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‡ Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
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Abstract. General methods for evaluating three-electron integrals in Hylleraas coordinates are
given. Formulae are obtained for the matrix elements of various operators arising in Hylleraas-
type variational calculations for states of arbitrary angular momentum. For the calculations of
Breit interaction, a number of reduction relations are developed for the elimination of singularities
in some singular integrals. A numerically stable scheme is presented for the case when one of
the powers ofrij is −2.

1. Introduction

In atomic structure calculations, one important issue is how to build electron–electron
correlation into the basis sets. Variational calculations in Hylleraas coordinates, which
include explicitly powers of the inter-electronic distancesrij = |ri−rj |, are well established
as providing the most precise wavefunctions for two- and three-electron atomic systems.
Recently, a series of high-precision Hylleraas-type calculations have been done [1–4] for
the lithium energy levels in S, P, and D states and other properties, such as the oscillator
strengths, the Fermi contact terms, the dispersion coefficients, etc. The success of these
calculations relies largely on efficient algorithms for evaluating both radial and angular
integrals. The radial integrals converge very slowly in general, ultimately leading to
calculations that are extremely time consuming. For nonrelativistic eigenvalue calculations,
the problem of slow convergence has been solved recently [5], using an asymptotic
expansion method. This method has proven to be very successful in accelerating the rate of
convergence. In calculations of the Breit interaction, one needs to deal with several types of
singular integrals. One type is integrals containingr−2

ij in the integrands. Although integrals
of this type are convergent, they converge as slowly as the series

∑
k k
−2. Previous work

on this problem can be found in [6–9]. However, problems of computational efficiency
remain. Another type is those with integrands more singular thanr−2

ij . These integrals are
generally divergent individually, but they always occur in combinations with other similar
terms such that the sum is convergent. Thus, the main issues for the radial integrals are how
to improve the rate of convergence for slowly convergent integrals, and how to eliminate
the singularities analytically among divergent integrals. The remaining angular parts of the
integrals are always convergent. However, the evaluation of these integrals involving high
angular momentum could become very complicated. To the best of our knowledge, for the
three-electron case in Hylleraas coordinates, there is no published work which discusses the
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4724 Z-C Yan and G W FDrake

reduction of singularities and the simplification of angular integrals with arbitrary angular
momentum.

The purpose of this paper is to present a complete description for the variational
calculations of three-electron systems in Hylleraas coordinates. The variational basis sets
in Hylleraas coordinates are first introduced in section 2 for both doublet and quartet states.
The explicit form of the Hamiltonian in Hylleraas coordinates is given. The evaluation of
matrix elements of operators with various angular structures is presented in section 3. The
singular integrals are discussed in section 4, including a derivation of a set of reduction
formulae and schemes for computing integrals withr−2

ij singularity. The appendix deals
with two auxiliary infinite series.

2. Variational basis sets

2.1. Basis sets

The variational basis function is

8(r1, r2, r3) = φ(r1, r2, r3)χ(1, 2, 3), (1)

where the orbital partφ is constructed from Hylleraas-type coordinates

φ(r1, r2, r3) = rj1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3YLML

(`1`2)`12,`3
(r1, r2, r3) (2)

with

YLML

(`1`2)`12,`3
(r1, r2, r3) =

∑
all mi

〈`1m1; `2m2|`1`2; `12m12〉

×〈`12m12; `3m3|`12`3;LML〉Y`1m1(r1)Y`2m2(r2)Y`3m3(r3) (3)

being a vector-coupled product of spherical harmonics for the three electrons to form a state
of total angular momentumL. The spin partχ can be either

χ(1, 2, 3) = χ(d)(1, 2, 3) = α(1)β(2)α(3)− β(1)α(2)α(3) (4)

for the spin angular momentum12 (doublet), or

χ(1, 2, 3) = χ(q)(1, 2, 3) = α(1)α(2)α(3) (5)

for the spin angular momentum32 (quartet). The superscripts d and q are used to denote
the doublet and quartet states. The variational wavefunction is a linear combination of the
functions8 antisymmetrized by the three-particle antisymmetrizer

A =
6∑
i=1

εiAi (6)

whereA1 = (1), A2 = (12), A3 = (13), A4 = (23), A5 = (123), A6 = (132), andεi = 1
with i = 1, 5, 6;εi = −1 with i = 2, 3, 4. The variational basis set can thus be formed by
{ωi}Ni=1, whereN is the size of the basis set andωi is

ωi =
6∑

p=1

φ
p

i χp. (7)

In (7), φpi = Apφi and χp = εpApχ . It is easy to show that, for a symmetric spin-
independent operatorO, the following expressions hold:

〈ωi |O|ωj 〉(d) = 12O11
ij + 12O12

ij − 6O13
ij − 6O14

ij − 6O15
ij − 6O16

ij (8)

〈ωi |O|ωj 〉(q) = 6O11
ij − 6O12

ij − 6O13
ij − 6O14

ij + 6O15
ij + 6O16

ij , (9)
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whereOp′p
ij = 〈φp

′
i |O|φpj 〉. Thus, only the direct–direct term and five direct–exchange terms

need be calculated.
The explicit form ofφpi can be written in the form

φp(r1, r2, r3) = Ap(rj1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3)

×
∑

all mi

�(`1, `2, `12, `3, L,ML,m1, m2, m3)Y`ama (r1)Y`bmb (r2)Y`cmc (r3),

(10)

where

�(`1, `2, `12, `3, L,ML,m1, m2, m3) = (−1)`1−`2+m12+`12−`3+ML(`12, L)
1/2

×
(
`1 `2 `12

m1 m2 −m12

)(
`12 `3 L

m12 m3 −ML

)
(11)

with the notation(l, m, n, . . .) = (2l + 1)(2m + 1)(2n + 1) . . .. Here, the 3j symbol is
related to the corresponding Clebsch–Gordan coefficient by [10](

j1 j2 j

m1 m2 −m
)
= (−1)j1−j2+m
√

2j + 1
〈j1m1; j2m2|j1j2; jm〉. (12)

In (10), the subscriptsa, b, and c can be determined according to the definition of
antisymmetrizer (6) as follows:

(a, b, c)p=1 = (1, 2, 3)

(a, b, c)p=2 = (2, 1, 3)

(a, b, c)p=3 = (3, 2, 1)

(a, b, c)p=4 = (1, 3, 2)

(a, b, c)p=5 = (3, 1, 2)

(a, b, c)p=6 = (2, 3, 1).

(13)

Note that the angular parts ofφ2, φ5, andφ6 can be formally obtained from the corresponding
φ1, φ3, andφ4 by simply interchanging̀ 1 and `2 and by multiplying by a phase factor
(−1)`1+`2+`12. As for the radial parts of basis functions, the operation ofAp is equivalent to
permuting the powers ofri andrij as well as the nonlinear coefficients ofri . However, since
the radial parts do not affect the evaluation of angular integrals, for the sake of simplicity,
we may dropAp in equation (10).

2.2. Hamiltonian

The nonrelativistic Hamiltonian for three-electron atoms, including the mass polarization
terms, is given by

H =
3∑
i=1

(
−1

2
∇2
i −

Z

ri

)
+

3∑
i>j

1

rij
− µ

M

3∑
i>j

∇i · ∇j , (14)

in units of 2RM , whereRM = (1−µ/M)R∞, M is the nuclear mass,µ = mM/(m+M) is
the electron reduced mass, andZ is the nuclear charge. For the basis set (1), the gradient
operator∇1 can be separated according to

∇1 = r1

r1

∂

∂r1
+ r12

r12

∂

∂r12
+ r13

r13

∂

∂r13
+∇Y1 , (15)
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whererij = ri − rj , and∇Yi is understood to act only on spherical harmonics. Similarly,
∇2 and∇3 can be obtained by cyclically permuting the indices 1, 2, 3. Applying (15) twice,
the Laplacian operator for particle 1 can be written in the form

∇2
1 =

∂2

∂r2
1

+ ∂2

∂r2
12

+ ∂2

∂r2
31

+ 2

r1

∂

∂r1
+ 2

r12

∂

∂r12
+ 2

r31

∂

∂r31
+ r

2
1 − r2

2 + r2
12

r1r12

∂2

∂r1∂r12

+ r
2
1 − r2

3 + r2
31

r1r31

∂2

∂r1∂r31
+ r

2
12+ r2

31− r2
23

r12r31

∂2

∂r12∂r31
− `1(`1+ 1)

r2
1

−2(r2 · ∇Y1 )
1

r12

∂

∂r12
− 2(r3 · ∇Y1 )

1

r31

∂

∂r31
. (16)

The corresponding results for∇2
2 and∇2

3 can be obtained by permuting the subscripts 1, 2,
and 3. ∇i · ∇j can also be worked out in a similar way. Finally, the Hamiltonian can be
expressed in the form

H = T −
3∑
i=1

Z

ri
+

3∑
i>j

1

rij
, (17)

where the operatorT is

T = −1

2

3∑
i=1

(
∂2

∂r2
i

+ 2

ri

∂

∂ri
− `i(`i + 1)

r2
i

)
− 1

2

(
1− µ

M

) [ 3∑
i>j

(
2
∂2

∂r2
ij

+ 4

rij

∂

∂rij

)

+
3∑
i 6=j

r2
i − r2

j + r2
ij

ririj

∂2

∂ri∂rij
+ r

2
31+ r2

12− r2
23

r31r12

∂2

∂r31∂r12

+ r
2
12+ r2

23− r2
31

r12r23

∂2

∂r12∂r23
+ r

2
23+ r2

31− r2
12

r23r31

∂2

∂r23∂r31

]
− µ
M

3∑
i>j

r2
i + r2

j − r2
ij

2rirj

∂2

∂ri∂rj

+
3∑
i>j

[ (
1− µ

M

) ri

rj rij

∂

∂rij
− µ

M

1

rj

∂

∂ri

]
(r̂i · ∇̂Yj )

+
3∑
i>j

[ (
1− µ

M

) rj

rirji

∂

∂rji
− µ

M

1

ri

∂

∂rj

]
(r̂j · ∇̂Yi )

− µ
M

3∑
i>j

1

rirj
(∇̂Yi · ∇̂Yj ). (18)

In (18), r̂i = ri/ri and ∇̂Yi = ri∇Yi .

3. Evaluation of matrix elements

3.1. Basic integral

Consider the following basic integral

I (`′1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; j1, j2, j3, j12, j23, j31;α, β, γ )

=
∫

dr1 dr2 dr3r
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3

×Y ∗`′1m′1(r1)Y
∗
`′2m

′
2
(r2)Y

∗
`′3m

′
3
(r3)Y`1m1(r1)Y`2m2(r2)Y`3m3(r3). (19)



Computational methods in Hylleraas coordinates 4727

The interelectron coordinatesrij can be expanded according to

r
j

12 =
M12∑
q=0

Pq(cosθ12)

L12∑
k=0

Cjqkr
q+2k
12< r

j−q−2k
12> , (20)

as derived by Perkins [11], where, for even values ofj , M12 = 1
2j , L12 = 1

2j − q; for odd
values ofj ,M12 = ∞, L12 = 1

2(j+1). Also in (20),r12< = min(r1, r2), r12> = max(r1, r2),
and the coefficients are given by

Cjqk = 2q + 1

j + 2

(
j + 2

2k + 1

) Sqj∏
t=0

2k + 2t − j
2k + 2q − 2t + 1

, (21)

whereSqj = min(q − 1, 1
2(j + 1)). After expanding each of ther

jµν
µν in (19), we obtain

I (`′1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; j1, j2, j3, j12, j23, j31;α, β, γ )

=
M12∑
q12=0

M23∑
q23=0

M31∑
q31=0

L12∑
k12=0

L23∑
k23=0

L31∑
k31=0

∫ ∞
0

∫ ∞
0

∫ ∞
0

dr1 dr2 dr3r
j1+2
1 r

j2+2
2 r

j3+2
3

×e−αr1−βr2−γ r3F(jqk)12F(jqk)23F(jqk)31

×Iang(`
′
1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; q12, q23, q31), (22)

whereF(jqk)ij are defined by

F(jqk)12 = Cj12q12k12r
q12+2k12
12< r

j12−q12−2k12
12> , etc (23)

andIang is the angular integral defined by

Iang(`
′
1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; q12, q23, q31)

=
∫

d�1 d�2 d�3Y
∗
`′1m

′
1
(r1)Y

∗
`′2m

′
2
(r2)Y

∗
`′3m

′
3
(r3)Y`1m1(r1)Y`2m2(r2)Y`3m3(r3)

×Pq12(cosθ12)Pq23(cosθ23)Pq31(cosθ31). (24)

By applying the addition theorem for spherical harmonics to each ofPqij (cosθij ) and using
the formula

Y`m(r)Y`′m′(r) =
∑
LM

√
(`, `′, L)

4π

(
` `′ L

0 0 0

)(
` `′ L

m m′ M

)
Y ∗LM(r), (25)

Iang becomes

Iang(`
′
1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; q12, q23, q31)

= (−1)m1+m2+m3(`′1, `
′
2, `
′
3, `1, `2, `3)

1/2

×
∑

all mij

∑
n1n2n3

(−1)m12+m23+m31(n1, n2, n3)

(
`′1 `1 n1

0 0 0

)

×
(
`′2 `2 n2

0 0 0

)(
`′3 `3 n3

0 0 0

)
×
(
q31 q12 n1

0 0 0

)(
q12 q23 n2

0 0 0

)(
q23 q31 n3

0 0 0

)
×
(
`′1 `1 n1

−m′1 m1 m′1−m1

)(
`′2 `2 n2

−m′2 m2 m′2−m2

)
×
(
`′3 `3 n3

−m′3 m3 m′3−m3

)(
q12 q31 n1

−m12 m31 m1−m′1

)
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×
(
q23 q12 n2

−m23 m12 m2−m′2

)(
q31 q23 n3

−m31 m23 m3−m′3

)
. (26)

The summation overmij can be performed using [10]∑
µ1µ2µ3

(−1)`1+`2+`3+µ1+µ2+µ3

(
j1 `2 `3

m1 µ2 −µ3

)(
`1 j2 `3

−µ1 m2 µ3

)(
`1 `2 j3

µ1 −µ2 m3

)
=
(
j1 j2 j3

m1 m2 m3

){
j1 j2 j3

`1 `2 `3

}
. (27)

One finally obtains

Iang(`
′
1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; q12, q23, q31)

= (−1)m
′
1+m′2+m′3+q12+q23+q31(`′1, `

′
2, `
′
3, `1, `2, `3)

1/2
∑
n1n2n3

(n1, n2, n3)

×
{
n1 n2 n3

q23 q31 q12

}(
n1 n2 n3

m′1−m1 m′2−m2 m′3−m3

)
×
(
`′1 `1 n1

−m′1 m1 m′1−m1

)(
`′2 `2 n2

−m′2 m2 m′2−m2

)
×
(
`′3 `3 n3

−m′3 m3 m′3−m3

)(
`′1 `1 n1

0 0 0

)(
`′2 `2 n2

0 0 0

)
×
(
`′3 `3 n3

0 0 0

)(
q31 q12 n1

0 0 0

)(
q12 q23 n2

0 0 0

)(
q23 q31 n3

0 0 0

)
. (28)

The radial part of the integral can be done by splitting the integration region into six parts
according to the relative positions ofr1, r2, and r3 [11]. The final result for the whole
integralI is

I (`′1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; j1, j2, j3, j12, j23, j31;α, β, γ )

=
M12∑
q12=0

M23∑
q23=0

M31∑
q31=0

L12∑
k12=0

L23∑
k23=0

L31∑
k31=0

×Iang(`
′
1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; q12, q23, q31)

×IR(q12, q23, q31, k12, k23, k31; j1, j2, j3, j12, j23, j31;α, β, γ ), (29)

where the radial partIR is

IR(q12, q23, q31, k12, k23, k31; j1, j2, j3, j12, j23, j31;α, β, γ )
= Cj12q12k12Cj23q23k23Cj31q31k31

×WR(q12, q23, q31, k12, k23, k31; j1, j2, j3, j12, j23, j31;α, β, γ ). (30)

In (30),WR is further defined by

WR(q12, q23, q31, k12, k23, k31; j1, j2, j3, j12, j23, j31;α, β, γ )
= W(j1+ 2+ s12+ s31, j2+ 2+ j12− s12+ s23, j3+ 2+ j23− s23

+j31− s31;α, β, γ )+W(j1+ 2+ s12+ s31, j3+ 2+ s23

+j31− s31, j2+ 2+ j12− s12+ j23− s23;α, γ, β)+W(j2+ 2+ s12

+s23, j1+ 2+ j12− s12+ s31, j3+ 2+ j23− s23+ j31− s31;β, α, γ )
+W(j2+ 2+ s12+ s23, j3+ 2+ j23− s23+ s31, j1+ 2+ j12− s12

+j31− s31;β, γ, α)+W(j3+ 2+ s23+ s31, j1+ 2+ s12
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+j31− s31, j2+ 2+ j12− s12+ j23− s23; γ, α, β)+W(j3+ 2+ s23

+s31, j2+ 2+ s12+ j23− s23, j1+ 2+ j12− s12+ j31− s31; γ, β, α) (31)

with sij = qij + 2kij . W is a subsidiary integral defined by

W(`,m, n;α, β, γ ) =
∫ ∞

0
dx x`e−αx

∫ ∞
x

dy yme−βy
∫ ∞
y

dz zne−γ z. (32)

A general analytic expression can be obtained [5]

W(`,m, n;α, β, γ ) = `!

(α + β + γ )`+m+n+3

×
∞∑
p=0

(`+m+ n+ p + 2)!

(`+ 1+ p)!(`+m+ 2+ p)
(

α

α + β + γ
)p

× 2F1

(
1, `+m+ n+ p + 3; `+m+ p + 3; α + β

α + β + γ
)
. (33)

An effective evaluation of theIR integral can be found in [5]. (30) is valid when

j12 > −1, j23 > −1, j31 > −1,

j1 > −2, j2 > −2, j3 > −2,

j1+ j2+ j3+ j12+ j23+ j31 > −8.

(34)

A generalization to the singular case ofj12 = −2 is discussed in section 4.

3.2. Overlap integral

The general form of the overlap integral is

Ip(1) = 〈φ1
L |φpR〉, (35)

where

φ1
L(r1, r2, r3) = rj

′
1

1 r
j ′2
2 r

j ′3
3 r

j ′12
12 r

j ′23
23 r

j ′31
31 e−α

′r1−β ′r2−γ ′r3

×
∑

all m′i

�(`′1, `
′
2, `
′
12, `

′
3, L

′,ML′ , m
′
1, m

′
2, m

′
3)Y`′1m

′
1
(r1)Y`′2m

′
2
(r2)Y`′3m

′
3
(r3)

(36)

and

φ
p
R(r1, r2, r3) = rj1

1 r
j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3

×
∑

all mi

�(`1, `2, `12, `3, L,ML,m1, m2, m3)Y`ama (r1)Y`bmb (r2)Y`cmc (r3).

(37)

Substituting (36) and (37) into (35) and using the basic integral (29), one obtains

Ip(1) =
∑

all m′imi

�(`′1, `
′
2, `
′
12, `

′
3, L

′,ML′ , m
′
1, m

′
2, m

′
3)

×�(`1, `2, `12, `3, L,ML,m1, m2, m3)

×
∫

dr1 dr2 dr3 r
j̃1
1 r

j̃2
2 r

j̃3
3 r

j̃12
12 r

j̃23
23 r

j̃31
31 e−α̃r1−β̃r2−γ̃ r3

×Y ∗`′1m′1(r1)Y
∗
`′2m

′
2
(r2)Y

∗
`′3m

′
3
(r3)Y`ama (r1)Y`bmb (r2)Y`cmc (r3)
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=
M12∑
q12=0

M23∑
q23=0

M31∑
q31=0

L12∑
k12=0

L23∑
k23=0

L31∑
k31=0

Cp(1)

×IR(q12, q23, q31, k12, k23, k31; j̃1, j̃2, j̃3, j̃12, j̃23, j̃31; α̃, β̃, γ̃ ), (38)

wherej̃1 = j ′1+ j1, etc and

Cp(1) =
∑

all m′imi

�(`′1, `
′
2, `
′
12, `

′
3, L

′,ML′ , m
′
1, m

′
2, m

′
3)

×�(`1, `2, `12, `3, L,ML,m1, m2, m3)

×Iang(`
′
1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `ama, `bmb, `cmc; q12, q23, q31). (39)

By (11) and (28),Cp(1) becomes

Cp(1) = U
∑
n1n2n3

(n1, n2, n3)

(
`′1 `a n1

0 0 0

)(
`′2 `b n2

0 0 0

)(
`′3 `c n3

0 0 0

)
×
(
q31 q12 n1

0 0 0

)(
q12 q23 n2

0 0 0

)
×
(
q23 q31 n3

0 0 0

){
n1 n2 n3

q23 q31 q12

}
C̃p(1), (40)

where

U = (`′1, `′2, `′3, `′12, `1, `2, `3, `12)
1/2(−1)q12+q23+q31, (41)

and

C̃p(1) = (L′, L)1/2
∑

all m′imi ti

(−1)`
′
1−`′2+m′12+`′12−`′3+ML′+`1−`2+m12+`12−`3+ML+m′1+m′2+m′3

×
(
`′1 `′2 `′12
m′1 m′2 −m′12

)(
`′12 `′3 L′

m′12 m′3 −ML′

)(
`1 `2 `12

m1 m2 −m12

)
×
(
`12 `3 L

m12 m3 −ML

)(
n1 n2 n3

t1 t2 t3

)(
`′1 `a n1

−m′1 ma t1

)
×
(
`′2 `b n2

−m′2 mb t2

)(
`′3 `c n3

−m′3 mc t3

)
. (42)

Using the standard graphical methods of dealing with angular momentum [12], (42) can be
recast into (we only need to discuss the cases ofp = 1, p = 3, andp = 4)

C̃1(1) = δL′LδML′ML
(−1)L+`1+`2+`12

{
`3 `′3 n3

`′12 `12 L

}{ `′1 `′2 `′12
`1 `2 `12

n1 n2 n3

}
, (43)

C̃3(1) = δL′LδML′ML
(−1)L+`1+`2+`12

×
∑
λ

(2λ+ 1)

{
`3 `12 L

λ `′1 n1

}{
`′1 `′12 `′2
`′3 λ L

}{ `′3 `′2 λ

`1 `2 `12

n3 n2 n1

}
, (44)

C̃4(1) = δL′LδML′ML
(−1)L+`

′
1+`′2+`′12

×
∑
λ

(2λ+ 1)

{
`3 `12 L

λ `′2 n2

}{
`′2 `′12 `′1
`′3 λ L

}{ `′3 `′1 λ

`2 `1 `12

n3 n1 n2

}
. (45)

For S states where all̀′i and`i are zero, the angular partCp(1) can further be simplified to

Cp(1) = 1

(2q12+ 1)2
δq12q23δq23q31. (46)
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3.3. Integrals involvinĝri · ∇̂Yj , ∇̂Yi · ∇̂Yj , r̂i · ∇̂Y ′j , and∇̂Y ′i · ∇̂Y
′

j

According to (18), one needs to evaluate the angular coefficients involving∇̂Yi . Furthermore,
in the use of various reduction formulae which will be derived in section 4 one also needs
to evaluate the angular coefficients involving∇̂Y ′i . The superscriptsY andY ′ indicate the
operation of the operators on the right side and left side respectively. For∇ acting only on
spherical harmonics [12], we have the formula

∇̂YµY`m(r) =
∑
λτ

b(`; λ)(`, λ)1/2
(

1 ` λ

0 0 0

)(
1 ` λ

µ m τ

)
Y ∗λτ (r), (47)

where∇ is written in the spherical component form withµ = −1, 0, and 1, and the function
b(`; λ) is defined by

b(`; `− 1) = `+ 1

b(`; `+ 1) = −`. (48)

On the other hand, since

r̂µ =
√

4π

3
Y1µ(r), (49)

we obtain by (25)

r̂µY`m(r) =
∑
λτ

(`, λ)1/2
(

1 ` λ

0 0 0

)(
1 ` λ

µ m τ

)
Y ∗λτ (r). (50)

Comparing (47) with (50), one can see that the angular coefficients involving∇̂Yµ can be

obtained by first replacinĝ∇Yµ by r̂µ, evaluating the corresponding terms, and then inserting
b(`; λ)’s appropriately. Also see [13] for a discussion. We thus first consider the following
integral

Ip(r̂1 · r̂2) = 〈φ1
L |r̂1 · r̂2|φpR〉. (51)

Since

r̂1 · r̂2 =
∑
µ

(−1)µr̂1µr̂2−µ = 4π

3

∑
µ

(−1)µY1µ(r1)Y1−µ(r2), (52)

and using the same method which leads to (38), (51) can be simplified to

Ip(r̂1 · r̂2) =
M12∑
q12=0

M23∑
q23=0

M31∑
q31=0

L12∑
k12=0

L23∑
k23=0

L31∑
k31=0

∑
T1T2

Cp(r̂1 · r̂2)

×IR(q12, q23, q31, k12, k23, k31; j̃1, j̃2, j̃3, j̃12, j̃23, j̃31; α̃, β̃, γ̃ ), (53)

where

Cp(r̂1 · r̂2) = U
∑
n1n2n3

(n1, n2, n3, T1, T2)

(
1 `a T1

0 0 0

)(
1 `b T2

0 0 0

)(
`′1 T1 n1

0 0 0

)
×
(
`′2 T2 n2

0 0 0

)(
`′3 `c n3

0 0 0

)(
q31 q12 n1

0 0 0

)(
q12 q23 n2

0 0 0

)
×
(
q23 q31 n3

0 0 0

){
n1 n2 n3

q23 q31 q12

}
C̃p(r̂1 · r̂2). (54)
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In (54),

C̃1(r̂1 · r̂2) = δL′LδML′ML
(−1)1+`

′
1+`′2+`′12+`12+L

{
`′3 `3 n3

`12 `′12 L

}
×
{
T1 `1 1
`2 T2 `12

}{ `12 T2 T1

n3 n2 n1

`′12 `′2 `′1

}
, (55)

C̃3(r̂1 · r̂2) = δL′LδML′ML
(−1)`1+`12+`′2+`′3

∑
λ1λ2

(λ1, λ2)(−1)λ1+λ2

{
L `12 `3

1 T1 λ1

}

×
{
`12 `1 `2

T2 1 λ1

}{
T1 n1 `′1
λ2 L λ1

}{
`′12 `′1 `′2
λ2 `′3 L

}{ n1 λ1 λ2

n3 `1 `′3
n2 T2 `′2

}
, (56)

C̃4(r̂1 · r̂2) = δL′LδML′ML
(−1)1+`2+`′1+`′2+`′12

∑
λ1λ2

(λ1, λ2)

{
T2 `3 1
`12 λ1 L

}{
1 `1 T1

`2 λ1 `12

}

×
{
T2 n2 `′2
λ2 L λ1

}{
`′12 `′2 `′1
λ2 `′3 L

}{ n1 T1 `′1
n3 `2 `′3
n2 λ1 λ2

}
. (57)

Similarly,

Ip(r̂2 · r̂3) = 〈φ1
L |r̂2 · r̂3|φpR〉 =

M12∑
q12=0

M23∑
q23=0

M31∑
q31=0

L12∑
k12=0

L23∑
k23=0

L31∑
k31=0

∑
T2T3

Cp(r̂2 · r̂3)

×IR(q12, q23, q31, k12, k23, k31; j̃1, j̃2, j̃3, j̃12, j̃23, j̃31; α̃, β̃, γ̃ ), (58)

where

Cp(r̂2 · r̂3) = U
∑
n1n2n3

(n1, n2, n3, T2, T3)

(
1 `b T2

0 0 0

)(
1 `c T3

0 0 0

)(
`′1 `a n1

0 0 0

)
×
(
`′2 T2 n2

0 0 0

)(
`′3 T3 n3

0 0 0

)(
q31 q12 n1

0 0 0

)(
q12 q23 n2

0 0 0

)
×
(
q23 q31 n3

0 0 0

){
n1 n2 n3

q23 q31 q12

}
C̃p(r̂2 · r̂3), (59)

with

C̃1(r̂2 · r̂3) = δL′LδML′ML
(−1)`1+`12+`′1+`′2+`′12

∑
λ

(2λ+ 1)(−1)λ
{
T3 `3 1
`12 λ L

}

×
{
`′3 T3 n3

λ `′12 L

}{
`12 `2 `1

T2 λ 1

}{ λ T2 `1

n3 n2 n1

`′12 `′2 `′1

}
, (60)

C̃3(r̂2 · r̂3) = δL′LδML′ML
(−1)1+`1+`2+L

∑
λ

(2λ+ 1)

{
`′1 `3 n1

`12 λ L

}

×
{
`′12 `′1 `′2
λ `′3 L

}{
T2 `2 1
`1 T3 `12

}{ λ `12 n1

`′3 T3 n3

`′2 T2 n2

}
, (61)

and

C̃4(r̂2 · r̂3) = δL′LδML′ML
(−1)1+`1+`3+`12+`′1+`′12

∑
λ1λ2

(λ1, λ2)(−1)λ2

{
T2 `3 1
`12 λ1 L

}
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×
{
λ1 `12 1
`2 T3 `1

}{
`′2 T2 n2

λ1 λ2 L

}{
`′12 `′2 `′1
λ2 `′3 L

}{ n2 λ1 λ2

n3 T3 `′3
n1 `1 `′1

}
. (62)

Ip(r̂3 · r̂1) = 〈φ1
L |r̂3 · r̂1|φpR〉 =

M12∑
q12=0

M23∑
q23=0

M31∑
q31=0

L12∑
k12=0

L23∑
k23=0

L31∑
k31=0

∑
T3T1

Cp(r̂3 · r̂1)

×IR(q12, q23, q31, k12, k23, k31; j̃1, j̃2, j̃3, j̃12, j̃23, j̃31; α̃, β̃, γ̃ ), (63)

where

Cp(r̂3 · r̂1) = U
∑
n1n2n3

(n1, n2, n3, T3, T1)

(
1 `c T3

0 0 0

)(
1 `a T1

0 0 0

)(
`′1 T1 n1

0 0 0

)
×
(
`′2 `b n2

0 0 0

)(
`′3 T3 n3

0 0 0

)(
q31 q12 n1

0 0 0

)(
q12 q23 n2

0 0 0

)
×
(
q23 q31 n3

0 0 0

){
n1 n2 n3

q23 q31 q12

}
C̃p(r̂3 · r̂1), (64)

with

C̃1(r̂3 · r̂1) = δL′LδML′ML
(−1)`1

∑
λ

(2λ+ 1)(−1)λ
{
T3 `3 1
`12 λ L

}{
`′3 T3 n3

λ `′12 L

}

×
{
T1 1 `1

`12 `2 λ

}{ λ `2 T1

`′12 `′2 `′1
n3 n2 n1

}
, (65)

C̃3(r̂3 · r̂1) = δL′LδML′ML
(−1)1+`2+`′2+`′3

∑
λ1λ2

(λ1, λ2)(−1)λ2

{
T1 `3 1
`12 λ1 L

}

×
{
λ1 `12 1
`1 T3 `2

}{
T1 n1 `′1
λ2 L λ1

}{
`′12 `′1 `′2
λ2 `′3 L

}{ n1 λ1 λ2

n3 T3 `′3
n2 `2 `′2

}
, (66)

and

C̃4(r̂3 · r̂1) = δL′LδML′ML
(−1)1+L+`12+`′1+`′2+`′12

{
T1 `1 1
`2 T3 `12

}∑
λ

(2λ+ 1)

×
{
`′2 `3 n2

`12 λ L

}{
`′12 `′2 `′1
λ `′3 L

}{ `12 T3 T1

n2 n3 n1

λ `′3 `′1

}
. (67)

The angular coefficients containinĝ∇Yi are obtained by the following replacements:

Cp(r̂i · ∇̂Ys ) −→ b(`as ; Ts)Cp(r̂i · r̂s)
Cp(∇̂Yi · ∇̂Ys ) −→ b(`ai ; Ti)b(`as ; Ts)Cp(r̂i · r̂s),

(68)

wherea1 = a, a2 = b, anda3 = c. It is obvious that

r̂i · ∇̂Yi = 0. (69)

Finally, as mentioned in section 4, we will develop some reduction formulae which
are needed to calculate the angular coefficients involving∇̂Y ′i . We list the expressions for
the corresponding operators discussed above acting on the left-hand state. A subscript L is
introduced in order to distinguish them from the above expressions.

I
p
L (r̂1 · r̂2) =

M12∑
q12=0

M23∑
q23=0

M31∑
q31=0

L12∑
k12=0

L23∑
k23=0

L31∑
k31=0

∑
T1T2

C
p
L (r̂1 · r̂2)

×IR(q12, q23, q31, k12, k23, k31; j̃1, j̃2, j̃3, j̃12, j̃23, j̃31; α̃, β̃, γ̃ ), (70)
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where

C
p
L (r̂1 · r̂2) = U

∑
n1n2n3

(n1, n2, n3, T1, T2)

(
1 `′1 T1

0 0 0

)(
1 `′2 T2

0 0 0

)(
T1 `a n1

0 0 0

)
×
(
T2 `b n2

0 0 0

)(
`′3 `c n3

0 0 0

)(
q31 q12 n1

0 0 0

)(
q12 q23 n2

0 0 0

)
×
(
q23 q31 n3

0 0 0

){
n1 n2 n3

q23 q31 q12

}
C̃
p
L (r̂1 · r̂2) (71)

with

C̃1
L(r̂1 · r̂2) = δL′LδML′ML

(−1)`1+`2+`12+L+`′12+1

{
`′3 `3 n3

`12 `′12 L

}
×
{
`′1 T1 1
T2 `′2 `′12

}{ n3 `12 `′12
n2 `2 T2

n1 `1 T1

}
, (72)

C̃3
L(r̂1 · r̂2) = δL′LδML′ML

(−1)`1+`2+`12+L+`′12+1
∑
λ

(2λ+ 1)

{
T1 `3 n1

`12 λ L

}

×
{
λ T2 `′3
`′12 L T1

}{
T1 1 `′1
`′2 `′12 T2

}{ `2 `1 `12

T2 `′3 λ

n2 n3 n1

}
, (73)

C̃4
L(r̂1 · r̂2) = δL′LδML′ML

(−1)1+`
′
1+`′2+L

∑
λ

(2λ+ 1)

{
T2 `3 n2

`12 λ L

}

×
{

1 T1 `′1
`′12 `′2 T2

}{
T2 λ L

`′3 `′12 T1

}{ λ n2 `12

T1 n1 `1

`′3 n3 `2

}
. (74)

I
p
L (r̂2 · r̂3) =

M12∑
q12=0

M23∑
q23=0

M31∑
q31=0

L12∑
k12=0

L23∑
k23=0

L31∑
k31=0

∑
T2T3

C
p
L (r̂2 · r̂3)

×IR(q12, q23, q31, k12, k23, k31; j̃1, j̃2, j̃3, j̃12, j̃23, j̃31; α̃, β̃, γ̃ ), (75)

where

C
p
L (r̂2 · r̂3) = U

∑
n1n2n3

(n1, n2, n3, T2, T3)

(
1 `′2 T2

0 0 0

)(
1 `′3 T3

0 0 0

)(
`′1 `a n1

0 0 0

)
×
(
T2 `b n2

0 0 0

)(
T3 `c n3

0 0 0

)(
q31 q12 n1

0 0 0

)(
q12 q23 n2

0 0 0

)
×
(
q23 q31 n3

0 0 0

){
n1 n2 n3

q23 q31 q12

}
C̃
p
L (r̂2 · r̂3) (76)

with

C̃1
L(r̂2 · r̂3) = δL′LδML′ML

(−1)`1+`2+`12+`′12+`′1
∑
λ

(2λ+ 1)(−1)λ
{
T3 `3 n3

`12 λ L

}

×
{
`′3 T3 1
λ `′12 L

}{
λ T2 `′1
`′2 `′12 1

}{ n3 `12 λ

n2 `2 T2

n1 `1 `′1

}
, (77)

C̃3
L(r̂2 · r̂3) = δL′LδML′ML

(−1)1+`
′
2+`′3+L

∑
λ

(2λ+ 1)

{
`3 n1 `′1
λ L `12

}
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×
{
`′1 `′2 `′12
`′3 L λ

}{
`′2 T2 1
T3 `′3 λ

}{ n1 `12 λ

n3 `1 T3

n2 `2 T2

}
, (78)

C̃4
L(r̂2 · r̂3) = δL′LδML′ML

(−1)`
′
1+`′2+L

∑
λ

(2λ+ 1)(−1)λ
{
T2 `3 n2

`12 λ L

}

×
{
T2 λ L

1 T3 `′3
`′2 `′1 `′12

}{
n2 n1 n3

`12 `1 `2

λ `′1 T3

}
. (79)

I
p
L (r̂3 · r̂1) =

M12∑
q12=0

M23∑
q23=0

M31∑
q31=0

L12∑
k12=0

L23∑
k23=0

L31∑
k31=0

∑
T3T1

C
p
L (r̂3 · r̂1)

×IR(q12, q23, q31, k12, k23, k31; j̃1, j̃2, j̃3, j̃12, j̃23, j̃31; α̃, β̃, γ̃ ), (80)

where

C
p
L (r̂3 · r̂1) = U

∑
n1n2n3

(n1, n2, n3, T3, T1)

(
1 `′3 T3

0 0 0

)(
1 `′1 T1

0 0 0

)(
T1 `a n1

0 0 0

)
×
(
`′2 `b n2

0 0 0

)(
T3 `c n3

0 0 0

)(
q31 q12 n1

0 0 0

)(
q12 q23 n2

0 0 0

)
×
(
q23 q31 n3

0 0 0

){
n1 n2 n3

q23 q31 q12

}
C̃
p
L (r̂3 · r̂1) (81)

with

C̃1
L(r̂3 · r̂1) = δL′LδML′ML

(−1)`
′
1

∑
λ

(2λ+ 1)(−1)λ
{
`3 n3 T3

λ L `12

}

×
{
`′3 T3 1
λ `′12 L

}{
1 T1 `′1
`′2 `′12 λ

}{ n3 n1 n2

`12 `1 `2

λ T1 `′2

}
, (82)

C̃3
L(r̂3 · r̂1) = δL′LδML′ML

(−1)`1+`2+`12+`′12+L
∑
λ

(2λ+ 1)(−1)λ
{
T1 `3 n1

`12 λ L

}

×
{
λ `12 n1

T3 `1 n3

`′2 `2 n2

}{
T1 λ L

1 T3 `′3
`′1 `′2 `′12

}
, (83)

C̃4
L(r̂3 · r̂1) = δL′LδML′ML

(−1)`12+`3+`′1+`′12+L+1
∑
λ

(2λ+ 1)

{
`3 n2 `′2
λ L `12

}

×
{
`′12 `′2 `′1
λ `′3 L

}{
`′1 T1 1
T3 `′3 λ

}{ n2 `12 λ

n3 `2 T3

n1 `1 T1

}
. (84)

The corresponding angular coefficients containing∇̂Y ′i can be obtained by the following
replacements:

C
p
L (r̂i · ∇̂Y

′
s ) −→ b(`′s; Ts)CpL (r̂i · r̂s)

C
p
L (∇̂Y

′
i · ∇̂Y

′
s ) −→ b(`′i; Ti)b(`′s; Ts)CpL (r̂i · r̂s).

(85)

4. Evaluation of singular integrals

The radial integrals containingr−1
ij are discussed in [5]. However, in the calculation of the

Breit interaction, one needs to deal with more singular integrals. Although the integrals
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containing r−2
ij are convergent, effective evaluation of these integrals is still a problem.

The integrals with powers more negative than−2 generally diverge individually. However,
these integrals always occur in combinations with other similar terms, thus resulting in a
cancellation of the singularity. For the two-electron case, these problems have been solved
completely [13–15]. In this section, we extend the techniques developed for the two-electron
systems to three-electron calculations.

4.1. Reduction formulae

Consider the matrix element of∇2
1

〈φL |∇2
1|φR〉, (86)

where

φL = rj
′
1

1 r
j ′2
2 r

j ′3
3 r

j ′12
12 r

j ′23
23 r

j ′31
31 e−α

′r1−β ′r2−γ ′r3YL
′ML′

(`′1`
′
2)`
′
12,`

′
3
(r1, r2, r3) (87)

and

φR = rj1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3YLML

(`1`2)`12,`3
(r1, r2, r3). (88)

Since∇2
1 is Hermitian, the result must be the same whether∇2

1 operates to the left or right
so that

〈∇2
1φL |φR〉 = 〈φL |∇2

1φR〉. (89)

The application of formula (16) yields

∇2
1|φR〉 =

{
[j1(j1+ 1)− `1(`1+ 1)]

1

r2
1

+ j12(j12+ 1)
1

r2
12

+j31(j31+ 1)
1

r2
31

+ α2− 2α(j1+ 1)
1

r1
+ 2j12j1

r1 · r12

r2
1r

2
12

−2j12α
r1 · r12

r1r
2
12

+ 2j31j1
r1 · r13

r2
1r

2
31

− 2j31α
r1 · r13

r1r
2
31

+ 2j12j31
r12 · r13

r2
12r

2
31

−2j12
r2

r1r
2
12

(r̂2 · ∇̂Y1 )− 2j31
r3

r1r
2
31

(r̂3 · ∇̂Y1 )
}
|φR〉. (90)

Introducing the following notations:

F0 = 〈φL |φR〉,
F1 = 〈φL |1/r2

1 |φR〉,
F2 = 〈φL |1/r2

12|φR〉,
F3 = 〈φL |1/r2

31|φR〉,
F4 = 〈φL |1/r1|φR〉,
F5 = 〈φL |r1 · r12

r2
1r

2
12

|φR〉,

F6 = 〈φL |r1 · r12

r1r
2
12

|φR〉,

F7 = 〈φL |r1 · r13

r2
1r

2
31

|φR〉, (91)
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F8 = 〈φL |r1 · r13

r1r
2
31

|φR〉,

F9 = 〈φL |r12 · r13

r2
12r

2
31

|φR〉,

g1 = 〈φL | r2
r1r

2
12

(r̂2 · ∇̂Y1 )|φR〉,

g2 = 〈φL | r3
r1r

2
31

(r̂3 · ∇̂Y1 )|φR〉,

g′1 = 〈φL | r2
r1r

2
12

(r̂2 · ∇̂Y ′1 )|φR〉,

g′2 = 〈φL | r3
r1r

2
31

(r̂3 · ∇̂Y ′1 )|φR〉,

one has

〈φL |∇2
1φR〉 = α2F0+ [j1(j1+ 1)− `1(`1+ 1)]F1+ j12(j12+ 1)F2

+j31(j31+ 1)F3− 2α(j1+ 1)F4+ 2j12j1F5− 2j12αF6

+2j31j1F7− 2j31αF8+ 2j12j31F9− 2j12g1− 2j31g2. (92)

Similarly,

〈∇2
1φL |φR〉 = α′2F0+ [j ′1(j

′
1+ 1)− `′1(`′1+ 1)]F1+ j ′12(j

′
12+ 1)F2

+j ′31(j
′
31+ 1)F3− 2α′(j ′1+ 1)F4+ 2j ′12j

′
1F5− 2j ′12α

′F6

+2j ′31j
′
1F7− 2j ′31α

′F8+ 2j ′12j
′
31F9− 2j ′12g

′
1− 2j ′31g

′
2. (93)

Put

j̃1 = j1+ j ′1,
j̃12 = j12+ j ′12,

j̃31 = j31+ j ′31,

α̃ = α + α′,

(94)

and substitutej ′1 = j̃1− j1, etc in 〈∇2
1φL |φR〉. If one fixesj̃1, j̃12, j̃31, andα̃ and notes that

Fi , gi , andg′i only depend onj̃1, j̃2, j̃3, j̃12, j̃23, j̃31, α̃, β̃, and γ̃ , then (89) must be true
for arbitraryj1, j12, j31, andα. Comparing the coefficients ofj1, j12, j31, andα gives the
following identities:

(1+ j̃1)F1− α̃F4+ j̃12F5+ j̃31F7 = 0, (95)

(1+ j̃12)F2+ j̃1F5− α̃F6+ j̃31F9− g1− g′1 = 0, (96)

(1+ j̃31)F3+ j̃1F7− α̃F8+ j̃12F9− g2− g′2 = 0, (97)

−α̃F0+ (j̃1+ 2)F4+ j̃12F6+ j̃31F8 = 0. (98)

However (98) does not give rise to a new identity because lettingj̃1 → j̃1 − 1 in (98)
reproduces (95). From (95), one has

〈φL |r1 · r12

r2
1r

2
12

|φR〉 = − j̃31

j̃12

〈φL |r1 · r13

r2
1r

2
31

|φR〉 + α̃

j̃12

〈φL |1/r1|φR〉 − 1+ j̃1

j̃12

〈φL |1/r2
1 |φR〉, (99)
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wherej̃1 6= −1; otherwise, since〈φL |1/r2
1 |φR〉 does not exist in general, the last term above

is undetermined. On the right-hand side, the degree of singularity atr12 = 0 is reduced by
2 compared with that of the left-hand side. Using

r1 · r12 = r2
1 − r1 · r2 = r2

1 − r2
2 + r2

12

2
, (100)

and making the transformations̃j12→ j̃12+ 2 andj̃1→ j̃1+ 2 in (99) yields

〈φL |r2
1 − r2

2 |φR〉 = − j̃31

j̃12+ 2
〈φL |r2

1r
2
12/r

2
31|φR〉 + j̃31

j̃12+ 2
〈φL |r2

3r
2
12/r

2
31|φR〉

+ 2α̃

j̃12+ 2
〈φL |r1r2

12|φR〉 − j̃12+ j̃31+ 2j̃1+ 8

j̃12+ 2
〈φL |r2

12|φR〉. (101)

Equation (99) can also be used to reduce the singularity atr31 = 0 by switching the left
side with the first term of the right side:

〈φL |r2
1 − r2

3 |φR〉 = − j̃12

j̃31+ 2
〈φL |r2

1r
2
31/r

2
12|φR〉 + j̃12

j̃31+ 2
〈φL |r2

2r
2
31/r

2
12|φR〉

+ 2α̃

j̃31+ 2
〈φL |r1r2

31|φR〉 − j̃31+ j̃12+ 2j̃1+ 8

j̃31+ 2
〈φL |r2

31|φR〉. (102)

Similarly, making j̃12 → j̃12 + 2 and j̃31 → j̃31 + 2 in (96) and (97) gives rise to the
following reduction formulae which reduce the singularities with respect tor31 = 0 and
r12 = 0 respectively:

〈φL |r13 · r12|φR〉 = α̃

j̃31+ 2
〈φL | r

2
31

r1
r1 · r12|φR〉 − j̃1

j̃31+ 2
〈φL | r

2
31

r2
1

r1 · r12|φR〉

− j̃12+ 3

j̃31+ 2
〈φL |r2

31|φR〉 + 1

j̃31+ 2
〈φL | r

2
31r2

r1
(r̂2 · ∇̂Y1 )|φR〉

+ 1

j̃31+ 2
〈φL | r

2
31r2

r1
(r̂2 · ∇̂Y ′1 )|φR〉, (103)

〈φL |r13 · r12|φR〉 = α̃

j̃12+ 2
〈φL | r

2
12

r1
r1 · r13|φR〉 − j̃1

j̃12+ 2
〈φL | r

2
12

r2
1

r1 · r13|φR〉

− j̃31+ 3

j̃12+ 2
〈φL |r2

12|φR〉 + 1

j̃12+ 2
〈φL | r

2
12r3

r1
(r̂3 · ∇̂Y1 )|φR〉

+ 1

j̃12+ 2
〈φL | r

2
12r3

r1
(r̂3 · ∇̂Y ′1 )|φR〉. (104)

Equations (101), (102), (103), and (104) are a set of reduction formulae resulting from the
Hermiticity of ∇2

1. The corresponding results for∇2
2 and∇2

3 can be obtained by permuting
the subscripts 1, 2, and 3.

4.2. Recursion relation

For the calculations of two-electron integrals in Hylleraas coordinates, there exist several
recursion relations [13] which are particularly useful in the elimination of singularities.
These recursion relations are derived by keepingr1, r2, and r12 as independent variables.
For the three-electron integrals, the problem is complicated by the fact that there are three
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inter-electronic distancesr12, r23, and r31. However, it is possible to keep onlyr12 as an
independent variable and expandr23 and r31. Consider the basic integral (19) again. We
expandrj23

23 andrj31
31 according to (20) and retainrj12

12 . The volume elements can be written
as [13]

dr1 dr2 = r1 dr1 r2 dr2 r12 dr12 d�12,

dr3 = r2
3 dr3 d�3,

(105)

with d�12 = sinθ1 dθ1 dφ1 dχ , whereθ1, φ1 are the polar angles of the vectorr1, χ is the
angle of rotation of the rigid triangle formed byr1, r2, r12 about ther1 direction, and�3

is the solid angle ofr3. Thus, the integral (19) becomes

I (`′1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; j1, j2, j3, j12, j23, j31;α, β, γ )

=
∑
q23q31

∑
k23k31

∫ ∞
0

dr1

∫ ∞
0

dr2

∫ ∞
0

dr3

∫ r1+r2

|r1−r2|
dr12r

j1+1
1 r

j2+1
2 r

j3+2
3 r

j12+1
12

×e−αr1−βr2−γ r3F(jqk)23F(jqk)31G, (106)

whereF(jqk)23 andF(jqk)31 are defined in (23) andG is the angular integral

G =
∫

d�12 d�3Pq23(cosθ23)Pq31(cosθ31)Y
∗
`′1m

′
1
(r1)Y

∗
`′2m

′
2
(r2)Y

∗
`′3m

′
3
(r3)

×Y`1m1(r1)Y`2m2(r2)Y`3m3(r3). (107)

After applying the addition theorem of spherical harmonics toPq23(cosθ23) andPq31(cosθ31),

G = 16π2

(q23, q31)

∑
m23m31

∫
d�12Y

∗
`′1m

′
1
(r1)Y`1m1(r1)Yq31m31(r1)Y

∗
`′2m

′
2
(r2)Y`2m2(r2)Y

∗
q23m23

(r2)

×
∫

d�3Y
∗
`′3m

′
3
(r3)Y`3m3(r3)Yq23m23(r3)Y

∗
q31m31

(r3). (108)

The integration over d�3 can easily be obtained by using (25) and the orthogonality relation
of spherical harmonics. The result is∫

d�3Y
∗
`′3m

′
3
(r3)Y`3m3(r3)Yq23m23(r3)Y

∗
q31m31

(r3)

= 1

4π
(−1)m

′
3+m23

∑
n3s3

(2n3+ 1)(`′3, `3, q23, q31)
1/2

(
`′3 `3 n3

0 0 0

)
×
(
q23 q31 n3

0 0 0

)(
`′3 `3 n3

−m′3 m3 s3

)(
q23 q31 n3

−m23 m31 s3

)
. (109)

As for the integration over d�12, using (25) and the formula [13]∫
d�12Y

∗
q12ω

(r1)YEε(r2) = δEq12δεω2πPq12(cosθ12), (110)

one has∫
d�12Y

∗
`′1m

′
1
(r1)Y`1m1(r1)Yq31m31(r1)Y

∗
`′2m

′
2
(r2)Y`2m2(r2)Y

∗
q23m23

(r2)

= 1

8π
(−1)m1+m′2(`′1, `

′
2, `1, `2, q23, q31)

1/2
∑
n1n2q12

∑
s1s2ω

(n1, n2, q12)

×
(
`′1 `1 n1

0 0 0

)(
`′2 `2 n2

0 0 0

)(
q31 q12 n1

0 0 0

)
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×
(
q12 q23 n2

0 0 0

)(
`′1 `1 n1

m′1 −m1 s1

)(
`′2 `2 n2

−m′2 m2 s2

)
×
(
n1 q31 q12

s1 m31 ω

)(
n2 q23 q12

s2 m23 ω

)
Pq12(cosθ12). (111)

In (111), cosθ12 is a radial function given by

cosθ12 = r2
1 + r2

2 − r2
12

2r1r2
. (112)

Substituting (109) and (111) into (108) and using formula (27) to the summation overm23,
m31, andω, one obtains

G = 1
2

∑
q12

(2q12+ 1)Iang(`
′
1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; q12, q23, q31)Pq12(cosθ12).

(113)

By introducing the following radial integral:

I (1)q12
(q23, q31, k23, k31; j1, j2, j3, j12, j23, j31, α, β, γ )

=
∫ ∞

0
dr1

∫ ∞
0

dr2

∫ ∞
0

dr3

∫ r1+r2

|r1−r2|
dr12r

j1+1
1 r

j2+1
2 r

j3+2
3 r

j12+1
12

×e−αr1−βr2−γ r3F̃ (jqk)23F̃ (jqk)31Pq12(cosθ12), (114)

where the superscript ‘(1)’ means that the above definition is derived from keepingr12 as
an independent variable, and̃F(jqk)23 = F(jqk)23/Cj23q23k23, etc, the integral (19) can be
written as

I (`′1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; j1, j2, j3, j12, j23, j31;α, β, γ )

=
∑

q12q23q31

∑
k23k31

1
2(2q12+ 1)Cj23q23k23Cj31q31k31

×Iang(`
′
1m
′
1, `
′
2m
′
2, `
′
3m
′
3, `1m1, `2m2, `3m3; q12, q23, q31)

×I (1)q12
(q23, q31, k23, k31; j1, j2, j3, j12, j23, j31, α, β, γ ). (115)

A recursion relation forI (1)q12
can be derived using the same method of [13]

I
(1)
q12+1(q23, q31, k23, k31; j1, j2, j3, j12, j23, j31, α, β, γ )

= 2q12+ 1

j12+ 2
I (1)q12

(q23, q31, k23, k31; j1− 1, j2− 1, j3, j12+ 2, j23, j31, α, β, γ )

+I (1)q12−1(q23, q31, k23, k31; j1, j2, j3, j12, j23, j31, α, β, γ ), (116)

wherej12 6= −2. The case ofj12 = −2 will be discussed in section 4.3. On the other hand,
comparing (115) with (29), one can establish a relation betweenIR andI (1)q12∑
k12

IR(q12, q23, q31, k12, k23, k31; j1, j2, j3, j12, j23, j31;α, β, γ ) = 2q12+ 1

2
Cj23q23k23Cj31q31k31

×I (1)q12
(q23, q31, k23, k31; j1, j2, j3, j12, j23, j31, α, β, γ ), (117)

or by (30)

I (1)q12
(q23, q31, k23, k31; j1, j2, j3, j12, j23, j31, α, β, γ ) = 2

2q12+ 1

∑
k12

Cj12q12k12

×WR(q12, q23, q31, k12, k23, k31; j1, j2, j3, j12, j23, j31;α, β, γ ). (118)
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The importance of the recursion relation (116) may be seen as follows. If the matrix element
of an operatorÔ can be written in the form

〈Ô〉 =
∑
q12

∑
q23

∑
q31

∑
k12

∑
k23

∑
k31

C(Ô)

×IR(q12, q23, q31, k12, k23, k31; j1, j2, j3, j12, j23, j31;α, β, γ ), (119)

whereC(Ô) is the angular coefficient of〈Ô〉 which is dependent onqij and independent
of kij , then from (117), one has

〈Ô〉 = 1
2

∑
q23

∑
q31

∑
k23

∑
k31

Cj23q23k23Cj31q31k31

×
[∑
q12

(2q12+1)C(Ô)I (1)q12
(q23, q31, k23, k31; j1, j2, j3, j12, j23, j31, α, β, γ )

]
.

(120)

In the case where∑
q12

(2q12+ 1)C(Ô) = 0 (121)

for fixed q23 and q31, using the recursion relation (116) the sum ofq12 in (120) can be
reduced to a sum overI (1)q12

with j1, j2, and j12 replaced byj1 − 1, j2 − 1, andj12 + 2
respectively (see [14] for details). Thus the singularity atr12 = 0 is reduced by 2. Two
examples of (121), which arise from the Breit interaction calculation, are∑

q12

(2q12+ 1)C(r̂1 · ∇̂Y2 ) = 0 (122)

and ∑
q12

(2q12+ 1)C(r̂1 · (r̂2 · ∇̂Y1 )∇̂Y2 ) = 0. (123)

Equation (118) can be considered as the solution to the recursion relation (116). In fact,I (1)q12

can be calculated directly in terms ofW functions without the use of the recursion relation.
Before finishing this section, we introduce the following quantity:

ω(1)(q12, q23, q31; j1, j2, j3, j12, j23, j31, α, β, γ )

=
∑
k23

∑
k31

Cj23q23k23Cj31q31k31I
(1)
q12
(q23, q31, k23, k31; j1, j2, j3, j12, j23, j31, α, β, γ ),

(124)

which satisfies the same recursion relation as (116)

ω(1)(q12+ 1, q23, q31; j1, j2, j3, j12, j23, j31, α, β, γ )

= 2q12+ 1

j12+ 2
ω(1)(q12, q23, q31; j1− 1, j2− 1, j3, j12+ 2, j23, j31, α, β, γ )

+ω(1)(q12− 1, q23, q31; j1, j2, j3, j12, j23, j31, α, β, γ ). (125)

Thus, (120) becomes

〈Ô〉 = 1
2

∑
q12

∑
q23

∑
q31

(2q12+ 1)C(Ô)ω(1)(q12, q23, q31; j1, j2, j3, j12, j23, j31, α, β, γ ),

(126)



4742 Z-C Yan and G W FDrake

where ω(1) may be considered as the radial part of〈Ô〉. The reduction formula
equation (101) can now be rewritten in the form
1
2

∑
q12

∑
q23

∑
q31

(2q12+ 1)C(1)[ω(1)(q12, q23, q31; j1+ 2, j2, j3, j12, j23, j31, α, β, γ )

−ω(1)(q12, q23, q31; j1, j2+ 2, j3, j12, j23, j31, α, β, γ )]

= 1
2

∑
q12

∑
q23

∑
q31

(2q12+ 1)C(1)

×
[
− j31

j12+ 2
ω(1)(q12, q23, q31; j1+ 2, j2, j3, j12+ 2, j23, j31− 2, α, β, γ )

+ j31

j12+ 2
ω(1)(q12, q23, q31; j1, j2, j3+ 2, j12+ 2, j23, j31− 2, α, β, γ )

+ 2α

j12+ 2
ω(1)(q12, q23, q31; j1+ 1, j2, j3, j12+ 2, j23, j31, α, β, γ )

−j12+ j31+ 2j1+ 8

j12+ 2
ω(1)(q12, q23, q31; j1, j2, j3, j12+ 2, j23, j31, α, β, γ )

]
,

(127)

whereC(1) is the angular part of operator 1. Since the above equation is held for arbitrary
qij , one arrives at

ω(1)(q12, q23, q31; j1+ 2, j2, j3, j12, j23, j31, α, β, γ )

−ω(1)(q12, q23, q31; j1, j2+ 2, j3, j12, j23, j31, α, β, γ )

= − j31

j12+ 2
ω(1)(q12, q23, q31; j1+ 2, j2, j3, j12+ 2, j23, j31− 2, α, β, γ )

+ j31

j12+ 2
ω(1)(q12, q23, q31; j1, j2, j3+ 2, j12+ 2, j23, j31− 2, α, β, γ )

+ 2α

j12+ 2
ω(1)(q12, q23, q31; j1+ 1, j2, j3, j12+ 2, j23, j31, α, β, γ )

−j12+ j31+ 2j1+ 8

j12+ 2
ω(1)(q12, q23, q31; j1, j2, j3, j12+ 2, j23, j31, α, β, γ ),

(128)

which reduces the singularity atr12 = 0 by 2. Equation (128) is very useful in dealing with
spin–other-orbit terms of the Breit interaction.

4.3. Special case:j12 = −2

For the case ofj12 = −2, according to Sack’s expansion [16], the upper limitsL12 andM12

in (20) become infinite. Thus, (118) is an infinite series. Since [15]

C−2q12k12 =
(2q12+ 1)(2q12+ 2k12)!!(2k12− 1)!!

(2q12+ 2k12+ 1)!!(2k12)!!
, (129)

with the understanding that(−1)!! = (0)!! = 1, the numerical stability of this series can be
assured by the fact that each term in the series is positive. The problem is that the series
converges very slowly. Using Stirling’s formula, the asymptotic behaviour ofC−2q12k12 is
k−1

12 . The leading term inWR is alsok−1
12 . Thus, the series has an asymptotic dependence of

k−2
12 and, therefore, the rate of convergence must be improved. It should be mentioned that,

in the case where at least one ofj23 andj31 is even, the summation overqij in (120) becomes
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finite. In the case where bothj23 andj31 are odd, the summation over one ofq23 andq31

in (120) becomes infinite. However, the infinite sum can be efficiently performed using the
asymptotic-expansion method [5]. Therefore, the main issue for the case ofj12 = −2 is
how to deal with the slowly convergent summation overk12 in (118).

We have studied two methods to accelerate the series (118). The first method is a direct
approach using the asymptotic-expansion method [5] with the leading term being orderk−2

12 .
In the case where bothj23 andj31 are odd, the integral (120) contains doubly infinite sums
over one ofq23 and q31 as well ask12 in I (1)q12

. The asymptotic-expansion technique is
generalized to the double sum by first making the following transformation [9]

∞∑
k12=0

∞∑
q12=0

f (k12, q12) =
∞∑

p12=0

p12∑
q12=0

f (p12− q12, q12). (130)

The sum overp12 can then be performed by the asymptotic-expansion method in one
variable. As an example, table 1 shows a convergence study for the integral with allji = 1,
j12 = −2, j23 = 1, j31 = 1, α = 2.7, β = 2.7, andγ = 2.7. We included 15 terms in
the asymptotic expansion. In table 1,N is the number of terms included in the partial sum
of the series (130). The second column of table 1 contains the values ofSd(N) calculated
from the direct summation of the series. The third column contains the values obtained
by the asymptotic-expansion method. It can be seen that atN = 37, the results in the
third column have converged to about one part in 1016, while the direct sum in the second
column converges only to the second digit. This approach has been successfully applied to
the calculations of the Li 1s22p2PJ fine-structure splitting with a computational precision
of one part in 106, including relativistic and QED terms up to O(α4mc2), O((µ/M)α4mc2),
O(α5mc2), and O((µ/M)α5mc2) [17].

The approach of the second method is to identify slowly convergent parts inI (1)q12
and

evaluate them analytically. The remaining summations overq23 andq31 in (120) are either
finite when one ofj23 and j31 is even, or rapidly convergent by the asymptotic-expansion
method when bothj23 andj31 are odd. The method has the advantage of absolute numerical
stability, but a large number of analytic expressions is required. Consider a general term in
(118)

T1 = 2

2q12+ 1

∞∑
k12=0

C−2q12k12W(`,m, n;α, β, γ ). (131)

From (33), one can see that thek12 dependence ofW is through` and`+m only. Writing

` = L12+ µ1k12

`+m =M12+ µ2k12,
(132)

whereL12 andM12 are independent ofk12, one has three possible cases:

case 1:µ1 = 2, µ2 = 0,

case 2:µ1 = 2, µ2 = 2,

case 3:µ1 = 0, µ2 = 2.

(133)

Substituting (33) into (131) yields

T1 = 2

(2q12+ 1)$s+3

∞∑
p=0

(s + p + 2)!ZpαVp, (134)
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Table 1. Convergence study of the integral
∫

dr1 dr2 dr3r
j1
1 r

j2
2 r

j3
3 r
−2
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3 with

j1 = 1, j2 = 1, j3 = 1, j23 = 1, j31 = 1, α = 2.7, β = 2.7, andγ = 2.7. Sd(N) is the partial
sum of the firstN terms for the series expansion of the integral, andSa(N) is Sd(N) with the
asymptotic expansion included.

N Sd(N) Sa(N)

15 7.045 679 719 7.187 646 245 105 896 11

16 7.054 036 549 7.187 646 245 097 782 92

17 7.061 464 752 7.187 646 245 094 629 91

18 7.068 110 894 7.187 646 245 093 284 10

19 7.074 092 252 7.187 646 245 092 644 67

20 7.079 503 778 7.187 646 245 092 314 22

21 7.084 423 170 7.187 646 245 092 132 13

22 7.088 914 620 7.187 646 245 092 026 57

23 7.093 031 624 7.187 646 245 091 962 77

24 7.096 819 120 7.187 646 245 091 922 81

25 7.100 315 135 7.187 646 245 091 897 02

26 7.103 552 061 7.187 646 245 091 879 93

27 7.106 557 664 7.187 646 245 091 868 33

28 7.109 355 882 7.187 646 245 091 860 29

29 7.111 967 458 7.187 646 245 091 854 62

30 7.114 410 458 7.187 646 245 091 850 54

31 7.116 700 693 7.187 646 245 091 847 58

32 7.118 852 054 7.187 646 245 091 845 38

33 7.120 876 800 7.187 646 245 091 843 74

34 7.122 785 786 7.187 646 245 091 842 49

35 7.124 588 663 7.187 646 245 091 841 54

36 7.126 294 038 7.187 646 245 091 840 81

37 7.127 909 610 7.187 646 245 091 840 23

Porras and Kinga 7.187 646 245 091 838 249

a [9].

whereVp is given by

Vp =
∞∑

k12=0

C−2q12k12

(L12+ µ1k12)!

(L12+ µ1k12+ p + 1)!(M12+ µ2k12+ p + 2)

× 2F1(1, s + p + 3;M12+ µ2k12+ p + 3;Zαβ) (135)

with

s = `+m+ n
$ = α + β + γ
Zα = α

α + β + γ
Zαβ = α + β

α + β + γ .

(136)

Though (134) is an infinite series, the rate of convergence is now determined completely
by Zα which is a small number for most cases of practical interest. Thus, we only need to
considerVp. For case 1, substitutingµ1 = 2, µ2 = 0, and (129) into (135), the sum over
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k12 can be isolated

Vp = 1

M12+ p + 2
2F1(1, s + p + 3;M12+ p + 3;Zαβ)

×
∞∑

k12=0

C−2q12k12

(L12+ 2k12)!

(L12+ 2k12+ p + 1)!

= 2q12+ 1

M12+ p + 2
A(p, q12,L12+ 1) 2F1(1, s + p + 3;M12+ p + 3;Zαβ),

(137)

where

A(m, q, n) =
∞∑
k=0

(2q + 2k)!!(2k − 1)!!(n+ 2k − 1)!

(2q + 2k + 1)!!(2k)!!(n+ 2k +m)! .

(138)

A(m, q, n) can be summed analytically to a finite form with the help of symbolic
manipulation programs [15] (for example, Maple). It can also be calculated using the
following scheme. Since the general term inA(m, q, n) is roughly proportional tok−m−2,
one can perform summation directly for largem. However, for smallm, as derived in the
appendix,A(m, q, n) can be calculated using

A(m, q, n) =
q∑
ν=0

(2ν − 1)!!(2q − 2ν − 1)!!

(2ν)!!(2q − 2ν)!!
SA(m, 2ν + 1, n), (139)

where

SA(m, p, c) =
m∑
k=0

(−1)k

k!(m− k)! gA(p, c + k) (140)

with gA(p, c) being given by

gA(p, p) = 1
49
′(p/2),

gA(p, c) = 1

2(c − p) [9(c/2)−9(p/2)], for p 6= c. (141)

In (141),9(x) is the digamma function and9 ′(x) is its first derivative.
For case 2 whereµ1 = 2 andµ2 = 2, the general term inVp is asymptoticallyk−p−3

12 .
However, if we expand2F1 in (135) according to

2F1(1, s + p + 3;M12+ 2k12+ p + 3;Zαβ) =
3∑
λ=0

(s + p + 3)λ
(M12+ 2k12+ p + 3)λ

Zλαβ

+F3(1, s + p + 3;M12+ 2k12+ p + 3;Zαβ), (142)

whereF3 is 2F1 with the first3+1 terms omitted, and the notation(s)λ is the Pochhammer’s
symbol

(s)λ = 0(s + λ)
0(s)

, (143)

thenVp can be written in the form

Vp = (2q12+ 1)
3∑
λ=0

(s + p + 3)λZ
λ
αβB(p, q12, λ,L12,M12)
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+
∞∑

k12=0

C−2q12k12

(L12+ 2k12)!

(L12+ 2k12+ p + 1)!(M12+ 2k12+ p + 2)

×F3(1, s + p + 3;M12+ 2k12+ p + 3;Zαβ) (144)

with B being defined by

B(p, q, λ, L,M) =
∞∑
k=0

(2q + 2k)!!(2k − 1)!!(L+ 2k)!(M + 2k + p + 1)!

(2q + 2k + 1)!!(2k)!!(L+ 2k + p + 1)!(M + 2k + p + λ+ 2)!
.

(145)

The asymptotic behaviour of the infinite series in (144) is nowk−p−4−3
12 . The choice of

3 = 15–20 is just adequate to greatly improve the rate of convergence. As forB, since
the general term in (145) is asymptotically proportional tok−p−λ−3, one can calculateB
directly using (145) for largep + λ. For smallp + λ, as derived in the appendix, one can
use the formula

B(p, q, λ, L,M) =
q∑
ν=0

(2ν − 1)!!(2q − 2ν − 1)!!

(2ν)!!(2q − 2ν)!!
SB(2ν + 1, L+ 1,M + p + 2, p, λ),

(146)

whereSB is given by

SB(a, b, c, p, q) =
p∑
s=0

q∑
k=0

(−1)k+s

k!(q − k)!s!(p − s)! gB(a, b + s, c + k). (147)

In (147),gB(a, b, c) is a symmetric function ofa, b, andc given by

gB(a, b, c) = 9(a/2)

2(c − a)(a − b) +
9(b/2)

2(a − b)(b − c) +
9(c/2)

2(b − c)(c − a) ,
a 6= b, b 6= c, c 6= a;

gB(a, a, c) = 9(a/2)

2(a − c)2 −
9(c/2)

2(a − c)2 −
9 ′(a/2)
4(a − c) , a 6= c;

gB(a, a, a) = − 1
169

′′(a/2).

(148)

Finally, for case 3 whereµ1 = 0 andµ2 = 2, after using (142)Vp becomes

Vp = L12!

(L12+ p + 1)!

[
(2q12+ 1)

3∑
λ=0

(s + p + λ+ 2)!

(s + p + 2)!
A(λ, q12,M12+ p + 2)Zλαβ

+
∞∑

k12=0

C−2q12k12

(M12+ 2k12+ p + 2)
F3(1, s + p + 3;M12+ 2k12+ p + 3;Zαβ)

]
.

(149)

The asymptotic behaviour ofVp in (149) isk−3−3
12 and thus the rate of convergence is now

improved fromk−2
12 to k−3−3

12 .
Table 2 lists some values of the integral∫

dr1 dr2 dr3r
j1
1 r

j2
2 r

j3
3 r
−2
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3. (150)

Porras and King [9] also evaluated this integral using an expansion forr−2
12 in terms of the

Gegenbauer polynominal. Some results included in table 2 reproduce their calculations.
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Table 2. Values of
∫

dr1 dr2 dr3r
j1
1 r

j2
2 r

j3
3 r
−2
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3.

j1 j2 j3 j23 j31 α β γ Integral

0 0 0 3 1 0.65 2.9 2.7 405.798 619 419 015 8
0 0 0 1 −1 0.65 2.9 2.7 16.986 781 603 319 52
0 0 0 −1 −1 0.65 2.9 2.7 15.271 059 472 580 98
1 1 1 −1 −1 1 2 3 15.397 606 932 243 12
1 2 0 −1 −1 2 1 3 30.330 168 684 237 67
0 2 3 3 1 1 2 3 12 157.365 012 010 14
2 3 1 3 −1 4 3 2 12. 319 239 848 913 46
2 3 4 1 0 1 1 1 1 444 860 737.375 033
0 1 0 2 0 1 1 1 112 714.016 988 225 9
−2 1 0 1 1 1 1 1 56 715.028 924 051 61
−2 −1 2 1 3 1 1 1 100 998 106.483 377 9
−1 −1 0 3 1 1 1 1 837 298.166 941 531 8

1 1 1 1 1 1 1 1 1 078 827.141 800 905
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Appendix: The auxiliary seriesA and B

A.1. The seriesA(m, q, n)

Using the expression [7]

(2q + 2k)!!(2k − 1)!!

(2q + 2k + 1)!!(2k)!!
=

q∑
ν=0

(2ν − 1)!!(2q − 2ν − 1)!!

(2ν)!!(2q − 2ν)!!

1

2k + 2ν + 1
, (A1)

equation (138) becomes

A(m, q, n) =
q∑
ν=0

(2ν − 1)!!(2q − 2ν − 1)!!

(2ν)!!(2q − 2ν)!!
SA(m, 2ν + 1, n), (A2)

where

SA(m, p, c) =
∞∑

n=even

1

(n+ p)(n+ c)(n+ c + 1) · · · (n+ c +m). (A3)

Then

SA(1, p, c) =
∞∑

n=even

1

(n+ p)(n+ c)(n+ c + 1)

=
∞∑

n=even

[
1

(n+ p)(n+ c) −
1

(n+ p)(n+ c + 1)

]
= gA(p, c)− gA(p, c + 1)

=
1∑
k=0

(−1)k

k!(1− k)! gA(p, c + k) (A4)
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with gA being defined by

gA(p, c) =
∞∑

n=even

1

(n+ p)(n+ c) . (A5)

SA(2, p, c) =
∞∑

n=even

1

(n+ p)(n+ c)(n+ c + 1)(n+ c + 2)

= 1

2

∞∑
n=even

[
1

(n+ p)(n+ c)(n+ c + 1)
− 1

(n+ p)(n+ c + 1)(n+ c + 2)

]
= 1

2[SA(1, p, c)− SA(1, p, c + 1)]

= 1
2[gA(p, c)− 2gA(p, c + 1)+ gA(p, c + 2)]

=
2∑
k=0

(−1)k

k!(2− k)! gA(p, c + k). (A6)

This can easily be generalized by the method of mathematical induction. The final result is

SA(m, p, c) =
m∑
k=0

(−1)k

k!(m− k)! gA(p, c + k). (A7)

Since for the digamma function9(x)

9(x) = −γ − 1

x
+
∞∑
n=1

(
1

n
− 1

n+ x
)
, (A8)

one obtains
∞∑
n=0

1

(n+ x)(n+ y) =
9(x)−9(y)

x − y . (A9)

Thus

gA(p, c) =
∞∑
n=0

1

(2n+ p)(2n+ c)

= 1

4

∞∑
n=0

1

(n+ p/2)(n+ c/2)

= 9(c/2)−9(p/2)
2(c − p) . (A10)

It is obvious that forc = p,

gA(p, p) = 1
49
′(p/2). (A11)

A.2. The seriesB(p, q, λ, L,M)

By (A1), (145) becomes

B(p, q, λ, L,M) =
q∑
ν=0

(2ν − 1)!!(2q − 2ν − 1)!!

(2ν)!!(2q − 2ν)!!
SB(2ν + 1, L+ 1,M + p + 2, p, λ),

(A12)

where

SB(a, b, c, p, q) =
∞∑

n=even

1

(n+ a)5p

i=0(n+ b + i)5q

j=0(n+ c + j)
. (A13)
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Then

SB(a, b, c, p,0) =
∞∑

n=even

1

(n+ a)(n+ c)5p

i=0(n+ b + i)
, (A14)

and

SB(a, b, c, p,1) =
∞∑

n=even

1

(n+ a)(n+ c)(n+ c + 1)5p

i=0(n+ b + i)

=
∞∑

n=even

1

(n+ a)5p

i=0(n+ b + i)
(

1

n+ c −
1

n+ c + 1

)
= SB(a, b, c, p,0)− SB(a, b, c + 1, p,0)

=
1∑
k=0

(−1)k

k!(1− k)! SB(a, b, c + k, p,0). (A15)

Similarly,

SB(a, b, c, p,2)

=
∞∑

n=even

1

(n+ a)(n+ c)(n+ c + 1)(n+ c + 2)5p

i=0(n+ b + i)

= 1
2

∞∑
n=even

1

(n+ a)5p

i=0(n+ b + i)

×
[

1

(n+ c)(n+ c + 1)
− 1

(n+ c + 1)(n+ c + 2)

]
= 1

2[SB(a, b, c, p,1)− SB(a, b, c + 1, p,1)]

= 1
2SB(a, b, c, p,0)− SB(a, b, c + 1, p,0)+ 1

2SB(a, b, c + 2, p,0)

=
2∑
k=0

(−1)k

k!(2− k)! SB(a, b, c + k, p,0). (A16)

By the method of mathematical induction, one can show that

SB(a, b, c, p, q) =
q∑
k=0

(−1)k

k!(q − k)! SB(a, b, c + k, p,0). (A17)

As for SB(a, b, c, p,0), application of the above procedure yields

SB(a, b, c, p,0) =
p∑
s=0

(−1)s

s!(p − s)! gB(a, b + s, c), (A18)

wheregB is defined by

gB(a, b, c) =
∞∑

n=even

1

(n+ a)(n+ b)(n+ c) . (A19)

gB can be expressed in terms of the digamma function9(x) according to (A8). The final
result is listed in (148).
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