86(1)	$5 G$	-0.044 $444887727817(5)$	-0.000 0418828 (2)
$3 P$	-6.157504 600(1)	-11.639 505(4)	$6 G$	-0.025 718502596 952(6)	-0.000 026329 (2)
$4 P$	-2.509 269934 6(1)	-4.236 54(1)	$7 G$	-0.016195094855 4(2)	-0.000 $01731(2)$
$5 P$	-1.261 112 06(2)	- 1.996 16(4)	$8 G$	-0.010 849067153 6(8)	-0.000 0118819 (1)
$6 P$	-0.721 53649(1)	-1.095 507(7)	$9 G$	-0.007619 452 487(2)	-0.000 008476 (2)
$7 P$	-0.450 914 432(5)	-0.664 98(6)	$10 G$	-0.005 554474955 2(9)	-0.000 0062355327 (6)
$8 P$	-0.300 $43027313(4)$	-0.433 9(4)			
$9 P$	-0.210 140607 3(6)	-0.298 45(2)	6 H	-0.014 029355809429	-0.000 007850884091
10 P	-0.152 707 90(2)	-0.21404(7)	7H	-0.008 $83466183184(1)$	-0.000 005122 7(6)
			8H	-0.005 $91845962755(3)$	-0.000 $00350203(3)$
$3 D$	-1.229 6097200 (2)	-0.005 851(2)	9 H	-0.004 156685020 9(2)	-0.000 002490 2(1)
$4 D$	-0.516 $865792(2)$	-0.002 27872(2)	10 H	-0.003 $030202159079(1)$	-0.000 001830371386
$5 D$	-0.264 140663 9(1)	-0.001 278(4)			
$6 D$	-0.152690983 1(4)	-0.000 809(1)	71	-0.005 339689422330	-0.000 002475412823
$7 D$	-0.096 $087155(2)$	-0.000 5465 (4)	81	-0.003 577156428906	-0.000 001681769463
$8 D$	-0.064 3395868 (4)	-0.000 382 5(7)	$9 I$	-0.002 512341431804	-0.000 001191548688
$9 D$	-0.045 $1719059(6)$	-0.000 280(2)	10 I	-0.001 $831491336303(3)$	-0.000 000865984456
10 D	-0.032 $9216729(4)$	-0.000 213(2)			
			$8 K$	-0.002 325156103409	-0.000 001002917144
$4 F$	-0.185 960647 706(7)	-0.000 58426 (2)	9 K	-0.001 633028437480	-0.000 000711005402
	-0.095 166933 47(2)	-0.000 343 8(2)	10 K	-0.001 190475983466	-0.000 000517636417
$6 F$	-0.055 057905 123(9)	-0.000 212 20(3)			
$7 F$	-0.034 665731 39(2)	-0.000 1384 (7)			
$8 F$	-0.023 $22045222(4)$	-0.000 094 6(6)			
	-0.016 307021 32(9)	0.000067 17(7)			
10F	-0.011887038 32(3)	-0.000 049 6(2)			

TABLE XVII. Variational matrix elements $\left\langle\Delta_{3}\right\rangle$ (in units of $10^{-3} \alpha^{2} \mu / M$ a.u.).

State	$\Delta_{3}\left(n^{3} L_{L}\right)$	$\Delta_{3}\left(n^{3} L_{L}-n^{1} L_{L}\right)$	State	$\Delta_{3}\left(n^{3} L_{L}\right)$	$\Delta_{3}\left(n^{3} L_{L}-n^{1} L_{L}\right)$
$2 P$	99.554499 868(2)	-12.744 210 4(1)	$5 G$	0.0444594340 (1)	-0.031 $42738825(1)$
$3 P$	29.319957 23(8)	$-3.5758186(3)$	$6 G$	0.025730 566(2)	-0.018185 828(3)
$4 P$	12.213 608(1)	-1.476 2738 (4)	$7 G$	0.01620413 (2)	-0.011 $45176(2)$
$5 P$	$6.1971768(3)$	-0.7474830(4)	$8 G$	0.010855763 (1)	-0.007671 516(1)
$6 P$	$3.56351401(1)$	-0.429 $7127(1)$	$9 G$	0.007624 465(3)	-0.005 387820 (7)
$7 P$	$2.233594(2)$	-0.269 4353 (6)	$10 G$	$0.00555829501(7)$	-0.003 $9276487(9)$
$8 P$	1.491 005(1)	-0.179 9521 (9)			
$9 P$	1.044261 22(2)	-0.12610752(4)	6H	$0.0140304989(1)$	-0.009 $92025578(2)$
$10 P$	$0.7595575(6)$	-0.09177703(8)	7 H	0.008835693 6(1)	-0.006 $24705227(3)$
			8H	0.0059192911 (1)	-0.004 184984 87(1)
$3 D$	1.2027456 (1)	-0.867 276123 (1)	9H	0.004157 344(4)	-0.002 939 226(3)
$4 D$	$0.5003921(1)$	-0.364 234 56(1)	10 H	0.003030 717(4)	-0.002 $142679(3)$
$5 D$	$0.2544323797(7)$	-0.186 065 886(5)			
$6 D$	0.146663 787(5)	-0.1075359(2)	$7 I$	$0.0053398301(2)$	-0.003 775730 82(2)
$7 D$	$0.09213578(3)$	-0.06766366(5)	8 I	0.003577290 415(2)	-0.002 529431 806(1)
$8 D$	$0.0616242(4)$	-0.045 3043 (2)	$9 I$	0.002512455 080(5)	-0.001 776493 658(4)
9 9	0.0432319 (1)	-0.031 $80612(3)$	10 I	0.0018315854 (3)	-0.001 $2950605(1)$
10 D	0.031490 27(2)	-0.023 $17976(2)$			
			$8 K$	0.002325179 85(1)	-0.001644133 661(9)
$4 F$	0.186290 136(2)	-0.131 499 464(2)	$9 K$	0.001633051 862(1)	-0.001 154725 509(1)
$5 F$	0.095399 44(2)	-0.067 $29736(2)$	$10 K$	$0.00119049648(3)$	-0.000 $84179351(2)$
$6 F$	$0.05521261(4)$	-0.038 $93470(2)$			
7 F	$0.03477077(2)$	- 0.024514 34(2)			
$8 F$	$0.02329413(2)$	-0.016 $4207181(6)$			
$9 F$	0.016360371 (7)	-0.011531808 93(2)			
10 F	0.011926 768(8)	-0.008 $40616(2)$			

TABLE XVIII. Convergence of the spin-dependent matrix elements $\left\langle 2{ }^{3} P_{1}\right| B_{i}\left|2{ }^{3} P_{1}\right\rangle$ for helium, and comparison with previous calculations (in units of $10^{-3} \alpha^{2}$ a.u.).

N^{a}	$\left\langle B_{3, Z}\right\rangle$	$\left\langle B_{3, e}\right\rangle$	$\left\langle B_{5}\right\rangle$
104	-34.659788995	51.477882212	-2.2520333177
145	-34.659291413	51.477935509	-2.2520188358
197	-34.659222961	51.478041652	-2.2520168778
264	-34.659214323	51.478116882	-2.2520180584
342	-34.659209437	51.478086912	-2.2520169793
436	-34.659209239	51.478080805	-2.2520167695
539	-34.659207952	51.478076407	-2.2520166156
658	-34.659207782	51.478075998	-2.2520166007
724	-34.659207542	51.478075713	-2.2520165905
804	-34.659207475	51.478075603	-2.2520165868
Extrapolation $^{\text {Lewis and }}$	$-34.659207456(19)$	$51.478075561(42)$	$-2.2520165855(13)$
Serafino ${ }^{\mathrm{b}}$			
$\left\langle B_{3, Z}\right\rangle+\left\langle B_{3, e}\right\rangle$	-34.659107	51.476434	-2.251977
Schwartz $^{\mathrm{c}}$		$16.818868105(46)$	

${ }^{\text {a }} N$ is the number of terms in the doubled basis sets corresponding to $\Omega=4,5, \ldots, 13$ in Table 2 of Ref. [5].
${ }^{\mathrm{b}}$ Reference [31].
${ }^{c}$ Reference [43].
($\pm 100 \mathrm{kHz}$ or less, see the table).
Table XXI compares the spin-averaged energy shifts calculated variationally with those obtained entirely from the asymptotic expansions described above. This short table is of key importance because it establishes the degree of convergence of the asymptotic expansions, in addition to verifying the correctness of the much more elaborate variational matrix elements. The agreement to within 100 Hz for the K states indicates that the asymptotic expansions are substantially more accurate than $\pm 100 \mathrm{~Hz}$ for the L and M states. For this reason, the variational calculations have not been pursued beyond the K states.

With the above results in hand, one can confidently take the asymptotic expansions as correct to better than $\pm 100 \mathrm{~Hz}$ for the L and M states. The detailed results for the various contributions are presented in Table XXII in

TABLE XIX. Values of R_{M} / n^{2} (in MHz) for ${ }^{4} \mathrm{He}$.

n	R_{M} / n^{2}
1	$3289391007.44(54)$
2	$822347751.86(13)$
3	$365487889.716(60)$
4	$205586937.965(34)$
5	$131575640.298(22)$
6	$91371972.429(15)$
7	$67130428.723(11)$
8	$51396734.4913(84)$
9	$40609765.5240(67)$
10	$32893910.0744(54)$
11	$27185049.6483(45)$
12	$22842993.1072(37)$

the same format as used previously for the variational calculations [5]. Note that the relatively large uncertainty from $\Delta E_{s t}$ should not be included in the spin-averaged energy because it cancels on taking the average. The other uncertainties are common to all four components and so should only be included once in the spin average. It is useful to remember that, with the exception of $\Delta E_{s t}$, the singlet value for each quantity equals the spin-averaged value in the asymptotic limit.

Except for the higher-lying S states, Table XXII completes the tabulation of energies for all states of helium up to $n=10$. A paper on the S states is in preparation.

V. COMPARISON WITH EXPERIMENT

Reference [5] presents a detailed discussion of recent high-precision experiments, which will not be repeated here. In summary, measured singlet and triplet transition frequencies of the type $2 S-2 P, 2 S-3 P$, and $2 S-n D$ are in generally satisfactory agreement with theory at the ± 2 MHz level of accuracy or better when the $2 S$ states are renormalized to the values shown in Table XX. For the $2{ }^{3} S_{1}$ state, the renormalization is $12.70 \pm 2.4 \mathrm{MHz}$, and, using the new Bethe logarithm of Baker et al. [53], the renormalization for the $2{ }^{1} S_{0}$ state is only 0.75 ± 0.15 MHz . The agreement is as good as can be expected, and further theoretical progress will require a complete evaluation of the $O\left(\alpha^{4}\right)$ QED contributions.

The one experiment requiring further discussion is the work of Hessels et al. [1] on the transition frequencies among the $n=10$ states of helium. As shown in Table XXIII, the differences between theory (including the $\Delta V_{\text {ret }}^{\prime \prime}$ retardation correction) and experiment remain substantially larger than the $\Delta V_{\text {ret }}^{\prime \prime}$ term listed separately in the table. Unfortunately, the new result for the $10 L$ ener-
gy in Table XXI does not give a predicted $10 K-10 L$ transition frequency which fits the previous pattern of monotonically decreasing differences from experiment (although the experimental uncertainty is larger in this case). Since the theoretical uncertainties have now been markedly reduced with the evaluation of the $\Delta E_{L, \beta}$ term in Eq. (136), there does not appear to be a ready explanation for the differences. As a representative example of higher-order terms, the last column of Table XXIII lists
contributions from the spin-averaged Dirac energies of order $\alpha^{4}(Z-1)^{6}$ given by

$$
\begin{align*}
\Delta E_{D}^{(4)}=-\alpha^{4}(Z-1)^{6} & \frac{L^{-2}+(L+1)^{-2}}{8 n^{3}(2 L+1)}+\frac{3}{8 n^{4} L(L+1)} \\
& \left.-\frac{3}{4 n^{5}\left(L+\frac{1}{2}\right)}+\frac{5}{16 n^{6}}\right] \tag{138}
\end{align*}
$$

TABLE XX. Total calculated energies of helium, relative to ${ }^{4} \mathrm{He}^{+}(1 s)$, in units of MHz. The quantity R_{M} / n^{2} from Table XIX must be subtracted from the entries.

State	$E\left(n^{1} L_{L}\right)$	$E\left(n^{3} L_{L-1}\right)$	$E\left(n^{3} L_{L}\right)$	$E\left(n^{3} L_{L+1}\right)$
$2 S$	$-137984289.00(15)^{\text {a }}$		-330 $494992.7(2.4)^{\text {a }}$	
$2 P$	7638 599.5(1.8)	-53730 894.1(1.8)	-53 760 517.5(1.8)	-53 762 811.0(1.8)
$3 P$	2699 920.4(6)	-16622 013.8(6)	-16630 129.1(6)	-16630 788.5(6)
$4 P$	1189 726.7(3)	-7071 103.4(3)	-7074 411.0(3)	-7074 680.8(3)
$5 P$	620 098.18(13)	-3627 803.20(13)	-3629 465.46(13)	-3629 601.02(13)
$6 P$	362 161.73(8)	-2 100069.37 (8)	-2 $101020.39(8)$	-2 101097.90 (8)
$7 P$	229 301.10(5)	- 1322 158.07(5)	-1322 752.38(5)	-1322 800.79(5)
$8 P$	154 147.04(3)	-885 357.65(3)	-885 753.61(3)	-885 785.85(3)
$9 P$	108519.09 (2)	-621 517.79(2)	-621 794.75(2)	-621 817.29(2)
10 P	79 244.730(17)	-452 874.336(17)	-453 075.597(17)	-453 091.976(17)
$3 D$	-429 859.386(17)	-531 003.220(17)	- 532 328.336(17)	-532 403.665(17)
$4 D$	- 196 997.901(10)	- 255 609.936(10)	-256 165.167(10)	- 256 201.188(10)
$5 D$	-104 571.673(6)	- 138 403.635(6)	- 138 687.195(6)	- 138 706.416(6)
$6 D$	-61683.435(3)	-82 468.176(3)	-82 632.057(3)	-82 643.402(3)
$7 D$	- 39 288.450(2)	- 52 835.868(2)	-52 938.988(2)	-52 946.212(2)
$8 D$	-26513.662 7(15)	-35788.758 3(16)	-35 857.803 4(16)	-35 862.677 3(16)
$9 D$	-18714.752 9(11)	-25324.925 9(11)	-25373.4002(11)	-25376.839 3(11)
10 D	-13691.8482(17)	-18560.6844(12)	-18596.0123(12)	-18598.5276(12)
$4 F$	-33859.226 4(7)	- $34091.6835(7)$	-34564.100 1(7)	- 34350.055 8(7)
$5 F$	-19401.232 6(5)	-19554.966 3(6)	-19779.472 4(6)	-19687.185 4(6)
$6 F$	-11879.622 6(3)	- 11981.8924 (3)	-12106.4912(3)	-12058.385 2(3)
7 F	- 7729.848 7(3)	-7799.850 0(2)	-7876.3572(2)	-7848.011 3(2)
$8 F$	-5 287.149 15(19)	-5336.630 2(2)	-5 387.054 4(2)	-5368.890 3(2)
$9 F$	- 3765.993 97(14)	-3802.040 09(12)	-3837.062 79(12)	- 3824.69534 (12)
10 F	-2773.029 2(4)	-2799.999 6(4)	-2825.3297(4)	-2816.5142(4)
$5 G$	-4679.864 28(16)	-4730.677 94(17)	-4889.250 25(17)	-4806.192 06(17)
$6 G$	- 3025.552 40(16)	-3055.009 08(16)	-3146.727 46(16)	-3098.705 10(16)
$7 G$	-2027.239 2(2)	-2045.813 3(3)	-2103.5488(3)	-2073.328 6(3)
$8 G$	- 1411.75810 (8)	-1424.213 0(1)	-1462.880 1(1)	-1442.6452(1)
$9 G$	- 1017.683 7(1)	-1026.43733(7)	-1053.588 52(7)	-1039.382 47(7)
$10 G$	-755.703 81(4)	-762.088 58(4)	-781.878 56(4)	-771.525 36(4)
6 H	-968.203 6(2)	-989.404 9(1)	-1049.1216(1)	- 1017.818 1(1)
7H	-680.306 88(4)	-693.658 38(4)	-731.263 92(4)	-711.550 82(4)
8H	-487.099 45(5)	-496.044 04(6)	-521.236 63(6)	-508.030 38(6)
$9 H$	-357.521 0(2)	-363.803 1(1)	-381.496 6(1)	-372.221 4(1)
10 H	-268.842 54(5)	-273.422 27(5)	-286.320 72(5)	-279.559 15(5)
71	-263.771 61(2)	-273.781 11(2)	-300.206 62(2)	-286.380 00(2)
$8 I$	- 197.463 24(2)	-204.168 86(2)	-221.871 84(2)	-212.609 07(2)
9 I	-149.001 83(3)	-153.711 42(2)	-166.144 76(2)	-159.639 21(2)
10 I	-114.173 95(1)	-117.607 25(1)	-126.671 14(1)	-121.928 59(1)
$8 K$	-88.254 76(1)	-93.449 69(1)	-106.573 06(1)	-99.723 48(1)
9K	-69.582 60(1)	-73.231 18(1)	-82.448 13(1)	-77.637 45(1)
10 K	-54.859 90(1)	-57.519 72(1)	-64.238 87(1)	-60.731 88(1)

[^1]TABLE XXI. Comparison of the variational and asymptotic results for the total spin-averaged energy shifts of helium (in units of MHz). The ($\left.\delta E_{\mathrm{RR}}\right)_{\mathrm{X}}$ term in Eq. (133) is included in the asymptotic values.

State	Variational	Asymptotic	Difference
$6 H$	$-1007.4286(2)$	$-1007.440(2)$	$0.001(2)$
$7 H$	$-705.00829(4)$	$-705.013(7)$	$0.005(7)$
$8 H$	$-503.64746(5)$	$-503.651(8)$	$0.004(8)$
$9 H$	$-369.1432(2)$	$-369.146(7)$	$0.003(7)$
$10 H$	$-277.31512(5)$	$-277.318(6)$	$0.003(6)$
$7 I$	$-281.51941(2)$	$-281.5195(3)$	$0.0001(3)$
$8 I$	$-209.35287(2)$	$-209.3530(2)$	$0.0001(2)$
$9 I$	$-157.35230(3)$	$-157.3524(2)$	$0.0001(2)$
$10 I$	$-120.26144(1)$	$-120.2616(2)$	$0.0001(2)$
$8 K$	$-97.20937(1)$	$-97.20939(6)$	$0.00002(6)$
$9 K$	$-75.87172(1)$	$-75.87173(5)$	$0.00001(5)$
$10 K$	$-59.44466(1)$	$-59.44467(4)$	$0.00001(4)$
$9 L$		$-39.72287(1)$	
$10 L$		$-32.26875(1)$	
$10 M$		$-18.648443(3)$	

The contributions are 2 orders of magnitude too small and of the wrong sign to account for the differences. Although a fully screened nuclear charge is used in the above, the corresponding terms of order $\alpha^{2}(Z-1)^{4}$ given by Eq. (63) are an excellent approximation to the correct $\Delta E_{\text {rel }}$.

It is perhaps worth while to enquire what additional energy terms of the form $\left\langle x^{-j}\right\rangle_{n L}$ might be arbitrarily added to account for the discrepancies. Values of $j<3$ do not produce corrections which decrease fast enough with L, and values of $j>3$ produce intolerably large corrections for the low-lying states. For example, a term of the form $2.1 \alpha^{3}\left\langle x^{-4}\right\rangle_{n L}$ a.u. would account for the discrepancies (except for the $D-F$ and $K-L$ transitions), but it also shifts the $2 P$ and $3 P$ states by 256 and 84 MHz , respectively. Although the polarization picture is of low accuracy for P states, at least the order of magnitude should be correct to within a factor of 2 . For the case $j=3$, a term of the form $\alpha^{3}\left\langle x^{-3}\right\rangle_{n L} /(2 \pi)$ is a possible candidate, but even this would produce shifts of 17 and 5 MHz , respectively, for the above P states. Such shifts would clearly disrupt the existing agreement between theory and experiment for the P states at the $\pm 2 \mathrm{MHz}$ level, and it seems unlikely that higher-order QED terms would be large enough to compensate. For example, Eq. (138) with a screened nuclear charge is only $\Delta E_{D}^{(4)} \simeq-0.14 \mathrm{MHz}$ for the $2 P$ state. In addition, a new contribution of the asymptotic form $\alpha^{3}\left\langle x^{-3}\right\rangle_{n L}$ would imply that the Araki-Sucher terms are incomplete, and a major readjustment of theory would be required.

VI. APPLICATION TO QUANTUM-DEFECT ANALYSIS

The $1 / n^{2}$ terms contained in the asymptotic expansions (14) and (93) for $\varepsilon_{M}^{(2)}$ and $\left\langle B_{1}^{\mathrm{X}}+B_{4}^{\mathrm{X}}\right\rangle$ have impor-
tant implications for the quantum-defect method widely used in the analysis of experimental data and extrapolations to the series limit [56]. In the quantum-defect method, the term energies for a Rydberg series of states is written in the form

$$
\begin{equation*}
T_{n}=-R_{M}(Z-1)^{2} / n^{* 2} \tag{139}
\end{equation*}
$$

where $n^{*}=n-\delta\left(n^{*}\right)$, and the quantum defect $\delta\left(n^{*}\right)$ is a slowly-varying function of n^{*} often expressed in the Ritz form

$$
\begin{equation*}
\delta=\delta_{0}+\delta_{2} /(n-\delta)^{2}+\delta_{4} /(n-\delta)^{4}+\cdots \tag{140}
\end{equation*}
$$

(see Drake and Swainson [57] for a recent discussion). The significant point is that the above functional form is valid for the fixed experimental value of R_{M} only if the leading term $-R_{M}(Z-1)^{2} / n^{2}$ fully accounts for the $1 / n^{2}$ dependence of the T_{n}. This will only be true if the higher-order terms in $1 / n^{2}$ are subtracted from T_{n}; i.e., T_{n} should be replaced by $T_{n}-\delta T_{n}$ where, from Eqs. (14) and (93),

$$
\begin{equation*}
\delta T_{n}=-R_{M}(Z-1)^{2} y^{2}\left(1+\frac{5}{6} \alpha^{2} Z^{2}\right) / n^{* 2} . \tag{141}
\end{equation*}
$$

Equivalently, if the quantum defect δ is small, one could define an effective Rydberg to be

$$
\begin{equation*}
\widetilde{R}_{M}=R_{M}\left[1+y^{2}+\frac{5}{6}(y \alpha Z)^{2}\right] . \tag{142}
\end{equation*}
$$

For ${ }^{4} \mathrm{He}$, the correction factor is $1+1.87927 \times 10^{-8}$, which is certainly significant at current levels of experimental precision of one or two parts in $10^{10}[54,58,59]$. Without this adjustment, a quantum-defect fit may still appear to be adequate, but the higher-order terms in Eq. (140) will be abnormally large and loose their physical significance.

The physical significance of the $1+y^{2}$ correction is that the nucleus and inner electron can be thought of as a single composite particle with mass $M+m$. This increases the effective reduced mass for the Rydberg electron, and hence produces deeper binding. Note that for the variational calculations presented here, the coefficient $\frac{5}{6}$ in Eq. (142) should be replaced by $\frac{1}{2}$ as explained in connection with Eq. (116). Quantum-defect analyses of the total energies will be presented in a future publication [59].

VII. SUMMARY AND CONCLUSIONS

The results presented here complete the tabulation of nonrelativistic energies, and lowest-order relativistic and QED corrections for all states of helium up to $n=10$, with the exception of the higher-lying S states. The precision that has been achieved makes the helium spectrum up to $n=10$ as well understood as hydrogen for all practical purposes, at least in the nonrelativistic limit. As a consequence, helium now becomes a candidate for fundamental studies of higher-order QED effects in the same sense as hydrogen is, since the lowest-order terms can now be reliably subtracted from experimental data. The results for the $2{ }^{3} P$ states are of special significance because of the possibility of determining α from the fine-
structure splittings. Further work is in progress to determine the higher-order corrections to a similarly improved accuracy.

The comparison with the extended asymptotic expansions for the nonrelativistic and relativistic energies summarized in Table XXI clearly establishes the equivalence of the SAT and LRI pictures defined by Hessels et al. [1] in the limit of high L, provided that the $\Delta V_{\text {ret }}^{\prime \prime}$ and $\Delta E_{L, 1}$ terms are treated consistently in both pictures. For lower L, the differences are due entirely to the lack of convergence of the asymptotic expansions, rather than to a difference in physical content. The comparison also resolves questions raised [34] concerning the adequacy of the Breit operators used in SAT relative to those of LRI. With the addition of $\Delta V_{\text {ret }}^{\prime \prime}$ to SAT, both are equally justified (or unjustified) in the high- L limit.

The other significant conclusion from Table XXI is
that variational calculations need not be extended beyond $L=7$ because the asymptotic expansions provide more than sufficient precision for current levels of experimental accuracy. The detailed asymptotic results for L and M states are those listed in Table XXII.

Finally, the interpretation of the experimental results for transition frequencies among the $n=10$ in Table XXIII remains puzzling. The present result for the $10 L$ state gives a predicted $K-L$ transition frequency which appears to fall outside the pattern of deviations shown by the previous ones. In addition, it is difficult to arbitrarily add a new $\left\langle x^{-j}\right\rangle$ term to account for the discrepancies without disrupting the existing agreement between theory and experiment for the lower-lying states. Even the case $j=3$ leads to an implausibly large shift for the $2 S-2 P$ transitions. Perhaps future experiments on Rydberg states, especially a remeasurement of the least accurately

TABLE XXII. Contributions to the energies of ${ }^{4} \mathrm{He}$, relative to $\mathrm{He}^{+}(1 s)$ in MHz .

Term	$9^{1} L_{8}$	$9{ }^{3} L_{7}$	$9{ }^{3} L_{8}$	$9{ }^{3} L_{9}$
ΔE_{nr}	-30.712 304	-30.712 304	-30.712 304	-30.712 304
$\Delta E_{M}(1)$	-0.008 414	-0.008 414	-0.008 414	-0.008 414
$\Delta E_{M}(2)$	-0.763 037	-0.763 037	-0.763 037	-0.763 037
$\Delta E_{\text {rel }}$	-8.235 266(9)	-6.232 928(9)	-8.431 574(9)	-9.640 416(9)
$\Delta E_{\text {anom }}$	0.000000	0.000547	-0.000 911	0.000384
$\Delta E_{\text {st }}$	4.906 83(2)	0.000000	-4.906 83(2)	0.000000
$\left(\Delta E_{\mathrm{RR}}\right)_{\mathrm{M}}$	-0.005 219	-0.006 252	-0.005 219	-0.004 403
$\left(\Delta E_{\mathrm{RR}}\right) \mathrm{X}$	0.004225	0.004709	0.004279	0.003795
$\Delta E_{\text {nuc }}$	-0.000 001	-0.000 001	-0.000 001	-0.000 001
$\Delta E_{\mathrm{L}, 1}$	-0.000 722(3)	-0.000 722(3)	-0.000 722(3)	-0.000 722(3)
$\Delta E_{\mathrm{L}, 2}$	-0.002 128	-0.002 128	-0.002 128	-0.002 128
Total	-34.816 03(2)	-37.720 53(1)	-44.826 87(2)	-41.127 25(1)
Term	$10{ }^{1} L_{8}$	$10{ }^{3} L_{7}$	$10{ }^{3} L_{8}$	$10{ }^{3} L_{9}$
	-24.178 633	-24.178633	-24.178 633	-24.178 633
$\Delta E_{M^{\prime}}(1)$	-0.006 623	-0.006 623	-0.006 623	-0.006 623
$\Delta E_{M}{ }^{(2)}$	-0.618060	-0.618060	-0.618 060	-0.618060
$\Delta E_{\text {rel }}$	-7.462 659(8)	-6.002 954(8)	- 7.605 767(8)	- 8.487 013(8)
$\Delta E_{\text {anom }}$	0.000000	0.000398	-0.000 664	0.000280
$\Delta E_{\text {st }}$	3.577 08(1)	0.000000	- 3.577 08(1)	0.000000
$\left(\Delta E_{\text {RR }}\right)_{M}$	-0.004 271	-0.005 025	-0.004 271	-0.003 677
$\left(\Delta E_{\mathrm{RR}}\right) \mathrm{X}$	0.003607	0.003960	0.003646	0.003293
$\Delta E_{\text {nuc }}$	0.000000	0.000000	0.000000	0.000000
$\Delta E_{\mathrm{L}, 1}$	- 0.000 557(3)	- 0.000 557(3)	- 0.000 557(3)	- 0.000 557(3)
$\Delta E_{\mathrm{L}, 2}$	-0.001551	-0.001551	-0.001551	-0.001551
Total	-28.69167(2)	-30.809 045(9)	-35.989 56(2)	-33.292 541(9)
Term	$10{ }^{1} M_{9}$	$10{ }^{3} M_{8}$	$10{ }^{3} M_{9}$	$10{ }^{3} M_{10}$
	-12.727808			
$\Delta E_{\mathrm{M}^{(1)}}(1)$	-0.003 488	-0.003 488	-0.003 488	-0.003488
$\Delta E_{M}(2)$	-0.618059	-0.618 059	-0.618059	-0.618 059
$\Delta E_{\text {rel }}$	- 5.297 028(3)	-4.152 161(3)	- 5.399 463(3)	-6.131 145(3)
$\Delta E_{\text {anom }}$	0.000000	0.000280	-0.000 475	0.000204
ΔE_{st}	2.868 615(6)	0.000000	- 2.868 615(6)	0.000000
$\left(\Delta E_{\mathrm{RR}}\right)_{\mathrm{M}}$	-0.003 380	-0.003 975	-0.003 380	-0.002 898
$\left(\Delta E_{\mathrm{RR}}\right) \mathrm{X}$	0.002715	0.002995	0.002743	0.002462
$\Delta E_{\text {nuc }}$	0.000000	0.000000	0.000000	0.000000
$\Delta E_{\mathrm{L}, 1}$	- 0.000 285(2)	-0.000 285(2)	-0.000 285(2)	- 0.000 285(2)
$\Delta E_{L, 2}$	-0.001 110	-0.001110	-0.001110	-0.001110
Total	- $15.779827(7)$	-17.503 610(3)	-21.619 941(7)	$-19.482127(3)$

TABLE XXIII. Comparison of theory (including $\Delta V_{\text {ret }}^{\prime \prime}$) and experiment for the spin-averaged transition frequencies among the $n=10$ states of helium (in MHz).

Transition	Experiment	Theory	Difference	$\Delta V_{\text {ret }}^{\prime \prime}{ }^{\mathrm{a}}$	$\Delta E_{D}^{(4)}$
$D-F$	$14560.651(34)^{\mathrm{b}}$	$14560.6523(18)$	$0.001(35)$	-0.002397	0.000153
$F-G$	$2036.5590(22)^{c}$	$2036.57325(40)$	$-0.0143(23)$	-0.001223	0.000046
$G-H$	$491.00523(49)^{c}$	$491.00751(7)$	$-0.00228(49)$	-0.000714	0.000018
$H-I$	$157.05241(23)^{c}$	$157.05323(5)$	$-0.00082(23)$	-0.000453	0.000009
$I-K$	$60.81595(20)^{c}$	$60.816471(14)$	$-0.00052(20)$	-0.000304	0.000004
$K-L$	$27.17472(52)^{c}$	$27.175706(10)$	$-0.00099(52)$	-0.000213	0.000002

${ }^{\mathrm{a}} \mathrm{Au}$ and Mesa [11].
${ }^{\mathrm{b}}$ Farley, MacAdam, and Wing [60] global fit.
${ }^{\text {c }}$ Hessels et al. [1].
known $10 D-10 F$ transition, will shed additional light on the subject, and ultimately lead to a confirmation of the Casimir-Polder effect.

ACKNOWLEDGMENTS

We are grateful to Richard Drachman and Eric Hessels for communicating the results of their asymptotic expansions in advance of publication, and to Stephen Lundeen for stimulating conversations. Research support by the Natural Sciences and Engineering Research Council of Canada, and by the Killam Foundation, is gratefully acknowledged.

APPENDIX: ASYMPTOTIC RELATIONSHIPS AMONG SPIN-DEPENDENT RECOIL CORRECTIONS

This appendix derives a number of useful asymptotic relationships among the relativistic-recoil corrections to the spin-dependent terms in the Breit interaction. It also demonstrates that the same results can be obtained either by a direct perturbation calculation involving the masspolarization operator, or by a transformation to Jacobi coordinates. The results are obtained in detail for $B_{3, Z}$ and Δ_{3}. An exactly parallel transformation to Jacobi coordinates gives the corresponding asymptotic limits for $B_{3, e}$ shown in Eqs. (106) and (107).

Applying the Jacobi transformation (3)-(5) to $B_{3, Z}$ yields immediately

$$
\begin{align*}
B_{3, Z}= & \frac{Z \alpha^{2}}{2}\left[\frac{1}{r^{3}}\left(\mathbf{r} \times \mathbf{p}_{r}\right) \cdot \mathbf{s}_{1}+\frac{1}{|\mathbf{x}+y \mathbf{r}|^{3}}\left(\mathbf{x} \times \mathbf{p}_{x}\right) \cdot \mathbf{s}_{2}\right] \\
& +\frac{Z \alpha^{2}}{2} y\left[-\frac{1}{r^{3}}\left(\mathbf{r} \times \mathbf{p}_{x}\right) \cdot \mathbf{s}_{1}+\frac{1}{x^{3}}\left(\mathbf{x} \times \mathbf{p}_{x}\right) \cdot \mathbf{s}_{2}\right], \tag{A1}
\end{align*}
$$

up to terms linear in $y=\mu / M$. With use of the expansion

$$
\begin{equation*}
\frac{1}{|\mathbf{x}+y \mathbf{r}|^{3}}=\frac{1}{x^{3}}\left(1-\frac{3 y}{x^{2}} \mathbf{r} \cdot \mathbf{x}+\cdots\right) \tag{A2}
\end{equation*}
$$

and $(r \cdot x)_{a v}=0$, the first line of (A1) reduces to the lowest-order spin-orbit interaction, and the second line is the recoil correction $B_{3, z}^{X}$ linear in y. In the asymptotic approximation $x \gg r$, only the first term of the second line contributes. Comparison with Eq. (48) gives immediately

$$
\begin{equation*}
\Delta_{3} \rightarrow-2 y B_{3, Z}^{\mathrm{X}} \tag{A3}
\end{equation*}
$$

in conformity with the asymptotic limits displayed in Eqs. (106) and (107).

The alternative perturbation calculation proceeds as follows. Denoting the screened hydrogenic wave function for an infinite nuclear mass $1 s n L$ state by $\Psi_{\text {SH }}$ and the mass-polarization correction by $\delta \Psi$, the recoil correction to $\left\langle B_{3, Z}\right\rangle$ is

$$
\begin{equation*}
\left\langle B_{3, Z}^{\mathrm{X}}\right\rangle=\left\langle\Psi_{\mathrm{SH}}\right| B_{3, Z}|\delta \Psi\rangle+\langle\delta \Psi| B_{3, Z}\left|\Psi_{\mathrm{SH}}\right\rangle, \tag{A4}
\end{equation*}
$$

where, in terms of spectral representations,

$$
\begin{equation*}
\langle\delta \Psi| B_{3, Z}\left|\Psi_{\mathrm{SH}}\right\rangle=y \sum_{\substack{n^{\prime}, l^{\prime} \\ n^{\prime \prime}, l^{\prime \prime}}} \frac{\left\langle\Psi_{\mathrm{SH}}\right| \mathbf{p}_{1} \cdot \mathbf{p}_{2}\left|n^{\prime} l^{\prime}, n^{\prime \prime} l^{\prime \prime}\right\rangle\left\langle n^{\prime} l^{\prime}, n^{\prime \prime} l^{\prime \prime}\right| B_{3, Z}\left|\Psi_{\mathrm{SH}}\right\rangle}{E(1 s, n l)-E\left(n^{\prime} l^{\prime}, n^{\prime \prime} l^{\prime \prime}\right)} . \tag{A5}
\end{equation*}
$$

With use of

$$
\begin{equation*}
\mathbf{p}_{r}=i\left[h_{r}(\boldsymbol{Z}), \mathbf{r}\right], \tag{A6}
\end{equation*}
$$

where $h_{r}(\boldsymbol{Z})$ is the one-electron Hamiltonian for the unscreened inner electron with coordinate \mathbf{r} and

$$
\begin{equation*}
E(1 s, n l)-E\left(n^{\prime} l^{\prime}, n^{\prime \prime} l^{\prime \prime}\right) \simeq E(1 s)-E\left(n^{\prime} l^{\prime}\right) \tag{A7}
\end{equation*}
$$

in the adiabatic approximation, the commutator approxi-
mately cancels the energy difference in the denominator of (A5). The sums over intermediate states can then be completed by closure. Combining the two terms in (A4) gives

$$
\begin{equation*}
\left\langle B_{3, Z}^{\mathrm{X}}\right\rangle=y\left\langle\Psi_{\mathrm{SH}}\right|\left[\mathbf{r}_{1} \cdot \nabla_{2}, B_{3, Z}\right]\left|\Psi_{\mathrm{SH}}\right\rangle \tag{A8}
\end{equation*}
$$

Evaluation of the commutator gives the final result

$$
\begin{gather*}
\left\langle B_{3, Z}^{\mathrm{X}}\right\rangle=\frac{1}{2} Z \alpha^{2} y\left\langle\Psi_{\mathrm{SH}}\right|-\frac{1}{r^{3}}\left(\mathbf{r} \times \mathbf{p}_{x}\right) \cdot \mathbf{s}_{1}+\frac{1}{x^{3}}\left(\mathbf{r} \times \mathbf{p}_{x}\right) \cdot \mathbf{s}_{2} \\
-\frac{3 \mathbf{r} \cdot \mathbf{x}}{x^{5}}\left(\mathbf{r} \times \mathbf{p}_{x}\right) \cdot \mathbf{s}_{2}\left|\Psi_{\mathrm{SH}}\right\rangle \tag{A9}
\end{gather*}
$$

in agreement with the corresponding terms from (A1) obtained from the Jacobi transformation.

The expectation value $\left\langle\Delta_{3}\right\rangle$ vanishes in any oneelectron approximation because of the symmetry of the $\mathbf{r} \cdot \mathbf{p}_{x}$ operator. The leading nonvanishing contribution comes from perturbations to the screened hydrogenic wave function due to the dipole term

$$
\begin{equation*}
V_{1}=\frac{r}{x^{2}} \cos (\hat{\mathbf{r}} \cdot \hat{\mathbf{x}}) \tag{A10}
\end{equation*}
$$

in Eq. (11). Denoting the wave-function correction by $\delta \Psi^{\prime}$, the matrix element is

$$
\begin{equation*}
\left\langle\Delta_{3}\right\rangle=\left\langle\Psi_{\mathrm{SH}}\right| \Delta_{3}\left|\delta \Psi^{\prime}\right\rangle+\left\langle\delta \Psi^{\prime}\right| \Delta_{3}\left|\Psi_{\mathrm{SH}}\right\rangle, \tag{A11}
\end{equation*}
$$

where, in parallel with Eq. (A5),

$$
\begin{aligned}
& \left\langle\delta \Psi^{\prime}\right| \Delta_{3}\left|\Psi_{\mathrm{SH}}\right\rangle \\
& \quad=\sum_{\substack{n^{\prime}, l^{\prime} \\
n^{\prime \prime}, l^{\prime \prime}}} \frac{\left\langle\Psi_{\mathrm{SH}}\right| V_{1}\left|n^{\prime} l^{\prime}, n^{\prime \prime} l^{\prime \prime}\right\rangle\left\langle n^{\prime} l^{\prime}, n^{\prime \prime} l^{\prime \prime}\right| \Delta_{3}\left|\Psi_{\mathrm{SH}}\right\rangle}{E(1 s, n l)-E\left(n^{\prime} l^{\prime}, n^{\prime \prime} l^{\prime \prime}\right)} .
\end{aligned}
$$

With use of

$$
\begin{equation*}
Z \frac{\mathbf{r}}{r^{3}}=i\left[\mathbf{p}_{r}, h_{r}(\boldsymbol{Z})\right] \tag{A13}
\end{equation*}
$$

to replace the corresponding factors in the dominant r^{-3} part of Δ_{3}, the same steps as those leading to Eq. (A8) yield

$$
\begin{equation*}
\left\langle\Delta_{3}\right\rangle \rightarrow-i \alpha^{2} y\left\langle\Psi_{\mathrm{SH}}\right| \mathbf{s}_{1} \cdot\left[\mathbf{p}_{r} \times \mathbf{p}_{x}, V_{1}\right]\left|\Psi_{\mathrm{SH}}\right\rangle \tag{A14}
\end{equation*}
$$

in the adiabatic approximation. Evaluation of the commutator and discarding terms proportional to $\mathbf{r} \times \mathbf{p}_{r}$, $\mathbf{r} \times \mathbf{p}_{x}$, and $\mathbf{x} \times \mathbf{p}_{r}$ that vanish for 1 snl states gives

$$
\begin{equation*}
\left\langle\Delta_{3}\right\rangle \rightarrow-\alpha^{2} \frac{\mu}{M}\left\langle\Psi_{\mathrm{SH}}\right| \frac{1}{x^{3}}\left(\mathbf{x} \times \mathbf{p}_{x}\right) \cdot \mathbf{s}_{1}\left|\Psi_{\mathrm{SH}}\right\rangle . \tag{A15}
\end{equation*}
$$

Comparing with Eq. (34) and using $\mathbf{r}_{1} \simeq \mathbf{r}, \mathbf{r}_{2} \simeq \mathbf{x}$, it is evident that for diagonal triplet matrix elements
$\left\langle 1\right.$ snl $\left.{ }^{3} L\right| \Delta_{3} \mid 1$ snl $\left.{ }^{3} L\right\rangle$

$$
\begin{equation*}
\rightarrow-2 Z^{-1} y\left\langle 1 \operatorname{sn} l^{3} L\right| B_{3, Z}\left|1 \operatorname{sn} l^{3} L\right\rangle, \tag{A16}
\end{equation*}
$$

and for off-diagonal matrix elements
$\left\langle 1\right.$ snl $\left.{ }^{3} L\right| \Delta_{3} \mid 1$ snl $\left.{ }^{1} L\right\rangle$

$$
\begin{equation*}
\rightarrow 2 Z^{-1} y\left\langle 1 \text { snl }{ }^{3} L\right| B_{3, Z}\left|1 \operatorname{snl}{ }^{1} L\right\rangle \tag{A17}
\end{equation*}
$$

in agreement with Eqs. (106) and (107).
[1] E. A. Hessels, F. J. Deck, P. W. Arcuni, and S. R. Lundeen, Phys. Rev. Lett. 65, 2765 (1990); 66, 2544(E) (1991); Phys. Rev. A (to be published).
[2] S. R. Lundeen, in Long Range Forces: Theory and Recent Experiments in Atomic Systems, edited by F. S. Levin and D. Micha (Plenum, New York, 1992).
[3] G. W. F. Drake, J. Phys. B 22, L651 (1989); 23, 1943(E) (1990).
[4] G. W. F. Drake, Phys. Rev. Lett. 65, 2769 (1990).
[5] G. W. F. Drake, in Long Range Forces: Theory and Recent Experiments in Atomic Systems, edited by F. S. Levin and D. Micha (Plenum, New York, 1992).
[6] S. P. Goldman and G. W. F. Drake, Phys. Rev. Lett. 68, 1683 (1992).
[7] E. J. Kelsey and L. Spruch, Phys. Rev. A 18, 15 (1978); 18, 1055 (1978).
[8] C.-K. Au, G. Feinberg, and J. Sucher, Phys. Rev. Lett. 53, 1145 (1984).
[9] J. F. Babb and L. Spruch, Phys. Rev. A 38, 13 (1988).
[10] C.-K. Au, Phys. Rev. A 39, 2789 (1989).
[11] C.-K. Au and M. A. Mesa, Phys. Rev. A 41, 2848 (1990).
[12] L. Spruch, in Long Range Forces: Theory and Recent Experiments in Atomic Systems, edited by F. S. Levin and D. Micha (Plenum, New York, 1992).
[13] See, for example, A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Interscience, New York, 1965), Sec. 38.
[14] A. Dalgarno and R. W. McCarroll, Proc. R. Soc. London Ser. A 237, 383 (1956).
[15] A. Dalgarno, G. W. F. Drake, and G. A. Victor, Phys. Rev. 176, 194 (1968).
[16] C. J. Kleinman, Y. Hahn, and L. Spruch, Phys. Rev. 165, 53 (1968).
[17] C. Deutsch, Phys. Rev. A 2, 43 (1970); 3, 1516(E) (1971); 13, 2311 (1976).
[18] R. J. Drachman, Phys. Rev. A 26, 1228 (1982).
[19] R. J. Drachman, Phys. Rev. A 31, 1253 (1985); 38, 1659(E) (1988).
[20] R. J. Drachman, Phys. Rev. A 33, 2780 (1986); 37, 979 (1988).
[21] R. J. Drachman, in Long Range Forces: Theory and Recent Experiments in Atomic Systems, edited by F. S. Levin and D. Micha (Plenum, New York, 1992).
[22] G. W. F. Drake, Phys. Rev. Lett. 59, 1549 (1987).
[23] G. W. F. Drake, Nucl. Instrum. Methods Phys. Res. Sect. B 31, 7 (1988).
[24] G. W. F. Drake and A. J. Makowski, J. Opt. Soc. Am. B 5, 2207 (1988).
[25] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957).
[26] G. W. F. Drake, Adv. At. Mol. Phys. (to be published).
[27] G. W. F. Drake and R. A. Swainson, Phys. Rev. A 44, 5448 (1991).
[28] R. A. Swainson and G. W. F. Drake, Can. J. Phys. 70, 187 (1992).
[29] A. P. Stone, Proc. Phys. Soc. (London) 77, 786 (1961); 81, 868 (1963); M. Douglas and N. M. Kroll, Ann. Phys. (N.Y.) 62, 89 (1974).
[30] A. M. Sessler and H. M. Foley, Phys. Rev. 92, 1321 (1953); 98, 6 (1955).
[31] M. L. Lewis and P. H. Serafino, Phys. Rev. A 18, 867
(1978).
[32] E. A. Hessels (unpublished).
[33] A. Dalgarno and J. T. Lewis, Proc. R. Soc. London Ser. A 233, 70 (1956); A. Dalgarno and A. L. Stewart, ibid. 238, 269 (1956).
[34] C.-K. Au, G. Feinberg, and J. Sucher, Phys. Rev. A 43, 561 (1991).
[35] G. W. F. Drake, Phys. Rev. A 45, 70 (1992); 45, 6933(E) (1992).
[36] E. A. Hessels, W. G. Sturrus, S. R. Lundeen, and D. R. Cok, Phys. Rev. A 35, 4489 (1987).
[37] R. J. Boyd and C. A. Coulson, J. Phys. B 6, 782 (1973).
[38] H. Araki, Prog. Theor. Phys. 17, 619 (1957).
[39] J. Sucher, Phys. Rev. 109, 1010 (1958).
[40] D. R. Cok and S. R. Lundeen, Phys. Rev. A 19, 1830 (1979); 24, 3283(E) (1981).
[41] T. N. Chang, Phys. Rev. A 39, 6129 (1989).
[42] M. Idrees and C. F. Fischer, Nucl. Instrum. Methods Phys. Res. B 42, 552 (1989).
[43] C. Schwartz, Phys. Rev. 134, A1181 (1964).
[44] M. Douglas and N. M. Kroll, Ann. Phys. (N.Y.) 82, 89 (1974).
[45] E. R. Cohen and B. N. Taylor, Rev. Mod. Phys. 59, 1121 (1987); Sec. B 10.
[46] G. W. Erickson and D. R. Yennie, Ann. Phys. (N.Y.) 35, 271 (1965); 35, 447 (1965).
[47] G. W. F. Drake, Adv. At. Mol. Phys. 18, 399 (1982).
[48] J. R. Sapirstein and D. R. Yennie, in Quantum Electrodynamics, edited by T. Kinoshita (World Scientific, Singapore, 1990).
[49] E. Borie and G. A. Rinker, Phys. Rev. A 18, 324 (1978). See also A. van Wijngaarden, J. Kwela, and G. W. F. Drake, Phys. Rev. A 43, 3325 (1991), Sec. VI for a recent discussion of nuclear radius measurements.
[50] G. W. F. Drake and R. A. Swainson, Phys. Rev. A 41, 1243 (1990).
[51] S. P. Goldman and G. W. F. Drake, J. Phys. B 16, L183 (1983); 17, L197 (1984).
[52] S. P. Goldman, Phys. Rev. A 30, 1219 (1984).
[53] J. Baker, G. C. Forrey, R. N. Hill, M. Jerziorska, J. D. Morgan III, and J. Shertzer (unpublished).
[54] W. Lichten, D. Shiner, and Z.-X. Zhao, Phys. Rev. A 43, 1663 (1991).
[55] L. Hlousek, S. A. Lee, and W. M. Fairbank, Jr., Phys. Rev. Lett. 50, 328 (1983).
[56] B. Edlén, in Encyclopedia of Physics (Springer, Berlin, 1964), Vol. XXVII.
[57] G. W. F. Drake and R. A. Swainson, Phys. Rev. A 44, 5448 (1991).
[58] C. J. Sansonetti and J. D. Gillaspy, Phys. Rev. A 45, R1 (1992).
[59] G. W. F. Drake, Adv. At. Mol. Phys. (to be published).
[60] J. W. Farley, K. B. McAdam, and W. H. Wing, Phys. Rev. A 20, 1754 (1979); 25, 1790(E) (1982).

[^0]: ${ }^{\mathrm{a}} U_{1}=h_{1}(n L)+\Delta B_{1}\left(\alpha_{\text {rel }}\right)$.
 ${ }^{\mathrm{b}} U_{2}=\Delta B_{1}\left(\phi_{1}\right)$ [see Eqs. (62)-(65)].

[^1]: ${ }^{\text {a }}$ Renormalized to the $2 S-n D$ transition frequencies (see text).

