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Measurement of the hyperfine structure of the
4d2D3Õ2,5Õ2 levels and isotope shifts

of the 4p2P3Õ2 \ 4d2D3Õ2 and
4p2P3Õ2 \ 4d2D5Õ2 transitions in gallium 69 and 71

Steven J. Rehse, William M. Fairbank, Jr., and Siu Au Lee

Department of Physics, Colorado State University, Ft. Collins, Colorado 80523

(Received June 19, 2000; revised manuscript received January 2, 2001

The hyperfine structure of the 4d2D3/2,5/2 levels of 69,71Ga is determined. The 4p2P3/2 → 4d2D3/2 (294.50-nm)
and 4p2P3/2 → 4d2D5/2 (294.45-nm) transitions are studied by laser-induced fluorescence in an atomic Ga
beam. The hyperfine A constant measured for the 4d2D5/2 level is 77.3 6 0.9 MHz for 69Ga and 97.9
6 0.7 MHz for 71Ga (3s errors). The A constant measured for the 4d2D3/2 level is 236.3 6 2.2 MHz for 69Ga
and 246.2 6 3.8 MHz for 71Ga. These measurements correct sign errors in the previous determination of
these constants. For 69Ga the hyperfine B constants measured for the 4d2D5/2 and the 4d2D3/2 levels are
5.3 6 4.1 MHz and 4.6 6 4.2 MHz, respectively. The isotope shift is determined to be 114 6 8 MHz for the
4p2P3/2 → 4d2D3/2 transition and 115 6 7 MHz for the 4p2P3/2 → 4d2D5/2 transition. The lines of 71Ga are
shifted to the blue. This is in agreement with previous measurement. © 2001 Optical Society of America

OCIS codes: 020.2930, 020.3260, 300.2530, 300.6210.

1. INTRODUCTION
In the past several years, the use of neutral atomic beams
to fabricate nanoscale features has become an active area
of research.1 Neutral atoms are attractive because of
their small de Broglie wavelengths (,1 nm) and because
the atoms have internal energy levels that can be ac-
cessed with lasers. It is possible to optically manipulate
the atoms with laser light that is tuned close to an
atomic-transition frequency.2 If a standing-wave laser
beam is positioned directly over a substrate, the atoms
traveling through the laser beam experience a periodic
light force and are focused into narrow lines during depo-
sition onto the substrate.3 Several atomic species have
been optically focused, including sodium,3,4 chromium,5–7

cesium,8 and aluminum.9

It is well known that quantum effects can be used to
tailor the optical and the electronic properties of semicon-
ductor heterostructures with nanometer-scale features.
In semiconductor lasers the use of multiple quantum
wells has led to improved laser performance. The ability
to manipulate the lateral density of the Group III atoms
during molecular-beam-epitaxy growth of a III–V semi-
conductor heterostructure offers an exciting possibility for
fabricating such nanometer-scale features. The optical fo-
cusing of gallium (Ga) could be one method for achieving
such a molecular-beam-epitaxy growth scheme.10

A transition between specific hyperfine levels of a
ground state and an excited state is used in this optical
focusing. Therefore an accurate knowledge of the hyper-
fine structure of both energy levels is necessary. Of in-
terest to us is the Ga 4p2P3/2 → 4d2D5/2 transition at
294.45 nm (for optical cooling and focusing) and the
nearby 4p2P3/2 → 4d2D3/2 transition at 294.50 nm. The

4p2P3/2 level has been studied extensively, and the hyper-
fine constants are well known.11 There has been one pre-
vious measurement of the structure of the 42D levels by
Weber et al., who used resonant Doppler-free two-photon
laser spectroscopy.12 However, the reported 42D hyper-
fine constants did not provide qualitative agreement with
our laser-induced fluorescence spectra. This prompted our
study of the two Ga transitions.

Ga has two stable isotopes: 69Ga (60.4%) and 71Ga
(39.6%), both with nuclear spin I 5 3/2. The lower en-
ergy state of the transitions of interest is the metastable
state 4p2P3/2 , which lies 0.103 eV above the 4p2P1/2
ground state.13 With an oven source operating at typical
temperatures of 1200 °C, approximately 47% of the atoms
in a thermal beam will be in the 2P3/2 state.

Hyperfine energy-level splitting is a result of the inter-
action between valence electrons and the nucleus. The
hyperfine A and B constants represent the interactions of
the electromagnetic field produced at the nucleus by the
electrons with the nuclear magnetic dipole moment and
with the nuclear electric quadrupole moment, respec-
tively. The shift of a state with total angular momentum
F from the unperturbed energy is given by14
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where J is the total electronic angular momentum, I is
the nuclear spin, and K 5 F(F 1 1) 2 J(J 1 1) 2 I(I
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1 1). The hyperfine splittings of the upper and the
lower states in both transitions for Ga are shown sche-
matically in Fig. 1.

2. EXPERIMENTAL METHODS
Spectroscopy of the two transitions required a tunable UV
laser source near 294.5 nm. A 5-W laser at 532 nm was
used to pump a cw single-frequency tunable dye laser pro-
ducing a 500-kHz-linewidth beam at 589 nm.15 The UV
laser light was generated by frequency doubling the dye
laser in an external ring cavity. The resonant cavity con-
sisted of an asymmetric bow-tie configuration with a non-
linear crystal at one of the waists. The doubling crystal
was a 1 mm 3 1 mm 3 20 mm Brewster-cut ammonium
dihydrogen arsenate crystal heated to approximately
34 °C for 90° phase matching.16 The temperature of the
crystal was stabilized to better than 60.01 °C. A di-
chroic beam splitter inserted in the cavity was used to re-
flect the frequency-doubled UV laser light out of the cav-
ity. The dye-laser power into the cavity was between 300
and 400 mW, and typical UV laser powers generated were
1–3 mW. The relatively high loss in the ammonium di-
hydrogen arsenate crystal (;2%/cm) and cavity param-

eters not configured for optimal performance limited
power buildup in this cavity to somewhere in the range of
6–10.

The wavelength of the fundamental laser was deter-
mined by the lambda meter: a traveling Michelson inter-
ferometer with a frequency-stabilized He–Ne reference
laser.17 As the dye laser was tuned, the frequency inter-
val was monitored by a temperature-stabilized 1-m confo-
cal Fabry–Perot cavity with a free spectral range of
74.227(36) MHz.18

A beam of Ga atoms was generated by a resistively
heated effusive oven source with a 0.8-mm-diam aperture
hole. The oven source and the atomic beam were housed
in a diffusion-pumped vacuum system at ;2 3 1026 Torr
(;1 3 1025 Torr when the oven was operating). The
oven was operated at approximately 1200 °C, as deter-
mined by an optical pyrometer. A 0.7 mm 3 1.0 mm ap-
erture slit was placed in the Ga beam, 15 cm from the
oven, to collimate it. The UV laser was introduced into
the vacuum system through quartz Brewster windows
and passed perpendicular to the Ga beam at a distance of
approximately 15 cm from the collimating slit. The laser
beam-waist diameter was ;1 mm, giving an intensity in
the laser–atom interaction region comparable with the
saturation intensity for most of the mF components of the
hyperfine levels.19 A photomultiplier tube (PMT) located
above the interaction region was used to detect the fluo-
rescence as the UV laser frequency was scanned through
the transitions. A schematic of the gallium beam source
and the interaction region is given in Fig. 2.

The fluorescence spectra from the PMT as well as the
fringe signal from the 1-m calibration cavity were re-
corded and digitized. The Fabry–Perot cavity fringe
scans were used to calibrate the fluorescence spectra and
check for scan nonlinearities. The UV laser power was
monitored during the scans, and these data were used to
correct for UV laser power fluctuations in the fluorescence

Fig. 1. Diagrams of the upper and the lower levels of the two
Ga transitions studied in this paper: (a) the 4p2P3/2
→ 4d2D5/2 transition and (b) the 4p2P3/2 → 4d2D3/2 transition.
The letters (A, B, C, ...) identify particular transitions allowed by
use of linearly polarized laser excitation. The numbers indicate
the relative theoretical intensities of the transitions.

Fig. 2. Schematic of the Ga atomic-beam apparatus.
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spectra. Multiple spectra were taken for each transition.
Typical fluorescence spectra are shown in Fig. 3. In both
transitions the 18 different hyperfine components from
the two Ga isotopes are not all resolved. In the case of
the 4p2P3/2 → 4d2D3/2 transition the locking range of the
doubling cavity was not sufficiently broad to allow a com-

plete fluorescence spectrum to be obtained in one continu-
ous scan. Hence two scans were made.

3. ANALYSIS
The laser-induced fluorescence spectra were fitted with a
nonlinear least-squares procedure. The hyperfine con-

Fig. 3. Laser-induced fluorescence spectrum (dotted curve) and the fitted spectrum (solid curve) for the (a) 4p2P3/2 → 4d2D5/2 and (b)
4p2P3/2 → 4d2D3/2 transitions. Frequency 0 denotes the center of mass of the 69Ga transition. Specific hyperfine transitions desig-
nated with a letter (A, B, C, ...) are identified in Fig. 1. Transitions designated with an asterisk (* ) are from the isotope 71Ga. In
several instances one or more peaks overlap and are indistinguishable. In (b) the vertical scale of the blue end of the spectrum has been
magnified.
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stants for the 4d2D states and the isotope shifts of the
transitions were obtained from this analysis, whereas the
constants for the 4p2P3/2 state were obtained from Ref.
(11) and were not measured. Specifically, the hyperfine
A coefficients for both 69Ga and 71Ga, the B coefficient for
69Ga, and the isotope shift were used as fitting param-
eters. The spectra did not have sufficient resolution to
allow a separate B coefficient for 71Ga to be determined
independently. Therefore its value was fixed to the value
for 69Ga by the relation B( 71Ga) 5 0.630 3 B( 69Ga),
where the factor 0.630(1) is the ratio of the nuclear elec-
tric quadrupole moments determined previously.20 The
18 hyperfine components were assumed to have Lorentz-
ian line shapes with identical widths. Their relative in-
tensities were fixed to the theoretical line-strength ratios
(shown in Fig. 1) and the isotopic abundance ratio. Thus
the line-shape width and the overall intensity were addi-
tional fitting parameters. A 42(8)-MHz linewidth was
determined for the 4p2P3/2 → 4d2D5/2 transition, and a
32(11)-MHz linewidth was found for the 4p2P3/2
→ 4d2D3/2 transition (3s errors). The natural linewidth
of the transition is 25 MHz. The residual Doppler width
was less than 6 MHz and could be neglected. The differ-
ence between the natural and the fitted linewidths can be
attributed to power broadening. The laser-saturation
parameter (I/I0) was 1.5 to 2.0 for the 4p2P3/2
→ 4d2D5/2 fluorescence spectrum and was 0.5 to 1.0 for
the 4p2P3/2 → 4d2D3/2 spectrum. Using these values of
the saturation parameter, our fitted values for the line-
widths agree well with the estimated power-broadened
linewidths. The fitted spectra are shown in Fig. 3 as
solid curves.

Other fitting procedures were also investigated. The
peak intensities of some of the strongest lines were al-
lowed to vary independently. A lower x2 was obtained,
but the hyperfine-constant results did not change signifi-
cantly with these additional parameters. Fitting was also
attempted without locking the ratio of the B constants;
however, no meaningful value for B( 71Ga) could be deter-
mined. These other procedures were not used to deter-
mine the final results.

4. RESULTS
The three hyperfine parameters and the isotope shifts, de-
termined by averaging over seven scans of the 4p2P3/2
→ 4d2D5/2 transition and three pairs of scans of the

4p2P3/2 → 4d2D3/2 transition, are given in Table 1. Pre-
viously published results are given for comparison.

The agreement with the absolute value of the published
A values is excellent. The difference in sign, but not in
magnitude, of the A coefficients between our investigation
and Ref. 12 required further investigation. The laser-
scan direction was checked carefully with the lambda
meter and verified against known iodine transitions.
Furthermore, having an A coefficient with the opposite
sign in the 42D state would not simply reverse the posi-
tions of the spectral lines. It would completely change
the locations of the components because the hyperfine
structure of the ground state remains unchanged. This
effect is shown in Fig. 4 for the 4p2P3/2 → 4d2D5/2 tran-
sition. As can be seen in Fig. 4(c), an opposite sign in A
cannot fit the laser-induced-fluorescence spectrum ob-
tained in this study.

To explain the discrepancy in sign, it became necessary
to examine the previous experiment in more detail. In
Ref. 12, the Ga hyperfine structure was obtained with
resonant Doppler-free two-photon spectroscopy, with the
42D state being the intermediate state. Two lasers were
used to obtain resonance, one fixed and one tunable, and
both counterpropagating and copropagating spectra were
taken to determine the intermediate-state structure.
Thus the experiment had more variables than our simple
laser-induced fluorescence technique. We have fitted the
spectra in Ref. 12 using our hyperfine constants. In the
42P1/2 → 42D3/2 case (Fig. 2 of Ref. 12), the agreement
was excellent for both the copropagating and counter-
propagating spectra. For the 42P3/2 → 42D5/2 transition
(Fig. 3 of Ref. 12) the agreement was also excellent if we
assumed that laser two was tuned. (The isotopes were
also mislabeled in that figure.) In all cases the peak lo-
cations agreed to within 10 MHz. At the same time we
tried the opposite signs on the A coefficients, i.e., using
the results of Ref. 12. We found that regardless of which
laser was tuned, there was no agreement between the cal-
culated and the measured peak positions in all cases.
The misfit was similar to the type shown in Fig. 4. Thus
the signs of the A coefficients reported in Ref. 12 are in-
correct.

The present study provides a significant improvement
in the accuracy of the hyperfine constants and corrects
sign errors in the previous determination of the A con-
stants. The ratios of A( 71Ga)/A( 69Ga) are 1.27(2) and
1.27(13) for the 4d2D5/2 and 4d2D3/2 levels, respectively.
These numbers agree well with the ratio of the nuclear
magnetic dipole moments, 1.2700(8).20 No other mea-
surement of the B constants has been made before this

Table 1. Experimental Values of the Hyperfine Structure Constants and the Isotope Shifts

Level Source

69Ga 71Ga

A (MHz) B (MHz) A (MHz) B (MHz) Transition Isotope Shift (MHz)b

4d2D3/2 This paper 236.3(2.2) 14.6(4.2) 246.2(3.8) a 4p2P3/2 → 4d2D3/2 1114(8)
Weber et al.12 136(2) – 146(3) – 1121(10)

4d2D5/2 This paper 177.3(0.9) 15.3(4.1) 197.9(0.7) a 4p2P3/2 → 4d2D5/2 1115(7)
Weber et al.12 278(3) – 298(4) – 1117(9)

a B( 71Ga) 5 0.630 3 B( 69Ga).
b The convention for the sign of the isotope shift is to report a positive shift when the lines of the heavier isotope (in this case 71Ga) are shifted to the blue.
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study. The measured isotope shifts fall within the errors
of the previously published values.

The uncertainties reported with our parameter values
are 3s deviations from the mean. The dominant error in

the data is due to the noise of the laser-induced fluores-
cence signal, particularly in the 4p2P3/2 → 4d2D3/2 tran-
sition, which had a much smaller signal. Systematic er-
rors, e.g., frequency-scan nonlinearities, UV-laser power
variations, and optical pumping effects, are small by com-
parison.

5. CONCLUSIONS
The hyperfine structure of the 4p2P3/2 → 4d2D3/2 and
4p2P3/2 → 4d2D5/2 transition in 69 and 71 Ga is investi-
gated. The accuracy of the hyperfine A constants is sig-
nificantly improved, and sign errors in the existing litera-
ture values are corrected. Values of the hyperfine B
constants are also reported. The measured isotope shifts
agree well with previously determined values.
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