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LE'ITER TO THE EDITOR 

Two-electron QED corrections in helium-like ions 

G W F Draket and Adam J MakowskiS 
t Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada 
$ Institute of Physics, Nicholas Copernicus University, 87-1 00 To&, Poland 

Received 22 November 1984 

Abstract. The calculation of two-electron QED energy shifts in helium-like ions is discussed 
in order to correct a number of errors and misunderstandings which have appeared in the 
literature. New results are presented for the terms involving (r;:) in the ground and 
low-lying excited states for ions up to 2 = 10. A detailed comparison is made with the 
high-precision measurement by Martin and a calculation by Hata for the ls2p 'P , - ls2p 3P, 
transition of helium. 

The basic theory of the lowest-order quantum electrodynamic (QED) contributions in 
two-electron ions was developed in the early papers of Kabir and Salpeter (1957), 
Araki (1957) and Sucher (1958). Recent high-precision measurements of transition 
frequencies among the n = 2 states of helium (Sansonetti and Martin 1984, Martin 
1984) and Li+ (Holt et al 1980, Englert er al 1982) have stimulated renewed interest 
in the precise calculation of the two-electron QED terms. The purpose of this Letter 
is to correct some errors and misunderstandings which have appeared in the literature, 
and to present new results for the ls2p 'P1-ls2p 3P1 transition in helium. 

Following the conventional notation, the leading QED energy shifts in a two-electron 
ion are (in atomic units, with 1 au = a2mcz)  

AEL= ELs2+EF,:tEEg2 (1) 

(2) 

(3) 

where 

EL,2 = $ ~ a ~ [ l n ( Z a ) - ~  + ln(Z2 Ryd/ E (  nLS))  +&](a( r l )  + S(  r2 ) )  

E ;,: = $Za3{3 n-Za ( g  - 4 In 2) + (Za)'[- ln2( ZLY) -~  + O( In Za )] 

+ ( a /  n-) (0.4042 + O( Za ) )  + O( a '/ r2)}(  S ( r , )  + S ( r2 ) )  

EL,,= a 3 ( y 1 n  a + ~ ) ( S ( r 1 2 ) ) - ~ a 3 Q  

with 

(4) 

Q =  1/4n- 0-0 lim(r;~(a)+47r(y+-In u ) S ( r 1 2 ) )  (5) 

Here, In &(nLS)  is the two-electron Bethe logarithm (Goldman and Drake 1984) and 
y is Euler's constant. The term E?,: represents an approximate extension of the 
higher-order one-electron QED energy shifts to the two-electron case by incorporating 
the correct electron density at the nucleus (Goldman and Drake 1984, Hata 1984a). 

0022-3700/85/040103 + 04$02.25 @ 1985 The Institute of Physics L103 



L104 Letter to the Editor 

The terms shown in (3) as O(ln Z a ) ,  O ( Z a )  and O ( C Y ~ / T ~ )  are too small to affect the 
comparison with experiment in neutral helium. 

The main point of this Letter concerns the calculation of Q. Ermolaev (1973) 
suggested the approximate formula 

Q = --(a( rI2)) In[Z + ( Z  - l ) / n ]  -F 0(z3) (7) 

and this has subsequently been used in a number of recent papers. Equation ( 7 )  is 
valuable as an  asymptotic formula that can be used to estimate the order of magnitude 
of Q for large Z. However, as shown below, it is an  extremely poor approximation 
at low Z for singlet states, and of no  use at  all for triplet states because (6(r12))  
vanishes. The usual approach in the literature has been to set Q = 0 for triplet states. 

We present here detailed calculations of Q using correlated variational wavefunc- 
tions constructed from radial functions of the form r ; 4 r f 2  exp(-cur, -/?r2). Consider- 
able care must be exercised in treating the singular integrals required for the evaluation 
of equation ( 5 ) .  For example, it can be shown that the definition (6) for r;;(u) is 
equivalent to 

(8) 

when the vector difference / r l  - r,l is replaced by the scalar difference in defining the 
cut-off for singular terms. Equation (8) leads to simpler integration formulae because 
the rI2  integration can be done first instead of leaving it to the last as required by (6). 

A detailed study of the contributions to Q with wavefunctions written as a 1/Z 
expansion shows that Q can be expressed in the form 

Values of Q obtained with 50-term variational wavefunctions are listed in table 1 for 
several low-lying states of the helium sequence. The approximation ( 7 )  does not even 
give the correct sign for small values of Z, although asymptotically the 1 n Z  term 
eventually dominates. 

Values for the complete two-electron term E i,2 are listed in table 2. The ground-state 
results agree with, but are more accurate than those of Hata (1984b) and earlier 
calculations referenced by him. No comparable calculations incorporating accurate 
values for Q have been published for the excited states. The numical values for the 

Table 1. Values of Q for low-lying states of the helium sequence in sua. 

Z Is2 Is ls2s Is ls2s 3s ls2p 'P  ls2p3P 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.078 05 
0.01 1 61 

-0.609 9 
-2.316 
-5.712 

-11.456 
-20.255 
-32.852 
-50.023 

0.005 3 
-0.007 8 
-0.116 
-0.423 
- 1.05 
-2.12 
-3.79 
-6.20 
-9.52 

0.003 8 1 0.003 34 0.003 09 
0.024 9 0.021 4 0.0 15 56 
0.075 6 0.053 2 0.043 64 
0.168 2 0.086 3 0.093 58 
0.315 1 0.100 7 0.171 7 
0.528 5 0.071 6 0.284 2 
0.821 1 -0.029 9 0.437 4 
1.205 -0.234 7 0.637 6 
1.693 -0.578 9 0.891 0 

'I To find the contribution to the energy, multiply the entries by -14a3/3 au = -0.3980 cm-'. 
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Table 2. Values of the two-electron QED contribution E;,2 for low-lying states of the 
helium sequence (in cm-' with I au = 219 474.6 cm-I). 

z lS2'S ls2s Is ls2s 3s ls2p ' P  ls2p 3P 

2 
3 
4 
5 
6 
7 
8 
9 

I O  

-0.140 17 
-0.552 18 
-1.3196 
-2.476 
-4.027 
-5.953 
-8.219 

-10.774 
-13.554 

-0.01 1 0 
-0.064 
-0.175 
-0.35 
-0.60 
-0.90 
- 1.26 
-1.67 
-2.10 

-0.001 54 
-0.009 93 
-0.030 1 
-0.067 0 
-0.125 4 
-0.210 
-0.327 
-0.480 
-0.674 

-0.002 09 
-0.018 6 
-0.063 6 
-0.1476 
-0.278 9 
20.463 
-0.706 
-1.010 
- 1.379 

-0.001 23 
-0.006 19 
-0.017 4 
-0.037 2 
-0.068 3 
-0.113 
-0.174 
-0.254 
-0.355 

singlet states differ by more than an order of magnitude from those of Ermolaev (1973) 
obtained with equation (7). For the ls2p ' P  state of He, the present value of 
-0.002 09 cm-' is much larger than -0.000 48 cm-' obtained by Hata (1984a). 

A further point of misunderstanding concerns the anomalous magnetic moment 
correction in the tabulations of Accad et a l ( l 9 7  1).  Although this correction is included 
in the 3P fine-structure splittings Avo, and AV*,  listed in his table XXVI, it is not 
included in the relativistic shift EJ to the ionisation potential of 3PI states in tables 
XII-XX. (To verify this, compare with the calculations of Schwartz 1964.) The 
anomalous magnetic moment shifts for the 3P, states (Drake 1982) must be added 
separately. 

As an instructive example, the theoretical 2'PI-23P, splitting is compared with 
Martin's ( 1984) high-precision measurement, and with Hata's ( 1984a) calculation in 
table 3. The non-relativistic energy difference used in the present work was obtained 

Table 3. Contributions to the ls2p 'P,-ls2p3P, transition frequency of helium in cm-'. 
The value of the Rydberg used is 109 722.2731 cm-' (Martin 1984). 

Contribution Present work Hata (1984a)" Difference 

2045.465 53" 
-0.782 52 

0.000 3 17 
3.327 785 
0.000 62 

-0.043 83 
-0.000 75 
-0.000 86 

0.000 11 
-0.000 49 

2048.053 58(50) 
2048.053 79(1 I )  

2045.464 86 
-0.782 52 

0.000 3 17 
3.327 785 
0 

0 

0 
0 

-0.043 83 

-0.000 48 

2048.053 80(5) 

0.000 67 
0 
0 
0 
0.000 62 
0 

-0.000 75 
-0.000 38 

0.000 1 1  
-0.000 49 
--0.000 22 

a Obtained from the extrapolated non-relativistic energies 

E(2 'P)  = -2.123 843 0863 au 

E(2'P) = -2.133 164 1907 au (Schiff et al 1965). 
and 

Martin (1984). 
See also Hata ( 1 9 8 4 ~ )  for his revised values of AENR and AET,> 
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by extrapolating the eigenvalue calculations of Schiff et a1 (1965) to larger basis sets. 
The result differs by 0.000 67 cm-’ from Hata’s extrapolation because he used the data 
tabulated by Accad et al (1971) which contain fewer significant figures. The difference 
is substantial. The terms AErel, AEEmasspol and AE,, (the singlet-triplet mixing term) 
are the same as used by Hata, while AEanOmmag is the anomalous magnetic moment 
correction to the 23PI state (Drake 1982) not included by Hata. The term AE:,, is 
given by equation ( 2 )  with the simple hydrogenic approximation ln(&/Ryd) = 
ln(19.69522’) for the Bethe logarithm of both P states. The result is AEt,2= 
0.043 15 cm-’. The combination AEt,2+AEF,y is in agreement with Hata, but he did 
not include AEOL,2, which is the shift due to electron screening in the one-electron 
Bethe logarithm (Goldman and Drake 1984). For this term, one writes 

l n ( ~ ( 2 ” ~ P ) R y d )  =ln[19.6952(2- U)’] 

with a(2IP) = -0.006 00 and u ( ~ ~ P )  = -0.004 75. In a subsequent paper, Hatz (1984~)  
included the AE;,’ term and corrected his extrapolation for AENR. The two-electron 
term AE‘,,2 is nearly twice as large as Hata’s. Finally, AERR(St0ne) is the relativistic 
recoil shift of O ( a 2 Z 4 m / M )  arising from finite nuclear mass corrections to the Breit 
interaction as derived by Stone (1963). However, there are further uncalculated 
contributions arising from second-order cross terms between the Breit interaction and 
the mass polarisation operator (Lewis and Serafino 1978) which could be equally as 
large. We therefore take the theoretical uncertainty to be *AERR( Stone). Higher-order 
relativistic corrections of O ( a 4 Z 6 )  and O(a4Z5) do not contribute more than 
*O.OOO 10 cm-I. The total agrees with Martin’s (1984) observed value to within the 
accuracy of the calculation. The closer agreement obtained by Hata (1984a) should 
be modified because of the terms he did not consider. 

A more extensive discussion of the results for other transitions and comparison 
with experimental data will be presented in a future publication. 

Research support by the Natural Sciences and Engineering Research Council of Canada 
is gratefully acknowledged. 
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