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Angular and radial correlation in doubly excited systems when
1< Z < 4: the 2p*°P state

D R T Keeble7, K E Banyardf and G W F Draket

1 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 TRH, UK
1 Department of Physics, University of Windsor, Windsor, Ontario, Canada

Received 11 January 1993

Abstract. The angular and radial components of electron correlation have each been
examined in detail for the discrete 2p® *P states of H™, He, Li* and Be?*. These doubly
excited sytems were described by highly accurate explicitly correlated wavefunctions. The
analysis involved tite use of angular Coulomb holes, changes in the one- and two-particle
radial density distributions and several angular and radial expectation values. Additionally,
various statistical correlation coefficients were used which emphasized, in turn, angular
and radial correlation properties in different regions of the two-particle density.

The angular holes and related properties showed a clearly defined inverse-Z effect for
He and the positive fons. This trend was not repeated for the radial curves. However,
the radial densities did reveal a distinct ‘in-out’ correlation effect—similar in character
to the split-shell behaviour for the ground state. By comparison with the findings for Z = 2,
the angular and radial correlation effects for H™ were always exceedingly large, thus setting
it apart from the other systems. For He, the angular hole for the comparatively slow moving
2p* *P electrons was found to be over 50% deeper than that for the ground state and about
six times the depth of a 1s2p °P hole. The statistical correlation coefficients highlighted a
steady growth, with Z, in the relative importance of angular correlation. Nevertheless, for
each system, these coefficients indicated that the radial effect was the prevailing influence
on the two-particle prabability distribution.

1. Introduction

By comparison with the gound state, doubly excited states (DEs) of simple atoms are
occupied by relatively slow moving electrons and, consequently, they should be more
responsive to the influence of Coulomb correlation. This was demonstrated to be the
case for the 2p° °P states of H™, He, Li* and Be** by Banyard et af (1992, hereafter
referred to as BKD). In that work, we analysed the correiation-induced changes in the
probability distribution for r 3, the interelectronic separation, by means of Coulomb
holes, partial Coulomb holes and various {r},). Comparisons were made with the
ground state and the singly-excited state 1s2p >P. The latter comparison arcse since,
for low Z, an important decay mechanism for the 2p” *P state is by a radijative transition
to the 1s2p P level. It is observed that, being discrete, the 2p” *P state exhibits no
wavefunction mixing with open channels. Transitions involving this DEs have been
considered by, for example, Westerveld et al (1979), Auderbert et af (1984) and Karim
and Bhalla (1988). See our previous report (BkD) for further references.

In the present article, we perform an in-depth appraisal of the separate angular
and radial components of electron correlation associated with the 2p**P state when
1= Z <4, As before, the correlated descriptions are provided by the highly accurate

0953-4075/93/172811+15507.50  © 1993 IOP Publishing Ltd 2811
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wavefunctions of Drake (1986); the non-correlated reference state is again represented
by the restricted Hartree-Fock (HF) functions obtained from a program by Froese-
Fischer (1987). In addition to reporiing angular Coulomb holes and correlation-induced
changes in the one- and two-particle radial densities, we also determine a series of
expectation values and calculate various statistical correlation coefficients 7 (see
Kutzelnigg et al 1968 and, more recently, Banyard and Mobbs 1981, and Thakkar
1987). Atomic ustits are used throughout this work.

Other studies of either angular or radial correlation, or both, for simple systems
in excited states have been undertaken by many workers. Some typical references are
Sinanoglu and Herrick {1975), Rehmus et al {1978}, Ezra and Berry (1983), Nicolaides
et al (1987), Ojha and Berry (1987), Dmitrieva and Plindov (1988), Rau and Molina
{1989), Tvanov (1992) and Chen er ai (1992).

2. Calculations and results

Drake (1986) wrote the space part of the explicitly correlated wavefunction for the
He(2p? °P)-like systems as

N L. _

q’corr(rh r2) = (l - PlE) 'Z'k Aijkrllr:?'!rgtkz exp(_ﬂ”‘l _ﬁrZ) YR4=—I}I2=I,L=1(BI: d’l: 82’ ﬁbz)
LI

where

Yf:!==i,l1:=},l_=1(81, ¢1 L] 62! ¢2) = 2—1)2[ Y}(als ¢1) Y?(82$ qbZ)_ Ylo(el’ ¢1) Y}(629 ¢2)]' (1)

P, is a permutation operator and, as shown, the angular term involves products of
spherical harmonic functions. A summary of the remaining notation is given in BKD.
Since N is the upper limit on the summation, it is used to designate a particular
wavefunction. As previously, we examine two correlated wavefunctions for each Z:
the energetically best function and, for comparison, the function with the fewest terms.
For H™, the Drake wavefunction with least terms has N =20 and recovers 99.72% of
the correlation energy. All other Drake functions describing the 1= Z =<4 systems
yielded percentages in excess of that obtained by the p-20 (Drake: equation (1) with
N =20) wavefunction for H™. N values, total energies E and correlation percentages
are quoted in table 1 of k0. Each numerical HF wavefunction, HF(NUM), derived from
the Froese-Fischer (1987) program is represented by the same linear combination of
Slater-type orbitals (sTo) as used before. These fitted HF(sTO) functions are employed
throughout this work but, for comparison, expectation values are reported for both
HF(NUM) and HF(STO).

Following Youngman and Banyard (1987), the distribution function for y=8,,,
the angle between the position vectors r, and r, for the two electrons, is given in terms
of a normalized space wavefunction ¥(r, r,} by

P(7)=IW*(Y1:f2)W(’1srz) dr, dry/dy (2)

where, unlike an earlier definition by Banyard and Ellis (1972), we note that

f " P(y)dy=1. (3)

0
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The origin of coordinates is always located at the nucleus; see figure 1 of 8kD {1992)
where, in that instance, the inter-vector angle was labelled 6,.. The angular Coulomb
hole is defined here as

AP(‘)’)=Poorr(7)'“PHF('}’) (4)
where the integral of AP(y) with respect to 0=< y =< is zero. For the 2p° °P state
Por(y) =%Sjns(7)- (5)

The plot of Pyp{y) is shown in figure 1A along with the AP{y) curves for H™ derived
from the p-20 and -84 correlated wavefunctions. In figure 1B, we show the angular
holes assaciated with the energetically best Drake functions: p-84 for H™ and p-70 for
He, Li* and Be*". For each Z = 2, the correlated wavefunction with the fewest terms,
D-13, produced a AP{+y) curve which was graphically indistinguishable from that for
the p-70 function. Figure 2 shows the curves for 1< Z =4 when scaled to give ZAP(y)
against y. In figure 3 the angular hole for He is compared with the corresponding
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Figore 1. A: the normalized angular function Pup(y) for all Hartree-Fock (HF) 2p°*P
wavefunctions; y is the angle subtended by electrons 1 and 2 at the nuclear origin. Also
shown are the angular Coulemb holes, AP{v)= P, {¥)— Pys{¥), for H™(2p*>P). The
P,.{(y) functions are derived from the Drake wavefunction in equation (1) using, in turn,
N =20 and N =84. The AP(y) curves are denoted by their correlated descriptions p-z0
and D-84,

B: the AP(v)} curves for the 2p® *P state when ! = Z =<4. For each system, P, . (y) is
obtained from the energetically best version of equation (1): the p-g4 wavefunction for
H~ and the D-70 versions for He, Li* and Be’*. When Z =2, the D-13 functions yielded
AP(y) curves which were praphically indistinguishable from the corresponding D-70 curve.
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Figure 2. The Z-scaled angular holes for the 2p* *P states of H™, He, Li* and Be** using
the energetically best correlated wavefunctions: D-84 for H™ and the D-70 functions when

Z=2
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Figure 3. Comparison of the angular holes, AP(y) against v, for the 2p* *P, 1s2p *P and
1s? 'S states of He. The full curve is for the 2p? ?P state, the broken curve and the dotted
curve represent the 1s2p >P and 1s® 'S states, respectively. For this order of these He states,
the correlated descriptions are provided by the energetically best wavefunctions of Drake

(1986), Tweed (1973) and Weiss {1961},

results for the 1s° 'S and 1s2p°P states taken, respectively, from Banyard and Ellis
(1972) and (1975). Their angular Coulomb curves for both states have been revised to
satisfy equations (2) and (3). The correlated description of the ground state was
provided by a 35-term configuration-interaction {c1) wavefunction (Weiss 1961) which
recovered 98.8% of the correlation energy whereas, for the singly excited state, they
used an explicitly correlated wavefunction (Tweed 1973) which accounted for 78.6%
of the correlation energy.

As usual, the normalized radial distribution is defined as

D(r)= J ¥ (r, )W (r, ) dr dry/dr

and, hence, we formed a one-particle radial hole
AD(r}= Deore(11) — Dyg(ny).

Similarly, a two-particle radial function can be expressed as

D(r, n)= J' ¥¥*(r, R)¥(ry, ;) dr dry/dr dr,

(6)

(7)

(8)
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and the corresponding correlation change is given by
AD(ry, r2) = Deore( 1y, 12} — Dug(ry, 1)- 9

Obviously we have

o [+=] (-]
J j AD(r, ry) dn dr2=J AD{(r)dr, =0. (10}
o Jo o
When plotted against Zr,, figure 4A shows Z ™' Dye(r,) for each Z and figure 4B shows
AD(r,) for 2<Z <4 (the H™ curve is omitted because of its size, see figure 5). In each
instance, the correlated description used in forming AD{r) is derived from the
energetically best Drake wavefuaction. Included in figure 4A, as a broken curve, is
the radial distribution generated from an independent-particle 2p**P wavefunction

.20
0 n
i A.
] 1
H L
i |
[
015 |
t
|
]
i [
| h
= N
E o0l ) ¥
[ l \
T | i
] [ 'l[
: Hydragenic
i Bott
005 - t‘\ Li*
\\ He
\\ H'
~
~
0.00 L L e L L
30
0 10 20 Zr1
00010 B.
= 0.0000 1 &7\ ! )
Kot 10 20 30
o L Zr
<] Bett
-0.0M0+ Li+
He
-0.0020

Figure 4. A: radial densities Dyp(r,) derived from the HF wavefunctions for the 2p? *p
states when 1< Z =<4, The broken curve is D{r,) generated from an independent-particle
2p* ?P wavefunction comprising unoptimized hydrogenic orbitals. Both axes are scaled to
preserve normalization.

B: correlation-induced changes in the one-particle density, AD(r,), for He, Li* and
Be** plotted against Zr,. For each system, a D-70 correlated wavefunction is used to
determine D, (r,} in equation (7).
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Figure 5. Comparisons of AD(r,) for the 2p**P state of H™, He, Li* and Be** using, in
each case, two energetically different correlated wavefunctions; see the diagrams A-D,
respectively. For Z =1, results for AD(r;) are shown when D, (r,) in equation (7) is
derived, in turn, from the correlated D-20 and D-34 wavefunctions. For each Z 22, the
AD(r,} curves correspond to the approptiate D-13 and p-70 correlated functions.
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based on unoptimized hydrogenic orbitals. The AD(r,) curves arising from the two
versions of equation (1) for each system are compared in figure 5, as indicated. The
Dyr(ry, r2) and AD(r;, r,) functions are shown as surfaces in figure 6 for H™ and He;
D1y, 12} in equation (9) was obtained from b-s4 for H™ and p-7o for He. Since the
results for Li* and Be®" differ, essentially, only in scale from those for He, they are
not included in figure 6.

The expectation values {ryr; cos ¥}, (r]) and {r] r3) for these 2p* *P states are given
in tables 1-3, where n is an integer. (%), obtained from P(y), is quoted in table 1 and
the standard deviation o for each Dr,) is given in table 2. For each Z, tables 2 and
3 contain values derived from HF(NUM) and its HF(STO) representation. The correlation-
induced changes in P(y)} and D(r,) can also be assessed by evaluating

w e
Y, =%j |AP(y)|dyand Y, =%j |AD(r,)| dr,. (11)

o 0
The results for Y, and Y,, expressed as percentages of the integrated HF distributions,
are given in tables 1 and 2. In addition, defining the change in a statistical correlation
coefficient as Ar=r(corr)— 7(uF), we determined A7y, A7, Ar,, A7, and A7,
Definitions of these radial and angular r, involving {r{r3) and (ryri cos y) respectively,
have been quoted recently by Banyard (1990), see equations (1)-(5). For radial
correlation, A7, places the emphasis on the inner regions of the two-particle density
in position space whereas A7, locates the emphasis in the outer regions of the density.
Similarly, when discussing angular correlation, we note that Ar,., Ar,.and Ar, possess,
in that order, an emphasis which moves progressively from the inner to the outer
regions of the two-particle density. The values are presented in table 4,

3. Discussion

3.1. Angular correlation

For a 2p* P state, the Pye(y) curve in figure 1A is applicable for any Z. Since the two
electrons singly occupy, say, the 2p, and 2p, orbitals at the independent-particle level,
the inter-electronic angular distribution is symmetric about its maximuem. Hence in
table 1, {7y} =90° for the HF descriptions. Naturally, the sin ¥ term arising from the
Jacobian and contained, by implication, in the definition of P(y), see equation (2},
renders the distribution function zero when y =0° or 180° for any state.

As we progress from the D-20 to the p-24 wavefunction for H™, the correlation
energy Is improved by 0.27%. Figure 1A shows that this improvement is reflected in
AP(y). Although the crossover points are virtually coincident at about 90°, the energeti-
cally better curve (D-84) is seen to be not quite so deep in the <y < 90° region and,
consequently, it is less positive when 90° <y << 180°. As found for Pyg(y), each angular
Couiomb hole in figure 1 is effectively zero at small y, a similar behaviour occurs as
¥ 180°

When Z =2, the p-13 wavefunction recovers over 99.9% of the correlation energy
and the use of the p-70 function improves the result by =<0.08%. Therefore, for He
and the positive ions, it is not surprising that the two AP(y) curves are indistinguishable
to within graphical accuracy: see figure 1B. For general comparison, figure 1B includes
the H™(D-84) curve. Table 1 reveals that the introduction of correlation produces a



"SH 10§ 3501) 0) 1B[LWIS 31k SAOBJINS I JO SONSLINIORIBYD
o “aeas Jo seBurys oy 1dasxs ‘pours +z°f PUB _IT IOJ UMOYS J0U 24w S3jnsay 0H 10] 0i-a pus _} 10J
¥8-Q1 Wwody pasLRp 81 (6) wonenbs ar (W L)y -5y pue -H Jo s;eis g dz oyl 30 (% “Li)dHeg UonNqIsIp
poseq-dH oY1 pue LNsusp [eipel apnied-om) oy ur (% “Ugy 28ueyo P3oNpul-uonB[a1102 AYJ ‘9 2.&5

DR T Keeble et al

2818

(de zdZ)oH

(de zd¢)

H

010°0- Soa0-
> T000-
5000~ 57
3 Z000-
Sy
10000 < 0000
wt
2000
5000
000 0000
o
A,
%00 > 9000
-
010 200

(ZJ 'IJ)'?‘B-CIGV

(ZJ'[J).:IHG



Angular and radial correlation in doubly excited systems 2819

Table 1. Expectation values {rr5 cos y} and {¥} for the He(2p"*P)-like systems when
1< Z<4, where n=—1, 0, +1, and v is the angle subtended by the position vectors r
and r, at the nucleus as origin. Y, is the percentage of the normalized probability function
Pre(y) redistributed due to electron correlation. Throughout this work, all distances are
measured in atomic units.

System Wavefunetion® {!T'rs'cos vy {cos v) ritritoos vy (y) (deg) Y, (%)
H(2p**P) Dp-20" -0.0019780  -0.097966 -7.7127 96.200 9.18
D-84 -0.0019176  —0.094344  -7.3833 95971 8.34
He(2p*°P)  p-13 —0.010331 -0.071449 074438 94,528 6.56
D-70 —-0.010 299 —-0.071404  -0.74310 94.526 6.65
Lit(2p?%P)  D-13 —0.017932 —0.048310  —0.19594 93,065 4.4%
D-70 —0.017 890 —0.048287  —0.19554 93,064 4.49
Be**(2p%*P) D13 ~0.025 560 0036378 -DLO77393 92,310 3.37
D-70 ~0.025 494 —-0.036363  -0.077804 92,308 3.38

® Hartree- Fock (HE) values for {#{ ry cos ¥} are zero in each instance, We also note that {y}yp=50°
® p.20, for example, refers to the Drake (1986) wavefunction with N =20 in the summation limit in
equation {1).

Table 2. Values of (+7} for the 2p? °P states when 1 € Z =<4 and -2 = n<+2, Also quoted
is o, the radial standard deviation, and Y ,, the percentage of the normalized density Dy (r,)
which is redistributed due to electron correlation.

System Wavefunction  (r7%) T i (i o Y ,{%)
H~(2p**P) HE (NUM) 0.041392  0.167 31 83220 92 467 48177 —
HF (STO) 0.041388  (.16729 83243 92.530 48203 —
D-20 0043008 016154  10.804 199,22 9.0830 142
D-84 0.042999 016067  11.481 251.16 10.925 15.3
He(2p* 7P) HE (NUM) 024082  0.41790 3.0814 11.691 14817 —
HF (STO) 024082 041790 3.0814 11,691 14817 —
D-13 024170 041810 3.0893 11,782 14958 0404
D-70 024172 041310 3.0899 11.791 14979 0378
Li*(2p*°P) HF (NUM) 060697  0.66795 1.9043 44165 088892 —
HF (5TO) 060697  0.66795 1.9043 44166 088893 —
D-13 060765  0.66805 1.9057 4.4258 059118  0.130
D-70 0607685  0.66805 1.2058 44271 039174 0114
Be®*(2p**P)  HF{NUM) 1,1398 0.917 96 13786 23045 063560 —
HF (STO) 1.1398 0.917 96 13786 23045 063559 —
D-13 1.1403 091802 1.3790 23066 0.63627  0.0691
D-70 1.1403 0.918 02 1.3791 23071 0.63654 00530

noticeable increase in (y} for each system, particularly for H™. However, the improte-
ment in the correlated wavefunctions discussed above is seen to cause a reduction in
{¥) for H™ of about 0.23° whereas, for He, Li* and Be™*, the decrease is only marginal.
We also note that, for each system, the quantum mechanical resulis for {7y} and the
angular probability distributions Pyp{ vy} and AP(y) lend support to the quasiclassical
picture of a 2p” *P state as being a floppy linear “triatomic molecule’, see Krause et af
(1987). This molecular model of electron correlation, initially proposed by Herrick
and Keliman (1980), assumes that the two electrons are localized diametrically at equal
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Table 3. Values of {r]r3) for the 2p* *P states when 1= Z<4 and -2€n<+2,

System Wavefunction R, {ritesh {rrterty ey

B~ (2p*°P) HF (NUM) 0.001 7133 0.027 991 69.256 8549.3
HF (sTO) 0.001 7129 0.027 987 69.294 8561.8
D-20 0.00078624  0.020255 85.210 11 596
D-84 0.00076624  0.019757 91.951 14727

He{2p* *B) HF (NUM) 0.057994 0.174 64 9.4952 136.67
HF (STO) . 0.057 994 0.174 64 9.4952 136.67
D-13 0.050 515 0.168 82 9.2444 122.83
D-70 0.050 595 0.168 83 9.2471 123.08

Li*(2p*?P) HF (NUM) 0.368 41 0.446 15 3.6264 19.506
HF (STO) 0.368 41 0.446 15 3.6264 19.506
D-13 0.339 71 0.437 58 3.5676 18.303
D-70 0.340 02 0.437 60 3.5680 18323

Be**(2p* *P) HF (NuM) 1.299 1 0.842 64 1.9006 53109
HF {sTO) 1.2991 0.842 64 1.9006 53109
D-13 1.2272 0.83125 1.8785 5.0789
D70 1.2273 0.83126 1.8786 5.0800

Table 4. Changes due to correlation in various statistical correlation coefficients r for the
2p® 3P states when 1 = Z < 4. Ary,, and Ar, assess the radial component of correlation and
A7, Ar,- and A7, assess the angular component. For each component, the chosen A7
represent a progressive shift of emphasis from the inner to the outer regions of the
twg-particle probability distribution, We note that, since 7{HF} is zero for these systems,
each Ar = r(com).

System Wavefunction ATy ATt Az, A7y, AT,
H™{(2p%*P) D-20 -0.04599  —0.09797 003871 -0.3453 -0.3820
D-84 -0.04460 —0.09434  —002940 —03524 -0.3340
He{2p?*P) D-13 -004274 —007145 -006318 —0.08944 —0.1343
D-70 -004261 -007140 —006302 —0.08928 —0.1338
Li*(2p* *P) D13 —0.02951 —0.04831 —0.04427 —0.05396 —0.08060
D-70 ~0.02944  —0.04829 -0.04417 005387 —0.08037
Be™*(2p? P} D-13 ~0.02242 -0.03638 —-0.03377 —0.03865 —0.05745
D-70 -002236 -0.03636 —003372 -0.03869 —0.05751

* We note that r,.={cos y}, The definition of each 7 used here has been quoted recently by Banyard (1990),
equations (1-5).

distances from the nucleus: the system then experiences quantized collective rotations
and large bending vibrations. Ezra and Berry (1983) have used this model to examine,
in detail, a “‘molecular’ interpretation of the dynamics of correlation in various pEs
for a series of He-like ions. Of particular interest is their comment that the 2p °P state
can be regarded as a floppy molecule with one quantum of bending vibration, Figure
7 of Ezra and Berry (1983) shows that their conditional probability density for the
2p* *P state has a maximum around y=90° and, because of symmetry constraints,
possesses nodes at ¥ =0° and 180°. More importantly, however, they observe that, in
the region when r; equals the most probable value for r,, angular correlation shifts
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the maximum in the density to values of y which are slightly greater than 90° As Z
was increased, Ezra and Berry {1983} found that the conditional probability density
tended to become more symmetric about y = 90°.

The simple Z-scaling employed here in figure 2 for the angular holes produces a
near-coincidence over the whole range, except of course for H™. Clearly, even though
AP(vy) for H™ has the largest magnitude in figure 1B, the angular hole is too small to
fit in with the inverse-Z behaviour observed here. When Z = 2, the inverse-Z effect is
also shown in the Y, values and in the excess of the correlated {y) values over the HF
result of 90, see table 1 in each case. For He, the comparison in figure 3 of the angular
hole for 2p” °P with those for the 1s2p >P and 1s* 'S states reveals large differences in
magnitude, the curves being ordered as pes> ground state > singly excited state.
Indeed, the DEs hole is over 50% deeper than the 1s? 'S hole and several times deeper
than that for 1s2p *P. Nevertheless, we note that the value for y which locates the
minimum in each curve increases according to the occupancy of a p orbital. Such an
ordering is not applicable to the crossover or nodal point where, as figure 3 shows,
the 1s2p *P curve has the largest ¥ value. However, in a study of angular holes for the
ground state (Banyard and Ellis 1972), it was found that a wavefunction which
recovered about 80% of the correlation energy produced a nodal point with a y value
larger than tbat obtained when the description was over 95% correlated. Thus, for the
1s2p *P state, the use of a correlated wavefunction which is less accurate than those
for the other states may have yielded a nodal v which is, in reality, too large. Obviously,
for He, the differences between these curves are sufficiently large to conclude that
angular correlation has a much greater effect on the slow moving pes electrons than
on the 1s* 'S or 1s2p *P electrons, in spite of the diffuse nature of the pES charge cloud.

3.2. Radial correlation

When examining the influence of correlation on the radial distributions D(r,} and
D(ry, r;), defined in equations (6) and (8), respectively, it is to be expected that the
one-particle function D(r,) will be less sensitive than D{r, r»). In figure 4A, the D(r,)
curves have been Z-scaled in such a way that normalization is preserved. The curves
for 1 = Z =4, derived from the HFsTO) results, are observed to converge towards D(r;)
generated from an independent-particle 2p* *P wavefunction using unoptimized hydro-
genic orbitals, As in B D, this confirms the decreasing importance of the interelectronic
repulsion term as Z increases. In figure 4B, the AD(r)) against Zr; curves obtained
from the energetically best correlated wavefunctions show a roughly common form
when Z>2. The curve for H™ is not included due to its extensive r, range and the
comparatively massive magnitude for AD(r,), see figure 5. The ‘double-occupancy” of
the 2p orbital, with its non-zero angular momentum, is seen to produce curves for
Due(r) and AD(r} which have negligible values at small r,. By conirast, the HF
curves for 1s*'S and 1s2p °P, each involving a 1s orbital, are known to rise rapidly
from the origin. An attempt was made to reduce the ranges of the cross over regions
in figure 4B by using a (Z — k) scaling factor. Unfortunately, the screening parameter
k =0.28 required for a minimized spread of inner nodes was quite different from that
of 0.49 required for the outer nodes,

For each system, the radial ‘in-out’ effect of correlation is iramediately apparent.
Like the ‘split-shell’ effect for the 1s* 'S state, a AD(r;) curve is seen to be most negative
at a Zr, value slightly in excess of that for the maximum in the corresponding Dye(r):
we also note that each set of Zr; values approaches a limit as Z jncreases. Obviously,
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as Z becomes larger, AD(r,) decreases in magnitude and relative importance. This is
supported by the Y, values in table 2 where the deerease with Z is considerably greater
than that observed for Y, in table 1.

In figure 5, the AD{r,} curves for H™ show a distinction between the p-20 and p-g4
correlated wavefunctions and, for He and the positive ions, differences exist between
results derived from the p-13 and D-70 functions. As expected, for these pairs of highly
correlated wavefunctions the differences, although real, are indeed very small when
compared with Dyg(r,). Nevertheless, figure 5 shows that the improvement in the
correlated wavefunction for H™ deepens the radial hole and makes AD(r,) more
extensive. For Z =2, improvement again extends each curve but the hole is less deep
than that for p-13.

Examination of the two-particle radial densities in figure 6 reveals that the relatively
massive correlation effect for H™ extends well beyond the region of the Dyglr, 1)
surface. For He, AD(r,, r.) is almost confined within the (r,, #;} range for the HF
surface, a feature which was clearly apparent when comparing the surfaces for Li*
and for Be®™ (the pairs of surfaces for 2 =3 and 4 are not shown for reasons of space).
The ‘in-out’ effect is highlighted in AD{r,, r-) by a maximum being located at smal]
r;and large r,, and vice versa, coupled with the occurrence of a reduction in probability
whenever r, = r.

3.3. Expectation values and Ar

Table 1 shows that, in keeping with {y}.. being greater than {y)ye =90°, the introduc-
tion of correlation produces a negative value for the angular-related properties
{r1rz cos v). For each system, the magnitude of the value when n =+1 is several times
larger than the result when r =0 or —1: in fact, for H™, we note that in relative terms
the size of {r}'ri'cos v} is extremely large. When Z is increased, {r7'ri'cos v}
decreases rapidly in magnitude but, as mentioned, it remains the dominant value—in
spite of {r;’r7" cos y) becoming steadily more negative. Improvement in the correlated
wavefunctions is seen to decrease the magnitude of each expectation value for all Z,
thus indicating a reduction in angular correlation, as observed earlier.

In table 2, correlation increases {r}} and o for He and the positive ions. For H™,
a noticeable reduction occurs for the energy-related property (ri'), but all other
quantities are increased. Indeed, the change in {72 for H™ is over twofold and refiects
the sizeable ‘in-out’ radial effect discussed above. When Z =2, going from p-13 to
D-70 is seen to yield a marginal or zero increase in {r{) and a slight increase in o.
However, improving the correlated description for H™ causes a significant increase in
(T, (1) and o

The {r}ri} vaiues in table 3 show a marked sensitivity to correlation effects. Except
when n=+1 and +2 for H", all quantities are reduced in value by the use of the
explicitly correlated wavefunctions: as might be anticipated, the reduction decreases
with increasing Z. When Z = 2, these changes relative to the HF values range from a
reduction of almost 13% down to about 41%. However, when Z = 1, correlation produces
a massive 55% reduction for {r7?r;% and an increase of around 36% for {r ?r3%.
Excluding H™, the use of the energetically better correlated functions produces either
a small or quite marginal increase in {r7r3). For H™, the use of the p-84 description,
instead of p-20, causes a decrease when n =< —1 and an increase when n = +1, the result
for {r1?r;°) being changed by 27%. In passing, we note from tables 2 and 3 the high
degree of similarity between the ur(nuM) values and those derived from its Br(sTO)
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representation. Not surpisingly, the slightly reduced quality of the fitted function
implied by the results for H™ is a reflection of the very diffuse nature of its 2p2°P
wavefunction.

All statistical correlation coefficients considered in table 4 are identically zero when
derived from an HF wavefunction as, indeed, they are for any independent-particle
representation of 2p” *P. Hence, Ar = r(corr). Since, by definition, every = is bounded
between —1 and +1, these different measures of angular and radial correlation are
therefore capable of intercomparison: we recall that —1 and -1 correspond to perfect
negative and positive correlation, respectively. When 2 =2, table 4 reveals that the
angular quantities Ar,- and A7, (emphasizing, in turn, the interemdiate and outer
regions of the density) are always of larger magnitude than Ar, (emphasizing the
inner regions of density). The largest value for H™ is Ar,.. For each system, the radial
quantities Az, and Ar, are seen to be greater than the angular Ar; this is especially
so for H™ where both sets of radial values are greater by at least a factor of 3.5. Once
more, this highlights the distinctive importance of radial correlation in the description
of H=(2p*3P).

Further interest in table 4 arises from the ratios of various AT and, in particular,
their Z-dependent trends. For example, the ratio Ar, /ATy, is 0.95, 1.50, 1.49 and 1.49
for H™, He, Li* and Be®, respectively, showing that the balance of radial correlation
at different distances from the nucleus is similar in the neutral and positive systems,
but is again distinct for H™. When ordered as before, the angular ratio of the outer to
the inner effect, Ar, /A7, yields 0.66, 1.48, 1.50 and 1.51. Thus, when Z =2, the relative
strengths of angular correlation in different radial regions of the density are seen to
be almost constant. Moreover, from the guite remarkable similarity between these two
sets of ratios, we conclude that, for each system except H™, the relative measure of
the angular effects is virtually equal to that for the radial effects. By contrast, the ratios
for H™ are seen to be significantly different. It is also informative to examine the ratio
of a radial to an angular Ar. For increasing Z, Ar,,, /A7, is 7.90, 2.10, 1.83 and 1.73
and Ar./Ar, is 11.4, 2.12, 1.82 and 1.71. Hence, we note that, in both the inner and
outer regiops of space, angular correlation becomes relatively more important as Z
increases. The change in going from H™ to He is seen to be quite dramatic in both
regions. Nevertheless, for each Z, these ratios suggest that radial correlation remains,
overall, the prevailing influence on the two-particle probability density.

Generally, the improvement in these correlated wavefunctions causes a decrease
in magnitude for the listed A7, the exceptions being A7y, for H™ and Ar;;, and A~,
for Be”™ which, as seen from table 4, become more negative.

4. Summary

Highly accurate explicitly correlated wavefunctions, of benchmark quality, have been
used to examine angular and radial correlation effects in the doubly excited state 2p*°P
when 127 <4, Following our recent article on the total correlation effect, these
separate components of electron correlation are assessed here in terms of an angular
Coulomb hole, a radial hole, several expectation values and various angular and radial
statistical correlation coefficients.

For He and the positive ions, a clearly defined inverse-Z relationship exists for the
angular holes AP{y) against y, where v is the inter-electronic angle subtended at the
nucleus. Naturally, this behaviour also occurs in Y.,: the overall change caused by
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correlation in the normalized angular distribution P(y). In addition, the Z-effect is
reftected in the difference between the correlated and Hartree-Fock (4F) expectation
values for y. Although H™ possesses much the largest angular hole in absolute terms,
the curve is still too small to form part of the inverse-Z pattern; a similar conclusion
holds for Y, and the correlation-induced excess for {y}. For He, the curve for the
doubly excited state was compared with the angular holes for the 1s* 'S and 1s2p°P
states. The 2p” *P state, with its diffuse probability density and relatively slow moving
electrons, was found to have an angular hole which is noticeably greater than that for
each energetically lower state.

The influence of correlation on the one-particle radial density D(r,) reveals a
marked ‘in-out’ effect which parallels the correlated ‘split-shell’ behaviour of the doubly
occupied ground state. By analogy with the angular behaviour, the size of the radial
hole AD(r,) for H™ is much larger than that obtained for each of the other systems.
However, irrespective of the H™ result, no simple Z-scaling effect could bring the
remaining AD(r,) curves into any overall agreement. For the two-particle radial
function D(r,, r,), the outward redistribution caused by correlation for H™ extends
well beyond the (r,, r;}-range observed for Dyg(r,, r2). For each system, the maxima
in AD(r,, r,} at large r, and small r,, and vice versa, emphasized most forcefully the
‘in-out” feature found in AD(r;).

Correlation produces changes in the angular and radial expectation properties for
H™ which are massive by comparison with the findings for Z = 2. Ratios of statistical
correlation coefficients, each formulated from specific expectation values, proved to
be highly informative. For every system except H™, the ratio of the outer to the inner
effect for both the radial and angular measures of correlation are virtually identical.
Further, although statistical coefficients indicate that angular correfation increases in
relative importance as £ increases, they also suggest that the major influence on the
two-particle distribution arises from radial correlation.

Finally, the dramatic changes created by each component of correlation for H™ set
it apart from He and the positive ions.
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