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In the self-consistent dual unitarization model with several input Regge
trajectories we prove that: i) the intercept of output Pomeron pole is exactly
equal to one, i.e. ap(0)=1, ii) equal spacing rules hold for the intercepts of
the Regge trajectories, i.e. 2ax*(0)=a,(0)+ ag (0) 2ap*(0)=a, (0)+ a4(0),
2 ap* (0)=aq (0)+ay (0), iii) SU(4) symmetric coupling constant g2 satisfies
the relation

178 =1/(1—apl0) +1./(1—ag(0)) +1./(1—ay0).

The proof for these consequences is given by allowing in the loops of the
unitarity sum all the possible Regge trajectories and assuming exact SU(4)
symmetry for the Reggeon coupling constants, while broken SU(4) symmetry
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for the intercepts of the Regge trajectories.
The positions of the daughter trajectories for the Pomeron and the Regge
trajectories are also discussed numerically.

§1. Introduction

Considerable interest has been devoted
recently to a dual unitary program (dual
unitarization) initiated originally by
Veneziano" and Huan Lee? aiming at the
construction of the topological Pomeron and
self-consistent Regge pole generation in the
absorptive part of 2 »2-body scattering ampli-
tudes, using unitarity and the quark topology
structure of the multi-Regge amplitudes. Much
of the subsequent investigations along this line
has proved that this program provides rather en-
couraging results, thus reproducing the basic
features of high-energy scatterings such as
calculations of Pomeron effects, the OZI rule
and its violation, exotic exchanges, the breaking
of exchange degeneracy both for meson and
baryon trajectories and so on® . Chaichian and
one of the present author” have studied
recently the general case of the dual unitar-
ization model in which several input Regge
trajectories are present. In the present paper
following the general idea of Ref 4) we consider

the bootstrap for the Regge trajectories by
studying the set of equations in which all the
trajectories are included. We investigate the
consequences following from the self-
consistency requirement between the Pomeron
sector and the Reggeon sector. As in I, we
consider the case of several input trajectories by
introducing sets of coupled integral equations
and studying their Mellin transforms. We
distinguish two different cases: the appro-
ximate case a) and the exact case b). In the
approximate case a) which could be called the
“leading trajectory approximation”, we put in
the loops of unitarity sum only the (one)
highest-lying Regge trajectory which is allowed
by duality diagram. In the exact case b) we
allow all the Regge trajectories, which are
permitted by duality diagrams, to be exchanged
in the unitarity sum.

In both cases, as the consequences of the
self-consistency between the dual unitarity
bootstrap for the Pomeron sector and the
Reggeon sector we prove that:
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i) the intercept of the output Pomeron pole
is exactly equal to one, i.e.

ap(0)=1.

ii) equal spacing rules hold for the SU(4)
broken intercepts of the Regge
trajectories:

2ax* (0)=a, (0)+ a4 (0),
2ap* (0)= a, (0)+ ay(0),
2ap* (0)= ag (0+ a,(0). (1.1)

iii) SU(4) symmetric coupling constant g*
satisfies the relation:

176 =1/(01—ae (0) +1./(1— as (0)

+1/(1*a¢(0)). (1.2)

In deriving these consequences we assume the
exact SU(4) symmetry for the Reggeon coupl-
ing constants while broken SU(4) symmetry for
the intercepts of the Regge trajectories.

The plan of the paper is as follows: In § 2,
after clarifying the notations used specifically
in the present paper we discuss the self-con-
sistency between the Reggeon sector and the
Pomeron sector in the leading trajectory appro-
ximation. In § 3, we treat the problem exactly
allowing all the Regge trajectories, which are
permitted by duality diagrams, to be exchanged
in the unitarity sum. We first consider the SU
(3) symmetry case and then extend our discus-
sions to SU(4) case. We also discuss numerically
the positions of the daughter trajectories for
the Pomeron and the Reggeons.

§2. Leading Trajectory Approximation

2.1 Notations

We use the following notations throughout
the paper.

R

t{chekilmaginary part of the Mellin transformed
amplitude for the two-body Reggeon scatter-
ing of i#j > k+/ in which the Reggeon
R(p, K*, ¢, D*, F*, ) is exchanged (Fig. 1)

I

)

A

Fig.1. Quark line diagram
fori+j>k+1

Bij o’
the product of two coupling constants
8,58 grsin the Born term for i+j > 0 > k+l
(Fig. 2)
iMk
72
Fig.2. Quark line diagram
for Born term
i+j »a—> k+1
rim——> kn.-

the product of the coupling constants
8ims 8qtn Of the loop diagram in the unitari-
ty sum (Fig. 3)

i k

w
ni “n
=]

Fig.3. The loop diagram
in the unitarity
sum.

The contribution of this diagram in the
Mellin-transformed integral equation reads
as:
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Tim—»kn

SG—lasy a4 ., (2.1)

a'”(0) = a; denotes the intercept of the
(input) Regge trajectories with the notations
p=1, K*¥=2, ¢=3,D*=4 F*=5 y=6.

For simplicity, we also use the notations:

R R
... =A_.
11> g7 t7
ﬂii—»;’jEﬂij, (22)
Tiim =T, GLEI=123....6)

For the Pomeron sector (§2.3 and §3.2) we use
the similar notations using the superscript P

instead of R. Other notations are the same as in L.

2.2 Reggeon Sector

We consider first the planar bootstrap for
Reggeons in the leading trajectory approxima-
tion. In the following we consider several
representative vector meson- vector meson scat-
terings in which one definite Reggeon R is
exchanged. For each process we write the
integral equation diagramatically for the planar
unitarity sum in terms of dual-quark lines and
then rewrite it in the Mellin transformed form.

(i) po>pp

1 1
- Y
! up l_1>T\1 =2 23)

In terms of the Mellin transformed scattering
amplitude this equation reads as:

=1

Al‘[::/911+{731/(j_a01)}‘41[1]. (24)

Hence one has

Al = (G—a, )8,/ (G, —1.). (2.5)

The output p — trajectory is generated as the
singularity position of the scattering amplitudes

45

out

a; = e, (2.6)

Imposing the bootstrap condition that the
output pole should be &qual to the input one,
ie.

a(iut:ai": a, 2.7)
we obtain
r,=1—a, (2.8)

One can treat the following process (K* K* >
K*K*) and all other ones in a similar manner

as (i).

(i) K*K*>K*K*

2 2
_u ., 2 2 N/
= 2=»>\%+>VC\
2 u 2 2/_U\2 2__Q5 2
u

o

2.9)
@
A= Bt T/ (j—ac) Ay (2.10)
AzqzS :(]'_a“)ﬁzz/(j_a”_rn)- (211)
For the output pole ¢ one has:
a%t=aco+ 1, (2.12)

We assume that all the coupling constants g; j,
preserve the exact SU(4) symmetry, i.e. all
possible quark diagrams have equal weight
irrespective to whether they contain p, n, 2 (or
¢) quarks or not. Thus,

2
ijo k&>

Il

r
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Bijow = f (forany i, j k, 1). (2.13)

Then this exact symmetry assumption and the
condition that the output % should satisfy
4= a, (=a'") together with eq. (2.8) yield
the equal spacing relation:

2a,= a; + a; (214)

(iii) D*yY~>D*y
4

—_4 4 u

C (/C _ M " NG/ ¢
A / C
7 o 6/_\6 |

(2.15)

A4:: ﬂ45+r44/(].-a64)A4e¢, (2.16)

A4ﬁ:(f~a54)ﬁ4e Aj—aea—r,, ). (2.17)
For the output Reggeon a‘;“t, we have

= actr,. (2.18)

The bootstrap condition o5“= @, together
with eqs (2.8) and (2.13) yields:

2a,=a, +a,. (2.19)
(iv) K*K*>D*D*
2 u 2t
23__E* - W Fr
u 4 2 4 2 4
4 (2.20)

AZ*:/?24+T24/{ j‘(aénﬁLain_]) }A:;t
(2.21)

AT = (j—d) — ai"+])/924/{j-(ai"+ai"—1)

TTul. (2.22)
For the position of a%“/we have
a3 (@) + &7 —1) —7, =0 (2.23)

Egs. (2.8) and (2.13) together with

out

a¥ =q, yield:
(2.24)

ads = o + As— A,
Then using eqs. (2.14) and (2.19) we obtain:

205 =as +ag. (2.25)
Discussions on the other processes lead either
to eq. (2.8) or to one of the relations (2.14),
(2.19) and (2.25) and do not add any new
results.

2.3 Pomeron Sector

In contrast to the planar bootstrap for
Reggeons, the (topological) Pomeron is
generated from the sum of planar (untwisted)
and cylinder (twisted, crossed) contributions in
the loops of the unitarity sum. For the
Pomeron sector we have discussed in I in rather
detail the derivations of the integral equations
for (imaginary part of) VN-diffractive scattering
amplitudes and hence we do not repeat here
their derivations. Here we summarize the main
expressions for the Pomeron sector in the
leading trajectory approximation.

A =2r,/(—a,) 2, (2226)

_;112’: 7'zz/(j_acz) Zf“FTu/(j—a“)z_if,
(227
=27,/ (j—a,,) 43, (2.28)

Zf: T“/(]'_a”) Zf‘*"f“/(j—a“)zf ’

(2.29)
=7,/ (j—a) 2 +r/(j—a AP,

(2.30)
A =2r,/(j—a.) 4, (2.31)

where AF denote the imaginary part of the
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Mellin-transformed physical amplitudes 4% =
1/2(4i +B;) which are expressed in terms of
the untwisted (4;) and the twisted scattering
amplitudes (B;). From eq. (2.26) we have for
the intercept of the Pomeron:

ap=2a, —1+71,, (2.32)
If one imposes the self-consistency requirement
with the planar Reggeon bootstrap (i.e. eq.
(2.8) ) on this equation, then the Pomeron
intercept becomes equal to one:

a, (0)=1 (2.33)

In egs. (2.26) — (2.31), taking 11m and
denoting the Pomeron residues as

B = lim(J—1) 4%

1

(2.34)

and using the results of the planar Reggeon
bootstrap, i.e. eq. (2.8) and the equal spacing
relations (2.14), (2.19) and (2.25), we obtain
the ratios between the total cross-section for
the VN diffractive scattering as follows®’

Re = B5/fF= o(K*N)/o(on)=1/2

(1+ 7)), (2.35)
Ry = pY/p% = ol #N)/ o(oN)=7r (2.36)
Ry = BY/BY = o(D*N)/o(on)=1/2

(1+7,), (2.37)

Rs = BF/pY = o(F*N)/o(on)=1/2
(Rs+Rs), (2.38)

Ry = BE/BY = o(¢N)/ o(oN)= r,,(2.39)

where
= (1= (0))/(1—a3(0)), (2.40)
r, = (1—a1(0))/(1—0as(0)). (241)

The relations (2.35) — (2.41) coincide with
those obtained in the framework of f-

dominated Pomeron model of Carlitz, Green
and Zee® ).

§3. Exact Treatment

By the exact treatment we mean that we
keep in the loops of the unitarity sum all the

possible Regge trajectories. We first discuss in
the SU(3) symmetry and then in SU(4). Similarly
to the previous section we restrict ourselves to
several representative processes. We first write
the integral equation in terms of quark lines and
then rewrite it in the Mellin-transformed form.
Exact symmetry eq. (2.13) is assumed.

3.1 Reggeon Sector SU(3)

@ pp>pp

il

44 =gt ru/(]'_“aa)A,l:
+7’21/(j‘(1£2)/1:_ (32)

Exact symmetry for coupling constants eq.
(2.13) implies:

4l =4, (33)
Consequently one has
Af=p5,1= 71 /(j—ac)
— 7,/ (j—acd}. (3.9

The output position for 0 can be determined
from the equation

l/gz—_‘]/(]'*am)‘*’l/(]‘_acz). (35)
Imposing the condition

j=at=a,(=al") (3.6)
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we obtain

1/82=1"(1—a) +1./(1+as =2 a,).(3.7)

(i) K*K*—K*K*

b S
—u 2 2 =
| (3.8)
A5 =B, 1, [(j—ac) 4}
+723/(f_aca> 42 59)
Similarly to eq. (3.3) the equality
An= g (3.10)

holds under eq . (2.13) and hence one has:

A5=F, /1~ 1,/ (j—ac:)

_rzs/(]._dca)}, » (31])

The equation which determines the singularity
position for ¢ reads as:

1/g*=1/(j—ac) +1/(j—acs), (3.12)

Then imposing the condition

j=al = ay(=a') (3.13)
we obtain

]/gzzl/(1+a3—2 az)"}"l/(l"aa),

(3.14)
(iii) K*K*>pp
2; 1
u f N\ /
s
0 1 2/T\11=u,§c K* .
u
(3.15)

K*
AZQ_’II:/?ZZ‘*II+T22—->“/(j_(a2+al_]))

K*

Ayr sy +T23_>12/(]"-(a3 +a,—1))
Ay s, (3.16)

Using the relation

AK* _ AK*

22— 11 23—>12

(3.17)

one obtains -
K*

Azz—ﬂl:l/{]—722—»11/(j_(a2+a1—1))_
Tase” (j—(as+ a2z —1))}. (3.18)

Consequently the equation which determines
the position of K* reads as:

]/gzZ]/{j—(az +a,—1)}

+1/{j—(as+a. =1}, (3.19)

It follows from eqs. (3.7) and (3.14) that:

2a:=a, +a,. (3.20)
Thus in the exact treatment as well the equal
spacing relation holds. For the coupling constant
g°one has
/g8 =1/(0—a,)+1./(1—as) (3:21)

which is also consistent with eq. (3.19) if one
puts therein j =a %’ = a,.One can solve the
quadratic (with respect to j) equations (3.5),
(3.12) and (3.19) in which eq. (3.21) is used for
1/g*. Each equation contains as its roots the
corresponding Reggeon a; and its daughter (a,),
Using the equal spacing relations (3.20) we obtain
the following relation between the Reggeon
a@; and its daughter (a)),:

a,‘_‘(a,)D: ]*a2+(a1_aa>z/4(1_az)2,
(G=123) (322

Note that the discussions on other scattering
processes do not add any new results other
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than egs. (3.5), (3.12) and (3.19).

3.2 Pomeron Sector SU(3)
In the SU(3) symmetry we have for VN-

diffractive scattering (physical) amplitudes (in

which Pomeron is exchanged) the following set

of equations®’:

2{22711/(j_a0l)2f+2 ru/(]'—acz)zf,(3-23)
AE=1y/ (j=ae) AP+2 7,/ (j—ac,) 4f
G —ac) 7T, (3.24)

AP=27,/ (j=ac2) AL+ 27,/ (j—de) 4E, (3.25)

The singularity position for the Pomeron is
determined from the following equations:

. 1 0
28 J—aa J—ace
-1 . -1
2(j—ac) 2g* j—ace 2(1'—0‘“):0
1 1
0 - -
J—ace 28% j—ac
(3.26)

Here eq. (2.13) is used. Imposing on the
eq. (3.26) the self-consistency condition with
the planar bootstrap, i.e. eqs. (3.20) and (3.21)
we obtain the solutions for the Pomeron
singularity:

it=1
jr=1-4.
jE=1-24, (3.27)

with 4={(1—a,)*+(1—as)?} 2(1—as).
Thus, in the exact treatment as well the
Pomeron has the intercept exactly equal to
one:a?(0)=1. [Note that we have

S4h=30-n<31.

3.3 Reggeon Sector SU(4)

We extend our discussions to the SU(4)
symmetry case. As in the previous section for
each representative scattering process we write,
in order, the integral equation in terms of dual-
quark lines, its Mellin-transformed form, the
equation which determines the singularity
position of the corresponding Reggeon R
assuming the exact symmetry for the coupling
constants (2.13), and finally we impose the
bootstrap condition o= ag(=af").

(i) PP-pP

1 1
u u _ > u <U+EUVU
1 ﬁp 1 1/“1 e u” 1

(3.28)
o__ L o
All_ﬁ11f§'254ryi/(] afl) }An’ (329)
1/g2:1/(j'a“)+1/(]'-dm)
+1/(—a,,) (3.30)
1/g2=1/(0—a)+1/(1+a—2az)
+1/(Q+ar—2a ). (3.31)
(i) K*K* -~ K*K*
) 2
L/
4 ., 2 2
-y
o= 2 2/—11_\2 il b
=2 (3.32)
Azf:ﬂzzizzai Tzi/(]._aci) }Az(éi' (333)
1/ =1/(j—a )+ 1/ (j—a,,)
+1/(j_ac5)» (334)

1/g2 :1/(1402)4‘1/(1—%(12'—2(13) +

1/ (1+a,—2as5). (3:35)
(iii) D*Y>D*Y
4 4
P N \L/
o L N s (3.36)
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Bt 2 AT SGra)) 4 . (337)

1/¢% :]/(j—ac4)+l/(j—acs)
1/ (j—ayy) (3.38)
/gt =1/0-a)+1/(+as —2a,)
1/ tam2a). o (339)

(iv) K*K*> po

u
2—/\ ] <u+ \_\W
2_—a TG | S (3 40)
* Kt
Ag_'ll:ﬂ22‘*11+r22”“ll { (a2 +a1 —])) A22_>11

. K*
T xz/{] —(as+a, —1) }A32—+21

+r15ﬁ,,4/{ j—(as +a, —1) 457,
(3.41)

1/7g2=1/{j—(az+a, =D }+1/{j—(a:

as;—1) | +]/1 j— (as +a,—1) 1
(3.42)

1/g2:1/(1“a1)+1/(1—a3)

1/ {1 —(as +as —as) }. (3.43)

(vV)D*D*— 00

(3.44)

p* —
Aysn™ /@44—>11+T44—>11/{ f”‘(a4 +ay —1)}

A T/ (s + a—1) )

44 — 11
D*

A54—»21+745—>14 { ]_( as +a, —1) }
D*

Ay 41y (3.45)

/g2 =1/{j—(asta, =D }+1/{ j—(as +

Scheme with Several Trajectories
17¢2=1/"(0—a)+1/{1—(as +a, —a,) }
+1./(1 —aw). (3.47)

(vi) K*K* - D*D*

N/t
= @p%@. i{{
F' A= /—U_\ i=ud,c Ft
2 b2 i =4 (3.48)

P A (e tas—1)])

AZZ —>44 = /922 —>44 +r22 44

A A Ty e (s +as—1) }

22—)44

Af:_’ﬂ rzs—»w —(as +as—1) }
F*

Ay e, (3.49)

/g =1/{j(a:+a,—1) }+1./{]j—(as +

05“])}4“]/{ j—(a5+a5—])},(3-50)
l/gzil/{ l_(a2+a4“as)}+l/(l_a3)
+1/(0—as), (3.51)

Discussions on all other V'V-scattering channels
do not yield any new results and can be
reduced to one of the relations obtained above.
Using the notations «i= 1 — a; , we obtain from
eqs. (3.47) and (3.51)

(2, —x,)*— 2¢(x, —x,) ~x2=0 (3.52)
with  c=x x,/ (z,—x,),
Hence

x,~x =0/t tat (3.53)

A minus sign in the r.h.s. of eq. (3.53) was
chosen by taking into account that a,> a;
and hence x, —x;<( .From eqgs.(3.31) and

(3.35) we obtain:

(x,—x) 22, Qx,—x,—x ) N2 x, Qx,~x,)
Qx,~x) } + (2@, ~x)— (x,~x )}/ {2z, ~x,)

@ DAL ta =D 1(346) o (3.54)
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Using eq. (3.53) we get (@), —(ap,,=4, (fori=1,2,3,...,6)
(3.63)
2 (w,~x,)—(x,~x)=2[c* tx}—2c*—(x,—x) where
:(2x2~x3-x1)(2x2+‘x3+x1) 4 = Z(I_aﬁ +1_a4 1—a,) __‘12_
2]ct vtai+ 2ctas—x (3.55) 18 \l—a;  1—as 1—as 2
(3.64)
From egs. (3.54) and (3.55) we get
- (as—ae)?  (as—a;)? (a,—a;)?
@, o, —x) (2, ~,) 22,/ {x,2, @2, ~ ) T R R (R
Qx,—x )M Qux,+x,+x )/ (Q2x,—x)(Qx,—x,) ;2 (a5 —as) (as —a; )_2 (a, —a;)(as —as)
(1—ay) (1—as) (1—a;)(d—as)
@Jcr+ai+ 2e4x,—x))) =0. (3.56)
9 (as —a)(a; —as )
Since  1>a,>a,>a;>a,>as;, one has (J—as) (A —ae) (3.65)

in the 1. h.s. of eq. (3.56)(---)>() and hence

2x,—x, —x 3= ()

(3.57)

or

2a,= a,Ta,, (3.58)

Then it follows from eqgs. (3.31) and (3.51),
and egs. (3.35) and (3.47) together with eq.
(3.58) that:

2a4:a1+a67

(3.59)

2a5:a3+a6 ’ (3.60)

82 =1/(1—a)+1/(Q—a+1/(1—as).
(3.61)

One can solve the cubic (with respect toj)
equations (3.30), (3.34), (3.38), (3.42), (3.46)

and (3.50) in each of which eq. (3.61) is
assumed for 1/g2 and determine the positions
of the daughter trajectories. These equations
contain as the roots the corresponding Reggeon
@; and its two daughters (a;)p; and (ai)p-

((ai) p1> (@) p2). Using the relations (3.58)
—(3.60) , we obtain the following “equal spacing

relations” between a;, (a;)p, and (a;) p».

ai_(az’)Dl :Al ,

(3.62)

In table 1 we summarize the numerical values
g2, 4 and 4, for several typical values of the
Reggeon intercepts, using eqgs. (3.58) — (3.61)
and (3.64) — (3.65).

Table 1

Qi 0.5

Qs 0 0.3

Qv 0.25 0.4

as -2 —4 —6 —2 —4 —6
Qi | —0.75) —1.75 —2.75| —0.75 —1.75| —2.75
a; [ —1.00] —2.00f —3.00f —0.85} —1.85] —2.85
g% | 0.300] 0.313| 0.318| 0.266] 0.276| 0.280
41 0.830 ] 0.8321 0.833] 0.616] 0.617} 0.617
4> 1.939 | 3.898 | 5.830| 2.170( 4.140| 6.127

3.4 Pomeron Sector SU(4)

For VN-diffractive scattering amplitudes (in

which Pomeron is exchanged) we have the

following set of equations‘“:

=27,/ (—ac)}4t=227;/(j—aci) 4F
1=2,4

(3.66)

{ 1-2 722/(j~acz) }Ef?ZrQi/(j“aci) Z}: N
£-1,3,4,5
(3.67)
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(1-27/(j—aem) } 4F :__Z’Zra/(j*aci);f,
o (3.68)

(1-27, Aj—ac) Y A=3r /(j—ac) AT
1-1,2,5,6
(3.69)

(1-27./G—ac) =37,/ (j—ac) AL,
1-2,3,4,6

{1-2 Tﬁe*/(j_acs)}‘z: :-4427/62/(].'(101.)2};.
(3.71)

Assuming eq. (2.13), we obtain the following
equation which determines the singularity
position for the Pomeron:

(3.70)
11 1 1 .
25’2 j—ag, J g 0 J 7% 0
| 12 o 1 1
] 7% g% jTan J % J—=qc J—a 0
1 1 1
0 . P 0 - 0
J T 28 J % J—a
(j)= =
74 1 1 . o2 R
J 7% J7 % g% jrag J % J %
0 _‘1 1 1 12 1
] % j—a j—a., g’ J—a,, J—a,,
1 1 1
0 0 0 - - I
] %y ] 7% 2g° J—

The equation (3.72) is a 6- th order equation
(with respect to ) and hence we do not try to
solve it analytically. However, requiring the
self-consistency with the planar bootstrap, i.e.
the results of the Reggeon sector: egs. (3.59),
(3.60) and (3.61), one can show:
f(G=1=0 (3.73)
irrespective to the input Reggeon values a.,a;
and as. This means that j = 1 is one of the

roots of the equation and hence the singularity
position for the Pomeron ap () generated from

(3.72)

eq. (3.72) is exactly equal to | even in the exact
treatment if the self-consistency with the planar
bootstrap is imposed under the exact SU(4)
symmetry. We have computed the remaining
roots of eq. (3.72) numerically using a
computer, which give the positions of the
daughter trajectories of the Pomeron. In table
2, we summarize the positions for 7p; (¢ = 1, 2,
-+, 6) for several representative values of
a; (0) and a (0) as the input (for a, (0) we
assume a, (0) = 0.5). The values a», a.,
as and g* are determined from the relations
(3.59), (3.60) and (3.61) and are given in Table 1.
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Table 2
a; 0.0 0.3
as | -2 —4 —6 -2 —4 —6
irt 1 1 1 1 1 1
Jpe | 0.170| 0.168| 0.167 | 0.384] 0.383] 0.383

Jpo | -0.661] -0.665 | -0.666 | -0.233 | -0.233 | -0.233
Jpi | -1.770 | -3.730 | 5.713 | -1.786 | -3.757 | -5.743
Jps | 2.600 | -4.563 | -6.545 | 2.403 | -4.373 | -6.360
Jpo | 4.539 | -8.460 | -12.425 | -4.573 | -8.513 | -12.487

For the total cross-section ratios R; =0(¥;N)

/6 (pn)as already pointed out in I, one can
prove analytically that the exact treatment
yields the identical values (except for the coupl-
ing constant g?) with the case when only one
leading diagram is kept in the unitarity sum (i.e.
as in the CGZ-model). From the numerical
analysis obtained by varying the input values
as (0)and  as (0)( @, (0) is fixed at 0.5)
while for (0, a,(0), a5 (0), and g* using the
values determined from egs. (3.59), (3.60) and
(3.61), we see that the following equal-spacing
relations hold among the intercepts of the
Pomeron daughters.

Jpe T Jpe T Jre T Ips T TP ps (374)

(3.75)

Jps “Tps =Jps *jl‘ﬂ .
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