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Angular and radial correlation io doubly excited systems when 
1 < 2 < 4: the 2pz 3P state 

D R T Keeblef, K E Banyardt and G W F Drake* 
t Department of Physics and Astronomy, University of Leicester, Leicester, LE1 IRH, UK 
t Department of Physics, University of Windsor, Windsor, Ontario, Canada 

Received 11 January 1993 

Abstract. The angular and radial components of electron correlation have each been 
examined in detail for the discrete 2p"P states of H-, He, Li+ and Be'+. These doubly 
excited sytems were described by highly accurate explicitly correlated wavefunctions. The 
analysis involved the use or angular Coulomb holes, changes in the one- and two-particle 
radial density distributions and several angular and radial expectation values. Additionally, 
various statistical correlation coefficients were used which emphasized. in turn, angular 
and radial correlation properties in different regions of the two-particle density. 

The angular holes and related propedes showed a clearly defined inverse4 effect for 
He and the positive ions. This trend was not repeated for the radial curves. However, 
the radial densities did reveal a distinct 'in-out' correlation effect-similar in character 
to the split-shell behaviour for the ground state. By comparison with the findings for Z 3 2, 
the angular and radial correlation effects for H- were always exceedingly large, thus setting 
it apart from the other systems. For He, the angular hole for the comparatively slow moving 
2p2'P electmns was found to be over 50% deeper than that for the gmund state and about 
six times the depth of a ls2p'P hole. The statistical correlation coefficients highlighted a 
steady growth, with Z, in the relative importance of angular correlation. Nevertheless, for 
each system, these coefficients indicated that the radial effect was the prevailing influence 
on the two-particle probability distribution. 

1. Introduction 

By comparison with the gound state, doubly excited states (DES) o f  simple atoms are 
occupied by relatively slow moving electrons and, consequently, they should be more 
responsive to the influence of Coulomb correlation. This was demonstrated to be the 
case for the 2p2 'P states of H-, He, Li+ and Be2+ by Banyard el al (1992, hereafter 
referred to as BKD). In that work we analysed the correlation-induced changes in the 
probability distribution for r I 2 .  the interelectronic separation, by means of Coulomb 
holes, partial Coulomb holes and various (r;J. Comparisons were made with the 
ground state and the singly-excited state ls2p 'P. The latter comparison arose since, 
for low 2, an important decay mechanism for the 2pz 'P state is by a radiative transition 
to the ls2p 'P level. It is observed that, being discrete, the 2p2 'P state exhibits no 
wavefunction mixing with open channels. Transitions involving this DES have been 
considered by, for example, Westerveld ef ai (1979), Auderbert er al (1984) and Karim 
and Bhalla (1988). See our previous report (BKD) for further references. 

In the present article, we perform an in-depth appraisal of the separate angular 
and radial components of electron correlation associated with the 2pZ3P state when 
1 S 2 5 4. As before, the correlated descriptions are provided by the highly accurate 
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wavefunctions of Drake (1986); the non-correlated reference state is again represented 
by the restricted Hartree-Fock (HF) functions obtained from a program by Froese- 
Fischer (1987). in  addition to reporting angular Coulomb holes and correlation-induced 
changes in the one- and two-particle radial densities, we also determine a series of 
expectation values aRd calculate various statistical correlation coefficients T (see 
Kutzelnigg et a/ 1968 and, more recently, Banyard and Mobbs 1981, and Thakkar 
1987). Atomic units are used throughout this work. 

Other studies of either angular or radial correlation, or both, for simple systems 
in excited states have been undertaken by many workers. Some typical references are 
Sinanoglu and Herrick (1975), Rehmus et al(1978), Ezra and Berry (1983), Nicolaides 
el al (1987), Ojha and Berry (1987), Dmitrieva and Plindov (1988), Rau and Molina 
(1989), lvanov (1992) and Chen er at (1992). 

D R T Keeble et ai 

2. Calculations and results 

Drake (1986) wrote the space part of the explicitly correlated wavefunction for the 
He(2p2 'P)-like systems as 

Ycorr(r , ,  r2)=(1-Pld  Z A , r l ~ r : 2 e x p ( - u r l - p r , ) Y ~ ~ t , , = I . ~ = 1 ( 0 1 ,  $1 ,  02,  $2) 

where 

N 

(i,h 

Y ~ ~ f 1 2 = I , L = 1 ( o l r  + 1 ,  0,. +a)=2-1/2[y:(el ,  +1)yP(02, +d- yP(o,, + 1 ) ~ : ( e 2 ,  +2)1. ( 1 )  

P12 is a permutation operator and, as shown, the angular term involves products of 
spherical harmonic functions. A summary of the remaining notation is given in BKD. 
Since N is the upper limit on the summation, it is used to designate a particular 
wavefunction. As previously, we examine two correlated wavefunctions for each Z: 
the energetically best function and, for comparison, the function with the fewest terms. 
For H-, the Drake wavefunction with least terms has N = 20 and recovers 99.72% of 
the correlation energy. All other Drake functions describing the 1 eZs4 systems 
yielded percentages in excess of that obtained by the D-20 (Drake: equation (1) with 
N = 20) wavefunction for H-. N values, total energies E and correlation percentages 
are quoted in table 1 of BKD. Each numerical HF wavefunction, HFCNUM), derived from 
the Froese-Fischer (1987) program is represented by the same linear combination of  
Slater-type orbitals (STO) as used before. These fitted HF(STOI functions are employed 
throughout this work but, for comparison, expectation values are reported for both 
HF(NUM) and HFGM). 

Following Youngman and Banyard (1987), the distribution function for y = O I 2 ,  
the angle between the position vectors r, and r2 for the two electrons, is given in terms 
of a normalized space wavefunction W r , ,  r2) by 

P(Y) = W r , ,  r 2 ) W r l ,  4 dT1 d r d d y  (2) I 
where, unlike an earlier definition by Banyard and Ellis (1972). we note that 

[:P(y)dy=1. (3) 
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The origin of coordinates is always located at the nucleus; see figure 1 of BKD (1992) 
where, in that instance, the inter-vector angle was labelled O I 2 .  The angular Coulomb 
hole is defined here as 

AP(7) = P d 7 )  -PHF(Y) (4) 

( 5 )  J ‘ H F ( Y ) = z ~ I ~  ( Y ) .  

where the integral of A P ( y )  with respect to Os y c  T is zero. For the 2p’ ’P state 
3 . 3  

The plot of PHF(y) is shown in figure 1A along with the A P ( y )  curves for H- derived 
from the D-20 and D-84 correlated wavefunctions. In figure lB, we show the angular 
holes associated with the energetically best Drake functions: D-84 for H- and D-70 for 
He, Li+ and Be’+. For each 22.2, the correlated wavefunction with the fewest terms, 
D-13, produced a A P ( y )  curve which was graphically indistinguishable from that for 
the D-70 function. Figure 2 shows the curves for 1 s 2 S 4 when scaled to give Z A P  ( 7 )  
against 7. In figure 3 the angular hole for He is compared with the corresponding 

0.12 0.75 

0-50 - 0.06 

t, .... 
i% 0.00 

a a 
0-25 - 0-06 

0.00 
-0 12 

120’ 180’ 
Y 60‘ 

Figure 1. A lhe normalized angular function PHF(y) for all Hmree-Fock (HF) 2p”P 
wavefunctions; y is the angle subtended by electrons I and 2 at the nuclear origin. Also 
shown are the angular Coulomb holes, 4P(y )=  P_,(y)-PHF(y). for H-(Zp”P). The 
Parr(y) functions are derived from the Drake wavefundion in equation ( I )  using, in turn, 
N =20 and N =84. The AP(y) curves are denoted by their correlated descriptions D-20 
and D-84. 

B: the 4P(y )  curves for the 2pZ3P state when 1 S Z r d .  For each system, P_,,(y) is 
obtained from the energetically best version or equation ( 1 ) :  the D-84 wavefunction for 
H- and the 0-70 versions for He, Li+ and Be‘+. When Z 3 2 ,  thhe D-13 functions yielded 
A P (  Y )  curves which were graphically indistinguishable from thhe corresponding 0-70 curve. 
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F’igure 2. The 2-scaled angular holes for the 2p”P states of H-, He. Li+ and Be“ using 
the energetically best correlated wavefunctions: D-84 for H- and the D-70 functions when 
z>2 

Figure 3. Comparison of the angular holes, A P ( y )  against y, for the 2p”P, ls2p’P and 
IS’ ‘ S  states of He. The full curve is for the 2p2 ’P state, the broken curve and the dotted 
curve represent the ls2p ’P and Is’ ‘ S  states, respectively. For this order of these He stales, 
the correlated descriptions are provided by the energetically best wavefunctions of Drake 
(1986), Tweed (1973) and Weiss (1961). 

results for the Is’ ‘S and ls2p 3P states taken, respectively, from Banyard and Ellis 
(1972) and (1975). Their angular Coulomb curves for both states have been revised to 
satisfy equations (2) and (3).  Thc correlated description of the ground state was 
provided by a 35-term configuration-interaction (CI) wavefunction (Weiss 1961) which 
recovered 98.8% of the correlation energy whereas, for the singly excited state, they 
used an explicitly correlated wavefunction (Tweed 1973) which accounted for 78.6% 
of the correlation energy. 

As usual, the normalized radial distribution is defined as 

D(rJ = y*h, r 2 ) W L ,  a) dT1 dr2/drI J 
and, hence, we formed a one-particle radial hole 

AD(rt)= DeOrr(rt)-Q&d. 
Similarly, a two-particle radial function can be expressed as 
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and the corresponding correlation change is given by 

AD(r,, rd= Dcorr(r1,r2)- D H F ( r 1 ,  12). (9) 

Obviously we have 

[om[omAD(r,, r2)dr,dr2= lom AD(r,)dr,=O. (10) 

When plotted against Zr,, figure 4A shows Z-’DHF(r1) for each Z and figure 49 shows 
AD( rl) for 2 S 2 s 4 (the H- curve is omitted because of its size, see figure 5). In each 
instance, the correlated description used in forming AD(r,) is derived from the 
energetically best Drake wavefunction. Included in figure 4A, as a broken curve, is 
the radial distribution generated from an independent-particle 2pz ’P wavefunction 

0.20 
I-\ : :  A.  

0.15 

- 
i - 0.10 
0 
N 
T 

0.05 

0.00 
30 

Zr1 
0 IO 20 

Figure 4. A radial densities DHp(r,) derived from the HF wavefunctions for the 2p2 ’P 
states when 1 s Ze-4. The broken curve is D(r , )  generated from an independent-particle 
2p”P wavefunction comprising unoptimized hydrogenic orbitals. Both axes are scaled to 
preserve normalization. 

B: correlation-induced changes in the one-particle density, AD(,,), for He, Li’ and 
Be” plotted against ZrL . For each system, a D-70 correlated wavefunclion is used to 
determine D-Jr,) in equation (7). 
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Figure 5. Comparisons of AD(r,)  for the 2p"P stale of H-, He, Li+ and Bez+ using, in 
each case, two energetically different correlated wavefunctions; see the diagrams A-D, 
respectively, For Z = l ,  results for AD(r,)  are shown when Darr(rl) in equation (7) is 
derived, in tum, from the conelaled D-20 and D-84 wavefunctions. For each 2 3 2 ,  the 
AD(rJ curves correspond to the appropriate D - I ~  and D-70 correlated functions. 
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based on unoptimized hydrogenic orbitals. The AD(rl) curyes arising from the two 
versions of equation (1) for each system are compared in figure 5, as indicated. The 
DHF(r,, r2) and AD(r,, rz) functions are shown as surfaces in figure 6 for H- and He; 
Dcom(r1, r2) in equation (9) was obtained from D-84 for H- and D - ~ O  for He. Since the 
results for Li+ and Be2+ differ, essentially, only in scale from those for He, they are 
not included in figure 6. 

The expectation values (rrr; cos y), (r;)  and (ryr;) for these 2p2 'P states are given 
in tables 1-3, where n is an integer. (y), obtained from P(y), is quoted in table 1 and 
the standard deviation ff for each D(r,) is given in table 2. For each 2, tables 2 and 
3 contain values derived from HF(NUM) and its HF(STO) representation. The correlation- 
induced changes in P(y) and D(rJ can also be assessed by evaluating 

y =1 2j:IAP(y)ldyandY.=i r lAD(rl)ldrl. (11) 

The results for "I, and Y,, expressed as percentages of the integrated HF distributions, 
are given in tables 1 and 2. In addition, defining the change in a statistical correlation 
coe5cient as AT=T(co~~)-T(HF),  we determined  AT^,,, AT,, AT,., ATr. and AT?. 
Definitions of these radial and angular T, involving (ryr;) and (r;rl cos y )  respectively, 
have been quoted recently by Banyard (1990), see equations (1)-(5). For radial 
correlation,  AT^,^ places the emphasis on the inner regions of the two-particle density 
in position space whereas AT? locates the emphasis in the outer regions of the density. 
Similarly, when discussing angular correlation, we note that AT,,,  AT^,. and AT, possess, 
in that order, an emphasis which moves progressively from the inner to the outer 
re@ons of the two-particle density. The values are presented in table 4. 

3. Discussion 

3.1. Angular correlation 

For a 2pz 'P state, the PHF(y) curve in figure 1A is applicable for any 2. Since the two 
electrons singly occupy, say, the 2p0 and 2p, orbitals at  the independent-particle level, 
the inter-electronic angular distribution is symmetric about its maximum. Hence in 
table 1, (y) =90" for the HF descriptions. Naturally, the sin y term arising from the 
Jacobian and contained, by implication, in the definition of P(y), see equation (Z), 
renders the distribution function zero when y =O" or 180' for any state. 

As we progress from the D-20 to the D-84 wavefunction for H-, the correlation 
energy is improved by 0.27%. Figure 1A shows that this improvement is reflected in 
A P (  7) .  Although the crossover points are virtually coincident at about go", the energeti- 
cally better curve (D-84) is seen to be not quite so deep in the O <  y <90° region and, 
consequently, it is less positive when 90"< y < 180". As found for PHF(y), each angular 
Coulomb hole in figure 1 is effectively zero at small y; a similar behaviour occurs as 

When 2 3 2 ,  the ~ - 1 3  wavefunction recovers over 99.9% of the correlation energy 
and the use of the D - ~ O  function improves the result by <0.08%. Therefore, for He 
and the positive ions, it is not surprising that the two AP( y) curves are indistinguishable 
to within graphical accuracy: see figure 1B. For general comparison, figure 1B includes 
the H-(~-84)  curve. Table 1 reveals that the introduction of correlation produces a 

y+180". 
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Table I. Expectation values ( r ; r ;  cos y) and (y) for the He(Zp"P)-like systems when 
1 5 Z S 4 .  where n = - I ,  0, + I ,  and y is the angle subtended by the position vectors r, 
and q at the nucleus as origin. Y, is the percentage of the normalized probability function 
PHe(y) redisVibuted due to eleman correlation. Throughout this work, all distances are 
measured in atomic units. 

H-(2p2'P) D-20b 

0-84 

He(2p"P) 0 - 1 3  

Li+(2pZ3~) 0-13 

Be'+(2pZ3P) D-13 

0-70 

0-10 

0-10 

-0.001 9780 
-0.001 9176 

-0.010331 
-0.010 299 

-0.017 932 
-0.017 890 

-0.025 560 
-0.025 494 

-0.097 966 
-0.094 344 

-0.071 449 
-0.071 404 

-0.048310 
-0.048 287 

-0.036378 
-0.036 363 

-7.712 7 
-7.383 3 

-0.74438 
-0.743 10 

-0.195 94 
-0.195 54 

-0.077 893 
-0.077 804 

96.200 
95.971 

94.528 
94.526 

93.065 
93.064 

92.310 
92.308 

9.18 
8.84 

6.66 
6.65 

4.49 
4.49 

3.37 
3.38 

~~ ~~ ~ ~~ ~ ~ 

' Hartree-Fock (HF) values for (.;.E c o s y )  are zero in each instance. We also note that (y),,=90". 
b ~ - 2 0 ,  for example. refers to the Drake (1986) wavefunction with N = 2 0  in the summation limit in 
equation (1). 

Table 2. Values of (r;}  for the 2p2 'P states when 1 5  Z S4 and -2 5 n s +?. Also quoted 
is U, the radial standard deviation, and Y,, the percentage ofthe normalized density DHF(r,) 
which is redistributed due to electron correlation. 

H-(Zp"P) H F ( N U M )  
HF (570) 
0-20 

0-84 

He(2p"P) HF(NUM) 

HF(STO) 
0-13 

0-70 

Li+(2pz3P) H F ( N U M )  
HF(S70)  

0-13 

0-70 

BeZ+(2p2'R) H F ( N U M )  
HF(STO) 
0-13 
D-70 

0.041 392 
0.041 388 
0.043 008 
0.042 999 

0.240 82 
0.240 82 
0.241 70 
0.241 72 

0.60697 
0.606 97 
0.607 65 
0.607 68 

1.1398 
1.1398 
1.1403 
1.140 3 

0.167 31 
0.167 29 
0.161 54 
0.160 67 

0.417 90 
0.417 90 
0.418 IO 
0.418 IO 

0.667 95 
0.667 95 
0.668 05 
0.668 05 

0.91796 
0.917 96 
0.918 02 
0.918 02 

8.3220 
8.3243 

10.804 
11.481 

3.0814 
3.0814 
3.0895 
3.0899 

1.9043 
1.9043 
1.9057 
1.9058 

1.3786 
1.3786 
1.3790 
1.3791 

92.467 4.817 7 - 
92.530 4.8203 - 

199.22 9.0830 14.2 
251.16 10.925 15.3 

11.691 1.4817 - 
11.691 1.4817 - 
11.782 1.495 8 0.404 
11.791 1.4979 0.378 

4.4165 0,88892 - 
4.4166 0,88893 - 
4.4258 0.891 18 0.130 
4.4271 0.891 74 0,114 

2.3045 0.635 60 - 
2.3045 0.635 59 - 
2.3066 0.636 27 0.0691 
2.3071 0.636 54 0.0530 

noticeable increase in ( y )  for each system, particularly for H-. However, the improve- 
ment in the correlated wavefunctions discussed above is seen to cause a reduction in 
( y )  for H- of about 0.23" whereas, for He, Li' and Be2', the decrease is only marginal. 
We also note that, for each system, the quantum mechanical results for ( 7 )  and the 
angular probability distributions PHF( y )  and AP( y )  lend support to the quasiclassical 
picture of a 2p2 'P state as being a floppy linear 'triatomic molecule', see Krause et al 
(1987). This molecular model of electron correlation, initially proposed by Herrick 
and Kellman (1980), assumes that the two electrons are localized diametrically at equal 
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Table3. Valuesof(~;r;)forthe2p"Pstatcswhen l S Z S 4 a n d - Z S n S + 2 .  

System Wavefunction (*.;'$) ( , ; ' T i ' )  ++, , r2 + I  ) (Py7;z) 

H-(2p23P) H F ( N U M )  
HF (STO) 
D-20 
D-84 

He(2p' 'P) HF (NUM) 
HF (STO) 
D-13 
D-70 

Li+(2p' 'P) H F ( N U M )  
H F  (STO) 
D-I3 
D-70 

Be2+(2p2 'P) H F ( N U M )  
HF (WO) 
D-13 
D-70 

0.001 7133 0.027991 
0,001 7129 0.027987 
0.000786 24 0.020 255 
0,000 766 24 0.019 757 

0.057 994 0.13464 
0.057 994 0.17464 
0.050515 0.16882 
0,050 595 0.16883 

0.368 41 0.446 15 
0.368 41 0.446 15 
0.339 71 0.437 58 
0.340 02 0.437 60 

1.299 1 0.842 64 
1.299 I 0.842 64 
1.227 2 0,831 25 
1.227 3 0.831 26 

69.256 
69.294 
85.210 
91.951 

9.4952 
9.4952 
9.2444 
9.2471 

3.6264 
3.6264 
3.5676 
3.5680 

1.9006 
1.9006 
1.8785 
1.8786 

8549.5 
8561.8 

11 596 
14727 

136.67 
136.67 
122.83 
123.08 

19.506 
19.506 
18.303 
18.323 

5.3109 
5.3109 
5.0789 
5.0800 

Table 4. Changes due to correlation in various statistical correlation coefficients i for the 
2p"'P states when I SZS4. AT,/, and AT, assess the radial wmponent of correlation and 
AT?., AT?. and Avr assess the angular wmponent. For each component, the chosen A7 
represent a progressive shift of emphasis from the inner to the outer regions of the 
two-particle probability distribution. We note that, since T(HF) is zero far these systems, 
each &T= ~(corr). 

HY2P"P) 0-20 
D-84 

He(2p' 'P) 0-13 
D-70 

Li'(2p' 'P) D-13 
D-70 

Be"(?p"P) D-I3 
D-70 

-0.045 99 
-0.04460 

-0.042 74 
-0.042 61 

-0.029 51 
-0.029 44 

-0,022 42 
-0.02236 

-0.097 97 
-0.094 34 

-0.011 45 
-0.071 40 

-0.048 31 
-0.048 29 

-0.036 38 
-0.036 36 

-0.038 71 
-0.029 40 

-0.063 18 
-0.063 02 

-0,044 27 
-0.044 17 

-0.033 77 
-0.033 72 

-0.345 3 
-0.352 4 

-0.089 44 
-0.089 28 

-0.053 96 
-0.053 87 

-0.038 65 
-0.038 69 

-0.382 0 
-0.3340 

-0.134 3 
-0.133 8 

-0.080 60 
-0.080 37 

-0.057 45 
-0.057 51 

~ 

We note that r,.=(ws U). The definition of each T used here has been quoted recently by Banyard (1990), 
equations (1-5). 

distances from the nucleus: the system then experiences quantized collective rotations 
and large bending vibrations. Ezra and Berry (1983) have used this model to examine, 
in detail, a 'molecular' interpretation of the dynamics of correlation in various DES 
for a series of He-like ions. Of particular interest is their comment that the 2p2 'P state 
can be regarded as a floppy molecule with one quantum of bending vibration. Figure 
7 of Ezra and Berry (1983) shows that their conditional probability density for the 
2p2 'P state has a maximum around y =  90" and, because of symmetry constraints, 
possesses nodes at y =  0" and 180". More importantly, however, they observe that, in 
the region when rl equals the most probable value for r,, angular correlation shifts 
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the maximum in the density to values of y which are slightly greater than 90". As Z 
was increased, Ezra and Berry (1983) found that the conditional probability density 
tended to become more symmetric about y=90°. 

The simple Z-scaling employed here in figure 2 for the angular holes produces a 
near-coincidence over the whole range, except of course for H-. Clearly, even though 
AP(y) for H- has the largest magnitude in figure lB,  the angular hole is too small to 
fit in with the inverse-Z behaviour observed here. When 2 2 2 ,  the inverse-Z effect is 
also shown in the Y, values and in the excess of the correlated ( y )  values over the HF 
result of go", see table 1 in each case. For He, the comparison in figure 3 of the angular 
hole for 2p2 'P with those for the ls2p 'P and 1s' IS states reveals large differences in 
magnitude, the curves being ordered as D E S >  ground state > singly excited state. 
Indeed, the DES hole is over 50% deeper than the 1s' IS hole and several times deeper 
than that for ls2p 'P. Nevertheless, we note that the value for y which locales the 
minimum in each curve increases according to the occupancy of a p orbital. Such an 
ordering is not applicable to the crossover or nodal point where, as figure 3 shows, 
the ls2p 'P curve has the largest y value. However, in a study of angular holes for the 
ground state (Banyard and Ellis 1972), it was found that a wavefunction which 
recovered about 80% of the correlation energy produced a nodal point with a y value 
larger than that obtained when the description was over 95% correlated. Thus, for the 
ls2p 'P state, the use of a correlated wavefunction which is less accurate than those 
for the other states may have yielded a nodal y which is, in reality, too large. Obviously, 
for He, the differences between these curves are sufficiently large to conclude that 
angular correlation has a much greater effect on the slow moving DES electrons than 
on the ls2 'S or ls2p 'P electrons, in spite of the diffuse nature of the DES charge cloud. 

3.2. Radial correlation 

When examining the influence of correlation on the radial distributions D(rl) and 
D ( r , ,  r2), defmed in equations ( 6 )  and ( S ) ,  respectively, it is to be expected that the 
one-particle function D ( r l )  will be less sensitive than D ( r l ,  r2). In figure 4 4  the D(rl) 
curves have been Z-scaled in such a way that normalization is preserved. The curves 
for 1 sZs4, derived from the HF(STO) results, are observed to converge towards D(r , )  
generated from an independent-particle 2p' 'P wavefunction using unoptimized hydro- 
genic orbitals. As in BKD, this conErms the decreasing importance of the interelectronic 
repulsion term as Z increases. In figure 4B, the AD(r , )  against 2rl curves obtained 
from the energetically best correlated wavefunctions show a roughly common form 
when 2 2 2 .  The curve for H- is not included due to its extensive r1 range and the 
comparatively massive magnitude for AD(r,) ,  see figure 5. The 'double-occupancy' of 
the 2p orbital, with its non-zero angular momentum, is seen to produce curves for 
DHF(r , )  and AD(r,) which have negligible values at small r l .  By contrast, the HF 
curves for 1s' 'S and ls2p 'P, each involving a 1s orbital, are known to rise rapidly 
from the origin. An attempt was made to reduce the ranges of the cross over regions 
in figure 4B by using a (Z- k) scaling factor. Unfortunately, the screening parameter 
k = 0.28 required for a minimized spread of inner nodes was quite different from that 
of 0.49 required for the outer nodes. 

For each system, the radial 'in-out' effect of correlation is immediately apparent. 
Like the 'split-shell' effect for the ls2 IS state, a AD(r,) curve is seen to be most negative 
at a Zr, value slightly in excess of that for the maximum in the corresponding DHF( rl): 
we also note that each set of Zrl values approaches a limit as Z increases. Obviously, 
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as 2 becomes larger, AD(r , )  decreases in magnitude and relative importance. This is 
supported by the Y, values in table 2 where the decrease with Z is considerably greater 
than that observed for Y, in table I .  

In figure 5, the AD(r , )  curves for H- show a distinction between the 0-20 and D-84 

correlated wavefunctions and, for He and the positive ions, differences exist between 
results derived from the D-13 and D-70 functions. As expected, for these pairs of highly 
correlated wavefunctions the differences, although real, are indeed very small when 
compared with D H F ( r , ) .  Nevertheless, figure 5 shows that the improvement in the 
correlated wavefunction for H- deepens the radial hole and makes AD(r,)  more 
extensive. For 2 2 2 ,  improvement again extends each curve but the hole is less deep 
than that for ~ - 1 3 .  

Examination of the two-particle radial densities in figure 6 reveals that the relatively 
massive correlation effect for H- extends well beyond the region of the D H F ( r I ,  r2) 
surface. For He, AD(r,, r,) is almost confined within the ( r , ,  r2) range for the HF 
surface, a feature which was clearly apparent when comparing the surfaces for Li' 
and for Be2* (the pairs of surfaces for 2 = 3 and 4 are not shown for reasons of space). 
The 'in-out' effect is highlighted in A D ( r , ,  r,) by a maximum being located at small 
r, and large r , ,  and vice versa, coupled with the occurrence of a reduction in probability 
wh'enever r, = r,. 
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3.3. Expectation values and AT 

Table 1 shows that, in keeping with (yjcom being greater than ( y j H F  =goo, the introduc- 
tion of correlation produces a negative value for the angular-related properties 
{ r y r ;  cos y ) .  For each system, the magnitude of the value when n = + I  is several times 
larger than the result when n = 0 or -1: in fact, for H-, we note that in relative terms 
the size of (r:'r:' cos y) is extremely large. When Z is increased, ( r : l r~ 'cos  y )  
decreases rapidly in magnitude but, as mentioned, it remains the dominant value-in 
spite of (r;'r;' cos y )  becoming steadily more negative. Improvement in the correlated 
wavefunctions is seen to decrease the magnitude of each expectation value for all 2, 
thus indicating a reduction in angular correlation, as observed earlier. 

In table 2,  correlation increases (r;)  and U for He and the positive ions. For H', 
a noticeable reduction occurs for the energy-related property (r;'), but all other 
quantities are increased. Indeed, the change in ( rT2}  for H- is over twofold and reflects 
the sizeable 'in-out' radial effect discussed above. When 2 2 2 ,  going from D-13 to 
D-70 is seen to yield a marginal or zero increase in ( r ; )  and a slight increase in U. 
However, improving the correlated description for H' causes a signifcant increase in 
( r : ' ) ,  (r:*) and U. 

The (ryrg) values in table 3 show a marked sensitivity to correlation effects. Except 
when n = + 1 and +2 for H", all quantities are reduced in value by the use of the 
explicitly correlated wavefunctions: as might be anticipated, the reduction decreases 
with increasing Z When 2 2 2 ,  these changes relative to the HF values range from a 
reduction ofalmost 13%down to about 49% However, when 2 = 1,correlation produces 
a massive 55% reduction for (rT2rT2) and an increase of around 36% for (r:2rz2). 
Excluding H-, the use of the energetically better correlated functions produces either 
a small or  quite marginal increase in (ryr;) .  For H-, the use of the 0-84 description, 
instead of D-20, causes a decrease when n < -1  and an increase when n 2 + I ,  the result 
for (r:'rY) being changed by 27%. In passing, we note from tables 2 and 3 the high 
degree of similarity between the HF(NUM) values and those derived from its HF(STO) 
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representation. Not surpisingly, the slightly reduced quality of the fitted function 
implied by the results for H' is a reflection of the very diffuse nature of its 2p2 'P 
wavefunction. 

AU statistical correlation coefficients considered in table 4 are identically zero when 
derived from an HF wavefunction as, indeed, they are for any independent-particle 
representation of 2p2 'P. Hence, A T =  T(W)IT). Since, by definition, every T is bounded 
between -1 and +1, these different measures of angular and radial correlation are 
therefore capable of intercomparison: we recall that -1 and +1 correspond to perfect 
negative and positive correlation, respectively. When 2 2, table 4 reveals that the 
angular quantities AT,.. and AT, (emphasizing, in tum, the interemdiate and outer 
regions of the density) are always of larger magnitude than  AT^, (emphasizing the 
inner regions of density). The largest value for H- is AT,..,. For each system, the radial 
quantities  AT,/^ and AT, are seen to be greater than the angular AT; this is especially 
so for H- where both sets of radial values are greater by at least a factor of 3.5. Once 
more, this highlights the distinctive importance of radial correlation in the description 
of H-(2p2 'P). 

Further interest in table 4 arises from the ratios of various AT and, in particular, 
their Z-dependent trends. For example, the ratio ATJAT,~, is 0.95, 1.50, 1.49 and 1.49 
for H-, He, Li+ and Be2+, respectively, shonriug that the balance of radial correlation 
at different distances from the nucleus is similar in the neutral and positive systems, 
but is again distinct for H-. When ordered as before, the angular ratio of the outer to 
the inner effect, A~JA~~- ,y ie lds  0.66,1.48,1.50 and 1.51. Thus, when Z22, therelative 
strengths of angular correlation in different radial regions of the density are seen to 
be almost constant. Moreover, from the quite remarkable similarity between these two 
sets of ratios, we conclude that, for each system except H-, the relative measure of 
the angular effects is virtually equal to that for the radial effects. By contrast, the ratios 
for H- are seen to be significantly different. It is also informative to examine the ratio 
of a radial to an angular AT. For increasing Z, AT, / , /AT~ '  is 7.90, 2.10, 1.83 and 1.73 
and ATJAT, is 11.4, 2.12, 1.82 and 1.71. Hence, we note that, in both the inner and 
outer regions of space, angular correlation becomes relatively more important as Z 
increases. The change in going from H- to He is seen to be quite dramatic in both 
regions. Nevertheless, for each 2, these ratios suggest that radial correlation remains, 
overall, the prevailing influence on the two-particle probability density. 

Generally, the improvement in these correlated wavefunctions causes a decrease 
in magnitude for the listed AT, the exceptions being  AT^,, for H- and  AT^), and AT, 
for Be" which, as seen from table 4, become more negative. 

4. Summary 

Highly accurate explicitly correlated wavefunctions, of benchmark quality, have been 
used to examine angular and radial correlation effects in the doubly excited state 2p2 'P 
when 1SZS4.  Following our recent article on the total correlation effect, these 
separate components of electron correlation are assessed here in terms of an angular 
Coulomb hole, a radial hole, several expectation values and various angular and radial 
statistical correlation coefficients. 

For He and the positive ions, a clearly defined inverse-2 relationship exists for the 
angular holes AP(y) against y, where y is the inter-electronic angle subtended at the 
nucleus. Naturally, this behaviour also occurs in Yr : the overall change caused by 
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correlation in the normalized angular distribution P ( y ) .  In addition, the Zeffect is 
reflected in the difference between the correlated and Hartree-Fock (HF) expectation 
values for y. Although H- possesses much the largest angular hole in absolute terms, 
the curve is still too small to form part of the inverse-Z pattern; a similar conclusion 
holds for Y, and the correlation-induced excess for (U). For He, the curve for the 
doubly excited state was compared with the angular holes for the 1s' 'S and ls2p 'P 
states. The 2p2 'P state, with its diffuse probability density and relatively slow moving 
electrons, was found to have an angular hole which is noticeably grealer than that for 
each energetically lower state. 

The influence of correlation on the one-particle radial density D(rl )  reveals a 
marked 'in-out' effect which parallels the correlated 'split-shell' behaviour ofthe doubly 
occupied ground state. By analogy with the angular behaviour, the size of the radial 
hole A D ( r , )  for H- is much larger than that obtained for each of the other systems. 
However, irrespective of the H- result, no simple Z-scaling effect could bring the 
remaining AD(r,)  curves into any overall agreement. For the two-particle radial 
function D ( r l ,  r,), the outward redistribution caused by correlation for H- extends 
well beyond the ( r l ,  r2)-range observed for DHF(rIr r,). For each system, the maxima 
in AD(rl,  r2) at large rl and small r,, and vice versa, emphasized most forcefully the 
'in-out' feature found in AD(rl). 

Correlation produces changes in the angular and radial expectation properties for 
H- which are massive by comparison with the findings for Z 5 2. Ratios of statistical 
correlation coefficients, each formulated from specific expectation values, proved to 
be highly informative. For every system except H-, the ratio of the outer to the inner 
effect for both the radial and angular measures of correlation are virtually identical. 
Further, although statistical coefficients indicate that angular correlation increases in 
relafive importance as Z increases, they also suggest that the major influence on the 
two-particle distribution arises from radial correlation. 

Finally, the dramatic changes created by each component of correlation for H- set 
it apart from He and the positive ions. 
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