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A unified treatment of the non-relativistic and relativistic
hydrogen atom II: the Green functions

Robin A Swainson and G W F Drake
Department of Physics, University of Windser, Windsor, Ontario, Canada N9B 3P4

Received 26 June 1990

Abstract. This is the second in a series of three papers in which it is shown how the radial
part of non-relativistic and relativistic hydrogenic bound-state calculations involving the
Green functions can be presented in a unified manner. In this paper the non-relativistic
Green function is examined in detail; new functional forms are presented and a clear
mathematical progression is shown to link these and most other known forms. A linear
transformation of the four radial parts of the relativistic Green function is given which
allows for the presentation of this function as a simple generalization of the non-relativistic
Green function. Thus, many properties of the non-relativistic Green function are shown
to have simpie relativistic generalizations. In particular, new recursion relations of the
radial parts of both the non-relativistic and relativistic Green functions are presented, atong
with new expressions for the doubie Laplace transforms and recursion relations between
the radial matrix elements. A novel proof of the Sturmian form of the radial Green functions
is given in an appendix.

1. Introduction

This is the second in a series of three papers in which we present a unified treatment
of non-relativistic and relativistic calculations of the properties of hydrogen-like systems
involving the Coulomb Green functions (CGF). In the first paper [1] we presented a
simple linear transformation which uncouples the pair of first-order differential
equations defining the radial Dirac-Coulomb wave functions. We showed how this
leads us to two second-order differential equations for the transformed radial wavefunc-
tions which are generalizations of the differential equation satisfied by the radial
Schrédinger-Coulomb wavefunction, and which are therefore immediately soluble.

In the present paper we extend this work to the analysis of the general Coulomb
Green functions. Indeed, we show how an extension of the linear transformation allows
us to exhibit the relativistic Dirac-Coulomb Green function {DCGF) as a generalization
of the non-relativistic Schrodinger-Coulomb Green function (scGF). It follows that
much of the analysis required for specific calculations of non-relativistic and relativistic
effects, such as matrix elements, double Laplace transforms, recursion relations and
s0 on, can be treated in a unified manner. In the fotllowing paper [2] we will extend
this work further to consider the reduced Coulomb Green functions (rRCGF), functions
appearing in bound-state perturbation theory.

As we remarked in the first paper of this series [1] powerful methods [3] are
currently available for the treatment of the angular part of problems in the atomic
physics of hydrogen-like systems. OQur work then, focuses mainly on the radial part of
the analysis, and in that respect differs from other attempts to unify non-relativistic
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96 R A Swainson and G W F Drake .

and relativistic calculations [1]. Furthermore we have confined ourselves to the analysis
required for calculations involving bound states—the extension to unbound states will
be presented elsewhere.

Knowledge of the general cGF is required for the study of various atomic properties
of hydrogen-like systems. Two-photon bound-state transitions and the Lamb shift are
but two examples [4]. Even second-order perturbation calculations, though ostensibly
requiring the use of the rRCGF, may actually involve the general CGF treated in this

nanar Tha nnlorl?nhllut(r nf hudraosnie in Calanst: lan awicimae
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from the angular part of the calculation lead to integrals of the general cGr and not
the rcGF as will be shown in a further paper devoted to a study of that effect.

Since the remainder of this paper will be concerned with a rather detailed and
specific analysis of the radial cGFs, it is probably worthwhile to present a brief review

of the theory of Green functions in a more abstract setting. Given a Hermitian operator
H, the corresponding resolvent or Green operator (G(z) is defined by

71, 0 cOITcspulicl ICSIVEIL Of L 4 ] Lol RrlZ) s GLLICS

(H-z)G(z)=1 (1.1}

where z, referred to later on as the ‘energy variable’ is a complex number. Usually H
will have associated with it a complete set of eigenfunctions ¢z corresponding generally
to both discrete and continuous eigenvalues E, so that

(H=Ejj =0 (1.2)

Sgep=1. (1.3)
It should now be clear that a formal expression for G(z) is given by

G(z)=X yethe/(E —2). (1.4)

If H is represented by a differential operator H. acting on a Hilbert space of functions
on R?, G(z) is itself representzd by a function G(r,, r,; z) on R*x R’ which satisfies

(H,—z)G(r,, 1 2)=8(r,—r3). (1.5)

We shall be concerned here exclusively with the Schrédinger- and Dirac-Coulomb
Green functions. In view of the nature of the Hamiltonians invelved, we see that the
former is a scalar function, while the latter is a 4 x 4 matrix-valued function.

The scGF is defined and its various forms reviewed in section 2. There has been a
number of methods used to determine its functional form, ranging from the direct
computation of the sum in (1.4), to expansions as sums of products of radial functions
and angular functions, solutions in parabolic coordinates, solutions in momentum
space, and solutions in phase space.

It appears that the first published attempt to calculate the scGF was by Meixner
in 1933 [5] where he only partially succeeded in solving the three-dimensional problem
in parabolic coordinates. Following that, a solution of the radial functions was dis-
covered involving the product of a homogencous Whittaker function with an
inhomogeneous one. Integral representations for the full Green function in coordinate
space were not found until the 1960’s, and were given in papers by Wichmann and
Woo [6] and by Hostler [7]. The full Green function in momentum space had been
derived in the late 1940’s by Schwinger [8], who made use of the explicit character of
the SO(4) symmetry of the non-relativistic hydrogen atom when it is represented in
momentum space. This work was published somewhat later though. Hostler [7] also
derived an integral representation for the radial function which has since been
frequently used by several authors. In 1970 Hostler [9], while examining the Coulomb
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Green function in n-dimensional space, came across what is now referred to as the
Sturmian form of the radial Green function and which is basically an infinite series
of Laguerre polynomials. In the context of the phase-space formulation of the theory
of the hydrogen atom, Garcia-Bondia [10] and later Chetouani and Hamman [11]
derived forms for the full Green function, the latter authors giving it in terms of
parabolic coordinates.

In section 2 we present a self-contained analysis of both the radial and full scGF
in coordinate space. The Sturmian form of the radial function is explicitly derived

UL L3 L= g A gl Leiiiiiqll WM [RILUR Fo i) F-3 g H L0 SAprIIvELLY

directly from the defining differential equation in appendix 1. We show how it is
possible to derive many other forms for the Green function, appealing only to familiar
properties of the various special functions involved. Thus a clear line of mathematical
reasoning is established between the Sturmian form and all others.

In section 3 we turn our attention to the DCGF. As in the non-relativistic case, there
have been several different approaches to the discovery of suitable functional forms.
These have been obviously less successful, the $O(4) symmetry is broken in the
relativistic Kepler problem. Most popular has been the solution in terms of a partial
wave expansion,

Apparently the first derivation of the radial pcGr was made by Wichmann and
Kroll in 1956 [12] in connection with a study of vacuum polarization effects in
hydrogenic ions. Their solution, written in terms of Whittaker functions, has become
the standard form. Shortly thereafter, as we explained in the previous paper[1], Martin
and Glauber [13] were able to derive the full pcGF using a method based on the
second-order Dirac equation. The pcGrF is obtained from the Green function corre-
sponding to this equation by the application of a projection operator. Attempts at a
Sturmian form, which appeared somewhat later in the 1970’s, were also based on the
Green function of the second-order Dirac equation [14]. Other authocts {15] have
reported the derivation of forms for the full Green function, but these seem to have
little applicability. Common to all of these methods is the rather complicated nature
of the solution. Since the standard solutions to the radial Dirac-Cculomb equation
involve generally two different terms, the corresponding Green functions contain four
terms. This causes difficulties when computing matrix elements.

In section 3 we present a transformation of the defining radial equations for the
pcGF which allows for the formulation of the relativistic problem in a manner quite
analogous to the non-relativistic problem and which gives simple one-term solutions,
The method allows us to use the analysis of appendix 1 and gives the radial function
in Sturmian form; other forms can be obtained in precisely the same manner as is
used for the radial scar. As we pointed out in the first paper in this series [1], the
approach we take is closely related to the method of solving the Dirac equation first
noted by Infeld [16]. Furthermore, in contrast to the second-order theories, which are
three-dimensional, our approach retains the standard angular analysis and concentrates
on simplifying the radial part of the problem.

In section 4 we present raising and lowering operators for the radial ¢Grs, which
will be seen to be analogous to the angular momentum raising and lowering operators
of the radial wavefunctions. These give rise to relationships between different radial
CGFs which are of intrinsic interest in themselves, although they also lead to relation-
ships between the matrix elements of different cGrs. Of course the solution of any
particular problem in atemic physics using the cGr generally requires the calculation
of matrix elements. In section 5 we give general forms for the double Laplace transforms
(pLT) of the radial cGFs from which any matrix element can be derived. Sometimes,
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relationships exist between different matrix elements of the same ¢GF. In section 6 we
show how a generalization of the hypervirial theorem, well known in the study of
matrix elements of hydrogenic wavefunctions, can lead to such relationships.

2, Review of the Schrodinger—Coulomb Green function

Several different techniques have been employed by various authors in an effort to
derive useful functional forms for the non-relativistic hydrogenic Green function [4].
The technique we present here is quite direct. We explicitly solve the defining differential
equation, and derive further forms using widely known properties of the special
functions. The Schrédinger-Coulomb Green function (scGF) G(r,, r,; E) correspond-
ing to the energy variable E is the solution of

#’ H
[‘E;V?_amr _E:IG("I»"z',E)=8("1_"2) (2.1)
1

subject to suitable boundary conditions. (The scaled Bohr radius a is related to the
Bohr radius a, by @ = a,/ Z.) Expanding G in terms of spherical harmonics so that [17]:

G(ry,r; E) =‘Z g(r, 123 E)Y3,(0,, 1) Y§,.(8, &,). (2.2)

and noting also that
&(r,—r)
8(rn—r)=—" "% Yin(6), $)) Y15(62, 2) (2.3)
112 m

leads us to the defining equation for the radial part of the scGr,
1d{,d i(f+1) 2 1 ] 2m 8(r ~r,)
_— —_ e — . . bt S SN2 .
[rf dr, (rl drl) r ar, v'a’ glr, 3 v) # e (2.4)

where we have written »*a” = —#?/2mE. The boundary conditions we impose on g, are:

li“}) rig(r, r)=0 g€ L(R). (2.5)

In appendix 1 we have solved a slightly more general equation than (2.4) using a
modified version of the method we presented in the previous paper [1] for solving the
defining equation of the radial wavefunctions. We actually solve the Laplace transform
of our generalized equation, which is of first order and relatively simple to deal with,
In the next section we will see how the solutions of our generalized equation are also
applicable to the solution of the relativistic problem. Applied here to the non-relativistic
problem, the solution of the generalized equation {A1.3) leads to the so-called Sturmian
form [9] of the radial scGE:

gi(r, ray ¥)=02m/ 0 g, (r, 1 Vav)

= (zm/ﬁZ)(z/av)ZH—l(rlrz)f e—lr|+r:)/au

X k! 3,+|(2r|) ,,+1(2r2)
Ly — 1Lk — . 2.6
xk§0(2l+l+k)!(l+]+k—v) g av] " ay (2.6)

Notice the poles at n=p={+1+k corresponding to the energy eigenvalues E, =
—(aZ)?mc?/2n%, with I=0,..., n—1. Thus we have obtained, en passant, the discrete
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part of the hydrogenic spectrum. It is often remarked that the scGr can be expressed
as a sum over the discrete spectrum alone. We see it as a consequence of our solution
of the defining differential equation.

We now proceed to derive several additional forms which we will find useful when
calculating the matrix elements of the scGr. We begin with the following representation
of the modified Bessel function, I, [18],

2r 2 —imiz t 2 NIXN
(iﬁf) (1—1)lexp(——lT—(r1+r2))Iﬂ+,(-4—i)

av av tav av(1—1)
- k! k 2H—l(2r) zr+:(2r2
_ 2,
Zoarno BO\G RS 2.7
together with
1
J i =+ k+1-2)7" (2.8)
0

to arrive at our first variant:

giri, 123 ¥) = (2m) 1) \/rir

le T — 1) exp(—mm)lzm(m) dr. {2.9)
4]

av(1—1t) av(l—1)

Now we make a change of variables #—~s=1—r and find

g,(rl, ) V)=(2m/ﬁ2) e(r1+r2),’au
nra
! 1 2 + 4/ 1—
x[ (]_s)_v_zs—lEXP(_M)f2:+1(——rlr2( S))ds (2.10)
e avs avs

which is useful for calculating double Laplace transforms of the radial Green functions
(see section 4 and [19]).

As a final change of variable of integration we let s—p =cosh™"(2/5—1} to arrive
at a form of g, which has been frequently used by other authors [7]:

\/rI_r_[ (coth ) exp( (nt )c sh )
172 J0
x 12,+,(2‘2F sinh p) dp. (2.11)

We can now write down the ‘standard’ representation of the radial scGF in terms
of regular and irregular Whittaker functions, M and W {see appendix 4) by noting
that [20]

W, .2(a )M, .(axt)

tWaa, I'p+1) Jm( p)z"
= coth =
Iri1/24+u/2-v) 2

glr, rnyv)= (zm/'hz)

xexp( (a 12 )!coshp)l (tv/a,a,sinh p) dp (2.12)
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(for R(1/2+u/2—7)=>0,R(t)>0, a,> a,) from which follows [7]
_mavI{I+1-v) 1 2re 2r.
&aln, 13 V=S =TT o M”'“;( av ) W"'”é(;f) (2.13)

where r.=min{r,, r;} and r. = max{r,, r.}.
Further integral representations are possible. Returning to equation (2.6) and noting
that [18]

o

1
e”‘z“”Lﬁ(z):;J. e~ s (2sz) ds (2.14)

*Jo
where n+%R(a)>—1 and J, is an ordinary Bessel function, we find a new double
integral formula for g;:

e(r1+r2)/ap J'oo J'co 2!’ 5
gl’(rl FZ;V) ( m/ ) m . . < 2-'+1(2 av
2r5\ © 5,5,)FH
cn(2y22) § (152

av J  Ze QI+1+kk(I+1+k—)

The sum in the last equation can be expressed as an integral over a modified Bessel
function using equation (2.8},

E (Slsz)k+t+5 _ J'oo
koo QI+ 1+ENRNI+1+ k- v)

and this leads us to our final form for the radial scGF, a new triple integral rep-
resentation:

{r+r}av ffoo foo
ez o —s 21,8
gilri v)=(2m/f:2>7’?fo L < ”2’*‘(2 V 7)
/2 e .
XJ'21+1(2 rzsz) J' 17 2L (2 8,50 At dsy ds,. (2.17)
av o

1t is interesting that by performing the integrals over s, and s, in (2.17) we arrive at
equation (2.9).
We now take a step backwards. From (2.2)

G(r, r; E)=‘Z gr, rs v) Y6, ) YT.(0:, ¢,)

=Zl:gl(r|,rz; V)(2’+1)P1(’11'P2) (2.18)

ds, ds,. (2.15)

57V7512r+1(2\-‘5152f) dr (2.16)

0

where P, is a Legendre polynomial of degree I In view of (2.10) we can write

G(r, r; EY=02m/#)1/Vrr, j (coth Ep) exp(—(rl%r;!) cosh p)
0

2 v,
X T (21 +1) P, ’”(T sinh p) dp

i

and, since

p/20(pV(1+1)/2) =; 21+ 1) P(7) hya(p) (2.19)

2 = o\ . (r+rs)
G{r,r;, E)=02m/hav) cothE sinh p exp{ — - cosh p
0

x IO(S'"h S 2rr 1+, ‘z)) dp. (2.20)

av
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This form was first presented by Hostler [7]. We can of course resort to a variable we
have used previously: p—t where cosh p =(1+1)/(1 —1). Then {2.20) becomes

o [T 2T () 141
G(r,r; E)=(2m/h’av) J’o (1—I)Zexp( ar (1—1))
2[2tf]r2(1+ﬁ|';2)]”2
><IO( av(l—1) )dt'

We are now in a position to find a ‘Sturmian’ expansion of the scGF in parabolic
coordinates. Recalling the definition of this coordinate system,

X=véncos ¢ y=vénsing z=(§—n}/2
it is not difficult to show that

2rn(1+ A -B) =66+ mm+ 2VE LM cos(@.~ ). (2.22)
We also note that {18]

(2.21)

I(Va>+b>+2ab cos 8) = +Zoo (=" e™ I, {a)],(b). {2.23)

= —00

Thus, from (2.21) we can write

Glry, 13 E)= X (1) €™ g (6, mas 6o, 70 v) (224
where [11]
gml&r, M &2, M2y v)
_ v —(&tm et (14t
=(4m/ H’av) J‘0 (lwt)2exp[ P, (l—t)]
2VtE € ) (2\' f’?lﬂz)
8 Im(ay(l—t) W\aa-n/ (2.25)
Now, as in {(2.7)
( Wi & )
I|—=
av(l—1}
_ HE+E)\ 166\ =kt
_(l_t)exp(av(l—r))(azvz) Eﬂ(k+|m|)!
x M€/ av) L&/ av) (2.26)

since I, = I_,,. Thus we arrive at the following form of the Green function in parabolic
coordinates:

2nlé0, M &2, M3 v)

(4m/#*) mi/2 (St 6tmtn)

=W(§lfz’?mz)l / CXP( Sav 2)
" it j+|mlF1-v)”! |m|(é)
o GHmDIGHmDt T Nay

y L}m(ﬂ) Lljrnl(é) Llf_m(ﬂ), (2.27)
av av : arv
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Various different techniques have been utilized to arrive at these different forms for
the sCGF in the literature. We have demonstrated in the above that they can all be
derived from the basic Sturmian expansion by the straightforward application of
well-known properties of special functions.

3. The Dirac—Coulomb Green function

The presentation of a functional form for the Dirac-Coulomb Green function is
complicated by the presence of 4 x4 matrix operators compounded with the absence
of a relativistic equivalent of the Runge-Lenz vector. Nonetheless, as with our treatment
of the scGF, we are able to present a solution here based on the analysis of the defining
differential equation. The pcar G(r,, r,; E} corresponding to the energy variable E
is the 4 x 4 matrix function satisfying

#ic d Zh
[(a.FI)( lr—carl-i- BK)+,Bmc2—a C—E]G(r,,rz;E)

1 1 n
=8(r—r)l, (3.1)
subject to suitable boundary conditions. Here, K = 8(%- L+ #). Taking our lead from

the treatment we made of the sSCGF, we expand G in the spinorial equivalent of spherical
harmonics; that is, in terms of the spinor harmonics given by

—w{k+1/2- M\
. m(v) Yiesl-tar-2(6, @)
X« (6:¢)= { +1/2+M\l,ﬂ‘2 (3-2)
\ \ 2K+1 } "‘+2| 2 M+2(8 @) /
Thus we try a solution of the form [21]
1 2 7 a
g (r, radxs(F)xs'(f) "'lgx X(r, rz)Xx("l)X-x("z))
G(ry,r E)= ( 33
(ri,ra; B) E g2 (r, x®(FOXEN(F) g2, mdx(FOX " u(F2) (3:3)
Noting that
oyt =—x". (34)
a L+h)xh=—heyt (3.5)
and
xE(F)xE () 0 )
_ = - 36
8(ri—r)y=8(r—r}/(nr) E ( 0 XEX(FI)XEZ("-) (3.6)

and, employing the orthonormality properties of the spinor spherical harmonics we
see that

/[f‘fﬂsﬁaz/n] [ 1d = \{gx(n,rz) g.‘(n,rz)\

. |
1 d K L ndn rl
- +— x 272 " rar
\'J’l d"'1rl r1J [—EO—E—QZ/FJ}\ (1’1 "2) g (l 2)}

iUl Y (3.7)

ryfa
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where
go=mc*/ hc e=E/#c 3.8)

These are the radial equations we must solve. The trick isto perform a linear transforma-
tion which will reduce (3.7) to a form which will allow us to use the results of appendix
1. In [1] we found a transformation of the radial Dirac-Coulomb wavefunctions such
that the transformed radial functions satisfied two uncoupled second-order differential
equations. These equations were simple generalizations of the equation satisfied by
the non-relativistic radial wavefunction. In the following we will modify that transfor-
mation to allow for much the same treatment of the Green functions.

Dispensing with the subscript ‘«’ on the g's, it being understood that « is now a
fixed parameter, we let

G“(r.,rz) f‘z(r,,rg): X(g”(n,rz) s“’(wﬂ)_ (3.9)

21(r|,r2) fzz(r“rz) 321("1,"2) 822("1,"2)

where
1 X

X = .10

(5 7) (3.10)
and X is to be determined. Then, since

1 -X
X '=(1-X? “( ) 3.11
x=0-x7"_, (3.11)

the radial equations (3.7) become

[ (aZ + Xx —X) d
Eg— &~

+ —_
+X_} [_X£0+XE+M__<1_]

r dr, n dr,

ZX +r+1 d Z+Xe+X d
[X50+Xe+(i—u5--—2+--—:| [—so—e—‘(*guh“'K—)—X—]

r drl Fy drl

f”("lg"z) flz("l,rz))_(l_Xz) 8(r—ry)
x(f?‘(rl,m) ) b (312

ke "
We continue to follow the method employed in the reduction of the radial equations

for the Dirac-Coulomb problem (see [1]) by eliminating the derivatives from the
diagonal terms. This is achieved by premultiplying equation (3.12) by X' so that

[(I—Xz)so—(l+X2)E—é:| [2){5 +B—(1 —Xz)i]
r r dr,

[2Xe+£+(l—X2)ij| [(Xz—l)eg—(l+X2)e—é]
ry dr,

r

(f”(r,, a3 f1r, fz)) =(1_X2)2 8(r —r) X! {3.13)

fm(f:,"z)fzz("n"z) he i
where

A=(1+XYaZ+2Xx B=2aZX+(1+ X))k —(1-X"). (3.14)
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We now ch()ose X in such a way that A vanishes; that is, we let X =(—k+ y)/aZ

with y = a*Z’. The radial equations simplify considerably to
—aZe v-—1 d]
gg— & + -
—D[Z; ’y:-/].y:l d |: Y r dr (f“(rl, Tz) f'z(r,,rz))
4 — 21 22
[ ¥ r +dr] [_EO_KE/,Y] f (ri’r2) f (r“rz)
- xy a0 (3.15)
rr;

The final step is to diagonalize the right-hand side of {3.15). Thus we define

h“(”'l,rz) hn(”l, "z)) (f“(rn r2) flz(rn r2))
= x X 3.16
(h2'("1,"2) h*3(ry, r2) S L) P, B ( )
so that, on post multiplying (3.15) by X, we have
—aZe y—1 d
—_ + —— —
[0~ e/] [ " dr:] B, B, )
I:—aZs+_2’__“i-_1+i:| B\, ) B2, 1)
Y rp o dn [—eo—er/v] e b
5 —
c(=-x? etz (3.17)
r|r2
The overall transformation is given by
(h;:(fr;fz) h:()‘,, rZ))::X(g:(r“rZ) 3;;(-"1.’2))_ (3.18)
W' (r,r) h(r,r) g (r,n) g7, n

We can now consider the four equations embodied in (3.17) in two pairs, since
there is no mixing of the columns of the h-matrix. First,

Z 1 1—X%) 8(r,—
[ —sx/w]hl'(rl,r2)+[—2+" d]h”(r,, ry) =" V8n=r) (394
Y n dr, e nr
[ aZe+‘y+1 d-ln go+ex/yih ' r,, 1) =0 {3.i55)
— e — ry)— ={. .
I_ y r +di"|J U’l, 5) — L& fyih 15 F2) \ )
Substituting {3.196) into {3.19a)} gives
2 2.4 +
[d_2+_ YD 2028 i, )
dr; n dr, r‘ r
(X2=1) 8(r~ry) o
=(gotex/7y) (3.20a)
he FFy
and
Z +1 d
hz‘(r.,rz)=7/(£f<+€ov)[——a b +—]h”(r1,r2). (3.20b)
7 dr,
The second pair of equations is
Z -1 i
[eo—ex/v]h' (r,,r2)+[—a—s+y d] 2(r,,r)=0 (3.21a)
¥ r dr,
aZe y+1 d (1—X2)8(r]~—r2)
—— Tt + 2 = . (3.21b
[ ¥ r drl]h ("1,"2) [&o ex/vlh (ry,r2) he 7ty ( )
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On substitution,

& 2 d -1
[_+H ,__z(_z_)ﬁa_zaszﬂgg]hn(ﬁ, )

dri r dr r r
— 2 —
= (£0—ek/y) (1-X°) 8(ri—r) (3.22a)
he rirs
and
Z -1 d
R(r, 1) = v/ {ex sm[f—gﬂ————}h”(n, ). (3.226)
Y r dr

[t is clear that the defining equations (3.20a) and (3.22a) of ' and k™ are specific
cases of the general equation examined in appendix 1. We can thus solve them
immediately.

Notice that the diagonal terims are clearly closely related. From appendix 1 we see
that

B, r) = (1= X5 (ex + e47)/ (EY) 80 (11, 12 @) (3.23)
and
B2 (ry, r2) = (1= X?) ek — £47)/ (BeY) gy (11, 12} @) (3.24}
where
galry, 1 @)= (20) ()t e
= kWk+1+A—2)"
*Z, (r(z,\ +2+k))

w=vei—eland v=aZe/Vei—c’
We may derive various other representations just as we did for the scGr. Hence,
in exactly the same manner as was used in section 2, we find

1
LA 2r )L 2rhe) {3.25)

gvA(rl) rZ;m)

=1/vVrren e ,[ J' ey (2V20r5))
Q 0

o0 (S.Sg)k+A+‘l'

Xoan@V20rs2) X Ik A T T k=)

ds, ds, (3.26)

=1/vrr J I_”_5(1 —texp(—o[r+rll1+]/[1-1t]
X Ly (dwvrirt/[1—t]) dt (3.27)

1
=1/Vrr et J‘ (1—-5)"" 7257 exp(—2w[r, + 1)/ s)
it

X Ly (4 T=51/5) ds (3.28)
=1/Vrin f (coth g)z exp(—w[r, + ry] cosh o)

X by +,(20vVFT, sinh 0) do (3.29)
c(1/20) AL Ly Gwr) Wi i), (3.30)

T(2A+2) r,rs
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The off-diagonal terms can be simply calculated using (3.20b) and (3.22b). The
Sturmian expansion is of interest since it is not quite what one might expect. Using
relations (A2.2) and (A2.4) derived in appendix 2, we see that

hzl(rl, rz) = hlz(’z; l"])
=(1 —XZ)/(ZﬁCy)(S(rl — )/t (20)7

catnery = (KD yF k1= 0)
xe Z Ty r1ER)

Lii—,‘(zmr,)Li*“(zwrz)). (3.31)

We note first that £ (r,, r,) = h(r,, r,). Thus, in spite of the seemingly asymmetrical
defining equations for the radial pcGFs, they are nonetheless symmetrical in r, and
r,. Next, we notice that the off-diagonal terms are not simple Sturmian expansions.
The delta function appearing in (3.31) is required for the correct calculation of the
matrix elements.

A Sturmian form of the radial Dirac-Coulomb Green function was obtained
previously by solving the second-order problem [14]. The method is quite complicated
and the solution presented, while apparently equivalent to the one above, does not
explicitly display the delta functions.

We can find expressions for 4'? and h*' in terms of Whittaker functions also. Using
the relations given in appendix 4 for the derivatives of M and W, and the defining
equations (3.20b) and (3.22b), we find that

’121("1, r)= hlz("z, r)

(=X (y+1-v) 1
T 2yheI(2y+2)  np

—(v+y)8(r~r)W,,_Qer)M, , 1(20r)] (3.32)

[2‘)’(2?-’- 1)6(’2_ rl)Mv,'y—%(zwrl) Wp,-y+zl(2mr2)

where 8(r) is the unit Heaviside function. Notice that no delta function appears in
this expression. Notice also the lack of symmetry in the coefficients multiplying the
Whittaker functions.

To complete the analysis, we present a brief examination of the non-relativistic
limit of the pccr we have just calculated. It will be usefu) to express the original radial
functions in terms of the radial functions we have obtained. Thus, inverting (3.18)} we
find (omitting the variables for a moment)

(g]] g|2)= 1
g2 g? (1-X7%)?
( hl]_x(hlz+h2[)+X2h22 _X(hll+h22)+hl2+xzh21

_X(h|l+h22)+x2hl2+h21 XZhII_X(h12+h21)+h22 )' (3‘33)

As in the reduction of the Dirac-Coulomb wavefunctions to their non-relativistic
limits (see [1]), two separate situations obtain, depending on the sign of x. We use
the Sturmian expansion throughout.

When k =|k|, we set k=1, w=1/ar and note

X=—aZ/2l 1—X*=1 ex+egy=2l/aaZ
e —egy = aZ{ =1}/ 2al’
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and y=1 Then the lowest-order term in aZ is g'' and is the non-relativistic limit of
h'', which is itself easily seen to equal g/(»). Hence, for « = || =1,

2
- #)-G 9
When « = —~|«|, we set k =—I—1, w = 1/ ar, and note
X=2(1+1)/aZ 1= X?=—4(i+1)/a’Z?
ek +egy=—aZ(v—I-1D(v+1+1}/[2a(i+1)v7] ex — gpy=-2(14+1)/(aaZ)

and y=1[+1. The lowest-order term in «Z is again g'' but is now the non-relativistic
limit of X*h*%/(1- X")%, which again is equal to g(»). Hence, for k = —|x|=—{—1,
we arrive at equation (3.34) again.

Thus, in the non-relativistic limit, all terms in the 2 x 2 matrix of radial pcors but
the leading diagonal term vanish, and the non-vanishing element is just the radial SCGF
as we might have expected.

4, Recursion relations for the radial Green functions

In appendix 2 we show that

A+
[A(»—d—+ )—wv]gu(h,"z;w)
drl n

4 st P VFT e

o k+1)! .
x 3 e fk)( L — Lit.‘(zwr.)Li”‘(zwrz)} (41)
=0

and since g,, is symmetrical in r,, r, and the Dirac deita function is even,

d a-1
Al —— + wv g,,,\ﬂ(l“l,rziw)
drz L

B _%{S(FI_rz)/' nt Q)T Ty et

© (k+1)! ar1 }
L TOA T+ 17 k=) L Qer) L Qur) 1. (42)
Thus
+1 d A-1
[,\(i+" )—wV}gy,\(rl,rz;wF—[A(——————)+wVJg.,A_1(r1,rz;w). (4.3)
dri, n drn

This fundamental recursion relation, together with the defining differential equation
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for g.., allows us easily to derive both A raising and lowering operators for g,,. Thus

d A+1 d A+t
A —+ —wv || Al —+ —wv |galr, ;o)
dry, n dr,
__{A(_d_+)l+l)_ }[A(i_;\—1)+ |
B dr. ©r dr, 1 @V | Bua—i(r, 25 @)

d> 2d A(A-1) 2wy
=[’”(d—rs+;d—r;—:§“+z' T g i)

and, given the defining equation of g,,_,, we have the following A lowering relation
for g..:

d A+1 d A+l
JAl—+ —wv || Al —+ —wv |g.lr, ;o)
dr, r dr, ry

= Aza(h - "2)/("1"2)"‘mz(l’z—)‘z)gm—l("l Lh @) (4.4)

In just the same way we can deduce a A raising relation:

d a-1 d i-1
Al —-— ‘+wv || Al —— twv |gailr, ;)
dr, r dr, T
= ar, Py wy an ) oV (g, R, w

=A28(r =)/ (nr) + 0 (¥ = A%)gun(r, 125 @). (4.5)

In appendix 3 we give an alternate derivation of these relations using double
Laplace transforms. The advantage of that approach is that no specific properties of
Laguerre polynomials need to assumed.

These relations bear a striking resemblance to those representing A raising and
lowering operators of the wavefunctions [1]. Apart from the obvious fact that we are
now dealing with two variables, the main difference is the presence of the §-function
in (4.4} and (4.5).

It is worthwhile to write down the explicit forms of the recursion relations as they
apply to the scGF and DcGF. In the non-relativistic case we see that

i
[1( L) ~v/a[str,ri )
drl r1

= m/ﬁz{ S(r— 1)/ + (2 av) e e T A

= (k+1) 2,_,(2rl) Z,H(Zrz)}
L 7{— L —_—
xk§0r(21+1+k)u+1+k—») “Nav/ ™ \av

-‘—“[i( d _I_1)+1/‘1]8f—1(rhfz; v) (4.6)

dr, 1

d [+1 d |
[!(d—r—l+:—l)—1/a]|:!(d—r2+ jzl)—lfa:lg,(r,,rz;v)

=2m/ W FP8(r,—r)/nrt (V= F)/(av)’go{n, 12 v) (4.7)
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and

d I-1 d -1
[ 2 [ ) v en. e

= 2m/ﬁ2’25(r1 —r)/r r2+(V2—]2)/(aV)2g,(r| P2y v (4.8)

In the relativistic case we have already derived certain relations appertaining to
the off-diagonal terms of the radial pcar. The further relations we present now are

d +1
(ex— 607)[7(—+L—) - aZE] B (ry, 1)
dr, r
d -1
=—(£K+soy)|:}r(——y )+aZs]h22(r,,r2) (4.9)
dr, n
d y+ +
,:-y(—--f- Y 1) —aZs:H:y(i+ Y 1) —aZsj,h”(rl, ra)
dr] Fry drz s
=(1 _Xz)(EK +e0y)y/ hed(r—r)/ r1r2+(5K+50'Y)2h22("1 y 12) (4.10)

I:-y(i— b 1) +aZs:|[y(i— 'y-—l) + aZs]hu(rl, ry)
dr, n dr, n

=(1—X*){ex — oy} ¥/ Bed(r,— 1)/ rirs+(ex — oy Y (ry, 1) (4.11)

Here we have employed a shorthand notation, omitting the dependence on x and o
from h, and the dependence on x from X.

In the context of a discussion on the reduced scGrF, Johnson and Hirschfelder [22]
have presented recursion relations of the radial scGrF. Their relations differ from our
(4.7} and (4.8), in that they are written in terms of r. and r.. and are therefore useful
only when considering the radial scGF written in terms of Whittaker functions.

5. Double Laplace transforms of the radial Coulomb Green function

Quite general matrix elements of both the non-relativistic and relativistic Coulomb
Green functions can be calculated once we know the double Laplace transforms (DLTs)
of the radial functions, although in specific calculations better techniques may be
available. We have presented various forms of the pLTs for the non-relativistic case in
[19]. In this section we present general forms for the pLT applicable to both the scar
and DCGF.

Some of the compact expressions presented in [19] for the pLT of g will not be
possible. However, there are several expressions which de still obtain, in somewhat
modified form, and they are given below. The results will be presented without proof;
the proofs consist of simple generalizations of those given previously. We need only
really consider the pLTs of the diagonal elements of the pCcGF, since the pLTs of the
off-diagonal elements are simply related to them by equations {3.206) and (3.225),

Our general pDLT is taken to be

X o
K ualpis pas @) =j J FiarkreT TR e (p s w)dr dry (5.1)
L

Q0 )

where the u's are not necessarily integers, and we have defined g in appendix 1.
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We begin with the integral representation of g, equation (3.28). Then the successive
application of the properties of generalized hypergeometric functions shows that

K::Al;.l.-_,(pl ] sz w)
={1/20}*" T (1 + pa+ 1)

< E FA+u+k+DT(A+pu,+k+ DA +E+1—»)
TRA+2+EIT A+, u+k+2-2)

k=

0
XFI(;.L,+,L¢,2+1;1\+’.L|+}(+I,/\+p,2+k+l;

1- 1-—
Ay Fpatk+2-v; (T”)(T”z)) (5.2)
= (1/20)¥

« E Mgt ot m+tm+DT(A+u+m+ DT+ g+ ma+ DHT{(A+1- )

my my F(A +,u1+,u,2+m1+m2+2—v)l_'(2)t +2)m1!m2'

1- " — L
(=2
2 2
5 F(,u,,+m1+A+l,,u,2+m2+A+l,/\+1—V' )
T A+t patmyFma+2 -, 2042

(5.3)

=(1/2)* DA+, + DA+, + 1)/ T(A+14+0)

& T+ patk+ DA+ 12+ k)
oo T+ +h+2)T(A+ py+k+2)

sz(pl+p2+k+1;/\+p,,+1,)\+,u,2+l;

At k2, A+ otk +2; (%)(%)) (5.4)

The generalized hypergeometric function ;F; and the Appell functions F, and F; are
defined in appendix 4.

The Sturmian expansion (3.25) is again useful for calculating the pLTs. In fact, the
off-diagonal elements of the pcGF can also be treated in this form.

K:ﬁuz(p]:pZ;w)
:22.\+]w—,u1-—p.2—1(p1+1)—,u,]—-.\—1(p2+1)—p.2—)\—l
® r(p,,+/\+k+l)['(l.¢z+z\+k+l)(p,-—l)k(pzul)k
o TRA+2+EkW(A+1+Ek~-v) \p +1 p.t+1

X
k

+1
XZFI(_kaA-{']_P‘l;_p't_“\'—k;f;l'__i')
1

2 ¥ 1
szn(_k,A"‘l_#z;—I-‘-z_A_k;;;.___l) (5.5)
2
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and

K:TM(Pth; OJ)

x)
—_ — 21
=J rrpgrgT ey ey dr, dry
0

=(1-X%)/(2hcy)(1/ o)1 ¥

) [(p' +p2) TR (gt )+ 277 (1) T T (pp 1) TR

.-~ T(u+y+k+D(p+y+k+1) (pl—l)k+!(p2—l)k

koo TQy+1+k)y+k+1—p)kt \p+1 pat+1

Pt

XzF.(—k—I,v—ul; —r—k; )
pi—1
pat1

X:Fl(—k,y—#zﬂ, pa—y~k; (5.6)
p2—1

The last two expressions are all that is needed to determine the relativistic matrix

D

elements of the Dirac-Coulomb Green function.
Finally, there is a representation of K based on the form of g given by (3.26).

K:’:H(Phpﬁ )
=22A+1w—,u.]—;u2—l(Pl + 1)—A—ul-l(p2+ 1)—A—pz—l

T +A+ D (pa+A+1) 2 T2A+2+k)
[I'(2A +2)F° iSo k! (A+1+k—w)

2
szl(}-t|+/\+1, —k;2A +2;-—-—:_—-)

P

, 5
X, F +A+1,—k;2A+2; . 5.7
2 1(}12 P2+1) ( )

6. Matrix element recursion relations

A further method of obtaining matrix elements of the radial cGF consists of a generaliz-
ation of the hypervirial theorem, well known in connection with the calculation of
matrix elements of the Coulomb wavefunctions, The method actually generates relations
between matrix elements, so that in general a small number of explicit calculations
will lead immediately to a whole series of matrix elements.

Cunnaca that AME  and B o anaratare relatad in cuch a mannar
UUPP\JDU LRI L 70,5 0, AN P L7 Tyt Gl UPWVIGEVLID TWIALVG T Ul 4 Jraiillvl

d> 2d AA'+1) 20
[F+?E7_—"_( ; )+——er -w'2]Ai’-‘,\°fw-(r‘ e L (20r))

=B, (r* e LN 20r)) (6.1}
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where ¥ — A —1 is a non-negative integer. Then the hypervirial method is based on the
fact that since

[d2 2d AA+]D) 2wr
Sttt
dry r dr I r,

—wz]gw\(r,,rz;w)=—5(r1—r2)/(r,r2) (6.2}
straightforward integration by parts shows that

o
J rzlgv'f\'(rla ra, WI)B;"\:{@'("} e Lnﬂ 1(2wr))) dr,

0

d> 2 d AA+D 20,
=_|‘0 [dn T dn 7 + PR ]g»w(rl,rz;w’)
X AL Ay e TN LI (20n)) dry
=AML (ry e L2 (2on)). (6.3)
Further integration over r, becomes relatively trivial,
Since

(d2 2d A(A+1) 2wr
_
r

2 A —wr 2)\+I
er r dr r2 w )(r L ](zﬂ)r)) 0 (6'4)

we can readily find such operator pairs. Thus, when A%, = u(r,} for some general
differentiable function u,

d 2
B =2u' () —+u"(r)+—u'(r)
dr, r

A{A+ 1)—A'(A'+1)+2(w’v'—wv))u(r )

+((w2—w’2)+ 3 (6.5)
T L8}
and when AY, .= v(r,) d/dr, for some general function v,
2 2HAA+FD) A (A +1
B
r i
LI _l_
+2(w v wv)) ( :)] 14_2(/\(:\ 1) 2wv z)v'(rl)
T "1 r
AlA+1
+2(‘”f (—)) v(ry). (6.6)
ry ry

Obviously we can combine the above two forms and the general result (6.3) still
holds. For example, if we combine the expressions arising when we choose u(r) equal
tor™, r™*' and r™ ' and v(r) equal to r™ in such a way that the term in d/dr, vanishes,
we are left with the following recursion relation for matrix elements of powers of r:

J F%Su'a‘(rl,"z;w')(r,l It szﬂ 1(2wr))

4]
X (By PP 4 borT 4 by b_ar P4 b

= (@ " e agrT tal T e d/de) (e e LN L (2wrs)) (6.7)
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where
ap=—(0’—0?)/(2m+2) ag=—(w'v'—wv)/m 68)
a_ =—[(m—=1}m-2)+A{(A+1)—A"(1A'+1)])/(2m -2)
and
b =(0’-w%ay, bo=2(w'v' —wr)a,, +(w’ - w)ap
b_=2me* +[(m+1)(m+2)+AA+ 1) —A(A + D]a,, +2(w'v —or)d,
+ (0’ ~w)a,
bo==2wrQ2m-1)+[mm+1)+A(A+1) =AM+ 1)]a,+ 2w’y —wv)a_,
b;=2m—-DA(GA+D+[m(m+1)+r(A+1)—A(A+1)]a_,. (6.9)

The coefficients listed above are written for general values of the parameters. For the
non-relativistic scoF, however, some simplification is immediately apparent since in
that case wr =w'v'=1/a and both g, and b, vanish.

Another relation between matrix elements which follows immediately from (6.3}
is a generalized orthogonality property of the radial cGrs. If we choose u(r) =1 we find

J [File’— ™) +2(w' v —wr)n+ A(A+ 1) = XA+ 18, 1 @)
0

x (rt e L L1(2wr)) dry
= —r} ™ L2, 2wr). (6.10)

Thus in the non-relativistic case we have

=]

("2— Vz)/(am’)z J‘ "Jllgr'(rl, r2; IR, (ry) dr

0

o0

=+ - Ir'+1)] J g(ry, 12 ¥VIR,(r) dri+2m/ B° R, (r;) {6.11)

1}

which, when ! =1 reduces to the obvious orthogonality relation

[=+]

("2— Vz)/(am’)z J‘ "?8:("1, ry; V)R, (r) dry = 2m/ﬁ2Rn1("2)- (6.12)
0

It is clear that any number of recursion relations for the matrix elements of the
radial cGFs can be derived from (6.3), (6.5) and {6.6). Which will be of use will
obviously depend on the specific calculations under consideration.
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Appendix 1. Solution of the generalized radial equation

In this appendix we present a proof that the Sturmian form of the radial cGF is a
solution of the defining differential equation. Indeed we show that the solution of

8(r,—ry)

WF2

[d_2+£ i_’\()\—"'l)_,_.z.f’_.'_’ 2] ( . ) -~
dri r dr, n r| © [Batn, s @)=
subject to the boundary conditions that

'l,il'ﬂ) nga(n,rn;w)=0; rg.(r, we LZ(R)

and where A, @, and » are positive real numbers, is

—lr b

gualr, rw)= (2“))2'\+|(”1r2)A €

= k!
;EOI“(M +2+k)()t+1+k—v)

X L Qer ) L 2wr,).

We will actually solve for the function

fir, rz)z(rl"z)'\ﬂgw\(’"l, 12, w)

which satisfies

d? d
I:r, ~22A—tlev- rlwz]f(rl y )= _rl(rlrz)As(ri —ry).
dri dr,

Now the double Laplace transform of f is
Sm(PhP2§w)=J. J e MTRRf (), ) dry dry
0 ]

and satisfies the transformed equation

d
((P%“‘wz) $+2PI(A + 1)_2“’V)SVA(P|,P2; w)=
1

)2A+2

{(pr+p;
where we have used the fact that (0, r;} =0. Hence, letting

(p+p))*"?

E(p,p)= T(2A+2) Sa(p,p:; @)
so that
d (2A+2)
e ) —+——= +w? -ZwV)E L Pu=1
((pl )dp| (pl+p2)(p.pz ) (p1, P2

and then making the change of variables

p—z=—lw(ptwlp—)/2(p+tp)
gives finally

(z(l-z)d%+u +1)(1-22)— V)E(z) =1/Q2w).

'(2a+2)

(AL1)

(A1.2)

(Al1.3)

(Al.4)

(Al.5)

(Al.6)

{AL.7)

(AL8)

(A1.9)

(A1.10)

(Al.11)
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The solution to this last equation is easily found as a series in z, provided that ¥ — A — 1
is not an integer (which would not be true if we were considering the reduced Coulomb
Green function [2]). We find a particular solution to {A1.11)

E(2)=1/w,Fl(2A+2,1; A+2—v; 2) (Al1.12)
and a solution of the corresponding homogeneous equation
En(z)= Nz Yz —1)" 2! (A1.13)

where N is an arbitrary constant. Invoking a well-known transformation of the
hypergeometric function, we arrive at the general solution to (A1.11):

z )/2(A—v+])
z—~1

+ N7 z—1)7r A (Al.14)
The double Laplace transform of f is therefore given by
SvA(plsPZ; (l))

=

E(z)=1/w(l-2)7*7 2F,(Zz\ +2, A+l A+2—w;

e+ T(2A+2)
20 S o)

XzF;l:QI\ +2,A+1—-v; A42—p; (Pl_w)(Pz_w)]
pte/\pto

[{p+a) ptw)] 7

+N[(pi—w)(p— )] [ p+w)(pat )] 7740 (A1.15)

Now, in terms of p;, S has a singularity of largest real part at p, =w if N#0. As a
consequence of a theorem on the asymptotic forms of functions and their Laplace
transforms [23] we can infer that

"

galn, nio)=~Nr""ew as r, > 00

which is at variance with the boundary conditions we have imposed. If ¥ > A -+1 there
is no singularity, but since we are looking for a solution valid for all real » and
continuous in », we deduce that N =0. Hence

Sm(Pan;w)
@ TQRA+2+k)

_ 20+1 —2a-2
=(2w) [(p+o)p.tw)] kéo(/t'*'l'i'k—l’)k!

k K
x(p’—"’) (Pz—“’) : (AL.16)
pitw ptw
The inverse double Laplace transform of § is easily obtained, since S itself is an
infinite sum of products of single Laplace transforms. We note that
Ha+n+1)p-o)"
n!(p+0_)n+cr+l
R(a)>-1,R(p)>-0c (A1.17)
so that performing the inverse double Laplace transformation we get

f(r, , o) = (2w)2»\+1(rlr2)2a+n etrrlw
5 k!
XkEnF(Z/\+2+k)(t\+1+k—y)

from which the main result (A1.3) follows immediately.

e ™ r* L (2ra)]{p) =

L 2wr) LA (Qwry) {A1.18)
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It is useful to note the points at which the boundary conditions have been used:
(i) in the derivation of the transformed equation (A1.7); (it) in the deduction that the
homogeneous part of the solution to (Al1.11) is unacceptable. This treatment of the
Laplace-transformed defining equation for the radial Green function, especially the
use of the transformation (A1.10) has also been noted by Hill and Huxtable [24],
Talukdar et af [25] and in [4]. The derivation of the inverse Laplace transform is, it
appears, new,

Finally we present a representation of the Dirac delta function which will be of
use later on, We have exhibited explicitly the solution to {A1.1); furthermore, we can
easily calculate the effect of the differential operator on this solution using results
obtained in [1]. Thus, substituting (A1.3) directly into (Al.1) leads to the following
interesting formula:

«© k!
a? P (xp)t e Y PR} LM ) = S(x-v)/vxy. (A1.19)
k=0l {ZA+2+ k)
This can be thought of as either a representation of the delta function, or as an
expression for the infinite sum of Laguerre polynomials or as a direct proof of the
completeness of the Sturmian wavefunctions. Formula {A1.19) is used repeatedly in

this and the following paper [2].

Appendix 2. Single variable differential properties

In order to calculate the off-diagonal terms of the radial pccF (section 3) as well as
the recursion relations for the general radial cGF (section 4) we find it necessary to
calculate both [A(d/dr+(A+1)/n) —wv]g.,(r,r; o) and [A{d/dr,—(A=1)/r)+
@v]gu-1{r, r2; @). This we will do in this appendix. As our starting point, since
{[1], equation 3.29)

+
[A(%+-—)‘ p 1) —wv](r* e L3P (2wr))

=@(k+A+1—)r* e ™ L Qur)

+{k+ DA +k+1)/2F " e LA Cwr) (A2.1)
we find
[,\( d +A+1) ] ( )
', - v, s Fay W
dr, r ¥ | 8.a\r, T
[ = k!
=2w)* (rr)? e_”’”z""(w ¥ mLﬁ“'(an)Li“'(Zmrﬂ
fz=()
i k+1)!
F1/0r) T (k1)

A2 W+ (g )
scoTRAFI+HEYA+1+Ek—w) i Qor) LT (2ors)

=‘% [5(?’! - rz)[v r3r2+(2w)2*+'r?—!rg o lnTrle
- k+1)! _ -
x L r(2k+l+(k)()\)+1+k " LAT' Qerp Lit '(Zwrz)] (A2.2)
k=0 —_

where in the last step we have used {A1.19).
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The second calculation is performed in a similar manner. Since ([ 1], equation 3.30)
d A-1 21— _
[A(E——z—)+wv](r)‘ 'eT LY ' (2wr))
=—wlktA-v)r'e™™ L T Qwr)
—201-8}r* e L' Qwr) (A2.3)

we now deduce that

) ]
Al—— Fowv g (r,rn; o)

dr, r

1
= _‘i [5("1 — 1)/ (2w) A T eTin e

© (k+1)! 201 ]
X L 2 L 2 . A24
ZoTAT I+ 14 k—p) b GonLiai Qo) (A2.4)
The differential relations expressed by {A2.2) and (A2.4) constitute the main results

of this appendix.

Appendix 3. Alternate derivation of recursion relations for the radial Green functions

We have shown in appendix 1 that the double Laplace transform,
g[("l"z)ﬁlgm(rl,rz;w)](Pan),iS
S;»A(Pl’pl;w):(2w)2A+1[(pl+w)(P2+w)]_2A_2

T(2A+2+k) (p,—w)"(pz—w)* (A31)
c(A+1+k—»)k!\p+w/ \pte )

18

X
k

It

and satisfies
I'(2a+2)

d
((p?—wz)d—%+2p1(»\+1)—2wv)5,,,\(p1,pz;w)=m- (A3.2)
Now
= TQr+k)

Eo A+ k—oyk1™

__F(2A) oy-2a r(2r+1) o —2A—i

_‘-(A—y) (] x) + (AZ—VZ) x(l x)

Cx/(AT- ) 3 AT2FR) (A3.3)

EoAtk+1—o)k! ™
so that
(20) (A= v)S, (P, p2; w)
~(20)(A+ TR (pr+p) ™ +T(2A = 1)(p, — ) pa—w)(py +ps) !
—(pi— @) pi~0’)S.a(p2, pr; ). (A3.4)

This is the fundamental relation which we will use to derive the raising and lowering
operators for A in the Green functions.
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We begin our analysis by differentiating (A3.4) with respect to p,, using (A3.2) to
show that

d
2“’2()12_ Vz) a_ Sw\—l(Pth; w)
¥4
= —T(2A+ 1)(Ap2+wr)(p+py) 4

+(Api—er)(pi-w?)S..(p,, po; ©) (A3.5)
from which, again using (3.2) (for p,), it follows that
d 4d

2 2 2
AS— T Su - ] )
w*( w )dP1 dp, a-1{P1, P2; w)
= AZF(ZA +1}(p +P2)_2A—] ~{(Ap, — w)(APZ_w)Su)\(pl P2y @) (A3.6)
This is our A lowering equation,
Our next relation, which is obtained in much the same manner, and using the
previous three equations, is

d - d
(()‘Pl +ov) E*’ 2A2)((AP2+ wy) d_p'z'+2/\2) S Py, P2s @)
|

=ATQRA+1)(p+p) 7 =0 (A= )8, (p1, P23 @) (A3.7)

This is our A raising equation.
Finally we can easily derive from the previous results a mixed raising and lowering
operator;

d d
((Ap. +ar) —+ 2,\2) —— Su(p1, P2y w)=—(Ap,—wv) S, (P, P2y ) (A3.8)
dp, dp,

A raising and lowering operators for the Green function itself are obtained quite
simply by taking the inverse double Laplace transform of the relevant equations given
above. The inverse of {A3.6) is the A lowering operator for g, (5.4), while the inverse

of (A3.7) is a A raising operator, (5.5). Finally, the mixed raising and lowering operator
(5.3) is obtained as the inverse of (A3.8).

Appendix 4. Notation and special functions

Hypergeometric functions
(a), =T(a+n)/T{a)
g x) =5 L& X
|Fl(a! ﬁ!x)—z(ﬁ)n n!
(@)a(B)y X"
(y)n n!
A TR T R
(a)n+m(B1)n(BZ)mx_ny_m_
(Y)nem nlm!

Fxla; iy B2y 71, Y2 %, ¥) =1 (a)z;:”)(@:)(m"' % %—n—'

2Fila, B y; x)=%

Fila; 8,857, x5y)=1
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Laguerre polynomials

Ma+1+n)

Ly(x)= (et n! (Ful=n; a+1; x)

(n+1) L (x)+(x—a-2n—1)L;(x)+{(n+a)L;_(x)=0.
Whittaker functions
M, (x)=x*"""2e 2 F(A+1/2—7v; 20 +1; x)

=x""V2e L F(A+1/24 v 24 + 15 —x)

_ '(—2x) I'(2A)
WV’A(x)_F(l/Z—‘/\ -7) MD‘A(x)+F(1/2+A —) u,—A(x)
(4202 M, (%)

dx

=[(1+2AY/2x —v]IM,\ (x) = [#* = (1/2+A/2)*)/ (2+2A)

X(1+20)M, , 1y(x)

(1~2A)%Mp,a(x):[<1—za Y/ 2x — b ]M (x) — (2 + 1)(2A) M, a1 (%)
(1420) S W, () = (14 200/ 28 = ] Wa (5) [ = 1/2 = AT W)

(1 —ZA)% W,a(x) =[(1-24)/2x = v]IW,, (x} +[r = 1/2+ AW, ,_,(x).

Bessel functions

= (=)*z/2)"

2= L rr e+ +1)

e (2/2)V+2k

I,(z)=k§(] T{k+D{k+r+1)

Dirac matrices
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