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A unified treatment of the non-relativistic and relativistic 
hydrogen atom 11: the Green functions 

Robin A Swainson and G W F Drake 
Department of Physics, University of Windsor, Windsor, Ontario, Canada NYB 3P4 

Received 26 June 1990 

Abstract. This is the second i n  a series of three papers in which it is shown how the radial 
pan of non-relativistic and relativistic hydrogenic bound-state calculations involving the 
Green functions can be presented in a unified manner. In this paper the non-relativistic 
Green function is examined in detail; new functional forms are presented and a clear 
mathematical progression is shown to link these and most other known forms. A linear 
transformation of the four radial parts of the relativistic Green function is given which 
allows for the presentation o f  this function as a simple generalization of the non-relativistic 
Green function. Thus, many properties of the non-relativistic Green function are shown 
to have simple relativistic generalizations. In particular, new recursion relations of the 
radial pans of both the non-relativistic and relativistic Green functions are presented, along 
with new expressions for the double Laplace transforms and recursion relations between 
the radial matrix elements. Anovel proof ofthe Sturmian form ofthe radial Green functions 
is given in an appendix. 

1. Introduction 

This is the second in a series of three papers in which we present a unified treatment 
of non-relativistic and relativistic calculations of the properties of hydrogen-like systems 
involving the Coulomb Green functions (CGF). In  the first paper [ I ]  we presented a 
simple linear transformation which uncouples the pair of first-order differential 
equations defining the radial Dirac-Coulomb wave functions. We showed how this 
leads us to two second-order differential equations for the transformed radial wavefunc- 
tions which are generalizations of the differential equation satisfied by the radial 
Schrodinger-Coulomb wavefunction, and  which are therefore immediately soluble. 

In the present paper we extend this work to the analysis of the general Coulomb 
Green functions. Indeed, we show how an  extension of the linear transformation allows 
us to exhibit the relativistic Dirac-Coulomb Green function (DCGF) as  a generalization 
of the non-relativistic Schrodinger-Coulomb Green function (SCGF). I t  follows that 
much of the analysis required for specific calculations of non-relativistic and relativistic 
effects, such as matrix elements, double Laplace transforms, recursion relations and 
so on, can be treated in a unified manner. In  the following paper [Z ]  we will extend 
this work further to consider the reduced Coulomb Green functions (RCGF), functions 
appearing in bound-state perturbation theory. 

As we remarked in the first paper of this series [ I ]  powerful methods [3] are 
currently available for the treatment of the angular part of problems in the atomic 
physics of hydrogen-like systems. Our work then, focuses mainly on the radial part of 
the analysis, and in that respect differs from other attempts to unify non-relativistic 
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and relativistic calculations [I]. Furthermore we have confined ourselves to the analysis 
required for calculations involving bound states-the extension to unbound states will 
be presented elsewhere. 

Knowledge of the general CGF is required for the study of various atomic properties 
of hydrogen-like systems. Two-photon bound-state transitions and the Lamb shift are 
but two examples [41. Even second-order perturbation calculations, though ostensibly 
requiring the use Of the RCGF, may actually involve the general CGF treated in this 

from the angular part of the calculation lead to integrals of the general CGF and not 
the RCGF as will be shown in a further paper devoted to a study of that effect. 

Since the remainder of this paper will be concerned with a rather detailed and 
specific analysis of the radial CGFS, it is probably worthwhile to present a brief review 
of the theory of Green functions in a more abstract setting. Given a Hermitian operator 

(1.1) 
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The po!a:izebi!ipy of ‘.y&oge2ic ices is  a case r$+c:ion rd;es aiisiiig 

.., U the ..._ mrrpsnnndino _____lr rPCnlvent ._I_. . _... nr -. Green opergor G ( z )  is def i f i~d by 

( H  - z )G(  Z) = 1 

where z, referred to later on as the ‘energy variable’ is a complex number. Usually H 
will have associated with it a complete set of eigenfunctions QE corresponding generally 
to both discrete and continuous eigenvalues E, so that 

( , y - E & = G  j i .2)  

2 *E*: = 1. (1.3) 
It should now be clear that a formal expression for G(z) is given by 

G ( z )  = z *E*L I (E  - 2). (1.4) 
If H is represented by a differential operator !f; acting on a Hilbert space of functions 
on R’, G ( z )  is itself represented by a function G( r , ,  r2;  z )  on R’x IW’ which satisfies 

(1.5) 

We shall be concerned here exclusively with the Schrodinger- and Dirac-Coulomb 
Green functions. In view of the nature of the Hamiltonians involved, we see that the 
former is a scalar function, while the latter is a 4 x 4 matrix-valued function. 

The SCGF is defined and its various forms reviewed in section 2. There has been a 
number of methods used to determine its functional form, ranging from the direct 
computation of the sum in (l.4), to expansions as sums of products of radial functions 
and angular functions, solutions in parabolic coordinates, solutions in momentum 
space, and solutions in phase space. 

It appears that the first published attempt to calculate the SCGF was by Meixner 
in 1933 [5] where he only partially succeeded in solving the three-dimensional problem 
in parabolic coordinates. Following that, a solution of the radial functions was dis- 
covered involving the product of a homogeneous Whittaker function with an 
inhomogeneous one. Integral representations for the full Green function in coordinate 
space were not found until the 1960’s, and were given in papers by Wichmann and 
Woo [6] and by Hostler [7]. The full Green function in momentum space had been 
derived in the late 1940’s by Schwinger [8], who made use of the explicit character of 
the SO(4) symmetry of the non-relativistic hydrogen atom when it  is represented in 
momentum space. This work was published somewhat later though. Hostler [7] also 
derived an integral representation for the radial function which has since been 
frequently used by several authors. In 1970 Hostler [9], while examining the Coulomb 

(H, ,  - z)G(r,, r , ;  2 )  = s ( r ,  - 4. 
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Green function in n-dimensional space, came across what is now referred to as the 
Sturmian form of the radial Green function and which is basically an infinite series 
of Laguerre polynomials. In the context of the phase-space formulation of the theory 
of the hydrogen atom, Garcia-Bondia [lo] and later Chetouani and Hamman [ l l ]  
derived forms for the full Green function, the latter authors giving it in terms of 
parabolic coordinates. 

In section 2 we present a self-contained analysis of both the radial and full SCCF 

of !he r ~ d i z !  fufictiofi is cxp!i&!y &rived 
directly from the defining differential equation in appendix 1. We show how it is 
possible to derive many other forms for the Green function, appealing only to familiar 
properties of the various special functions involved. Thus a clear line of mathematical 
reasoning is established between the Sturmian form and all others. 

In section 3 we turn our attention to  the DCCF. As in the non-relativistic case, there 
have been several different approaches to  the discovery of suitable functional forms. 
These have been obviously less successful; the SO(4) symmetry is broken in the 
relativistic Kepler problem. Most popular has been the solution in terms of a partial 
wave expansion. 

Apparently the first derivation of the radial DCGF was made by Wichmann and 
Kroll in 1956 [12] in connection with a study of vacuum polarization effects in 
hydrogenic ions. Their solution, written in terms of Whittaker functions, has become 
the standard form. Shortly thereafter, as  we explained in the previous paper [I], Martin 
and Glauber [13] were able to derive the full DCGF using a method based on the 
second-order Dirac equation. The DCCF is obtained from the Green function corre- 
sponding to this equation by the application of a projection operator. Attempts at a 
Sturmian form, which appeared somewhat later in the 1970's, were also based on the 
Green function of the second-order Dirac equation [14]. Other authour [ I 5 1  have 
reported the derivation of forms for the full Green function, but these seem to have 
little applicability. Common to all of these methods is the rather complicated nature 
of the solution. Since the standard solutions to the radial Dirac-Coulomb equation 
involve generally two different terms, the corresponding Green functions contain four 
terms. This causes difficulties when computing matrix elements. 

In section 3 we present a transformation of the defining radial equations for the 
DCGF which allows for the formulation of the relativistic problem in a manner quite 
analogous to the non-relativistic problem and which gives simple one-term solutions. 
The method allows us to use the analysis of appendix 1 and gives the radial function 
in Sturmian form; other forms can be obtained in precisely the same manner as is 
used for the radial SCCF. As we pointed out in the first paper in this series [ I ] ,  the 
approach we  take is closely related to the method of solving the Dirac equation first 
noted by Infeld [ 161. Furthermore, in contrast to the  second-order theories, which are 
three-dimensional, our approach retains the standard angular analysis and concentrates 
on simplifying the radial part of the problem. 

In section 4 we present raising and lowering operators for the radial C C F ~ ,  which 
will be seen to be analogous to the angular momentum raising and lowering operators 
of the radial wavefunctions. These give rise to relationships between different radial 

ships between the matrix elements of different CCFS. Of course the solution of any 
particular problem in atomic physics using the CCF generally requires the calculation 
of matrix elements. In  section 5 we give genera! forms for the double Laplace transforms 
(DLT) of the radial C C F ~  from which any matrix element can be derived. Sometimes, 

in coordicate space. The SturmicE 

ccFs which are of intrinsic interest in ihemje!vej, a;;hough {hey ais" iead io 
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relationships exist between different matrix elements of the same CGF. In section 6 we 
show how a generalization of the hypervirial theorem, well known in the study of 
matrix elements of hydrogenic wavefunctions, can lead to such relationships. 

R A Swainson and G W F Drake 

2. Review of the Schrodinger-Coulomb Green function 

Several different techniques have been employed by various authors in an effort to 
derive useful functional forms for the non-relativistic hydrogenic Green function [4]. 
The technique we present here is quite direct. We explicitly solve the defining differential 
equation, and derive further forms using widely known properties of the special 
functions. The Schrodinger-Coulomb Green function (SCGF) G ( r l ,  r,; E )  correspond- 
ing to the energy variable E is the solution of 

E G ( r ,  , r,; E )  = S( r ,  - rJ 1 [-% VI-- -  2 a r r l  

subject to suitable boundary conditions. (The scaled Bohr radius a is related to the 
Bohr radius a, by a = ao /Z )  Expanding G in terms of spherical harmonics so that [ 171: 

G(rl ,  r , ;  €1 = E  g d r , ,  r 2 ;  E ) Y d & ,  4dYT,(&,  4,). (2.2) 
I"? 

and noting also that 

leads us to the defining equation for the radial part of the SCGF, 

where we have written u2a2 = -h2 /2mE.  The boundary conditions we impose on g, are: 

lim r , g l ( r , , r 2 ) = 0  r,glE L2(w) .  (2 .5 )  

In appendix 1 we have solved a slightly more general equation than (2.4) using a 
modified version of the method we presented in the previous paper [ I ]  for solving the 
defining equation of the radial wavefunctions. We actually solve the Laplace transform 
of our generalized equation, which is of first order and relatively simple to deal with. 
In the next section we will see how the solutions of our generalized equation are also 
applicable to the solution of the relativistic problem. Applied here to the non-relativistic 
problem, the solution of the generalized equation (A1.3) leads to the so-called Sturmian 
form [9] of the radial SCGF: 

,,-0 

g d r l , r 2 ;  ~ ) = ( 2 m / f i ~ ) g , d r , , r ~ ;  I / a v )  

= ( 2 m / h * ) ( 2 / a ~ ) ~ ' + ' ( r , r , ) '  e-''l+'~'i"r 

4 k !  Li'+,("') Lil+'(") 
X 2 a ( 2 / + l + k ) ! ( / +  I + k -  U )  a v  a u  

Notice the poles at n = U = /+ 1 + k corresponding to the energy eigenvalues E, = 
- ( ~ x Z ) ~ m c ' / Z n ~ ,  with I =  0,. . . , n - 1. Thus we have obtained, en passant, the discrete 
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part of the hydrogenic spectrum. It is often remarked that the SCGF can be expressed 
as a sum over the discrete spectrum alone. We see it as a consequence of our solution 
of the defining differential equation. 

We now proceed to derive several additional forms which we will find useful when 
calculating the matrix elements of the SCGF. We begin with the following representation 
of the modified Bessel function, I, [IS], 

m k !  k 2 ! + 1 ( 3 ) ~ ; I + t ( % )  

au au = I  f Lk k = o ( 2 1 + l + k ) !  (2.7) 

together with 

to arrive at our first variant: 

Now we make a change of variables 1,s = 1 - I  and find 

which is useful for calculating double Laplace transforms of the radial Green functions 
(see section 4 and [19]). 

As a final change of variable of integration we let s-p = cosh-'(2/s-l) to arrive 
at a form of gl which has been frequently used by other authors [7]: 

x 12,+,(% sinh ' p ) dp. (2.11) 

We can now write down the 'standard' representation of the radial SCGF in  terms 
of regular and irregular Whittaker functions, M and W (see appendix 4) by noting 
that [20] 

W , , , f 2 ( o , ~ ) M , , , 2 ( a 2 ~ )  

= rJa,n,r(p+u IC;( coth - 3'' 
r ( 1 / 2 + ~ / 2 -  U )  

xexp( -- I coshp I , , ( l G s i n h p )  dp '1 (2 .12 )  
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(for ~ ( 1 / 2 + ~ / 2 - q ) > 0 , ~ ( f ) > 0 , a , > a 2 )  from which follows [7] 

R A Swainson and G W F Drake 

where r< = min{r, , r2} and r, = max{ r ,  , rJ.  

that [18] 
Further integral representations are possible. Returning to equation (2.6) and noting 

L,(r)  =- e-Ss"+*/2 J<,(2&) d s  (2.14) 

where n + . % ( a ) > - l  and J, is an ordinary Bessel function, we find a new double 
integral formula for K, : 

n !  Iom U 

The sum in the last equation can be expressed as an integral over a modified Bessel 
function using equation (2.8), 

t C - i 1 2 ! + , ( 2 m )  df (2.16) 
m ( 8 ,  S , ) k + l + i  1 

k - 0  (21+l+k)!k!(1+1+ k -  U )  

and this leads us to our final form for the radial SCCF, a new triple integral rep- 
resentation: 

It is interesting that by performing the integrals over s, and s2 in (2.17) we arrive at 
equation (2.9). 

We now take a step backwards. From (2.2) 

G ( r , , r 2 ;  E ) = I  gArl , r2;  ~ ) L ( f l 1 , 4 J Y T , ( f l 2 , h )  
I", 

= L  g l ( r l ,  r2;  u)(21+ (2.18) 
I 

where PI is a Legendre polynomial of degree 1. In view of (2.10) we can write 

G ( q , r , ;  E ) = ( 2 m / f i z ) l / J f ; ; ;  I,"(coth$'" exp(-- ( r l  + r2)  cosh 
au 

X I  I (2i+i)pl(;, . T2)r21+,(F 
(2.19) 
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This form was first presented by Hostler [7]. We can of course resort to a variable we 
have used previously: p u f  where cosh p = (1 + f ) / ( l  - 1) .  Then (2.20) becomes 

G ( r , ,  r , ;  E ) = ( 2 m / f i ' a ~ ) [ ~ ~ ~  

) dt. 
2[2tr,r2(1+i, .t2)]It2 

au(1 - t )  
(2.21) 

We are now in a position to find a 'Sturmian' expansion of the SCCF in parabolic 
coordinates. Recalling the definition of this coordinate system, 

x = G c o s  p y = G s i n q  2 = ( 1 - 7 ) / 2  

2 r , r 2 ( l + i , . i ~ ) = 5 , 5 2 + 7 , 0 2 + 2 ~ ~ ~ ~ ( ~ 2 - ~ I ) .  (2.22) 

it is not difficult to show that 

We also note that [18] 
t m  

I o ( ~ a ' + b 2 + 2 a b c o s  e ) =  x ( - l ) ,  e"'I,,,(a)I,,,(b). (2.23) 
m = - m  

Thus, from (2.21) we can write 

(2.25) 

Now, as in (2.7) 

a 2 u z ) )  

x Llim~(S,lau).l i~~(5,1au) (2.26) 

since I ,  = I - , .  Thus we arrive at the following form ofthe Green function in parabolic 
coordinates: 

gm(51, 7,; 5 2 , 0 2 ;  

(2.27) 
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Various different techniques have been utilized to arrive at these different forms for 
the SCCF in the literature. We have demonstrated in the above that they can all be 
derived from the basic Sturmian expansion by the straightforward application of 
well-known properties of special functions. 

R A Swainson and G W F Drake 

3. The Dirac-Coulomb Green function 

The presentation of a functional form for the Dirac-Coulomb Green function is 
complicated by the presence of 4 x 4  matrix operators compounded with the absence 
of a relativistic equivalent of the Runge-Lenz vector. Nonetheless, as with our treatment 
of the SCCF, we are able to present a solution here based on the analysis of the defining 
differential equation. The DCCF G ( r , ,  r,; E)  corresponding to the energy variable E 
is the 4 x 4 matrix function satisfying 

= 8 ( r ,  - r2)I4 (3.1) 

subject to suitable boundary conditions. Here, K =p(X. L+ h).  Taking our lead from 
the treatment we made of the SCGF, we expand G in the spinorial equivalent of spherical 
harmonics; that is, in terms of the spinor harmonics given by 

Thus we try a solution of the form [21] 

and 

and, employing the orthonormality properties of the spinor spherical harmonics we 
see that 
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where 

E~ = mc‘/ hc E = E J ~ c .  (3.8) 

These are the radial equations we must solve. The trick is to perform a linear transforma- 
tion which will reduce (3.7) to a form which will allow us to use the results of appendix 
1 .  In [ 11 we found a transformation of the radial Dirac-Coulomb wavefunctions such 
that the transformed radial functions satisfied two uncoupled second-order differential 
equations. These equations were simple generalizations of the equation satisfied by 
the non-relativistic radial wavefunction. In the following we will modify that transfor- 
mation to allow for much the same treatment of the Green functions. 

Dispensing with the subscript ‘ K ’  on the g’s, it being understood that K is now a 
fixed parameter, we let 

where 

1 X  
X = ( x  1 )  

(3.9) 

(3.10) 

and X is to be determined. Then, since 

the radial equations (3.7) become 

(3.12) 

We continue to follow the method employed in the reduction of the radial equations 
for the Dirac-Coulomb problem (see [l])  by eliminating the derivatives from the 
diagonal terms. This is achieved by premultiplying equation (3.12) by X-’ so that 

A B 
( 1  - X’)&” - ( 1  + X 2 ) &  -- 

where 

A = (1  + x 2 )  a~ + Z X K  B = Z ~ Z X  + (1 + x * ) K  - (  I - x ) ) .  

(3.13) 

(3.14) 
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We now choose X in such a way that A vanishes; that is, we let X = ( - K  + Y ) / ~ z  
with y = m. The radial equations simplify considerably to 

R A Swainson and G W F Drake 

(3 .15)  

The final step is to diagonalize the right-hand side of (3 .15) .  Thus we define 

so that, on post multiplying (3 .15)  by X, we have 

(3 .17)  
a ( r ,  - r2)  

rl 
= ( 1  - X ' ) / h c  1 2 .  

The overall transformation is given by 

(3 .18)  

We can now consider the four equations embodied in (3 .17)  in two uairs. since 

h"(r,, d h12(r,, 
(h2'(rl, r2 )  h22(rl, r d )  

there is no mixing of the columns of the h-matrix. First, 

[ E ~  - E K /  y]h"(  r, , r2)  + --+- -- ] h2'( r , ,  r2) =- 

L-y'T d r , ]  
Substituting (3.196) into (3.19a) gives 

~ Z E  y - 1  d ( 1 - X 2 )  a(*,-*,) 

Y rI  dr,  hC PI r2 

r a ~ E ,  y + l  d l , , , ,  -. 21,  t- n ( r , , r 2 ) - i E o + t x / y j n -  ( r , , r2)=0 .  

2 d Y ( Y + l )  
dr: rI dr,  rl 

2 a Z E + E 2 - E ;  h, , ( r l , r2)  1 -+---- +- 
( X 2 - 1 )  8(rl-r2) - ( E ~ +  E K / Y )  ~ 

hC rl r2 
and 

h2'(r,, r 2 ) =  Y / ( E K + E , , Y )  

The second pair of equations is 

[ E O - E K / y ] h ' 2 ( r I ,  r2)+ [ a: ' L 1  :l]h22(rl,r2)=0 

( 1 - X 2 )  8(r , - r2)  
hI2(r,, 1 2 )  - [ ~ ~ + E ~ / y ] h ~ ~ ( r , ,  r2)  =- 

Y r, dr,  hC r1r2 

(3.19a) 

I .  .,.I \ 
( J . l Y 0 )  

(3 .2Ua)  

(3 .206)  

(3 .21a)  

(3 .216)  
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On substitution, 

(3.22a) 

and 

I t  is clear that the defining equations (3.20a) and (3.22a) of h" and h 2 2  are specific 
cases of the general equation examined in appendix 1. We can thus solve them 
immediately. 

Notice that the diagonal terms are clearly closely related. From appendix 1 we see 
that 

(3.23) h ' ' ( r I ,  rz)= ( 1  - x 2 ) ( E K +  E o Y ) / ( h C Y ) g d r i ,  rz; 0) 

and 

hzz(r1, rJ=  ( 1  - X 2 ) ( & ~ - ~ ~ ~ ) / ( h c ~ ) g , y ~ l ( r l ,  r , ;  w )  (3.24) 

where 

g v A ( r l ,  r,; w )  =(2w)2A+l(r1r2)* e-('l+'+ 

(3.25) 

w = m a n d  v = L I Z E / ~ .  

in exactly the same manner as was used in section 2, we find 
We may derive various other representations just as we did for the SCGF. Hence, 

g v A ( r l , r z ; w )  

= el*,+*,)- jOm Iom e C ' ~ - ' z J 2 A + , ( 2 ~  

(SI  S 2 ) k + * + i  
x J 2 A + 1 ( 2 G )  ds, ds, (3.26) 

x = o r ( Z A  + 2 +  k ) k ! ( A  + 1 + k -  V )  

= l /v';;rl~Om(coth~)2'exp(-w[r,+r,]  coshu)  

x 1, ,+,(2wfis inh U )  d u  

(3.28) 

(3.29) 

(3.30) 
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The off-diagonal terms can be simply calculated using (3.206) and (3 .226) .  The 
Sturmian expansion is of interest since it is not quite what one might expect. Using 
relations (A2.2)  and (A2.4)  derived in appendix 2, we see that 

h 2 ’ ( r l ,  r2 )=  hI2(r2,  r , )  

= ( I  - ~ 2 ) / ( ~ + i e y ) (  s ( r l - r ~ ) / ~ + ( 2 w ) 2 ~ + 1 r : - ~ r :  

( k +  l ) !  ( y  + k +  1 - U)-’ 
e-Y(r,+r,) X = O  z I ‘ ( 2 y + l + k )  L:1;’(2or,)L:’”(Zwr~)).  (3.31) 

We note first that h g ( r , ,  1,) = h”(r,, r , ) .  Thus, in spite of the seemingly asymmetrical 
defining equations for the radial DCGFS, they are nonetheless symmetrical in r, and 
r,. Next, we notice that the off-diagonal terms are not simple Sturmian expansions. 
The delta function appearing in (3.31) is required for the correct calculation of the 
matrix elements. 

A Sturmian form of the radial Dirac-Coulomb Green function was obtained 
previously by solving the second-order problem [14]. The method is quite complicated 
and the solution presented, while apparently equivalent to the one above, does not 
explicitly display the delta functions. 

We can find expressions for h” and h2’ in terms of Whittaker functions also. Using 
the relations given in appendix 4 for the derivatives of M and W, and the defining 
equations (3 .206)  and (3 .226) ,  we find that 

h 2 1 ( r l , r 2 ) = h 1 2 ( r 2 , r , )  

- (U+  v ) @ ( r ,  - r2)W,,1-:(20rl)Mv.y+:(20*2)l (3.32) 

where 8( r )  is the unit Heaviside function. Notice that no delta function appears in 
this expression. Notice also the lack of symmetry in the coefficients multiplying the 
Whittaker functions. 

To complete the analysis, we present a brief examination of the non-relativistic 
limit of the DCGF we have just calculated. It will be useful to express the original radial 
functions in terms of the radial functions we have obtained. Thus, inverting (3.18) we 
find (omitting the variables for a moment) 

). (3.33) 
h ” - X ( h ’ 2 + h 2 ‘ ) + X 2 h 2 2  - X ( h “ + h 2 2 ) + h 1 2 + X 2 h 2 ‘  

X’h” - X ( h I 2 +  h2’ )  + h22 - X ( h “  + h2,) + X 2 h I 2 +  h2’ 

As in the reduction of the Dirac-Coulomb wavefunctions to their non-relativistic 
limits (see [ l ] ) ,  two separate situations obtain, depending on the sign of K .  We use 
the Sturmian expansion throughout. 

When K = I K I ,  we set K = I, w - I / a v  and note 

x = - a Z / 2 1  1-x2-1 E K  + E O ?  = 2 l / a a Z  

E K - - E ~ ~ Y = a Z ( v 2 - / ’ ) / 2 R l U 2  
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and y - 1. Then the lowest-order term in aZ is g" and is the non-relativistic limit of 
h", which is itself easily seen to equal gr(  v ) .  Hence, for K = I K I  = /, 

(3 .34)  

When K = - 1 ~ 1 ,  we set K = - I -  1 ,  o = l / a v ,  and note 

X - 2 ( 1 +  I ) / a Z  1 - X 2 = - 4 ( / + 1 ) ~ / a 2 Z 2  

EK + eoy=-aZ(  U - / -  I ) ( V +  I +  1 ) / [ 2 a ( / +  I ) u ' ]  

and y =  /+ 1 .  The lowest-order term in a Z  is again g" but is now the non-relativistic 
limit of X ' h Z 2 / ( 1  - X 2 ) 2 ,  which again is equal to g , ( v ) ,  Hence, for K = - I K I  = - 1 - 1 ,  
we arrive at equation ( 3 . 3 4 )  again. 

Thus, in the non-relativistic limit, all terms in the 2 x 2 matrix of radial D C G F ~  but 
the leading diagonal term vanish, and the non-vanishing element is just the radial SCGF 
as we might have expected. 

EK - E ~ Y -  -2(1+ l ) / ( a a Z )  

4. Recursion relations for the radial Green functions 

In appendix 2 we show that 

and since g ,  is symmetrical in r , ,  r, and the Dirac delta function is even, 

Thus 

This fundamental recursion relation, together with the defining differential equation 
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and 

= 2m/h2/2S(r,  - r 2 ) / r , r 2 + ( u 2 - 1 2 ) / ( a u ) 2 g , ( r , ,  r , ;  v). (4 .8)  

In  the relativistic case we have already derived certain relations appertaining to 
the off-diagonal terms of the radial DCGF. The further relations we present now are 

(4.9) 

= ( 1  - X 2 ) ( m  + e o y ) y / h c 6 ( r ,  - r 2 ) / r , r 2 + ( & K + & O y ) 2 h 2 2 ( r I ,  r 2 )  (4 .10)  

[ Y( $-?) + ~ Z E ]  [ y( &-?) + a Z e  ] hz2(  r ,  , r 2 )  

= ( 1  - X 2 ) ( e ~  - e O y ) y /  hc8( r, - r2) / r , r2  +( EK - ~ , , y ) ~ h " (  I,, r2). (4.1 I )  

Here we have employed a shorthand notation, omitting the dependence on K and w 
from h, and the dependence on K from X. 

In the context of a discussion on the reduced SCGF, Johnson and Hirschfelder [22] 
have presented recursion relations of the radial SCGF. Their relations differ from our 
(4 .7)  and (4.8), in that they are written in terms of rc and r ,  and are therefore useful 
only when considering the radial SCGF written in terms of Whittaker functions. 

5. Double Laplace transforms of the radial Coulomb Green function 

Quite general matrix elements of both the non-relativistic and relativistic Coulomb 
Green functions can be calculated once we know the double Laplace transforms (DLT~)  

of the radial functions, although in specific calculations better techniques may be 
available. We have presented various forms of the DLTS for the non-relativistic case in 
[19]. In this section we present general forms for the DLT applicable to both the SCGF 

and DCGF. 

Some of the compact expressions presented in [ I91  for the DLT of g, will not be 
possible. However, there are several expressions which do  still obtain, in somewhat 
modified form, and they are given below. The results will be presented without proof; 
the proofs consist of simple generalizations of those given previously. We need only 
really consider the DLTS of the diagonal elements of the DCGF, since the DLTS of the 
off-diagonal elements are simply related to them by equations (3.206) and (3.226). 

Our general DLT is taken to be 

where the w ' s  are not necessarily integers, and we have defined g in appendix 1. 
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We begin with the integral representation of g, equation (3.28). Then the successive 
application of the properties of generalized hypergeometric functions shows that 

K ; : J P , , P > ;  w )  

=(1/2w)pl+'i+' r(p, +p2+  1) 

* r(A + p i  + k + 1)T(A + p2 + k + l)r(A + k + 1 - U )  
xL, r(2A + 2 + k ) k ! r ( A  + p , + p 2 + k + 2 -  

XF, (p ,+p2+1;A + p , +  k +  1, A+p2+ k + l ;  

A fp, + p 2 +  k + 2  - U; (F), (%)) 

r ( p ,  + p 2 +  m , +  m,+ l)r(A + p , + m ,  + 1)T(A + p 2 + m 2 +  1)i-O + 1 - U )  

r(A + p , + p 2 + m , + m 2 + 2 -  v)T(2A + 2 ) m ,  ! m 2 !  x x  
,",.mi 

; 1) ( 5 . 3 )  
p ,  + m , + A  + 1 ,  p 2 + m 2 + A + l ,  A + 1 -  u 

A + p , + p 2 + m i + m , + 2 - v , 2 A + 2  

= (1 /2w) *>++ '2+ '  r(A +pI+i)r(A +p,+i)/r(,i+i+u) 

* r ( p ,  + p 2 +  k +  1)T(A + 1 + U +  k )  20 T(A + p l +  k + 2 ) r ( A  + p 2 +  k + 2 )  

x F2 p l + p 2 + k +  1 ;  A + p , +  1, A + p 2 + 1 ;  ( 
A +pl + k + 2 ,  A + p2+ k + 2 ;  (%), (+)). (5.4) 

The generalized hypergeometric function 3F2 and the Appell functions F ,  and F2 are 
defined in appendix 4. 

The Sturmian expansion ( 3 . 2 5 )  is again useful for calculating the DLTS. In fact, the 
off-diagonal elements of the DCGF can also be treated in this form. 

K;:+>(PI,P~; W )  

-22"tl - - p  I - ~ * ~ ' ( ~ i + ~ ) - ~ , - ~ - ~ ( p ~ + ~ ) - ~ ~ - ~ - '  

k r(p ,+A+k+l)r(p ,+A+k+I)  p , - 1  p2-l 
' k ? ~  r ( 2 A + 2 +  k ) k ! ( A  + 1 +  k -  U )  ( X ) ' ( p , +  1) 

- k ,  A + 1 - p I  ; - p I  - A - k ;  - 

(5.5) 
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The !as: PWD exp:essioxs 2:e a!! that is needed tD deter-ixe the re!atiFis!ic = m i x  
elements of the Dirac-Coulomb Green function. 

Finally, there is a representation of K based on the form of g given by (3.26). 

KL:+>(PI,P2; w )  

-22"+,w-' - I ~ ' 2 - ' ( p ,  + l ) - A - ~ , - l ( p 2 + l ) ~ A ~ ~ ~ ~ '  

i-(p, + A + 1)T(p2 + A + 1) 
[ r ( 2 ~  +a i2  

r ( 2 h  + 2 + k )  
X 1 x=o k ! ( A + l +  k -  v )  

pL,+A+1 , -k ;2A+2; -  

p2+A + 1 ,  -k; 2A +2;- 
P2+ 1 

(5.7) 

6. Matrix element recursion relations 

A further method of obtaining matrix elements of the radial CGF consists of a generaliz- 
ation of the hypervirial theorem, well known in connection with the calculation of 
matrix elements ofthe Coulomb wavefunctions. The method actually generates relations 
between matrix elements, so that in general a small number of explicit calculations 
will lead immediately to a whole series of matrix elements. 

Scpp-se :ha: A:*;, axd -":A;u are apera:o:s :e!a:ed ix such a mslnxe: th8: 
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where Y - A - 1 is a non-negative integer. Then the hypervirial method is based on the 
fact that since 

R A Swainson and G W F Drake 

straightforward integration by parts shows that 

(:" rigv.A,(r , ,  r,;  o')B;?;wh(r: eC"'LF!!l(2wr,))  dr ,  

Further integration over r2 becomes relatively trivial 
Since 

( 6 . 4 )  -+- d' 2 d A ( h + l )  ( r  A e -orL2"t' . - , - , (2wr) )=O 
(dr' r d r  r2 r 

we can readily find such operator pairs. Thus, when A:?;,",.= u ( r , )  for some general 
differentiable function U ,  

d 2 
B:?;w. = 2 u ' ( r , )  -+ u"(rI )  +- u ' ( r , )  

dr ,  r ,  

and when A:?;,,.= u(r,) d/dr,  for some general function U, 

2 + A ( A  + I ) - A ' ( A ' +  1) 
B,.,.,.= u"(r )--U'( + ( w - w'2) 

2 [ I rl 

Obviously we can combine the above two forms and the general result (6 .3)  still 
holds. For example, if we combine the expressions arising when we choose u ( r )  equal 
to rm, rm+',  and r m - l  and u(r) equal to r m  in such a way that the term in d/dr,  vanishes, 
we are left with the following recursion relation for matrix elements of powers of r:  

1; r;gu,A,(r,, r 2 ;  w ' ) ( r ;  e-u'l L2*+' u - A - d 2 w r J )  

~ ( b , , r ; " + ' + b , r ; " + b _ , r ; " - ' + b _ ~ r l " - * + b - ~ r ; " - ~ ) d r ,  

= - (a+ , r ,"+ '+u , rT+a_ , r ," - '+rT  d/dr,)(r; e-'"'! Ltl:!,(2wr2)) ( 6 . 7 )  
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where 

a,, = - (U’ -  w”) / (2m + 2 )  

a- ,  = - [ ( m  - 1 ) (  m - 2 ) + A ( A  + l ) - A ’ ( A ’ + l ) ] / ( 2 m  - 2 )  

a 0 -  - - (w’u ’ -wu) /m  
(6.8) 

and 

b+,=(w 2 - -w 12 )a+l 

b-, = 2mw2+[(  m+ 1 ) (  m + 2 )  + A ( A  + 1 )  - A’(h‘+ l ) ] a + l  + 2 ( w ’ u ’ - w u ) a o  

b0=2(o‘u’ -wu)a+,  +(w2-w”)a ,  

+ (w’-w’2)n- ,  

b-, = -2wu(2m - l ) + [ m ( m  + 1 ) + A ( A  + 1 ) - A ’ ( A ’ +  l ) ]aO+2(w’u’ -wu)a_ ,  

b-, = 2 ( m  - 1 ) A ( A  + I ) + [ m ( m  + l ) + A ( A  + 1 )  -A ’ (A’+l ) ]a - l .  (6.9) 

The coefficients listed above are written for general values of the parameters. For the 
non-relativistic SCGF, however, some simplification is immediately apparent since in 
that case mu = w ’ u ’ =  l / a  and both a, and bo vanish. 

Another relation between matrix elements which follows immediately from (6.3) 
is a generalized orthogonality property of the radial CGFS. If we choose U( r )  = 1 we find 

lom [ r : ( ~ ~ - w ’ ~ ) + 2 ( - w ‘ u ‘ - - w u ) r ~ + A ( A  + 1 )  - A ’ ( A ’ +  l ) ] g u , A , ( r l ,  r,; U ’ )  

x ( r :  e-o‘’ L:”_+,LI(2wr,))  dr ,  

(6.10) 

Thus in the non-relativistic case we have 

( n 2 -  v 2 ) / ( a n u ) 2  r k d r , ,  r 2 ;  u ) R n d r t )  dr ,  1”- 
= [ I ( / +  1 )  - !’(/’+ l ) ]  gl(rl ,  r2 ;  u)R,Jr , )  dr, + 2 m /  fi2R,,(r,)  (6.11) 

which, when I = I’ reduces to the obvious orthogonality relation 

( n 2 - u 2 ) / ( a n u ) 2  rygl(r,,  r,; u ) R , , ( r , ) d r , = 2 m / h 2 R . , ( r 2 ) .  (6.12) l”- 
It is clear that any number of recursion relations for the matrix elements of the 

radial C C F ~  can be derived from (6.3),  (6.5) and (6.6). Which will be of use will 
obviously depend on the specific calculations under consideration. 
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Appendix 1. Solution of the generalized radial equation 

In this appendix we present a proof that the Sturmian form of the radial CGF is a 
solution of the defining differential equation. Indeed we show that the solution of 

R A Swainson and G W F Drake 

- r l )  +-- w 2  gvA(r l ,  r2; w )  = - I *I r2 

d2 2 d A ( A + l )  2 w u  

dr: r ,  dr,  4 rI 

subject to the boundary conditions that 

r,-0 lim r lgvA(r , , r2;  w ) = o ;  r,g,(r2;w)EL2(R) 

and where A, w, and U are positive real numbers, is 

gvA(r, ,  r,;  ~ ) = ( 2 w ) ~ * + ’ ( r  1 2  r ) A  e-(‘~+‘z)o 

k! m 

‘Zor(2A +2+ k ) ( A  + I +  k -  U) L:”+’(2wr,)~:”+’(2or~). 

We will actually solve for the function 

f ( r , ,  r 2 )= (v2)A+’guA(r l ,  r,;  

which satisfies 

d2 d [ dr: dr, 
r ,  --2A-+2wu- rlw f ( r l ,  r2) = - r , ( r1r2)*8(r ,  - r2 ) .  

Now the double Laplace transform o f f  is 

S , . , ( p , , p , ;  w ) =  (f ~ome-pl r l -pz‘~( r l ,  r2) dr,  dr, 

and satisfies the transformed equation 

where we have used the fact that f(0, r2)  = 0. Hence, letting 

so that 

(Al.1) 

(A1.2) 

(A1.3) 

(A1.4) 

(AIS)  

(A1.6) 

(A1.7) 

( A M )  

(A1.9) 

and then making the change of variables 

P lHZ = - 1 / w ( p ,  +w)(p,-w)/2(p, + P 2 )  (Al .  IO) 

gives finally 

(Al.11) 
d ( dz 

r(l-z)-+(A +1) (1 -22 ) -  U 
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The solution to this last equation is easily found as a series in z, provided that v - A - 1 
is not an integer (which would not be true if we were considering the reduced Coulomb 
Green function [21) .  We find a particular solution to ( A l . l l )  

(A1.12) 

and a solution of the corresponding homogeneous equation 

E , ( z ) = N z ” - * - ’ ( z - l ) - ” ~ * ~ l  (A1.13) 
where N is an arbitrary constant. Invoking a well-known transformation of the 
hypergeometric function, we arrive at the general solution to (Al.11): 

E , ( Z ) = l / w 2 F 1 ( 2 A + 2 ,  1; A + 2 -  U ;  Z )  

E ( z )  = l /o( l  - z ) - ’ * - ~ ~ F ,  2A+2 ,  A + l -  v ;  A + 2 - U ; -  ) / 2 ( A  - v +  I )  
2 - 1  

(Al .  14) 

( 
+ ~ ~ u - A - l ( ~ -  l ) - v - A - l  

The double Laplace transform of f  is therefore given by 

S”A (PI 1 P2 ; 0) 

+ N [ ( p , -  w)(P2-w)I”-*-1[(PI + w)(P*+  w)l-”-*-’. (Al .  15) 

Now, in terms of p1 , S has a singularity of largest real part at pI = o if N # 0. As a 
consequence of a theorem on the asymptotic forms of functions and their Laplace 
transforms [23]  we can infer that 

g,, ( r ,  , r, ; w )  = Nrt-” e‘w as r,+m 
which is at variance with the boundary conditions we have imposed. If v > A + 1 there 
is no singularity, but since we are looking for a solution valid for all real v and 
continuous in v, we deduce that N = 0. Hence 

.%A (PI ,  p 2 ;  w )  

(Al .  16) 

The inverse double Laplace transform of S is easily obtained, since S itself is an 
infinite sum of products of single Laplace transforms. We note that 

9 ( a ) >  -1, 9 ( p ) >  -U (A1.17) 
so that performing the inverse double Laplace transformation we get 
f ( r  ) - (2w)2A+1(r ) 2 * + l  e-lr ,+r. lu 

I, 2 - I r2 
k !  m 

‘ ~ “ r ( 2 A + Z + k ) ( A + l + k - v )  L ? + ’ ( 2 w r , )  ~ ? + ‘ ( ~ w r ~ )  (A1.18) 

from which the main result (A1.3) follows immediately. 
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It is useful to note the points at which the boundary conditions have been used: 
(i) in the derivation of the transformed equation ( A l . 7 ) ;  (ii) in the deduction that the 
homogeneous part of the solution to ( A l . 1 1 )  is unacceptable. This treatment of the 
Laplace-transformed defining equation for the radial Green function, especially the 
use of the transformation (A1.10) has also been noted by Hill and Huxtable [24 ] ,  
Talukdar et al [ 2 5 ]  and in [ 4 ] .  The derivation of the inverse Laplace transform is, it 
appears, new. 

Finally we present a representation of !he Dirac &!!a functinn which wi!! be nf 
use later on. We have exhibited explicitly the solution to ( A l . 1 ) ;  furthermore, we can 
easily calculate the effect of the differential operator on this solution using results 
obtained in [ l ] .  Thus, substituting (A1.3) directly into ( A l . 1 )  leads to the following 
interesting formula: 

This can be thought of as either a representation of the delta function, or as an 
expression for the infinite sum of Laguerre polynomials or as a direct proof of the 
completeness of the Sturmian wavefunctions. Formula (A1.19) is used repeatedly in 
this and the following paper [ 2 ] .  

Appendix 2. Single variable differential properties 

In order to calculate the off-diagonal terms of the radial DCGF (section 3 )  as well as 
the recursion relations for the general radial CGF (section 4 )  we find it  necessary to 
calculate both [A(d/dr, + ( A  + l ) / r , )  - wu]g, , , ( r , ,  r 2 ;  w )  and [A(d/dr, - ( A  - l ) / r , )  + 
wujg ,_ , ( r , ,  r ,;  0 ) .  This we will do  in this appendix. As our starting point, since 
([I] ,  equation 3.29) 

= o( k + A + 1 - u)r* e-" L y t ' ( 2 w r )  

+ ( k + l ) ( 2 A + k + l ) / 2 r A - '  e-'- LYG'(2wr) (A2.1)  

we find 

( k + l ) !  .- L ~ + ~ ' ( 2 w r , ) L p " ( 2 o r ~ ) ]  (A2.2)  
m zo r(2A + 1 +k)(A + 1 + k -  v )  

where in the last step we have used (A1.19).  
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The second calculation is performed in a similar manner. Since ( [ l ] ,  equation 3.30) 

= - w ( k + A - v ) r * - ' e - "  L:*-'(2wr) 

- 2 w 2 ( 1 - 8 k u } r h  e-" L:lT1(2wr) 

we now deduce that 

(A2.3) 

The differential relations expressed by (A2.2) and (A2.4) constitute the main results 
of this appendix. 

Appendix 3. Alternate derivation of recursion relations for the radial Green functions 

We have shown in appendix 1 that the double Laplace transform, 
W r , r 2 ) h + 1 g v A ( r l .  r z ;  ~ ) I ( P , ,  is 

S"A(P,  , p > ;  w )  = ( 2 w ) 2 A + 1 [ ( P ,  + w ) ( p , + w ) 1 - ' " - 2  

and satisfies 

Now 

XL 
- T ( Z A + k )  1 

x-0  ( A  + k -  u ) k !  

(A3.1) 

(A3.2) 

(A3.3) 

so that 

(2wI2(A2- v * ) s v ~ - , ( P , , P * ;  w )  

= ( 2 w ) ( A  + u)I ' (2A)(p l  +p2) -2*  +F(ZA + l ) ( p L  - w ) ( p 2 - w ) ( p I  

-(d - wZ)(pi - W 2 ) S , ( P 2 ,  p 2 ;  w ) .  (A3.4) 

This is the fundamental relation which we will use to derive the raising and lowering 
operators for A in the Green functions. 
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We begin our analysis by differentiating (A3.4) with respect to p , ,  using (A3.2) to 
show that 

(A3.5) 

= A 'r(2A + 1 ) (PI  + P2) -' - (API - w )(Apz - w )SUA ( PI , pz ; w ). (A3.6) 

Our next relation, which is obtained in much the same manner, and using the 
This is our A lowering equation. 

previous three equations, is 

=h2r(2A + l ) ( p 1 + p J 2 * - '  - w 2 ( A z -  u')S,,(p,, pz;  w )  (A3.7) 

Finally we can easily derive from the previous results a mixed raising and lowering 
This is our A raising equation. 

operator: 

A raising and lowering operators for the Green function itself are obtained quite 
simply by taking the inverse double Laplace transform of the relevant equations given 
above. The inverse of (A3.6) is the A lowering operator for g, (5.41, while the inverse 
of (A3.7) is a A raising operator, (5.5). Finally, the mixed raising and lowering operator 
(5.3) is obtained as the inverse of (A3.8). 

Appendix 4. Notation and special functions 
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Laguerre polynomials 

T ( a + l +  n) 
r(a+ L,(x) = , F I ( - n ;  a + l ; x )  

(n+l)L:+,,(x)+(x-a -2n  - l)L:(x)+(n +a)L;_,(x) =O.  

Whittaker functions 

M v , , ( x ) = ~ ” ” 2 e ~ x ~ 2  , F , ( A + 1 / 2 - ~ ; 2 A + l ;  x) 

- x A + 1 / 2  - e+x/2,  F , ( A  + 1/2+ U;  2A + 1; -X) 

= [(l  +2A)2/2x - VIM,, (X)  - [ U’-( 1/2+A/2)2]/(Z+2A) 

X (1 +2A )MU,A+t(x) 

d 
dx 

d 
dx 

d 

(1 -2A)- M , , ( x )  = [(l-ZA)’/Zx- u]M,,(x) -(2A + l ) ( 2 A ) M u , A ~ 1 ( ~ )  

(1 + 2A ) - W”J ( X )  = [ (1 + ZA)’/2X - U] W , ,  (x) + [ U  - 1/2 - A ]  W,,A+ I ( X )  

( 1 - ZA ) W,, ( X )  = [ (1 - 2A)’/2x - U] W+ (x) + [ U - 1/2 + A ]  W,, - 8  (X) .  

Bessel functions 

Dirac matrices 

a=(: Is) P ” ( 0  -1 O) 

u=((O 1 0  I ) , ( ;  -;),(I 0 -1 O)) 

119 
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