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Comments on a new mathematical technique in the 
theory of complex spectra? 

Judith Drake, G W F Drakef and M Schlesingers 
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9E 3P4 

Received 11 December 1974 

Abstract. A large body of work on the algebraic properties of the Gelfand labelling scheme 
for atoms with several equivalent electrons has recently been synthesized by Harter into a 
compact procedure for the construction of total angular momentum eigenfunctions and the 
evaluation of angular coefficients. In this paper, certain ambiguities in the procedure are 
removed. Also, an improved method for the diagonalization of the angular momentum 
matrix in the Gelfand basis set is presented. As an example, the doublet states of the f3 
configuration are discussed. 

1. Introduction 

A recent paper by Harter (1973) has drawn attention to an elegant alternative to the 
usual Racah scheme for the construction of angular momentum eigenfunctions of 
complex atoms with several equivalent electrons. Instead of the usual fractional 
parentage coefficients, seniority quantum numbers, etc, the scheme described by Harter 
starts from the triangular ‘Gelfand pattern’ for labelling a complete set of many-particle 
angular momentum functions. The Gelfand labelling corresponds to a canonical chain 
of unitary groups U(n)  2 U(n-  1) 2 . . . 2 U(1) for n equivalent electrons. Each 
Gelfand pattern can be converted uniquely into a more compact Young Tableau 
representation. Each Young Tableau corresponds to an antisymmetrized n-particle 
state with definite total spin S and component of total angular momentum M in the 
z direction, but is a mixture of states with all possible values of L. The total angular 
momentum eigenfunctions of definite spin are found by diagonalizing the matrix 
representation of L 2  in each S, M subspace. The diagonalization is particularly simple 
since one knows in advance that the eigenvalue must be M(M+ l), (M+ l)(M+2), 
. . . L,,,(L,,,+ 1) with some eigenvalues occurring more than once. 

To carry through the above calculation, it is necessary to have an algorithm for the 
evaluation of the matrix elements of irreducible tensor operators in the Young tableau 
representation. Algebraic formulae in terms of the original Gelfand patterns are re- 
viewed by Louck (1970 see also references contained therein). Harter gives a dia- 
grammatic counting representation (the so-called jawbone formula) of the equivalent 
formulae in terms of Young tableaux. Although the jawbone diagram provides a con- 
venient and rapid method of evaluating matrix elements, Harter’s presentation contains 
ambiguities which are difficult to resolve without reference to the algebraic formulae. 
t Research supported by the National Research Council of Canada. 
1 Alfred P Sloan Foundation Fellow. 
§On sabbatical leave (1974/1975) at the Clarendon Laboratory, University of Oxford, UK. 
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In this paper, we give an amplification of Harter's jawbone diagram to resolve the 
ambiguities. We also describe a method for finding the eigenvectors of L z  which does 
not require any explicit matrix diagonalizations or inversions. The entire computational 
scheme has been programmed and an example involving the doublet states of three 
equivalent f electrons is presented. 

2. Outline of theory 

The reader is referred to Harter's paper (figures 1 and 6 )  for an easily understood des- 
cription of the procedure for constructing Gelfand arrays and converting them to 
Young tabelaux. Consider a configuration containing n equivalent electrons each with 
angular momentum 1. The Young tableaux all have n boxes arranged into two columns 
in the form 

Each box is labelled by an integer p = 1,2,3,. . . ,21+ 1 corresponding to the one-electron 
orbital magnetic quantum numbers m, m- 1,  . . . , -m  respectively, such that no column 
contains the same integer more than once. The spin multiplicity of each possible 
tableau is 2S+ 1, where 2 s  is the number of unpaired boxes, and the M quantum number 
is n(l+ 1) minus the sum of the n numbers labelling the boxes. 

The fundamental rule for calculating the matrix elements of irreducible unit tensor 
operators between Young tableaux is as follows. Define single particle operators 
E,,,@, to have the effect of changing a box labelled by p' into a box labelled by p. The 
matrix elements of E@,@, in a space of single particle states are 

Using the Wigner-Eckart theorem a unit irreducible operator V," can then be written in 
the form 

for a single-electron state with angular momentum 1. Here, m = 1-p+ 1 and 
m' = 1 -p'+ 1. For an n-particle state, if V i  = Cl= Vt(i), then E p , p ,  in (2) is understood 
to be a sum of operators, one for each of the n boxes. The matrix elements of E p , p ,  are 
more complicated for the n-particle case. If the ith box is labelled by p- 1, then E p , p -  l(i) 
changes the label to p, but the numerical factor, instead of being unity as in (l), is com- 
puted from Harter's jawbone counting diagram shown in figure 1. Each of the four 
diagrams under the square root corresponds to an integer factor which is the product of 
all the arrow lengths (hook lengths). In general, there is one arrow for each row. The 
arrows are drawn unambiguously according to the following rules : 
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Figure 1. Examples of the jawbone counting diagram for the case p = 5 .  The Roman 
numerals correspond to the rules stated in the text. Diagram b(ii), for which no arrows can 
be drawn according to rule (ii), contributes a factor of unity. 

Starting from the box to the left of the ith box, draw all arrows to pass through 
the last box labelled p in each row. 
Starting from the box to the left of the ith box, draw all arrows through the box 
to the left of the first box labelled p in each row. 
Starting from the ith box, draw all arrows through the last box labelled p- 1 in 
each row. 
Starting from the ith box, draw all arrows through the box to the left of the first 
box labelled p- 1 in each row. 

In drawing the arrows, a column of length 21+ 1 can be added to the left side of each of 
the four tableaux without changing the numerical value. This is sometimes necessary to 
ensure that all contributions are counted. Arrows that cannot be drawn contribute a 
factor of unity. Although the rules are lengthy to state, they can be programmed into a 
compact and efficient computer routine. 

can be obtained from those of Ep,p- by use of the 
property 

The matrix elements of E,- 

<VlE,-l,,I~) = <~lEp,,-lbJ) (3) 
where v and 1, denote complete tableaux of n boxes. The matrix elements for IApI > 1 
can be calculated from those for IApI = 1 by the use of algebraic relations among the 
Ep,,, operators (or their matrix representations in a particular basis set of Young 
tableaux) of the form 

Ep,pf = E,,;.Ea,,,-E,,,,E,,a, (P f P'). (4) 
Relations of this type can easily be verified in a basis set of completely antisymmetric 
wavefunctions. For this case, the Young tableaux are single columns of n boxes and the 
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matrix elements, which are all zero or unity, can be written down by inspection. As an 
example of (4), 

E1,3  = E 1 , 2 E 2 , 3 - E 2 , 3 E 1 , 2 ,  ( 4 4  

Thus, all the E,,,, can be determined by a sequence of matrix multiplications once the 
Ew,,* are calculated by the jawbone diagram. Large amounts of computer storage are 
not required since most of the matrix elements are zero. The diagonal matrix elements 
(vlE,,,lv) equal the number of times the label p occurs in the tableau v. 

3. Example involving the doublet states of the configuration f3 

Consider all possible states of the type f 3  2L. The possible Young tableaux generated 
from the Gelfand labelling scheme are arranged in table 1 according to the value of M .  
It  is immediately obvious from the number of tableaux in each row that the number of 
states with L = 8 , 7 , .  . . , O  is 1, 1, 1,2,2,2,2,  1 ,0  respectively, in agreement with the 
enumeration of Wybourne (1970). As suggested by Harter, the eigenvectors $ L M  of 

L2 = (-L:L',-L',L:+L&!,;) 

can be calculated directly by diagonalizing the matrix representation of L2 in each 
subset of tableaux with the same M shown in table 1. A much simpler and more efficient 
procedure requiring only a small number of matrix multiplications is described below. 

Let the tableaux in table 1 be labelled sequentially by (l), (2), . . . from the left to the 
right across each row and from the top down. Since there is only a single tableau for 
M = 8. it is clear that 

$ * , 8  = (1). ( 5 )  

The lowering operator L? connects the tableaux in each row with the ones in the row 
beneath. L 5 ,  is related to V', in (2) by 

L!.l = V L ] ( l ~ ~ L ~ ~ i )  

with 

Using the jawbone counting diagram, the first few submatrices of L' are 

(1) 
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The eigenvector $ L , M -  is then obtained lrom $I.,M by means of the well known formula 

For example 

In this way, all states $ L , M ,  L = M + 1, M + 2 , .  . . , L,,, in the Mth row of table 1 can 
be generated from the states in the ( M  + 1)th row. The remaining (possibly multiple) 
state $M, ,bf  can be constructed by a projection operator technique. First, calculate the 
projection operator 

including all multiple states in the sum. Any column of the complementary operator 
P, = I - QM is then an unnormalized eigenvector $ M , M .  Let us arbitrarily choose the 
first colurnn. If a second state $ ; M M  exists, then the procedure is repeated by calculating 

(12) 

with $ M , M  normalized to unity. The second column of P' = I - Q' is an orthogonal 
state $ ; M , M .  The procedure is continued until the basis set is complete, ie P' 0. Any 
linear combination of states c~$L,M + is, of course, also an eigenvector. The use 
of the lowering formula (9) guarantees the sume linear combination and a definite phase 
relationship for different values of M .  This is not true when general matrix diagonaliza- 
tion techniques are used to diagonalize L2 in each subspace. To save time, only the 
first k columns of Q and P need be calculated, where k is the number of times the state 

QL = Q M  + $M,M$L,M 

occurs. The L 2  matrix is no( needed at all. The first few eigenvectors are 

$8,8 = 

$ 8 , 7  = - ( I /  JX) (J3 ,J5 )  

*7 ,7  = ( 1 / J W - J 5 ,  .'3) 

$ 8 , 6  = (1 /4 ) (3 ,  J322)  

$ 7 , 6  = (1/4112)(-1> 5J3,  - 6 )  

$ 6 , 6  = (1/J21)(3, - J 3 3  - 3 )  
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$ 8 , 5  = -(I/ J168)(3 J3,3 J5 ,5  J 3 , 3 , 2  J3)  

$7 ,5  = - (1 /J728)( -  J3 ,7  JS ,  - 7  J3, 15, - 6 J 3 )  

$ 6 , 5  = - (1 /J7)(  J3,O,O, - 1, - J 3 )  

$ 5 , 5  = -(l/ J3367)(37; -4 J l 5 ,  -27,  10 J3,27)  

$\,s = -(I/ J l l l ) ( O ,  6 ,  - J l 5 ,  - 3  J59J15) 

as can easily be verified by hand calculation. The numbers multiply the corresponding 
tableaux with the same M in table 1. 

4. Discussion 

The methods discribed by Harter and the present work provide a simple, easily pro- 
grammed algorithm for the construction of angular momentum eigenfunctions in atoms 
containing several equivalent electrons. A knowledge of group theory is not necessary 
for its application. Equation (2) and the jawbone counting diagram allows the calculation 
of the angular coefficients for the matrix elements of any spin-independent irreducib!e 
tensor operator in the Young tableaux basis set. The computational scheme is not yet 
complete since it still lacks a prescription for the evaluation of spin-dependent matrix 
elements. Further work on this problem is in progress. 
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