High precision variational calculations for $\mathrm{H} 2+$

M. M. Cassar

Gordon W.F.Drake
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/physicspub
Part of the Physics Commons

Recommended Citation

Cassar, M. M. and Drake, Gordon W. F.. (2004). High precision variational calculations for $\mathrm{H} 2+$ + Journal of Physics B: Atomic, Molecular and Optical Physics, 37 (12), 2485-2492.
http://scholar.uwindsor.ca/physicspub/50

High precision variational calculations for $\mathrm{H}^{+}{ }_{2}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. B: At. Mol. Opt. Phys. 372485
(http://iopscience.iop.org/0953-4075/37/12/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 137.207.184.30
The article was downloaded on 08/05/2013 at 19:34

Please note that terms and conditions apply.

High precision variational calculations for $\mathbf{H}_{\mathbf{2}}^{+}$

Mark M Cassar and G W F Drake
University of Windsor, Windsor, ON N9B 3P4, Canada
E-mail: cassar1@uwindsor.ca

Received 5 November 2003, in final form 29 April 2004
Published 27 May 2004
Online at stacks.iop.org/JPhysB/37/2485
DOI: 10.1088/0953-4075/37/12/004

Abstract

A double basis set in Hylleraas coordinates is used to obtain improved variational upper bounds for the nonrelativistic energy of the $1{ }^{1} \mathrm{~S}(v=0$, $R=0), 2{ }^{1} \mathrm{~S}(v=1, R=0)$ and $2{ }^{3} \mathrm{P}(v=0, R=1)$ states of H_{2}^{+}. This method shows a remarkable convergence rate for relatively compact basis set expansions. A comparison with the most recent work is made. The accuracy of the wavefunctions is tested using the electron-proton Kato cusp condition.

1. Introduction

The hydrogen molecular ion H_{2}^{+}is a fundamental three-body quantum system. This ion presents the complexities associated with multi-centred systems while still remaining amenable to high precision calculation. The recent theoretical and experimental interest in this ion comes from two fronts. The first is due to the precision measurement of the dipole polarizability for H_{2}^{+}, as determined by an analysis of the Rydberg states of H_{2}, by Jacobson et al [1, 2]. This experiment revealed a discrepancy with theory of about $0.0007 a_{0}^{3}$, where a_{0} is the first Bohr radius. This discrepancy was only partially removed by including the Breit α^{2} corrections to the nonrelativistic Hamiltonian [3], where $\alpha \approx 137^{-1}$ is the fine structure constant. There are, in addition, other unexplained experimental results [4,5] that would benefit from further theoretical study. The second is due to the possible improvement in the accuracy of the proton to electron mass ratio by an order of magnitude. The possibility of a precise determination of this fundamental mass ratio through the use of two-photon high resolution spectroscopy in H_{2}^{+}was pointed out almost a decade ago [6]. In order for such an experiment to be used for metrological purposes, however, the relativistic and QED corrections to the energy levels involved in the measured transition frequencies must be known to order α^{5}, in atomic units. The feasibility of this experiment was recently shown by Hilico et al [7], and is currently being carried out [8].

The motivation for the present work lies in the fact that if corrections to the nonrelativistic energy levels of H_{2}^{+}are required to order $\alpha^{5} \approx 10^{-10}$, then the wavefunctions must be accurate, at least, to this same level. The wavefunctions, however, are typically accurate to
less than half as many significant figures as the energy; hence, relativistic and QED corrections calculated from these wavefunctions suffer the same reduction in accuracy. This implies that the nonrelativistic energies need to be accurate to order 10^{-20} or better in order to take full advantage of the experimental accuracy.

To date, the most accurate calculations for H_{2}^{+}have employed two types of basis set expansions [9-11]. In the first approach, the trial function is expanded in the form

$$
\begin{equation*}
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{i=1}^{n} a_{i} \exp \left(-\alpha_{i} r_{1}-\beta_{i} r_{2}-\gamma_{i} r_{12}\right) \pm(\text { exchange }) \tag{1}
\end{equation*}
$$

where r_{j} is the distance of the electron from the j th proton, r_{12} is the inter-protonic coordinate and α_{i}, β_{i} and γ_{i} are real (or complex) numbers chosen in a so-called quasi-random manner from a small number of real intervals. This method, as described in [9, 10, 12], has yielded very accurate upper bounds for the ground state energy and geometrical properties for a wide variety of three-body systems.

In the second approach, the trial function is expanded in Hylleraas coordinates as

$$
\begin{equation*}
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{q=1}^{m} \sum_{i, j, k}^{i+j+k \leqslant \Omega} a_{i j k}^{(q)} r_{1}^{i} r_{2}^{j} r_{12}^{k} \exp \left(-\alpha^{(q)} r_{1}-\beta^{(q)} r_{2}\right) \pm(\text { exchange }), \tag{2}
\end{equation*}
$$

where $\Omega \geqslant j_{\min } \approx 35$, and q is an integer that partitions the basis set into m sectors with distinct scale factors $\alpha^{(q)}$ and $\beta^{(q)}$. In such a calculation, a complete optimization is performed with respect to all nonlinear parameters. This method yielded an upper bound to the ground state energy comparable to expansion (1), but with half as many terms, as well as a new upper bound to the first triplet P-state [11].

The present paper extends previous results for H^{-}and Ps^{-}[13], using a double basis set [14], to cover a wider range of bound three-body systems, including H_{2}^{+}. It was found that including higher powers of r_{12} and an extra exponential scale factor $\exp \left(-\gamma r_{12}\right)$ was essential, since this allows the vibrational modes along the inter-protonic coordinate to be well represented. The result is a new lowest upper bound for the first three states of H_{2}^{+}, i.e. the $(v=0, R=0),(v=0, R=1)$ and $(v=1, R=0)$ vibronic states (see table 1 of [15] for a discussion of the correspondence between atomic and molecular notation).

2. Calculations

After isolating the centre-of-mass motion, the Hamiltonian for H_{2}^{+}may be written (in reduced mass atomic units) as

$$
\begin{equation*}
H=-\frac{1}{2} \nabla_{r_{1}}^{2}-\frac{1}{2} \nabla_{r_{2}}^{2}-\frac{\mu}{m_{\mathrm{e}}} \nabla_{r_{1}} \cdot \nabla_{r_{2}}-\frac{1}{r_{1}}-\frac{1}{r_{2}}+\frac{1}{r_{12}}, \tag{3}
\end{equation*}
$$

where μ is the reduced electron mass; the electron has been chosen to be at the origin of the coordinate system. The main task now is to solve the Schrödinger equation

$$
\begin{equation*}
H \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=E \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \tag{4}
\end{equation*}
$$

for the stationary states of the Hamiltonian H.
For our modified double basis set, the trial function for S-states is given by
$\Psi^{\mathrm{S}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{p=1}^{2} \sum_{i, j=0}^{\Omega_{1}} \sum_{k=\Omega_{\mathrm{low}}}^{\Omega_{\text {high }}} a_{i j k}^{(p)} r_{1}^{i} r_{2}^{j} r_{12}^{k} \exp \left(-\alpha^{(p)} r_{1}-\beta^{(p)} r_{2}-\gamma^{(p)} r_{12}\right) \pm$ (exchange),
where $\Omega_{1} \geqslant i+j$, that is, Ω_{1} is the maximum sum of powers of r_{1} and r_{2},

$$
\begin{aligned}
& \Omega_{\mathrm{low}}=\mathcal{M}-\Omega_{1}+(i+j) \\
& \Omega_{\mathrm{high}}=\mathcal{M}+\Omega_{1}-(i+j)
\end{aligned}
$$

and the integer $\mathcal{M}>\Omega_{1}$ is an adjustable parameter; and for states with $L>0$,

$$
\begin{equation*}
\Psi^{L>0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{\text {ang }} \Psi^{\mathrm{S}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \mathcal{Y}_{l_{1} l_{2}}^{L M}\left(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}\right), \tag{6}
\end{equation*}
$$

where $\mathcal{Y}_{l_{1} l_{2}}^{L M}\left(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}\right)$ is a vector-coupled product of spherical harmonics [16] and $\sum_{\text {ang }}$ means that all distinct angular couplings are included according to the scheme in [17].

Normally, all distinct combinations of powers $\{i, j, k\}$ would be included in expansions (5) and (6); however, in order to avoid problems of near linear dependence for S -states, all terms with $i>j$ are omitted only in (5). In addition, we employed a form of truncation first introduced by Kono and Hattori [18] in which terms with $i+j+|\mathcal{M}-k|-\left|l_{1}-l_{2}\right|+|j-i|>\Omega_{1}$ are avoided.

For a given state, \mathcal{M} is varied until a minimum in the energy is found for the largest basis set used. The value of \mathcal{M} is then held at this value for all basis set sizes N as Ω_{1} is increased. The inclusion of $r_{12}^{k} \exp \left(-\gamma r_{12}\right)$ in (5) and (6), where k is a large integer, allows the trial functions to effectively represent a nuclear vibrational wavefunction, which is known from the Born-Oppenheimer approximation to be Gaussian [19, 20]. The condition $\gamma \approx \mathcal{M} / 2$ of [19] naturally appears in this calculation upon optimization of E with respect to γ. It was found that $\mathcal{M}=39,38,37$ give the minimum energy (and good convergence) for the three lowest states of H_{2}^{+}.

After constructing the basis set, the principal computational step is to solve the generalized eigenvalue problem $(\mathbf{H}-E \mathbf{O}) \mathbf{x}=0$. The Hamiltonian matrix \mathbf{H} and the overlap matrix \mathbf{O} have elements $H_{a b}=\left\langle\phi_{a}\right| H\left|\phi_{b}\right\rangle$, and $O_{a b}=\left\langle\phi_{a} \mid \phi_{b}\right\rangle$, respectively, where

$$
\begin{equation*}
\phi=r_{1}^{i} r_{2}^{j} r_{12}^{k} \exp \left(-\alpha r_{1}-\beta r_{2}-\gamma r_{12}\right) \tag{7}
\end{equation*}
$$

is any member of the basis set, and $a(\operatorname{and} b)$ represents a specific combination of radial powers $\{i, j, k\}$.

The optimization of $\alpha^{(p)}, \beta^{(p)}$ and $\gamma^{(p)}$ is accomplished by simultaneously calculating the first derivatives of the energy with respect to the nonlinear parameters:

$$
\begin{equation*}
\frac{\partial E}{\partial \alpha^{(p)}}=-2 \frac{\langle\Psi|(H-E) r_{1}\left|\Psi^{(p)}\right\rangle}{\langle\Psi \mid \Psi\rangle}, \tag{8}
\end{equation*}
$$

where $\Psi^{(p)}$ denotes the part of the wavefunction that depends explicitly on $\alpha^{(p)}$, and similarly for the $\beta^{(p)}$ and $\gamma^{(p)}$ derivatives. There is no contribution to these derivatives from variations of the $a_{i j k}^{(p)}$ because of the variational stability of the wavefunction. The final step is then to change $\alpha^{(p)}, \beta^{(p)}$ and $\gamma^{(p)}$ in the directions indicated by the derivatives, resolve the generalized eigenvalue problem, recalculate the derivatives and locate their zeros by Newton's method.

All calculations were done in quadruple precision (about 32 decimal digits) arithmetic on SHARCnet's Tiger cluster of Compaq Alpha ES40 workstations.

3. Results

We present our results in tables $1-5$. The value used for the proton mass was $m_{\mathrm{p}}=$ 1836.152701 [21], in atomic units ${ }^{1}$. Tables 1,3 and 4 show the convergence pattern for
${ }^{1}$ In order to facilitate a comparison with other results, the more recent value of $m_{\mathrm{p}}=1836.15267261$ [22] was not used.

Table 1. Convergence study for the ground state of $\mathrm{H}_{2}^{+} . \Omega\left(=\mathcal{M}+\Omega_{1}\right)$ is the highest power of r_{12} and N is the total number of terms in the basis set. Atomic units are used.

Ω	N	$E(\Omega)$	Ratio $^{\text {a }}$
42	33	-0.597138979257696807296095	
43	57	-0.597139061191160229487982	
44	90	-0.597139062954250154856869	46.47
45	134	-0.597139063120531138258260	10.60
46	190	-0.597139063123316985447178	59.69
47	260	-0.597139063123402568522508	32.55
48	345	-0.597139063123404987310249	35.38
49	447	-0.597139063123405072038078	28.55
50	567	-0.597139063123405074674920	32.13
51	707	-0.597139063123405074825966	17.46
52	868	-0.597139063123405074834205	18.33
53	1052	-0.597139063123405074834331	65.43
Extrapolation		$-0.597139063123405074834338(3)$	19.80
b	2200	-0.5971390631234050740	
c		$-0.597139063123405076(2)$	
d	3500	-0.59713906312340507483	
e	1330	-0.5971390631234050741	
f		$-0.5971390631234050745(4)$	

${ }^{\text {a }}$ Ratio is the ratio of successive differences $[E(\Omega-1)-E(\Omega-2)] /[E(\Omega)-E(\Omega-1)]$.
${ }^{\mathrm{b}}$ Korobov variational bound [10].
${ }^{\text {c }}$ Korobov extrapolation [10].
${ }^{\mathrm{d}}$ Bailey and Frolov variational bound [9].
${ }^{\mathrm{e}}$ Yan et al variational bound [11].
${ }^{\mathrm{f}}$ Yan et al extrapolation [11].
the ground state and the first two excited states of H_{2}^{+}and comparisons with other calculations. The ratios given in the last column of each table are defined by

$$
\begin{equation*}
R(\Omega)=\frac{E(\Omega-1)-E(\Omega-2)}{E(\Omega)-E(\Omega-1)}, \tag{9}
\end{equation*}
$$

where $\Omega=\mathcal{M}+\Omega_{1}$, and thus give the values of the ratios of successive differences in the energies. If $R(\Omega)$ were constant, the extrapolated value of the energy would simply be the series limit of a geometric series. Since this is not the case, we fit the ratios to the form a / Ω^{b} and sum the series of differences to obtain the extrapolated value. The final quoted uncertainty is thus determined from the uncertainty in the parameters a and b. For the three states calculated, the largest basis set gives the lowest upper bound to date. However, all the results agree to within their estimated uncertainties.

The wavefunction for each state may be reproduced immediately using the optimized scale factors listed in table 5. Carrying out a complete optimization of all nonlinear parameters naturally partitions the basis set into two distinct sectors: one describing the asymptotic behaviour of the wavefunction, and the other describing the short-range behaviour. This partitioning preserves the numerical stability of the calculations within standard quadruple precision arithmetic for the basis set sizes listed.

A useful test of the accuracy of the wavefunctions near a two-particle coalescence point is the Kato cusp condition [23,24]

$$
\begin{equation*}
v_{i j}=\frac{\left\langle\delta\left(\mathbf{r}_{i j}\right) \cdot \frac{\partial}{\partial r_{i j}}\right\rangle}{\left\langle\delta\left(\mathbf{r}_{i j}\right)\right\rangle}, \tag{10}
\end{equation*}
$$

Table 2. Convergence study for the electron-proton cusp condition $v_{\text {ep }}$ for the $1{ }^{1} \mathrm{~S}$ and $2{ }^{1} \mathrm{~S}$ states in atomic units.

$1^{1} \mathrm{~S}$	$2{ }^{1} \mathrm{~S}$		
N^{a}	ν_{ep}	N	ν_{ep}
33	-1.000019529846	20	-1.004119449150
57	-0.999672587190	40	-1.001983322004
90	-0.999487499090	70	-0.999731407353
134	-0.999469240363	112	-0.999540780459
190	-0.999459218417	168	-0.999467185612
260	-0.999456326808	240	-0.999459647216
345	-0.999455752544	330	-0.999456274413
447	-0.999455687556	440	-0.999455794843
567	-0.999455684622	572	-0.999455713857
707	-0.999455679856	728	-0.999455686394
868	-0.999455679492	910	-0.999455681786
987	-0.999455679464	1015	-0.999455679820
		1240	-0.999455679502
	$\nu_{\text {ep }}^{\mathrm{b}}$	-0.999455679432	$\nu_{\text {ep }}^{\mathrm{b}}$

${ }^{\text {a }}$ Using $\mathcal{M}=40$ in expansion (5).
${ }^{\mathrm{b}}$ Exact value as given by equation (13).

Table 3. Convergence study for the $2{ }^{1} \mathrm{~S}$ state of H_{2}^{+}. $\Omega\left(=\mathcal{M}+\Omega_{1}\right)$ is the highest power of r_{12} and N is the total number of terms in the basis set. Atomic units are used.

Ω	N	$E(\Omega)$	Ratio $^{\text {a }}$
39	20	-0.587151043016274880167	
40	40	-0.587155435230538473190	
41	70	-0.587155671003177129307	18.63
42	112	-0.587155678540275385079	31.28
43	168	-0.587155679208721236702	11.28
44	240	-0.587155679212575658166	173.42
45	330	-0.587155679212741279834	23.27
46	440	-0.587155679212746648696	30.85
47	572	-0.587155679212746807755	33.75
48	728	-0.587155679212746811406	43.56
49	910	-0.587155679212746812118	5.13
50	1015	-0.587155679212746812191	9.65
51	1240	-0.587155679212746812205	5.57
52	1496	-0.587155679212746812211	2.03
Extrapolation		$-0.587155679212746812212(2)$	6.18
b	$-0.587155679212(1)$		
c	-0.5871556792127		
d	$-0.5871556792136(5)$		

[^0]where $\mathbf{r}_{i j}$ is any inter-particle coordinate. The exact values of the cusps are known to be
\[

$$
\begin{equation*}
v_{i j}^{\text {exact }}=q_{i} q_{j} \frac{m_{i} m_{j}}{m_{i}+m_{j}}, \tag{11}
\end{equation*}
$$

\]

Table 4. Convergence study for the $2{ }^{3} \mathrm{P}$ state of $\mathrm{H}_{2}^{+} . \Omega\left(=\mathcal{M}+\Omega_{1}\right)$ is the highest power of r_{12} and N is the total number of terms in the basis set. Atomic units are used.

Ω	N	$E(\Omega)$	Ratio $^{\text {a }}$
40	39	-0.59687282171825076131	
41	82	-0.59687372819190393874	
42	149	-0.59687373811317743223	91.37
43	244	-0.59687373882233810835	13.99
44	373	-0.59687373883202963519	73.17
45	540	-0.59687373883275020025	13.45
46	751	-0.59687373883276235510	59.28
47	1010	-0.59687373883276466879	5.25
48	1323	-0.59687373883276472956	38.07
49	1694	-0.59687373883276473480	11.60
Extrapolation		$-0.59687373883276473496(5)$	32.92
b		$-0.5968737388328(5)$	
c	-0.5968737388328		
d	$-0.596873738832764733(1)$		

[^1]where q_{i} and q_{j} are the charges and m_{i} and m_{j} are the masses of the particles. In the chosen coordinate system, and in atomic units, the electron-proton cusp is
\[

$$
\begin{equation*}
\nu_{\mathrm{ep}}=\frac{\left\langle\delta\left(\mathbf{r}_{1}\right) \cdot \frac{\partial}{\partial r_{1}}\right\rangle}{\left\langle\delta\left(\mathbf{r}_{1}\right)\right\rangle}, \tag{12}
\end{equation*}
$$

\]

with the exact value

$$
\begin{equation*}
\nu_{\mathrm{ep}}^{\text {exact }}=-\frac{m_{\mathrm{p}}}{m_{\mathrm{p}}+1}=-0.999455679432931 \tag{13}
\end{equation*}
$$

The results of this calculation are shown in table 2.

4. Discussion

The results of this paper demonstrate that a double basis set in Hylleraas coordinates can be easily constructed to give highly accurate nonrelativistic energies for H_{2}^{+}. Compared with other methods, this approach produces lower upper bounds using basis sets with fewer or the same number of terms. For the basis set sizes presented here, the numerical stability of the calculation is excellent, and so does not require the use of extended precision arithmetic.

One notable feature of this calculation is the large values and scatter of the ratio, especially for the $2{ }^{1} \mathrm{~S}$ state, given in the last column of tables 1,3 and 4 . Although this would normally reduce the confidence in the stability of a calculation, it is here a result of a combination of effects: a change in the location of the lowest minimum on the energy surface (see figure 2(a) of [15]), a strong dependence of the energy on the range of powers of r_{12} included in the basis set and a related even/odd alternation in the values of the ratio with Ω [25]. As a simple illustration, one may note that the largest value for the ratio in table 3 occurs for $\Omega=44$ which is preceded by a corresponding jump in the optimized scale factor $\beta^{(2)}$ listed in table 5. Further investigation of this, however, is still required.

Table 5. Optimized scale factors for the three lowest states of H_{2}^{+}. Units are $\mu /\left(m_{\mathrm{e}} a_{0}\right)$, where a_{0} is the Bohr radius and μ is the reduced electron mass.

N	$\alpha^{(1)}$	$\beta^{(1)}$	$\gamma^{(1)}$	$\alpha^{(2)}$	$\beta^{(2)}$	$\gamma^{(2)}$
			$1^{1} \mathrm{~S}$			
33	1.29828	0.40735	18.32544	1.15375	0.41833	19.53986
57	1.22168	0.50000	19.39575	1.17389	0.43097	18.86371
90	1.25781	0.89563	18.47211	1.16791	0.48340	19.37537
134	1.31140	0.59418	20.28973	1.18848	0.38226	19.57910
190	1.17108	0.85852	20.03717	1.10834	0.50781	19.78876
260	1.25067	1.02069	19.28625	1.16626	0.48297	18.98700
345	1.55286	1.03436	19.29443	1.19177	0.37036	18.99933
447	1.54388	1.12152	19.18494	1.17828	0.36896	19.31342
567	1.56165	1.28979	18.93579	1.16669	0.39282	19.41327
707	1.62518	1.40912	19.10522	1.22589	0.44189	18.63483
868	1.70325	1.45929	19.80695	1.20654	0.42932	19.41852
1052	1.71881	1.47198	19.98499	1.19287	0.42505	17.58771
			$2{ }^{1} \mathrm{~S}$			
20	1.44666	0.19421	16.93994	1.07129	0.30090	17.51099
40	1.21973	0.37360	16.52173	1.10480	0.38855	18.23834
70	1.52942	0.36084	16.59521	1.15802	0.35980	18.12958
112	1.46509	0.28693	16.85657	1.29797	0.34454	17.87927
168	1.16699	0.71899	17.65454	1.13068	0.59479	17.73370
240	1.30774	0.81104	17.18604	1.18115	0.60138	17.44489
330	1.53186	0.93195	16.53748	1.16290	0.58606	17.15076
440	1.73041	0.98584	16.49695	1.16766	0.56006	17.84485
572	1.64624	1.02795	18.02319	1.10980	0.56873	18.67334
728	1.57294	1.07166	20.45264	1.12164	0.57385	18.97449
910	1.55615	1.06024	20.23523	1.13361	0.58002	19.17627
1015	1.85406	1.16150	20.27728	1.13300	0.58105	19.16602
1240	1.84467	1.15662	20.25494	1.13519	0.58411	19.18842
1496	1.82593	1.14484	20.04578	1.14673	0.59021	19.38757
			$2^{3} \mathrm{P}$			
39	1.32092	0.36035	18.00983	0.79034	0.69275	18.09076
82	1.25488	0.44232	18.60919	0.70331	0.55835	18.89685
149	1.36938	0.51270	17.93054	0.81281	0.65179	17.98999
244	1.18353	0.69800	18.51025	1.00165	0.70929	18.47931
373	1.28961	0.69476	18.65588	1.05634	0.79230	18.55469
540	1.32507	0.76434	18.63800	0.90845	0.73566	18.96375
751	1.53662	0.82697	18.44684	0.88232	0.71698	18.71686
1010	1.52887	0.83118	18.53229	0.87836	0.71906	18.63306
1323	1.53650	0.83392	18.61951	0.87421	0.71570	18.54572
1694	1.53607	0.85156	18.82404	0.86407	0.71399	18.34418

The 20-, 21- and 24-figure accuracies of the nonrelativistic energy eigenvalues presented above, although more than sufficient for comparison with experiment, lay a firm foundation for the calculation of higher order relativistic and QED corrections to the nonrelativistic energy levels of H_{2}^{+}. The 10 -figure accuracy of the electron-proton cusp quoted here represents, to our knowledge, an improvement of about five orders of magnitude over the best available value in the literature [12,20]. This further shows the reliability of the wavefunctions to compute observables, other than the energy, to high precision, and especially the highly singular operators that appear in the relativistic and QED corrections.

References

[1] Jacobson P L, Fisher D S, Fehrenbach C W, Sturrus W G and Lundeen S R 1997 Phys. Rev. A 56 R 4361 Jacobson P L, Fisher D S, Fehrenbach C W, Sturrus W G and Lundeen S R 1998 Phys. Rev. A 574065 (erratum)
[2] Jacobson P L, Komara R A, Sturrus W G and Lundeen S R 2000 Phys. Rev. A 62012509
[3] Korobov V I 2001 Phys. Rev. A 63044501
[4] Sturrus W G, Hessels E A, Arcuni P W and Lundeen S R 1991 Phys. Rev. A 443032
[5] Fu Z W, Hessels E A and Lundeen S R 1992 Phys. Rev. A 46 R5313
[6] Nez F, Plimmer M D, Bourzeix S, Julien L, Biraben F, Felder R, Millerioux Y and de Natale P 1995 IEEE Trans. Instrum. Meas. 44568
[7] Hilico L, Billy N, Grémaud B and Delande D 2001 J. Phys. B: At. Mol. Opt. Phys. 341
[8] Hilico L private communication
[9] Bailey D H and Frolov A M 2002 J. Phys. B: At. Mol. Opt. Phys. 354287
[10] Korobov V I 2000 Phys. Rev. A 61064503
[11] Yan Z-C, Zhang J-Y and Li Y 2003 Phys. Rev. A 67062504
[12] Frolov A M 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L331
[13] Cassar M M 1998 MSc Thesis University of Windsor
[14] Drake G W F 1996 Atomic, Molecular and Optical Physics Handbook ed G W F Drake (Woodbury, NY: AIP)
[15] Hilico L, Billy N, Grémaud B and Delande D 2000 Eur. Phys. J. D 12449
[16] Zare R N 1988 Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Toronto: Wiley)
[17] Drake G W F 1993 Long Range Casimir Forces: Theory and Recent Experiments in Atomic Systems ed F S Levin and D A Micha (New York: Plenum) p 116
[18] Kono A and Hattori S 1985 Phys. Rev. A 311199
[19] Bhatia A K 1998 Phys. Rev. A 582787
[20] Bhatia A K and Drachman R J 1999 Phys. Rev. A 59205 Bhatia A K and Drachman R J 1998 Phys. Rev. A 31383
[21] Cohen E R and Taylor B N 2000 Phys. Today 539
[22] http://physics.nist.gov/cuu/Constants/index.html
[23] Kato T 1957 Commun. Pure Appl. Math. 10151
[24] Pack R T and Brown W B 1966 J. Chem. Phys. 45556
[25] Drake G W F and Yan Z-C 1994 Chem. Phys. Lett. 229486
[26] Moss R E 1999 J. Phys. B: At. Mol. Opt. Phys. 32 L89
[27] Taylor J M, Yan Z-C, Dalgarno A and Babb J F 1999 Mol. Phys. 9725

[^0]: ${ }^{\mathrm{a}}$ Ratio is the ratio of successive differences $[E(\Omega-1)-E(\Omega-2)] /[E(\Omega)-E(\Omega-1)]$.
 ${ }^{\mathrm{b}}$ Hilico et al [15].
 ${ }^{\text {c }}$ Moss variational bound [26].
 ${ }^{\mathrm{d}}$ Taylor et al [27].

[^1]: ${ }^{\mathrm{a}}$ Ratio is the ratio of successive differences $[E(\Omega-1)-E(\Omega-2)] /[E(\Omega)-E(\Omega-1)]$.
 ${ }^{\mathrm{b}}$ Taylor et al [27].
 ${ }^{\text {c }}$ Moss variational bound [26].
 ${ }^{\mathrm{d}}$ Yan et al extrapolation [11].

