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Laser collimation of an atomic gallium beam

Steven J. Rehse, Karen M. Bockel, and Siu Au Lee
Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA

(Received 10 July 2003; published 7 June 2004)

We have laser collimated a gallium atomic beam in one dimension using the linear-perpendicular-linear
polarization gradient technique. Operating on the cycling 4p 2P3/2sF=3d→4d 2D5/2sF=4d transition at
294.45 nm, the full angular divergence of the atomic beam was reduced to 0.3 mrad, corresponding to a
transverse velocity of ±11 cm/s, about one-half the Doppler cooling limit. The dependence of the cooling
efficiency on the laser detuning and power was investigated. Optical pumping of the atoms out of the
4p 2P3/2sF=3d state by the cooling laser was observed. Repumping schemes were investigated and found to
successfully repopulate the cooledF=3 hyperfine state.

DOI: 10.1103/PhysRevA.69.063404 PACS number(s): 32.80.Pj, 42.50.Vk

Laser standing waves have been used to focus neutral
atoms into nanometer scale features during their deposition
onto a substrate[1]. This direct atom lithographic scheme
has been demonstrated in sodium[2], chromium[3,4], alu-
minum [5], and cesium[6]. In order to achieve the smallest
feature size in direct laser focusing, the incident atomic beam
must be collimated transversely to a very high degree, typi-
cally less than 1 mrad[7,8]. Laser cooling was used to pro-
vide a high degree of collimation without a significant loss of
atom flux. In this technique, two counterpropagating laser
beams intersect the atomic beam at right angles to generate a
one-dimensional optical molasses[9,10]. If the polarization
of the optical molasses varies across the path of the atoms, an
additional force is exerted on the atoms. This polarization
gradient force can cool the atoms to below the Doppler limit
[11,12].

In this paper, we report on the one-dimensional laser col-
limation of a Ga atomic beam with the linear-perpendicular-
linear(lin ' lin) polarization gradient configuration. Gallium
is particularly interesting because it is a key element in mod-
ern III-V semiconductor diode lasers. The ability to directly
focus Ga with laser light during molecular beam epitaxial
growth of III-V heterostructures offers a unique method for
modulating the Ga density in the growth plane[13]. Thus,
the technique has the potential for forming large numbers of
quantum wires and quantum dots in a controlled manner.
Laser collimation of Ga atoms is the first step towards
achieving this goal.

Ga has two stable isotopes,69Ga and71Ga, with an isoto-
pic ratio of 60.4% to 39.6%. Both isotopes have nuclear spin
3/2. A cycling transition suitable for laser cooling is the
4p 2P3/2sF=3d→4d 2D5/2sF=4d transition at 294.45 nm,
with a natural linewidthG=25 MHz and saturation intensity
I0=129 mW/cm2. See Fig. 1. The Doppler cooling limit is
TD=600mK, corresponding to a rms velocity of 27 cm/s in
one dimension. In this experiment we examined mainly the
laser cooling of69Ga in the 4p 2P3/2sF=3d state, even though
70Ga was partially cooled as well. A laser-induced fluores-
cence spectrum of the 4p 2P3/2→4d 2D5/2 transition is
shown in Fig. 1(c) [14].

In our experiment, a thermal beam of Ga atoms was gen-
erated by a resistively heated effusive oven source. The

4p 2P3/2 state was metastable and located at 0.103 eV above
the 4p 2P1/2 ground state. With an oven operating at 1300 °C,
,13% of the atoms in the beam were69Ga in the
4p 2P3/2sF=3d state. An aperture precollimated the beam to
6.2 mrad, for a nominal transverse velocity of ±2.3 m/s. The
most probable(longitudinal) speed of the atomic beam was
750 m/s. Figure 1(b) shows the arrangement of the atomic
beam and the laser beams. The cooling laser beam inter-
sected the atoms perpendicularly and was retroreflected to
form a standing wave. The atoms traveled 34 cm down-

FIG. 1. (a) Energy-level diagram of Ga.(b) Schematic of the
laser collimation experiment.(c) Laser-induced fluorescence spec-
trum of the 4p 2P3/2→4d 2D5/2 transition together with the calcu-
lated peak locations for Ga(from Ref. [14]). The zero of the fre-
quency scale is set at theF=3→4 cooling transition of69Ga. The
other labels indicate relevant69Ga transitions.
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stream where they were illuminated transversely by a weak
probe laser to measure the amount of collimation. The probe
laser-induced fluorescence from the atoms was collected
with a lens and imaged onto a liquid-nitrogen-cooled uv sen-
sitive charge-coupled device(CCD) camera. No external
magnetic fields were applied to cancel the Earth’s field.

The uv laser light was produced by frequency doubling a
cw ring dye laser(Rhodamine 6G) in an external cavity.
Utilizing a BBO crystal,,90 mW of tunable uv light was
generated[15]. However, a more typical operating power
was around 70 mW. The laser frequency was stabilized by
offset locking the fundamental dye laser to a nearby iodine
hyperfine transition using saturation spectroscopy[15]. This
apparatus used a double-passed acousto-optic modulator
(AOM) to shift the laser frequency into resonance with io-
dine. Changing the drive frequency to the AOM allowed pre-
cise tuning of the laser frequency. In this experiment both the
cooling beam and the probe beam had the same frequency.
The cooling laser beam had a 1 mm35.5 mm elliptical cross
section(1/e2 diameters). It was linearly polarized and passed
through a quarter-wave plate on the far side of the cooling
region prior to retroreflection. This generated a lin' lin
polarization gradient in the cooling region. Typical powers in
the cooling beam ranged from 40 to 70 mW. The probe laser,
also linearly polarized, was circular in cross section with a
1/e2 diameter of 1.6 mm and was tens ofmW of power.

The cooling laser was aligned perpendicular to the atomic
beam by observing the fluorescence due to the incident and
the retroreflected beams with a photomultiplier located above
the cooling region. The cooling laser frequency was scanned
over the transition. If the cooling beam was not perpendicu-
lar to the atomic beam, a double peaked fluorescence signal
or a shift in the peak center was observed when the retrore-
flected beam was on. Iterative adjustments of the cooling
laser direction were made to overlap the two fluorescence
peaks. In this way the cooling laser was aligned perpendicu-
lar to the atomic beam to about 1 mrad. The probe laser
beam was aligned parallel to the cooling beam by measuring
the separation of the two beams on the input side of the
atomic beam interaction chamber and at the output side after
the beams had propagated 2 m. The beam centers were
aligned to better than 1 mm over a 2 m distance, correspond-
ing to less than 0.5 mrad deviation between the two beams.

It should be noted that in our experiment, the CCD im-
ages did not represent the true geometrical beam size for an
uncooled atomic beam. The fluorescence signal of the atoms
was dependent on the transverse Doppler shift and the detun-
ing of the probe laser. At zero detuning, atoms near the cen-
tral portion of the beam contributed more significantly to the
fluorescence signal than the atoms in the wings, and the CCD
image was narrower than the actual beam width. As the red
detuning of the probe laser increased, the CCD images be-
came asymmetric and broadened. However, when the atoms
were cooled and the Doppler frequency shift is negligible, all
the atoms responded equally to the probe and the CCD im-
ages represented the true geometrical sizes.

To determine the divergence and the size of the uncooled
Ga beam independent of the CCD imaging, the atoms were
deposited onto glass slides at various distances along the
beam axis and the deposited spots were measured with an

optical microscope. In the transverse dimension, the full an-
gular divergence was measured to be 6.2±0.1 mrad. The
atom beam full width at half maximum(FWHM) was found
to be 1.79±0.03 mm at the center of the cooling region. In
the limit of zero divergence, this would be the size of the
atomic beam in the probe region and this is denoted as the
geometric limit. The measured beam divergence and sizes
were in good agreement with a ballistic trajectory calculation
utilizing the configuration of the oven and aperture geometry
based on the theory of effusive molecular flow[16].

The effect of laser polarization gradient cooling is pre-
sented in Fig. 2. CCD images of the atom beam illuminated
by the probe laser are shown. In the fluorescence images, the
atoms traveled from top to bottom and the probe laser illu-
minated the atoms from left to right. The cooling laser was
52 mW (peak I / I0=9) and detuned −12 MHz from reso-
nance. Next to the CCD images are intensity profiles taken
through the middle of the fluorescence images. Recall that
1.79 mm was the atomic beam’s transverse dimension at the
center of the cooling region and was denoted earlier as the
geometric limit. This limit is indicated by the horizontal
mark on each intensity profile. Figure 2(a) shows the uncol-
limated, normally diverging atomic beam. A slight asymme-
try in the fluorescence line shape due to the probe detuning is
evident. Figure 2(b) shows the atomic beam with the cooling
laser on, but the quarter-waveplate removed. This cooling
was from the Doppler molasses only. Figure 2(c) shows the
atom beam cooled with the lin' lin polarization gradient
configuration. Very little divergence of the atom beam oc-
curred over the 342 mm flight path from the cooling region
to the probe region. The measured FWHM was 1.94 mm,
corresponding to a transverse velocity of 16 cm/s. This is
below the Doppler cooling limit. The CCD image showed
that the beam was more collimated and brighter on axis than
with the Doppler molasses alone. This was a direct observa-
tion of the polarization gradient technique extending the
cooling into the sub-Doppler regime.

FIG. 2. (Color online) CCD images of laser-induced fluores-
cence from an atomic gallium beam:(a) no laser cooling, FWHM
=3.72 mm, (b) cooling with Doppler molasses only, FWHM
=2.30 mm, and(c) cooling with lin ' lin polarization gradient,
FWHM=1.94 mm. Cooling laser 52 mW power,D=−12 MHz.
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The lin ' lin cooling efficiency as a function of cooling
laser detuning is shown in Fig. 3. Here the cooling laser
power was 68 mW. The detuning of the laser was accom-
plished by manually changing the drive frequency of the
double-passed AOM in the saturated absorption apparatus.
Since the full width of the Ga transition in the uncooled
atomic beam was typically 35 MHz, the setting of the zero
detuning had an uncertainty of,3 MHz. The cooling laser
and the probe laser were parallel to better than 0.5 mrad.
Thus the uncertainty of the zero detuning point due to mis-
alignment of the lasers was at most 1.3 MHz. In discussing
the detuning of the cooling laser, a negative or red detuning
denotes tuning the laser frequency below resonance. A posi-
tive detuning(laser frequency above resonance) is denoted as
blue detuning. In our experiment, a red detuning always re-
sulted in a reduction of the atom beam size, corresponding to
cooling, whereas a blue detuning always caused an increase
in the size of the Ga beam, corresponding to heating of the
atoms.

The collimation of the Ga beam improved with laser de-
tuning from 0 to −14 MHz. Sub-Doppler cooling was
achieved for detunings beyond −12 MHzs,G /2d. From −14
to −24 MHz s,Gd, the collimation was relatively indepen-
dent of the detuning and the cooled atom beam had an aver-
age FWHM size of 1.89±0.02 mm. Subtracting off the geo-
metric limit, this gave a size increase of 0.10±0.04 mm over
a distance of 34 cm. The divergence of the cooled atomic
beam was found to be 0.3±0.1 mrad(full angle). The corre-
sponding nominal transverse velocity was 11±4 cm/s, about
half of the Doppler cooling limit.

Larger red detunings were also used, but the quality of the
CCD images started to deteriorate since the probe illuminat-
ing laser was also further from resonance. In general it was
observed that the cooling did not improve. The relative inde-
pendence of the cooling with detuning could be attributed to
the influence of the neighboringF=3→3 transition, which
was only 12.5G to the red side of the 3→4 cooling transi-
tion. [See Fig. 1(c).] As the red detuning increased, the ex-
citation of the 3→3 transition also increased. Investigation
of the optical pumping will be discussed later.

The cooling as a function of interaction length was inves-
tigated by translating a razor blade through the cooling laser
beam. The cooling efficiency as a function of the total power
in the truncated laser beam was shown for two different de-
tunings in Fig. 4. For the smaller detunings−10 MHzd only
,50 mW was needed before the collimation of the beam
ceased at a beam FWHM of 2.05 mm. For a larger detuning
s−18 MHzd it required at least 70 mW to cool the atoms to
the minimum s1.79 mmd. It was further observed that the
on-axis flux of the atomic beam did not improve with cool-
ing. In the case of Fig. 4, as the degree of collimation im-
proved with increasing power, the total fluorescence
steadily decreased, indicating a loss of atoms from the
4p 2P3/2sF=3d cooling state. For the smaller detuning, 68%

FIG. 5. (a) The laser-induced fluorescence spectrum obtained by
417 nm excitation with the cooling laser on(dark line) and off
(light line). (b) The calculated line spectrum for both isotopes of
Ga.

FIG. 3. Collimation of the Ga beam as a function of the cooling
laser detuning below resonance.

FIG. 4. Collimation of the Ga atomic beam for two different
detunings as a function of the total power in the cooling laser.
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of atoms survived and for the larger detuning, 57% of the
atoms survived. This pointed to optical pumping by the cool-
ing laser. Off-resonant excitation of theF=3→3 transition
and subsequent decay to theF=2 lower state resulted in the
loss of the cooled atoms. It should be noted that theF=2
→1 transition was only,2G from the cooling transition and
was also pumped. Thus the net effect of the optical pumping
was to transfer atoms from theF=3 cooled state to theF
=1,0 states.

To study this pumping, the CCD camera was replaced by
a photomultiplier tube and the uv probe laser was replaced
by a 417 nm diode laser tuned to the 4p 2P3/2
→5s 2S1/2 transition. This was a better transition for study-
ing the effects of optical pumping because there were fewer
hyperfine lines and they overlapped less. Figure 5(a) is the
laser-induced fluorescence spectrum obtained by 417 nm ex-
citation of the Ga atoms with the cooling laser upstream
turned on and off. The power in the 417 nm beam was
0.6 mW and the power in the uv cooling beam was 45 mW.
Figure 5(b) is a calculated spectrum for both isotopes to as-
sist in identifying the transitions. The pumping of atoms
from the 4p 2P3/2sF=3d state to theF=0,1 states was ob-
served by the decrease in intensity of the 3→2 transition and
the accompanying increase in the other transitions.

Two repumping schemes were investigated. In the first
case, a repumping laser tuned to the 4p 2P3/2sF=2d
→4d 2D5/2sF=3d of 69Ga was used. A portion of the cooling
laser s20 mWd was picked off and frequency shifted
+334 MHz by two AOMs in tandem to be in resonance with
the F=2→3 transition. The repump beam was overlapped
with the cooling laser beam in a polarizing beam splitter.
Laser-induced fluorescence spectra were taken downstream
with the 417 nm laser operating at a power of 0.4 mW. This
arrangement is shown schematically in Fig. 6. The effect of
repumping is shown in Fig. 7. The 417 nm spectrum in Fig.
7(a) was taken with only the cooling laser on and no repump
laser. The spectrum in Fig. 7(b) was obtained when both the
cooling and repump lasers were on. It is seen that the repump
laser was able to transfer almost all of theF=2 atoms to the
F=3 state. The dependence of the repumping efficiency on

power in the repump laser beam was also studied. About
5 mW of repump power was sufficient to empty theF=2
state and transfer the atoms to theF=3 state. Even at very
low powerss,1 mWd the repump laser was capable of put-
ting a significant number of atoms into theF=3 state.

The optical pumping of atoms from theF=3 state by the
cooling laser is sensitive to the total amount of cooling laser
power. This effect is seen by the difference in the spectrum
in Fig. 5(a), taken with 45 mW, and in Fig. 7(a) which was
taken with 20 mW. Due to a lack of cooling laser power
while performing the optical pumping studies, no systematic
study of repumping efficiency as a function of power in the
cooling laser was performed. However, in the event of a
powerful cooling beams.60 mWd, depopulation of theF
=2 state by the cooling laser to theF=1,0 states(as men-
tioned above) might be significant. We therefore investigated
an alternate scheme that involved pumping the atoms from
the F=0 andF=1 states. The uv repump beam was shifted
by +400 MHz from the cooling transition to allow pumping
on both theF=0→1 andF=1→2 transitions(separated by
only 20 MHz) in 69Ga. This scheme was also able to increase
the population of theF=3 state and was,0.753 as effective
as pumping directly on theF=2→F=3 transition.

In summary, using the cycling 4p 2P3/2sF=3d
→4d 2D5/2sF=4d transition at 294.45 nm, a Ga atomic beam
was laser collimated to 0.3 mrad(full angle) using the
lin ' lin polarization gradient configuration. The transverse
velocity of the atoms was reduced to 11 cm/s, about half of
the Doppler cooling limit. The one-dimensional kinetic en-
ergy of the atoms was reduced to,6 neV. This level of
collimation should be sufficient for a laser standing wave
focusing on Ga atoms and provides the first step towards a
unique method for modulating the atomic density in the
growth plane.

We wish to thank Henry Cook III and Jason Forsyth for
construction of the imaging apparatus, and Carmen Menoni
for lending us the CCD camera. This research was supported
by the National Science Foundation under Grant Nos. PHY-
9732489, ECS-9871210, and PHY-0140216.

FIG. 6. Laser arrangement for cooling and repumping of a Ga
beam.

FIG. 7. 417 nm laser-induced fluorescence spectra taken with
(a) only a cooling laser on and(b) both a cooling and repump laser
on. The repump laser detuned +334 MHz from the cooling laser
and power =4.5 mW.
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