
University of Windsor
Scholarship at UWindsor

Physics Publications Department of Physics

2005

Absolute wave-number measurements in 130Te2:
Reference lines spanning the 420.9-464.6-nm
region
T.J. Scholl

Steven J. Rehse
University of Windsor

R.A. Holt

S.D. Rosner

Follow this and additional works at: http://scholar.uwindsor.ca/physicspub

Part of the Physics Commons

This Article is brought to you for free and open access by the Department of Physics at Scholarship at UWindsor. It has been accepted for inclusion in
Physics Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.

Recommended Citation
Scholl, T.J.; Rehse, Steven J.; Holt, R.A.; and Rosner, S.D.. (2005). Absolute wave-number measurements in 130Te2: Reference lines
spanning the 420.9-464.6-nm region. Journal of the Optical Society of America B: Optical Physics, 22 (5), 1128-1133.
http://scholar.uwindsor.ca/physicspub/15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72764937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/physicspub?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/physics?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/physicspub?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/physicspub/15?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Absolute wave-number measurements in 130Te2:
reference lines spanning the

420.9–464.6-nm region

T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner

Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada N6A 3K7
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We have measured the absolute wave numbers of 39 transitions of 130Te2 spanning the spectral region of
420.9–464.6 nm to an accuracy of better than 2 parts in 109 by use of saturation spectroscopy and Fabry–Pérot
interferometry. These measurements provide a set of convenient and accurate transfer standards for laser
wavelength calibration spanning the entire Stilbene-420 dye-tuning curve. © 2005 Optical Society of America

OCIS codes: 300.6360, 300.6460, 300.6550, 300.6320, 120.2230, 120.3940.

1. INTRODUCTION
Molecular absorptions are convenient absolute standards
for the wavelength measurement of laser sources used for
spectroscopy and optical fiber telecommunications. The
characterization of wavelength-division-multiplexing
components and the calibration of test equipment for tele-
communications require absolute wavelength measure-
ments based on absorptions in simple molecules such as
HF, acetylene, HCN, and CO.1–5 Extensive atlases of mo-
lecular absorption lines in I2,6–8 Br2,9 and Te2

10,11 that
span much of the visible and near-infrared regions of the
spectrum have been compiled with Fourier transform
spectroscopy. Typical accuracy for these Doppler-limited
measurements is ,1 part in 107, which is sufficient for
calibration of broadband lasers and many spectra but
falls short of the standards required for a precise wave-
length determination of stabilized single-frequency la-
sers. A large number of Doppler-free measurements12–18

of transition frequencies have been made for 127I2. On the
basis of systematic analyses of these and other Doppler-
free measurements, extraction of molecular parameters
for calculation of transition frequencies to better than a
few parts in 109 has been possible.16,19 Certain hyperfine
splittings can be calculated with a precision of better than
30 kHz.17

With the exceptions of the Los Alamos Th and U emis-
sion atlases,20,21 the Te2 atlas is the only convenient set of
wavelength references available for wavelengths of less
than 500 nm. The accuracy of the emission atlases,
,0.003 cm−1, is similar to that of Te2; however, the den-
sity of measured lines is much smaller. The number of
high-precision Doppler-free studies of 130Te2 is small in
comparison with 127I2, probably owing to the increased
difficulty in producing tunable single-frequency light in
this spectral region. Several experimenters22–26 have con-
centrated on transitions in the vicinity of 486 and 488 nm
for use as references in precision measurements of hydro-

genic atoms (deuterium, hydrogen, positronium, and
muonium) with typical accuracies exceeding 1 part in 109.
In addition to these measurements, Courteille et al.27

measured the wave numbers of 18 transitions near 467
nm to an accuracy of 2 parts in 108 for use as references in
the precision spectroscopy of single trapped Yb+ ions.

To establish standards over a broader wavelength
range, Cancio and Bermejo28 measured 16 transitions
from 476 to 529 nm with an accuracy of approximately 1
part in 108. These wavelengths coincide with laser emis-
sions from an argon ion laser and can be used for fre-
quency locking. Further accurate determinations of tran-
sition wavelengths were made by Gillaspy and
Sansonetti,29 who measured the wave numbers of 32 se-
lected transitions in the range of 471–502 nm spanning
the tuning curve of the laser dye Coumarin 480. These
transitions were measured with an accuracy of 2.2 parts
in 109 and were confirmed by comparison with previous
measurements. Gillaspy and Sansonetti noted that the
atlas values for all of the transitions they measured were
low by an average of 0.00204 cm−1. Their conclusion was
that the atlas values do not provide suitable wave num-
bers for Doppler-free transitions even if a constant offset
is added, owing to the blending of several molecular lines
into one line observed via Fourier spectroscopy.

No extended set of Doppler-free measurements of Te2
transition wave numbers exists for wavelengths shorter
than ,471 nm. With this in mind, we have measured the
absolute wave number of 39 transitions in 130Te2 from
420.9 to 464.6 nm with an accuracy of better than 2 parts
in 109. These transitions are roughly equally spaced
within this wavelength range and span the tuning curve
of the laser dye Stilbene 420. Since we previously30 com-
pared the results of five transitions from 475.6 to 490.8
nm and found excellent agreement with previously estab-
lished standards, these absorption lines should provide a
useful set of new reference lines in this part of the optical
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spectrum and eventually help form the basis of high-
precision measurements for comprehensive theoretical
modeling of the molecular spectrum.

2. APPARATUS AND METHOD
The details of the experimental apparatus, which is an
improved version of one described by Sansonetti,31

werepreviously published.30 A schematic diagram of the
apparatus is shown in Fig. 1. Tunable light for measuring
the saturated absorption transitions in 130Te2 is produced
by pumping Stilbene 420 dye in a single-frequency cw dye
laser with 4.5 W of UV light from an argon ion laser. Typi-
cal output powers range from ,75 to 300 mW across the
dye-tuning curve. As shown in Fig. 1(a), light from the dye
laser is split into a pump beam and a weaker probe beam
and modulated by a dual-frequency chopper at 3000 and
2500 Hz, respectively. These beams are overlapped as
they traverse a Te2 cell in opposite directions. After the
probe beam exits the cell, a portion of it is sampled by a
beam splitter and is phase detected at the sum frequency
(5500 Hz), producing an intermodulated saturation32

spectrum. A typical Doppler-free line profile is shown in
Fig. 2.

A 7.5-cm long, 2.5-cm-diameter quartz 130Te2 cell is
heated in a tube furnace. The 502°C cold-finger tempera-
ture corresponds to a Te2 vapor pressure of 91 Pa.33 The
temperature controller regulates the oven temperature to
within 3°C, with an absolute accuracy of better than 2°C.
We estimate that the total uncertainty of the cold-point
temperature is ±6°C, including the uncertainty in the lo-
cation of the coldest point on the finger. The cell body and
windows are held at a temperature ,15–20°C warmer.
The single-pass absorption through the Te2 vapor at
502°C is 23(2)% for the Doppler-limited line at
20 564.385 cm−1, in agreement with other work.29 At the
same cell temperature, the single-pass absorption at
22 634.330 cm−1 is 85(3)%.

The absolute wave number of the dye laser is measured
by comparison with the wave number of a reference laser
by use of an evacuated Fabry–Perot (FP) etalon, as shown
in Fig. 1(b). Light from the dye laser and a He–Ne refer-
ence laser is expanded by lenses before being combined by
a polarizing beam splitter. Computer-controlled shutters
in the path of each laser beam select light from either la-
ser, which is then focused by a 100-mm-focal-length cylin-
der lens to form a horizontal line source on a spinning
plastic wheel. The exit side of the wheel is roughened to
scatter the laser light and destroy its coherence, eliminat-
ing noise from laser speckle. The scattered light is colli-
mated by an 80-mm-focal-length achromatic lens and
masked by a 33-mm-diameter iris.

The etalon mirrors are aluminum coated with a reflec-
tivity of 85% at 632.8 nm and a reflectivity finesse of 19.3.
This low finesse is desirable in order to spread interfer-
ence rings over several pixels of the photodiode array, al-
lowing subpixel location of the maxima. Bare aluminum
possesses excellent broadband reflectivity and optical
phase shifts that vary smoothly with wavelength and are
stable in time.34,35 The entire etalon assembly is housed
in a vacuum enclosure at a pressure less than 3.33 Pa.
The assembly is constructed almost entirely from Super
Invar (coefficient of linear expansion aø0.36
3 10−6°C−1), with the exception of the alignment and
scanning piezoelectric crystal transducers. The three

Fig. 1. Schematic apparatus diagram. (a) A major portion of the
light from a single-frequency cw dye laser is split into separate
pump and probe beams modulated by a dual-frequency chopping
wheel and overlapped in a heated Te2 cell. Feedback from the
sum-frequency signal detected by a lock-in amplifier is used to
lock the frequency of the dye laser to the saturated absorption
signal. (b) The remaining dye laser light is directed to a Fabry–
Pérot wavelength meter and to a Michelson wavelength meter
(for coarse wavelength measurement). Light from the dye laser
and a He–Ne laser offset locked to an I2-stabilized He–Ne laser
alternately illuminates the etalon, producing interference ring
patterns on a photodiode array.

Fig. 2. Doppler-free saturated-absorption profile of the Te2 line
at 22 634 cm−1. The linewidth (FWHM) is 17 MHz. The cell tem-
perature was 502°C corresponding to a vapor pressure of 91 Pa,
and the pump beam and probe beam powers were approximately
100 mW and 10 mW, respectively.
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scanning piezoelectric transducers are used to systemati-
cally step the etalon spacing through a distance corre-
sponding to a change of one interference order at the ref-
erence wavelength, providing an excellent check for
systematic effects.30 This represents an improvement
over previous fixed-spacing FP-based wavelength meters,
which are essentially static except for slow drifts in their
mirror spacings.

The interference “ring” pattern of the etalon is pro-
jected by a 2000-mm-focal-length Schmidt–Cassegrain
telescope onto a cooled EG&G Reticon 1024-element sili-
con linear photodiode array (PDA). The catadioptric tele-
scope produces a more compact optical path and has far
less chromatic aberration over a larger wavelength range
than an ordinary refracting achromatic doublet. Residual
background signal is eliminated by subtracting a pattern
acquired with no light input. A single ring pattern is digi-
tized in 13.5 ms, with typically 10 individual patterns av-
eraged by the computer for analysis and display. A mea-
surement cycle, which includes acquisition and analysis
of 10 ring patterns for each laser, is completed in ,1 s.

The reference laser is a single-frequency 900-µW
He–Ne laser that is frequency offset locked to a Winters
Electro-Optics Model 100 He–Ne laser. The latter is sta-
bilized to the d component of the R(127) 11-5 transition of
127I2, whose frequency is known to a few parts in 1011.
The ,0.1 MHz uncertainty in the offset lock leads to an
accuracy of ,2 3 10−10 for our reference wave number.

A dc ratio circuit is used to lock the dye laser frequency
to the side of a given Te2 saturated absorption line. Mea-
surements of the laser wave number are made with the
laser locked alternately to each side of the symmetric
saturated-absorption lines and averaged. Typical ob-
served line widths are 15–25 MHz. For strong absorption
lines, power broadening of 5–7 MHz is observed at pump-
beam powers greater than 50 mW. Variation of the lock
points from 25 to 75% of maximum saturated absorption
results in no statistically significant systematic shifts in
the averaged line center.

The FP “ring” pattern is described by the Airy
formula.36 Each point can be assigned a (generally nonin-
tegral) interference order number p. At the center of the
pattern, p satisfies the relation

p ; P + e = 2ts, s1d

in which P is the integer part, e is the fractional part, t is
the mirror separation, and s=1/l is the wave number.
The analysis of the FP ring patterns determines the frac-
tional part of the interference order number at the center
of the pattern for the unknown and reference wave-
lengths, e and eref, respectively.

An auxiliary traveling Michelson wavelength meter
with a precision of better than 1 part in 107 is used to de-
termine the integer parts of the order numbers. First we
make a preliminary determination of the etalon spacing t
using the method of exact fractions.37 This requires a se-
ries of simultaneous measurements of the dye laser wave
number s and the fractional order e spanning
,1000 cm−1. Owing to the excellent length stability of the
FP etalon this procedure is necessary only at the begin-
ning of each day. Along with Eq. (1), this measurement of
t is sufficient for calculation of the integer part of the or-

der number for the standard laser, Pref, from its known
wave number, sref. The exact value of pref, determined
from Pref and eref, then yields a more accurate value of t.
The Michelson wavelength meter is next used to make a
preliminary measurement of the unknown wave number,
from which we calculate the integer part P of its order
number, again using Eq. (1) and t. The wave number s of
the Doppler-free Te2 transition is then given by

s =
P + e

Pref + eref
sref. s2d

A more precise condition for interference in the FP eta-
lon includes a wave-number-dependent phase correction
dssd arising from reflection at the Al mirrors. This modi-
fies Eq. (1) to be

P + e + dssd = 2ts. s3d

Here dssrefd;0, making it a relative correction. The true
or phase-corrected wave number s is related to the mea-
sured wave number smeas [determined from Eq. (2)] by

s = smeas +
dssd

2t
. s4d

Phase corrections to the unknown wave number were pre-
viously measured30 for the etalon mirrors used in this
work by the method of virtual mirrors38 for 10 wave-
lengths spanning the interval from 424.9 to 490.8 nm,
which includes the narrower spectral region of this work
(420.9–464.6 nm), except for 4.0 nm at the lower end.
Since the physical origin of the phase shift34,35 implies
smooth behavior over this spectral region, a linear fit of
dssd versus s, shown in Fig. 3, was used for interpolation.

As mentioned above in this section and detailed in Ref.
30, the ability to measure a wave number at different eta-
lon spacings is an important check on possible sources of
systematic errors. Accordingly, the frequency of the tun-
able dye laser is locked to the side of a saturated absorp-
tion feature, and its wave number is measured 50 times
as the spacing of the FP etalon is stepped over one free
spectral range of the etalon at sref. When the wavelength

Fig. 3. Wave-number-dependent phase correction dssd resulting
from reflections at the FP etalon mirrors, measured previously30

by use of the method of virtual mirrors for seven different spac-
ings. The results for dssd measured at 10 different wave numbers
have been fitted to a straight line for interpolation.
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meter’s optics are in optimum alignment, the standard
deviation of these 50 measurements is typically less than
1 MHz. The dye laser is subsequently relocked to the op-
posite side of the absorption line and its wave number is
measured in the same manner. The measured transition
wave number is calculated as the average of these two
measurements.

3. ANALYSIS
The FP pattern is analyzed by the usual “rings” method.36

It can be shown from the Airy formula that, for light at
near-normal incidence on the etalon, the radius rj of the
jth ring satisfies

rj
2 = ssj − 1 + ed. s5d

Therefore e can be determined from a plot of rj
2 versus j as

e=1+intercept/slope. The individual ring radii are deter-
mined by the fitting of an approximation to the Airy func-
tion valid near a local maximum,30 modified by a Gauss-
ian envelope function (to correct for any distortions in the
ring positions due to variations in the intensity envelope
over a single ring).

Small distortions in the recorded ring pattern due to
changes in the alignment of the etalon and the focusing of
the ring pattern on the PDA can lead to errors in measur-
ing e. To monitor this effect, the data-acquisition program
displays residuals for the plot of rj

2 versus j, as well as the
finesse of the pattern, in real time. Initially, the focus of
the telescope is adjusted so that the residuals from this
plot for ring patterns from both lasers can be minimized
and randomized. The finesse of the etalon is subsequently
maximized and the procedure iterated until no further
improvement can be realized. So that the PDA is aligned

along the horizontal diameter of the ring pattern, the
telescope–PDA combination is translated in the vertical
direction to maximize the observed value of e. The posi-
tion of the focused laser light on the scattering wheel is
then reoptimized to produce a symmetric and maximized
intensity distribution for the patterns. Finally, the
telescope–PDA combination is translated until the opti-
mized ring pattern is centered horizontally on the PDA.

4. RESULTS
Our measured transition wave numbers for 39 saturated
absorption lines are shown in Table 1, and a summary of
our error budget is given in Table 2. Fifty repeated mea-
surements of a given transition wave number over a span
of a few minutes exhibit a submegahertz scatter. How-
ever, realignment of the wavelength meter optics pro-
duces small but noticeable shifts in the measured wave
number and increases the longer-term measurement scat-

Table 1. Measured Wave Numbers and Approximate Air Wavelengths for Doppler-Free Transitions in 130Te2
at a Temperature of 502(6)°C Corresponding to a Vapor Pressure of 91(13) Pa.a

Wavelength (nm) Wave Number scm−1d Wavelength (nm) Wave Number scm−1d

464.559 21 519.798 444(37) 439.475 22 748.075 796(37)
462.383 21 621.068 197(37) 439.473 22 748.169 719(37)
462.263b 21 626.668 960(37) 437.340 22 859.096 863(37)
461.507 21 662.099 758(37) 436.743 22 890.361 707(37)
459.450 21 759.054 591(37) 435.225b 22 970.191 921(37)
457.549 21 849.472 279(37) 433.874 23 041.730 708(37)
457.286 21 862.055 540(37) 433.866 23 042.161 281(37)
455.196 21 962.428 481(37) 433.103 23 082.724 412(37)
453.985 22 021.005 928(37) 431.517 23 167.540 846(37)
453.317 22 053.433 804(37) 431.014 23 194.587 007(37)
452.856 22 075.901 181(37) 428.952 23 306.123 768(37)
450.643b 22 184.304 882(37) 428.894 23 309.247 086(37)
449.571 22 237.195 680(37) 427.057 23 409.535 409(37)
448.317 22 299.386 951(37) 426.310 23 450.552 578(37)
448.317 22 299.399 264(37) 424.856b 23 530.779 797(37)
446.092 22 410.641 620(37) 424.160 23 569.392 054(37)
445.845 22 423.055 958(37) 422.801 23 645.177 731(37)
445.752 22 427.739 605(37) 421.674 23 708.323 012(37)
442.654 22 584.672 277(37) 420.883 23 752.932 043(37)
441.683b 22 634.330 275(37)

aUncertainties in wave numbers are one standard deviation.
bLines used in the determination of the phase correctionssee Fig. 3d.

Table 2. Systematic and Statistical Measurement
Uncertainties (One Standard Deviation)

Source of Uncertainty Uncertainty (MHz)

Residual gas dispersion negligible
Reference frequency negligible
Offset-lock frequency 0.20
Absorption line-shape asymmetry 0.20
Pump-probe parallelism 0.20
Pressure shifts 0.30
Phase correction 0.23
Repeatability of results (statistical) 0.97
Overall uncertainty (quadrature sum) 1.1
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ter. This is probably due to minute changes in the align-
ment of the PDA relative to the center of the ring pattern
and to distortions of the ring pattern due to changes of the
optical alignment, including etalon finesse. The measure-
ment reproducibility has therefore been estimated from
the scatter of all transition wave-number measurements.
From the weighted average for each transition wave num-
ber, the residuals for each individual measurement, ac-
quired over several weeks, are compiled with those of all
other transitions. A histogram of these residuals is shown
in Fig. 4. The set of 457 measurements has 418 degrees of
freedom, since these data are calculated from 39 measure-
ment averages. The overall sample standard deviation of
0.97 MHz is taken as our estimate of the measurement re-
producibility.

Another source of uncertainty comes from the phase
correction d obtained by interpolation in the linear fit
shown in Fig. 3. The reduced x2 for this fit is 4.4, suggest-
ing that the uncertainty in d may be underestimated. A
plausible reason for this is that each measurement of d re-
lies on a series of measurements of the wave number for a
given transition at several different values of the etalon
spacing t.30 At small values of t, the value of s is more
sensitive to small changes in the focusing of the ring pat-
tern onto the linear PDA because of residual chromatic
aberration in the optics used for small t. It is important to
note that measurements of s at small t (which are inher-
ently less accurate than at large t) were used only in the
determination of d, which is itself a small correction to s.
To account for the quality of the linear fit, we have chosen
to set the uncertainty in the phase correction equal to the
3.4 3 10−4 rms residual of the fit. This is a more conser-
vative estimate than one derived from the uncertainties
of the fit parameters. The use of Eq. (4) to correct the
transition wave numbers measured at a spacing of
,22.5 cm in this experiment leads to an uncertainty in s
of ±7.5 3 10−6 cm−1 or 0.23 MHz.

Uncertainties in the wave numbers arising from re-
sidual gases in the FP vacuum and knowledge of the

I2-stabilized He–Ne frequency are negligible. The mea-
surement uncertainty s,0.1 MHzd in the beat frequency
used to offset lock the single-frequency He–Ne laser to the
I2-stabilized He–Ne laser leads to a wavelength meter un-
certainty of 0.2 MHz for the spectral region of this work.
The Te2 cell vapor pressure is uncertain by a pressure of
13 Pa owing to the 6°C temperature uncertainty for the
cell cold point. Typical pressure shifts for Doppler-free
transitions in Te2 vapor in this spectral region are
,0.0075 MHz/Pa,23–25 resulting in a pressure-shift un-
certainty of 0.1 MHz. A conservative upper limit of 0.3
MHz for this systematic error is quoted, since the pres-
sure shifts have not been measured for these transition
wave numbers.

The shapes of the Doppler-free Te2 absorptions have
been investigated to determine the maximum potential
shift of the line center that could result from any asym-
metries. Although all measured absorption lines are at
first glance symmetric, three stronger lines were ran-
domly chosen for further scrutiny. Their line shapes were
repeatedly recorded and analyzed with both a symmetric
Lorentzian function and a Lorentzian function with dif-
ferent left and right half-widths. Differences in the fre-
quencies of the line centers for the two fitting functions
indicate that, at the present signal-to-noise ratio, 0.2
MHz is an upper limit on any possible shift of the mea-
sured line center owing to line-shape asymmetries.

Nonparallelism of the pump and probe beams is a
known source of frequency shift in saturation
spectroscopy.39 We estimate our beams to be parallel
within 0.67 mrad. For molecules with the most probable
speed, this leads to a frequency shift of 0.17 MHz. We in-
clude an uncertainty of 0.2 MHz in the error budget.

Assuming that the statistical measurement reproduc-
ibility (0.97 MHz) and the uncertainties in the phase cor-
rection (0.23 MHz), offset-lock beat frequency (0.20 MHz),
pressure shifts (0.30 MHz), line-shape asymmetries (0.20
MHz), and pump-probe parallelism (0.20 MHz) are inde-
pendent, they were added in quadrature to produce a 1.1-
MHz s0.000 037 cm−1d overall uncertainty for the transi-
tion wave numbers measured in this work.

5. CONCLUSIONS
We have measured 39 Doppler-free transition wave num-
bers of 130Te2 with an accuracy of better than 2 parts in
109 using saturated absorption spectroscopy and FP in-
terferometry. These measurements represent at present
the only convenient high-accuracy wavelength standards
in the range of 420.9–464.6 nm, spanning the Stilbene
420 dye-tuning curve.
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