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Abstract
A double basis set in Hylleraas coordinates is used to obtain improved
variational upper bounds for the nonrelativistic energy of the 1 1S (v = 0,

R = 0), 2 1S (v = 1, R = 0) and 2 3P (v = 0, R = 1) states of H+
2. This

method shows a remarkable convergence rate for relatively compact basis set
expansions. A comparison with the most recent work is made. The accuracy
of the wavefunctions is tested using the electron–proton Kato cusp condition.

1. Introduction

The hydrogen molecular ion H+
2 is a fundamental three-body quantum system. This ion

presents the complexities associated with multi-centred systems while still remaining amenable
to high precision calculation. The recent theoretical and experimental interest in this ion comes
from two fronts. The first is due to the precision measurement of the dipole polarizability for
H+

2, as determined by an analysis of the Rydberg states of H2, by Jacobson et al [1, 2]. This
experiment revealed a discrepancy with theory of about 0.0007 a3

0 , where a0 is the first Bohr
radius. This discrepancy was only partially removed by including the Breit α2 corrections to
the nonrelativistic Hamiltonian [3], where α ≈ 137−1 is the fine structure constant. There
are, in addition, other unexplained experimental results [4, 5] that would benefit from further
theoretical study. The second is due to the possible improvement in the accuracy of the proton
to electron mass ratio by an order of magnitude. The possibility of a precise determination
of this fundamental mass ratio through the use of two-photon high resolution spectroscopy
in H+

2 was pointed out almost a decade ago [6]. In order for such an experiment to be used
for metrological purposes, however, the relativistic and QED corrections to the energy levels
involved in the measured transition frequencies must be known to order α5, in atomic units.
The feasibility of this experiment was recently shown by Hilico et al [7], and is currently being
carried out [8].

The motivation for the present work lies in the fact that if corrections to the nonrelativistic
energy levels of H+

2 are required to order α5 ≈ 10−10, then the wavefunctions must be
accurate, at least, to this same level. The wavefunctions, however, are typically accurate to
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less than half as many significant figures as the energy; hence, relativistic and QED corrections
calculated from these wavefunctions suffer the same reduction in accuracy. This implies that
the nonrelativistic energies need to be accurate to order 10−20 or better in order to take full
advantage of the experimental accuracy.

To date, the most accurate calculations for H+
2 have employed two types of basis set

expansions [9–11]. In the first approach, the trial function is expanded in the form

�(r1, r2) =
n∑

i=1

ai exp(−αir1 − βir2 − γir12) ± (exchange), (1)

where rj is the distance of the electron from the j th proton, r12 is the inter-protonic coordinate
and αi , βi and γi are real (or complex) numbers chosen in a so-called quasi-random manner
from a small number of real intervals. This method, as described in [9, 10, 12], has yielded
very accurate upper bounds for the ground state energy and geometrical properties for a wide
variety of three-body systems.

In the second approach, the trial function is expanded in Hylleraas coordinates as

�(r1, r2) =
m∑

q=1

i+j+k��∑

i,j,k

a
(q)

ijk r
i
1r

j

2 rk
12 exp(−α(q)r1 − β(q)r2) ± (exchange), (2)

where � � jmin ≈ 35, and q is an integer that partitions the basis set into m sectors with
distinct scale factors α(q) and β(q). In such a calculation, a complete optimization is performed
with respect to all nonlinear parameters. This method yielded an upper bound to the ground
state energy comparable to expansion (1), but with half as many terms, as well as a new upper
bound to the first triplet P-state [11].

The present paper extends previous results for H− and Ps− [13], using a double basis
set [14], to cover a wider range of bound three-body systems, including H+

2. It was found
that including higher powers of r12 and an extra exponential scale factor exp(−γ r12) was
essential, since this allows the vibrational modes along the inter-protonic coordinate to be well
represented. The result is a new lowest upper bound for the first three states of H+

2, i.e. the
(v = 0, R = 0), (v = 0, R = 1) and (v = 1, R = 0) vibronic states (see table 1 of [15] for a
discussion of the correspondence between atomic and molecular notation).

2. Calculations

After isolating the centre-of-mass motion, the Hamiltonian for H+
2 may be written (in reduced

mass atomic units) as

H = −1

2
∇2

r1
− 1

2
∇2

r2
− µ

me
∇r1 · ∇r2 − 1

r1
− 1

r2
+

1

r12
, (3)

where µ is the reduced electron mass; the electron has been chosen to be at the origin of the
coordinate system. The main task now is to solve the Schrödinger equation

H�(r1, r2) = E�(r1, r2), (4)

for the stationary states of the Hamiltonian H.
For our modified double basis set, the trial function for S-states is given by

�S(r1, r2) =
2∑

p=1

�1∑

i,j=0

�high∑

k=�low

a
(p)

ijk ri
1r

j

2 rk
12 exp(−α(p)r1 − β(p)r2 − γ (p)r12) ± (exchange),

(5)
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where �1 � i + j , that is, �1 is the maximum sum of powers of r1 and r2,

�low = M − �1 + (i + j),

�high = M + �1 − (i + j),

and the integer M > �1 is an adjustable parameter; and for states with L > 0,

�L>0(r1, r2) =
∑

ang

�S(r1, r2)YLM
l1l2

(r̂1, r̂2), (6)

where YLM
l1l2

(r̂1, r̂2) is a vector-coupled product of spherical harmonics [16] and
∑

ang means
that all distinct angular couplings are included according to the scheme in [17].

Normally, all distinct combinations of powers {i, j, k} would be included in expansions (5)
and (6); however, in order to avoid problems of near linear dependence for S-states, all terms
with i > j are omitted only in (5). In addition, we employed a form of truncation first
introduced by Kono and Hattori [18] in which terms with i+j +|M−k|−|l1−l2|+|j −i| > �1

are avoided.
For a given state, M is varied until a minimum in the energy is found for the largest basis

set used. The value of M is then held at this value for all basis set sizes N as �1 is increased.
The inclusion of rk

12 exp(−γ r12) in (5) and (6), where k is a large integer, allows the trial
functions to effectively represent a nuclear vibrational wavefunction, which is known from the
Born–Oppenheimer approximation to be Gaussian [19, 20]. The condition γ ≈ M/2 of [19]
naturally appears in this calculation upon optimization of E with respect to γ . It was found
that M = 39, 38, 37 give the minimum energy (and good convergence) for the three lowest
states of H+

2.
After constructing the basis set, the principal computational step is to solve the generalized

eigenvalue problem (H − EO)x = 0. The Hamiltonian matrix H and the overlap matrix O
have elements Hab = 〈φa|H |φb〉, and Oab = 〈φa|φb〉, respectively, where

φ = ri
1r

j

2 rk
12 exp(−αr1 − βr2 − γ r12), (7)

is any member of the basis set, and a (and b) represents a specific combination of radial powers
{i, j, k}.

The optimization of α(p), β(p) and γ (p) is accomplished by simultaneously calculating
the first derivatives of the energy with respect to the nonlinear parameters:

∂E

∂α(p)
= −2

〈�|(H − E)r1|�(p)〉
〈�|�〉 , (8)

where �(p) denotes the part of the wavefunction that depends explicitly on α(p), and similarly
for the β(p) and γ (p) derivatives. There is no contribution to these derivatives from variations
of the a

(p)

ijk because of the variational stability of the wavefunction. The final step is then to
change α(p), β(p) and γ (p) in the directions indicated by the derivatives, resolve the generalized
eigenvalue problem, recalculate the derivatives and locate their zeros by Newton’s method.

All calculations were done in quadruple precision (about 32 decimal digits) arithmetic on
SHARCnet’s Tiger cluster of Compaq Alpha ES40 workstations.

3. Results

We present our results in tables 1–5. The value used for the proton mass was mp =
1836.152 701 [21], in atomic units1. Tables 1, 3 and 4 show the convergence pattern for

1 In order to facilitate a comparison with other results, the more recent value of mp = 1836.152 672 61 [22] was not
used.
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Table 1. Convergence study for the ground state of H+
2 . � (=M + �1) is the highest power of r12

and N is the total number of terms in the basis set. Atomic units are used.

� N E(�) Ratioa

42 33 −0.597 138 979 257 696 807 296 095
43 57 −0.597 139 061 191 160 229 487 982
44 90 −0.597 139 062 954 250 154 856 869 46.47
45 134 −0.597 139 063 120 531 138 258 260 10.60
46 190 −0.597 139 063 123 316 985 447 178 59.69
47 260 −0.597 139 063 123 402 568 522 508 32.55
48 345 −0.597 139 063 123 404 987 310 249 35.38
49 447 −0.597 139 063 123 405 072 038 078 28.55
50 567 −0.597 139 063 123 405 074 674 920 32.13
51 707 −0.597 139 063 123 405 074 825 966 17.46
52 868 −0.597 139 063 123 405 074 834 205 18.33
53 1052 −0.597 139 063 123 405 074 834 331 65.43

Extrapolation −0.597 139 063 123 405 074 834 338(3) 19.80
b 2200 −0.597 139 063 123 405 0740
c −0.597 139 063 123 405 076(2)
d 3500 −0.597 139 063 123 405 074 83
e 1330 −0.597 139 063 123 405 0741
f −0.597 139 063 123 405 074 5(4)

a Ratio is the ratio of successive differences [E(� − 1) − E(� − 2)]/[E(�) − E(� − 1)].
b Korobov variational bound [10].
c Korobov extrapolation [10].
d Bailey and Frolov variational bound [9].
e Yan et al variational bound [11].
f Yan et al extrapolation [11].

the ground state and the first two excited states of H+
2 and comparisons with other calculations.

The ratios given in the last column of each table are defined by

R(�) = E(� − 1) − E(� − 2)

E(�) − E(� − 1)
, (9)

where � = M + �1, and thus give the values of the ratios of successive differences in the
energies. If R(�) were constant, the extrapolated value of the energy would simply be the
series limit of a geometric series. Since this is not the case, we fit the ratios to the form
a/�b and sum the series of differences to obtain the extrapolated value. The final quoted
uncertainty is thus determined from the uncertainty in the parameters a and b. For the three
states calculated, the largest basis set gives the lowest upper bound to date. However, all the
results agree to within their estimated uncertainties.

The wavefunction for each state may be reproduced immediately using the optimized scale
factors listed in table 5. Carrying out a complete optimization of all nonlinear parameters
naturally partitions the basis set into two distinct sectors: one describing the asymptotic
behaviour of the wavefunction, and the other describing the short-range behaviour. This
partitioning preserves the numerical stability of the calculations within standard quadruple
precision arithmetic for the basis set sizes listed.

A useful test of the accuracy of the wavefunctions near a two-particle coalescence point
is the Kato cusp condition [23, 24]

νij =
〈
δ(rij ) · ∂

∂rij

〉

〈δ(rij )〉 , (10)



High precision variational calculations for H+
2 2489

Table 2. Convergence study for the electron–proton cusp condition νep for the 1 1S and 2 1S states
in atomic units.

1 1S 2 1S

N a νep N νep

33 −1.000 019 529 846 20 −1.004 119 449 150
57 −0.999 672 587 190 40 −1.001 983 322 004
90 −0.999 487 499 090 70 −0.999 731 407 353

134 −0.999 469 240 363 112 −0.999 540 780 459
190 −0.999 459 218 417 168 −0.999 467 185 612
260 −0.999 456 326 808 240 −0.999 459 647 216
345 −0.999 455 752 544 330 −0.999 456 274 413
447 −0.999 455 687 556 440 −0.999 455 794 843
567 −0.999 455 684 622 572 −0.999 455 713 857
707 −0.999 455 679 856 728 −0.999 455 686 394
868 −0.999 455 679 492 910 −0.999 455 681 786
987 −0.999 455 679 464 1015 −0.999 455 679 820

1240 −0.999 455 679 502
1496 −0.999 455 679 491

νb
ep −0.999 455 679 432 νb

ep −0.999 455 679 432

a Using M = 40 in expansion (5).
b Exact value as given by equation (13).

Table 3. Convergence study for the 2 1S state of H+
2 . � (=M + �1) is the highest power of r12

and N is the total number of terms in the basis set. Atomic units are used.

� N E(�) Ratioa

39 20 −0.587 151 043 016 274 880 167
40 40 −0.587 155 435 230 538 473 190
41 70 −0.587 155 671 003 177 129 307 18.63
42 112 −0.587 155 678 540 275 385 079 31.28
43 168 −0.587 155 679 208 721 236 702 11.28
44 240 −0.587 155 679 212 575 658 166 173.42
45 330 −0.587 155 679 212 741 279 834 23.27
46 440 −0.587 155 679 212 746 648 696 30.85
47 572 −0.587 155 679 212 746 807 755 33.75
48 728 −0.587 155 679 212 746 811 406 43.56
49 910 −0.587 155 679 212 746 812 118 5.13
50 1015 −0.587 155 679 212 746 812 191 9.65
51 1240 −0.587 155 679 212 746 812 205 5.57
52 1496 −0.587 155 679 212 746 812 211 2.03

Extrapolation −0.587 155 679 212 746 812 212(2) 6.18
b −0.587 155 679 212(1)
c −0.587 155 679 2127
d −0.587 155 679 213 6(5)

a Ratio is the ratio of successive differences [E(� − 1) − E(� − 2)]/[E(�) − E(� − 1)].
b Hilico et al [15].
c Moss variational bound [26].
d Taylor et al [27].

where rij is any inter-particle coordinate. The exact values of the cusps are known to be

νexact
ij = qiqj

mimj

mi + mj

, (11)
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Table 4. Convergence study for the 2 3P state of H+
2 . � (=M + �1) is the highest power of r12

and N is the total number of terms in the basis set. Atomic units are used.

� N E(�) Ratioa

40 39 −0.596 872 821 718 250 761 31
41 82 −0.596 873 728 191 903 938 74
42 149 −0.596 873 738 113 177 432 23 91.37
43 244 −0.596 873 738 822 338 108 35 13.99
44 373 −0.596 873 738 832 029 635 19 73.17
45 540 −0.596 873 738 832 750 200 25 13.45
46 751 −0.596 873 738 832 762 355 10 59.28
47 1010 −0.596 873 738 832 764 668 79 5.25
48 1323 −0.596 873 738 832 764 729 56 38.07
49 1694 −0.596 873 738 832 764 734 80 11.60

Extrapolation −0.596 873 738 832 764 734 96(5) 32.92
b −0.596 873 738 832 8(5)
c −0.596 873 738 832 8
d −0.596 873 738 832 764 733(1)

a Ratio is the ratio of successive differences [E(� − 1) − E(� − 2)]/[E(�) − E(� − 1)].
b Taylor et al [27].
c Moss variational bound [26].
d Yan et al extrapolation [11].

where qi and qj are the charges and mi and mj are the masses of the particles. In the chosen
coordinate system, and in atomic units, the electron–proton cusp is

νep =
〈
δ(r1) · ∂

∂r1

〉

〈δ(r1)〉 , (12)

with the exact value

νexact
ep = − mp

mp + 1
= −0.999 455 679 432 931. (13)

The results of this calculation are shown in table 2.

4. Discussion

The results of this paper demonstrate that a double basis set in Hylleraas coordinates can be
easily constructed to give highly accurate nonrelativistic energies for H+

2. Compared with
other methods, this approach produces lower upper bounds using basis sets with fewer or the
same number of terms. For the basis set sizes presented here, the numerical stability of the
calculation is excellent, and so does not require the use of extended precision arithmetic.

One notable feature of this calculation is the large values and scatter of the ratio, especially
for the 2 1S state, given in the last column of tables 1, 3 and 4. Although this would normally
reduce the confidence in the stability of a calculation, it is here a result of a combination
of effects: a change in the location of the lowest minimum on the energy surface (see
figure 2(a) of [15]), a strong dependence of the energy on the range of powers of r12 included
in the basis set and a related even/odd alternation in the values of the ratio with � [25]. As
a simple illustration, one may note that the largest value for the ratio in table 3 occurs for
� = 44 which is preceded by a corresponding jump in the optimized scale factor β(2) listed
in table 5. Further investigation of this, however, is still required.
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Table 5. Optimized scale factors for the three lowest states of H+
2 . Units are µ/(mea0), where a0

is the Bohr radius and µ is the reduced electron mass.

N α(1) β(1) γ (1) α(2) β(2) γ (2)

1 1S
33 1.298 28 0.407 35 18.325 44 1.153 75 0.418 33 19.539 86
57 1.221 68 0.500 00 19.395 75 1.173 89 0.430 97 18.863 71
90 1.257 81 0.895 63 18.472 11 1.167 91 0.483 40 19.375 37

134 1.311 40 0.594 18 20.289 73 1.188 48 0.382 26 19.579 10
190 1.171 08 0.858 52 20.037 17 1.108 34 0.507 81 19.788 76
260 1.250 67 1.020 69 19.286 25 1.166 26 0.482 97 18.987 00
345 1.552 86 1.034 36 19.294 43 1.191 77 0.370 36 18.999 33
447 1.543 88 1.121 52 19.184 94 1.178 28 0.368 96 19.313 42
567 1.561 65 1.289 79 18.935 79 1.166 69 0.392 82 19.413 27
707 1.625 18 1.409 12 19.105 22 1.225 89 0.441 89 18.634 83
868 1.703 25 1.459 29 19.806 95 1.206 54 0.429 32 19.418 52

1052 1.718 81 1.471 98 19.984 99 1.192 87 0.425 05 17.587 71

2 1S
20 1.446 66 0.194 21 16.939 94 1.071 29 0.300 90 17.510 99
40 1.219 73 0.373 60 16.521 73 1.104 80 0.388 55 18.238 34
70 1.529 42 0.360 84 16.595 21 1.158 02 0.359 80 18.129 58

112 1.465 09 0.286 93 16.856 57 1.297 97 0.344 54 17.879 27
168 1.166 99 0.718 99 17.654 54 1.130 68 0.594 79 17.733 70
240 1.307 74 0.811 04 17.186 04 1.181 15 0.601 38 17.444 89
330 1.531 86 0.931 95 16.537 48 1.162 90 0.586 06 17.150 76
440 1.730 41 0.985 84 16.496 95 1.167 66 0.560 06 17.844 85
572 1.646 24 1.027 95 18.023 19 1.109 80 0.568 73 18.673 34
728 1.572 94 1.071 66 20.452 64 1.121 64 0.573 85 18.974 49
910 1.556 15 1.060 24 20.235 23 1.133 61 0.580 02 19.176 27

1015 1.854 06 1.161 50 20.277 28 1.133 00 0.581 05 19.166 02
1240 1.844 67 1.156 62 20.254 94 1.135 19 0.584 11 19.188 42
1496 1.825 93 1.144 84 20.045 78 1.146 73 0.590 21 19.387 57

2 3P
39 1.320 92 0.360 35 18.009 83 0.790 34 0.692 75 18.090 76
82 1.254 88 0.442 32 18.609 19 0.703 31 0.558 35 18.896 85

149 1.369 38 0.512 70 17.930 54 0.812 81 0.651 79 17.989 99
244 1.183 53 0.698 00 18.510 25 1.001 65 0.709 29 18.479 31
373 1.289 61 0.694 76 18.655 88 1.056 34 0.792 30 18.554 69
540 1.325 07 0.764 34 18.638 00 0.908 45 0.735 66 18.963 75
751 1.536 62 0.826 97 18.446 84 0.882 32 0.716 98 18.716 86

1010 1.528 87 0.831 18 18.532 29 0.878 36 0.719 06 18.633 06
1323 1.536 50 0.833 92 18.619 51 0.874 21 0.715 70 18.545 72
1694 1.536 07 0.851 56 18.824 04 0.864 07 0.713 99 18.344 18

The 20-, 21- and 24-figure accuracies of the nonrelativistic energy eigenvalues presented
above, although more than sufficient for comparison with experiment, lay a firm foundation for
the calculation of higher order relativistic and QED corrections to the nonrelativistic energy
levels of H+

2. The 10-figure accuracy of the electron–proton cusp quoted here represents, to
our knowledge, an improvement of about five orders of magnitude over the best available
value in the literature [12, 20]. This further shows the reliability of the wavefunctions to
compute observables, other than the energy, to high precision, and especially the highly
singular operators that appear in the relativistic and QED corrections.
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