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LE'ITER TO THE EDITOR 

Two-electron Lamb shifts and ls2s 3S,-ls2p 3P, transition 
frequencies in helium-like ions 

S P Goldman7 and G W F Drake$§ 
t Department of Physics, University of Western Ontario, London, Ontario, Canada 
$ Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA 

Received 29 December 1983 

Abstract. The leading terms in the 1/Z expansion of the two-electron Bethe logarithm 
are calculated for the states 1s' ' S o ,  ls2s 'S1, ls2s %,, ls2p 'P, and ls2p 3P, by the use 
of a novel finite basis set method. The resulting QED terms are combined with other 
relativistic and mass polarisation corrections to obtain total transition frequencies. The 
results are compared with recent measurements in helium-like ions from Lif to Fez4+. 

Recent high-precision measurements of the ls2s 3S1-ls2p 3PJ ( J  = 0,1,2) transition 
frequencies in high-Z two-electron ions (Davis and Marrus 1977, Holt et al 1980, 
DeSerio et a1 1981, Buchet et al 1981, Stamp et a1 1981, Livingston and Hinterlong 
1982) have stimulated considerable interest in the theoretical calculation of relativistic 
and quantum electrodynamic (QED) effects in these ions (Goldman and Drake 1983, 
Hata and Grant 1983a, b, c, 1984). (For a review, see Drake 1982.) Since the 
non-relativistic energy difference increases only as Z, compared with a2Z4 and 
a3Z4 In (aZ) for the relativistic and QED corrections, the corrections become rapidly 
more important with increasing Z. For example, at Z = 20, they are about 20% and 
1 '/o of the total, respectively. The experimental transition frequency for Cli5+ deter- 
mines the two-electron Lamb shift to an accuracy of *0.65% (DeSerio et a1 1981) 
(assuming that other contributions are accurately known), which is more accurate than 
corresponding measurements in high-Z one-electron ions. The purpose of this letter 
is to present new calculations for the Bethe logarithms of the states ls2s 'S, ls2s 3S, 
ls2p'P and ls2p3P, and to compare the resulting transition frequencies with 
experiment. 

Following Kabir and Salpeter (19571, the lowest order (in a )  two-electron QED 
correction is (in atomic units, with 1 au = a2mc2) 

(1) 
where Z is the nuclear charge and a = 1.137.03596 is the fine-structure constant. The 
above includes all terms of O(Z4aa'), but neglects terms of O ( Z 3 a 3 )  which are 
proportional to (S(rI2)) (Kabir and Salpeter 1957). The latter terms do not contribute 
to the energy shifts of triplet states in LS coupling because ( S ( r I 2 ) )  vanishes. The 
principal uncertainty in the evaluation of (1) is the value of the two-electron Bethe 

EL,2 =$Za3{ln(Zcr)-2+ln[Z2 Ryd/&(nLS)]+&(S(r,) + S(r2))  

5 Permanent address: Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada. 
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logarithm defined by 

in the dipole acceleration form where t+bo is the wavefunction for the nLS two-electron 
configuration, t = ZZirt/r; and the sums are over all intermediate states. The use of 
standard methods involving discrete variational basis sets to evaluate (2) leads to 
non-convergent results because of the large contribution from highly excited states. 
Accurate calculations have been attempted for the ground state with Z up to 10 
(Schwartz 1961, Aashamar and Austvik 1976), and estimates have been made for the 
low-lying excited states of He and Li' (Suh and Zaidi 1965, Ermolaev 1975). For 
other cases, it has become customary to use the lowest-order hydrogenic approximation 
(DeSerio et a1 1981, Hata and Grant 1983b) 

In(Eo(nLs)) = (1 + 61,0/n3)-1(1n ~ ~ ( 1 s )  + n P 3  In ~ ~ ( n l ) )  (3) 

where eo(nl)  is the hydrogenic Bethe logarithm for nuclear charge Z= 1. Recently, 
Hata and Grant (1984) have devised a semi-empirical fitting procedure to obtain 
improved values for In( E (  nLS)). 

In the present work, we write the two-electron Bethe logarithm in the form 
In &(nLS)  = A / B  where A and B are the numerator and denominator of (2) respec- 
tively, and insert the 1/Z expansions 

A = Z4[Ao +AIZ-' + 2(ln Z)(Bo+ BIZ-') +. . .] 
B = z~(B,+ B~z- '  +. . .). 

(4) 

( 5 )  

The coefficients in the expansion of B can be obtained from the identity (in atomic 
units) B = 2 ~ Z ( 8 ~ ( r , ) + 8 ' ( r ~ ) ) ,  The exact values of Bo and B1 for the S states are 

Bo( 1 lS) = 4 Bo(2 'S) =$ Bo(2 3s) =$ 
Bl( 1 'S) = -$+ 3 In 2 = -2.670558 

B1(2 ' S )  = (-4130+6879 In 3-6720 In 2)/37=-0.562686 

B1(2 'S) = (-4402+7647 In 3-7104 In 2)/37= -0.422967. 

The above B1 values were obtained with the aid of matrix elements tabulated by Cohen 
and Dalgarno (1961). Our numerical values for the P states are 

Bo(2 'P) = 2 Bo(2 3P) = 2 

B1(2 'P) = 0.0436903 1) 

and 

Bl(2 'P) =-0.17190190(3). 

The value of A. is now determined by the condition Ao/Bo=ln E ~ ( ~ L S ) .  Only A l  
requires significant additional calculation. Using l / r12 as a first-order perturbation, it 
is given by (Goldman and Drake 1983, Ermolaev and Swainson 1983) 

A l  =c  [2t$:?, tclo In AEO,/AEO,+Itb:?,1'AEt,(l-ln AEO,)/(AEL)'] (6) 
m 
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where 

AE; = E ;  - E," 

and q!~h and E f ,  are the first-order perturbed two-electron wavefunctions and energies. 
In general, the sums in (6) are difficult to evaluate because of the presence of the +h 
given by 

However, since t is a sum of one-electron operators, only single-electron excitations 
from the hydrogenic initial state t,b: make non-vanishing contributions. We therefore 
replace the actual summations in (6) and (7) by summations over discrete variational 
one-electron basis sets of the form 

The linear variational coefficients cia' are determined by first orthonormalising the 
basis set, and then diagonalising the one-electron Hamiltonian. 

The presence of multiple exponential parameters ai in (8) is essential to obtaining 
convergent results as the number of terms in the basis set is increased. We have devised 
a novel and highly successful iteration procedure for progressively altering the ab 
depending on the eigenvalue spectrum obtained in the preceding iteration. For the 
pth iteration, the aj are calculated from 

with 

and the &Ip- ' )  are the variational eigenvalues obtained in the preceding iteration. 
Successive iterations have the effect of progressively spreading out the eigenvalue 
spectrum and extending it to higher energies. A quantity such as Al calculated from 
the pth basis set passes through an extremum as a function of p. The interpolated 
extremum point at a non-integral value of p represents the optimum value of Al.  Test 
calculations yielded the known Bl coefficients, and the 1s and 2s hydrogenic Bethe 
logarithms, correct to six figures or better with twenty-term basis sets. Typically, fewer 
than ten iterations were required to find an extremum as a function of p. The method 
appears to offer a significant advance in computational technique for the evaluation 
of nearly divergent perturbation sums. 

The calculations for Al converge to the values A,( 1 'S) = -6.167410(5), A1(2 'S) = 
-1.186594(3), A1(2 3S) =-0.898450(2), A,(2 'P) =0.12393(1) and A1(2 3P) = 
-0.37415(5). Using expansions (4) and (3,  the two-electron Bethe logarithm is 

In(&( n/S)/Rydj = Ao/Bo+ln 2 + 2 In Z +  [(AIBo-AoBl)/B~lZ-' + O(Z-2) 

= In[&o(nLS)(Z- c)~]+o(z-') (11) 
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with cr = -(Al Bo - AoBl)/  (2B:). The numerical values are 

In(E(1 'S)/Ryd) = ln[19.7693(Z-0.00615)2] 

In( E (2 'S)/ Ryd) = In[ 19.3943 (Z + 0.02040)2] 

In( E (2 3S)/ Ryd) = In[ 19.3943 (Z + 0.0 1388)'] 

In( E (2 'P)/Ryd) = ln[l9.6952(Z + 0.00600)2] 

In( ~ ( 2  3P)/Ryd) = ln[19.6952(Z+0.00475)2]. 

The result for the ground state does not differ significantly from our earlier less accurate 
calculation (Goldman and Drake 1983). Screening constants for the excited states 
have not been calculated before. From (1 1) the correction A In to the zero-order 
Bethe logarithm is O.O2776/Z for the 2 3S state and O.O0951/Z for the 2 3P state. 
The numerial values for Z >  3 are much larger than the estimates of Hata and Grant 
(1 984) and, unlike their Z-3 dependence, A In decreases only as Z-l. The values 
obtained from (11) for neutral helium are 4.371 and 4.365 for the 2 'S and 2 3S states 
respectively, as compared with 4.345 f 0.020 and 4.380 * 0.020 calculated by Suh and 
Zaidi (1 965). 

The QED corrections for the 2 3S1-2 3PJ transitions can be compared with experi- 
ment after other relativistic effects have been taken into account. This was done by 
diagonalising the matrix (Drake 1979, 1982) 

in the basis set of zero-order degenerate states to obtain relativistic and QED 

corrected eigenvalues. Here, HNR is the non-relativistic Hamiltonian, Bp is the Breit- 
Pauli interaction, EL,2 is the diagonal matrix of lowest order QED terms given by (l),  
HM is the mass polarisation correction, HNS is the nuclear size correction including 
relativistic (Mohr 1983) and two-electron (Ermolaev 1973) effects, HD is the sum of 
one-electron Dirac Hamiltonians, VI, = e2/r12, B is the 16-component Dirac form 
of the Breit interaction including retardation (Mittleman 1971) and EHO contains 
all higher diagonal one-electron QED corrections as calculated by Mohr 
(1982). Following Ermolaev (1975), the EHO terms for nS states are multiplied by 
n3(27r(8(r1))/Z3- 1) to correct for the non-hydrogenic electron density at the nucleus. 
The first group of terms in (12) is calculated with highly accurate variational wavefunc- 
tions in LS coupling (Drake 1979, Accad et a1 1971), while the second group of terms 
is calculated with hydrogenic products of Dirac spinors in j j  coupling for wavefunctions. 
Finally, R is the j j-. LS recoupling transformation and A subtracts those terms that 
are counted twice. H is a 2 x 2  matrix for the states 2 3P1 and 2 'P1, and is a scalar 
for the states 2 3S1, 2 3P0 and 2 3P2. The significance of (12) is that it contains the 
(essentially) exact non-relativistic eigenvalues and fine-structure shifts, while summing 
to infinity the one- and two-electron relativistic corrections of order a2Z4, a4Z6 , .  . . , 
and a2Z3,  a4Z5,. . . . The leading term not included is of O(a4Z4). 

The results are compared with a selection of the more precise experimental measure- 
ments for ions up to Z = 26 in table 1. The theoretical error estimates are obtained 
by assuming that uncalculated terms contribute approximately *0.2a4Z4 au = 
~k1.2(2/1O)~cm-'. The coefficient 0.2 is chosen to be similar in magnitude to other 
known coefficients. The net influence of the screening term in (11) is to decrease the 
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Table 1. Comparison If theory and experiment for the ls2p 'PJ-ls2s 3S, transitions of 
He-like ions (in cm- I ) .  Experimental data which disagree with theory are underlined. 

Z J Theory" Experiment Z Theory Experiment 

0 
1 
2 
0 
1 
2 
0 
1 
2 
0 
1 
2 
0 

1 

2 

0 

1 

2 

0 
1 
2 

18 231.30 (1) 
18 226.10 (1) 
18 228.19 (1) 
26 864.6 (0.1) 
26 853.1 (0.1) 
26 867.9 (0.1) 
35 393.7 (0.1) 
35 377.4 (0.1) 
35 430.1 (0.1) 
43 899.1 (0.2) 
43 886.4 (0.2) 
44 022.1 (0.2) 
52 421.1 (0.3) 

52 429.3 (0.3) 

52 720.3 (0.3) 

60 979.9 (0.5) 

61 037.9 (0.5) 

61 589.3 (0.5) 

69 592.8 (0.8) 
69 742.8 (0.8) 
70 700.3 (0.8) 

18 231.303 (l)b 
18 226.108 (l)b 
18 228.198 ( l )b  
26 867.4 (0.7)' 
26 853.1 (0.2)' 
26 867.9 (0.2)' 
35 393.2 (0.6)' 
35 377.2 (0.6)' 
35 429.5 (0.6)' 
43 899.0 (0.1)' 
43 886.1 (0.1)' 
44 021.6 (0.1)' 
52413.9 (1.4)' 
52420.0 (l.l)d 
52 429.0 (0.6)' 
52 428.2 (l.l)d 
52 719.5 (0.6)' 
52 720.2 (0.7)d 
60 978.2 (1.5)' 
60 978.4 (0.6)d 
61 036.6 (3.0)' 
61 037.6 (0.9)d 
61 588.3 (1.5)' 
61 589.7 (0.6)d 
69 586.0 (4.0)' 
69 743.8 (3.0)' 
70 700.4 (3.0)' 

10 

14 

15 

16 

17 

18 

26 

78 266.5 (1.2) 

78 565.3 (1.2) 

80 122.4 (1.2) 

113 821.2 (4.8) 
115 589.5 (4.8) 
122 744.3 (4.8) 
122 971.6 (6.3) 
125 393.3 (6.3) 
135 153.4 (6.3) 
132 239.9 (8.2) 
135 447.5 (8.2) 
148 499.1 (8.2) 
141 643 (10) 
145 771 (10) 
162 926 (10) 
151 189 (13) 
156 368 (13) 
178 580 (13) 
233 616 (57) 
249 797 (57) 
368 756 (57) 

78 266.9 (2.4)' 
78 265.0 (l.2)d 
78 566.3 (2.4)' 
78 565.7 (1.8)d 
80 120.5 (1.3)' 
80 123.3 (0.8)d 
113 815 (4)e 

122 746 (3)' 
122 940 (30)' 

135 153 (18)' 
132 198 

148 493 (5)' 
141 643 (40)' 

162 923 (6)' 
151 350 (250)g 

178 500 (300)8 
232 558 (550)h 

368 960 (125)h 

a Numbers in brackets give the uncertainty in the final figure(s) quoted. 
'Holt et al (1980). 

Older data referenced by DeSerio et a1 (1981). 
Stamp (1983). 

e DeSerio et a1 (1981). 
' Livingston and Hinterlong (1982). 
8Davis and Marrus (1977). 
' Buchet et a1 (1981). 

transition frequencies by approximately 0.77(2/ cm-'. The effect is small only 
because the u turn out to be much less than unity in magnitude. 

Theory and experiment agree within the error limits, except as noted in table 1. 
A further comparison can be made with a high precision measurement of the 2 3P2+ 
2 3P1 fine-structure interval in F7+. Here, our calculation gives 957.48 f 0.80 cm-', in 
agreement with the much more accurate experimental value 957.80 f 0.03 cm-' (Myers 
et a1 1981). Hata and Grant (1983~)  obtained 957.76 cm-' by including an estimate 
of the a4 Z4 contribution. Their (1984) values for the 2 3S-2 3P transition frequencies 
should be decreased because of the A In eo and finite nuclear size corrections not 
included in their work, At  Z = 10, the shifts are -0.77 cm-' and -0.51 cm-' respec- 
tively, bringing their results into better agreement with ours. Also, their calculation 
includes only the spin-dependent part of the a6 mc2 contribution. There are further 
uncalculated spin-independent terms (Douglas and Kroll 1974) analogous to those in 
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the Breit interaction. It is clear that further progress in the comparison between theory 
and experiment will require a complete calculation of the cy4 Z4 term, which contains 
the combined effects of electron correlation and higher-order relativistic corrections. 

This research was supported in part by the National Sciences and Engineering Research 
Council of Canada, and in part by the Director, Office of Energy Research, Office of 
Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy, 
under Contract No DE-AC03-76SF00098. 

References 

Aashamar K and Austvik A 1976 Phys. Norv. 8 229-37 
Accad Y, Pekeris C L and Schiff B 1971 Phys. Rev. A 4 516-36 
Buchet J P, Buchet-Poulizac M C, Denis A, Desesquelles J, Druetta M, Grandin J P and Husson X 1981 

Cohen M and Dalgarno A 1961 Proc. R .  Soc. A 261 565-76 
Davis W A and Marrus R 1977 Phys. Rev. A 15 1963-75 
DeSerio R, Berry H G, Brooks R L, Hardis H, Livingston A E and Hinterlong S 1981 Phys. Rev. A 24 

Douglas M and Kroll N M 1974 Ann. Phys., N Y  82 89-155 
Drake G W F 1979 Phys. Rev. A 19 1387-97 

Ermolaev A M 1973 Phys. Rev. A 8 1651-7 
- 1975 Phys. Rev. Lett. 34 380-3 
Ermolaev A M and Swainson R A 1983 J. Phys. B: At. Mol. Phys. 16 L35-42 
Goldman S P and Drake G W F 1983 J. Phys. B: At. Mol. Phys. 16 L183-7 
Hata J and Grant I P 1983a J. Phys. €3: At. Mol. Phys. 16 507-21 
- 1983b J. Phys. B: At. Mol. PhyS. 16 523-36 
- 1 9 8 3 ~  J. Phys. B: At. Mol. Phys. 16 L369-74 

Phys. Rev. A 23 3354-6 

1872-88 

- 1982 Adv. At. Mol. Phys. 18 399-460 

- 1984 J. Phys. B: At. Mol. Phys. 17 in press 
Holt R A, Rosner, S D, Gaily T D and Adam A G 1980 Phys. Rev. A 22 1563-71 
Kabir P K and Salpeter E E 1957 Phys. Rev. 108 1256-63 
Livingston A E and Hinterlong S J 1982 NUCL Instrum. Merh. 202 103-5 
Mittleman M H 1971 Phys. Rev. A 4 897-900 
Mohr P J 1982 Phys. Rev. A 26 2338-54 
- 1983 At. Data Nucl. Data Tables 29 453 
Myers E G,  Kuske P, Andra H J, Armour I A, Jelley N A, Klein H A, Silver J D and Trabert E 1981 Phys. 

Schwartz C 1961 Phys. Rev. 123 1700-5 
Stamp M F D Phil Thesis University of Oxford 
Stamp M F, Armour I A, Peacock N J and Silver J D 1981 J. Phys. B: At. Mol. Phys. 14 3551-61 
Suh K S and Zaidi M H 1965 Proc. R .  Soc. A 29 94-105 

Rev. Lett. 44 87-90 


	University of Windsor
	Scholarship at UWindsor
	1984

	Two-electron lamb shifts and 1s2s 3S1-1s2p 3PJ transition frequencies in helium-like ions [1]
	S. P. Goldman
	Gordon W. F. Drake
	Recommended Citation


	tmp.1368207899.pdf.Y7i92

