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Abstract

An algebraic approach to finding all edge-weighted-colored paths within a weighted colored
multidigraph is developed. Generally, the adjacency matrix represents a simple digraph and
determines all paths between any two vertices, and is not readily extendable to colored mul-
tidigraphs. To bridge the gap, a conversion function is proposed to transform the original
problem of searching edge-colored paths in a colored multidigraph to a standard problem of
finding paths in a simple digraph. Moreover, edge weights can be used to represent some
preference attribute. Its potentially wide realm of applicability is illustrated by a case study:
status quo analysis in the graph model for conflict resolution. The explicit matrix function is
more convenient than other graphical representations for computer implementation and for
adapting to other applications. Additionally, the algebraic approach reveals the relationship
between a colored multidigraph and a simple digraph, thereby providing new insights into
algebraic graph theory.

Key words: Edge-weighted-colored multidigraph; Edge-colored paths; Adjacency matrix;
Decision making; Status quo analysis, Graph model for conflict resolution.

1 Introduction

It is well-known that matrices can efficiently describe adjacency of vertices, and inci-
dence of arcs and vertices in a graph, thereby permitting tracking of paths between any
two vertices [11]. Matrices possess various algebraic properties, which can be exploited
to develop improved algorithms for solving a variety of problems in a graph. As such,
extensive research has been conducted to design effective algorithms and efficient search
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procedures by exploring relationships between matrices and paths [12,14,25]. The pur-
pose of the colored path searching problem is to find all edge-colored paths between
any two vertices in a given colored multidigraph. The traditional approach of employing
adjacency matrix for searching paths is furnished in a simple digraph. For general graph
classes, searching for particular paths, such as Hamilton paths [1,24], Euler paths, and
shortest path routing between two vertices [26], can be solved efficiently, but there exist
very limited algorithms to search colored paths for colored multidigraphs.

The capability of searching edge-weighted-colored paths in a weighted colored multidi-
graph can have many benefits. For instance, Section 4 illustrates how this capability
can be conveniently applied to solve an open problem of status quo analysis in con-
flict resolution. A strategic conflict is a situation in which two or more decision-makers
(DMs) have to make independent choices in face of differing preferences about possible
outcomes for the DMs. Among the formal methodologies that handle strategic conflict,
the Graph Model for Conflict Resolution [7, 18] provides a remarkable combination of
simplicity and flexibility. As a post-stability analysis in the graph model, status quo
analysis examines whether predicted equilibria (or potential resolutions) are reachable
from the status quo or the initial state by tracing the moves and countermoves among
DMs. Although decision support systems for basic stability analysis [7] and the group
analytic network process [17] are available, the status quo analysis algorithms developed
in [21, 22] have not been implemented as a practical decision support system. In addi-
tion, the existing methodology [21, 22] does not track all aspects of conflict evolution
from the status quo state to a particular outcome. Some research [15] is related to the
graph model analysis, but the proposed approach in this paper investigates the relation
between the graph model and algebraic graph theory.

An important restriction of a graph model is that no DM can move twice in succession
along any path [7]. Hence, a graph model can be conveniently treated as an edge-
weighted-colored multidigraph in which each arc represents a legal unilateral move,
distinct colors refer to different DMs, and the weight along the arc identifies some
preference attribute. Thus, tracing the evolution of a conflict in status quo analysis is
converted to searching all colored paths with some preference structure such as simple
preference [7], uncertain preference [19], or strength of preference [13]. Therefore, the
proposed procedure developed in this paper includes the main results in [21, 22] as a
special case. The proposed method can be employed for transportation networks. For
instance, because of the accelerating globalization trend, a major logistic challenge is
to design a reliable, efficient, and economical systems for moving merchandise within a
multi-modal transportation network. Due to diverse geography and weather conditions,
cost and time constraints, as well as other factors, chartered companies may have to
switch their transport mode when passing through a transfer station. In order to design
a competitive transportation system, one must analyze all possible paths from any
initial station to a destination to make the best choice. This transportation problem
can be conveniently modeled as a problem of finding colored paths and the shortest
colored path in a weighted colored multidigraph.
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Although many approaches and algorithms for coloring vertices and edges have been de-
veloped in graph theory and computer science [3], the edge-colored graph research here
differs from previous work in that it is not concerned with how to color edges. Instead,
the fundamental problem is to search edge-colored paths in a given colored multidi-
graph. This research is also different from the well-known network analysis problem of
finding paths between two vertices due to the additional color restriction feature that
is not present in these problems. Therefore, it is difficult to use existing methods or
algorithms directly, including genetic algorithm [4] and neural network [26], to find the
shortest colored path. In this paper, an adjacency matrix of an undirected line graph is
extended to an adjacency matrix of a colored line digraph, thereby providing new in-
sights into algebraic graph theory [11]. Based on the matrix thus designed, a conversion
function is proposed to transform a colored multidigraph to a simple digraph so that
the original complex problem of searching edge-colored paths in a colored multidigraph
is converted to a standard problem of finding paths in a simple digraph with no color
constraints.

Additionally, due to the nature of the explicit algebraic expressions, the proposed
method is more effective, convenient, flexible, and extendable than existing approaches
in terms of the underlying graphs for carrying out path searching with various con-
straints, and is general enough to allow for many practical applications. [27] and [28]
have shown advantages of using algebraic approaches to calculate potential resolutions
and track conflict evolution. However, the proposed method [28] is based on the ad-
jacency matrix to search state-by-state paths. If a graph model contains multiple arcs
between the same two states controlled by different DMs, the adjacency matrix would
be unable to track all aspects of conflict evolution from the status quo state. It is well
known that the incidence matrix can represent multidigraphs if all edges are labeled.
The proposed algebraic approach starts with developing a unique edge-labeling rule for
colored multidigraphs, and then devises a conversion function based on the incidence
matrix.

The rest of the paper is organized as follows. In Section 2, several important definitions
in graph theory are reviewed. The proposed approach and main results are presented
in Section 3. Section 4 demonstrates how the proposed matrix method can be applied
by using a case study of the status quo analysis of the Gisborne Lake conflict under
uncertain preference [8]. Some comments and insights are furnished in Section 5.

2 Preliminary definitions and extended definitions in the algebraic graph
theory

A multidigraph [5] G = (V,A, ψ) is a set of vertices (nodes) V and a multiset of oriented
edges (arcs) A with ψ : A → V × V . If a ∈ A such that ψ(a) = (u, v), then we say
that a has initial vertex u and terminal vertex v. A multidigraph may contain a, b ∈ A
such that a 6= b and ψ(a) = ψ(b), in which case a and b are said to be multiple arcs.
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Let m = |V | denote the number of vertices and l = |A| be the number of edges in a
multidigraph G. If there exists a ∈ A such that ψ(a) = (u, v), then u is said to be
adjacent to v and (u, v) is said to be incident from u and incident to v. Hence, (u, v)
is called in-incident to v and out-incident to u. When G is drawn, it is common to
represent the direction of an edge with an arrowhead. We generally assume loop-free
graphs; i.e., for any a ∈ A, if ψ(a) = (u, v), then u 6= v. It should be pointed out that
a simple digraph is a directed graph without multiple edges.

Definition 1 For a multidigraph G = (V,A, ψ), edge a ∈ A and edge b ∈ A are
consecutive (in the order ab) iff ψ(a) = (u, v) and ψ(b) = (v, s), where u, v, s ∈ V .

Definition 2 For a multidigraph G = (V,A, ψ), the line digraph L(G) = (A,LA)
of G is a simple digraph in which vertex set is A and oriented edge set is expressed as
LA={d = (a, b) ∈ A × A : a and b are consecutive (in the order ab)}.

Definition 3 For a multidigraph G = (V,A, ψ), a path from vertex u ∈ V to vertex
s ∈ V is a sequence of vertices in G starting with u and ending with s, such that
consecutive vertices are adjacent.

Note that in this paper a path may contain the same vertex more than once [2]. The
length of a path is the number of edges therein. Definitions 2 and 3 are adapted from [11].

Definition 4 A colored multidigraph (V,A,N, ψ, c) is a multidigraph (V,A, ψ) and
a set of colors N , and a function c : A → N such that c(a) ∈ N is the color of a ∈ A,
provided that multiple edges of (V,A, ψ) are assigned different colors , i.e., if a 6= b, but
ψ(a) = ψ(b), then c(a) 6= c(b).

If a ∈ A such that ψ(a) = (u, v) and c(a) = i for i ∈ N , then a can be written as
a = di(u, v). The line digraph of G = (V,A,N, ψ, c), L(G), is a simple digraph and each
vertex in L(G) corresponds to an edge in the multidigraph G. Hence, coloring edges in
G is equivalent to assigning colors to vertices in L(G).

Definition 5 For a colored multidigraph G = (V,A,N, ψ, c), the reduced line di-
graph Lr(G) = (A,LAr) of G is a simple vertex-colored digraph with vertex set A and
edge set LAr={d = (a, b) ∈ A × A : a and b are consecutive (in the order ab) and
c(a) 6= c(b)}.

Definition 6 A weighted colored multidigraph (V,A,N, ψ, c, w) is a colored mul-
tidigraph (V,A,N, ψ, c) together with a map w : A → R+

0 (the set of non-negative real
numbers).

Thus an arc a ∈ A, a = di(u, v), carries a weight w(a), representing some attribute of
the move from node u to node v along the arc a, which is assigned color i. A network,
for instance, is a multidigraph with weighted edges. A weighted edge-colored path is
defined as follows:
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Definition 7 For a weighted colored multidigraph (V,A,N, ψ, c, w), an edge-weighted-
colored path is a path in the multidigraph (V,A, ψ) in which each constituent edge
carries a weight w(a) ≥ 0 and any two consecutive edges have different colors.

Definition 8 For a weighted colored multidigraph (V,A,N, ψ, c, w), the shortest col-
ored path between two vertices is the colored path that minimizes the sum of the
weights of its constituent edges.

In this paper, a colored multidigraph (V,A,N, ψ, c) is a unit weighted colored multi-
digraph if w(u, v) = 1 for any a ∈ A such that ψ(a) = (u, v). Many well-known algo-
rithms have been developed to solve the shortest path problems in digraphs, such as
Dijkstra’s algorithm [6] and Johnson’s algorithm [16]. Some other algorithms are avail-
able for searching for all paths in undirected graphs, such as the algorithm presented by
Migliore et al [23]. Because these algorithms are not based on algebraic representations,
it is not easy to extend them to the case of finding colored paths.

Let wa denote the weight of edge a. Then the weight matrix of a weighted colored
multidigraph (V,A,N, ψ, c, w) is defined as follows:

Definition 9 The weight matrix W is an l × l diagonal matrix such as its (k, k)
entry W (k, k) = wk, where wk denotes the weight of arc ak.

A weighted line digraph L(W )(G) = (A,LA,w) is a set of vertices A together with a set
of oriented edges LA, and a map w : A → R+

0 .

In traditional graph coloring problems, such as vertex coloring and edge coloring, colors
are assigned to vertices or edges such that adjacent vertices or consecutive edges have
different colors, and the number of colors needed is minimized [5]. In this paper, the
edge-weighted-colored graph problem is not concerned with coloring edges, but it aims
at searching edge-weighted-colored paths in a given colored multidigraph.

Important matrices associated with a digraph include the adjacency matrix and the
incidence matrix [11].

Definition 10 For a multidigraph (V,A, ψ), the adjacency matrix is the m × m
matrix J with (u, v) entry

J(u, v) =

 1 if (u, v) ∈ A,

0 otherwise,

where u, v ∈ V .

The incidence matrix B can be extended to the weighted incidence matrix.

Definition 11 For a weighted multidigraph (V,A, ψ, w), the weighted incidence ma-
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trix is the m × l matrix B(W ) with (v, a) entry

B(W )(v, a) =


−wa if a = (v, x) for some x ∈ V,

wa if a = (x, v) for some x ∈ V,

0 otherwise,

where v ∈ V , a ∈ A, and w(a) = wa.

According to the positive entries and negative entries, the weighted incidence matrix
can be separated into weighted in-incidence and weighted out-incidence matrices.

Definition 12 For a weighted multidigraph (V,A, ψ, w), the weighted in-incidence

matrix B
(W )
in and the weighted out-incidence matrix B

(W )
out are m× l matrices with

(v, a) entries

B
(W )
in (v, a) =

 wa if a = (x, v) for some x ∈ V,

0 otherwise,

and

B
(W )
out (v, a) =

−wa if a = (v, x) for some x ∈ V,

0 otherwise,

where v ∈ V , a ∈ A, and w(a) = wa.

It is obvious that B
(W )
in = (B(W )+|B(W )|)/2 and B

(W )
out = (B(W )−|B(W )|)/2, where |B(W )|

denotes the matrix in which each entry equals the absolute value of the corresponding
entry of B(W ). Let I denote the identity matrix. If W = I, then B(W ) = B, B

(W )
in = Bin,

and B
(W )
out = Bout.

Definition 13 For two m × m matrices M and Q, the Hadamard product for the
two matrices is the m × m matrix H = M ◦ Q with (s, q) entry

H(s, q) = M(s, q) · Q(s, q).
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3 An algebraic approach to searching colored paths

3.1 A Rule of Priority to label colored arcs

A colored multidigraph may contain several arcs with the same initial and terminal
vertices, but each arc in this case must be assigned a different color. To work with the
set of all arcs, we must label them carefully. Assuming that all colors and nodes are
pre-numbered. Therefore, the vertex set V and the color set N in G = (V,A,N, ψ, c)
are numbered as V = {1, 2, · · ·,m} and N = {1, 2, · · ·, n}, respectively. Let ci denote
the cardinality of arc set assigned color i, i.e., ci = |Ai|, where Ai = {x ∈ A : c(x) = i}
for each i ∈ N .

To label the arcs in a colored multidigraph G = (V,A,N, ψ, c), set ε0 = 0 and εi =
i∑

j=1
cj

for i ∈ N , and note that l = εn =
n∑

i=1
ci is the cardinality of A in G. The arcs,

a1, a2, . . . , al, will be labeled according to the color order; within each color, according
to the sequence of initial nodes; and within each color and initial node, according to
the sequence of terminal nodes. The ordering, referred to as the Rule of Priority, has
the following properties:

(1) If εi−1 < k ≤ εi, then c(ak) = i, i.e., ak has color i;
(2) For k < h, if ak and ah both have color i for some i ∈ N , and if ψ(ak) = (vx, vy)

and ψ(ah) = (vz, vw), then x ≤ z and, if x = z, then y < w.

If all arcs in a colored multidigraph have been labeled according to the Rule of Priority,
then the index of an arc uniquely determines its color. Therefore, Ai = {aεi−1+1, . . . , aεi

},
where Ai denotes the set of arcs with color i.

P

R

B

G1
v

R

B

G

2
v

3
v 6

v

4
v

5
v

Fig. 1. A colored multidigraph G.

Example 1 Fig. 1 shows a colored multidigraph G = (V,A,N, ψ, c). The labels on the
arcs of the graph indicate that the corresponding arcs are colored in red, blue, green,
and pink, respectively. Assume that the vertex set V = {v1, v2, v3, v4, v5, v6}. According
to the Rule of Priority, label all edges to determine the edge-labeled graph.

First number red 1, blue 2, green 3, and pink 4 so that N = {1, 2, 3, 4}. The cardinalities
of the arc sets A1, A2, A3, and A4 are 2, 2, 2, and 1, respectively. Then, according to

7



Terminal

Vetices

Colors

Initial

Vetices

1
a

2
a 3

a
4
a

5
a 6

a
7
a

1
v

2
v

3
v 4

v
4
v

3
v

2
v

2
v

3
v

3
v

6
v 4

v
5
v 2

v

Fig. 2. Labeling edges for the graph G.

the Rule of Priority, the process to label all colored edges is presented in Fig. 2. Ob-
viously, a1 = d1(v1, v2); a2 = d1(v2, v3); a3 = d2(v2, v3); a4 = d2(v3, v6); a5 = d3(v3, v4);
a6 = d3(v4, v5); and a7 = d4(v4, v2). Therefore, the edge labeled graph is expressed as
〈V, {Ai, i ∈ N}〉, where A1 = {a1, a2}, A2 = {a3, a4}, A3 = {a5, a6}, and A4 = {a7}.

3.2 Extended matrices to searching edge-weighted-colored paths

For a weighted colored multidigraph G = (V,A,N, ψ, c, w), it is obvious from Definitions
2 and 10 that the adjacency matrix of the line graph of G is the l × l matrix LJ
with (a, b) entry

LJ(a, b) =

 1 if edges a and b are consecutive in order ab in the graph G,

0 otherwise.

Definition 14 For a weighted colored multidigraph G = (V,A,N, ψ, c, w), the weighted
adjacency matrix LJ (W ) of weighted line digraph L(W )(G) is the l × l matrix
with (a, b) entry

LJ (W )(a, b) =

 wa · wb if edges a and b are consecutive in order ab in the graph G,

0 otherwise.

Now let W be a weight matrix and let L(W )(G) denote the weighted line digraph of G.
The following theorem is obtained based on Definition 12, on the weighted in-incidence
and out-incidence matrices B

(W )
in and B

(W )
out , and Definition 14, on the weighted adjacency

matrix LJ (W ) of the digraph L(W )(G).

Theorem 1 For a weighted colored multidigraph G = (V,A,N, ψ, c, w), the weighted

adjacency matrix LJ (W ) of line digraph L(W )(G) satisfies LJ (W ) = −[(B
(W )
in )T · (B(W )

out )].
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Proof: Let M = −[(B
(W )
in )T · (B(W )

out )]. Any (k, h) entry of matrix M can be expressed

as M(k, h) = eT
k ·M · eh = −[(B

(W )
in ) · ek]

T · [(B(W )
out ) · eh], where eT

k denotes the transpose
of the kth standard basis vector of the l-dimensional Euclidean space.

The qth nonzero element of the row vector eT
k · (B

(W )
in )T is equal to the weight wk of edge

ak = di(s, q) for some s ∈ V . Similarly, the qth nonzero element of the column vector

−(B
(W )
out ) · eh is equal to the weight wh of edge ah = dj(q, r) for some r ∈ V . Hence,

M(k, h) = wk · wh 6= 0 iff ak and ah are consecutive from ak to ah (See Fig. 3). Then,

by Definition 14, −(B
(W )
in · (B(W )

out ) = LJ (W ). 2

rs i q j
haka

Fig. 3. ak and ah are consecutive in order akah.

Let T1(B
(W )) = −(B

(W )
in )T · (B(W )

out ) = LJ (W ) denote a conversion function. The conver-
sion function, T1(B

(W )), maps the weighted incidence matrix B(W ) of the graph G to
the weighted adjacency matrix LJ (W ) of the weighted line digraph of G. It shows that
this conversion function transforms the original edge-weighted-colored multidigraph
G to a simple vertex-weighted-colored line digraph L(G). Obviously, when W = I,
LJ = −(Bin)T · (Bout). This matrix captures the adjacency relation between pairs of
consecutive edges without considering the color(s) of the consecutive edges. Another
conversion function is thus presented next to transform the original problem of search-
ing edge-colored paths in a colored multidigraph to the standard problem of finding
paths in a simple digraph without color constraints.

3.3 A conversion function for finding colored paths

Recall that ci denote the cardinality of the arc set in color i and let Eci
denote a ci × ci

matrix with each entry being set to 1 for i = 1, 2, · · · , n. Then, D is defined as the
following block diagonal matrix

D =



Ec1 0 · · · 0

0 Ec2 · · · 0
...

...
. . .

...

0 0 · · · Ecn


. (1)

It is obvious that this matrix D encodes the color scheme in the graph G, where the
dimension of each diagonal block Eci

depends on the number of edges in color i. More
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specifically, recall that εi =
i∑

j=1
cj for 1 ≤ i ≤ n. According to the Rule of Priority for

labeling edges, for any ak ∈ A and εi−1 < k ≤ εi, the edge ak has color i. Hence, for
any ak, ah ∈ A, if there exists 1 ≤ i ≤ n such that k, h ∈ (εi−1, εi], then edges ak and
ah have the same color i, and D(k, h) = 1. Also, D(k, h) = 0 iff edges ak and ah have
different colors.

Let LJ (W ) denote the weighted adjacency matrix of line digraph L(W )(G). To search all
edge-weighted-colored paths, the reduced matrix of matrix LJ (W ) is defined as follows.

Definition 15 For a weighted colored multidigraph G = (V,A,N, ψ, c, w), the reduced
matrix LJ (W )

r of matrix LJ (W ) is the l × l matrix with (a, b) entry

LJ (W )
r (a, b) =


wa · wb if edges a and b are consecutive in order ab

and have different colors in the graph G,

0 otherwise.

(2)

The conversion function can now be obtained in matrix form by the following theorem.

Theorem 2 For the weighted colored multidigraph G = (V,A,N, ψ, c, w), let El be
the l × l matrix with each entry equal to 1. Then the reduced matrix LJ (W )

r satisfies
LJ (W )

r = LJ (W ) ◦ (El − D), where “ ◦ ” denotes the Hadamard product.

Proof: Let LJ (W )(k, h) and (El − D)(k, h) denote the (k, h) entries of matrices LJ (W )

and El−D, respectively. Then, LJ (W )(k, h)·(El−D)(k, h) = wk·wh 6= 0 iff LJ (W )(k, h) =
wk · wh 6= 0 and D(k, h) = 0. Based on the definitions of matrices LJ (W ) and D,
LJ (W )(k, h) 6= 0 iff edges ak and ah are consecutive in order akah. D(k, h) = 0 iff edges
ak and ah have different colors. Obviously, LJ (W )(k, h) · (El − D)(k, h) satisfies the
statement (2). Therefore, LJ (W )

r = LJ (W ) ◦ (El − D). 2

From Theorem 2, T2(LJ (W )) = LJ (W ) ◦ (El − D) = LJ (W )
r . The conversion function,

T2(LJ (W )), maps the weighted adjacency matrix LJ (W ) of the weighted line digraph of
G to its reduced matrix LJ (W )

r . It reveals that this conversion function T2 converts the
simple vertex-weighted-colored line digraph L(W )(G) to its reduced subgraph L(W )

r (G),
called reduced weighted line digraph, which is a simple digraph with no color constraints.

Theorems 1 and 2 together present a conversion function F (B(W )) such that

F (B(W )) = [−(B
(W )
in )T · B(W )

out ] ◦ (El − D),

where B
(W )
in = (B(W ) + |B(W )|)/2 and B

(W )
out = (B(W ) − |B(W )|)/2. Therefore, F (B(W ))

transforms a problem of searching weighted colored paths in an edge-weighted-colored
multidigraph to a standard problem of finding paths in a simple digraph with no color
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constraints. Note that the incident relations between vertices and edges of a graph
can uniquely characterize the graph. Therefore, the incidence matrix is treated as the
original graph and used for computer implementation.

Example 2 Fig. 1 shows a colored multidigraph G = (V,A,N, ψ, c). If G is associated
with a map w : A → R+

0 , then G = (V,A,N, ψ, c, w) is a weighted colored multidigraph.
Construct conversion functions to determine the vertex labeled weighted line digraph
L(W )(G) and its reduced line digraph L(W )

r (G).

By Example 1, the colored multidigraph is labeled using the Rule of Priority. It is easy
to obtain incident relations between vertices and edges from the graph. Thus, matrices
B

(W )
in and B

(W )
out are constructed by Definition 12 as follows:

B
(W )
in =


0 0 0 0 0 0 0
w1 0 0 0 0 0 w7
0 w2 w3 0 0 0 0
0 0 0 0 w5 0 0
0 0 0 0 0 w6 0
0 0 0 w4 0 0 0

 , and B
(W )
out =


−w1 0 0 0 0 0 0

0 −w2 −w3 0 0 0 0
0 0 0 −w4 −w5 0 0
0 0 0 0 0 −w6 −w7
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 .

From Theorems 1 and 2, we obtain that

T1(B
(W )) =



0 w1w2 w1w3 0 0 0 0
0 0 0 w2w4 w2w5 0 0
0 0 0 w3w4 w3w5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 w5w6 w5w7
0 0 0 0 0 0 0
0 w7w2 w7w3 0 0 0 0


and

T2(LJ (W )) =



0 0 w1w3 0 0 0 0
0 0 0 w2w4 w2w5 0 0
0 0 0 0 w3w5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 w5w7
0 0 0 0 0 0 0
0 w7w2 w7w3 0 0 0 0

 .

The weight matrix designed here is convenient, since edge-weighted (0 or 1) can be used

to flexibly control any move between any two vertices in G. For instance, if w4 = 0,

then the original graph will be reduced to a new graph with no edge a4. If W = I, then

the conversion function T1 transforms the edge-labeled multidigraph portrayed in Fig.

4 (1) to the vertex-labeled line digraph L(G) shown in Fig. 4 (2). Then, the reduced

line digraph Lr(G) presented in Fig. 4 (3) for finding colored paths is obtained by using

the conversion function T2. The conversion process is illustrated in Fig. 4.
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Fig. 4. Transformed graphs of G.

3.4 Computer implementation

Searching colored paths aims to find all edge-colored paths in a given colored multidi-

graph. Although the shortest path problem in general graph classes has been extensively

investigated, searching colored paths in weighted colored multidigraphs is still a novel

topic.

Let AS = {a ∈ A : B
(W )
out (s, a) 6= 0} and AE = {b ∈ A : B

(W )
in (q, b) 6= 0}. Here, matrices

W , B
(W )
out , and B

(W )
in have been introduced by Definitions 9 and 12. AS is the set of

arcs starting from vertex s and AE is the arc set ending at vertex q. The matrix LJ (W )
r

provided by Theorem 2 is used to search the edge-weighted-colored paths between any

two arcs in a weighted colored multidigraph. Let P (W )(a, b) for a, b ∈ A denote the

edge-weighted-colored paths between two edges a and b. The edge-weighted-colored

paths between two vertices s and q for s, q ∈ V are expressed as P (W )(s, q). A vertex-

by-vertex path between any two vertices can be obtained by tracing arc-by-arc paths

between two appropriate arcs. Specifically, the paths between s and q can be expressed

as P (W )(s, q) =
∪

a∈AS , b∈AE

P (W )(a, b).
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Pseudo code of the proposed algorithm for finding colored paths

Step 0: Input the starting arc set AS, the ending arc set AE, and the reduced matrix

LJ (W )
r .

Step 1: For each arc as ∈ AS and each arc ae ∈ AE, set as as the starting arc and ae as

the ending arc. For each pair of as and ae, repeat the steps from Step 2 to Step

5.

Step 2: Put as into Path-Recorder as the last arc al(1) of the first path.

Step 3: In Path-Recorder, for each path i, e.g., P (W )(i), check its last arc al(i).

Obtain all the new arcs starting from al(i) based on matrix LJ (W )
r .

Case 1: If there is no arc starting from al(i), path P (i) ends. Eliminate P (W )(i) from

Path-Recorder;

Case 2: If a new arc has appeared in the path, which means that the path forms

a cycle, do not record the new path. If all the new arcs have appeared,

eliminate P (W )(i) from Path-Recorder;

Case 3: If the new arc is the end arc ae, add ae to the path P (W )(i) to form a new

path. Reserve the path into Path-Recorder and set an end-mark at the end

of the path.

If all the new arcs are ae, eliminate P (W )(i) from Path-Recorder;

Otherwise: Add each new arc to path P (W )(i), respectively, to form several

new paths.

Reserve these paths into Path-Recorder, and eliminate the original path

P (W )(i) from Path-Recorder.

Step 4: Repeat Step 3 until all the paths in Path-Recorder have the

end-mark at the end.

Step 5: Output Path-Recorder, which records all paths starting from as and ending at

ae.

The proposed algebraic method is convenient for computer implementation. A pseudo

code for the proposed algorithm is presented as follows.

Because the algebraic expressions are explicitly given, the proposed method facilitates

the development of improved algorithms to search colored paths and is easy to adapt

to new path searching problems. For instance, a transportation network problem of

finding the shortest path with specific constraints can be solved by using the conversion

function F (B(W )) = [−(B
(W )
in )T · B(W )

out ] ◦ M , where B(W ) denotes the original network

and matrix M is designed to capture constraint requirements, to transform the original

problem to a general shortest path searching problem without the constraints.

Note that in this paper all arcs are distinct on a path but the restriction that all nodes

13



be distinct on a path is relaxed.

The process that converts an edge-colored multidigraph to a simple digraph with no

color constraints is presented in Fig. 5.

Bin Bout

T1

T2

Fig. 5. The process of finding all colored paths or the shortest colored path

4 An application: status quo analysis in the graph model for conflict reso-

lution

An application is developed to illustrate how to search colored paths in a weighted

colored multidigraph in the context of conflict resolution.
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4.1 The graph model for conflict resolution

Definition 16 A graph model is a structure

G〈N,S, {ºi, Ai, i ∈ N}〉

where

• N is a non-empty finite set, called the set of DMs.

• S is a non-empty finite set, called the set of states.

• For each DM i ∈ N , ºi is a reflexive, transitive, and complete binary relation on S,

called i’s weak preference.

• For each DM i, Ai ⊆ S × S is DM i’s oriented arcs, representing unilateral moves

by DM i, and Gi = (S,Ai) is i’s directed graph.

Similarly, by the proposed Rule of Priority, the oriented arcs in the graph model are

labeled according to the DM order; within each DM, according to the sequence of initial

states; and within each DM and initial state, according to the sequence of terminal

states.

Two fundamental steps are involved in analyzing a graph model, stability analysis and

post-stability (or follow-up) analysis. In stability analysis, each state is examined to

determine whether it is stable for each DM (individual stability), and whether it is

stable for all DMs (an equilibrium) under appropriate stability definitions (solution

concepts) [7]. In the graph model approach, a conflict is conceived to start from the

status quo and then pass from state to state according to moves and countermoves

controlled by individual DMs, eventually terminate at some state from which no DM

is willing to unilaterally move away. As a follow-up analysis, status quo analysis is

to determine whether a particular equilibrium is reachable from the status quo and,

if so, how to reach it. Thus, in contrast to stability analysis, which identifies states

that would be stable if attained, status quo analysis provides a dynamic and forward-

looking perspective, identifying states that are attainable, and describing how to reach

them [20,21].

Obviously, DMs’ preference information plays a crucial role in any decision analysis.

In the original graph model, only a relative preference relation Â and an indifference

relation ∼ are available to represent a particular DM’s simple preference for one state

over another [7]. Furthermore, a preference framework called “strength of preference”
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that includes two new binary relations, “greatly preferred À” and “mildly preferred

>”, and the indifference relation was developed by Hamouda et al. [13]. In reality,

it is often a challenge to obtain accurate preference information in many situations.

Moreover, as [9, 10] discussed, conflicts among the attributes of alternatives can cause

preference uncertainty. To incorporate preference uncertainty into the graph model

methodology, [19] proposes a new preference structure, in which DMs’ preferences are

expressed by a triplet of binary relations {Âi,∼i, Ui} on S, where {s Âi q} indicates

that DM i prefers s to q, s ∼i q means that DM i is indifferent between s and q (or

equally prefers s and q), and Ui stands for that DM i’s uncertainty about its relative

preference between s and q, i.e., sUiq represents that DM i may prefer state s to q, may

prefer q to s, or may be indifferent between s and q.

DM i’s reachable list from s ∈ S is the set Ri(s) = {q ∈ S : (s, q) ∈ Ai}, states to

which DM i can unilaterally move in one step from state s. The members of Ri(s)

are DM i’s unilateral moves (UMs) from s ∈ S. Similarly, the sets R+
i (s) = {q ∈ S :

(s, q) ∈ Ai and q Âi s} and RU
i (s) = {q ∈ S : (s, q) ∈ Ai and qUis} contain DM

i’s unilateral improvements (UIs) [7] and unilateral uncertain moves (UUMs) [22] from

state s, respectively. Note that notation UIUUMs denotes unilateral improvements or

unilateral uncertain moves.

4.2 Weight matrix representation of preference information

The proposed weight matrix in Section 2 can be used to represent various preference

structures. If an edge ak = di(u, v) for u, v ∈ S and i ∈ N , then the weight matrix with

(k, k) entry is defined by

(i) for simple preference,

wak
=


Pw if v Âi u,

Ew if u ∼i v,

Nw if u Âi v,

(3)

16



(ii) for preference with uncertainty,

wak
=



Pw if v Âi u,

Nw if u Âi v,

Ew if u ∼i v,

Uw if uUiv.

(4)

Obviously, the preference structure with uncertainty presented by statement (4) expands

the simple preference expressed by (3). Therefore, the algebraic approach developed in

this paper for analyzing conflict evolution with preference uncertainty includes the main

results in [28] as a special case.

By appropriately restricting the element values in a weight matrix, one can trace UMs,

UIs, and UIUUMs in a graph model with preference uncertainty.

Definition 17 Let W denote an l × l weight matrix. Then

• when Pw = Nw = Ew = Uw = 1, the weight matrix W is called the UM weight matrix

WUM ;

• when Pw = 1 and Nw = Ew = Uw = 0, the weight matrix W is called the UI weight

matrix WUI ;

• when Pw = Uw = 1 and Nw = Ew = 0, the weight matrix W is called the UIUUM

weight matrix WUIUUM .

Note that if the state set S is treated as a vertex set and DM i’s oriented arcs are coded

in color i, then a graph model of a conflict is equivalent to a colored multidigraph with

appropriate preference relations. By the above discussions, the weight matrix is conve-

nient and flexible to represent preference information in the graph model. Therefore,

the graph model is converted to a weighted colored multidigraph. It is natural to use

the results of Graph Theory to assist in analyzing of a graph model. Hence, we will

hereafter use the same notation as Section 3 to represent a graph model for conflict.

A fundamental problem of status quo analysis can thus be treated as searching all paths

from a given initial state to a desirable state within the edge-weighted-colored multidi-

graph, G. Moreover, in the graph model, a legal path cannot include any DM moving

twice in succession. Therefore tracing conflict evolution requires searching all paths in

the colored multidigraph that start from the status quo state to some equilibrium and

do not contain consecutive arcs in the same color. The existing approaches introduced

by Li et al. [20–22] provide a limited picture of conflict evolution, and the pseudo-codes
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have not yet been implemented into a practical decision support system. The existing

matrix approach [28] used in status quo analysis for simple preference is based on the

adjacency matrix, which is able to reveal state-by-state paths and, hence, cannot han-

dle the case when multiple edges in distinct colors exist between two states. On the

other hand, the proposed algebraic approach in this paper is specifically designed to

tackle multidigraph and, hence is more capable of and efficient in tracking all aspects of

conflict evolution. Let P (W )(u, v) denote the edge-weighted-colored paths between two

vertices u and v in a weighted colored multidigraph. Obviously,

(1) if W = WUM , the P (W )(u, v) gives all colored paths from u to v where all UMs are

allowed, hereafter, denoted by PUM(u, v);

(2) if W = WUI , the P (W )(u, v) gives all colored paths from u to v where only UIs are

allowed, hereafter, denoted by PUI(u, v);

(3) if W = WUIUUM , the P (W )(u, v) gives all colored paths from u to v where only

UIUUMs are allowed, hereafter, denoted by PUIUUM(u, v).

4.3 Status quo analysis of the Gisborne conflict

In this subsection, the proposed matrix method is applied to a case study — Status

quo analysis of the Gisborne conflict. Lake Gisborne is located near the south coast

of a Canadian Atlantic province of Newfoundland and Labrador. In June 1995, a local

division of the McCurdy Group of Companies, Canada Wet Incorporated, proposed a

project to export bulk water from Lake Gisborne to foreign market. On December 5,

1996, this project was registered with the government of Newfoundland and Labrador.

At the time of registration, no policy existed on water export in bulk. However, this

proposal immediately aroused considerable opposition from a wide variety of lobby

groups. In addition to unpredictable harmful impacts on local environment and First

Nations culture, a critical issue is its potential implication of making water a tradeable

“commodity” that is thus subject to the rules of WTO (World Trade Organization)

and NAFTA (North American Free Trade Agreement). Therefore, if the Lake Gisborne

bulk water export project was successfully executed, the water policy in Canada might

have to undergo a significant shift as any firm would be able to follow the suit. As such,

the Federal Government of Canada sided with the opposing groups by introducing a

policy to forbid bulk water export from major drainage basins in Canada. The mounting

pressure eventually forced the government of Newfoundland and Labrador to introduce

a new bill to ban bulk water export from Newfoundland and Labrador, which effectively

terminated the Gisborne water export project. (See details in [8]).
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Nevertheless, several support groups remain interested in the project, and the provincial

government might restart the project at an appropriate time in the future due to its

urgent need for cash. This prospect introduces uncertainty into the preferences of the

provincial government for the Gisborne conflict model. This conflict is modeled using

three DMs: DM 1, Federal (Fe); DM 2, Provincial (Pr); and DM 3, Support (Su);

and a total of three options, as shown in Table 1. The following is a summary of the

three DMs and their options [19]:

• Federal government of Canada (Federal): its option is to continue a Canada-wide

accord on the prohibition of bulk water export (Continue),

• Provincial government of Newfoundland and Labrador (Provincial): its option is to

lift the ban on bulk water export (Lift), and

• Support groups (Support): its option is to appeal for continuing the Gisborne project

(Appeal).

Table 1
Options and feasible states of the Gisborne conflict

Federal

1. Continue N Y N Y N Y N Y

Provincial

2. Lift N N Y Y N N Y Y

Support

3. Appeal N N N N Y Y Y Y

State number s1 s2 s3 s4 s5 s6 s7 s8

In the Lake Gisborne conflict model, the three options together determine 8 possible

states as listed in Table 1, where a “Y” indicates that an option is selected by the DM

controlling it and an “N” means that the option is not chosen. The graph model of

the Lake Gisborne conflict is shown in Fig. 6 (1), where the labels on the arcs identify

the DMs who control the relevant moves. If DM i’s oriented arcs are coded in color

i, then, according to the Rule of Priority, Fig. 6 (1) is converted to an edge labeled

multidigraph as shown in Fig. 6 (2).

Preference information over the states are given in Table 2, where Â represents the

strict preference relation and is transitive. As shown in Table 2, DM Federal’s and

DM Support’s preference information is modeled to be known completely without any

uncertainty, but DM Provincial’s preference, on the other hand, is assumed to be

partially known as exhibited by its vacillation in the course of this conflict. What is

known is that it prefers state s3 to state s7, state s4 to state s8, state s1 to state s5, and
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Fig. 6. Graph model for the Gisborne conflict.

Table 2
Preference information for the Gisborne conflict

Colors DMs Certain preferences

Red Federal s2 Â s6 Â s4 Â s8 Â s1 Â s5 Â s3 Â s7

Blue Provincial s3 Â s7, s4 Â s8, s1 Â s5, s2 Â s6, only

Green Support s3 Â s4 Â s7 Â s8 Â s5 Â s6 Â s1 Â s2

state s2 to state s6, but the relative preference across these four groups is uncertain.

According to the rule (4), the preference information in Table 2 is applied to weighted

edges as given in Table 3.
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Table 3
Weights of edges for the labeled graph for the Gisborne conflict

Arc number a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24

Assigned weight Pw Nw Pw Nw Pw Nw Pw Nw Uw Uw Uw Uw Uw Uw Uw Uw Pw Pw Nw Nw Nw Nw Pw Pw

Based on the extended preference structure with uncertainty, Li et al. [19] redefine Nash

stability, general metarationality, symmetric metarationality, and sequential stability for

graph models with preference uncertainty. According to whether uncertain preferences

are deemed as sufficient incentives to motivate the focal DM leaving the current state

and credible sanctions to deter the focal DM from doing so, the aforesaid four types of

stability are redefined in four different manners and indexed as a, b, c, and d. These four

extensions are conceived to depict DMs with distinct risk profiles in face of uncertainty.

Li et al. [19] identify states s4, s6 and s8 as equilibria under extension b and d for the

Gisborne conflict. Note that for the stability definitions under extensions b and d, the

focal DM is conservative in deciding whether to move away from the current state, since

it would only move to preferred states (UIs). For details, readers are referred to [19].

In parallel to extensions b and d that predict the three equilibria s4, s6, and s8, we

examine the evolution paths PUI (allowing UIs only) from a status quo to the three

equilibria. Let the weight matrix WUI be defined according to the information provided

in Table 3 in which Nw = Uw = 0 and Pw = 1. From Theorems 1 and 2, F (B(WUI)) =

[−(B
(WUI)
in )T · (B

(WUI)
out )] ◦ (El − D) denotes a conversion function that transforms the

labeled multidigraph Fig. 7 (1) to the reduced line digraph Fig. 7 (2) that is a simple

digraph with no color constraints. Therefore, finding colored paths in Fig. 7 (1) is

equivalent to searching paths in Fig. 7 (2). If the status quo is s1, it is obvious that

the equilibria s4 and s8 can not be reached by UIs and the equilibrium s6 is the only

equilibrium that is attainable from the status quo. Specifically, the evolutionary paths

PUI(s1, s6) can be described below:

a1 −→ a18 ⇐⇒ s1 −→ s2 −→ s6

a17 −→ a5 ⇐⇒ s1 −→ s5 −→ s6

But if UIUUMs are allowed, equilibrium s8 is attainable from the status quo s1. The

weight matrix WUIUUM is defined by setting Nw = 0 and Pw = Uw = 1. Using conversion

matrix B(WUIUUM ), the labeled graph in Fig. 6 (2) is reduced to Fig. 8 (1) that illustrates

the evolution of the graph model for the Gisborne conflict with allowing UIUUMs only.

By the conversion function F (·), the colored multidigraph in Fig. 8 (1) is transformed

to the reduced line digraph in Fig. 8 (2). Searching colored paths PUIUUM(s1, s8) in Fig.

21



1
a

17
a

5
a

7
a

3
a

23
a 18

a

24
a

UIW
F B

( )
( )

1( )

2( )

1
s

7
s

6
s

5
s

2
s

3
s

4
s 8

s

1
a

2
a 3

a
4
a

5
a 6

a
7
a 8

a

9
a

10
a

11
a

12
a

13
a

14
a

15
a

16
a

17
a

18
a

19
a

20
a

21
a

22
a

23
a

24
a

Fig. 7. The conversion graphs for finding the evolutionary UI paths for the Gisborne conflict.

8 (1) is equivalent to finding paths PUIUUM(a1, a14), PUIUUM(a1, a7), PUIUUM(a9, a14),

PUIUUM(a9, a7), PUIUUM(a17, a14), and PUIUUM(a17, a7) in Fig. 8 (2). Therefore, the

evolution of the Gisborne conflict with UIUUMs from status quo state s1 to equilibrium

s8 is illustrated as follows:

a1 −→ a18 −→ a14

a9 −→ a3 −→ a12 −→ a18 −→ a14

a17 −→ a5 −→ a14

a17 −→ a13 −→ a23 −→ a3 −→ a12 −→ a18 −→ a14

a17 −→ a13 −→ a23 −→ a11 −→ a1 −→ a18 −→ a14

a17 −→ a13 −→ a7

After transforming a colored multidigraph to a simple digraph under conversion func-

tions, existing algorithms such as those reported in [23] and [26] can be used to find all

paths or search the shortest path.
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Fig. 8. The conversion graphs for finding the evolutionary UIUUM paths for the Gisborne
conflict.

5 Conclusions

This paper proposes a novel algebraic approach to searching colored paths in a weighted

colored multidigraph. Specifically, according to a Rule of Priority, the weighted colored

multidigraph is converted to an edge-labeled multidigraph. With the unique labeling of

all colored edges, a conversion function to transform a weighted colored multidigraph to

a simple digraph is developed, whereby the problem of searching edge-weighted-colored

paths in a weighted colored multidigraph can be achieved by finding paths in a simple

digraph with no color constraints. Another contribution of this approach is the weight

matrix that is designed to reflect some attribute of edges in a flexible and efficient

manner.

This proposed approach is then applied to the status quo analysis in the graph model

for conflict resolution to demonstrate how it may be conveniently adapted for practical

use. In the graph model, an important restriction is that consecutive moves are not
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allowed for any DM along any path and, hence, a graph model can be treated as an

edge-weighted-colored multidigraph and preference information can be represented by

an appropriately designed weight matrix.

The proposed method provides an explicit algebraic expression that facilitates the de-

velopment of improved algorithms to search all colored paths. The explicit algebraic

representation derived in this paper may be adapted for new applications such as trans-

portation networks and status quo analysis with preference strength [13] and hybrid

preferences.
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We would like to thank you for carefully reviewing our paper and providing useful
comments to improve it. Our revisions, written in response to your comments, are
explained below.

• In Definition 7 on page 5, the authors introduce the concept of ”weighted edge-
colored paths.” On the other hand, the authors use the phrase ”edge-weighted-
colored paths” in the same page (in the last line in the second paragraph from
Definition 9). Also, the title of Section 3.2 on page 8 says ”... edge-weighted-
colored paths.” ”weighted edge-colored paths” and ”edge-weighted-colored paths”
are the same? If so, use the same phrase. If not, give a definition of ”edge-
weighted-colored paths.”

Following your thoughtful suggestion, all phrases “weighted edge-colored paths”
in the old version have been changed to “edge-weighted-colored paths” in the
revised paper. Now the terminology has been used consistently throughout the
manuscript.

• The sentence of Theorem 7 looks ambiguous, because figuring out the assumption
of this proposition is difficult. Read again it, and revise it appropreately.

As this paper does not have Theorem 7, it is our understanding that the referee
actually means the two theorems on pages 8 and 10. Therefore, appropriate
modifications have been made for these two theorems to make them more con-
cise and improve their readability. For instance, to simplify the statement of
Theorem 1, a new paragraph is added before it is introduced on page 8. To
make the statement of Theorem 2 smoother, Definition 15 is added on page 10.
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